STLC60134S [STMICROELECTRONICS]

TOSCA INTEGRATED ADSL CMOS ANALOG FRONT-END CIRCUIT; TOSCA集成的ADSL CMOS模拟前端电路
STLC60134S
型号: STLC60134S
厂家: ST    ST
描述:

TOSCA INTEGRATED ADSL CMOS ANALOG FRONT-END CIRCUIT
TOSCA集成的ADSL CMOS模拟前端电路

调制解调器 电信集成电路 电信电路
文件: 总22页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STLC60134S  
TOSCA INTEGRATED ADSL CMOS  
ANALOG FRONT-END CIRCUIT  
FULLY INTEGRATED AFE FOR ADSL  
OVERALL 12 BIT RESOLUTION, 1.1MHz  
SIGNAL BANDWIDTH  
8.8MS/s ADC  
8.8MS/s DAC  
THD: -60dB @FULL SCALE  
TQFP64  
ORDERING NUMBER: STLC60134S  
4-BIT DIGITAL INTERFACE TO/FROM THE  
DMT MODEM  
1V FULL SCALE INPUT  
lows to get a T1.413Issue 2 compliant solution.  
DIFFERENTIAL ANALOG I/O  
ACCURATE CONTINUOUS-TIME CHANNEL  
FILTERING  
3rd & 4th ORDER TUNABLE CONTINUOUS  
TIME LP FILTERS  
The STLC60134S analog front end handles 2  
transmission channels on a balanced 2 wire inter-  
connection; a 16 to 640Kbit/s upstream channel  
and a 1.536 to 8.192Mbit/s downstreamchannel.  
A 256 carrier DMT coding (frequency spacing  
4.3125kHz) transforms the downstream channel  
to a 1MHz bandwidth analog signal (tones 32-  
255) and the upstream channel (tones 8-31) to a  
100kHz bandwidth signal on the line.  
This asymmetrical data transmission system uses  
high resolution, high speed analog to digital and  
digital to analog conversion and high order ana-  
log filtering to reduce the echo and noise in both  
0.5 WATT AT 3.3V  
0.5µm HCMOS5 LA TECHNOLOGY  
64 PIN TQFP PACKAGE  
DESCRIPTION  
STLC60134S is the Analog Front End of the  
STMicroelectronics Tosca  
ADSL chipset and  
when coupled with STLC60135 (DTM modem) al-  
Figure 1. Block Diagram  
XTAL-DRIVER  
VCXO  
R-MOS-C  
I/V-REF  
TUNING  
DAC  
ERROR  
ADC  
CORRECTION  
G=-15...0dB  
step=1dB  
13 bits  
TXP  
TXN  
+
-
-
ANALOG  
LOOP  
+
4 bits  
MUX  
AGCtx  
DIGITAL  
IF  
1.1MHz  
HC2  
1.1MHz  
HC1  
138KHz  
SC2  
DIGITAL  
LOOP  
DAC  
MUX  
G=0..31dB  
step=1dB  
12 bits  
4 bits  
RXP(0:1)  
RXN(0:1)  
+
-
+
-
AGCrx  
D99TL453  
August 1999  
1/22  
STLC60134S  
the ATU-C/ATU-R receivers and transmitters. Ex-  
ternal low noise driver and input stage used with  
STLC60134Sguarantee low noise performances.  
pendent frequencypulling.  
The DAC which is driven by the CTRLIN pin pro-  
vides a current output with 8-bit resolution and  
can be used to tune the XTAL frequency with the  
help of external components. A time constant be-  
tween DAC input and VCXO output can be intro-  
duced (via the CTLIN interface) and programmed  
with the help of an external capacitor (on VCOC  
pin).  
The STLC60134S chip can be used at ATU-C  
and ATU-R ends (behaviour set by LTNT pin).  
The selection consists mainly of a filter inter-  
change between the RX and TX path. The filters  
(with a programmable cutoff frequency) use auto-  
matic Continuous Time Tuning to avoid time vary-  
ing phase characteristic which can be of dramatic  
consequencefor DMT modem. It requires few ex-  
ternal components, uses a 3.3V supply (a sepa-  
rate 3.0V supply of the digital part is possible)  
and is packaged in a 64-pin TQFP in order to re-  
duce PCB area.  
See chapter ’VCXO’ for the external circuit re-  
.
lated to the VCXO  
The Digital Interface part  
The digital part of the STLC60134S can be di-  
vided in 3 sections:  
The data interface converts the multiplexed  
data from/to the DMT signal processor into  
valid representation for the TX DAC and RX  
ADC. It performs also the error correction  
mechanism needed at the (redundant) ADC  
output.  
The control interface allows the board proces-  
sor to configure the STLC60134S paths  
(RX/TX gains, filter band, ...) or settings (OSR,  
vcodac enable, digital / analog loopback,...).  
The test interface to enable digital (Full Scan,  
nandtree, loop backs, functional,...) or analog  
(TIN, TOUT assignation) tests to be per-  
formed.  
The Receiver (RX) part  
The DMT signal coming from the line to the  
STLC60134S is first filtered by the two following  
external filters:  
POTS HP filter: Attenuation of speech and POTS  
signalling  
Channel filter:  
Attenuation of echo signal to  
improve RX dynamic  
An analog multiplexer allows the selection be-  
tween two input ports which can be used to select  
an attenuated(0, 10dB for ex.) version of the sig-  
nal in case of short loop or large echo. The sig-  
nal is amplified by a low noise gain stage (0-  
31dB) then low-pass filtered to avoid anti-aliasing  
and to ease further digital processing by remov-  
ing unwanted high frequencyout-of-band noise.  
A 12-bit A/D converter samples the data at  
8.832MS/s (or 4.416MS/s in alternative mode),  
transforms the signal into a digital representation  
and sends it to the DMT signal processor via the  
digital interface.  
DMT Signal  
A DMT signal is basically the sum of N inde-  
pendently QAM modulated signals, each carried  
over a distinct carrier. The frequency separation  
of each carrier is 4.3125kHz with a total number  
of 256 carriers (ANSI). For N large, the signal can  
be modelled by a gaussian process with a certain  
amplitude probability density function. Since the  
maximum amplitude is expected to arise very  
rarely, we decide to clip the signal and to trade-  
off the resulting SNR loss against AD/DA dy-  
namic. A clipping factor (Vpeak/Vrms = ”crest fac-  
tor”) of 5 will be used resulting in a maximum  
SNR of 75dB.  
The Transmitter (TX) part  
The 12-bit data words at 8.832MS/s (or  
4.416MS/s) coming from the DMT signal proces-  
sor through the digital interface are transformed  
by D/A converterinto a analog signal.  
This signal is then filtered to decrease DMT side-  
lobes level and meet the ANSI transmitter spec-  
tral response but also to reduce the out-of-band  
noise (which can be echoed to the RX path) to an  
acceptable level. The pre-driver buffers the signal  
