STM1403BSOQ6F [STMICROELECTRONICS]

3 V FIPS-140 security supervisor with battery switchover; 3 V FIPS -140安全监督员与电池切换
STM1403BSOQ6F
型号: STM1403BSOQ6F
厂家: ST    ST
描述:

3 V FIPS-140 security supervisor with battery switchover
3 V FIPS -140安全监督员与电池切换

电源电路 电池 电源管理电路 输入元件
文件: 总34页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM1403  
3 V FIPS-140  
security supervisor with battery switchover  
Features  
STM1403 supports FIPS-140 security level 3+  
– Four high-impedance physical tamper  
inputs  
– Over/under operating voltage detector  
– Security alarm (SAL) on tamper detection  
Supervisory functions  
– Automatic battery switchover  
– RST output (open drain)  
– Manual (push-button) reset input (MR)  
– Power-fail comparator (PFI/PFO)  
QFN16, 3 mm x 3 mm (Q)  
Vccsw (V switch output)  
CC  
– Low when switched to V  
CC  
– High when switched to V  
indicator)  
(BATT ON  
BAT  
Battery low voltage detector (power-up)  
Optional V (1.237 V)  
REF  
– (Available for STM1403A only)  
Low battery supply current (2.8 µA, typ)  
Secure low profile 16-pin, 3 x 3 mm, QFN  
package  
Table 1.  
Device  
Device summary  
Standard  
supervisory  
functions(1)  
Physical  
tamper  
inputs  
Over/under  
voltage  
alarms  
VREF  
(1.237 V)  
option  
VOUT status,  
during alarm  
Vccsw status,  
during alarm  
STM1403A  
STM1403B(3)  
STM1403C  
ON  
Normal mode(2)  
High  
Note(4)  
Note(4)  
High-Z  
Ground  
High  
1. Reset output, power-fail comparator, battery low detection (SAL, RST, PFO, and BLD are open drain).  
2. Normal mode: low when VOUT is internally switched to VCC and high when VOUT is internally switched to battery.  
3. Contact local ST sales office for availability.  
4. Pin 9 is the VREF pin for STM1403A. It is the VTPU pin for STM1403B/C.  
August 2008  
Rev 5  
1/35  
www.st.com  
1
Contents  
STM1403  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
VOUT pin modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1.1  
1.1.2  
1.1.3  
STM1403A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
STM1403B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
STM1403C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1  
SAL, security alarm output (open drain) . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
2.1.10  
2.1.11  
2.1.12  
2.1.13  
2.1.14  
TP , TP  
1
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
TP , TP  
2
Vccsw, V switch output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CC  
BLD, V  
low voltage detect output (open drain) . . . . . . . . . . . . . . . . . 12  
BAT  
Active-low RST output (open drain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
MR, manual reset input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PFO, power-fail output (open drain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PFI, power-fail input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
V
V
V
V
V
V
, reference voltage output (1.237, typ) . . . . . . . . . . . . . . . . . . . . . . 12  
REF  
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
TPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
BAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
SS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Reset input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Push-button reset input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Backup battery switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power-fail input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Negative-going VCC transients and undershoot . . . . . . . . . . . . . . . . . . . . 16  
4
Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
Physical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2/35  
STM1403  
Contents  
4.2  
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6
7
8
9
10  
3/35  
List of tables  
STM1403  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
I/O status in battery backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating and AC measurement condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Physical and environmental tamper detection levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm body size, mechanical data . . . 31  
Ordering information scheme (see Figure 30 on page 33 for marking information) . . . . . . 32  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4/35  
STM1403  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QFN16 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Tamper pin (TP or TP ) normally high (NH) external hookup (switch closed) . . . . . . . . . . 9  
1
3
Tamper pin (TP or TP ) normally high (NH) external hookup (switch open). . . . . . . . . . . 10  
1
3
Tamper pin (TP or TP ) normally low (NL) external hookup (switch closed) . . . . . . . . . . 10  
2
4
Tamper pin (TP or TP ) normally low (NL) external hookup (switch open). . . . . . . . . . . . 10  
2
4
Power-fail comparator waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10. Supply voltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 11. -to-V on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12. Supply current vs. temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 13. threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14. Reset comparator propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
V
BAT  
OUT  
V
PFI  
Figure 15. Power-up t vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
rec  
