STCN75M2E [STMICROELECTRONICS]

Digital temperature sensor and thermal watchdog; 数字温度传感器和热看门狗
STCN75M2E
型号: STCN75M2E
厂家: ST    ST
描述:

Digital temperature sensor and thermal watchdog
数字温度传感器和热看门狗

传感器 温度传感器
文件: 总35页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STCN75  
Digital temperature sensor and thermal watchdog  
Features  
Measures temperatures from –55°C to +125°C  
(–67°F to +257°F)  
2°C accuracy from –25°C to  
+100°C (max)  
Low operating current:125µA (typ)  
No external components required  
2
2-Wire I C/SMBus-compatible serial interface  
– Selectable bus address allows connection  
of up to eight devices on the bus  
SO8 (M)  
Wide power supply range-operating voltage  
range: 2.7V to 5.5V  
Conversion time is 45ms (typ)  
Programmable temperature threshold and  
hysteresis set points  
Pin- and software-compatible with TCN75  
(Drop-in replacement)  
Power-up defaults permit standalone operation  
as a thermostat  
Shutdown mode to minimize power  
consumption  
MSOP8  
(TSSOP8) (DS)  
Output pin (open drain) can be configured for  
interrupt or comparator/thermostat mode (Dual  
Purpose Event Pin)  
Packages:  
– SO8  
(a)  
– MSOP8 (TSSOP8)  
a. Contact local ST sales office for availability  
June 2007  
Rev 5  
1/35  
www.st.com  
1
Contents  
STCN75  
Contents  
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
Serial communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Temperature sensor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.3.1  
1.3.2  
1.3.3  
1.3.4  
1.3.5  
1.3.6  
SDA (open drain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OS/INT (open drain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
A2, A1, A0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
V
DD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal alarm function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Comparator mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Temperature data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
Registers and register set formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
Command/pointer register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Temperature register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Over-limit temperature register (T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
OS  
Hysteresis temperature register (T  
) . . . . . . . . . . . . . . . . . . . . . . . . . 18  
HYS  
3.2  
3.3  
3.4  
Power-up default conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2-wire bus characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.4.1  
3.4.2  
3.4.3  
Bus not busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Start data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Stop data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2/35  
STCN75  
Contents  
3.4.4  
3.4.5  
Data valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.5  
3.6  
READ mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
WRITE mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4
5
6
7
8
9
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3/35  
List of tables  
STCN75  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Fault tolerance setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Relationship between temperature and digital output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Command/pointer register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Register pointers selection summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Configuration register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Temperature register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
T
and T  
register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
OS  
HYS  
STCN75 serial bus slave addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SO8 – 8-pin, plastic small outline, package mechanical data. . . . . . . . . . . . . . . . . . . . . . . 31  
MSOP8 (TSSOP8) – 8-lead, thin shrink small package (3x3) mech. data . . . . . . . . . . . . . 32  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4/35  
STCN75  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Connections (SO8 and TSSOP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical 2-wire interface connections diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Serial bus data transfer sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Acknowledgement sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Slave address location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Typical 2-byte READ from preset pointer location (e.g. Temp - T , T  
). . . . . . . . . . . . 22  
OS HYS  
Typical pointer set followed by an immediate READ for 2-byte register (e.g. temp). . . . . . 22  
Figure 10. Typical 1-byte READ from the cofiguration register with preset pointer . . . . . . . . . . . . . . . 22  
Figure 11. Typical pointer set followed by an immediate READ from the configuration register . . . . . 23  