for the external line driver and in case of short  
loop provide attenuation(-15...0dB).  
ADSLDMT signalsarenominallysentat -40dBm/Hz  
±3dB (-3.65dBm/carrier) with a maximal power of  
100mW for down link transmitter and 15.7mW for  
uplink transmitter.  
DMT symbols are transmitted without ’window-  
ing’ causing sin (x)/x like sidelobes. For spectral  
response shaping, the 1st sidelobe level is as-  
sumed to be 13dB under the carrier level with  
an attenuation of -20dB/dec.  
The minimum SNR + D needed for DMT carrier  
demodulation is about (3 N + 20) dB with a  
minimum of 38dB were N is the constellation size  
of a carrier (in bits).  
The VCXO part  
The VCXO is divided in a XTAL driver and a aux-  
iliary 8 bits DAC for timing recovery.  
The XTAL driver is able to operate at 35.328MHz  
and provides an amplitude regulation mechanism  
to avoid temperature / supply / technology de-  
2/22  
STLC60134S  
mit power and line impedance signal amplitudes  
can differ from these values.  
The reference line impedance for all power calcu-  
lations is 100.  
Maximum / minimum signal levels  
The following table gives the transmitted and re-  
ceived signal levels for both ATU-R and ATU-C  
sides. All the levels are referred to the line volt-  
ages (i.e. after hybrid and transformers in TX di-  
rection, before hybrid and transformer in RX di-  
rection).  
PACKAGE  
The STLC60134S is packaged in a 64-pin TQFP  
package (body size 10x10mm, pitch 0.5mm).  
Note that signal amplitudes shown below are for  
illustration purpose and depending on the trans-  
Table 1. Target Signal Levels  
(on the line).  
Parameter  
ATU - C  
ATU - R  
RX  
839 mVpdif  
TX  
15.8 Vpdif  
RX  
3.95 Vpdif  
TX  
Max level  
3.4 Vpdif  
Max RMS level  
Min level  
168 mVrms  
54 mVpdif  
11 mVrms  
3.16 Vrms  
3.95 Vpdif  
791 mVrms  
791 mVrms  
42 mVpdif  
8 mVrms  
671 mVrms  
839 mVpdif  
168 mVrms  
Min RMS level  
Table 2. Total Signal Level  
(on the line).  
Parameter  
ATU - C  
ATU - R  
RX  
TX  
RX  
TX  
Max level for receiver 4 Vpdif (Long line)  
4.2 Vpdif (Short line)  
Figure 2. Pin Connection  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
3
4
5
6
7
8
9
TX1  
TX0  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RXIP0  
RXIN0  
GC1  
NU3  
NU2  
GC0  
NU1  
VCOC  
GP2  
NU0  
CTRLIN  
DVSS1  
CLKM  
CLNIB  
CLWD  
RX3  
AVDD6  
AVDD5  
RES  
RES  
10  
11  
12  
AGND  
RES  
13  
14  
RX2  
RES  
RX1  
AVSS5  
AVSS4  
GP1  
RX0  
15  
16  
DVDD1  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
D98TL355mod  
3/22  
STLC60134S  
Table 3. Pin Functions.  
N.  
Name  
Function  
PCB connection Supply  
ANALOG INTERFACE  
24  
25  
26  
31  
32  
38  
44  
45  
46  
47  
48  
49  
50  
53  
55  
56  
59  
60  
VRAP  
VREF  
VRAN  
TXP  
positive voltage reference ADC  
ground reference ADC  
Decoupling network AVDD3  
Decoupling network AVDD3  
Decoupling network AVDD3  
negative voltage reference ADC  
pre driver output  
Line driver input  
Line driver input  
AVDD4  
AVDD4  
TXN  
pre driver output  
AGND  
VCOC  
GC0  
virtual analog ground (AVDD/2 = 1.65V)  
VCODAC time constant capacitor  
External gain control output LSB  
External gain control output MSB  
analog receive negative input Gain 0  
analog receive positive input Gain 0  
analog receive negative input Gain 1 (most sensitive input)  
analog receive positive input Gain 1 (most sensitive input)  
current reference TX DAC/DACE  
current reference VCO DAC  
Decoupling network AVDD5  
VCODAC cap.  
AVDD5  
AVDD5  
AVDD5  
AVDD5  
AVDD5  
AVDD5  
AVDD5  
GC1  
RXN0  
RXP0  
RXN1  
RXP1  
IREF  
IVCO  
VCXO  
XTALI  
XTALO  
Echo filter output  
Echo filter output  
Echo filter output  
Echo filter output  
Decoupling network AVDD2  
VCO bias network AVDD1  
VXCO control current  
VCXO filter  
AVDD1  
AVDD1  
AVDD1  
XTAL oscillator input pin  
XTAL oscillator output pin  
Crystal + varicap  
Crystal + varicap  
DIGITAL INTERFACE  
1
TX1  
digital transmit input, parallel data  
digital transmit input, parallel data  
serial data input (settings)  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
DVDD2  
2
7
TX0  
CTRLIN  
CLKM  
CLNIB  
CLWD  
RX3  
Async Interface  
Load = CL<30pF  
9
master clock output, f = 35.328MHz  
10  
11  
12  
13  
14  
15  
18  
19  
nibble clock output, f = 17.664MHz (OSR= 2) or ground (OSR= 4) Load = CL<30pF  
word clock output, f = 8.832/4.416MHz  
digital receive output, parallel data  
digital receive output, parallel data  
digital receive output, parallel data  
digital receive output, parallel data  
power down select, ”1” = power down  
Load = CL<30pF  
Load = CL<30pF  
Load = CL<30pF  
Load = CL<30pF  
Load = CL<30pF  
RX2  
RX1  
RX0  
PDOWN  
LTNT  
Power down input DVDD2  
VDD in ATU-C mode DVDD2  
ATU-R / ATU-C select pin 1, ATU-R = 0 /ATU-C = 1 / test  
mode MSB  
20  
22  
33  
43  
63  
64  
21  
RESETN  
GP0  
reset pin (active low)  
RC- reset  
DVDD2  
AVDD  
General purpose output 0 (on AVDD 1)  
General purpose output 1 (on AVDD 1)  
General purpose output 2 (on AVDD 1)  
digital transmit input, parallel data  
digital transmit input, parallel data  
RESERVED  
Echo filter output  
Echo filter output  
Echo filter output  
Load = CL<30pF  
Load = CL<30pF  
GP1  
AVDD  
GP2  
TX3  
AVDD  
DVDD2  
DVDD2  
TX2  
RES  
Must be connected  
to DVSS (input)  
36,  
37, 39,  
RES  
Must be connected  
to AVSS (input)  
RESERVED  
40, 57  
SUPPLY VOLTAGES  
8
DVSS1  
DVDD1  
DVDD2  
AVSS3  
AVDD3  
DVSS  
DVDD  
DVDD  
AVSS  
AVDD  
16  
17  
23  
27  
Digital I/O supply voltage  
digital internal supply voltage  
ADC supply voltage  
4/22  
STLC60134S  
Table 3. Pin Functions  
(continued)  
28  
34  
35  
41  
42  
51  
52  
54  
58  
61  
62  
SPARES  
3
AVDD4  
AVSS4  
AVSS5  
AVDD5  
AVDD6  
AVSS6  
AVSS2  
AVDD2  
AVDD1  
AVSS1  
DVSS2  