Figure 16. Normalized reset threshold vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 17. PFI to PFO propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 18. RST output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 19. RST response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20. Power-fail comparator response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 21. Power-fail comparator response time (de-assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 22.  
V
to reset propagation delay vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CC  
Figure 23. Maximum transient duration vs. reset threshold overdrive . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 24. AC testing input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 25. MR timing waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 26. STM1403 switchover diagram, condition A (V  
Figure 27. STM1403 switchover diagram, condition B (V  
< V ) . . . . . . . . . . . . . . . . . . . . . . . . . 24  
BAT  
SW  
> V ) . . . . . . . . . . . . . . . . . . . . . . . . . 25  
BAT  
SW  
Figure 28. QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm body size, outline . . . . . . . . . . . 30  
Figure 29. QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm, recommended footprint . . . . . . 31  
Figure 30. Topside marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5/35  
Description  
STM1403  
1
Description  
The STM1403 family of security supervisors are a low power family of intrusion (tamper)  
detection chips targeted at manufacturers of POS terminals and other systems, to enable  
them to meet physical and/or environmental intrusion monitoring requirements as  
mandated by various standards, such as Federal Information Processing Standards (FIPS)  
Pub 140 entitled “Security Requirements for Cryptographic Modules,published by the  
National Institute of Standards and Technology, U.S. Department of Commerce), EMVCo,  
ISO, ZKA, and VISA PED. STM1403 supports target levels 3 and lower.  
The STM1403 includes automatic battery switchover, RST output (open drain), manual  
(push-button) reset input (MR), power-fail comparator (PFI/PFO), physical and/or  
environmental tamper detect/security alarm, and battery low voltage detect features.  
The STM1403A also offers a V  
(1.237 V) as an option on pin 9. On the STM1403B/C,  
REF  
this pin is V  
(internally switched V or V ).  
TPU  
CC BAT  
1.1  
VOUT pin modes  
The STM1403 is available in three versions, corresponding to three modes of the V  
pin  
OUT  
(supply voltage out), when the SAL (security alarm) is asserted (active-low) upon tamper  
detection:  
1.1.1  
1.1.2  
1.1.3  
STM1403A  
V
stays ON (at V or V ) when SAL is driven low (activated).  
CC BAT  
OUT  
STM1403B  
V
is set to High-Z when SAL is driven low (activated).  
OUT  
STM1403C  
V
is driven to ground when SAL is activated (may be used when V  
is connected  
OUT  
OUT  
directly to the V pin of the external SRAM that holds the cryptographic codes).  
CC  
All variants (see Table 1: Device summary) are pin-compatible and available in a security-  
friendly, low profile, 16-pin QFN package.  
6/35  
STM1403  
Description  
Figure 1.  
Logic diagram  
V
REF  
or  
(3)  
V
BLD  
V
CC  
BAT  
(1)  
V
TPU  
(2)  
V
V
OUT  
CCSW  
(3)  
MR  
PFI  
RST  
STM1403  
(3)  
PFO  
SAL  
(3)  
TP (NH)  
1
V
TP  
TP  
TP  
4
SS  
2
3
(NL) (NH) (NL)  
AI09682  
1. VREF only for STM1403A; VTPU for STM1403B/C.  
2. Normal mode: low when VOUT is internally switched to VCC and high when VOUT is internally switched to  
battery.  
3. SAL, RST, PFO, and BLD are open drain.  
Table 2.  
Vccsw(1)  
MR  
Signal names  
VCC switch output  
Manual (push-button) reset input  
Power-fail Input  
PFI  
TP1 - TP4  
VOUT  
Independent physical tamper detect pins 1 through 4  
Supply voltage output  
RST(2)  
PFO(2)  
SAL(2)  
BLD(2)  
Active-low reset output  
Power-fail output  
Security alarm output  
Battery low voltage detect  
1.237 V reference voltage  
(3)  
VREF  
(3)  
VTPU  
Tamper pull-up (VCC or VBAT  
Backup supply voltage  
Supply voltage  
)
VBAT  
VCC  
VSS  
Ground  
1. Normal mode: low when VOUT is internally switched to VCC and high when VOUT is internally switched to  
battery.  
2. SAL, RST, PFO, and BLD are open drain.  
3. VREF only for STM1403A; VTPU for STM1403B/C.  
Note:  
See Section 2: Pin descriptions on page 11 for details.  
7/35  
Description  
STM1403  
Figure 2.  
QFN16 connections  
(1)  
(2)  
V
V
CC  
BLD PFI  
CCSW  
15  
16  
14  
13  
12  
(2)  
1
2
RST  
V
OUT  
V
MR  
(2)  
11  
10  
9
BAT  
(2)  
3
4
SAL  
PFO  
V
(3)  
V
or  
V
SS  
REF  
TPU  
5
6
8
7
TP  
(NH)  
TP  
(NL)  
TP  
(NH)  
TP  
2
(NL)  
3
4
1
AI09683  
Note:  
See Section 2: Pin descriptions on page 11 for details.  
1. Normal mode: low when VOUT is internally switched to VCC and high when VOUT is internally switched to  
battery.  
2. SAL, RST, PFO, and BLD are open drain.  
3. VREF only for STM1403A; VTPU for STM1403B/C  
Figure 3.  
Block diagram  
V
V
CC  
OUT  
(1,2)  
BAT54J  
V
V
COMPARE  
COMPARE  
SO  
(1)  
BAT  
V
V
CCSW  
V
INT  
RST  
t
(3)  
rec  
Generator  
RST  
PFO  
MR  
PFI  
(3)  
V
V
COMPARE  
PFI  
COMPARE @  
POWER-UP  
(3)  
BLD  
V
DET  
(4)  
TPU  
(4)  
1.237V V  
REF  
V
REF  
Generator  
V
COMPARE  
HV  
V
COMPARE  
LV  
TP (NH)  
1
TP (NL)  
2
(3)  
SAL  
TP (NH)  
3
TP (NL)  
4
AI09684  
1. BAT54J (from STMicroelectronics) recommended  
2. Required for battery-reverse charging protection  
