STCD1020RDG6E [STMICROELECTRONICS]

Multi-channel clock distribution circuit; 多路时钟分配电路
STCD1020RDG6E
型号: STCD1020RDG6E
厂家: ST    ST
描述:

Multi-channel clock distribution circuit
多路时钟分配电路

时钟
文件: 总40页 (文件大小:1779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STCD1020, STCD1030, STCD1040  
Multi-channel clock distribution circuit  
Features  
2, 3 or 4 outputs buffered clock distribution  
Single-ended sine wave or square wave clock  
input and output  
Individual clock enable for each output  
Lower fan-out on clock source  
TDFN (8, 10 or 12 lead)  
No AC coupling capacitor needed at the input  
Ultra-low phase noise and standby current  
Description  
(a)  
2.5 V to 3.6 V supply voltage  
The STCD1020, STCD1030 and STCD1040 are  
2, 3 or 4 outputs unity gain clock distribution  
circuits, which are used to provide a common  
frequency clock to multi-mode mobile RF  
applications. It can also be used for those  
baseband peripheral applications in a mobile  
phone such as WLAN, Bluetooth, GPS and DVB-  
H as a clock reference. The STCD1020,  
STCD1030 and STCD1040 isolate each device  
driven by their clock outputs and minimize  
interference between the devices. Each of the  
clock buffers can be disabled to lower the power  
consumption if the connected device does not  
need the clock. The STCD1020, STCD1030 and  
STCD1040 accept commonly used mobile master  
clock frequencies ranging from 10 MHz to 52  
MHz.  
10 pF typical load driving capability  
Available in TDFN packages  
– STCD1020 - 8-lead (2 mm x 2 mm)  
– STCD1030 - 10-lead (2 mm x 2.5 mm)  
– STCD1040 - 12-lead (2 mm x 3 mm)  
Operational temperature : –40°C to 85°C  
Applications  
Multi-mode RF clock reference  
Baseband peripheral devices clock reference  
The STCD1020, STCD1030 and STCD1040 are  
available in 2 mm x 2 mm 8-lead, 2 mm x 2.5 mm  
10-lead and 2 mm x 3 mm 12-lead TDFN  
packages and can be operated with a single 2.8 V  
(or 1.8 V) supply. The operational temperature is  
–40°C to +85°C.  
a. For the 1.65 to 2.75 V version, please contact local ST  
sales office  
Table 1.  
Device summary  
Order code  
Operating temperature range  
Channel  
Supply  
Package  
STCD1020RDG6E  
STCD1030RDH6E  
STCD1040RDM6F  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
2
3
4
2.8 V  
2.8 V  
2.8 V  
TDFN8  
TDFN10  
TDFN12  
May 2008  
Rev 4  
1/40  
www.st.com  
1
Contents  
STCD1020, STCD1030, STCD1040  
Contents  
1
2
3
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1  
3.2  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Connection of the source clock to MCLK . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
5
6
7
8
9
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2/40  
STCD1020, STCD1030, STCD1040  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin names and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Truth table for enable signals (EN 1-4) and output clocks (CLK1-4) . . . . . . . . . . . . . . . . . 10  
Absolute maximum ratings (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute maximum ratings (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating and AC measurement conditions (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 15  
DC and AC characteristics (1.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operating and AC measurement conditions (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . 16  
DC and AC characteristics (2.8 V supply) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
TDFN - 8-lead (2 x 2 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
TDFN - 10-lead (2 x 2.5 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
TDFN - 12-lead (2 x 3 mm) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3/40  
List of figures  
STCD1020, STCD1030, STCD1040  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Connections diagram (STCD1020, 2-channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Connections diagram (STCD1030, 3-channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Connections diagram (STCD1040, 4-channel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Typical application circuit using STCD1040 for RF ends of TD-SCDMA/GSM dual mode  
mobile phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical application circuit using STCD1040 for baseband peripherals in mobile phone . . 12  
Direct connection of the source clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 8.  
Figure 9.  