TX pre - drivers supply  
AVDD  
AVSS  
AVSS  
AVDD  
AVDD  
AVSS  
AVSS  
AVDD  
AVDD  
AVSS  
DVSS  
CT filter supply  
LNA supply  
DAC and support circuit  
XTAL oscillator supply voltage  
NU3  
NU2  
NU1  
NU0  
NC0  
NC1  
Not used inputs  
Not used inputs  
Not used inputs  
Not used inputs  
DVSS  
DVSS  
DVSS  
DVSS  
4
5
6
29  
30  
1
LT AUT-C; NT ATU-R  
Figure 3. Grounding and Decoupling Networks.  
10µF  
VRAP pin  
VRAN pin  
4.7µH  
L1  
ANALOG  
VDD  
AVDD (each pin must  
have its own capacitor)  
100nF  
10µF  
100nF  
100nF  
10µF  
100nF  
10µF  
100nF  
VREF pin  
IREF pin  
100nF  
VCOC pin  
10µF  
AGND pin  
10µF  
100nF  
10µF  
D98TL356  
duce DMT sidelobes and out of band noise influ-  
ence on the receiver. On the RX path, a LP filter  
must be used in order to reduce the echo signal  
level and to avoid saturation of the input stage of  
the receiver.  
The POTS filter is used in both directions to re-  
duce crosstalk between STLC60134S signals  
and POTS speech and signalling.  
ATU-C END: BLOCK DIAGRAM  
The transformer at ATU-C side has 1:2 ratio. The  
termination resistors are 12.5in case of 100Ω  
lines.  
The hybrid bridge resistors should be < 2.5kfor  
low-noise.  
An HP filter must be used on the TX path to re-  
5/22  
STLC60134S  
Figure 4. ATU-C END Block Diagram.  
POTS  
35.328MHz  
LINE  
LP  
Zo=100  
POTS FILTER  
MASTER CLOCK  
35.328MHz  
2:1  
XTRAL  
DRIVER  
NIBBLES 17.664MHz  
HP POTS FILTER  
RXT1  
RXT2  
WORD 8.832/4.416MHz  
R
R
RXP(0:1)  
RXN(0:1)  
0..31dB  
LNA  
RXn  
8.832MS/s  
4.416MS/s  
4
12-bit A/D  
CONVERTER  
12.5  
12.5  
LPF  
LP138KHz  
SC2  
GRX  
CTRLIN  
LTNT=1  
RESETN  
TO  
STLC60135  
2R  
2R  
GTX  
LINE  
DRIVER  
-15..0dB  
TXP  
TXN  
4
12-bit D/A  
PD  
HPF  
LP 1.1MHz  
HC2  
CONVERTER  
TXn  
8.832MS/s  
4.416MS/s  
D98TL357mod  
duce DMT sidelobes and out of band noise influ-  
ence on the receiver. On the RX path, a HP filter  
must be used in order to reduce the echo signal  
level and to avoid saturation of the input stage of  
the receiver.  
The POTS filter is used in both directions to re-  
duce crosstalk between ADSL signals and POTS  
speech and signalling. Low pass POTS filter can  
be very simple for Lite - ADSL application  
ATU-R END: BLOCK DIAGRAM  
The ATU-R side block diagram is equal to the  
ATU-C side block diagram with the following dif-  
ferences:  
- The transformer ratio is 1:1  
- Termination resistors are 50for 100lines.  
An LP filter may be used on the TX path to re-  
Figure 5. ATU-R END Block Diagram.  
POTS  
35.328  
MHz  
LINE  
LP  
VCXOUT  
Zo=100  
POTSFILTER  
MASTER CLOCK  
35.328MHz  
1:1  
HP POTSFILTER  
XTAL  
DRIVER  
VCODAC  
NIBBLES17.664MHz  
WORD 8.832/4.416MHz  
RXT1  
RXT2  
R
R
RXP(0:1)  
RXN(0:1)  
0..31dB  
LNA  
RXn  
8.832MS/s  
4.416MS/s  
4
12- bit A/D  
CONVERTER  
50  
50  
HPF  
LP 1.1MHz  
HC2  
GRX  
CTRLIN  
LTNT=0  
TO  
STLC60135  
2R  
2R  
RESETN  
GTX  
LINE  
DRIVER  
-15..0dB  
TXP  
TXN  
4
12-bit D/A  
PD  
LPF  
LP 138KHz  
SC2  
CONVERTER  
TXn  
8.832MS/s  
4.416MS/s  
D98TL358mod  
6/22  
STLC60134S  
the frequency band of interest. The maximum  
noise density within the pass band can exceed  
the average value as follows:  
ATU-R RX path (max AGC setting):  
<100nVHz-1/2 @ 138kHz  
<31nVHz-1/2 for 250kHz < f  
RX PATH  
Speech filter  
An external bi-directional LC filter for up and  
downstream POTS service splits the speech sig-  
nal from the ADSL signal to the POTS circuits on  
ATU-C.  
The ADSL analog front end integrated circuit  
does not contain any circuitry for the POTS serv-  
ice but it guarantees that bandwidth is not dis-  
turbed by spurious signals from the ADSL-spec-  
trum.  
ATU-C RX path (max AGC setting):  
<100nVHz-1/2 for 34.5kHz< f <138kHz  
RX-PATH NOISE AT MINIMUM GAIN  
At the minimum AGC the total average thermal  
noise of the analog RX-path at the ADC input  
should be lower than the ADC quantisationnoise.  
The maximum noise density within the pass band  
can exceed the average value as follows:  
Channel Filters  
The external analog circuits provide partial echo  
cancellation by an analog filtering of the receive  
signal for both ATU-R (Reception of downstream  
channel) and ATU-C (Reception of upstream  
channel). This is feasible because the upstream  
and the downstream data can be modulated on  
separate carriers (FDM).  
ATU-R RX path (min AGC setting):  
-1/2  
<500nVHz  
@ 138kHz< f  
ATU-C RX path (min AGC setting):  
<1.5µVHz-1/2 @ 34.5kHz < f < 138kHz  
These noise specifications correspond with 10bit  
resolution of the complete RX-path.  
Table 4. RX Common-mode Voltage  
Line Noise Model  
The power spectral density of the crosstalk noise  
sources as described in ANSI document is given  
in the figure below (no HDB3 interferer signals).  
Also given in dotted line, is the noise model used  
in this document to specify the sensivity require-  
ments which are stronger than the original ones.  
Description  
Value/Unit  
Common mode signal VCM  
at RXIN1 and RXIN2:  
1.6V < VCM <1.7V  
Figure 6. Crosstalk PSD.  
AGC of RX path  
The AGC gain in the RX-path is controlled  
through a 5-bits digital code.  
dBm/Hz  
-100  
Four inputs are provided for RX input and the se-  
lection is made with the RXMUX bits of the  
CTRLIN interface. This can be used to make  
lower gain paths in case of high input signal.  
-110  
-120  
-130  
-140  
D98TL359  
79.5 138 250  
795  
kHz  
Table 5. AGC Characteristics.  
Description  
Value/Unit  
20nVHz-1/2  
Input referred noise  
(max. gain)  
Signal to Noise Performance  
Max. input level  
Max. output level  
Gain range  
1Vpd  
1Vpd  
RX- PATH SENSITIVITY AT MAXIMUM GAIN  
The RX path sensitivity at the maximal RX-AGC  
of the ATU-R receiver is defined at -140dBm/Hz  
(for 100ref) on the line. This figure corresponds  
to the equivalent input noise of 31nVHz  