3. Open drain  
4. VREF only for STM1403; VTPU for STM1403B/C  
8/35  
STM1403  
Description  
Figure 4.  
Hardware hookup  
(1)  
V
Regulator  
CCSW  
Unregulated  
Voltage  
V
V
V
V
V
OUT  
CC  
IN  
CC  
CC  
V
CC  
LPSRAM  
(2)  
C
0.1μF  
STM1403  
R1  
R2  
(3)  
(3)  
PFI  
MR  
PFO  
To Microprocessor NMI  
To Microprocessor Reset  
RST  
BLD  
Push-Button  
BAT54J  
(4)  
(3)  
V
To Microprocessor  
BAT  
1.0μF  
TP  
1
TP  
TP  
TP  
2
3
4
From Actuator Device  
(e.g., Switches, Wire Mesh)  
(3)  
SAL  
(5)  
V
To ADC  
REF  
or  
To Physical Tamper Pins TP  
V
X
TPU  
AI09690  
1. Normal mode: low when VOUT is internally switched to VCC and high when VOUT is internally switched to  
battery.  
2. Capacitor (C) is typically 10 µF.  
3. Open drain  
4. Diode is required for battery reverse charge protection.  
5. VREF only for STM1403; VTPU for STM1403B/C.  
Figure 5.  
Tamper pin (TP or TP ) normally high (NH) external hookup (switch  
1 3  
closed)  
V
(STM1403A)  
or  
OUT  
V
(STM1403B/C)  
TPU  
Switch Normally Closed;  
Tamper Detection on Open  
TP or TP  
1
3
(1)  
R
AI09698  
1. R typical is 10 MΩ. Resistors must be protected against conductive materials.  
9/35  
Description  
STM1403  
Tamper pin (TP or TP ) normally high (NH) external hookup (switch  
Figure 6.  
1
3
open)  
V
(STM1403A)  
or  
OUT  
V
(STM1403B/C)  
TPU  
(1)  
R
TP or TP  
1
3
Switch Normally Open  
Tamper Detection when Closed  
AI10461  
1. R typical is 10MΩ. Resistors must be protected against conductive materials.  
Figure 7.  
Tamper pin (TP or TP ) normally low (NL) external hookup (switch  
2 4  
closed)  
V
(STM1403A)  
or  
OUT  
V
(STM1403B/C)  
TPU  
(1)  
R
TP or TP  
2
4
Switch Normally Closed;  
Tamper Detection on Open  
AI09699  
1. R typical is 10 MΩ. Resistors must be protected against conductive materials.  
Figure 8.  
Tamper pin (TP or TP ) normally low (NL) external hookup (switch open)  
2 4  
V
(STM1403A)  
or  
OUT  
V
(STM1403B/C)  
TPU  
Switch Normally Open;  
Tamper Detection when Closed  
TP or TP  
2
4
(1)  
R
AI10462  
1. R typical is 10 MΩ. Resistors must be protected against conductive materials.  
10/35  
STM1403  
Pin descriptions  
2
Pin descriptions  
See Figure 1: Logic diagram and Table 2: Signal names for a brief overview of the signals  
connected to this device.  
2.1  
SAL, security alarm output (open drain)  
This signal can be generated when ANY of the following conditions occur:  
V
V
> V , where V = upper voltage trip limit (4.2 V typ); and where V  
;
= V or  
INT  
HV  
HV  
INT CC  
BAT  
V
V
< V , where V = lower voltage trip limit (2.0 V typ); and where V  
= V or  
INT  
LV  
LV  
INT CC  
; or  
BAT  
When any of the physical tamper inputs, TP to TP , change from their normal states to  
1
4
the opposite (i.e., intrusion of a physical enclosure).  
The default state of the SAL output during initial power-up is undetermined.  
The alarm function will operate either with V on or when the part is internally switched  
Note:  
1
2
CC  
from V to V  
.
CC  
BAT  
2.1.1  
TP , TP  
1 3  
Physical tamper detect pin set normally to high (NH). They are connected externally through  
a closed switch or a high-impedance resistor to V (in the case of STM1403A) or V (in  
OUT  
TPU  
the case of STM1403B/C. A tamper condition will be detected when the input pin is pulled  
low (see Figure 5 and Figure 6). If not used, tie the pin to V  
(for STM1403A) or V  
(for  
OUT  
TPU  
STM1403B/C).  
2.1.2  
2.1.3  
TP , TP  
2 4  
Physical tamper detect pin set normally to low (NL). They are connected externally through  
a high-impedance resistor or a closed switch to V . A tamper condition will be detected  
when the input pin is pulled high (see Figure 7 and Figure 8). If not used, tie the pin to V  
SS  
.
SS  
Vccsw, V switch output  
CC  
This output is low when V  
(see Section 2.1.10: V  
on page 13) is internally switched  
OUT  
OUT  
to V ; in this mode it may be used to turn on an external p-channel MOSFET switch which  
CC  
can source an external device directly from V for currents greater than 80 mA (bypassing  
CC  
the STM1403).  
This pin goes high when V  
ON” indicator.  
is internally switched to V  
and may be used as a “BATT  
OUT  
BAT  
If a security alarm (SAL) is issued on tamper, then the state of the Vccsw pin is as follows:  
11/35  
Pin descriptions  
1. STM1403A (V  
STM1403  
remains ON when SAL is active-low): Vccsw pin will continue to  
OUT  
operate in normal mode;  
2. STM1403B (V is taken to High-Z when SAL is active-low): Vccsw pin will be set to  
OUT  
high when this occurs; and  
3. STM1403C (V  
is driven to ground when SAL is active-low): Vccsw pin will be set to  
OUT  
high when this occurs.  
2.1.4  
BLD, V  
low voltage detect output (open drain)  
BAT  
This is an internally loaded test of the battery, activated only during a power-up sequence to  
insure that the battery is good either prior to or after encapsulation of the module. There are  
three customer options for V  
:
DET  
2.3 V (2.5 V – external diode drop of about 0.2 V) for a 3 V lithium cell  
2.5 V (2.7 V – 0.2 V) for a 3 V lithium cell or  
3.2 V (3.4 V – 0.2 V) for a 3.68 V lithium “AA” battery  
This output pin will go active-low when it detects a voltage on the V  
pin below V . BLD  
DET  
BAT  
will be released when V drops below V  
.
CC  
RST  
2.1.5  
2.1.6  
Active-low RST output (open drain)  