Figure 10. Connection of the DC-CUT capacitor and bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Quiescent current (I ) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
Q
CC  
EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12. Quiescent current (I ) vs. temperature (STCD1040, 2.8 V version,  
Q
EN1=EN2=EN3=EN4=1, C  
= 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . 18  
load  
Figure 13. Standy current (I ) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
SB  
CC  
EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14. Active current (I ) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
ACT  
CC  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 19  
Figure 15. Active current (I ) vs. master clock input voltage level (Vpp) (STCD1040, 2.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input). . . . . . . . . . . . . . . . . . . . 20  
Figure 16. Active current (I ) vs. input frequency (STCD1040, 2.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17. STCD10x0 recovery time from standby to active (STCD1040, 2.8 V version,  
EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 18. STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version,  
EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 19. Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz sine wave  
master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 20. Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz square wave  
master clock input, C  
= 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
load  
Figure 21. Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock input  
from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 22. Output clock phase noise (STCD1040, 2.8V version, this phase noise includes the  
additive phase noise from TCXO and STCD1040). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 23. Clock bandwidth (STCD1040, 2.8 V version, C  
= 10 pF) . . . . . . . . . . . . . . . . . . . . . . . 24  
load  
Figure 24. Quiescent current (I ) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
Q
CC  
EN1=EN2=EN3=EN4=1, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 25. Quiescent current (I ) vs. temperature (STCD1040, 1.8 V version,  
Q
EN1=EN2=EN3=EN4=1, C  
= 30 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . 25  
load  
Figure 26. Standby current (I ) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
SB  
CC  
EN1=EN2=EN3=EN4=0, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 27. Active current (I ) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
ACT  
CC  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO) . . . . . . . . . . 26  
Figure 28. Active current (I ) vs. master clock input voltage level (Vpp) (STCD1040, 1.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input). . . . . . . . . . . . . . . . . . . . 26  
Figure 29. Active current (I ) vs. input frequency (STCD1040, 1.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4/40  
STCD1020, STCD1030, STCD1040  
List of figures  
Figure 30. STCD10x0 recovery time from standby to active (STCD1040, 1.8 V version,  
EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1) . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 31. STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version,  
EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1). . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 32. Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz sine wave  
master clock input from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 33. Rise and fall time for square wave output (STCD1040, 1.8 V version, 10MHz square wave  
master clock input, C  
= 20 pF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
load  
Figure 34. Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock input  
from TCXO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 35. Output clock phase noise (STCD1040, 1.8 V version, this phase noise includes the  
additive phase noise from TCXO and STCD1040). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 36. Clock bandwidth (STCD1040, 1.8 V version, C  
= 10 pF) . . . . . . . . . . . . . . . . . . . . . . . 30  
load  
Figure 37. TDFN - 8-lead, 2 x 2 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 38. TDFN - 10-lead, 2 x 2.5 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 39. TDFN - 12-lead, 2 x 3 mm package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5/40  
Device overview  
STCD1020, STCD1030, STCD1040  
1
Device overview  
Figure 1.  
Logic diagram  
V
CC  
MCLK  
EN1  
EN2  
EN3  
EN4  
CLK1  
CLK2  
CLK3  
CLK4  
STCD1040  
Clock  
distribution  
GND  
ai13948  
Note:  
No EN3, EN4, CLK3 nor CLK4 for STCD1020 and no EN4 nor CLK4 for STCD1030.  
Figure 2. Connections diagram (STCD1020, 2-channel)  
1
2
8
7
V
GND  
NC  
CC  
STCD1020  
TDFN8  
MCLK  
EN1  
3
4
6
5
CLK1  
CLK2  
EN2  
ai13949  
6/40  
STCD1020, STCD1030, STCD1040  
Figure 3. Connections diagram (STCD1030, 3-channel)  
Device overview  
V
CC  
GND  
NC  
1
2
10  
9
MCLK  
EN1  
STCK1030  
TDFN10  
8
3
4
5
CLK1  
CLK2  
CLK3  
EN2  
7
6
EN3  
ai13950  
Figure 4.  
Connections diagram (STCD1040, 4-channel)  
V
1
CC  
12  
11  
GND  
NC  
2
MCLK  
STCD1040  
TDFN12  
3
4
CLK1  
CLK2  
CLK3  
CLK4  
10  
9
EN1  
EN2  
EN3  
EN4  
5
6
8
7
ai13951  
7/40  
Device overview  
STCD1020, STCD1030, STCD1040  
Function  
Table 2.  
Pin names and functions  
Pin  
Type  
Clock output channel #1, #2, #3, #4. A 0.001μ F DC  
cut capacitor needed outside.  
CLK1, CLK2, CLK3, CLK4  
Output  
Clock output channel #1, #2, #3, #4 enable, active  
high  
EN1, EN2, EN3, EN4  
Input  
Input  
MCLK  
VCC  
Master clock input  
Supply voltage. Bypass to GND with a 0.1 μ F  
capacitor.  
Supply  
Supply  
GND  
NC  
Supply ground  
Not connected  
Figure 5.  