Figure 12. Configuration register WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13.  
T
and T  
WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
OS  
HYS  
Figure 14. Temperature variation vs. voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 15. Bus timing requirements sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 16. SO8 – 8-pin, plastic small package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. MSOP8 (TSSOP8) – 8-lead, thin shrink small package (3x3) outline. . . . . . . . . . . . . . . . . 32  
5/35  
Summary description  
STCN75  
1
Summary description  
The STCN75 is a high-precision digital CMOS temperature sensor IC with a sigma-delta  
2
temperature-to-digital converter and an I C-compatible serial digital interface (see Figure 1  
on page 7). It is targeted for general applications such as personal computers, system  
thermal management, electronics equipment, and industrial controllers, and is packaged in  
the industry standard 8-lead TSSOP and SO8N packages.  
The device contains a band gap temperature sensor and 9-bit ADC which monitor and  
digitize the temperature to a resolution up to 0.5°C. The STCN75 is typically accurate to  
( 3°C - max) over the full temperature measurement range of –55°C to 125°C with 2°C  
accuracy in the –25°C to +100°C range. The STCN75 is pin-for-pin and software compatible  
with the TCN75.  
STCN75 is specified for operating at supply voltages from 2.7V to 5.5V. Operating at 3.3V,  
the supply current is typically (125µA).  
The on-board sigma-delta analog-to-digital converter (ADC) converts the measured  
temperature to a digital value that is calibrated in degrees Centigrade; for Fahrenheit  
applications a lookup table or conversion routine is required.  
The STCN75 is factory-calibrated and requires no external components to measure  
temperature.  
1.1  
Serial communications  
2
The STCN75 has a simple 2-wire I C-compatible digital serial interface which allows the  
user to access the data in the temperature register at any time. It communicates via the  
serial interface with a master controller which operates at speeds up to 400kHz. Three pins  
(A0, A1, and A2) are available for address selection, and enable the user to connect up to 8  
devices on the same bus without address conflict.  
In addition, the serial interface gives the user easy access to all STCN75 registers to  
customize operation of the device.  
6/35  
STCN75  
Summary description  
1.2  
Temperature sensor output  
The STCN75 Temperature Sensor has a dedicated open drain Over-Limit Signal/Interrupt  
(OS/INT) output which features a thermal alarm function. This function provides a user-  
programmable trip and turn-off temperature. It can operate in either of two selectable  
modes:  
Section 2.3: Comparator mode  
Section 2.4: Interrupt mode.  
At power-up the STCN75 immediately begins measuring the temperature and converting  
the temperature to a digital value.  
The measured temperature value is compared with a temperature limit (which is stored in  
the 16-bit (T ) READ/WRITE register), and the hysteresis temperature (which is stored in  
OS  
the 16-bit (T  
) READ/WRITE register). If the measured value exceeds these limits, the  
HYS  
OS/INT pin is activated (see Figure 3 on page 8).  
Note:  
See Pin descriptions on page 8 for details.  
Figure 1.  
Logic diagram  
V
DD  
(1)  
(1)  
OS/INT  
SDA  
SCL  
STCN75  
A
A
A
0
1
2
GND  
AI11899  
1. SDA and OS/INT are open drain.  
Table 1.  
Pin  
Signal names  
Sym  
Type/direction  
Description  
1
2
3
4
5
6
7
8
SDA(1)  
Input/ Output  
Input  
Serial data input/output  
Serial clock input  
SCL  
OS/INT(1)  
GND  
A2  
Output  
Over-limit signal/interrupt alert output  
Ground  
Supply Ground  
Input  
Address2 Input  
A1  
Input  
Address1 Input  
A0  
Input  
Address0 Input  
VDD  
Supply power  
Supply voltage (2.7V to 5.5V)  
1. SDA and OS/INT are open drain.  
7/35  
Summary description  
Figure 2.  
STCN75  
Connections (SO8 and TSSOP8)  
(1)  
SDA  
1
2
3
4
8
7
6
5
V
A
A
A
DD  
0
SCL  
(1)  
OS/INT  
1
GND  
2
AI11841  
1. SDA and OS/INT are open drain.  
Figure 3.  
Functional block diagram  
Configuration Register  
Temperature Register  
Pointer Register  
Temperature  
Sensor and  
Analog-to-Digital  
Converter (ADC)  
S-D  
THYS Set Point Register  
TOS Set Point Register  
V
DD  
Control and Logic  
Comparator  
OS/INT  
SDA  
A
0
2
A
1
2-wire I C Interface  
A
2
SCL  
GND  
AI11833a  
1.3  
Pin descriptions  
See Figure 1 on page 7 and Table 1 on page 7 for a brief overview of the signals connected  
to this device.  
1.3.1  
1.3.2  
1.3.3  
SDA (open drain)  
This is the Serial Data Input/Output pin for the 2-wire serial communication port.  
SCL  
This is the Serial Clock Input pin for the 2-wire serial communication port.  
OS/INT (open drain)  
This is the Over-Limit Signal/Interrupt Alert Output pin. It is open drain, so it needs a pull-up  
resistor. In Interrupt mode, it outputs a pulse whenever the measured temperature exceeds  
