STCD23-0 [STMICROELECTRONICS]

Multichannel clock distribution circuit;
STCD23-0
型号: STCD23-0
厂家: ST    ST
描述:

Multichannel clock distribution circuit

文件: 总39页 (文件大小:1948K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STCD22x0, STCD23x0, STCD24x0  
Multichannel clock distribution circuit  
Features  
2, 3 or 4 output buffered clock distribution  
Single-ended square wave (or sine wave) clock  
input  
Rail-to-rail (0 V to VTCXO) square wave output  
Individual enable pin for each output  
1.8 V, high PSRR LDO for external clock  
source voltage supply (VTCXO)  
No AC coupling capacitor needed  
Ultra-low phase noise and standby current  
Flip Chip (12-bump, 16-bump)  
Common system clock request, open drain,  
active low  
Clock enable signal polarities factory  
programmable (STCD23x0)  
Option pins allow clock enable polarities to be  
Applications  
user configurable (STCD22x0 and STCD24x0)  
Multimode RF clock reference  
High isolation output-to-output & output-to-input  
2.5 V to 5.1 V battery supply voltage  
Baseband peripheral device clock reference  
Mobile Internet Devices (MIDs)  
40 pF max load driving capability per output  
Available in chip scale package (CSP)  
Operating temperature : –20 °C to 85 °C  
Table 1.  
Reference  
Device summary  
Part number  
Channels  
Enable polarity  
Package  
Flip Chip 12-bump  
(1.2 mm x 1.6 mm)  
STCD22x0  
STCD24x0  
STCD2200(1)  
2-channel  
User program  
STCD2400  
STCD2410(1)  
STCD2300(1)  
STCD2310(1)  
STCD2320(1)  
STCD2330(1)  
Flip Chip 16-bump  
(1.6 mm x 1.6 mm)  
4-channel  
3-channel  
Flip Chip 12-bump  
(1.2 mm x 1.6 mm)  
STCD23x0  
Factory program  
1. Contact local ST sales office for availability.  
January 2010  
Doc ID 15400 Rev 2  
1/39  
www.st.com  
1
 