Block diagram  
V
CC  
EN4  
STCD1040  
4
CLK4  
EN3  
3
CLK3  
MCLK  
EN2  
2
CLK2  
EN1  
1
CLK1  
GND  
ai13952  
8/40  
STCD1020, STCD1030, STCD1040  
Figure 6. Hardware hookup  
Device overview  
V
CC  
Clock enable  
control  
V
CC  
EN4  
Clock #4  
output  
CLK4  
STCD1040  
MCLK  
EN3  
CLK3  
Master  
Clock #3  
output  
Clock input  
EN2  
CLK2  
Clock #2  
output  
EN1  
CLK1  
Clock #1  
output  
GND  
ai13953  
9/40  
Device operation  
STCD1020, STCD1030, STCD1040  
2
Device operation  
The STCD1020, STCD1030 and STCD1040 are 2, 3 or 4 buffered unity gain clock  
distribution circuits. They accept the clock input from an external clock source and send 2, 3  
or 4 buffered outputs to different devices.  
Each clock output of the STCD1020, STCD1030 and STCD1040 can be enabled for the  
device connected to it. If the device connected is in standby and does not require a clock,  
the buffer can be disabled to save power consumption. If all the devices connected are in  
standby, the STCD1020, STCD1030 and STCD1040 will also be put into standby mode for  
further power consumption saving. The enable signals and output clock signals truth table  
are given in Table 3.  
The input DC cut capacitor is embedded in STCD1020, STCD1030 and STCD1040. A  
capacitor outside is needed for each of the clock outputs. The STCD1020, STCD1030 and  
STCD1040 are internally biased at 1/2 V DC voltage level at the outputs.  
CC  
Table 3.  
EN1  
Truth table for enable signals (EN 1-4) and output clocks (CLK1-4)  
EN2  
EN3  
EN4  
CLK1  
CLK2  
CLK3  
CLK4  
0
1
0
0
0
0
0
0
NO CLOCK NO CLOCK NO CLOCK NO CLOCK  
CLOCK  
CLOCK  
...  
NO CLOCK NO CLOCK NO CLOCK  
1
1
0
0
CLOCK  
...  
NO CLOCK NO CLOCK  
...  
1
...  
1
...  
1
...  
1
...  
...  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
Note:  
"0" means logic low and "1" means logic high. When NO CLOCK outputs, the CLKx pins  
stay at High Impedance.  
10/40  
STCD1020, STCD1030, STCD1040  
Application information  
3
Application information  
3.1  
Typical applications  
The STCD1020, STCD1030 and STCD1040 distribute a source clock (for example, from  
VCTCXO) to 2, 3 or 4 channel outputs. The typical application circuits using STCD1040 are  
shown in Figure 7 and Figure 8 below.  
In Figure 7, the clock from VCTCXO is distributed to the TD-SCDMA transmitter and  
receiver and GSM transceiver separately.  
In Figure 8, the buffer #4 output is fed into the Bluetooth system. In order to allow minimum  
power consumption, a Bluetooth system always has a clock request feature. If the Bluetooth  
system does not require the clock, the clock request will disable the clock output.  
The enable pins can also be connected to logic high to let the channel output always on. If  
the channels of STCD1020, STCD1030 and STCD1040 are not used in the application, the  
enable pins of the channels should be connected to ground on PCB.  
Figure 7.  
Typical application circuit using STCD1040 for RF ends of TD-  
SCDMA/GSM dual mode mobile phone  
V
CC  
Mode  
selection  
V
CC  
EN4  
STCD1040  
TD-SCDMA  
transmitter  
CLK4  
VCTCXO  
EN3  
CLK3  
EN2  
MCLK  
TD-SCDMA  
receiver  
CLK2  
EN1  
CLK1  
GND  
GSM  
transceiver  
ai13954  
11/40  
Application information  
Figure 8.  
STCD1020, STCD1030, STCD1040  
Typical application circuit using STCD1040 for baseband peripherals in  
mobile phone  
V
BT_External_Req  
CC  
V
CC  
Bluetooth  
EN4  
CLK4  
STCD1040  
VCTCXO  
WLAN  
GPS  
EN3  
CLK3  
MCLK  
EN2  
CLK2  
EN1  
CLK1  
GND  
Other  
device  
ai13955  
3.2  
Connection of the source clock to MCLK  
If the output of the clock source voltage level is within the supply rails of the STCD1020,  
STCD1030 and STCD1040, the output of the source clock should be connected directly to  
the MCLK of the clock distribution circuits. This is described in Figure 9. The direct  
connection of the source clock is the common case and a DC-CUT capacitor is saved on  
PCB.  