Goes low and stays low when V drops below V  
(reset threshold selected by the  
RST  
CC  
customer), or when MR is logic low. It remains low for t (200ms, typical) AFTER V rises  
rec  
CC  
above V  
and MR goes from low to high.  
RST  
MR, manual reset input  
A logic low on MR asserts the RST output. The RST output remains asserted as long as MR  
is low and for t after MR returns to high. This active low input has an internal 40 kΩ  
rec  
(typical) pull-up resistor. It can be driven from a TTL or CMOS logic line or shorted to ground  
with a switch. Leave it open if unused.  
2.1.7  
PFO, power-fail output (open drain)  
When PFI is less than V  
(power-fail input threshold voltage) or V falls below V  
CC SW  
PFI  
(battery switchover threshold ~ 2.4 V), PFO goes low, otherwise, PFO remains high. Leave  
this pin open if unused.  
2.1.8  
2.1.9  
PFI, power-fail input  
When PFI is less than V , or when V falls below V (see PFO, above), PFO goes  
SW  
PFI  
CC  
active-low. If this function is unused, connect this pin to V  
.
SS  
V
, reference voltage output (1.237, typ)  
REF  
This is valid only when V is between 2.4 V and 3.6 V. When V falls below 2.4 V (V ),  
CC  
CC  
SW  
V
is pulled to ground with an internal 100 kΩ resistor. This is an optional feature  
REF  
available on the STM1403A. On the STM1403B/C, this pin is V  
(internally switched V  
TPU  
CC  
or V ). If unused, this pin should float.  
BAT  
12/35  
STM1403  
Pin descriptions  
2.1.10  
V
OUT  
This is the supply voltage output. When V rises above V (battery backup switchover  
CC  
SO  
voltage), V  
is supplied from V . In this condition, V  
may be connected externally to  
OUT  
CC  
OUT  
V
through a p-channel MOSFET switch. When V falls below the lower value of V  
CC  
CC SW  
(~2.4 V), or V , V  
is supplied from V . It is recommended that the V  
pin be  
BAT OUT  
BAT  
OUT  
connected externally to a capacitor that will retain a charge for a period of time, in case an  
intruder forces V or V to ground. The rectifying diode connected from the positive  
CC  
BAT  
terminal of the battery to the V  
capacitor.  
pin of the STM1403 will prevent discharge of the  
BAT  
Three variations of parts will be offered with the following options:  
1. STM1403A: V remains ON when SAL is active-low; Vccsw pin will continue to  
OUT  
operate in normal mode (see Section 2.1.3: Vccsw, V switch output on page 11);  
CC  
2. STM1403B: V  
is taken to High-Z when SAL is active-low; Vccsw pin will be set to  
OUT  
high when this occurs; and  
3. STM1403C: V  
is driven to ground when SAL is active-low; Vccsw pin will be set to  
OUT  
high when this occurs.  
2.1.11  
V
TPU  
For STM1403B and STM1403C, this pin provides pull-up voltage for the physical tamper  
pins (TP1-4). This pin is not to be used as voltage supply source for any other purpose.  
Note:  
V
is the internally switched supply voltage from either the V pin or the V  
pin.  
TPU  
CC  
BAT  
2.1.12  
V
CC  
This is the supply voltage (2.2 V to 3.6 V).  
2.1.13  
2.1.14  
V
BAT  
This is the secondary (backup battery) supply voltage. The pin is connected to the positive  
terminal of the battery with a rectifying diode like the BAT54J from STMicroelectronics for  
reverse charge protection. Voltage at this pin, after diode rectification, will be approximately  
0.2 V less than the battery voltage, and will depend on the type of battery used as well as  
the I  
being drawn. (A capacitor of at least 1.0 µF connected between the V  
pin and  
BAT  
BAT  
V
is required.) If no battery is used, connect the V  
pin to the V pin.  
SS  
BAT CC  
V
SS  
Ground, V , is the reference for the power supply. It must be connected to system ground.  
SS  
13/35  
Operation  
STM1403  
3
Operation  
3.1  
Reset input  
The STM1403 security supervisor asserts a reset signal to the MCU whenever V goes  
CC  
below the reset threshold (V  
), or when the push-button reset input (MR) is taken low.  
RST  
RST is guaranteed to be a logic low for 0V < V < V  
if V  
is greater than 1V. Without  
CC  
RST  
BAT  
a backup battery, RST is guaranteed valid down to V =1V.  
CC  
During power-up, once V exceeds the reset threshold an internal timer keeps RST low for  
CC  
the reset time-out period, t . After this interval RST returns high.  
rec  
If V drops below the reset threshold, RST goes low. Each time RST is asserted, it stays  
CC  
low for at least the reset time-out period (t ). Any time V goes below the reset threshold  
rec  
CC  
the internal timer clears. The reset timer starts when V returns above the reset threshold.  
CC  
3.2  
Push-button reset input  
A logic low on MR asserts reset. Reset remains asserted while MR is low, and for t (see  
rec  
Figure 25 on page 24) after it returns high. The MR input has an internal 40 kΩ pull-up  
resistor, allowing it to be left open if not used. This input can be driven with TTL/CMOS-logic  
levels or with open-drain/collector outputs. Connect a normally open momentary switch from  
MR to ground to create a manual reset function; external debounce circuitry is not required.  
If MR is driven from long cables or the device is used in a noisy environment, connect a  
0.1 µF capacitor from MR to V to provide additional noise immunity. MR may float, or be  
SS  
tied to V when not used.  
CC  
3.3  
Backup battery switchover  
In the event of a power failure, it may be necessary to preserve the contents of external  