the programmed threshold (T ). It behaves as a thermostat, toggling to indicate whether  
OS  
the measured temperature is above or below the threshold and hysteresis (T  
).  
HYS  
8/35  
STCN75  
Summary description  
1.3.4  
GND  
Ground; it is the reference for the power supply. It must be connected to system ground.  
1.3.5  
1.3.6  
A2, A1, A0  
2
A2, A1, and A0 are selectable address pins for the 3 LSBs of the I C interface address.  
They can be set to V or GND to provide 8 unique address selections.  
DD  
V
DD  
This is the supply voltage pin, and ranges from +2.7V to +5.5V.  
9/35  
Operation  
STCN75  
2
Operation  
After each temperature measurement and analog-to-digital conversion, the STCN75 stores  
the temperature as a 16-bit two’s complement number (see Table 5: Register pointers  
selection summary on page 16) in the 2-byte Temperature register (see Table 7 on  
page 17). The most significant bit (S) indicates if the temperature is positive or negative:  
for positive numbers S = 0, and  
for negative numbers S = 1.  
The most recently converted digital measurement can be read from the Temperature  
register at any time. Since temperature conversions are performed in the background,  
reading the Temperature register does not affect the operation in progress.  
The temperature data is provided by the 9 MSBs (Bits 15 through 7). Bits 6 through 0 are  
unused. Table 3 on page 14 gives examples of the digital output data and corresponding  
temperatures. The data is compared to the values in the T and T  
registers, and then  
OS  
HYS  
the OS/INT is updated based on the result of the comparison and the operating mode.  
The alarm fault tolerance is controlled by the FT1 and FT0 Bits in the Configuration register.  
They are used to set up a fault queue. This prevents false tripping of the OS/INT pin when  
the STCN75 is used in a noisy environment (see Table 2 on page 13).  
The active state of the OS/INT output can be changed via the Polarity Bit (POL) in the  
Configuration register. The power-up default is active-low.  
If the user does not wish to use the thermostat capabilities of the STCN75, the  
OS/INToutput should be left floating.  
Note:  
If the thermostat is not used, the T and T  
registers can be used for general storage of  
HYS  
OS  
system data.  
10/35  
STCN75  
Operation  
2.1  
Applications information  
STCN75 digital Temperature Sensors are optimal for thermal management and thermal  
protection applications. They require no external components for operations except for pull-  
up resistors on SCL, SDA, and OS/INT outputs. A 0.1µF bypass capacitor on V is  
DD  
recommended. The sensing device of STCN75 is the chip itself. The typical interface  
connection for this type of digital sensor is shown in Figure 4 on page 11.  
Intended Applications include:  
System thermal management  
Computers/disk drivers  
Electronics/test equipment  
Power supply modules  
Consumer products  
Battery management  
FAX/printers management  
Automotive  
Figure 4.  
Typical 2-wire interface connections diagram  
Pull-up  
Pull-up  
V
DD  
V
V
DD  
DD  
V
DD  
10kΩ  
10kΩ  
10kΩ  
0.1μF  
STCN75  
(1)  
O.S./INT  
SCL  
(1)  
Master  
Device  
A
SDA  
0
2
A
A
1
2
I C Address = 1001000 (1001A A A )  
2 1 0  
GND  
AI12200  
1. SDA and OS/INT are open drain.  
2.2  
Thermal alarm function  
The STCN75 thermal alarm function provides user-programmable thermostat capability and  
allows the STCN75 to function as a standalone thermostat without using the serial interface.  
The OS/INT output is the alarm output. This signal is an open drain output, and at power-up,  
this pin is configured with active-low polarity by default.  
11/35  
Operation  
STCN75  
2.3  
Comparator mode  
In Comparator mode, each time a temperature-to-digital (T-to-D) conversion occurs, the new  
digital temperature is compared to the value stored in the T and T registers. If a fault  
OS  
HYS  
tolerance number of consecutive temperature measurements are greater than the value  
stored in the T register, the OS/INT output will be asserted.  
OS  
For example, if the FT1 and FT0 Bits are equal to “10” (fault tolerance = 4), four consecutive  
temperature measurements must exceed T to activate the OS/INT output. Once the  
OS  
OS/INT output is active, it will remain active until the first time the measured temperature  
drops below the temperature stored in the T  
inactive state.  
register, whereupon it will reset to its  
HYS  
Putting the device into Shutdown mode does not clear OS/INT in Comparator mode.  
2.4  
Interrupt mode  
In Interrupt mode, the OS/INT output becomes active when the measured temperature  
exceeds the T value a consecutive number of times as determined by the Fault Tolerance  
OS  
bits (FT1, FT0) value in the Configuration register. Once activated, the OS/INT can only be  
cleared by reading from any register (temperature, configuration, T , or T  
) on the  
OS  
HYS  
device. Once the OS/INT has been deactivated, it will only be reactivated when the  