Figure 9.  
Direct connection of the source clock  
V
CC  
STCD1020  
STCD1030  
STCD1040  
MCLK  
OUT  
VCTCXO  
ai13956  
Note:  
The input clock voltage level of the STCD1020, STCD1030, and STCD1040 cannot exceed  
the supply rails when it is directly connected to the source clock. If it is needed to connect a  
source clock with the voltage level exceeds the supply rails of the clock distribution circuits,  
the user needs to connect a DC-CUT capacitor serially as shown in Figure 10. A voltage  
divider formed by a resistor string is also needed to set a proper DC bias for the clock input  
12/40  
STCD1020, STCD1030, STCD1040  
Application information  
of the STCD1020, STCD1030 and STCD1040. The proper DC voltage is around half of the  
supply.  
The connection of the DC-CUT capacitor and bias for the STCD1020, STCD1030 and  
STCD1040 is only needed when the output of VCTCXO voltage level exceeds the supply of  
the clock distribution circuit (see Figure 10).  
Figure 10. Connection of the DC-CUT capacitor and bias  
V
CC  
R
1
0.1μF  
STCD1020  
STCD1030  
STCD1040  
MCLK  
OUT  
VCTCXO  
DC-CUT  
R
2
ai13957  
13/40  
Maximum rating  
STCD1020, STCD1030, STCD1040  
4
Maximum rating  
Stressing the device above the rating listed in the "Absolute maximum ratings" table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 4.  
Symbol  
TSTG  
Absolute maximum ratings (1.8 V supply)  
Parameter  
Value  
Unit  
Storage temperature (VCC off)  
Lead solder temperature for 10 seconds  
Maximum junction temperature  
Supply voltage  
-55 to 150  
260  
°C  
°C  
°C  
(1)  
TSLD  
TJ  
150  
VCC  
VIN  
-0.3 to 3.6  
-0.3 to 3.6  
-0.3 to 3.6  
149.0  
V
Input voltage level  
V
VEN  
Voltage on enable pins  
V
TDFN8  
°C/W  
°C/W  
°C/W  
θJA  
Thermal resistance (junction to ambient)  
TDFN10  
TDFN12  
136.6  
132.4  
1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C  
for between 90 to 150 seconds).  
Table 5.  
Symbol  
Absolute maximum ratings (2.8 V supply)  
Parameter  
Value  
Unit  
TSTG  
Storage temperature (VCC off)  
Lead solder temperature for 10 seconds  
Maximum junction temperature  
Supply voltage  
-55 to 150  
260  
°C  
°C  
°C  
(1)  
TSLD  
TJ  
150  
VCC  
VIN  
-0.3 to 6  
-0.3 to 6  
-0.3 to 6  
149.0  
V
Input voltage level  
V
VEN  
Voltage on enable pins  
V
TDFN8  
°C/W  
°C/W  
°C/W  
θJA  
Thermal resistance (junction to ambient)  
TDFN10  
TDFN12  
136.6  
132.4  
1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C  
for between 90 to 150 seconds).  
14/40  
STCD1020, STCD1030, STCD1040  
DC and AC parameters  
5
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow are derived from tests performed under the measurement conditions summarized in  
Table 6. Designers should check that the operating conditions in their circuit match the  
operating conditions when relying on the quoted parameters.  
Table 6.  
Operating and AC measurement conditions (1.8 V supply)  
Parameter  
Condition  
Unit  
V
CC supply  
1.65 to 2.75  
0 to VCC  
V
V
Output clock voltage (CLK1…CLK4)  
Device enable voltage (EN1…EN4)  
Ambient operating temperature (TA)  
0 to VCC  
V
-40 to +85  
°C  
Table 7.  