 
Contents  
STCD22x0, STCD23x0, STCD24x0  
Contents  
1
2
3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Enable polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
LDO input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LDO output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
LDO BYP pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
MCREQ pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Phase noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Output trace line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical application connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6
7
8
9
10  
2/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin functions (STCD22x0, 2-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin functions (STCD23x0, 3-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin functions (STCD24x0, 4-channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth table for clock enable (EN1-4), master clock request (MC  
) and VTCXO . . . . . . 12  
REQ  
Truth table for enable signals (EN1-4), master clock input (MCLK) and output  
clocks (CLK1-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STCD22x0, STCD23x0 and STCD24x0 and enable polarity options . . . . . . . . . . . . . . . . . 13  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Flip Chip 12-bump, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Flip Chip 16-bump, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Doc ID 15400 Rev 2  
3/39  
List of figures  
STCD22x0, STCD23x0, STCD24x0  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Hardware hookup (master clock enable active low) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Hardware hookup (master clock enable active high) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Connections diagram Flip Chip 12-bump (STCD22x0, 2-channel). . . . . . . . . . . . . . . . . . . . 8  
Connections diagram Flip Chip 12-bump (STCD23x0, 3-channel). . . . . . . . . . . . . . . . . . . . 9  
Connections diagram Flip Chip 16-bump (STCD24x0, 4-channel). . . . . . . . . . . . . . . . . . . . 9  
Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Typical application circuit using STCD24x0 for RF ends of TD-SCDMA/GSM dual-mode  
mobile phone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 10. Typical application circuit using STCD24x0 for baseband peripherals in mobile phone. . . 18  
Figure 11. Quiescent current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1,  
no master clock input). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 12. Quiescent current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1,  
C
= 20 pF, no master clock input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
load  
Figure 13. Active current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1, C  
= 20 pF,  
load  
V
= 3.8 V, f  
= 26 MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CC  
MCLK  
Figure 14. Standby current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 0, no master clock input) 20  
Figure 15. Active current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1, f = 26 MHz,  
MCLK  
C
= 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
load  
Figure 16. Active current vs. master clock input voltage level (EN1 = EN2 = EN3 = EN4 = 1,  
= 26 MHz, C = 20 pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
f
MCLK  
load  
Figure 17. Active current vs. master clock frequency (EN1 = EN2 = EN3 = EN4 = 1, C  
= 20 pF) . 21  
load  
Figure 18. STCD2400 recovery time from standby to active (VTCXO is on). . . . . . . . . . . . . . . . . . . . 22  
Figure 19. STCD2400 recovery time from off to on (VTCXO first in standby) . . . . . . . . . . . . . . . . . . . 22  
Figure 20. Output clock rise/fall time (C  
= 40 pF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
load  
Figure 21. STCD2400 power-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 22. STCD2400 power-down sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 23. Phase noise input (from the clock source, 26 MHz square wave XO KC2520C26 from  
Kyocera) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 24. Phase noise output (include the clock source and STCD2400 additive phase noise) . . . . 26  
Figure 25. Flip Chip 12-bump, package mechanical outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 26. Flip Chip 16-bump, package mechanical outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 27. Flip Chip 12-bump tape and reel specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 28. Flip Chip 16-bump tape and reel specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Description  
1
Description  
The STCD22x0, STCD23x0 and STCD24x0 are 2, 3 or 4 output clock distribution circuits  
which accept external square wave or sine wave signals and output rail-to-rail (0 V to  
VTCXO) square wave signals. They are used to provide a common frequency clock to  
multimode mobile RF applications. They can also be used for those baseband peripheral  
applications in mobile phones such as WLAN, Bluetooth, GPS and DVB-H as the clock  
reference. The STCD22x0, STCD23x0 and STCD24x0 isolate each device driven by their  
clock outputs and minimize interference between the devices. Each of the clock buffers can  
be disabled to lower the power consumption whenever the connected device does not need  
the clock. The STCD22x0, STCD23x0 and STCD24x0 accept commonly used mobile  
master clock frequencies ranging from 10 MHz to 52 MHz.  
The STCD22x0, STCD23x0 and STCD24x0 have a common clock request (open drain  
output, active low) controlling the external clock source. A 1.8 V, high PSRR LDO is also  
integrated in the STCD22x0, STCD23x0 and STCD24x0 to supply power to the external  
clock source (for example, TCXO). STMicroelectronics offers different versions for the  
enable polarities. The STCD22x0, STCD23x0 and STCD24x0 are available in, respectively,  
1.2 mm x 1.6 mm (12-bump), 1.2 mm x 1.6 mm (12-bump) and 1.6 mm x 1.6 mm (16-bump)  
chip scale packages and can be operated with a battery supply voltage ranging from 2.5 V  
to 5.1 V. The operating temperature is –20 to +85 °C.  
Doc ID 15400 Rev 2  
5/39  
Device overview  
STCD22x0, STCD23x0, STCD24x0  
2
Device overview  
Figure 1.  
Logic diagram  
V
CC  
MCLK  
MC  
REQ  
EN1  
EN2  
CLK1  
STCD24x0  
EN3(1)  
CLK2  
Clock  
Distribution  
EN4(1)(2)  
CLK3(1)  
CLK4(1)(2)  
VTCXO  
BYP  
OPT1(2)  
OPT2(2)  
GND  
ai14020  
1. EN3, CLK3, EN4, and CLK4 do not exist for STCD22x0.  
2. OPT1, OPT2, EN4, and CLK4 do not exist for STCD23x0.  
6/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Device overview  
Figure 2.  
Block diagram  
V
CC  
STCD24x0  
EN4  
VCC  
VTCXO  
VTCXO  
4
3
CLK4  
Bandgap  
BYP  
EN3  
LDO  
CLK3  
VTCXO  
EN2  
VTCXO  
VTCXO  
MC  
REQ  
2
1
CLK2  
OPT1  
OPT2  
EN1  
MCLK  
CLK1  
ai14021  
GND  
Note:  
Enable signals (EN1-4) can be factory programmed either active high or active low for  
STCD23x0 and can have different polarity options by configuring OPT1 and OPT2 for  
STCD22x0 and STCD24x0. Master clock request (MC  
low.  
) is open drain output and active  
REQ  
Figure 3.  
Hardware hookup (master clock enable active low)  
VCC  
Enable  
control  
C
EN4  
BYP  
Clock #4 output  
Clock #3 output  
Clock #2 output  
CLK4  
C
VTCXO  
VIO  
C
EN3  
STCD24x0 CLK3  
VDD  
EN2  
MCREQ  
EN  
XO  
CLK2  
MCLK  
VCC  
EN1  
OPT1  
OPT2  
Clock #1 output  
CLK1  
ai14028a  
Doc ID 15400 Rev 2  
7/39  
Device overview  
STCD22x0, STCD23x0, STCD24x0  
Figure 4.  
Hardware hookup (master clock enable active high)  
VCC  
Enable  
control  
C
EN4  
BYP  
Clock #4 output  
Clock #3 output  
Clock #2 output  
CLK4  
C
VTCXO  
C
EN3  
STCD24x0 CLK3  
VDD  
EN2  
MCREQ  
EN  
XO  
CLK2  
MCLK  
VCC  
EN1  
OPT1  
OPT2  
Clock #1 output  
CLK1  
ai14028b  
Figure 5.  
Connections diagram Flip Chip 12-bump (STCD22x0, 2-channel)  
CLK2  
OPT1  
OPT2  
EN2  
CLK1  
BYP  
EN1  
EN2  
EN1  
CLK1  
BYP  
CLK2  
OPT1  
OPT2  
3
2
3
2
MC  
GND  
MC  
REQ  
REQ  
GND  
V
CC  
1
1
V
VTCXO  
VTCXO  
MCLK  
MCLK  
CC  
Bottom view  
Top view  
A
B
C
D
D
C
B
A
ai14017  
Note:  
OPT1 is used to configure EN1 polarity. Connect OPT1 to V to configure EN1 active high  
CC  
or connect OPT1 to GND to configure EN1 active low. In the same way OPT2 is used to  
configure EN2.  
8/39  
Doc ID 15400 Rev 2  
 