SRAM through V  
. With a backup battery installed with voltage V , the devices  
OUT  
BAT  
automatically switch the SRAM to the backup supply when V falls.  
CC  
Note:  
If backup battery is not used, connect both V  
and V  
to V  
.
CC  
BAT  
OUT  
This family of security supervisors does not always connect V  
to V  
when V  
is  
BAT  
BAT  
OUT  
greater than V . V  
connects to V  
(through a 100 Ω switch) when V is below V  
CC BAT  
OUT CC SW  
(~2.4 V) or V  
(whichever is lower). This is done to allow the backup battery (e.g., a 3.6 V  
BAT  
battery) to have a higher voltage than V  
.
CC  
Assuming that V  
> 2.0 V, switchover at V ensures that battery backup mode is entered  
SO  
BAT  
before V  
gets too close to the 2.0 V minimum required to reliably retain data in most  
OUT  
external SRAMs. When V recovers, hysteresis is used to avoid oscillation around the V  
CC  
SO  
point. V  
is connected to V through a 3 Ω PMOS power switch.  
OUT  
CC  
Note:  
The backup battery may be removed while V is valid, assuming V  
is adequately  
BAT  
CC  
decoupled (0.1 µF typ), without danger of triggering a reset.  
14/35  
STM1403  
Operation  
Table 3.  
Pin  
I/O status in battery backup  
Status  
VOUT  
VCC  
Connected to VBAT through internal switch  
Disconnected from VOUT  
Disabled  
PFI  
PFO  
MR  
Logic low  
Disabled  
RST  
VBAT  
Vccsw  
VREF  
BLD  
VTPU  
Logic low  
Connected to VOUT  
Logic high  
Pulled to VSS below 2.4 V (VSW  
)
Logic high  
Connected to VBAT through an internal switch  
3.4  
Power-fail input/output  
The power-fail input (PFI) is compared to an internal reference voltage (independent from  
the V comparator). If PFI is less than the power-fail threshold (V ), the power-fail  
RST  
PFI  
output (PFO) will go low. This function is intended for use as an undervoltage detector to  
signal a failing power supply. Typically PFI is connected through an external voltage divider  
(see Figure 4 on page 9) to either the unregulated DC input (if it is available) or the  
regulated output of the V regulator. The voltage divider can be set up such that the  
CC  
voltage at PFI falls below V  
several milliseconds before the regulated V input to the  
PFI  
CC  
STM1403 or the microprocessor drops below the minimum operating voltage.  
During battery backup, the power-fail comparator is turned off and PFO goes (or remains)  
low (see Figure 9 on page 16). This occurs after V drops below V  
(~2.4V). When  
CC  
SW  
power returns, the power-fail comparator is enabled and PFO follows PFI. If the comparator  
is unused, PFI should be connected to V and PFO left unconnected. PFO may be  
SS  
connected to MR so that a low voltage on PFI will generate a reset output.  
3.5  
Applications information  
These supervisor circuits are not short-circuit protected. Shorting V  
to ground -  
OUT  
excluding power-up transients such as charging a decoupling capacitor - destroys the  
device. Decouple both V and V  
pins to ground by placing 0.1 µF capacitors as close to  
CC  
BAT  
the device as possible.  
15/35  
Operation  
STM1403  
Figure 9.  
Power-fail comparator waveform  
V
V
CC  
RST  
V
(2.4V)  
SW  
trec  
PFO  
RST  
PFO follows PFI  
PFO follows PFI  
AI08861a  
3.6  
Negative-going VCC transients and undershoot  
The STM1403 devices are relatively immune to negative-going V transients (glitches).  
CC  
Figure 23 on page 22 was generated using a negative pulse applied to V , starting at V  
CC  
RST  
+ 0.3 V and ending below the reset threshold by the magnitude indicated (comparator  
overdrive). The graph indicates the maximum pulse width a negative V transient can have  
CC  
without causing a reset pulse. As the magnitude of the transient increases (further below the  
threshold), the maximum allowable pulse width decreases. Any combination of duration and  
overdrive which lies under the curve will NOT generate a reset signal. Typically, a V  
CC  
transient that goes 100 mV below the reset threshold and lasts 40 µs or less will not cause a  
reset pulse. A 0.1 µF bypass capacitor mounted as close as possible to the V pin  
CC  
provides additional transient immunity (see Figure 10).  
In addition to transients that are caused by normal SRAM operation, power cycling can  
generate negative voltage spikes on V that drive it to values below V by as much as  
CC  
SS  
one volt. These negative spikes can cause data corruption in the SRAM while in battery  
backup mode. To protect from these voltage spikes, STMicroelectronics recommends  
connecting a schottky diode from V to V (cathode connected to V , anode to V ).  
CC  
SS  
CC  
SS  
Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is  
recommended for surface mount.  
Figure 10. Supply voltage protection  
V
CC  
V
CC  
0.1μF  
DEVICE  
V
SS  
AI02169  
16/35  
STM1403  
Tamper detection  
4
Tamper detection  
4.1  
Physical  
There are four (4) high-impedance physical tamper detect input pins, 2 normally set to high  
(NH) and 2 normally set to low (NL). Each input is designed with a glitch immunity (see  
Table 7 on page 28). These inputs can be connected externally to several types of actuator  
devices (e.g., switches, wire mesh). A tamper on any one of the four inputs that causes its  
state to change will trigger the security alarm (SAL) and drive it to active-low. Once the  
tamper condition no longer exists, the SAL will return to its normal high state.  