on the line.  
The sensitivity at the maximal RX - gain of the  
ATU-C receiver is defined at -130dBm/Hz (for  
100ref) on the line. The figure corresponds to  
the equivalent input noise of 100nVHz  
on the line.  
0to 31dB with step = 1dB  
Gain and step accuracy  
0.3dB  
±
-1/2  
seen  
RX Filters  
The combination of the external filter (an LC lad-  
der filter typically) with the integrated lowpass fil-  
ter must provide:  
- echo reduction to improve dynamic range  
- DMT sidelobe and out of band (anti-aliasing)  
attenuation.  
-1/2  
seen  
Both noise figures include the noise of the hybrid.  
It is the equivalent average thermal noise over  
- Anti alias filter (60dB rejection @ image freq.)  
7/22  
STLC60134S  
ATU-R RX Filters  
The integratedfilter have the following characteristics:  
Table 6. Integrated HC Filter Characteristics  
Description  
Input referred noise  
Max. input level  
Value/Unit  
100nVHz-1/2  
1Vpd  
Max. output level  
Type  
1Vpd  
3rd order butterworth  
Frequency band  
1.104MHz (0%setting, see below)  
Frequency tuning  
Max. in-band ripple  
-43.75% ->+0%  
1dB  
Matlab Model  
[B, A] = butter (3, w0, ’s’)  
F0 = 1560KHz  
w0 = 2 * pi * F0/((20 + n)/16)  
n = -4,..,3  
Default cut off frequency @ -3dB  
Actual cut off @ -3dB  
HC Freq. selection register  
see (AFE settings ,Table 22)  
Table 7. Phase Characteristic  
Description  
Total RX filter group delay  
Value/Unit  
< 50µs @ 138kHz < f < 1.104MHz  
< 15µs @ 138kHz < f < 1.104MHz  
Total RX filter group delay distortion  
Figure 7. HC Filter Mask for ATU-R RX and ATU-C TX  
AMPLITUTDE  
+/-1dB  
5dB  
36dB  
50dB  
0dB  
30  
D98TL360  
1104 2208  
7728  
16560  
kHz  
Note: The total ATU_R RX path (including ADC) group delay distortion is 16µs (i.e. = 15µs + 1µs of ADC)  
ATU-C RX filter  
This filter is the same as the one used for ATU-R TX.  
Linearity of RX  
Linearity of the RX analog path is defined by the IM3 product of two sinusoidal signals with frequencies  
f1 and f2 and each with 0.5Vpd amplitude (total 1Vpd) at the output of the RX - AGC amplifier (i.e: be-  
fore the ADC) for the case of minimal AGC setting.  
The following tables 8 and 9 list the RX path intermodulation distortion (as S/IM3 ratio) in downstream  
and upstreambandwidth.  
Table 8. Linearity of ATU-R RX  
f1 (0.5Vpd)  
f2 (0.5Vpd)  
300kHz  
200kHz  
500kHz  
400kHz  
700kHz  
600kHz  
S/IM3 (AGC = 0dB)  
59.5dB @ 100kHz  
53.5dB @ 400kHz  
43.5dB @ 700kHz  
42.5dB @ 800kHz  
59.5dB @ 300kHz  
48.0dB @ 600kHz  
48.0dB @ 500kHz  
42.5dB @ 800kHz  
8/22  
STLC60134S  
Table 9. Linearity of ATU-C RX  
f1 (0.5Vpd)  
f2 (0.5Vpd)  
80kHz  
70kHz  
S/IM3 (AGC = 20 dB)  
2f2 - f1  
2f1 - f2  
56.5dB @ 60kHz  
56.5dB @ 90kHz  
Table 10. RX Filter to A/D Interface  
RX filter to A/D maximal level:  
1Vpd = full scale of A/D  
Table 11. A/D Convertors (A pipeline architecture is used for A/D convertors).  
Numbers of bits:  
12bits  
Minimum resolution of the A/D convertor  
Linearity error of the A/D convertor  
Full scale input range:  
11bits  
<1LSB (out of 12bits)  
1 Vpdif ±5%  
Sampling rate:  
8.832MHz (or 4.416MHz in OSR = 2 mode)  
<0.5dB without in-band ripple  
Maximum attenuation at 1.1MHz:  
Maximum group delay:  
<3 s  
µ
Maximum group delay distortion:  
<1 s  
µ
Power Supply Rejection  
The noise on the power supplies for the RX path must be lower than the following:  
<50mVrms in band white noise for any AVDD.  
In this case, PSR (power supply rejection) of STLC60134SRX path is lower than -43dB.  
TX PATH  
Transmitter Spectral Response  
The two figures below show the ANSI spectral response mask for ATU-C and ATU-R transmitters  
Figure 8. ATU-C TX spectral response mask  
+/-3dB  
dBm/Hz  
24dB  
50dB  
-40  
-64  
-90  
30  
D98TL361  
1104 2208  
11040  
KHz  
Figure 9. ATU-R TX spectral response mask  
+/-3dB  
dBm/Hz  
24dB  
48dB  
-40  
-64  
-88  
30  
D98TL362  
138 181  
224  
KHz  
9/22  
STLC60134S  
Table 12. AGC of TX Path (from filter output to TXP and TXN).  
Output noise  
25mVHz-1/2  
1Vpd  
Input level (nominal)  
Output level nominal, full-scale  
Maximum Output Load  
AGC range:  
1.5Vpd  
> 500 ; <10pF  
-15dB...dB  
1dB  
AGC step:  
Gain and step accuracy  
0.3dB  
±
Minimum code (0000) stands for AGC = -15dB and maximum (1111 - MSB left) for AGC = 0dB (See Tx  
setting, Table22).  
TX Pre-driver Capability  
The pre-driver drives an external line power amplifier which transmits the required power to the line.  
Table 13. TX Pre-driver  
TX drive level to the external line driver for max. AGC setting  
External line driver input impedance:  
1.5 Vpdif  
> 500  
< 30pF  
resistive  
capacitive  
Pre-driver characteristics:  
closed loop gain:  
-15dB...0dB with step = 1dB  
< 10mV  
ooutput impedance:  
output offset voltage (0dB)  
input noise voltage (0dB)  
< 20nVHz-1/2 @ f > 250k  
< 50nVHz-1/2 @ 34.5K < f  
<138kΩ  
output common mode voltage:  
1.6V < Vcm < 1.7V  
TX Filter  
The TX filters act not only to suppress the DMT sidebands but also as smoothing filters on the D/A con-  
vertor’s output to suppress the image spectrum. For this reason they must be realized in a continuous  
time approach.  
ATU-R TX Filter  
The purpose of this filter is to remove out-of-band noise of the ATU-R TX path echoed to the ATU-R RX  
path. In order to meet the transmitter spectral response, an additional filtering must be (digitally) per-  
formed. The integrated filter has the following characteristics:  
Table 14. Integrated SC Filter Characteristics  
Description  
Value/Unit  
Input referred noise  
Max. input level  
Max. output level  
Type  
100nVHz-1/2  
1Vpd  
1Vpd  
4th order chebytchef  
Frequency band  
Frequency tuning  
Max. in-band ripple  
Matlab Model  
138kHz (0% settingseebelow)  
-25%-> +25%  
1dB  
[B,A] = cheby1 (4,0.5,W0,’s’) {ripple = 0.5}  
F0 = 151.8kHz  