STCD22x0, STCD23x0, STCD24x0  
Device overview  
Figure 6.  
Connections diagram Flip Chip 12-bump (STCD23x0, 3-channel)  
CLK2  
CLK3  
EN3  
EN2  
CLK1  
BYP  
EN1  
EN2  
EN1  
CLK2  
CLK3  
EN3  
CLK1  
BYP  
3
2
3
2
MC  
REQ  
GND  
MC  
REQ  
GND  
V
CC  
1
1
V
VTCXO  
VTCXO  
MCLK  
MCLK  
CC  
Bottom view  
Top view  
A
B
C
D
D
C
B
A
ai14018  
Note:  
EN1~EN3 can be active high or active low. STMicroelectronics offers several polarity  
options, refer to Section 3.2: Enable polarity for detailed information.  
Figure 7.  
Connections diagram Flip Chip 16-bump (STCD24x0, 4-channel)  
CLK2  
CLK1  
EN2  
EN1  
EN3  
EN4  
CLK3  
CLK4  
CLK3  
CLK4  
EN3  
EN4  
EN2  
CLK2  
CLK1  
BYP  
4
4
EN1  
GND  
3
2
1
3
2
1
MC  
BYP  
OPT1  
OPT2  
OPT1  
OPT2  
GND  
REQ  
MC  
REQ  
V
CC  
VTCXO  
MCLK  
V
VTCXO  
MCLK  
CC  
Top view  
Bottom view  
A
B
C
D
A
D
C
B
ai14019  
Note:  
OPT1 is used to configure EN1 and EN2 polarity. Connect OPT1 to V to configure EN1  
CC  
and EN2 active high or connect OPT1 to GND to configure EN1 and EN2 active low. In the  
same way OPT2 is used to configure EN3 and EN4. STMicroelectronics offers different  
control options, refer to Section 3.2: Enable polarity for detailed information.  
Doc ID 15400 Rev 2  
9/39  
Device overview  
STCD22x0, STCD23x0, STCD24x0  
Table 2.  
Pin  
Pin functions (STCD22x0, 2-channel)  
Pin  
Description  
number name  
A1  
B1  
C1  
VCC  
Supply voltage (decouple with a 1 µF capacitor to GND)  
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)  
MCLK Master clock input  
Optional pin 2. Connect to VCC or GND on PC board to field configure EN2  
OPT2  
D1  
A2  
active high/low. Refer to Section 3.2: Enable polarity for detailed information.  
Bypass capacitor input pin (10 nF capacitor should be connected to GND in  
BYP  
order to improve thermal noise performance)  
B2  
C2  
GND Supply ground  
MCREQ Master clock request signal (open drain, active low)  
Optional pin 1. Connect to VCC or GND on PC board to field configure EN1  
OPT1  
D2  
active high/low. Refer to Section 3.2: Enable polarity for detailed information.  
A3  
B3  
C3  
D3  
CLK1 Clock output channel - output 1  
EN1  
EN2  
Clock output channel enable-1 (active high/low OPT1 field programmable)  
Clock output channel enable-2 (active high/low OPT2 field programmable)  
CLK2 Clock output channel - output 2  
Table 3.  
Pin  
Pin functions (STCD23x0, 3-channel)  
Pin  
Description  
number name  
A1  
B1  
C1  
D1  
VCC  
Supply voltage (decouple with a 1 µF capacitor to GND)  
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)  
MCLK Master clock input  
EN3  
BYP  
Clock output channel enable-3 (active high/low factory laser programmable)  
Bypass capacitor input pin (10 nF capacitor should be connected to GND in  
order to improve thermal noise performance)  
A2  
B2  
C2  
D2  
A3  
B3  
C3  
D3  
GND Supply ground  
MCREQ Master clock request signal (open drain, active low)  
CLK3 Clock output channel - output 3  
CLK1 Clock output channel - output 1  
EN1  
EN2  
Clock output channel enable-1 (active high/low factory laser programmable)  
Clock output channel enable-2 (active high/low factory laser programmable)  
CLK2 Clock output channel - output 2  
10/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Device overview  
Table 4.  
Pin  
Pin functions (STCD24x0, 4-channel)  
Pin  
Description  
number name  
A1  
B1  
C1  
VCC  
Supply voltage (decouple with a 1 µF capacitor to GND)  
VTCXO LDO output for external clock source (decouple with a 1 µF capacitor to GND)  
MCLK Master clock input  
Optional pin 2. Connect to VCC or GND on PC board to field configure EN3 and  
OPT2 EN4 active high/low. Refer to Section 3.2: Enable polarity for detailed  
information.  
D1  
A2  
Bypass capacitor input pin (10 nF capacitor should be connected to GND in  
BYP  
order to improve thermal noise performance)  
B2  
C2  
GND Supply ground  
MCREQ Master clock request signal (open drain, active low)  
Optional pin 1. Connect to VCC or GND on PC board to field configure EN1 and  
OPT1 EN2 active high/low. Refer to Section 3.2: Enable polarity for detailed  
information.  
D2  
A3  
B3  
C3  
D3  
A4  
B4  
C4  
D4  
CLK1 Clock output channel - output 1  
EN1  
EN4  
Clock output channel enable-1 (active high/low OPT1 field programmable)  
Clock output channel enable-4 (active high/low OPT2 field programmable)  
CLK4 Clock output channel - output 4  
CLK2 Clock output channel - output 2  
EN2  
EN3  
Clock output channel enable-2 (active high/low OPT1 field programmable)  
Clock output channel enable-3 (active high/low OPT2 field programmable)  
CLK3 Clock output channel - output 3  
Doc ID 15400 Rev 2  
11/39  
Device operation  
STCD22x0, STCD23x0, STCD24x0  
3
Device operation  
3.1  
Operation  
The STCD22x0, STCD23x0 and STCD24x0 are 2, 3 or 4 buffered clock distribution circuits.  
They accept the clock (either square wave or sine wave) input from an external clock source  
and send 2, 3 or 4 buffered rail-to-rail (0 V to VTCXO) square wave outputs to different  
devices. A 1.8 V, high PSRR LDO (VTCXO) is also integrated in the STCD22x0, STCD23x0  
and STCD24x0 which can be used as a voltage supply for the external master clock source  
(such as a TCXO). This LDO stops the current increase through PMOS when the load  
current reaches the limit value of the current-limit protection circuit. When the load current  
falls below the limit values, the current limit is released.  
Each of the STCD22x0, STCD23x0 and STCD24x0 clock outputs can be enabled  
individually. If the device connected to the output is in standby, and does not require a clock,  
the buffered output can be disabled to save power consumption. Once the buffered output is  
disabled, it is pulled down to GND internally. If all the devices connected are in standby, the  
STCD22x0, STCD23x0 and STCD24x0 are also put into standby mode (the internal LDO is  
also shut down) for further power consumption savings. All of the output enable signals are  
logic ORed with an open drain output (MC  
) to control the output of the source clock. If  
REQ  
the output clock is required by at least one device, the LDO wakes up and the MC  
REQ  
activates the clock source. The truth table for enable signals, the master clock request signal  
and the VTCXO is given in Table 5. The truth table for enable signals, output clock signals  
and the master clock is given in Table 6.  
The STCD22x0, STCD23x0 and STCD24x0 have the master clock input detector integrated.  
If the input master clock peak-to-peak voltage is below the minimum specified level, even if  
the outputs are enabled, there are no clock outputs and STCD22x0, STCD23x0 and  
STCD24x0 enter standby mode. Once the master clock peak-to-peak voltage level reaches  
the minimum value, the output clocks are asserted if the enable pins are active.  
In Table 5 and 6, the enable signals are active high and the MC  
is active low. These  
REQ  
enable signals can be active high or active low. The enable polarity is described in  
Section 3.2: Enable polarity. Customers can select different polarity options for different  
applications. Contact the STMicroelectronics local sales office for availability.  
Table 5.  
EN1  
Truth table for clock enable (EN1-4), master clock request (MC  
VTCXO  
) and  
REQ  
EN2  
EN3  
EN4  
VTCXO  
MC  
REQ  
0
1
1
0
0
1
-
0
0
0
-
0
0
0
-
1
GND  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
0
0
0
0
-
1
1
1
1
Note:  
"0" means logic low which disables the clock output and "1" means logic high which enables  
the clock output. This is an active high truth table. Refer to Section 3.2: Enable polarity for  
the detailed enable active high/low options.  
12/39  
Doc ID 15400 Rev 2  
 