measured temperature falls below the T value a consecutive number of times equal to  
HYS  
the FT value. This mode is better suited for interrupt driven microprocessor based systems.  
12/35  
STCN75  
Operation  
2.5  
Fault tolerance  
For both Comparator and Interrupt modes, the alarm “fault tolerance” setting plays a role in  
determining when the OS/INT output will be activated. Fault tolerance refers to the number  
of consecutive times an error condition must be detected before the user is notified. Higher  
fault tolerance settings can help eliminate false alarms caused by noise in the system. The  
alarm fault tolerance is controlled by the bits (4 and 3) in the Configuration register. These  
bits can be used to set the fault tolerance to 1, 2, 4, or 6 as shown in Table 2. At power-up,  
these bits both default to logic '0'.  
Table 2.  
FT1  
Fault tolerance setting  
FT0  
STCN75 (consecutive faults)  
Comments  
Power-up default  
0
0
1
1
0
1
0
1
1
2
4
6
2.6  
Shutdown mode  
For power-sensitive applications, the STCN75 offers a low-power Shutdown mode. The SD  
Bit in the Configuration register controls Shutdown mode. When SD is changed to logic '1,'  
the conversion in progress will be completed and the result stored in the Temperature  
register, after which the STCN75 will go into a low-power standby state. The OS/INT output  
will be cleared if the thermostat is operating in Interrupt mode and the OS/INT will remain  
unchanged in Comparator mode. The 2-wire interface remains operational in Shutdown  
mode, and writing a '0' to the SD Bit returns the STCN75 to normal operation.  
13/35  
Operation  
STCN75  
2.7  
Temperature data format  
Table 3 shows the relationship between the output digital data and the external  
temperature. Temperature data for the Temperature, T , and T  
registers is  
OS  
HYS  
represented as a 9-bit, two’s complement word.  
The left-most bit in the output data stream contains temperature polarity information for each  
conversion. If the sign bit is '0', the temperature is positive and if the sign bit is '1,' the  
temperature is negative.  
Table 3.  
Relationship between temperature and digital output  
Digital output  
Temperature  
Binary  
HEX  
+125°C  
+25°C  
+0.5°C  
0°C  
0 1111 1010  
0 0011 0010  
0 0000 0001  
0 0000 0000  
1 1111 1111  
1 1100 1110  
1 1011 0000  
1 1001 0010  
0FAh  
032h  
001h  
000h  
1FFh  
1CEh  
1B0h  
192h  
–0.5°C  
–25°C  
–40°C  
–55°C  
14/35  
STCN75  
Functional description  
3
Functional description  
The STCN75 registers have unique pointer designations which are defined in Table 5 on  
page 16. Whenever any READ/WRITE operation to the STCN75 register is desired, the  
user must “point” to the device register to be accessed.  
All of these user-accessible registers can be accessed via the digital serial interface at  
anytime (seeSection 3.3: Serial interface on page 19), and they include:  
Command register/Address Pointer register  
Configuration register  
Temperature register  
Over-Limit Signal Temperature register (T  
)
OS  
Hysteresis Temperature register (T  
)
HYS  
3.1  
Registers and register set formats  
3.1.1  
Command/pointer register  
The Most Significant Bits (MSBs) of the Command register must always be zero. Writing a  
'1' into any of these bits will cause the current operation to be terminated (Bit 2 through Bit 7  
must be kept '0', see Table 4).  
Table 4.  
MSB  
Command/pointer register format  
LSB  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
0
0
0
0
0
0
P1  
P0  
Pointer/register  
select bits  
These bits must be ‘O’  
The Command register retains pointer information between operations (see Table 5).  
Therefore, this register only needs to be updated once for consecutive READ operations  
from the same register. All bits in the Command register default to '0' at power-up.  
15/35  
Functional description  
Table 5.  
STCN75  
Register pointers selection summary  
Pointer  
value (H)  
Width Type Power-on  
P1 P0 Name Description  
Comments  
(bits) (R/W)  
default  
Temperature  
register  
Read-  
only  
To store measured  
temperature data  
00  
01  
02  
0
0
1
0
1
0
TEMP  
16  
N/A  
CON Configuration  
8
R/W  
R/W  
00  
F
register  
Hysteresis  
register  
THYS  
16  
4B00  
Default = 75°C  
Set point for over-  
temperature shutdown  
(TOS) limit default =  
80°C  
Over-  
TOS temperature  
shutdown  
03  
1
1
16  
R/W  
5000  
3.1.2  
Configuration register  
The Configuration register is used to store the device settings such as Device Operation  
mode, OS/INT Operation mode, OS/INT Polarity, and OS/INT Fault Queue.  
The Configuration register allows the user to program various options such as thermostat  
fault tolerance, thermostat polarity, Thermostat Operating mode, and Shutdown mode. The  
user has READ/WRITE access to all of the bits in the Configuration register except the MSB  
(Bit7), which is reserved as a “Read only” bit (see Table 6). The entire register is volatile and  