W0 = 2*pi*F0/((17+n)/16)  
Default cut-off frequency @ -3dB  
Actual cut-off @ -3dB  
SC Freq. selection register  
n = -4,..,3  
see (AFE settings, Table 22)  
10/22  
STLC60134S  
Table 15. Phase characteristics  
Description  
Value/Unit  
<50 s @ 34.5kHz < f < 138kHz  
Total TX filter group delay  
µ
Total TX filter group delay distortion  
<20 s @ 34.5kHz < f < 138kHz  
µ
Note: The total ATU-R TX path (including DAC) group delay distortion is 16µs (i.e. = 15µs + 1µs of DAC)  
Figure 10. SC Filter Mask for ATU-CRX and ATU-R TX  
AMPLITUTDE  
0dB  
+/-1dB  
20dB  
30  
D98TL363  
138 250  
KHz  
Table 16. D/A Convertor (A current steering architecture is used).  
Description  
Value/Unit  
Numbers of bits:  
12bits  
11bits  
Minimum resolution of the D/A convertors  
Linearity error of the A/D convertor  
Full scale input range:  
<1LSB (out of 12bits)  
1 Vpdif 5%  
±
Sampling rate:  
8.832MHz (or 4.416MHz in compatible mode)  
<3 s  
Maximum group delay:  
µ
Maximum group delay distortion:  
<1 s  
µ
Linearity of ATU-C TX  
Linearity of the TX is defined by the IM3 product of two sinusoidal signals with frequencies f1 and f2 and  
each with 0.5Vpdamplitude (total 1Vpd)at the outputof the pre-driverforthe case of a total AGC = 0dB.  
Table 17. Linearity of ATU-C TX  
f1 (0.5Vpd)  
f2 (0.5Vpd)  
300kHz  
200kHz  
500kHz  
400kHz  
700kHz  
600kHz  
S/IM3 (AGC = 0dB)  
59.5dB @ 100kHz  
53.5dB @ 400kHz  
43.5dB @ 700kHz  
42.5dB @ 800kHz  
59.5dB @ 300kHz  
48.0dB @ 600kHz  
48.0dB @ 500kHz  
42.5dB @ 800kHz  
11/22  
STLC60134S  
Linearity of ATU-R TX  
Table 18. Linearity of ATU-R TX  
f1 (0.5Vpd)  
80kHz  
f2 (0.5Vpd)  
70kHz  
S/IM3 (AGC = 0 dB)  
59.5dB (@ 60KHz, 90KHz)  
TX IDLE CHANNEL NOISE  
ATU-C TX idle channel noise  
The idle channel noise specifications correspond with 11bit resolution of the complete TX-path. ATU-C  
TX idle channel output noise on TX.  
Table 19. ATU-C TX idle channel noise  
For max AGC setting (0dB)  
In-band noise  
Out-of-band noise  
500nVHz-1/2  
500nVHz-1/2  
@ 138kHz -1.104MHz  
@ 34.5kHz -138kHz  
For min AGC setting (=-15dB)  
In-band noise  
80nVHz-1/2  
@ 138kHz -1.104MHz  
ATU-R TX idle channel noise  
ATU-R TX idle channel output noise on TXP, TXN  
Table 20. ATU-R TX idle channel noise  
For max AGC setting (0dB)  
In-band noise  
Out-of-band noise  
1.6 VHz-1/2  
@ 34.5kHz -138kHz  
@ 138kHz  
@ 250kHz -1.104MHz  
µ
1.6µVHz-1/2  
150nVHz-1/2  
For min AGC setting (=-15dB)  
In-band noise  
500nVHz-1/2  
@ 34kHz -138kHz  
Power Supply Rejection  
The noise on the power supplies for the TX-path must be lower than the following:  
< 50mVrms in-band white noise for AVDD.  
< 15mVrmsin-bandwhite noise forPre-driverAVDD.  
VCXO  
A voltage controlled crystal oscillator driver is integrated in STLC60134S. The nominal frequency is  
35.328MHz. The quartz crystal is connectedbetween the pins XTALI and XTALO.  
The principle of the VCXOcontrol is shown in figure 11.  
The information coming from the digital processor via the CTRLIN path is used to drive an 8-bit DAC  
which generates a control current. This current is externally converted and filtered to generate the re-  
quired control voltage (range:-15V to 0.5V) for the varicap. The VCXO circuit characteristics are given in  
Table 21.  
12/22  
STLC60134S  
Table 21. VCXO circuit Characteristics  
Symbol  
fabs  
Parameter  
Min.  
Nominal  
Max.  
Note  
Absolute frequency accuracy  
Frequency Tuning Range  
VCXO Output Current  
-15ppm  
35.328MHz  
+15ppm  
frange  
IO  
50ppm  
±
100 A  
Rref = 16.5k  
µ
AVDD = 3.3V  
Ii  
Reference Input Current  
100 A  
1mA  
AVDD = 3.3V  
µ
m
N.B: frequency tuning range is proportional to the crystal dynamic capacitance C .  
Figure 11. Principle of VCXO control  
AVDD  
CS  
AVDD/22÷AVDD/2  
IVCO  
VCOCX  
RREF  
1MΩ  
AVDD  
Ii  
8 bits  
±30%  
CTRLIN  
DAC  
IO=Ii  
Filtered VCXO  
(see CTRLIN table)  
VCXOUT  
XTALO  
AGND  
Clk35  
CP  
Ct  
Rt  
-15V  
XTALI  
D98TL364mod  
The tuning must be monotonicwith 8-bit resolution with the worst-case tuning step of <2ppm/LSB (8-bit).  
s
The time constant of the tuning must be variable from 5s to 10s through an external capacitor C (R =  
1M±30%). This determines the speed of the VCXO in normal operation (slow speed in ”show time”)  
with filtered VCXO. For faster tracking, the previous filter is not used and the speed depends on CtRt.  
13/22  
STLC60134S  
DIGITAL INTERFACE  
Control Interface  
The digital setting codes for the STLC60134S configuration are sent over a serial line (CTRLIN) using  
the word clock (CLWD).  
The data burst is composed of 16 bits from which the first bit is used as start bit (’0’), the three LSBs be-  
ing used to identify the data contained in the 12 remaining bits. Test related data are overruled by the  
normal settingsif the TEST pin is low.  
Table 22. Control Interface Bit Mapping  
M
S
B
L
S
B
RX SETTINGS  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
External Gain Control GC1  
(init = 0)  
(init = 0)  
(init)  
x
External Gain Control GC0  
Rx input selected = RXIN0, RXIP0  
Rx input selected = RXIN1, RXIP1  
AGC RX Gain setting 0dB  
0
1
0
0
x
1
0
0
x
1
0
0
x
1
0
0
x
1
0
1
x
1
(init)  
AGC RX Gain setting 1dB  
AGC RX Gain setting XdB  
AGC RX Gain setting 31dB  
0
0
1
1
0
1
0
1
Normal mode Filter selection see LTNT pin (init)  
In ATU-C conf, force HC2 for RX path, TX grounded  
In ATU-C conf, force HC1 for RX path  
Normal mode Filter selection see LTNT pin  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
TX SETTINGS  
0
0
0
0
0
0
0
0
0
0
0
x
1
0
0
x
1
0
0
x
1
0
1
x
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
Transmit TX - AGC setting -15dB  
Transmit TX - AGC setting -14dB  
Transmit TX - AGC setting (X - 15) dB  
Transmit TX - AGC setting 0dB  
Not used  
(init)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(init)  
(init)  