TP and TP are set normally to high (NH). They are connected externally through a closed  
1
3
switch or a high-impedance resistor to V  
(in the case of STM1403A) or V  
(in the case  
OUT  
TPU  
of STM1403B/C), A tamper condition will be detected when the input pin is pulled low (see  
Figure 5 and Figure 6). If not used, tie the pin to V or V  
.
TPU  
OUT  
TP and TP are set normally to low (NL). They are connected externally through a high-  
2
4
impedance resistor or a closed switch to V . A tamper condition will be detected when the  
SS  
input pin is pulled high (see Figure 7 and Figure 8). If not used, tie the pin to V  
.
SS  
4.2  
Supply voltage  
The internally switched supply voltage, V  
(either V input or V  
input) is continuously  
BAT  
INT  
CC  
monitored. If V  
should exceed the over voltage trip point, V (set at 4.2V, typical), or  
INT  
HV  
should go below the under voltage trip point, V (set at 2.0 V, typical). SAL will be driven  
LV  
active-low. Once the tamper condition no longer exists, the SAL pin will return to its normal  
high state.  
When no tamper condition exists, SAL is normally high (see Section 2: Pin descriptions on  
page 11).  
When a tamper is detected, the SAL is activated (driven low), independent of the part type.  
V
can be driven to one of three states, depending on which variant of STM1403 is being  
OUT  
used (see Table 1: Device summary on page 1):  
ON  
High-Z or  
Ground (V  
)
SS  
Note:  
The STM1403 must be initially powered above V  
to enable the tamper detection alarms.  
RST  
For example, if the battery is on while V = 0V, no alarm condition can be detected until  
CC  
V
rises above V  
(and t expires). From this point on, alarms can be detected either  
CC  
RST rec  
on battery or V . This is done to avoid false alarms when the device goes from no power to  
CC  
its operational state.  
17/35  
Typical operating characteristics  
STM1403  
5
Typical operating characteristics  
Note:  
Typical values are at T = 25°C.  
A
Figure 11. V  
-to-V  
on-resistance vs. temperature  
BAT  
OUT  
220  
200  
180  
160  
140  
120  
100  
V
= 0V  
CC  
V
= 2V  
BAT  
V
= 3V  
BAT  
V
= 3.3V  
BAT  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09691  
Figure 12. Supply current vs. temperature (no load)  
30  
25  
20  
15  
10  
5
2.5V  
3.3V  
3.6V  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE [°C]  
AI09692  
18/35  
STM1403  
Typical operating characteristics  
Figure 13. V  
threshold vs. temperature  
PFI  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
V
= 3.0V  
30  
BAT  
–50  
–30  
–10  
10  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09693  
Figure 14. Reset comparator propagation delay vs. temperature  
24  
22  
V
= 3.0V  
BAT  
20  
18  
16  
14  
12  
10  
100mV OVERDRIVE  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09143  
Figure 15. Power-up t vs. temperature  
rec  
215  
210  
205  
200  
195  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09144  
19/35  
Typical operating characteristics  
Figure 16. Normalized reset threshold vs. temperature  
STM1403  
1.002  
1.000  
0.998  
0.996  
0.994  
V
= 3.0V  
40  
BAT  
–60  
–40  
–20  
0
20  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09145  
Figure 17. PFI to PFO propagation delay vs. temperature  
9
8
7
6
5
4
3
2
1
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09148  
Figure 18. RST output voltage vs. supply voltage  
3.5  
3.0  
2.5  
V
CC  
2.0  
1.5  
1.0  
0.5  
0
V
RST  
500 ms/div  
AI09149b  
20/35  
STM1403  
Typical operating characteristics  
Figure 19. RST response time (assertion)  
4.0  
3.0  
2.0  
1.0  
0.0  
V
CC  
V
RST  
2 µs/div  
AI09151b  
Figure 20. Power-fail comparator response time (assertion)  
1.45  
4.0  
1.40  
3.0  
1.35  
1.30  
1.25  
PFO  
2.0  
PFI  
1.0  
1.20  
1.15  
0.0  
2µs/div  
AI09153b  
Figure 21. Power-fail comparator response time (de-assertion)  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
4.0  
3.5  
3.0  
2.5  
PFO  
2.0  
1.5  
PFI  
1.0  
0.5  
0.0  
2 µs/div  
AI09154  
21/35  
Typical operating characteristics  
Figure 22. V to reset propagation delay vs. temperature  
STM1403  
CC  
60  
50  
40  
30  
20  
10  
10V/ms  
1V/ms  
0.25V/ms  
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09155  
Figure 23. Maximum transient duration vs. reset threshold overdrive  
250  
200  
150  
100  
50  
0
1
10  
100  
1000  
10000  
AI09156  
RESET COMPARATOR OVERDRIVE, V  
– V [mV]  
CC  
RST  
22/35  
STM1403  
Maximum ratings  
6
Maximum ratings  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the Operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE  
Program and other relevant quality documents.  
Table 4.  
Symbol  
TSTG  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Storage temperature (VCC off, VBAT off)  
Lead solder temperature for 10 seconds  
Input or output voltage  
–55 to 150  
260  
°C  
°C  
V
(1)  
TSLD  
VIO  
–0.3 to VCC +0.3  
–0.3 to 4.5  
20  
VCC/VBAT  
IO  
Supply voltage  
V
Output current  
mA  
mW  
PD  
Power dissipation  
320  
Note:  
Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to  
exceed 180°C for between 90 to 150 seconds).  
23/35  
DC and AC parameters  
STM1403  
7
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the Measurement Conditions summarized in  
Table 5: Operating and AC measurement condition. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 5.  