thus powers-up in its default state only.  
Table 6.  
Byte  
Configuration register format  
MSB  
LSB  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
STCN75  
Default  
0
0
0
0
0
0
FT1  
0
FT0  
0
POL  
0
M
0
SD  
0
Keys: SD = shutdown control bit  
M = thermostat mode(1)  
FT1 = fault tolerance1 bit  
Bit 5 = must be set to '0'.  
Bit 6 = must be set to '0'.  
Bit 7 = must be set to '0'.  
POL = output polarity(2)  
FT0 = Fault tolerance0 bit  
1. Indicates Operation mode; 0 = comparator mode, and 1 = Interrupt mode (see Section 2.3: Comparator  
mode and Section 2.4: Interrupt mode).  
2. The OS is active-low ('0').  
16/35  
STCN75  
Functional description  
3.1.3  
Temperature register  
The Temperature register is a two-byte (16-bit) “Read only” register (see Table 7). Digital  
temperatures from the T-to-D converter are stored in the Temperature register in two’s  
complement format, and the contents of this register are updated each time the T-to-D  
conversion is finished.  
The user can read data from the Temperature register at any time. When a T-to-D  
conversion is completed, the new data is loaded into a comparator buffer to evaluate fault  
conditions, and will update the Temperature register if a read cycle is not ongoing. The  
STCN75 is continuously evaluating fault conditions regardless of READ or WRITE activity  
on the bus. If a READ is ongoing, the previous temperature will be read. The readable  
temperature will be updated upon the completion of the next T-to-D conversion that is not  
masked by a read cycle.  
All unused bits following the digital temperature will be zero. The MSB position of the  
Temperature register always contains the sign bit for the digital temperature, and Bit 14  
contains the temperature MSB. All bits in the Temperature register default to zero at power-  
up.  
(1)  
Table 7.  
Bytes  
Temperature register format  
HS byte  
LS byte  
TLSB  
MSB  
TMSB  
LSB  
0
Bits  
15  
14  
13 12 11 10  
9
8
7
6
5
4
3
2
1
TD8  
(S) (TMSB)  
TD7  
TD TD TD TD TD TD TD0  
STCN75  
x
x
x
x
x
x
x
6
5
4
3
2
1
(TLSB)  
Keys: S = Two’s complement sign bit  
TMSB = temperature MSB  
TLSB = temperature LSB  
TDx = temperature data bits  
1. These are comparable formats to the LM75.  
3.1.4  
Over-limit temperature register (T  
)
OS  
T
register is a two-byte (16-bit) READ/WRITE register that stores the user-programmable  
OS  
upper trip-point temperature for the thermal alarm in two’s complement format (see Table 8  
on page 18). This register defaults to 80°C at power-up (i.e., 0101 0000 0000 0000).  
The format of the T register is identical to that of the Temperature register. The MSB  
OS  
position contains the sign bit for the digital temperature and Bit14 contains the temperature  
MSB.  
For 9-bit conversions, the trip-point temperature is defined by the 9 MSBs of the T  
OS  
register, and all remaining bits are “Don’t cares” (x).  
17/35  
Functional description  
STCN75  
3.1.5  
Hysteresis temperature register (T  
)
HYS  
T
register is a two-byte (16-bit) READ/WRITE register that stores the user-  
HYS  
programmable lower trip-point temperature for the thermal alarm in two’s complement  
format (see Table 8). This register defaults to 75°C at power-up (i.e., 0100 1011 0000  
0000).  
The format of this register is the same as that of the Temperature register. The MSB  
position contains the sign bit for the digital temperature and Bit14 contains the temperature  
MSB.  
(1)  
Table 8.  
Bytes  
T
and T  
register format  
HYS  
OS  
HS byte  
TMSB  
13 12 11 10  
LS byte  
TLSB  
MSB  
15  
LSB  
0
Bits  
14  
9
8
7
6
5
4
3
2
1
9-bit  
TLSB  
STCN75  
S
TMSB TD TD TD TD TD TD  
0
0
0
0
0
0
0
Keys: S = two’s complement sign bit  
TMSB = temperature MSB  
TLSB = temperature LSB  
TD = temperature Data  
1. These are comparable formats to the DS75 and LM75.  
3.2  
Power-up default conditions  
The STCN75 always powers up in the following default states:  
Thermostat mode = comparator mode  
Polarity = active-low  
Fault tolerance = 1 fault (i.e., relevant bits set to '0' in the configuration register)  
= 80°C  
T
OS  
T
= 75°C  
HYS  
Register pointer = 00 (temperature register)  
Note:  
After power-up these conditions can be reprogrammed via the serial interface.  
18/35  
STCN75  
Functional description  
3.3  
Serial interface  
Writing to and reading from the STCN75 registers is accomplished via the two-wire serial  
interface protocol which requires that one device on the bus initiates and controls all READ  
and WRITE operations. This device is called the “master” device. The master device also  
generates the SCL signal which provides the clock signal for all other devices on the bus.  
These other devices on the bus are called “slave” devices. The STCN75 is a slave device  
(see Table 9). Both the master and slave devices can send and receive data on the bus.  
During operations, one data bit is transmitted per clock cycle. All operations follow a  