Not used  
Not used  
(init)  
Not used  
(init)  
x
x
x
General Purpose Output (GPO) setting  
(init = 000)  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
AFE SETTINGS  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
Normal Mode (Digital path)  
(init)  
Digital Loopback (digital TX to digital RX - DACnot used)  
Normal Mode (Analog path)  
Analog loopback (RXi to TXi - ADC not used) 1)  
0
1
(init)  
0
1
VCO DAC disabled  
VCO DAC enabled  
HC filter enabled  
HC filter enabled  
(init)  
(init)  
0
1
1) After initialization, this bit has to be cleared (0) to make the device properly operate.  
14/22  
STLC60134S  
Table 22. Control Interface Bit Mapping (continued)  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
AFE SETTINGS  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
OSR set to 4  
OSR set to 2  
(init)  
1
0
1
1
1
0
1
1
1
SC freq. selection: Fc = 138kHz  
SC freq. selection: Fc ~ 110kHz  
SC freq. selection: Fc ~ 170kHz  
HC freq. selection: Fc = 1.104MHz  
HC freq. selection: Fc ~ 768kHz  
(init) (*)  
(*)  
(*)  
1
0
0
1
0
1
(init) (*)  
(*)  
0
1
VCXO output NOT filtered (”show-time”)  
VCXO output filtered  
(init)  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
VCO DAC VALUE SETTINGS  
0
0
0
0
x
1
0
x
1
0
x
1
0
x
1
0
x
1
0
x
1
0
x
1
0
x
1
0
0
0
1
1
1
1
1
1
VCO DAC CURRENT value @ MINIMUM  
VCO DAC CURRENT value @ X  
VCO DAC CURRENT value @ MAXIMUM  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
POWER DOWN ANALOG BLOCK SETTINGS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TXD Active  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
(init)  
TXD in powerdown  
N.U.  
0
1
N.U.  
0
1
ADC Active  
ADC in powerdown  
HFC2 Active  
0
1
HFC2 in powerdown  
HFC1 Active  
0
1
HFC1 in powerdown  
SCF2 Active  
0
1
SCF2 in powerdown  
SCF1 Active  
0
1
SCF1 in powerdown  
LNA Active  
0
1
LNA in powerdown  
DAC Active  
0
1
DAC in powerdown  
DACE Active  
0
1
DACE in powerdown  
VCODAC Active  
VCODAC in powerdown  
XTAL Active  
0
1
0
1
XTAL in powerdown  
b
1
5
b
1
4
b
1
3
b
1
2
b
1
1
b
1
0
b
9
b
8
b
7
b
6
b
5
b
4
b
3
b
2
b
1
b
0
RESERVED  
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
1
1
0
1
1
1
0
1
RESERVED  
RESERVED  
RESERVED  
(*) For each filter, 8 possible frequency values (see table 6 and table 14). Notation is 2’s complement range from -4 = 100b +3 = 011b.  
Fc is the frequency band (-1dB)  
15/22  
STLC60134S  
Control Interface Timing  
The word clock (CLWD) is used to sample at negativegoing edge the control information. The start bit b15  
is transmittedfirst followedby bits b[14:0]andat least16 stop bits need to be providedto validatethe data.  
Figure 12. Control Interface.  
CLWD  
CTRLIN  
START  
BIT  
DATA  
ID.  
>=16 STOP BITS=HIGH  
D98TL365  
Data set-up and hold time versus falling edge CLWD must be greater than 10nsec.  
Receive / Transmit Interface  
RECEIVE / TRANSMIT PROTOCOL  
The digital interface is based on 4 x 8.832MHz(35.328MHz) data lines in the following manner:  
If OSR = 2 (OSR bit set to 1) is selected, CLKNIB is used as nibble clock (17.664MHz, disabled in normal  
mode), and all the RXi, TXi, CLKWDperiods are twice as long as in normal mode. This ensures a compati-  
bility with lower speedproducts.  
TX Signal Dynamic  
The dynamic of data signal for both TX DACs is 12 bits extracted from the available signed 16 bit repre-  
sentationcoming from the digital processor.  
The maximal positive number is 214-1, the most negative number is -214, the 3 LSBs are filled with ’0’.  
Any signal exceedingthese limits is clamped to the maximum value.  
Table 23.  
BIT MAP/NIBBLE  
TXD0  
N0  
not used  
N1  
N2  
N3  
data bit 1  
data bit 2  
data bit 3  
data bit 4  
data bit 5  
data bit 6  
data bit 7  
data bit 8  
data bit 9  
data bit 10  
data SIGN  
data SIGN  
TXD1  
not used  
TXD2  
not used  
TXD3  
d0 = data bit 0 (LSB)  
Table 24. TX bit map  
N3  
N2  
N1  
N0  
sign  
sign  
d10  
d9  
d8  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
n.u.  
n.u.  
n.u.  
The two sign bits must be identical.  
16/22  
STLC60134S  
RX Signal Dynamic  
The dynamic of the signal from the ADC is limited to 13bits. Those bits are converted to a signed (2’s  
complement) representation with a maximal positive number of 214 -1 and a most negative number -214.  
The 2 LSBs are filled with ’0’.  
Table 25.  
BIT MAP/NIBBLE  
RXD0  
N0  
N1  
N2  
N3  
0
data bit 2  
data bit 3  
data bit 4  
data bit 5  
data bit 6  
data bit 7  
data bit 8  
data bit 9  
data bit 10  
data bit 11  
data SIGN  
data SIGN  
RXD1  
0
RXD2  
d0 = data bit 0 (LSB)  
data bit 1  
RXD3  
Table 26. RX bit map  
N3  
N2  
N1  
N0  
0
sign  
sign  
d11  
d10  
d9  
d8  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
0
The two sign bits must be identical.  
Figure 13. TX/ RX Digital Interface Timing  
CLKM  
35.328MHz  
CLWD  
8.832MHz  
TXDx/RXDx  
N0  
N1  
N2  
N3  
OSR=4  
CLKNIB  
17.664MHz  
CLWD  
4.416MHz  
TXDx/RXDx  
N0  
N1  
N2  
N3  
D98TL366  
OSR=2  
Receive / Transmit interface timing  
The interface is a triple (RX, TX) nibble - serial interface running at 8.8MHz sampling (normal mode).  
The data are represented in 16bits format, and transferred in groups of 4 bits (nibbles). The LSBs are  
transferred first. The STLC60134S generates a nibble clock (CLKM master clock in normal mode,  
CLKNIB in OSR = 2 mode) and word signals shared by the three interfaces.  
Data is transmitted on the rising edge of the master clock (CLKM/CLKNIB) and sampled on the falling  
edge of CLKM/CLKNIB. This holds for the data stream from STLC60134S and from the digital proces-  
sor.  
Data, CLWD setup and hold times are 5ns with referenceto the falling edge of CLKM/CLKNIB.  
(not floating).  
17/22  
STLC60134S  
Data is transmitted on the rising edge of the master clock (CLKM/CLKNIB) and sampled on the low going  