Operating and AC measurement condition  
Parameter  
STM1403  
Unit  
V
CC/VBAT supply voltage  
2.2 to 3.6  
–40 to 85  
5  
V
°C  
ns  
V
Ambient operating temperature (TA)  
Input rise and fall times  
Input pulse voltages  
0.2 to 0.8VCC  
0.3 to 0.7VCC  
Input and output timing ref. voltages  
V
Figure 24. AC testing input/output waveforms  
0.8V  
CC  
0.7V  
CC  
CC  
0.3V  
0.2V  
CC  
AI02568  
Figure 25. MR timing waveform  
MR  
tMLRL  
RST  
trec  
tMLMH  
AI09694  
Figure 26. STM1403 switchover diagram, condition A (V  
< V  
)
)
BAT  
SW  
V
V
= 3.3V  
OUT  
CC  
V
RST  
V
= 2.4V  
SW  
V
BAT  
V
– 35mV  
AI10463  
BAT  
V
– 75mV  
BAT  
Figure 27. STM1403 switchover diagram, condition B (V  
> V  
SW  
BAT  
V
V
= 3.3V  
OUT  
CC  
V
BAT  
V
= 2.4V  
SW  
V
+ 40mV  
AI10464  
SW  
24/35  
STM1403  
DC and AC parameters  
Table 6.  
Sym  
DC and AC characteristics  
Alter-  
native  
Description  
Test condition(1)  
Min  
Typ  
Max  
Unit  
VCC  
,
Operating voltage  
TA = –40 to +85°C  
2.2  
3.6  
60  
45  
V
(2)  
VBAT  
VCC supply current  
(STM1403A)  
45  
30  
µA  
µA  
Typ @ 3.3 V, 25°C  
VCC supply current  
(STM1403B,C)  
ICC  
Excluding IOUT  
VCC supply current in  
battery backup mode  
25  
35  
µA  
(VBAT = 2.3 V, VCC = 2.0  
V, MR = VCC  
)
Excluding IOUT  
(VBAT = 3.6 V)  
VBAT supply current in  
battery backup mode  
(3)  
IBAT  
2.8  
4.0  
µA  
V
IOUT1 = 5 mA(4)  
VCC  
0.03  
VCC –  
0.015  
(VCC > VSW  
IOUT1 = 80 mA  
(VCC > VSW  
)
VCC  
0.3  
VCC  
0.15  
VOUT1  
VOUT voltage (active)  
V
)
IOUT1 = 250 µA,  
VCC  
0.0015  
VCC –  
0.0006  
V
(4)  
VCC > VSW  
I
OUT2 = 250 µA,  
VBAT = 2.2 V  
VBAT  
0.1  
VBAT  
0.04  
V
VOUT voltage (battery  
backup)  
VOUT2  
IOUT2 = 1 mA,  
VBAT = 2.2 V  
VBAT  
0.16  
V
ISOURCE = 500 µA  
(VCC > VSW  
Internal switched supply  
voltage (active)  
VCC  
0.3  
VTPU1  
V
)
ISOURCE = 100 µA  
(VBAT = 2.2 V)  
Internal switched supply  
voltage (battery backup)  
VBAT  
0.10  
VTPU2  
V
Input leakage current (MR)  
Input leakage current (PFI)  
MR = 0 V; VCC = 3 V  
0 V = VIN = VCC  
20  
75  
2
350  
+25  
µA  
nA  
–25  
–1  
ILI  
Input leakage current  
(TP1-TP4)  
0 V = VIN = VCC  
+1  
+1  
µA  
(5)  
ILO  
VIH  
VIL  
Output leakage current  
Input high voltage (MR)  
Input low voltage (MR)  
0 V = VIN = VCC  
–1  
µA  
V
0.7VCC  
VRST (max) < VCC < 3.6V  
0.3VCC  
0.3  
V
VCC = VRST (max),  
ISINK = 3.2mA  
Output low voltage (PFO,  
RST, Vccsw, SAL, BLD)  
VOL  
V
V
V
IOL = 40µA; VCC = 1.0V;  
VBAT = VCC  
TA = 0°C to 85°C  
OL = 200µA;  
CC = 1.2V; VBAT = VCC  
;
0.3  
0.3  
VOL  
Output low voltage (RST)  
I
V
25/35  
DC and AC parameters  
STM1403  
Table 6.  
Sym  
DC and AC characteristics (continued)  
Alter-  
Description  
Test condition(1)  
Min  
Typ  
Max  
Unit  
native  
VOHB  
VOH battery backup (Vccsw)  
ISOURCE = 100 µA,  
0.8VBAT  
V
V
Pull-up supply voltage  
(open drain)  
RST, SAL, BLD, PFO  
3.6  
Power-fail comparator  
VPFI PFI input threshold  
PFI falling (VCC < 3.6 V)  
PFI Rising (VCC < 3.6 V)  
1.212  
1.237  
10  
1.262  
20  
V
PFI hysteresis  
mV  
PFI to PFO propagation  
delay  
tPFD  
2
µs  
Battery switchover  
VBAT > VSW  
Power-  
VSW  
VBAT  
VSW  
VBAT  
2.4  
V
V
down  
V
BAT < VSW  
BAT > VSW  
Battery backup  
switchover voltage (6)(7)  
V
V
VSO  
Power-up  
VBAT < VSW  
V
VSW  
V
Hysteresis  
40  
mV  
Battery low voltage detect  
M
N
O
2.25  
2.45  
3.14  
2.30  
2.50  
3.20  
2.34  
2.55  
3.26  
V
V
V
On  
power-up  
only  
VDET  
Battery detect threshold  
Voltage reference (option for STM1403A)(8)  
Voltage reference  
(see Section 2.1.9: VREF  
reference voltage output  
(1.237, typ) on page 12)  
0°C to 85°C  
1.212  
1.200  
1.237  
1.237  
1.262  
1.274  
V
V
,
VREF  
–40° to 0°C  
0°C to 85°C  
–40° to 0°C  
15  
10  
10  
25  
15  
µA  
µA  
IREF+  
Source current  
IREF–  
Vn  
Sink current  
13  
µA  
Output voltage noise  
f = 100 Hz to 100 kH  
10-100  
µVrms  
26/35  
STM1403  
DC and AC parameters  
Table 6.  
Sym  
DC and AC characteristics (continued)  
Alter-  
native  
Description  
Test condition(1)  
Min  
Typ  
Max  
Unit  
Reset thresholds  
V
CC falling  
VCC rising  
CC falling  
CC rising  
CC falling  
VCC rising  
3.00  
3.00  
2.85  
2.85  
2.55  
2.55  
140  
3.075  
3.085  
2.925  
2.935  
2.625  
2.635  
200  
3.15  
3.17  
3.00  
3.02  
2.70  
2.72  
280  
V
V
T
S
R
V
V
(9)  
VRST  
Reset threshold  
V
V
V
V
V
trec  
RST pulse width  
ms  
Push-button reset input  
tMLMH tMR MR pulse width  
tMLRL tMRD MR to RST output delay  
100  
ns  
ns  
60  
500  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = VRST (max) to 3.6 V; and VBAT = 2.8 V (except where  
noted); typical values are for 3.3 V and 25°C.  
2. VCC supply current, logic input leakage, push-button reset functionality, PFI functionality, state of RST tested at  
VBAT = 3.6 V, and VCC = 3.6 V. The state of RST and PFO is tested at VCC = VCC (min). VBAT is voltage measured at the  
pin.  
3. Tested at VBAT = 3.6 V, VCC = 3.5 V and 0 V.  
4. Guaranteed by design.  
5. The leakage current measured on the RST, SAL, PFO, and BLD pins are tested with the output not asserted (output high  
impedance).  
6. When VBAT > VCC > VSW, VOUT remains connected to VCC until VCC drops below VSW  
.
7. When VSW > VCC > VBAT, VOUT remains connected to VCC until VCC drops below the battery voltage (VBAT) – 75 mV.  