repeating, nine-clock-cycle pattern that consists of eight bits (one byte) of transmitted data  
followed by an acknowledge (ACK) or not acknowledge (NACK) from the receiving device.  
Note:  
There are no unused clock cycles during any operation, so there must not be any breaks in  
the data stream and ACKs/NACKs during data transfers. Consequently, having too few clock  
cycles can lead to incorrect operation if an inadvertent 8-bit READ from a 16-bit register  
occurs. So, the entire word must be transferred out regardless of the superflous trailing  
zeroes.  
Table 9.  
MSB  
STCN75 serial bus slave addresses  
LSB  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
1
0
0
1
A2  
A1  
A0  
R/W  
3.4  
2-wire bus characteristics  
The bus is intended for communication between different ICs. It consists of two lines: a bi-  
directional data signal (SDA) and a clock signal (SCL). Both the SDA and SCL lines must be  
connected to a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy.  
During data transfer, the data line must remain stable whenever the clock line is High.  
Changes in the data line, while the clock line is High, will be interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined (see Figure 5 on page 20):  
3.4.1  
3.4.2  
Bus not busy  
Both data and clock lines remain High.  
Start data transfer  
A change in the state of the data line, from high to Low, while the clock is High, defines the  
START condition.  
3.4.3  
Stop data transfer  
A change in the state of the data line, from Low to High, while the clock is High, defines the  
STOP condition.  
19/35  
Functional description  
STCN75  
3.4.4  
Data valid  
The state of the data line represents valid data when after a start condition, the data line is  
stable for the duration of the high period of the clock signal. The data on the line may be  
changed during the Low period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and stop conditions is not limited.  
The information is transmitted byte-wide and each receiver acknowledges with a ninth bit.  
By definition a device that gives out a message is called “transmitter”, the receiving device  
that gets the message is called “receiver”. The device that controls the message is called  
“master”. The devices that are controlled by the master are called “slaves”.  
Figure 5.  
Serial bus data transfer sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CONDITION  
CHANGE OF  
DATA ALLOWED  
STOP  
CONDITION  
AI00587  
3.4.5  
Acknowledge  
Each byte of eight bits is followed by one Acknowledge Bit. This Acknowledge Bit is a low  
level put on the bus by the receiver whereas the master generates an extra acknowledge  
related clock pulse (see Figure 6 on page 21). A slave receiver which is addressed is  
obliged to generate an acknowledge after the reception of each byte that has been clocked  
out of the slave transmitter.  
The device that acknowledges has to pull down the SDA line during the acknowledge clock  
pulse in such a way that the SDA line is a stable Low during the High period of the  
acknowledge related clock pulse. Of course, setup and hold times must be taken into  
account. A master receiver must signal an end of data to the slave transmitter by not  
generating an acknowledge on the last byte that has been clocked out of the slave. In this  
case the transmitter must leave the data line High to enable the master to generate the  
STOP condition.  
20/35  
STCN75  
Functional description  
Figure 6.  
Acknowledgement sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCL FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
AI00601  
3.5  
READ mode  
In this mode the master reads the STCN75 slave after setting the slave address (see  
Figure 7). Following the WRITE mode Control Bit (R/W=0) and the Acknowledge Bit, the  
word address 'An' is written to the on-chip address pointer.  
There are two READ modes:  
Preset pointer locations (e.g. Temperature, T and T  
registers), and  
OS  
HYS  
Pointer setting (the pointer has to be set for the register that is to be read).  
Note:  
The Temperature register pointer is usually the default pointer.  
These modes are shown in the READ mode typical timing diagrams (see Figure 8, Figure 9,  
and Figure 10 on page 22).  
Figure 7.  
Slave address location  
R/W  
START  
SLAVE ADDRESS  
A
1
0
0
1
A2 A1 A0  
AI12226  
21/35  
Functional description  
Figure 8.  
STCN75  
Typical 2-byte READ from preset pointer location (e.g. Temp - T , T  
)
OS HYS  
1
9
1
9
1
9
1
0
0
1
A2 A1 A0 R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
Most Significant Data Byte  
D7 D6 D5 D4 D3 D2 D1 D0  
Least Significant Data Byte  
Stop  
Cond.  
by  
Master  
Start  
by  
Master  
Address Byte  
ACK  
by  
ACK  
by  
No ACK  
by  
STCN75  
Master  
Master  
AI12227  
Figure 9.  
Typical pointer set followed by an immediate READ for 2-byte register (e.g. temp)  
1
1
9
1
9
0
0
1
A2 A1 A0 R/W  
0
0
0
0
0
0
D1 D0  
Start  
by  
Master  
Address Byte  
Pointer Byte  
ACK  
by  
ACK  
by  
STCN75  
STCN75  
1
9
1