Symbol  
DC and AC characteristics (1.8 V supply)  
Parameter  
Condition(1)  
Min  
Typ  
Max  
Unit  
fMCLK Master clock (eg. from VCTCXO)  
Sine wave/square wave  
10  
26  
1.8  
1
52  
MHz  
V
VCC  
Supply voltage  
1.65  
0.75  
-1.5  
2.75  
Vin  
Input clock voltage level(2)  
Vpp  
dB  
Vout Output gain level(3)  
CL = 10 pF  
2 buffers version  
3 buffers version  
4 buffers version  
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
All buffers disabled  
At DC level  
-0.5  
1.6  
2.0  
2.6  
1.7  
2.2  
2.7  
3.2  
2.6  
3.3  
4
IQ  
Quiescent current(4)  
Active current(5)  
mA  
IACT  
mA  
ISB  
RIN  
CIN  
Standby current  
Input resistance  
Input capacitance  
1
μA  
kΩ  
pF  
>100  
3
f = 26 MHz  
4
5
Vin = 1 Vpp, CL = 10 pF  
Square wave input/output  
tr/f  
Rise/fall time(6)  
2
ns  
Vin = 1 Vpp, –1 dB, CL = 10 pF  
Sine wave input/output  
BW  
Signal bandwidth(3)  
52  
MHz  
VENH Enable voltage high(7)  
VENL Enable voltage low(7)  
EN1~EN4  
EN1~EN4  
1.2  
V
V
0.6  
15/40  
DC and AC parameters  
STCD1020, STCD1030, STCD1040  
Table 7.  
Symbol  
DC and AC characteristics (1.8 V supply)  
Parameter  
Condition(1)  
Min  
Typ  
Max  
Unit  
at 1 kHz offset  
at 10 kHz offset  
at 100 kHz offset  
-135  
-145  
-150  
dBc/  
Hz  
PN  
Additive phase noise(3)(8)  
Buffer recovery time from off to  
on  
tRECB  
tRECC  
STCD10x0 active  
20  
μs  
μs  
STCD10x0 active recovery time  
from standby to active  
50  
10  
CL  
RL  
Capacitive load for each channel  
Resistive load for each channel  
20  
pF  
10  
kΩ  
1. Valid for ambient operating temperature: TA = -40°C to 85°C; VCC = 1.65 V to 2.75 V; typical TA = 25°C; Load  
capacitance = 10 pF (except where noted).  
2. Clock input voltage level should not exceed supply rails.  
3. Simulated and determined via design and NOT 100% tested.  
4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fmclk = 0 Hz).  
5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The  
typical test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF.  
6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock  
edge transfers from 90% VCC to 10% VCC  
.
7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V.  
8. Guaranteed with the supply noise of 30 μ Vrms from 300 Hz to 50 kHz.  
Table 8.  
Operating and AC measurement conditions (2.8 V supply)  
Parameter  
Condition  
Unit  
V
CC supply  
2.5 to 3.6  
0 to VCC  
0 to VCC  
-40 to +85  
V
V
Output clock voltage (CLK1…CLK4)  
Device enable voltage (EN1…EN4)  
Ambient operating temperature (TA)  
V
°C  
Table 9.  
Symbol  
DC and AC characteristics (2.8 V supply)  
Parameter  
Condition(1)  
Min  
Typ  
Max Unit  
fMCLK  
VCC  
Vin  
Master clock (eg. from VCTCXO)  
Supply voltage  
Sine wave/square wave  
10  
2.5  
26  
2.8  
1
52  
MHz  
V
3.6  
Input clock voltage level(2)  
Output gain level(3)  
0.75  
-1.5  
Vpp  
dB  
Vout  
CL = 10 pF  
-0.5  
1.7  
2.2  
2.8  
2 buffers version  
3 buffers version  
4 buffers version  
2.6  
3.3  
4
IQ  
Quiescent current(4)  
mA  
16/40  
STCD1020, STCD1030, STCD1040  
DC and AC parameters  
Table 9.  
Symbol  
DC and AC characteristics (2.8 V supply) (continued)  
Parameter  
Condition(1)  
Min  
Typ  
Max Unit  
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
All buffers disabled  
At DC level  
1.8  
2.3  
IACT  
Active current(5)  
mA  
2.85  
3.4  
ISB  
RIN  
CIN  
Standby current  
Input resistance  
Input capacitance  
1
μA  
kΩ  
pF  
>100  
3
f = 26 MHz  
4
5
Vin = 1Vpp, CL = 10 pF  
Square wave input/output  
tr/f  
Rise/fall times(6)  
2
ns  
Vin =1 Vpp, -1dB, CL = 10 pF  
Sine wave input/output  
BW  
Signal bandwidth(3)  
52  
MHz  
VENH  
VENL  
Enable voltage high(7)  
Enable voltage low(7)  
EN1~EN4  
EN1~EN4  
1.2  
V
V
0.6  
at 1 kHz offset  
at 10 kHz offset  
at 100 kHz offset  
STCD10x0 active  
-135  
-145  
-150  
20  
dBc/  
Hz  
PN  
Additive phase noise(3)(8)  
tRECB  
tRECC  
Buffer recovery time from off to on  
μs  
μs  
STCD10x0 active recovery time  
from standby to active  
50  
10  
CL  
RL  
Capacitive load for each channel  
Resistive load for each channel  
20  
pF  
10  
kΩ  
1. Valid for ambient operating temperature: TA = -40°C to 85°C; VCC = 2.5 V to 3.6 V; typical TA = 25°C;  
Load capacitance = 10 pF (except where noted).  