STCD22x0, STCD23x0, STCD24x0  
Device operation  
Table 6.  
EN1  
Truth table for enable signals (EN1-4), master clock input (MCLK) and  
output clocks (CLK1-4)  
EN2 EN3 EN4  
MCLK  
CLK1  
CLK2  
CLK3  
CLK4  
0
1
1
-
0
0
1
-
0
0
0
-
0
0
0
-
X
NO CLOCK NO CLOCK NO CLOCK NO CLOCK  
CLOCK  
CLOCK  
-
CLOCK  
CLOCK  
-
NO CLOCK NO CLOCK NO CLOCK  
CLOCK  
-
NO CLOCK NO CLOCK  
-
-
1
1
1
1
CLOCK  
CLOCK  
CLOCK  
CLOCK  
CLOCK  
Note:  
"0" means logic low and "1" means logic high. When there is NO CLOCK output, the CLKx  
pin stays at logic low. "X" means don't care. This is an active high truth table. Refer to  
Section 3.2: Enable polarity for the detailed enable active high/low options.  
3.2  
Enable polarity  
In different applications, the user may have different requirements for enable active high or  
active low (enable polarities). MC  
is active low. STMicroelectronics offers different  
REQ  
solutions for the user to obtain different enable polarities.  
In the STCD22x0 and STCD24x0, the user can configure the enable active high or active  
low on the PC board by connecting OPT1 and OPT2 to either V or ground. Refer to  
CC  
Table 7 for detailed information.  
In the STCD23x0, STMicroelectronics offers 4 enable polarity options by factory  
programming for the user. Refer to Table 7 for detailed information.  
The user should note that OPT1 and OPT2 must be connected to either V or GND on the  
CC  
PC board and floating on these pins could cause problems.  
Table 7.  
STCD22x0, STCD23x0 and STCD24x0 and enable polarity options  
Enable polarity  
program method  
Part number  
Enable polarities (OPT1, OPT2)  
OPT1 connected to VCC, EN1 active high  
OPT1 connected to GND, EN1 active low  
OPT2 controls EN2  
STCD2200  
OPT1 connected to VCC, EN1 and EN2 active high  
OPT1 connected to GND, EN1 and EN2 active low  
OPT2 controls EN3 and EN4  
STCD2400  
STCD2410  
User program  
OPT1 connected to VCC, EN1 active high  
OPT1 connected to GND, EN1 active low  
OPT2 controls EN2, EN3, and EN4  
STCD2300  
STCD2310  
STCD2320  
STCD2330  
EN1, EN2 and EN3 all active low  
EN1, EN2 active low, and EN3 active high  
EN1, EN2 active high and EN3 active low  
EN1, EN2 and EN3 all active high  
Factory program  
Doc ID 15400 Rev 2  
13/39  
 