8. Maximum external capacitive load on VREF pin cannot exceed 1nF.  
9. The reset threshold tolerance is wider for VCC rising than for VCC falling due to the 10 mV (typ) hysteresis, which prevents  
internal oscillation.  
27/35  
DC and AC parameters  
STM1403  
Table 7.  
Sym  
Physical and environmental tamper detection levels  
Test  
Parameter  
Min  
Typ  
Max  
Unit  
conditions(1)  
VHV  
VLV  
Overvoltage trip level  
Undervoltage trip level  
4.0  
1.9  
4.2  
2.0  
4.4  
2.1  
V
V
SAL propagation delay time  
VHV + 200 mV or  
VLV – 200 mV  
25  
50  
µs  
(after over/under voltage  
detection)  
Trip point for NH physical  
tamper input pins (TP1 or TP3)  
VOUT  
VOUT  
VHTP  
V
V
1.3 V(2)  
0.3 V(2)  
Trip point for NL physical  
tamper input pins (TP2 or TP4)  
VLTP  
0.3  
1.0  
VHTP  
VOUT/VTPU  
=
SAL propagation delay time(3)  
;
30  
15  
50  
µs  
µs  
(after physical tamper pin  
detection)  
VLTP = VSS  
VDD = 3.6  
Physical tamper input (TPX)  
glitch immunity  
1. Valid for ambient operating temperature: TA = –40 to 85°C; VCC = VLV to VHV (except where noted).  
2. In the case of STM1403A, physical tamper input pins (TPX) are referenced to VOUT (pin 12). In the case of  
STM1403B or C, TPX are referenced to VTPU pin (pin 9).  
3. VCC = VRST (max) to 3.6 V  
28/35  
STM1403  
Package mechanical data  
8
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
Figure 28. QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm body size, outline  
D
E
A3  
A
A1  
ddd C  
e
b
L
K
1
2
3
Ch  
E2  
K
D2  
QFN16-A  
Note:  
Drawing is not to scale.  
29/35  
Package mechanical data  
STM1403  
Table 8.  
Symb  
QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm body size,  
mechanical data  
mm  
Min  
inches  
Min  
Typ  
Max  
Typ  
Max  
A
A1  
A3  
b
0.90  
0.02  
0.20  
0.25  
3.00  
1.70  
3.00  
1.70  
0.50  
0.20  
0.40  
0.80  
0.00  
1.00  
0.05  
0.035  
0.001  
0.008  
0.010  
0.118  
0.067  
0.118  
0.067  
0.020  
0.008  
0.016  
0.032  
0.000  
0.039  
0.002  
0.18  
2.90  
1.55  
2.90  
1.55  
0.30  
3.10  
1.80  
3.10  
1.80  
0.007  
0.114  
0.061  
0.114  
0.061  
0.012  
0.122  
0.071  
0.122  
0.071  
D
D2  
E
E2  
e
K
L
0.30  
0.08  
0.33  
16  
0.50  
0.012  
0.003  
0.013  
16  
0.020  
ddd  
Ch  
N
Figure 29. QFN16 – 16-lead, quad, flat package, no lead, 3 x 3 mm, recommended  
footprint  
1.60  
3.55  
2.0  
0.28  
AI09126  
Note:  
Substrate pad should be tied to V  
.
SS  
30/35  
STM1403  
Part numbering  
9
Part numbering  
Table 9.  
Ordering information scheme (see Figure 30 on page 32 for marking information)  
STM1403 F  
Example:  
A
T
M
Q
6
Device type  
STM1403: physical, voltage tamper detect  
VOUT status (SAL = active-low)  
A: VOUT = ON; Vccsw = normal mode  
B
(1): VOUT = High-Z; Vccsw = high  
C: VOUT = ground; Vccsw = high  
Reset threshold voltage  
T: VRST = 3.00 V to 3.15 V  
S: VRST = 2.85 V to 3.00 V  
R: VRST = 2.55 V to 2.70 V  
Battery low voltage detect threshold (VDET  
)
M: VDET = 2.3 V (typ)  
N: VDET = 2.5 V (typ)  
O: VDET = 3.2 V (typ)  
Package  
Q = QFN16 (3 mm x 3 mm)  
Temperature range  
6 = –40 to 85°C  
Shipping method  
F = ECOPACK® package, tape & reel  
1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the ST sales office  
nearest you.  
31/35  
Part numbering  
Figure 30. Topside marking information  
STM1403  
03  
XXX(1)  
YWW(2)  
AI11878  
1. Options codes:  
X = A, B, or C (for VOUT  
)
X = T, S, or R (for reset threshold)  
X = M, N, or O (for battery low voltage detect threshold)  
2. Traceability codes  
Y = Year  
WW = Work Week  
32/35  
STM1403  
Revision history  
10  
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
11-Oct-2004  
1
First edition  
Corrected footprint dimensions; update characteristics (Figure 1, 2,  
3, 4, 5, 6, 7, 8, 26, 27, 29; Table 1, 2, 3, 6, 7)  
26-Nov-2004  
1.1  
22-Dec-2004  
03-Feb-2005  
25-Feb-2005  
06-May-2005  
1.2  
1.3  
1.4  
1.5  
Update characteristics ( Figure 4; Table 6, 7, 9)  
Update characteristics (Figure 4; Table 6, 7)  
Update temperature trip limits (Table 9)  
Update characteristics (Figure 3, 4, 28; Table 6, 7)  
Removed STM1404 references (Figure 1, 2, 3, 4, 5, 6, 7, 8, 26, 27;  
Table 1, 2, 5, 6, 7, 9)  
05-Aug-2005  
18-Oct-2005  
2
3
Update hardware hookup, characteristics, Lead-free text; add  
marking information (Figure 4, 30; Table 6, 7, 9)  
07-Feb-2007  
20-Aug-2008  
4
5
Update cover page, Table 7, and part numbering (Table 9).  
Minor formatting changes, updated Table 1 and 7.  
33/35  
STM1403  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
35/35  

相关型号:

STM1403BTM-Q1F

STM1403BTM-Q1F
STMICROELECTR

STM1403BTM-Q6F

3V FIPS-140 Security Supervisor with Battery Switchover
STMICROELECTR

STM1403BTMQ6F

3 V FIPS-140 security supervisor with battery switchover
STMICROELECTR

STM1403BTN-Q6F

3V FIPS-140 Security Supervisor with Battery Switchover
STMICROELECTR

STM1403BTNQ6F

3 V FIPS-140 security supervisor with battery switchover
STMICROELECTR

STM1403BTO-Q1F

STM1403BTO-Q1F
STMICROELECTR

STM1403BTO-Q6F

3V FIPS-140 Security Supervisor with Battery Switchover
STMICROELECTR

STM1403BTOQ6F

3 V FIPS-140 security supervisor with battery switchover
STMICROELECTR

STM1403CRM-Q1F

STM1403CRM-Q1F
STMICROELECTR

STM1403CRM-Q6F

3V FIPS-140 Security Supervisor with Battery Switchover
STMICROELECTR

STM1403CRMQ6F

3 V FIPS-140 security supervisor with battery switchover
STMICROELECTR

STM1403CRN-Q1F

STM1403CRN-Q1F
STMICROELECTR