9
1
9
1
0
0
1
A2 A1 A0 R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
Most Significant Data Byte  
D7 D6 D5 D4 D3 D2 D1 D0  
Least Significant Data Byte  
Stop  
Cond.  
by  
Repeat  
Start  
by  
Address Byte  
ACK  
by  
ACK  
by  
No ACK  
by  
Master  
Master  
STCN75  
Master  
Master  
AI12228  
Figure 10. Typical 1-byte READ from the cofiguration register with preset pointer  
1
9
1
9
1
0
0
1
A2 A1 A0 R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
Data Byte  
Stop  
Cond.  
by  
Start  
by  
Master  
Address Byte  
ACK  
by  
No ACK  
by  
Master  
STCN75  
Master  
AI12229  
22/35  
STCN75  
Functional description  
3.6  
WRITE mode  
In this mode the master transmitter transmits to the STCN75 slave receiver. Bus protocol is  
shown in Figure 11. Following the START condition and slave address, a logic '0' (R/W = 0)  
is placed on the bus and indicates to the addressed device that word address will follow and  
is to be written to the on-chip address pointer.  
These modes are shown in the WRITE mode typical timing diagrams (see Figure 11, and  
Figure 12, and Figure 13 on page 24).  
Figure 11. Typical pointer set followed by an immediate READ from the  
configuration register  
1
1
9
1
0
9
0
0
1
A2 A1 A0 R/W  
0
0
0
0
0
D1 D0  
Start  
by  
Master  
Address Byte  
Pointer Byte  
ACK  
by  
ACK  
by  
STCN75  
STCN75  
1
1
9
1
9
R/W  
0
0
1
A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
Data Byte  
Stop  
Cond.  
by  
Repeat  
Start  
by  
Address Byte  
ACK  
by  
No ACK  
by  
Master  
STCN75  
Master  
STCN75  
AI12230  
Figure 12. Configuration register WRITE  
1
9
1
9
1
0
9
1
0
0
1
A2 A1 A0 R/W  
0
0
0
0
0
0
D1 D0  
0
0
D4 D3 D2 D1 D0  
Stop  
Cond.  
by  
Start  
by  
Master  
Address Byte  
Pointer Byte  
Configuration Byte  
ACK  
by  
STCN75  
ACK  
by  
STCN75  
ACK  
by  
STCN75  
Master  
AI12231  
23/35  
Functional description  
Figure 13. T and T  
STCN75  
WRITE  
HYS  
OS  
1
9
1
0
9
1
0
0
1
A2 A1 A0 R/W  
0
0
0
0
0
D1 D0  
Start  
by  
Master  
Address Byte  
Pointer Byte  
ACK  
by  
ACK  
by  
STCN75  
STCN75  
1
9
1
9
D7 D6 D5 D4 D3 D2 D1 D0  
Most Significant Data Byte  
D7 D6 D5 D4 D3 D2 D1 D0  
Least Significant Data Byte  
Stop  
Cond.  
by  
ACK  
by  
ACK  
by  
Master  
STCN75  
STCN75  
AI12232  
24/35  
STCN75  
Typical operating characteristics  
4
Typical operating characteristics  
Figure 14. Temperature variation vs. voltage  
140  
120  
100  
80  
–20  
0.5  
85  
60  
40  
20  
110  
125  
0
–20  
–40  
–60  
2
3
4
5
6
Voltage (V)  
AI12258  
25/35  
Maximum ratings  
STCN75  
5
Maximum ratings  
Stressing the device above the ratings listed in the “Absolute maximum ratings” table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to Absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 10. Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
TSTG  
Storage temperature (VCC Off, VBAT Off)  
Lead solder temperature for 10 seconds  
Input or output voltage  
Supply voltage  
–60 to 150  
260  
°C  
°C  
V
(1)  
TSLD  
VIO  
VDD  
VOUT  
IO  
VCC +0.5  
7.0  
V
Output voltage  
VDD + 0.5  
10  
V
Output current  
mA  
mW  
PD  
Power dissipation  
320  
1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C  
for between 90 to 150 seconds).  
26/35  
STCN75  
DC and AC parameters  
6
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 11, Operating and AC Measurement Conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 11. Operating and AC measurement conditions  
Parameter  
Conditions  
Unit  
V
DD supply voltage  
2.7 to 5.5  
–55 to 125  
5  
V
°C  
ns  
V
Ambient operating temperature (TA)  
Input rise and fall times  
Input pulse voltages  
0.2 to 0.8VCC  
0.3 to 0.7VCC  
Input and output timing reference voltages  
V
27/35  
DC and AC parameters  
STCN75  
Table 12. DC and AC characteristics  
Sym  
Description  
Test condition(1)  
Min  
Typ(2)  
Max  
Unit  
VDD Supply voltage  
TA = –55 to +125°C  
2.7  
5.5  
V
VDD supply current,  
active temperature  
conversions  
V
DD = 3.3V  
125  
70  
150  
100  
1.0  
µA  
µA  
µA  
IDD  
VDD supply current,  
TA = 25°C  
TA = 25°C  
communication only  
Shutdown mode supply  
IDD1 current, serial port  
inactive  
Accuracy for  
corresponding range  
2.7V VDD 5.5V  
–25°C < TA < 100  
–55°C < TA < 125  
2.0  
3.0  
°C  
°C  
0.5  
9
°C/LSB  
bits  
Resolution  
9-bit Temperature data  
tCONV Conversion time  
9
45  
80  
75  
85  
ms  
Over-temperature  
shutdown  
TOS  
Default value  
Default value  
4mA sink current  
°C  
°C  
V
THYS Hysteresis  
OS/INT saturation  
VOL1  
0.5  
voltage (VDD = 5V)  
Digital pins  
0.5xVDD  
-0.45  
VDD + 0.5  
VIH  
VIL  
Input logic high  
Input logic low  
V
(SCL, SDA, A2-A0)  
0.3xVDD  
0.4  
Digital pins  
IOL = 3mA  
V
V
VOL2 Output logic low (SDA)  
CIN  
IOL  
Capacitance  
5
pF  
mA  
SDA output low current  
6
1. Valid for ambient operating temperature: TA = –55 to 125°C; VDD = 2.7V to 5.5V (except where noted).  
2. Typical numbers taken at VDD= 3V, TA = 25°C.  
28/35  