edge of CLKM/CLKNIB.This holdsfor the data streamfrom STLC60134Sand from thedigital processor.  
Data,CLWD setupandholdtimes are5nswithreferenceto thefalling edgeof CLKM/CLKNIB.(notfloating).  
POWER DOWN  
When pin Pdown = ”1”, the chip is set in power down mode. As the Pdown signal is synchronously sam-  
pled, minimum duration is 2 periods of the 35MHz clock. In this mode all analog functional blocks are  
deactivated except: preamplifiers (TX), clock circuits for output clock CLKM. Pdown will not affect the digi-  
tal part of the chip. Anyway, after a Pdown transition, the digital part status, is updated after 3 clock peri-  
ods (worst case)  
down  
The chip is activated when P  
= ”0”.  
In power down mode the following conditions hold:  
- Outputvoltages at TXP/TXN = AGND  
- Preamplifier is on with maximum gain setting (0dB), (digitalgainsettingcoefficientsareoverruled)  
- TheXTAL outputclockonpin CLKMkeepsrunning.  
- All digital setting are retained.  
- Digital output on pins RXDx don’t care (not floating).  
In power-down mode the power consumption is 100mW.  
Following external conditions are added:  
- Clock pin CLW is running.  
- CTRLIN signals can still be allowed.  
- AGND remainsat AVDD/2 (circuit is powered up)  
- Input signal at TXDx inputs are not strobed.  
The Pdown signal controls asynchronouslythe power-down of each analog module:  
- After a few µs the analog channel is functional  
- After about 100ms the analog channel delivers full performance  
RESET FUNCTION  
The reset function is implied when the RESETN pin is at a low voltage input level. In this condition, the  
reset function can be easily used for power up reset conditions.  
Detailed Description  
During reset: (reset is asynchronous,tenths of ns are enough to put the IC in reset)  
All clock outputsare deactivatedand put to logical1” (exceptfor the XTAL andmaster clock CLKM)  
After reset: (4 clock periods after reset transition, as worst case)  
- OSR = 4  
- Allanaloggains(RX, TX)are setto minimumvalue  
- Nominalfilter frequencybands(138kHz,1.104Hz)  
- LNA input = ”11” (max. attenuation)  
- VCO dac disabled  
- Dependingof the LTNT pin value the following configurationis chosen:  
’0’ (ATU-R)  
RX:  
TX:  
LNA -> HC2 -> ADC  
DAC -> SC2 -> TX  
’1’ (ATU-C)  
RX:  
TX:  
LNA -> SC2 -> ADC  
DAC -> HC2 -> TX  
18/22  
STLC60134S  
Digital outputs are placed in don’t care condition (non-floating).  
N.B.  
If a Xtal oscillator is used, the RESET must be released at last 10µs after power-on, to ensure a  
correct duty cycle for the clk35 clock signal.  
ELECTRICAL RATINGS AND CHARACTERISTICS  
Table 27. Absolute Maximum Ratings  
Symbol  
VDD  
Parameter  
Any VDD Supply Voltage, related to substrate  
Voltage at any input pin  
Min  
- 0.5  
-0.5  
-40  
Max  
5
Unit  
V
Vin  
VDD +0.5  
125  
V
Tstg  
Storage Temperature  
°C  
TL  
Lead Temperature (10 second soldering)  
Latch - up current @80°C  
300  
°C  
ILU  
100  
mA  
mA  
mA  
mA  
mA  
IAVDD  
IAVDD  
IDVDD  
IDVDD  
Analog Supply Current @ 3.6V - normal operation  
Analog Supply Current @ 3.6V - power down  
Analog Supply Current @ 3.6V - normal operation  
Analog Supply Current @ 3.6V - power down  
165  
30  
56  
50  
Table 28. Thermal Data  
Symbol  
Parameter  
Thermal and Junction ambient  
Value  
50  
Unit  
Rth j-amb  
°C/W  
Table 29. OperatingConditions  
(Unless specified, the characteristic limits of ’Static Characteristics’ in this document apply over an Top =  
-40 to 80 °C; VDD within the range 3 to 3.6V ref. to substrate.  
Symbol  
AVDD  
DVDD  
Vin /Vout  
Pd  
Parameter  
AVDD Supply Voltage, related to substrate  
DVDD Supply Voltage, related to substrate  
Voltage at any input and output pin  
Power Dissipation  
Min  
3.0  
2.7  
0
Max  
3.6  
3.6  
VDD  
0.6  
80  
Unit  
V
V
V
0.4  
-40  
-40  
W
°C  
°C  
Tamb  
Ambient Temperature  
Tj  
Junction Temperature  
110  
19/22  
STLC60134S  
STATIC CHARACTERISTICS  
Table 30. Digital Inputs  
Schmitt-triggerinputs: TXi, CTRLIN, PDOWN, LTNT, RESETN, TEST  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
High Level Input Voltage  
Hysteresis  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
0.3 DVDD  
VIH  
0.7 DVDD  
1.0  
V
VH  
1.3  
3
V
Cimp  
Input Capacitance  
pF  
Table 31. Digital Outputs  
Hard Driven Outputs: RXi  
Symbol  
VOL  
Parameter  
Test Condition  
Iout = -4mA  
Iout = 4mA  
Min.  
Typ.  
Max.  
Unit  
V
Low Level Output Voltage  
High Level Output Voltage  
Load Capacitance  
0.15 DVDD  
VOH  
0.85 DVDD  
V
Cload  
30  
pF  
Clock Driver Output: CLKM, CLNIB, CLKWD  
Symbol  
VOL  
Parameter  
Low Level Output Voltage  
High Level Output Voltage  
Load Capacitance  
Test Condition  
Iout = -4mA  
Iout = 4mA  
Min.  
0.85 DVDD  
45  
Typ.  
Max.  
Unit  
V
0.15 DVDD  
VOH  
V
Cload  
DC  
30  
55  
pF  
%
Duty Cycle  
20/22  
STLC60134S  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
A
A1  
A2  
B
1.60  
0.063  
0.006  
0.05  
1.35  
0.18  
0.12  
0.15 0.002  
1.40  
0.23  
1.45 0.053 0.055 0.057  
0.28 0.007 0.009 0.011  
C
0.16  
0.20 0.0047 0.0063 0.0079  
D
12.00  
10.00  
7.50  
0.472  
D1  
D3  
e
0.394  
0.295  
0.50  
0.0197  
E
12.00  
10.00  
7.50  
0.472  
0.394  
E1  
E3  
L
0.295  
0.40  
0.60  
0.75 0.0157 0.0236 0.0295  
0.0393  
L1  
K
1.00  
TQFP64  
0°(min.), 7°(max.)  
D
D1  
D3  
A
A2  
A1  
48  
33  
32  
49  
0.10mm  
Seating Plane  
17  
16  
64  
1
C
e
K
TQFP64  
21/22  
STLC60134S  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are  
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products  
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectronics  
Tosca is trademark of STMicroelectronics  
1999 STMicroelectronics and Alcatel Alsthom, Paris – Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -  
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.  
http://www.st.com  
22/22  