 
Application information  
STCD22x0, STCD23x0, STCD24x0  
4
Application information  
4.1  
LDO input capacitor  
A 1 µF input capacitor is required for the input of the LDO of the STCD22x0, STCD23x0 and  
STCD24x0 (the amount of capacitance can be increased without limit). This capacitor must  
be located as close as possible to the V pin on the PC board and return to a clean analog  
CC  
ground. Any good quality ceramic, tantalum or film capacitor can be used for this capacitor.  
4.2  
LDO output capacitor  
A 1 µF external capacitor is required for the output VTCXO of the LDO of the STCD22x0,  
STCD23x0 and STCD24x0. The STCD22x0, STCD23x0 and STCD24x0 are designed to  
work with low ESR (equivalent series resistance) ceramic capacitors. Make sure the ESR is  
lower than 500 mΩ to stabilize the VTCXO. Also, capacitor tolerance and variation with  
temperature must be considered to assure the minimum amount of capacitance provided at  
all times. This capacitor should be located as close as possible to the VTCXO pin on the PC  
board.  
4.3  
4.4  
LDO BYP pin  
A 10 nF ceramic capacitor is required for the LDO BYP pin to ensure lower noise. Any good  
quality ceramic, tantalum or film capacitor can be used. The capacitor should be located as  
close as possible to the BYP pin on the PC board.  
MCREQ pin  
In the STCD22x0, STCD23x0, and STCD24x0, the MC  
pin is open drain and active low.  
REQ  
Since MC  
is active low, if none of the clock output is required, the STCD22x0,  
REQ  
STCD23x0 and STCD24x0 are set to standby mode which turns off the internal LDO  
VTCXO.  
MC  
is designed as an open drain structure. A pull-up resistor (50 kΩ recommended) is  
REQ  
needed on the PC board to connect this pin to an external 1.8 V supply. Make sure the  
current flowing through this pin is kept within 3 mA to guarantee the proper function of the  
circuit.  
If the MC  
function is not used in the application, the user can connect this pin to GND or  
REQ  
leave it unconnected. Other functions of the STCD2xx0 will not be affected.  
14/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Application information  
4.5  
Phase noise  
Phase noise is a frequency domain phenomenon and is a critical specification in reference  
clocks. It is illustrated by a continuous spreading of the energy of the wave mainly caused by  
random noise. The phase noise is normally specified with a unit of dBc/Hz at a given offset  
in frequency (for example, 10 kHz) from the carrier wave (for example, 26 MHz). The value  
of the phase noise is the difference of the power contained within 1 Hz bandwidth of the  
offset frequency to the power at the carrier frequency. The total phase noise of the clock tree  
is obtained by adding the additive phase noise of STCD22x0, STCD23x0 and STCD24x0  
and the phase noise of the clock source (for example, TCXO) in power which is illustrated in  
Equation 1.  
Equation 1  
PNC  
10  
PNX  
10  
PNT = 10 log(10  
+ 10  
) < PNA  
where:  
PN is the total phase noise in dBc/Hz  
T
PN is the additive phase noise of STCD22x0, STCD23x0 and STCD24x0 and  
C
PN is the phase noise of clock source  
X
Make sure the total phase noise is kept within the phase noise requirement of each  
application PN . The user should choose the right TCXO with proper phase noise to meet  
A
the requirement.  
Doc ID 15400 Rev 2  
15/39  
Application information  
STCD22x0, STCD23x0, STCD24x0  
4.6  
Jitter  
In the time domain, energy spreading can result in jitter, which is the same phenomenon as  
phase noise in the frequency domain. As a sine wave passes its zero-crossing or a square  
wave changes state, the real clock signal transition is not exactly the same as the ideal  
case, thus causing variation in the waveform transition point. This deviation of the transition  
point is known as jitter as illustrated in Figure 8.  
Figure 8.  
Jitter  
Ideal transfer point  
1
2
3
4
5
PI1  
PI2  
PI3  
PI4  
PR1  
PR2  
PR3  
PR4  
t
6
7
8
9
10  
Real square wave transfer point  
ai14029  
In Figure 8 the square wave ideal transition point should happen at points 1, 2, 3, 4 and 5,  
and each "ideal" period PI1 to PI4 should be the same, thus no time jitter has occurred.  
Actually, the real transition point happens at points 6, 7, 8, 9 and 10, thus causing "real"  
periods PR1 to PR4 to not be the same, and exhibit visible jitter. If each of the real periods of  
the cycles (PR1 to PR4) is measured, period jitter is obtained. The cycle-to-cycle jitter is  
also obtained by calculating the difference between two adjacent periods (for example, PR2-  
PR1, PR3-PR2 …).  
These periods of jitter are described as peak-to-peak jitter and are calculated by subtracting  
the minimum value from the maximum value or may also be described by the root-mean-  
square (RMS) value, representing one standard deviation of the Gaussian distribution.  
4.7  
Output trace line  
The STCD22x0, STCD23x0 and STCD24x0 is designed with maximum 50 Ω impedance  
output. On the PC board, a 50 Ω transmission line with proper series termination should be  
used to avoid signal distortion and reflection.  
16/39  
Doc ID 15400 Rev 2  
 
STCD22x0, STCD23x0, STCD24x0  
Application information  
4.8  
Typical application connections  
The STCD2400 clock distribution circuit requires a source clock input as the reference clock  
(for example, XO). At most 4 devices can be connected to the outputs. The typical  
application circuit using STCD2400 is shown in Figure 9 and 10 . The MC  
is open drain  
REQ  
output and active low. A pull-up resistor is needed to connect to an external 1.8 V supply  
VIO. If the clock source enable is active high, the user can use VTCXO as the master clock  
enable control signal, please refer to Figure 4 for the detailed connection.  
In Figure 9, the clock from XO is distributed to the TD-SCDMA transmitter and receiver and  
GSM transceiver separately to be used as reference clocks.  
In Figure 10, the buffer #4 output is fed into the Bluetooth system. In order to allow minimum  
power consumption, a Bluetooth system always has a clock request feature. If the Bluetooth  
system does not require the clock, the clock request disables the clock output. The enable  
pins can also be connected to an external 1.8 V supply to force the buffer to always be on.  
In Figure 9 and 10, all the output clock enables are active high since both OPT1 and OPT2  
are connected to V  
.
CC  
Figure 9.  
Typical application circuit using STCD24x0 for RF ends of TD-  
SCDMA/GSM dual-mode mobile phone  
V
CC  
Mode  
Selection  
C
STCD24x0  
BYP  
VTCXO  
EN4  
CLK4  
TD-SCDMA  
Transmitter  
C
VIO  
C
EN3  
CLK3  
V
DD  
EN2  
MCREQ  
MCLK  
XO  
EN  
TD-SCDMA  
CLK2  
Receiver  
V
CC  
EN1  
CLK1  
OPT1  
OPT2  
GND  
GSM  
Transceiver  
ai14022  
Doc ID 15400 Rev 2  
17/39  
 