2. Clock input voltage level should not exceed supply rails.  
3. Simulated and determined via design and NOT 100% tested.  
4. The quiescent current is measured when the enable pins are active, but without input master clock signal (fMCLK = 0 Hz).  
5. The active current is dependent on the master clock input Vpp and frequency and the capacitive load condition. The typical  
test condition is 26 MHz sine wave with 1 Vpp master clock input, CL = 10 pF.  
6. The rise time is measured when clock edge transfers from 10% VCC to 90% VCC. The fall time is measured when clock  
edge transfers from 90% VCC to 10% VCC  
.
7. Other test results are under test condition VENH = 1.8 V and VENL = 0 V.  
8. Guaranteed with the supply noise of 30 μ Vrms from 300 Hz to 50 kHz.  
17/40  
Typical operating characteristics  
STCD1020, STCD1030, STCD1040  
6
Typical operating characteristics  
Typical operating characteristics of STCD1040 are V = 2.8 V; T = 25°C;  
CC  
A
load capacitance = 10 pF, 26 MHz TCXO ENE3127B from NDK (except where noted).  
Figure 11. Quiescent current (I ) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
Q
CC  
EN1=EN2=EN3=EN4=1, no master clock input)  
Quiescent current vs. Supply voltage  
3.1  
3
10pF  
20pF  
30pF  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
Supply voltage (V)  
Figure 12. Quiescent current (I ) vs. temperature (STCD1040, 2.8 V version,  
Q
EN1=EN2=EN3=EN4=1, C  
= 30 pF, no master clock input)  
load  
Quiescent current vs. Temperature  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
-50 -30 -10  
10  
30  
50  
70  
90  
Temperature (ºC)  
18/40  
STCD1020, STCD1030, STCD1040  
Typical operating characteristics  
Figure 13. Standy current (I ) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
SB  
CC  
EN1=EN2=EN3=EN4=0, no master clock input)  
Standby current vs. Supply voltage  
1
0.5  
0
-0.5  
-1  
2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7  
Supply voltage (V)  
Figure 14. Active current (I  
) vs. supply voltage (V ) (STCD1040, 2.8 V version,  
CC  
ACT  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO)  
Active current vs. Supply voltage  
6
4
10pF  
2
20pF  
30pF  
0
2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7  
Supply voltage (V)  
19/40  
Typical operating characteristics  
Figure 15. Active current (I  
STCD1020, STCD1030, STCD1040  
) vs. master clock input voltage level (Vpp)  
ACT  
(STCD1040, 2.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave  
master clock input)  
Active current vs. Master clock voltage level  
6
5
4
3
10pF  
20pF  
30pF  
2
1
0
Master clock voltage level Vpp(V)  
Figure 16. Active current (I  
) vs. input frequency (STCD1040, 2.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, master clock input Vpp = 1 V)  
Active current vs. Input frequency  
10  
8
6
4
10pF  
20pF  
30pF  
2
0
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
Frequency (MHZ)  
20/40  
STCD1020, STCD1030, STCD1040  
Typical operating characteristics  
Figure 17. STCD10x0 recovery time from standby to active (STCD1040, 2.8 V  
version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1)  
Figure 18. STCD10x0 buffer recovery time from off to on (STCD1040, 2.8 V version,  
EN2=EN3=EN4=1, measure CLK1 when EN1 from 0 to 1)  
21/40  
Typical operating characteristics  
STCD1020, STCD1030, STCD1040  
Figure 19. Sine wave input clock vs. output clock (STCD1040, 2.8 V version, 26 MHz  
sine wave master clock input from TCXO)  
Figure 20. Rise and fall time for square wave output (STCD1040, 2.8 V, 10 MHz  
square wave master clock input, C  
= 20 pF)  
load  
22/40  
STCD1020, STCD1030, STCD1040  
Typical operating characteristics  