STCN75  
DC and AC parameters  
Figure 15. Bus timing requirements sequence  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:STO  
P
S
tLOW  
SR  
P
AI00589  
Table 13. AC characteristics  
Sym  
Parameter(1)  
Min  
Max  
Unit  
fSCL  
tBUF  
SCL clock frequency  
0
400  
kHz  
µs  
Time the bus must be free before a new transmission can start  
SDA and SCL fall time  
1.3  
tF  
300  
ns  
(2)  
tHD:DAT  
Data hold time  
0
µs  
START condition hold time  
(after this period the first clock pulse is generated)  
tHD:STA  
600  
ns  
tHIGH  
tLOW  
tR  
Clock high period  
Clock low period  
600  
1.3  
ns  
µs  
ns  
ns  
SDA and SCL rise time  
300  
tSU:DAT Data setup time  
100  
600  
600  
START condition setup time  
tSU:STA  
ns  
ns  
(only relevant for a repeated start condition)  
tSU:STO STOP condition setup time  
1. Valid for ambient operating temperature: TA = –55 to 125°C; VDD = 2.7V to 5.5V (except where noted).  
2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max) of the falling  
edge of SCL  
29/35  
Package mechanical data  
STCN75  
7
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
30/35  
STCN75  
Package mechanical data  
Figure 16. SO8 – 8-pin, plastic small package outline  
h x 45˚  
c
A2  
A
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
1. Drawing is not to scale.  
Table 14. SO8 – 8-pin, plastic small outline, package mechanical data  
millimetres  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.75  
0.25  
0.069  
0.010  
0.10  
1.25  
0.28  
0.17  
0.004  
0.049  
0.011  
0.007  
0.48  
0.23  
0.10  
5.00  
6.20  
4.00  
0.019  
0.009  
0.004  
0.197  
0.244  
0.157  
c
ccc  
D
4.90  
6.00  
3.90  
1.27  
4.80  
5.80  
3.80  
0.193  
0.236  
0.154  
0.050  
0.189  
0.228  
0.150  
E
E1  
e
h
0.25  
0°  
0.50  
8°  
0.010  
0°  
0.020  
8°  
k
L
0.40  
1.27  
0.016  
0.050  
L1  
1.04  
0.041  
31/35  
Package mechanical data  
Figure 17. MSOP8 (TSSOP8) – 8-lead, thin shrink small package (3x3) outline  
STCN75  
D
8
1
5
4
c
E1  
E
k
A1  
L
L2  
A
A2  
L1  
ccc  
b
e
E3_ME  
1. Drawing is not to scale.  
Table 15. MSOP8 (TSSOP8) – 8-lead, thin shrink small package (3x3) mech. data  
mm  
Min  
inches  
Min  
Sym  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.10  
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
0.00  
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.000  
0.030  
0.009  
0.003  
0.110  
0.183  
0.110  
0.85  
0.034  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.032  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
32/35  
STCN75  
Part numbering  
8
Part numbering  
Table 16. Ordering information scheme  
Example:  
STCN75  
M
2
F
Device type  
STCN75  
Package  
M = SO8N  
DS = MSOP8 (TSSOP8)(1)  
Temperature range  
2 = –55 to 125°C  
Shipping method  
F = ECOPACK package, Tape & Reel  
E = ECOPACK package, Tube  
1. Contact local ST sales office for availability  
For other options, or for more information on any aspect of this device, please contact the  
ST sales office nearest you.  
33/35  
Revision history  
STCN75  
9
Revision history  
Table 17. Revision history  
Date  
Revision  
Changes  
25-Jul-2006  
1
Initial release  
Changed document to new template; document status  
updated from target specification to preliminary data; updated  
footnotes in Table 1: Signal names; updated footnotes, V  
,
OL1  
17-Nov-2006  
22-Jan-2007  
2
3
V , V  
and I in Table 12: DC and AC characteristics;  
IL OL2  
OL  
deleted t  
from Table 13: AC characteristics; updated  
TIME-OUT  
package mechanical data for the SO8N package in Section 7.  
Updated information in features and cover page, DC and AC  
characteristics (Table 12), package mechanical information  
(Figure 17 and Table 15) and part numbering (Table 16).  
Updated cover page (package information); Section 2:  
Operation; Section 2.3: Comparator mode; Section 2.4:  
Interrupt mode; Table 4; Table 12; package mechanical data  
(Figure 17, Table 15); and part numbering (Table 16).  
02-Mar-2007  
06-Jun-2007  
4
5
Updated cover page, document status upgraded to full  
datasheet, updated Table 12.  
34/35  
STCN75  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
35/35  

相关型号:

STCN75M2F

Digital temperature sensor and thermal watchdog
STMICROELECTR

STCN75_08

Digital temperature sensor and thermal watchdog
STMICROELECTR

STCOM

Powerline communication and application system-on-chip
STMICROELECTR

STCOM05

Powerline communication and application system-on-chip
STMICROELECTR

STCOM10

Powerline communication and application system-on-chip
STMICROELECTR

STCS05

0.5 A max constant current LED driver
STMICROELECTR

STCS05A

0.5 A max constant current LED driver
STMICROELECTR

STCS05ADR

0.5 A max constant current LED driver
STMICROELECTR

STCS05DR

0.5 A max constant current LED driver
STMICROELECTR

STCS1

1.5 A max constant current LED driver
STMICROELECTR

STCS1A

1.5 A max constant current LED driver
STMICROELECTR

STCS1APHR

1.5 A max constant current LED driver
STMICROELECTR