相关型号:

STLC60134TR

8000kbps DATA, MODEM, PQFP64, TQFP-64
STMICROELECTR

STLC60135

TOSCA ADSL DMT TRANSCEIVER
STMICROELECTR

STLC60243

DUAL CHANNEL ADSL LINE DRIVER
STMICROELECTR

STLC60454

SPECIALTY TELECOM CIRCUIT, PBGA144, 13 X 13 MM, LBGA-144
STMICROELECTR

STLC60845

SPECIALTY TELECOM CIRCUIT, PBGA292, 27 X 27 MM, PLASTIC, BGA-292
STMICROELECTR

STLC61256

ADSL Central Office (CO) Chipset: STLC61256/55 + STLC60454 + STLC60243
STMICROELECTR

STLC61265

SPECIALTY TELECOM CIRCUIT, PBGA676, 27 X 27 MM, PLASTIC, BGA-676
STMICROELECTR

STLC61266

SPECIALTY TELECOM CIRCUIT, PBGA676, 27 X 27 MM, PLASTIC, BGA-676
STMICROELECTR

STLC7545CFN

MODEM CIRCUIT|ANALOG FRONT END|CMOS|LDCC|44PIN|PLASTIC
ETC

STLC7545CFNTR

38.4kbps DATA, MODEM-SUPPORT CIRCUIT, PQCC44, PLASTIC, LCC-44
STMICROELECTR

STLC7545TQFP4Y

MODEM CIRCUIT|ANALOG FRONT END|CMOS|QFP|44PIN|PLASTIC
ETC

STLC7545TQFP4YTR

38.4kbps DATA, MODEM-SUPPORT CIRCUIT, PQFP44, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-44
STMICROELECTR