Figure 21. Input clock phase noise (STCD1040, 2.8 V version, 26 MHz master clock  
input from TCXO)  
Figure 22. Output clock phase noise (STCD1040, 2.8V version, this phase noise  
includes the additive phase noise from TCXO and STCD1040)  
23/40  
Typical operating characteristics  
STCD1020, STCD1030, STCD1040  
Figure 23. Clock bandwidth (STCD1040, 2.8 V version, C  
= 10 pF)  
load  
Clock bandwidth  
0.00  
-1.00  
-2.00  
-3.00  
-4.00  
-5.00  
-6.00  
-7.00  
-8.00  
0
1
10  
100  
Input frequency (MHz)  
Figure 24. Quiescent current (I ) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
Q
CC  
EN1=EN2=EN3=EN4=1, no master clock input)  
Quiescent current vs. Supply voltage  
3
2.8  
2.6  
2.4  
2.2  
2
10pF  
20pF  
30pF  
Supply voltage (V)  
24/40  
STCD1020, STCD1030, STCD1040  
Typical operating characteristics  
Figure 25. Quiescent current (I ) vs. temperature (STCD1040, 1.8 V version,  
Q
EN1=EN2=EN3=EN4=1, C  
= 30 pF, no master clock input)  
load  
Quiescent current vs. Temperature  
2.9  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
-50  
-30  
-10  
10  
30  
50  
70  
90  
Temperature (˚C)  
Figure 26. Standby current (I ) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
SB  
CC  
EN1=EN2=EN3=EN4=0, no master clock input)  
Standby current vs. Supply voltage  
1
0.5  
0
-0.5  
-1  
Supply voltage (V)  
25/40  
Typical operating characteristics  
Figure 27. Active current (I  
STCD1020, STCD1030, STCD1040  
) vs. supply voltage (V ) (STCD1040, 1.8 V version,  
ACT  
CC  
EN1=EN2=EN3=EN4=1, 26 MHz sine wave master clock input from TCXO)  
Active current vs. Supply voltage  
6
4
10pF  
2
20pF  
30pF  
0
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8  
Supply voltage (V)  
Figure 28. Active current (I  
) vs. master clock input voltage level (Vpp)  
ACT  
(STCD1040, 1.8 V version, EN1=EN2=EN3=EN4=1, 26 MHz sine wave  
master clock input)  
Active current vs. Master clock voltage level  
6
5
4
3
10pF  
2
20pF  
1
30pF  
0
Master clock voltage level Vpp(V)  
26/40  
STCD1020, STCD1030, STCD1040  
Figure 29. Active current (I  
Typical operating characteristics  
) vs. input frequency (STCD1040, 1.8 V version,  
ACT  
EN1=EN2=EN3=EN4=1, master clock input Vpp=1 V)  
Active current vs. Input frequency  
12  
10  
8
6
10pF  
20pF  
30pF  
4
2
0
1
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
Frequency (MHZ)  
Figure 30. STCD10x0 recovery time from standby to active (STCD1040, 1.8 V  
version, EN2=EN3=EN4=0, measure CLK1 when EN1 from 0 to 1)  
27/40  
Typical operating characteristics  
STCD1020, STCD1030, STCD1040  
Figure 31. STCD10x0 buffer recovery time from off to on (STCD1040, 1.8 V version,  
EN2 =EN3=EN4=1, measure CLK1 when EN1 from 0 to 1)  
Figure 32. Sine wave input clock vs. output clock (STCD1040, 1.8 V version, 26 MHz  
sine wave master clock input from TCXO)  
28/40  
STCD1020, STCD1030, STCD1040  
Typical operating characteristics  
Figure 33. Rise and fall time for square wave output (STCD1040, 1.8 V version,  
10MHz square wave master clock input, C = 20 pF)  
load  
Figure 34. Input clock phase noise (STCD1040, 1.8 V version, 26 MHz master clock  
input from TCXO)  
29/40  
Typical operating characteristics  
STCD1020, STCD1030, STCD1040  
Figure 35. Output clock phase noise (STCD1040, 1.8 V version, this phase noise  
includes the additive phase noise from TCXO and STCD1040)  
Figure 36. Clock bandwidth (STCD1040, 1.8 V version, C  
= 10 pF)  
load  
Clock bandwidth  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
0
1
10  
100  
Input frequency(MHz)  
30/40  
STCD1020, STCD1030, STCD1040  
Package mechanical data  
7