Application information  
STCD22x0, STCD23x0, STCD24x0  
Figure 10. Typical application circuit using STCD24x0 for baseband peripherals in  
mobile phone  
BT_External_Req  
V
CC  
C
STCD24x0  
Bluetooth  
EN4  
BYP  
CLK4  
EN3  
C
VTCXO  
VIO  
WLAN  
CLK3  
C
EN2  
CLK2  
GPS  
V
XO  
DD  
MCREQ  
MCLK  
OPT1  
EN  
V
CC  
EN1  
CLK1  
OPT2  
GND  
Other device  
ai14023  
18/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Typical operating characteristics  
5
Typical operating characteristics  
Typical operating characteristics are at T = 25 °C, C  
= 20 pF at each channel,  
A
load  
V
= 3.8 V, f  
= 26 MHz.  
CC  
MCLK  
Figure 11. Quiescent current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1,  
no master clock input)  
75  
74  
73  
72  
71  
70  
69  
68  
67  
2. 3  
2. 7  
3. 1  
3. 5  
3. 9  
4. 3  
4. 7  
5.1  
5. 5  
Supply voltage V  
CC  
(V)  
AM00496v1  
Figure 12. Quiescent current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1,  
C
= 20 pF, no master clock input)  
load  
100  
80  
60  
40  
20  
0
–30  
–20  
0
25  
50  
85  
Temperature (°C)  
AM00497v1  
Doc ID 15400 Rev 2  
19/39  
Typical operating characteristics  
STCD22x0, STCD23x0, STCD24x0  
Figure 13. Active current vs. temperature (EN1 = EN2 = EN3 = EN4 = 1, C  
= 20 pF, V = 3.8 V,  
load  
CC  
f
= 26 MHz)  
MCLK  
8
6
4
2
0
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
–30  
–20  
0
25  
50  
85  
Temperature (°C)  
AM00498v1  
Figure 14. Standby current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 0, no master clock  
input)  
0.25  
0.2  
0.15  
0.1  
0.05  
0
Supply voltage V  
(V)  
CC  
AM00500v1  
20/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Typical operating characteristics  
Figure 15. Active current vs. supply voltage (EN1 = EN2 = EN3 = EN4 = 1, f  
= 26 MHz,  
MCLK  
C
= 20 pF)  
load  
6
5
4
3
2
1
0
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
2. 3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
Supply voltage V  
(V)  
CC  
AM00612v1  
Figure 16. Active current vs. master clock input voltage level (EN1 = EN2 = EN3 = EN4 = 1,  
= 26 MHz, C = 20 pF)  
f
MCLK  
load  
7
6
5
4
3
2
1
0
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
0. 5  
0. 8  
1. 1  
1. 4  
1.8  
Master clock f  
voltage level (Vpp)  
MCLK  
AM00613v1  
Figure 17. Active current vs. master clock frequency (EN1 = EN2 = EN3 = EN4 = 1, C  
= 20 pF)  
load  
15  
1 channel enabled  
10  
5
2 channels enabled  
3 channels enabled  
4 channels enabled  
0
5
10  
15  
20  
25  
30  
35  
40  
45 50  
55  
Master clock frequency f  
(MHz)  
MCLK  
AM00614v1  
Doc ID 15400 Rev 2  
21/39  
Typical operating characteristics  
STCD22x0, STCD23x0, STCD24x0  
Figure 18. STCD2400 recovery time from standby to active (VTCXO is on)  
Figure 19. STCD2400 recovery time from off to on (VTCXO first in standby)  
22/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Typical operating characteristics  
Figure 20. Output clock rise/fall time (C  
= 40 pF)  
load  
Doc ID 15400 Rev 2  
23/39  
Typical operating characteristics  
STCD22x0, STCD23x0, STCD24x0  
Figure 21. STCD2400 power-up sequence  
Figure 22. STCD2400 power-down sequence  
24/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Typical operating characteristics  
Figure 23. Phase noise input (from the clock source, 26 MHz square wave XO  
KC2520C26 from Kyocera)  
Doc ID 15400 Rev 2  
25/39  
Typical operating characteristics  
STCD22x0, STCD23x0, STCD24x0  
Figure 24. Phase noise output (include the clock source and STCD2400 additive  
phase noise)  
26/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Maximum ratings  
6
Maximum ratings  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 8.  
Symbol  
TSTG  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Storage temperature (VCC off)  
Lead-free bump solder temperature for 10 seconds  
Maximum junction temperature  
Supply voltage  
–55 to 150  
260  
°C  
°C  
°C  
V
(1)  
TSLD  
TJ  
150  
VCC  
VIN  
–0.3 to 6  
–0.3 to 3.6  
–0.3 to 3.6  
–0.3 to 6  
–0.3 to 3.6  
Input clock voltage  
V
VEN  
Voltage on enable pins  
V
VOPT  
MCREQ  
Optional pins voltage  
V
Master clock request  
V
1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.  
Doc ID 15400 Rev 2  
27/39  
DC and AC parameters  
STCD22x0, STCD23x0, STCD24x0  
7
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics tables that  
follow are derived from tests performed under the measurement conditions summarized in  
Table 9. Designers should check that the operating conditions in their circuit match the  
operating conditions when relying on the quoted parameters.  
Table 9.  
Operating and AC measurement conditions  
Parameter  
Condition  
Unit  
V
CC supply  
2.5 to 5.1  
0 to 1.8  
0 to 1.8  
0 to 1.8  
0 to 1.8  
0 to VCC  
–20 to +85  
90  
V
V
Input source clock voltage (MCLK)  
Output clock voltage (CLK1-4)  
V
Device enable voltage (EN1-4)  
V
Source clock request voltage (MCREQ  
Optional pins voltage (OPT1, OPT2)  
Ambient operating temperature (TA)  
)
V
V
°C  
°C/W  
Flip-chip thermal resistance (Rthja  
)
Table 10. DC and AC characteristics  
Sym. Parameter  
Condition(1)  
Min  
Typ  
Max  
Unit  
VTCXO (low dropout output)  
VCC  
VTCXO  
IO  
Supply voltage  
Output voltage  
2.5  
5.1  
1.85  
20  
V
V
ILOAD = 5 mA  
1.75  
1.8  
Maximum output current  
Total output accuracy(2)  
Current limit protection  
Line regulation(3)  
mA  
VOACC  
ICL  
VREG  
IREG  
–5%  
5%  
90  
VTCXO = 0 V  
ILOAD = 20 mA  
30  
0.5  
0.4  
mA  
mV  
mV  
10  
Load regulation(3)  
ILOAD = 10 µA to 20 mA  
10  
ILOAD = 10 µA to 20 mA  
ITR = 1 µs  
100  
100  
110  
110  
mV  
mV  
ITR  
Load transient(3)  
ILOAD = 20 mA to 10 µA  
ITR = 1 µs  
28/39  
Doc ID 15400 Rev 2  
 
 
STCD22x0, STCD23x0, STCD24x0  
DC and AC parameters  
Table 10. DC and AC characteristics (continued)  
Sym.  
Parameter  
Condition(1)  
Min  
Typ  
Max  
Unit  
VCC = 2.5 V to 5.1 V,  
Fripple = 217 Hz,  
ILOAD = 20 mA  
60  
67  
VCC = 2.5 V to 5.1 V,  
Fripple = 1 kHz,  
40  
40  
40  
60  
ILOAD = 20 mA  
PSRR Power supply rejection ratio(3)(4)  
dB  
V
CC = 2.5 V to 5.1 V,  
Fripple = 1 MHz,  
ILOAD = 20 mA  
VCC = 2.5 V to 5.1 V,  
Fripple = 3.25 MHz,  
ILOAD = 20 mA  
ILOAD = 5 mA, 10 Hz to  
100 kHz  
eN  
tST  
tF  
Output noise voltage(3)  
Startup time(3)  
45  
µVrms  
µs  
VTCXO > 90%,  
ILOAD = 10 µA to 20 mA  
150  
120  
400  
400  
VTCXO < 10%,  
ILOAD = 0  
Output voltage falling time(3)  
µs  
Clock distribution  
Master clock (from external clock  
Square wave / sine  
wave  
fMCLK  
10  
26  
52  
60  
MHz  
%
source)  
fCLK duty cycle  
40  
0.8  
0.8  
50  
1.8  
1
Square wave  
Sine wave  
VTCXO + 0.2 Vpp  
VTCXO + 0.2 Vpp  
V
VIN  
Input clock voltage level(5)  
VOH  
VOL  
Output high  
Output low  
CL = 20 pF  
VTCXO – 0.05 VTCXO  
CL = 20 pF  
0.05  
5
V
T
Rise/fall time(6)  
CL =10 pF~ 40 pF  
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
1 channel enabled  
2 channels enabled  
3 channels enabled  
4 channels enabled  
1
2
ns  
r/f  
80  
80  
80  
80  
1.9  
3.0  
4.1  
5.2  
200  
200  
200  
200  
Quiescent current(7)  
(including LDO)  
IQC  
µA  
ICC  
Active current(8)  
mA  
Standby current  
(including LDO)  
ISB  
All buffers off  
0.2  
1
µA  
RIN  
Input impedance  
> 100  
kΩ  
Doc ID 15400 Rev 2  
29/39  
DC and AC parameters  
STCD22x0, STCD23x0, STCD24x0  
Table 10. DC and AC characteristics (continued)  
Sym.  
Parameter  
Condition(1)  
Min  
Typ  
Max  
Unit  
CIN  
IOO  
Input capacitance  
Output to output isolation  
Output to input isolation  
Enable voltage high(9)  
Enable voltage low(9)  
OPT pins voltage high  
OPT pins voltage low  
3
4
pF  
dB  
dB  
V
45  
45  
IOI  
VENH  
VENL  
VOPTH  
VOPTL  
For EN1-EN4  
For EN1-EN4  
1.2  
0.6  
V
For OPT1 and OPT2  
For OPT1 and OPT2  
at 1 kHz offset  
at 10 kHz offset  
at 100 kHz offset  
rms value  
VCC –0.3  
VCC  
GND  
–135  
–145  
–150  
10  
V
GND+0.3  
V
dBc/  
Hz  
PN  
Additive phase noise(3)(10)  
tJP  
tJC  
Additive period jitter(3)  
ps  
ps  
Additive cycle-cycle jitter(3)  
rms value  
10  
Buffer recovery time from off to  
on  
tRECB  
STCD2xx0 active  
1
10  
µs  
µs  
ns  
STCD2xx0 recovery time from  
tRECC standby to active (include LDO  
wakeup time)  
500  
Input to output propagation  
tPD  
Voltage transfer at 50%  
3.5  
20  
6
delay(3)  
CL  
RL  
Capacitive load for each channel  
Resistive load for each channel  
40  
pF  
10  
kΩ  
Output impedance for each  
channel  
ZOUT  
50  
Ω
1. Valid for ambient operating temperature: TA = –20 °C to 85 °C; VCC = 2.5 V to 5.1 V; typical TA = 25 °C;  
load capacitance = 20 pF, fMCLK = 26 MHz (except where noted).  
2. Total accuracy includes line and load regulation, temperature and process condition. It does not include load and line  
transients.  
3. Simulated and determined via design and not 100% tested.  
4. Ripple voltage = 0.1 Vpp.  
5. Clock input voltage level should not exceed VTCXO voltage.  
6. The rise time is measured when clock edge transfers from 10% VCC to 90%VCC. The fall time is measured when clock  
edge transfers from 90%VCC to 10%VCC. The output rise/fall time is guaranteed for all input slew rates.  
7. The quiescent current is measured when the enable pins are active, but with no input master clock signal (fMCLK = 0 Hz).  
8. The active current depends on the input master clock Vpp and frequency and the load condition. The typical test condition  
is 26 MHz with 1.8 Vpp master clock input, CL = 20 pF.  
9. The test condition is VENH = 1.8 V and VENL = 0 V. When output enables simultaneously, there is no intentional skew in  
design between the output clocks.  
10. Guaranteed for all input clock slew rates.  
30/39  
Doc ID 15400 Rev 2  
 
STCD22x0, STCD23x0, STCD24x0  
Package mechanical data  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 25. Flip Chip 12-bump, package mechanical outline  
7504892_L(E)  
Doc ID 15400 Rev 2  
31/39  
Package mechanical data  
STCD22x0, STCD23x0, STCD24x0  
Table 11.  
Symbol  
Flip Chip 12-bump, package mechanical data  
mm  
Typ  
in  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.55  
0.17  
0.38  
0.22  
1.55  
0.61  
0.21  
0.40  
0.26  
1.60  
1.20  
1.20  
0.80  
0.40  
0.20  
0.195  
0.05  
0.66  
0.24  
0.42  
0.30  
1.65  
0.022  
0.007  
0.015  
0.008  
0.061  
0.024  
0.008  
0.016  
0.010  
0.063  
0.047  
0.047  
0.031  
0.016  
0.008  
0.008  
0.002  
0.026  
0.009  
0.017  
0.012  
0.065  
D
D1  
E
1.15  
1.25  
0.045  
0.049  
E1  
e
0.36  
0.18  
0.44  
0.22  
0.014  
0.007  
0.007  
0.017  
0.009  
0.008  
DE  
f
0.185  
0.210  
ccc  
32/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Package mechanical data  
Figure 26. Flip Chip 16-bump, package mechanical outline  
7504892_L(A)  
Doc ID 15400 Rev 2  
33/39  
Package mechanical data  
STCD22x0, STCD23x0, STCD24x0  
Table 12. Flip Chip 16-bump, package mechanical data  
mm  
Typ  
in  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.55  
0.17  
0.38  
0.22  
1.55  
0.61  
0.21  
0.40  
0.26  
1.60  
1.20  
1.60  
1.20  
0.40  
0.20  
0.20  
0.195  
0.05  
0.66  
0.24  
0.42  
0.30  
1.65  
0.022  
0.007  
0.015  
0.008  
0.061  
0.024  
0.008  
0.016  
0.010  
0.063  
0.047  
0.063  
0.047  
0.016  
0.008  
0.008  
0.008  
0.002  
0.026  
0.009  
0.017  
0.012  
0.065  
D
D1  
E
1.55  
1.65  
0.061  
0.065  
E1  
e
0.36  
0.18  
0.44  
0.22  
0.014  
0.007  
0.007  
0.007  
0.017  
0.009  
0.009  
0.008  
SD  
SE  
f
0.18  
0.22  
0.185  
0.210  
ccc  
34/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Package mechanical data  
Figure 27. Flip Chip 12-bump tape and reel specifications  
12bFC  
Doc ID 15400 Rev 2  
35/39  
Package mechanical data  
STCD22x0, STCD23x0, STCD24x0  
Figure 28. Flip Chip 16-bump tape and reel specifications  
16bFC  
36/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Part numbering  
9
Part numbering  
Table 13. Ordering information scheme  
Example:  
STCD  
22  
0
0
F3  
5
F
Device type  
STCD = clock distribution  
Channels  
22 = 2-channel(1)  
23 = 3-channel(1)  
24 = 4-channel  
Enable polarity  
STCD22x0 (user programmable)  
0 = OPT1 sets EN1, OPT2 sets EN2  
STCD23x0 (factory programmable)  
0 = EN1, EN2, EN3  
1 = EN1, EN2, EN3  
2 = EN1, EN2, EN3  
3 = EN1, EN2, EN3  
STCD24x0 (user programmable)  
0 = OPT1 sets EN1 and EN2, OPT2 sets EN3 and EN4  
1 = OPT1 sets EN1, OPT2 sets EN2, EN3, and EN4(1)  
Master clock request (MCREQ  
0 = MCREQ active low  
Package  
)
F3 = Flip chip, lead-free, pitch = 400 µm, bump = 250 µm  
(12-bump for 2- or 3-channel, 16-bump for 4-channel)  
Temperature range  
5 = –20 °C to +85 °C  
Shipping method  
F = ECOPACK® package, tape & reel  
1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
Doc ID 15400 Rev 2  
37/39  
 
Revision history  
STCD22x0, STCD23x0, STCD24x0  
10  
Revision history  
Table 14. Document revision history  
Date  
Revision  
Changes  
26-Aug-2009  
11-Jan-2010  
1
2
Initial release.  
Updated footnote 5 in Table 10: DC and AC characteristics.  
38/39  
Doc ID 15400 Rev 2  
STCD22x0, STCD23x0, STCD24x0  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 15400 Rev 2  
39/39  

相关型号:

STCD23000F35F

2300 SERIES, LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PBGA12, 1.20 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, FLIP CHIP-12
STMICROELECTR

STCD2300F35F

LOW SKEW CLOCK DRIVER
STMICROELECTR

STCD23100F35F

2310 SERIES, LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PBGA12, 1.20 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, FLIP CHIP-12
STMICROELECTR

STCD2310F35F

LOW SKEW CLOCK DRIVER
STMICROELECTR

STCD23200F35F

2320 SERIES, LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PBGA12, 1.20 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, FLIP CHIP-12
STMICROELECTR

STCD2320F35F

LOW SKEW CLOCK DRIVER
STMICROELECTR

STCD23300F35F

2330 SERIES, LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PBGA12, 1.20 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, FLIP CHIP-12
STMICROELECTR

STCD2330F35F

LOW SKEW CLOCK DRIVER
STMICROELECTR

STCD23x0

Multichannel clock distribution circuit
STMICROELECTR

STCD24-0

Multichannel clock distribution circuit
STMICROELECTR

STCD2400

Multichannel clock distribution circuit
STMICROELECTR

STCD24000F35F

2400 SERIES, LOW SKEW CLOCK DRIVER, 4 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PBGA16, 1.60 X 1.60 MM, 0.40 MM PITCH, ROHS COMPLIANT, FLIP CHIP-16
STMICROELECTR