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
31/40  
Package mechanical data  
STCD1020, STCD1030, STCD1040  
Figure 37. TDFN - 8-lead, 2 x 2 mm package outline  
D
B
PIN 1 INDEX AREA  
0.10 C 2x  
TOP VIEW  
0.10  
C
C
SEATING  
PLANE  
SIDE VIEW  
e
0.08  
C
b
PIN 1 INDEX AREA  
0.10  
C A B  
1
4
Pin#1 ID  
5
8
BOTTOM VIEW  
TDFN-8L  
32/40  
STCD1020, STCD1030, STCD1040  
Package mechanical data  
Table 10. TDFN - 8-lead (2 x 2 mm) package mechanical data  
mm  
inches  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
b
0.70  
0.00  
0.15  
0.75  
0.02  
0.20  
0.80  
0.05  
0.25  
0.028  
0.000  
0.006  
0.030  
0.001  
0.008  
0.031  
0.002  
0.010  
2.00  
BSC  
0.079  
BSC  
D
E
2.00  
BSC  
0.079  
BSC  
e
L
0.50  
0.55  
0.020  
0.022  
0.45  
0.65  
0.018  
0.026  
33/40  
Package mechanical data  
STCD1020, STCD1030, STCD1040  
Figure 38. TDFN - 10-lead, 2 x 2.5 mm package outline  
D
B
PIN 1 INDEX AREA  
0.10 C 2x  
TOP VIEW  
0.10  
C
SEATING  
PLANE  
SIDE VIEW  
0.08  
C
e
b
PIN 1 INDEX AREA  
0.10  
C A B  
Pin#1 ID  
BOTTOM VIEW  
TDFN-10L  
34/40  
STCD1020, STCD1030, STCD1040  
Package mechanical data  
Table 11. TDFN - 10-lead (2 x 2.5 mm) package mechanical data  
mm  
inches  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
b
0.70  
0.00  
0.15  
0.75  
0.02  
0.20  
0.80  
0.05  
0.25  
0.028  
0.000  
0.006  
0.030  
0.001  
0.008  
0.031  
0.002  
0.010  
2.50  
BSC  
0.098  
BSC  
D
E
2.00  
BSC  
0.079  
BSC  
e
L
0.50  
0.55  
0.020  
0.022  
0.45  
0.65  
0.018  
0.026  
35/40  
Package mechanical data  
STCD1020, STCD1030, STCD1040  
Figure 39. TDFN - 12-lead, 2 x 3 mm package outline  
D
B
INDEX AREA  
(D/2xE/2)  
0.10  
C
TOP VIEW  
0.10  
C
C
SEATING  
PLANE  
SIDE VIEW  
e
0.08  
C
b
0.10  
C A B  
6
1
PIN#1 ID  
INDEX AREA  
(D/2xE/2)  
12  
7
BOTTOM VIEW  
TDFN-12L  
36/40  
STCD1020, STCD1030, STCD1040  
Package mechanical data  
Table 12. TDFN - 12-lead (2 x 3 mm) package mechanical data  
mm  
inches  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
b
0.70  
0.00  
0.15  
0.75  
0.02  
0.20  
0.80  
0.05  
0.25  
0.028  
0.000  
0.006  
0.030  
0.001  
0.008  
0.031  
0.002  
0.010  
3.00  
BSC  
D
E
0.118  
0.079  
2.00  
BSC  
e
L
0.50  
0.55  
0.020  
0.022  
0.45  
0.65  
0.018  
0.026  
37/40  
Part numbering  
STCD1020, STCD1030, STCD1040  
8
Part numbering  
Table 13. Ordering information scheme  
Example:  
STCD  
1020  
R
DG  
6
E
Device type  
STCD = clock distribution  
Channels  
1020 = 2-channel  
1030 = 3-channel  
1040 = 4-channel  
Operating voltage  
R = 2.5 to 3.6 V  
P = 1.65 to 2.75 V(1)  
Package  
DG = TDFN8 (2-channel)  
DH = TDFN10 (3-channel)  
DM = TDFN12 (4-channel)  
Temperature range  
6 = –40°C to +85°C  
Shipping method  
E = ECOPACK® package, tubes  
F = ECOPACK® package, tape & reel  
1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
38/40  
STCD1020, STCD1030, STCD1040  
Revision history  
9
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
08-Aug-2007  
1
Initial release.  
Addition of footnote 4 in Table 7: DC and AC characteristics (1.8 V  
supply); updated Vout in Table 7 and Table 9; minor text changes.  
08-Oct-2007  
03-Apr-2008  
08-May-2008  
2
3
4
Updated cover page, Table 2, 5, 7, 9, 13, Figure 1, 6, 11, 12, 13, 14,  
15, 16, 17, 18, 19, 20, Section 2 and 6; added Figure 21, 22, 23, 24,  
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36.  
Updated cover page, Table 7, 8, Figure 14, 15, 27, 28, and Section 6;  
datasheet status upgraded to full datasheet.  
39/40  
STCD1020, STCD1030, STCD1040  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
40/40  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX