STM32F030CC [STMICROELECTRONICS]

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation;
STM32F030CC
型号: STM32F030CC
厂家: ST    ST
描述:

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation

外围集成电路
文件: 总93页 (文件大小:1496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F030x4 STM32F030x6  
STM32F030x8 STM32F030xC  
Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers,  
ADC, communication interfaces, 2.4-3.6 V operation  
Datasheet - production data  
Features  
®
®
Core: Arm 32-bit Cortex -M0 CPU, frequency  
up to 48 MHz  
Memories  
LQFP64 10 × 10 mm  
LQFP48 7 × 7 mm  
LQFP32 7 × 7 mm  
TSSOP20 6.4 × 4.4 mm  
– 16 to 256 Kbytes of Flash memory  
– 4 to 32 Kbytes of SRAM with HW parity  
Communication interfaces  
CRC calculation unit  
2
– Up to two I C interfaces  
Reset and power management  
Fast Mode Plus (1 Mbit/s) support on  
– Digital & I/Os supply: V = 2.4 V to 3.6 V  
DD  
one or two I/Fs, with 20 mA current sink  
– Analog supply: V  
= V to 3.6 V  
DD  
DDA  
SMBus/PMBus support (on single I/F)  
– Power-on/Power down reset (POR/PDR)  
– Low power modes: Sleep, Stop, Standby  
– Up to six USARTs supporting master  
synchronous SPI and modem control; one  
with auto baud rate detection  
Clock management  
– Up to two SPIs (18 Mbit/s) with 4 to 16  
programmable bit frames  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
Serial wire debug (SWD)  
®
All packages ECOPACK 2  
Up to 55 fast I/Os  
Table 1. Device summary  
– All mappable on external interrupt vectors  
Reference  
Part number  
– Up to 55 I/Os with 5V tolerant capability  
5-channel DMA controller  
STM32F030x4 STM32F030F4  
One 12-bit, 1.0 µs ADC (up to 16 channels)  
– Conversion range: 0 to 3.6 V  
STM32F030x6 STM32F030C6, STM32F030K6  
STM32F030x8 STM32F030C8, STM32F030R8  
STM32F030xC STM32F030CC, STM32F030RC  
– Separate analog supply: 2.4 V to 3.6 V  
Calendar RTC with alarm and periodic wakeup  
from Stop/Standby  
11 timers  
– One 16-bit advanced-control timer for  
six-channel PWM output  
– Up to seven 16-bit timers, with up to four  
IC/OC, OCN, usable for IR control  
decoding  
– Independent and system watchdog timers  
– SysTick timer  
January 2019  
DS9773 Rev 4  
1/93  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F030x4/x6/x8/xC  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
3.5  
Arm® Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . . 12  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 17  
3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REFINT  
3.11 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11.1  
3.11.2  
3.11.3  
3.11.4  
3.11.5  
3.11.6  
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 20  
Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.14 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 22  
2/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
Contents  
3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4
5
6
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 45  
Embedded reset and power control block characteristics . . . . . . . . . . . 45  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DS9773 Rev 4  
3/93  
4
Contents  
STM32F030x4/x6/x8/xC  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.1  
7.2  
7.3  
7.4  
7.5  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
7.5.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F030x4/x6/x8/xC family device features and peripheral counts . . . . . . . . . . . . . . . 10  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
STM32F030x4/x6/x8/xC I C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 8.  
Table 9.  
STM32F0x0 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM32F030x4/x6/x8/xC SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32F030x4/6/8/C pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 34  
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 35  
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 37  
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 37  
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 37  
STM32F030x4/x6/x8/xC peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . 39  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Typical and maximum current consumption from V supply at V = 3.6 V . . . . . . . . . . 47  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . . 48  
DDA  
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 49  
Typical current consumption in Run mode, code with data processing  
running from Flash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DS9773 Rev 4  
5/93  
6
List of tables  
STM32F030x4/x6/x8/xC  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
TSSOP20 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock tree of STM32F030x4/x6/x8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock tree of STM32F030xC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 25  
LQFP64 64-pin package pinout (top view), for STM32F030RC devices . . . . . . . . . . . . . . 25  
LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices . . . . . . . . . . . . 26  
LQFP48 48-pin package pinout (top view), for STM32F030CC devices . . . . . . . . . . . . . . 26  
LQFP32 32-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 10. STM32F030x4/x6/x8/xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 19. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 21. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 22. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 23. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 24. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 25. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 26. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 27. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 28. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 29. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 30. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 31. LQFP48 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 32. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 33. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 34. LQFP32 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 35. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 36. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 37. TSSOP20 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 38. TSSOP20 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 39. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DS9773 Rev 4  
7/93  
7
Introduction  
STM32F030x4/x6/x8/xC  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F030x4/x6/x8/xC microcontrollers.  
This document should be read in conjunction with the STM32F0x0xx reference manual  
(RM0360). The reference manual is available from the STMicroelectronics website  
www.st.com.  
®(a)  
®
®
For information on the Arm  
Cortex -M0 core, please refer to the Cortex -M0 Technical  
Reference Manual, available from the www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
8/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Description  
2
Description  
®
The STM32F030x4/x6/x8/xC microcontrollers incorporate the high-performance Arm  
®
Cortex -M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded  
memories (up to 256 Kbytes of Flash memory and up to 32 Kbytes of SRAM), and an  
extensive range of enhanced peripherals and I/Os. All devices offer standard  
2
communication interfaces (up to two I Cs, up to two SPIs and up to six USARTs), one 12-bit  
ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer.  
The STM32F030x4/x6/x8/xC microcontrollers operate in the -40 to +85 °C temperature  
range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows  
the design of low-power applications.  
The STM32F030x4/x6/x8/xC microcontrollers include devices in four different packages  
ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of  
peripherals are included. The description below provides an overview of the complete range  
of STM32F030x4/x6/x8/xC peripherals proposed.  
These features make the STM32F030x4/x6/x8/xC microcontrollers suitable for a wide range  
of applications such as application control and user interfaces, handheld equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.  
DS9773 Rev 4  
9/93  
24  
 
Description  
STM32F030x4/x6/x8/xC  
Table 2. STM32F030x4/x6/x8/xC family device features and peripheral counts  
STM32  
F030F4  
STM32  
F030K6  
STM32  
F030C6  
STM32  
F030C8  
STM32  
F030CC  
STM32  
F030R8  
STM32  
F030RC  
Peripheral  
Flash (Kbytes)  
SRAM (Kbytes)  
16  
32  
4
32  
64  
8
256  
32  
64  
8
256  
32  
Advanced  
control  
1 (16-bit)  
Timers  
General  
purpose  
4 (16-bit)(1)  
5 (16-bit)  
Basic  
-
1 (16-bit)(2) 2 (16-bit) 1 (16-bit)(2) 2 (16-bit)  
SPI  
1(3)  
1(4)  
1(5)  
2
2
Comm.  
I2C  
interfaces  
USART  
2(6)  
6
2(6)  
6
1
1
1
1
1
1
1
12-bit ADC  
(number of channels)  
(10 ext.  
+2 int.)  
(16 ext.  
+2 int.)  
(9 ext.  
+2 int.)  
(10 ext.  
+2 int.)  
(10 ext.  
+2 int.)  
(10 ext.  
+2 int.)  
(16 ext.  
+2 int.)  
GPIOs  
15  
26  
39  
39  
37  
55  
51  
Max. CPU frequency  
Operating voltage  
48 MHz  
2.4 to 3.6 V  
Ambient operating temperature: -40°C to 85°C  
Junction temperature: -40°C to 105°C  
Operating temperature  
Packages  
TSSOP20  
LQFP32  
LQFP48  
LQFP64  
1. TIM15 is not present.  
2. TIM7 is not present.  
3. SPI2 is not present.  
4. I2C2 is not present.  
5. USART2 to USART6 are not present.  
6. USART3 to USART6 are not present  
10/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Description  
Figure 1. Block diagram  
POWER  
SWCLK  
Serial Wire  
Debug  
VOLT.REG  
3.3 V to 1.8 V  
VDD = 2.4 to 3.6 V  
VSS  
SWDIO  
VDD18  
as AF  
Flash GPL  
16/32/64/256 KB  
32-bit  
@ VDD  
CORTEX-M0 CPU  
fMAX = 48 MHz  
SUPPLY  
SUPERVISION  
POR  
Reset  
Int  
NRST  
VDDA  
VSSA  
VDD  
SRAM  
4/8/32 KB  
POR/PDR  
NVIC  
@ VDDA  
HSI14  
RC 14 MHz  
HSI  
PLLCLK  
LSI  
RC 8 MHz  
PLL  
@ VDDA  
@ VDD  
GP DMA  
5 channels  
XTAL OSC  
4-32 MHz  
RC 40 kHz  
OSC_IN  
OSC_OUT  
Ind. Window WDG  
Power  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD2  
GPIO port A  
GPIO port B  
GPIO port C  
GPIO port D  
GPIO port F  
Controller  
RESET & CLOCK  
CONTROL  
OSC32_IN  
OSC32_OUT  
XTAL32 kHz  
System and peripheral  
clocks  
TAMPER-RTC  
(ALARM OUT)  
RTC  
PF[1:0]  
PF[7:4]  
RTC interface  
CRC  
4 channels  
3 compl. channels  
BRK, ETR input as AF  
PWM TIMER 1  
AHB  
APB  
TIMER 3  
TIMER 14  
TIMER 15  
TIMER 16  
TIMER 17  
4 ch., ETR as AF  
1 channel as AF  
EXT. IT WKUP  
55 AF  
2 channels  
1 compl, BRK as AF  
1 channel  
1 compl, BRK as AF  
Window WDG  
DBGMCU  
1 channel  
1 compl, BRK as AF  
MOSI, MISO,  
SCK, NSS,  
as AF  
IR_OUT as AF  
SPI1  
SPI2  
RX, TX,CTS, RTS,  
CK, as AF  
USART1  
USART2  
USART3  
USART4  
USART5  
USART6  
MOSI, MISO,  
SCK, NSS,  
as AF  
RX, TX,CTS, RTS,  
CK, as AF  
RX, TX,CTS, RTS,  
CK, as AF  
RX, TX,CTS, RTS,  
CK, as AF  
SYSCFG IF  
RX, TX,CTS, RTS,  
CK, as AF  
Temp.  
sensor  
RX, TX,CTS, RTS,  
CK, as AF  
16x  
AD input  
12-bit ADC IF  
SCL, SDA, SMBA  
TIMER 6  
TIMER 7  
I2C1  
I2C2  
(20 mA FM+), as AF  
VDDA  
VSSA  
SCL, SDA, as AF  
@ VDDA  
Power domain of analog blocks :  
VDD  
VDDA  
MSv32137V3  
1. TIMER6, TIMER15, SPI, USART2 and I2C2 are available on STM32F030x8/C devices only.  
2. USART3, USART4, USART5, USART6 and TIMER7 are available on STM32F030xC devices only.  
DS9773 Rev 4  
11/93  
24  
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
3
Functional overview  
3.1  
Arm® Cortex®-M0 core with embedded Flash and SRAM  
®
®
The Arm Cortex -M0 processor is the latest generation of Arm processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The Arm Cortex -M0 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an Arm core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F0xx family has an embedded Arm core and is therefore compatible with all Arm  
tools and software.  
Figure 3 shows the general block diagram of the device family.  
3.2  
Memories  
The device has the following features:  
4 to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0  
wait states and featuring embedded parity checking with exception generation for fail-  
critical applications.  
The non-volatile memory is divided into two arrays:  
16 to 256 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
®
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and boot  
in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bit are used to select one of the three boot  
options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART on pins PA14/PA15 or PA9/PA10.  
12/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided  
DD  
externally through VDD pins.  
V
= from V to 3.6 V: external analog power supply for ADC, Reset blocks, RCs  
DDA  
DD  
and PLL. The V  
voltage level must be always greater or equal to the V voltage  
DD  
DDA  
level and must be provided first.  
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.  
3.5.2  
Power supply supervisors  
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
V
, without the need for an external reset circuit.  
POR/PDR  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
should arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
supply voltages, however the V  
power  
DD  
DDA  
DDA  
DDA  
equal to V  
.
DD  
3.5.3  
Voltage regulator  
The regulator has two operating modes and it is always enabled after reset.  
Main (MR) is used in normal operating mode (Run).  
Low power (LPR) can be used in Stop mode where the power demand is reduced.  
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high  
impedance and the kernel circuitry is powered down, inducing zero consumption (but the  
contents of the registers and SRAM are lost).  
DS9773 Rev 4  
13/93  
24  
 
 
 
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
3.5.4  
Low-power modes  
The STM32F030x4/x6/x8/xC microcontrollers support three low-power modes to achieve  
the best compromise between low power consumption, short startup time and available  
wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled. The voltage regulator can also be put either in  
normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines and RTC.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the RTC  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pins, or an RTC event occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
14/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
Figure 2. Clock tree of STM32F030x4/x6/x8  
Flash memory  
programming  
interface  
FLITFCLK  
I2C1SW  
HSI  
HSI  
HSI  
8 MHz  
HSI RC  
I2C1  
SYSCLK  
/2  
AHB, core, memory, DMA,  
Cortex FCLK free-run clock  
HCLK  
/8  
SW SYSCLK  
Cortex  
system timer  
PLLSRC  
PLLMUL  
HSI  
PLLCLK  
HSE  
PLL  
x2,x3,..  
...x16  
PCLK  
APB  
/1,/2,…  
…/512  
/1,/2,/4,  
/8,/16  
peripherals  
PREDIV  
HPRE  
PPRE  
PPRE  
x1, x2  
/1,/2,..  
../16  
CSS  
TIM1,3,6(2)  
14,15(2),16,17  
OSC_OUT  
OSC_IN  
HSE  
4-32 MHz  
HSE OSC  
CKMODE  
/2, /4  
ADC  
(14 MHz max)  
LSE  
14 MHz  
HSI14 RC  
/32  
LSE  
USART1SW  
RTCCLK  
OSC32_IN  
PCLK  
32.768 kHz  
LSE OSC  
SYSCLK  
HSI  
OSC32_OUT  
USART1  
RTCSEL  
LSE  
LSI  
40 kHz  
LSI RC  
RTC  
PLLNODIV  
IWDG  
(1)  
MCOPRE  
/1(1),/2  
PLLCLK  
Main clock  
output  
HSI  
HSI14  
/1,/2,/4,..  
../128  
MCO  
HSE  
Legend  
black  
white  
SYSCLK  
LSE(1)  
LSI(1)  
clock tree element  
clock tree control element  
clock line  
MCO  
control line  
MSv32138V3  
1. Applies to STM32F030x4/x6 devices.  
2. Applies to STM32F030x8 devices.  
DS9773 Rev 4  
15/93  
24  
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
Figure 3. Clock tree of STM32F030xC  
Flash memory  
FLITFCLK  
programming  
interface  
I2C1SW  
HSI  
HSI  
HSI  
8 MHz  
HSI RC  
I2C1  
SYSCLK  
AHB, core, memory, DMA,  
Cortex FCLK free-run clock  
HCLK  
/8  
PREDIV  
SW SYSCLK  
Cortex  
system timer  
PLLSRC  
PLLMUL  
HSI  
PLLCLK  
HSE  
PLL  
x2,x3,..  
...x16  
PCLK  
APB  
/1,/2,…  
…/512  
/1,/2,/4,  
/8,/16  
/1,/2,..  
../16  
peripherals  
HPRE  
PPRE  
PPRE  
x1, x2  
CSS  
TIM1,3,6,7  
OSC_OUT  
14,15,16,17  
CKMODE  
HSE  
4-32 MHz  
HSE OSC  
OSC_IN  
/2, /4  
ADC  
(14 MHz max)  
LSE  
14 MHz  
HSI14 RC  
/32  
LSE  
USART1SW  
USART1  
RTCCLK  
OSC32_IN  
PCLK  
32.768 kHz  
LSE OSC  
SYSCLK  
HSI  
OSC32_OUT  
RTCSEL  
LSE  
LSI  
40 kHz  
LSI RC  
RTC  
PLLNODIV  
IWDG  
MCOPRE  
PLLCLK  
/1,/2  
Main clock  
output  
HSI  
HSE  
LSI  
HSI14  
SYSCLK  
LSE  
/1,/2,/4,..  
../128  
MCO  
Legend  
black  
clock tree element  
clock tree control element  
clock line  
white  
MCO  
control line  
MSv47988V1  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
The I/O configuration can be locked if needed following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
16/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
3.8  
Direct memory access controller (DMA)  
The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory  
and memory-to-peripheral transfers.  
The DMA supports circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except  
TIM14) and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to  
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 32 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 55  
GPIOs can be connected to the 16 external interrupt lines.  
DS9773 Rev 4  
17/93  
24  
 
 
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
3.10  
Analog to digital converter (ADC)  
The 12-bit analog to digital converter has up to 16 external and two internal (temperature  
sensor, voltage reference measurement) channels and performs conversions in single-shot  
or scan modes. In scan mode, automatic conversion is performed on a selected group of  
analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 3. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C ( 5 °C),  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
VDDA= 3.3 V ( 10 mV)  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC. V  
is internally connected to the ADC_IN17 input channel. The precise voltage  
REFINT  
of V  
is individually measured for each part by ST during production test and stored in  
REFINT  
the system memory area. It is accessible in read-only mode.  
Table 4. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT_CAL  
temperature of 30 °C ( 5 °C), 0x1FFF F7BA - 0x1FFF F7BB  
DDA= 3.3 V ( 10 mV)  
V
18/93  
DS9773 Rev 4  
 
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
3.11  
Timers and watchdogs  
The STM32F030x4/x6/x8/xC devices include up to five general-purpose timers, two basic  
timers and one advanced control timer.  
Table 5 compares the features of the different timers.  
Table 5. Timer feature comparison  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler DMA request Capture/compare Complementary  
Timer  
factor  
generation  
channels  
outputs  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
Advanced  
control  
TIM1  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
4
3
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
TIM3  
TIM14  
Yes  
No  
4
1
2
1
0
-
-
Any integer  
between 1  
and 65536  
Up  
Up  
Up  
Up  
General  
purpose  
Any integer  
between 1  
and 65536  
TIM15(1)  
Yes  
Yes  
Yes  
1
1
-
Any integer  
between 1  
and 65536  
TIM16,  
TIM17  
Any integer  
between 1  
and 65536  
TIM6,(1)  
TIM7(2)  
Basic  
1. Available on STM32F030x8 and STM32F030xC devices only.  
2. Available on STM32F030xC devices only  
3.11.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The four independent channels can  
be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
DS9773 Rev 4  
19/93  
24  
 
 
 
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
3.11.2  
General-purpose timers (TIM3, TIM14..17)  
There are four or five synchronizable general-purpose timers embedded in the  
STM32F030x4/x6/x8/xC devices (see Table 5 for differences). Each general-purpose timer  
can be used to generate PWM outputs, or as simple time base.  
TIM3  
STM32F030x4/x6/x8/xC devices feature one synchronizable 4-channel general-purpose  
timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It  
features four independent channels each for input capture/output compare, PWM or  
one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the  
largest packages.  
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the  
Timer Link feature for synchronization or event chaining.  
TIM3 has an independent DMA request generation.  
This timer is capable of handling quadrature (incremental) encoder signals and the digital  
outputs from 1 to 3 hall-effect sensors.  
The counter can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM15, TIM16 and TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single  
channel for input capture/output compare, PWM or one-pulse mode output.  
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate  
withTIM1 via the Timer Link feature for synchronization or event chaining.  
TIM15 can be synchronized with TIM16 and TIM17.  
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation.  
Their counters can be frozen in debug mode.  
3.11.3  
3.11.4  
Basic timers TIM6 and TIM7  
These timers can be used as a generic 16-bit time base.  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with  
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
operates independently from the main clock, it can operate in Stop and Standby modes. It  
20/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
can be used either as a watchdog to reset the device when a problem occurs, or as a free  
running timer for application timeout management. It is hardware or software configurable  
through the option bytes. The counter can be frozen in debug mode.  
3.11.5  
3.11.6  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source (HCLK or HCLK/8)  
3.12  
Real-time clock (RTC)  
The RTC is an independent BCD timer/counter. Its main features are the following:  
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 day of the month.  
Programmable alarm with wake up from Stop and Standby mode capability.  
Periodic wakeup unit with programmable resolution and period (on STM32F030xC  
only).  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize the RTC with a master clock.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Tow anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stop and Standby modes on tamper event detection.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 40 kHz)  
The high-speed external clock divided by 32  
DS9773 Rev 4  
21/93  
24  
 
 
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
3.13  
Inter-integrated circuit interfaces (I2C)  
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both  
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also  
supports Fast Mode Plus (up to 1 Mbit/s), with 20 mA output drive.  
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two  
addresses, one with configurable mask). They also include programmable analog and  
digital noise filters.  
Table 6. Comparison of I2C analog and digital filters  
-
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
2. Stable length  
Benefits  
Available in Stop mode  
Variations depending on  
temperature, voltage, process  
Drawbacks  
-
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
verifications and ALERT protocol management  
The I2C interfaces can be served by the DMA controller.  
Refer to Table 7 for the differences between I2C1 and I2C2.  
2
(1)  
Table 7. STM32F030x4/x6/x8/xC I C implementation  
I2C features  
I2C1  
I2C2(2)  
7-bit addressing mode  
10-bit addressing mode  
X
X
X
X
X
X
X
-
X
X
X
X
-
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus (up to 1 Mbit/s), with 20mA output drive I/Os  
Independent clock  
-
SMBus  
-
Wakeup from STOP  
-
1. X = supported.  
2. Only available on STM32F030x8/C devices.  
3.14  
Universal synchronous/asynchronous receiver/transmitter  
(USART)  
The device embeds up to six universal synchronous/asynchronous receivers/transmitters  
that communicate at speeds of up to 6 Mbit/s.  
22/93  
DS9773 Rev 4  
 
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Functional overview  
Table 8 gives an overview of features as implemented on the available USART interfaces.  
All USART interfaces can be served by the DMA controller.  
(1)  
Table 8. STM32F0x0 USART implementation  
STM32F030x4  
STM32F030x6  
STM32F030x8  
STM32F030xC  
USART modes/  
features  
USART1  
USART1  
USART1 USART2 USART2 USART4 USART5 USART6  
USART3  
Hardware flow control  
for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
-
Continuous  
communication using  
DMA  
X
X
X
X
Multiprocessor  
communication  
Synchronous mode  
Smartcard mode  
X
-
X
-
X
-
X
-
X
-
X
-
-
-
Single-wire Half-duplex  
communication  
X
X
X
X
X
X
X
IrDA SIR ENDEC block  
LIN mode  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Dual clock domain and  
wakeup from Stop mode  
-
-
-
-
-
-
-
Receiver timeout  
interrupt  
X
-
X
-
-
-
X
-
-
-
-
-
-
-
-
-
Modbus communication  
Auto baud rate detection  
(supported modes)  
2
X
2
X
-
2
X
-
-
Driver Enable  
X
X
X
USART data length  
1. X = supported.  
8 and 9 bits  
7, 8 and 9 bits  
3.15  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-  
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
SPI1 and SPI2 are identical and implement the set of features shown in the following table.  
DS9773 Rev 4  
23/93  
24  
 
 
 
Functional overview  
STM32F030x4/x6/x8/xC  
(1)  
Table 9. STM32F030x4/x6/x8/xC SPI implementation  
SPI features  
Hardware CRC calculation  
SPI1  
SPI2(2)  
X
X
X
X
X
X
X
X
Rx/Tx FIFO  
NSS pulse mode  
TI mode  
1. X = supported.  
2. Not available on STM32F030x4/6.  
3.16  
Serial wire debug port (SW-DP)  
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to  
the MCU.  
24/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Pinouts and pin descriptions  
4
Pinouts and pin descriptions  
Figure 4. LQFP64 64-pin package pinout (top view), for STM32F030x4/6/8 devices  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
PF7  
PF6  
VDD  
PC13  
PC14-OSC32_IN  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
8
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
PB15  
PB14  
PB13  
PB12  
PC15-OSC32_OUT  
PF0-OSC_IN  
PF1-OSC_OUT  
NRST  
PC0  
PC1  
PC2  
PC3  
VSSA  
VDDA  
PA0  
PA1  
PA2  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
IO pins replaced by supply pairs for STM32F030RC devices.  
MSv36496V2  
Figure 5. LQFP64 64-pin package pinout (top view), for STM32F030RC devices  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD  
VSS  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VDD  
PC13  
PC14-OSC32_IN  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
8
PC15-OSC32_OUT  
PF0-OSC_IN  
PF1-OSC_OUT  
NRST  
PC0  
PC1  
PC2  
PC3  
VSSA  
VDDA  
PA0  
PA1  
PA2  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
PB15  
PB14  
PB13  
PB12  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Additional supply pins required for STM32F030RC devices.  
MSv36483V2  
DS9773 Rev 4  
25/93  
33  
 
 
 
 
Pinouts and pin descriptions  
STM32F030x4/x6/x8/xC  
Figure 6. LQFP48 48-pin package pinout (top view), for STM32F030x4/6/8 devices  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
PC13  
PC14-OSC32_IN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PF7  
PF6  
PA13  
PA12  
PA11  
PA10  
PA9  
PC15-OSC32_OUT  
PF0-OSC_IN  
PF1-OSC_OUT  
NRST  
VSSA  
LQFP48  
PA8  
PB15  
PB14  
PB13  
PB12  
VDDA  
PA0  
PA1  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
IO pins replaced by supply pairs for STM32F030CC devices.  
MSv36497V2  
Figure 7. LQFP48 48-pin package pinout (top view), for STM32F030CC devices  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
PC13  
PC14-OSC32_IN  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VDD  
VSS  
PA13  
PA12  
PA11  
PA10  
PA9  
PC15-OSC32_OUT  
PF0-OSC_IN  
PF1-OSC_OUT  
NRST  
VSSA  
LQFP48  
PA8  
PB15  
PB14  
PB13  
PB12  
VDDA  
PA0  
PA1  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
Additional supply pins required for STM32F030CC devices.  
MSv36484V2  
26/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Pinouts and pin descriptions  
Figure 8. LQFP32 32-pin package pinout (top view)  
32 31 30 29 28 27 26 25  
24  
23  
22  
1
2
3
4
5
6
7
8
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
VDD  
PF0-OSC_IN  
PF1-OSC_OUT  
NRST  
VDDA  
PA0  
PA1  
PA2  
21  
20  
19  
18  
17  
LQFP32  
PA8  
VDD  
9 10 11 12 13 14 15 16  
MS32144V1  
Figure 9. TSSOP20 20-pin package pinout (top view)  
BOOT0  
20  
19  
18  
1
2
3
4
PA14  
PA13  
PA10  
PF0-OSC_IN  
PF1-OSC_OUT  
17  
16  
15  
14  
13  
12  
11  
PA 9  
VDD  
VSS  
PB1  
PA7  
NRST  
VDDA  
PA0  
5
6
PA1  
PA2  
7
8
9
10  
PA6  
PA3  
PA4  
PA5  
MSv36473V1  
DS9773 Rev 4  
27/93  
33  
 
 
Pinouts and pin descriptions  
STM32F030x4/x6/x8/xC  
Table 10. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
FTf  
TTa  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
3.3 V tolerant I/O directly connected to ADC  
Standard 3.3 V I/O  
I/O structure  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset.  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 11. STM32F030x4/6/8/C pin definitions  
Pin functions  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
1
2
1
-
-
-
VDD  
S
-
-
Complementary power supply  
RTC_TAMP1,  
RTC_TS,  
(1)  
2
-
PC13  
I/O TC  
-
RTC_OUT,  
WKUP2  
PC14-OSC32_IN  
(PC14)  
(1)  
(1)  
3
4
5
6
7
3
4
5
6
7
-
-
-
I/O TC  
I/O TC  
I/O FT  
I/O FT  
I/O RST  
-
OSC32_IN  
OSC32_OUT  
OSC_IN  
PC15-OSC32_OUT  
(PC15)  
-
-
PF0-OSC_IN  
(PF0)  
2
3
4
2
3
4
-
-
-
I2C1_SDA(5)  
I2C1_SCL(5)  
PF1-OSC_OUT  
(PF1)  
OSC_OUT  
Device reset input / internal reset output  
(active low)  
NRST  
28/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Pinouts and pin descriptions  
Pin functions  
Table 11. STM32F030x4/6/8/C pin definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
EVENTOUT,  
USART6_TX(5)  
8
-
-
-
PC0  
I/O TTa  
-
ADC_IN10  
EVENTOUT,  
USART6_RX(5)  
9
-
-
-
-
-
-
-
-
-
PC1  
PC2  
PC3  
I/O TTa  
I/O TTa  
I/O TTa  
-
-
-
ADC_IN11  
ADC_IN12  
ADC_IN13  
SPI2_MISO(5)  
EVENTOUT  
,
10  
11  
SPI2_MOSI(5)  
EVENTOUT  
,
12  
13  
8
9
-
-
VSSA  
VDDA  
S
S
-
-
-
-
Analog ground  
5
5
Analog power supply  
USART1_CTS(2)  
,
USART2_CTS(3)(5)  
USART4_TX(5)  
ADC_IN0,  
RTC_TAMP2,  
WKUP1  
14  
15  
10  
11  
6
7
6
7
PA0  
PA1  
I/O TTa  
I/O TTa  
I/O TTa  
-
-
,
USART1_RTS(2)  
,
USART2_RTS(3)(5)  
EVENTOUT,  
,
ADC_IN1  
USART4_RX(5)  
USART1_TX(2)  
,
16  
17  
12  
13  
8
9
8
9
PA2  
PA3  
-
-
USART2_TX(3)(5)  
TIM15_CH1(3)(5)  
,
ADC_IN2, WKUP4(5)  
USART1_RX(2)  
,
I/O TTa  
I/O FT  
USART2_RX(3)(5)  
TIM15_CH2(3)(5)  
,
ADC_IN3  
-
18(4)  
18(5)  
19(4)  
19(5)  
-
-
-
-
-
-
-
-
-
-
-
-
PF4  
VSS  
PF5  
VDD  
EVENTOUT  
EVENTOUT  
(4)  
(5)  
(4)  
(5)  
S
-
Ground  
I/O FT  
-
-
-
Complementary power supply  
SPI1_NSS,  
USART1_CK(2)  
USART2_CK(3)(5)  
TIM14_CH1,  
20  
21  
14  
15  
10 10  
11 11  
PA4  
PA5  
I/O TTa  
I/O TTa  
-
-
,
ADC_IN4  
ADC_IN5  
USART6_TX(5)  
SPI1_SCK,  
USART6_RX(5)  
DS9773 Rev 4  
29/93  
33  
Pinouts and pin descriptions  
STM32F030x4/x6/x8/xC  
Table 11. STM32F030x4/6/8/C pin definitions (continued)  
Pin functions  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
SPI1_MISO,  
TIM3_CH1,  
TIM1_BKIN,  
TIM16_CH1,  
EVENTOUT  
USART3_CTS(5)  
22  
23  
16  
17  
12 12  
PA6  
PA7  
I/O TTa  
-
-
ADC_IN6  
SPI1_MOSI,  
TIM3_CH2,  
TIM14_CH1,  
TIM1_CH1N,  
TIM17_CH1,  
EVENTOUT  
13 13  
I/O TTa  
ADC_IN7  
EVENTOUT,  
24  
25  
-
-
-
-
-
-
PC4  
PC5  
I/O TTa  
I/O TTa  
-
-
ADC_IN14  
USART3_TX(5)  
USART3_RX(5)  
ADC_IN15, WKUP5(5)  
TIM3_CH3,  
TIM1_CH2N,  
EVENTOUT,  
USART3_CK(5)  
26  
18  
14  
-
PB0  
I/O TTa  
-
ADC_IN8  
TIM3_CH4,  
TIM14_CH1,  
27  
28  
29  
19  
20  
21  
15 14  
PB1  
PB2  
I/O TTa  
I/O FT  
I/O FT  
-
ADC_IN9  
TIM1_CH3N,  
USART3_RTS(5)  
(6)  
-
-
-
-
-
-
-
SPI2_SCK(5)  
I2C1_SCL(2)  
I2C2_SCL(3)(5)  
USART3_TX(5)  
,
,
PB10  
-
-
,
I2C1_SDA(2)  
,
I2C2_SDA(3)(5)  
EVENTOUT,  
,
30  
22  
-
-
-
PB11  
I/O FT  
-
USART3_RX(5)  
31  
32  
23  
24  
16  
VSS  
VDD  
S
S
-
-
-
-
Ground  
Digital power supply  
17 16  
SPI1_NSS(2)  
,
SPI2_NSS(3)(5)  
TIM1_BKIN,  
,
33  
25  
-
-
PB12  
I/O FT  
-
-
EVENTOUT,  
USART3_CK(5)  
30/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
Pinouts and pin descriptions  
Pin functions  
Table 11. STM32F030x4/6/8/C pin definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
SPI1_SCK(2)  
SPI2_SCK(3)(5)  
I2C2_SCL(5)  
TIM1_CH1N,  
USART3_CTS(5)  
,
,
34  
35  
36  
26  
27  
28  
-
-
-
-
-
-
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
-
-
-
,
-
SPI1_MISO(2)  
SPI2_MISO(3)(5)  
I2C2_SDA(5)  
TIM1_CH2N,  
TIM15_CH1(3)(5)  
USART3_RTS(5)  
,
,
,
-
,
SPI1_MOSI(2)  
,
SPI2_MOSI(3)(5)  
TIM1_CH3N,  
,
RTC_REFIN,  
WKUP7(5)  
TIM15_CH1N(3)(5)  
TIM15_CH2(3)(5)  
,
37  
38  
39  
40  
-
-
-
-
-
-
-
-
-
-
-
-
PC6  
PC7  
PC8  
PC9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
-
-
-
-
USART1_CK,  
TIM1_CH1,  
EVENTOUT,  
MCO  
41  
42  
43  
44  
45  
29  
30  
31  
32  
33  
18  
-
PA8  
PA9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
-
USART1_TX,  
TIM1_CH2,  
19 17  
20 18  
TIM15_BKIN(3)(5)  
I2C1_SCL(2)(5)  
USART1_RX,  
TIM1_CH3,  
PA10  
PA11  
PA12  
TIM17_BKIN  
I2C1_SDA(2)(5)  
USART1_CTS,  
TIM1_CH4,  
21  
22  
-
-
EVENTOUT,  
I2C2_SCL(5)  
USART1_RTS,  
TIM1_ETR,  
EVENTOUT,  
I2C2_SDA(5)  
DS9773 Rev 4  
31/93  
33  
Pinouts and pin descriptions  
STM32F030x4/x6/x8/xC  
Table 11. STM32F030x4/6/8/C pin definitions (continued)  
Pin functions  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
PA13  
(SWDIO)  
IR_OUT,  
SWDIO  
(7)  
46  
34  
23 19  
I/O FT  
I/O FT  
-
-
I2C1_SCL(2)  
I2C2_SCL(3)  
,
(4)  
(5)  
(4)  
(5)  
47(4) 35(4)  
47(5) 35(5)  
48(4) 36(4)  
48(5) 36(5)  
-
-
-
-
-
-
-
-
PF6  
VSS  
PF7  
VDD  
S
-
Ground  
I2C1_SDA(2)  
I2C2_SDA(3)  
,
I/O FT  
-
S
-
Complementary power supply  
USART1_TX(2)  
,
USART2_TX(3)(5)  
SWCLK  
PA14  
(SWCLK)  
(7)  
49  
50  
37  
38  
24 20  
I/O FT  
I/O FT  
,
-
-
SPI1_NSS,  
USART1_RX(2)  
,
25  
-
PA15  
-
USART2_RX(3)(5)  
,
USART4_RTS(5)  
EVENTOUT  
,
USART3_TX(5)  
USART4_TX(5)  
,
51  
52  
-
-
-
-
-
-
PC10  
PC11  
I/O FT  
I/O FT  
-
-
-
-
USART3_RX(5)  
USART4_RX(5)  
,
USART3_CK(5)  
USART4_CK(5)  
,
53  
54  
55  
-
-
-
-
-
-
-
PC12  
PD2  
PB3  
I/O FT  
I/O FT  
I/O FT  
-
-
-
,
-
-
-
USART5_TX(5)  
TIM3_ETR,  
USART3_RTS(5)  
USART5_RX(5)  
,
SPI1_SCK,  
EVENTOUT,  
USART5_TX(5)  
39  
26  
SPI1_MISO,  
TIM3_CH1,  
EVENTOUT,  
56  
57  
40  
41  
27  
28  
-
-
PB4  
PB5  
I/O FT  
-
-
-
TIM17_BKIN(5)  
,
USART5_RX(5)  
SPI1_MOSI,  
I2C1_SMBA,  
TIM16_BKIN,  
TIM3_CH2,  
I/O FT  
WKUP6(5)  
USART5_CK_RTS(5)  
32/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
Pinouts and pin descriptions  
Pin functions  
Table 11. STM32F030x4/6/8/C pin definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
I2C1_SCL,  
USART1_TX,  
TIM16_CH1N  
58  
59  
42  
43  
29  
30  
-
-
PB6  
PB7  
I/O FTf  
I/O FTf  
-
-
-
-
I2C1_SDA,  
USART1_RX,  
TIM17_CH1N,  
USART4_CTS(5)  
60  
61  
44  
45  
31  
-
1
-
BOOT0  
PB8  
I
B
-
Boot memory selection  
I2C1_SCL,  
TIM16_CH1  
(6)  
I/O FTf  
-
-
I2C1_SDA,  
IR_OUT,  
62  
46  
-
-
PB9  
I/O FTf  
-
SPI2_NSS(5)  
,
TIM17_CH1,  
EVENTOUT  
63  
64  
47  
48  
32 15  
16  
VSS  
VDD  
S
S
-
-
-
-
Ground  
Digital power supply  
1
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
2. This feature is available on STM32F030x6 and STM32F030x4 devices only.  
3. This feature is available on STM32F030x8 devices only.  
4. For STM32F030x4/6/8 devices only.  
5. For STM32F030xC devices only.  
6. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the  
package, they are not forced to a defined level by hardware).  
7. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin  
and internal pull-down on SWCLK pin are activated.  
DS9773 Rev 4  
33/93  
33  
Table 12. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
USART1_CTS(2)  
USART2_CTS(1)(3)  
USART1_RTS(2)  
USART2_RTS(1)(3)  
USART1_TX(2)  
USART2_TX(1)(3)  
USART1_RX(2)  
USART2_RX(1)(3)  
USART1_CK(2)  
USART2_CK(1)(3)  
-
PA0  
-
-
-
USART4_TX(1)  
-
-
PA1  
PA2  
PA3  
PA4  
EVENTOUT  
TIM15_CH1(1)(3)  
TIM15_CH2(1)(3)  
SPI1_NSS  
-
-
-
-
-
-
-
-
USART4_RX(1) TIM15_CH1N(1)  
-
-
-
-
-
-
-
-
TIM14_CH1  
USART6_TX(1)  
PA5  
PA6  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
MCO  
-
-
-
USART6_RX(1)  
-
TIM3_CH1  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
-
USART3_CTS(1)  
TIM14_CH1  
-
TIM16_CH1  
EVENTOUT  
PA7  
TIM3_CH2  
-
TIM17_CH1  
EVENTOUT  
PA8  
USART1_CK  
USART1_TX  
EVENTOUT  
-
MCO(1)  
-
-
-
-
-
PA9  
TIM15_BKIN(1)(3)  
TIM17_BKIN  
EVENTOUT  
-
-
-
I2C1_SCL(1)(2)  
I2C1_SDA(1)(2)  
-
PA10  
PA11  
USART1_RX  
USART1_CTS  
SCL  
 
 
Table 12. Alternate functions selected through GPIOA_AFR registers for port A (continued)  
Pin name  
PA12  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
SDA  
-
AF6  
EVENTOUT  
SWDIO  
USART1_RTS  
IR_OUT  
TIM1_ETR  
-
-
-
-
-
-
-
PA13  
USART1_TX(2)  
USART2_TX(1)(3)  
USART1_RX(2)  
USART2_RX(1)(3)  
PA14  
PA15  
SWCLK  
-
-
-
-
-
-
-
-
SPI1_NSS  
EVENTOUT USART4_RTS(1)  
1. This feature is available on STM32F030xC devices.  
2. This feature is available on STM32F030x4 and STM32F030x6 devices.  
3. This feature is available on STM32F030x8 devices.  
Table 13. Alternate functions selected through GPIOB_AFR registers for port B  
Pin name  
PB0  
AF0  
AF1  
AF2  
TIM1_CH2N  
TIM1_CH3N  
-
AF3  
AF4  
USART3_CK(1)  
USART3_RTS(1)  
-
AF5  
EVENTOUT  
TIM14_CH1  
-
TIM3_CH3  
TIM3_CH4  
-
-
-
PB1  
-
-
PB2  
-
-
PB3  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
USART1_TX  
USART1_RX  
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
-
-
USART5_TX(1)  
USART5_RX(1)  
USART5_CK_RTS(1)  
-
-
PB4  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
-
TIM17_BKIN(1)  
PB5  
I2C1_SMBA  
-
-
-
PB6  
-
-
PB7  
USART4_CTS(1)  
 
 
Table 13. Alternate functions selected through GPIOB_AFR registers for port B (continued)  
Pin name  
PB8  
AF0  
-
AF1  
AF2  
AF3  
AF4  
AF5  
I2C1_SCL  
TIM16_CH1  
TIM17_CH1  
-
-
-
-
PB9  
IR_OUT  
I2C1_SDA  
EVENTOUT  
SPI2_NSS(1)  
I2C1_SCL(2)  
I2C2_SCL(1)(3)  
I2C1_SDA(2)  
I2C2_SDA(1)(3)  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
-
-
-
USART3_TX(1)  
USART3_RX(1)  
USART3_RTS(1)  
USART3_CTS(1)  
USART3_RTS(1)  
-
SPI2_SCK(1)  
EVENTOUT  
-
-
-
SPI1_NSS(2)  
SPI2_NSS(1)(3)  
SPI1_SCK(2)  
EVENTOUT  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
TIM15(1)  
I2C2_SCL(1)  
I2C2_SDA(1)  
-
-
-
SPI2_SCK(1)(3)  
SPI1_MISO(2)  
SPI2_MISO(1)(3)  
SPI1_MOSI(2)  
SPI2_MOSI(1)(3)  
TIM15_CH1(1)(3)  
TIM15_CH2(1)(3)  
-
TIM15_CH1N(1)(3)  
1. This feature is available on STM32F030xC devices.  
2. This feature is available on STM32F030x4 and STM32F030x6 devices.  
3. This feature is available on STM32F030x8 devices.  
STM32F030x4/x6/x8/xC  
(1)  
Table 14. Alternate functions selected through GPIOC_AFR registers for port C  
Pin name  
AF0(2)  
AF1(1)  
AF2(1)  
PC0  
PC1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
USART6_TX  
-
USART6_RX  
PC2  
SPI2_MISO  
-
PC3  
SPI2_MOSI  
-
PC4  
USART3_TX  
-
PC5  
USART3_RX  
-
PC6  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
USART4_TX(1)  
USART4_RX(1)  
USART4_CK(1)  
-
-
-
PC7  
-
-
PC8  
-
-
PC9  
-
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
USART3_TX  
-
USART3_RX  
-
USART3_CK  
USART5_TX  
-
-
-
-
-
-
-
-
1. Available on STM32F030xC devices only.  
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOC_AFR registers).  
(1)  
Table 15. Alternate functions selected through GPIOD_AFR registers for port D  
Pin name  
AF0(2)  
AF1(1)  
AF2(1)  
PD2  
TIM3_ETR  
USART3_RTS  
USART5_RX  
1. Available on STM32F030xC devices only.  
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOD_AFR registers).  
(1)  
Table 16. Alternate functions selected through GPIOF_AFR registers for port F  
Pin name  
AF0(2)  
AF1(1)  
PF0  
PF1  
PF4  
PF5  
PF6  
PF7  
-
I2C1_SDA  
I2C1_SCL  
-
EVENTOUT(1)  
EVENTOUT(1)  
I2C1_SCL(3), I2C2_SCL(4)  
I2C1_SDA(3), I2C2_SDA(4)  
1. Available on STM32F030xC devices only.  
2. Default alternate functions for STM32F030x4/x6/x8 devices (they do not have the GPIOF_AFR registers).  
3. Applies to STM32F030x4/x6  
4. Applies to STM32F030x8  
DS9773 Rev 4  
37/93  
37  
 
 
 
 
 
 
 
 
 
 
 
Memory mapping  
STM32F030x4/x6/x8/xC  
5
Memory mapping  
Figure 10. STM32F030x4/x6/x8/xC memory map  
0xFFFF FFFF  
0x4800 17FF  
AHB2  
0x4800 0000  
Reserved  
7
0xE010 0000  
Cortex-M0 internal  
peripherals  
0xE000 0000  
Reserved  
Reserved  
6
0xC000 0000  
0x4002 43FF  
AHB1  
0x4002 0000  
Reserved  
5
Reserved  
0xA000 0000  
0x4001 8000  
APB  
4
Reserved  
0x1FFF FFFF  
Reserved  
0x1FFF FC00  
0x4001 0000  
Option Bytes  
0x1FFF F800  
0x8000 0000  
Reserved  
System memory  
0x1FFF xx00(1)  
0x4000 8000  
3
Reserved  
Reserved  
APB  
0x6000 0000  
0x4000 0000  
Reserved  
2
Peripherals  
Reserved  
0x4000 0000  
0x0804 0000  
1
Flash memory  
0x0800 0000  
SRAM  
CODE  
0x2000 0000  
Reserved  
0
0x0004 0000  
Flash, system  
memory or SRAM,  
depending on BOOT  
configuration  
0x0000 0000  
0x0000 0000  
MSv36474V2  
1. The start address of the system memory is 0x1FFF EC00 for STM32F030x4, STM32F030x6 and STM32F030x8 devices,  
and 0x1FFF D800 for STM32F030xC devices.  
38/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Memory mapping  
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses  
Bus  
Boundary address  
Size  
Peripheral  
-
AHB2  
-
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 3400 - 0x4002 43FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 1800 - 0x4001 23FF  
0x4001 1400 - 0x4001 17FF  
0x4001 0800 - 0x4001 13FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
~384 MB Reserved  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
GPIOF  
Reserved  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
~128 MB Reserved  
4 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
32 KB  
9 KB  
1 KB  
3 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
1 KB  
Reserved  
CRC  
Reserved  
FLASH Interface  
Reserved  
RCC  
AHB1  
Reserved  
DMA  
-
Reserved  
Reserved  
DBGMCU  
Reserved  
TIM17  
TIM16  
TIM15(1)  
Reserved  
USART1  
Reserved  
SPI1  
APB  
TIM1  
Reserved  
ADC  
Reserved  
USART6(2)  
Reserved  
EXTI  
SYSCFG  
DS9773 Rev 4  
39/93  
40  
 
Memory mapping  
STM32F030x4/x6/x8/xC  
Table 17. STM32F030x4/x6/x8/xC peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
32 KB  
Peripheral  
Reserved  
-
0x4000 8000 - 0x4000 FFFF  
0x4000 7400 - 0x4000 7FFF  
0x4000 7000 - 0x4000 73FF  
0x4000 5C00 - 0x4000 6FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 3C00 - 0x4000 43FF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1800 - 0x4000 1FFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0800 - 0x4000 0FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
3 KB  
1 KB  
5 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
Reserved  
PWR  
Reserved  
I2C2(1)  
I2C1  
USART5(2)  
USART4(2)  
USART3(2)  
USART2(1)  
Reserved  
SPI2(1)  
APB  
Reserved  
IWDG  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM7(2)  
TIM6(1)  
Reserved  
TIM3  
Reserved  
1. This feature is available on STM32F030x8 and STM32F030xC devices only. For STM32F030x6 and  
STM32F060x4, the area is Reserved.  
2. This feature is available on STM32F030xC devices only. This area is reserved for STM32F030x4/6/8  
devices.  
40/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3.3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 11.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 12.  
Figure 11. Pin loading conditions  
Figure 12. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19210V1  
MS19211V1  
DS9773 Rev 4  
41/93  
75  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
6.1.6  
Power supply scheme  
Figure 13. Power supply scheme  
LSE, RTC,  
Wake-up logic  
Power switch  
VDD  
VCORE  
2 x VDD  
Regulator  
VDDIO1  
OUT  
Kernel logic  
(CPU, Digital  
& Memories)  
IO  
logic  
2 x 100 nF  
+1 x 4.7 μF  
GPIOs  
IN  
2 x VSS  
VDDA  
VDDA  
10 nF  
+1 μF  
VREF+  
VREF-  
Analog:  
(RCs, PLL, …)  
ADC  
VSSA  
MSv39025V1  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
6.1.7  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
I
DD  
V
DD  
I
DDA  
V
DDA  
MS32142V2  
42/93  
DS9773 Rev 4  
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,  
Table 19: Current characteristics and Table 20: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 18. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
V
DD–VSS External main supply voltage  
-0.3  
4.0  
V
V
VDDA–VSS External analog supply voltage  
VDD–VDDA Allowed voltage difference for VDD > VDDA  
Input voltage on FT and FTf pins  
-0.3  
4.0  
-
0.4  
VDDIOx + 4.0 (3)  
4.0  
V
VSS 0.3  
VSS 0.3  
0
V
Input voltage on TTa pins  
V
(2)  
VIN  
BOOT0  
V
DDIOx + 4.0 (3)  
V
Input voltage on any other pin  
VSS 0.3  
-
4.0  
50  
V
|ΔVDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|VSSx VSS  
|
-
50  
mV  
-
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.12: Electrical  
sensitivity characteristics  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum  
allowed injected current values.  
3. VDDIOx is internally connected with VDD pin.  
DS9773 Rev 4  
43/93  
75  
 
 
 
Electrical characteristics  
Symbol  
STM32F030x4/x6/x8/xC  
Table 19. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
ΣIVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT and FTf pins  
120  
-120  
100  
-100  
25  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
-25  
mA  
80  
ΣIIO(PIN)  
-80  
-5/+0(4)  
(3)  
IINJ(PIN)  
Injected current on TC and RST pin  
± 5  
Injected current on TTa pins(5)  
± 5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the  
device. See note (2) below Table 52: ADC accuracy.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 20. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 21. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
-
-
-
0
0
48  
48  
MHz  
V
2.4  
3.6  
44/93  
DS9773 Rev 4  
 
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Symbol  
Electrical characteristics  
Table 21. General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
Must have a potential equal  
to or higher than VDD  
VDDA  
Analog operating voltage  
I/O input voltage  
2.4  
3.6  
V
TC and RST I/O  
TTa I/O  
-0.3  
-0.3  
-0.3  
0
VDDIOx+0.3  
V
DDA+0.3(2)  
5.5(2)  
5.5  
VIN  
V
FT and FTf I/O  
BOOT0  
LQFP64  
-
455  
LQFP48  
-
364  
Power dissipation at TA = 85 °C  
for suffix 6 (1)  
PD  
mW  
LQFP32  
-
357  
TSSOP20  
-
263  
Maximum power dissipation  
Low power dissipation(2)  
Suffix 6 version  
-40  
-40  
-40  
85  
Ambient temperature for the  
suffix 6 version  
TA  
TJ  
°C  
°C  
105  
Junction temperature range  
105  
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:  
Thermal characteristics).  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 22 are derived from tests performed under the ambient  
temperature condition summarized in Table 21.  
Table 22. Operating conditions at power-up / power-down  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
-
20  
0
µs/V  
tVDDA  
-
20  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 23 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions.  
Table 23. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Falling edge(2)  
Rising edge  
1.96(3)  
2.00  
1.80  
1.88  
1.92  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
1.84(3)  
DS9773 Rev 4  
45/93  
75  
 
 
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Table 23. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
PDR hysteresis  
Reset temporization  
Conditions  
Min  
Typ  
Max  
Unit  
VPDRhyst  
-
-
-
40  
-
mV  
ms  
(4)  
tRSTTEMPO  
1.50  
2.50  
4.50  
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector  
monitors only VDD  
.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
3. Data based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 24 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions.  
Table 24. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference  
voltage  
-40°C < TA < +85°C  
1.2  
1.23  
1.25  
V
V
REFINT  
ADC_IN17 buffer startup  
time  
tSTART  
-
-
-
-
-
10(1)  
µs  
µs  
ADC sampling time when  
reading the internal  
reference voltage  
4 (1)  
tS_vrefint  
-
Internal reference  
voltage spread over the  
temperature range  
10(1)  
ΔVREFINT  
VDDA = 3 V  
-
-
-
mV  
-100(1)  
100(1)  
TCoeff  
Temperature coefficient  
-
ppm/°C  
1. Guaranteed by design, not tested in production.  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
46/93  
DS9773 Rev 4  
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled f  
PCLK  
HCLK  
The parameters given in Table 25 to Table 27 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 21: General  
operating conditions.  
(1)  
Table 25. Typical and maximum current consumption from V supply at V = 3.6 V  
DD  
DD  
All peripherals enabled  
(2)  
Max @ TA  
Parameter  
Conditions  
fHCLK  
Unit  
Typ  
85 °C  
48 MHz  
48 MHz  
24 MHz  
24 MHz  
8 MHz  
22.0  
26.8  
12.2  
14.1  
4.4  
22.8  
30.2  
13.2  
16.2  
5.2  
HSI or HSE clock, PLL on  
HSI or HSE clock, PLL off  
HSI or HSE clock, PLL on  
HSI or HSE clock, PLL off  
HSI or HSE clock, PLL on  
HSI or HSE clock, PLL off  
Supply current in  
Run mode, code  
executing from Flash  
IDD  
IDD  
IDD  
mA  
8 MHz  
4.9  
5.6  
48 MHz  
48 MHz  
24 MHz  
24 MHz  
8 MHz  
22.2  
26.1  
11.2  
13.3  
4.0  
23.2  
29.3  
12.2  
15.7  
4.5  
Supply current in  
Run mode, code  
executing from RAM  
mA  
8 MHz  
4.6  
5.2  
48 MHz  
48 MHz  
24 MHz  
24 MHz  
8 MHz  
14  
15.3  
19.0  
7.8  
17.0  
7.3  
Supply current in  
Sleep mode, code  
executing from Flash  
or RAM  
mA  
8.7  
10.1  
2.9  
2.6  
8 MHz  
3.0  
3.5  
1. The gray shading is used to distinguish the values for STM32F030xC devices.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
DS9773 Rev 4  
47/93  
75  
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
(1)  
Table 26. Typical and maximum current consumption from the V  
supply  
DDA  
VDDA = 3.6 V  
Max @ TA  
(3)  
Symbol  
Parameter  
Conditions(2)  
fHCLK  
Unit  
Typ  
85 °C  
48 MHz  
48 MHz  
8 MHz  
8 MHz  
1 MHz  
1 MHz  
48 MHz  
48 MHz  
8 MHz  
8 MHz  
175  
160  
3.9  
3.7  
3.9  
3.3  
244  
235  
85  
215  
192  
4.9  
4.6  
4.1  
4.4  
275  
275  
105  
92  
HSE bypass, PLL on  
Supply current in  
Run or Sleep mode,  
code executing  
from Flash memory  
or RAM  
HSE bypass, PLL off  
IDDA  
µA  
HSI clock, PLL on  
HSI clock, PLL off  
77  
1. The gray shading is used to distinguish the values for STM32F030xC devices.  
2. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being  
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent of the  
frequency.  
3. Data based on characterization results, not tested in production.  
48/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Table 27. Typical and maximum consumption in Stop and Standby modes  
Typ @VDD  
(VDD = VDDA  
Max(1)  
)
Symbol  
Parameter  
Conditions  
Unit  
3.6 V  
19  
TA = 85 °C  
Regulator in run mode, all oscillators OFF  
48  
32  
Supply current in  
Stop mode  
Regulator in low-power mode, all oscillators OFF  
5
IDD  
Supply current in  
Standby mode  
LSI ON and IWDG ON  
2
-
Regulator in run or low-  
power mode, all  
oscillators OFF  
Supply current in  
Stop mode  
2.9  
3.5  
VDDA monitoring ON  
µA  
LSI ON and IWDG ON  
3.3  
2.8  
-
Supply current in  
Standby mode  
LSI OFF and IWDG OFF  
3.5  
IDDA  
Regulator in run or low-  
power mode, all  
oscillators OFF  
Supply current in  
Stop mode  
1.7  
-
VDDA monitoring OFF  
LSI ON and IWDG ON  
2.3  
1.4  
-
-
Supply current in  
Standby mode  
LSI OFF and IWDG OFF  
1. Data based on characterization results, not tested in production unless otherwise specified.  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 3.3 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash access time is adjusted to f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled, f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
DS9773 Rev 4  
49/93  
75  
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Table 28. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals Peripherals  
enabled  
disabled  
Supply current in Run  
mode from VDD  
supply  
48 MHz  
8 MHz  
48 MHz  
8 MHz  
23.3  
11.5  
Running from  
HSE crystal  
clock 8 MHz,  
code executing  
from Flash  
IDD  
mA  
µA  
4.5  
3.0  
Supply current in Run  
mode from VDDA  
supply  
158  
158  
IDDA  
2.43  
2.43  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 46: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously, the I/Os  
used by an application also contribute to the current consumption. When an I/O pin  
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to  
charge/discharge the capacitive load (internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
50/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C  
+ C  
+ C  
EXT S  
INT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
Table 29. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
frequency (fSW  
)
4 MHz  
8 MHz  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
8 MHz  
16 MHz  
24 MHz  
4 MHz  
8 MHz  
0.18  
0.37  
0.76  
1.39  
2.188  
0.49  
0.94  
2.38  
3.99  
0.81  
1.7  
V
DDIOx = 3.3 V  
CEXT = 0 pF  
C = CINT + CEXT+ CS  
I/O current  
consumption  
ISW  
mA  
VDDIOx = 3.3 V  
CEXT = 22 pF  
C = CINT + CEXT+ CS  
VDDIOx = 3.3 V  
CEXT = 47 pF  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
3.67  
1. CS = 7 pF (estimated value).  
6.3.6  
Wakeup time from low-power mode  
The wakeup times given in Table 30 are the latency between the event and the execution of  
the first user instruction. The device goes in low-power mode after the WFE (Wait For  
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles  
must be added to the following timings due to the interrupt latency in the Cortex M0  
architecture.  
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.  
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.  
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.  
The wakeup source from Standby mode is the WKUP1 pin (PA0).  
All timings are derived from tests performed under the ambient temperature and supply  
voltage conditions summarized in Table 21: General operating conditions.  
DS9773 Rev 4  
51/93  
75  
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Table 30. Low-power mode wakeup timings  
Typ @VDD =  
VDDA  
Symbol  
Parameter  
Conditions  
Max Unit  
= 3.3 V  
tWUSTOP  
Wakeup from Stop mode  
Regulator in run mode  
-
2.8  
51  
5
tWUSTANDBY Wakeup from Standby mode  
tWUSLEEP Wakeup from Sleep mode  
-
µs  
4 SYSCLK  
cycles  
-
-
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 15: High-speed external clock  
source AC timing diagram.  
Table 31. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fHSE_ext User external clock source frequency  
VHSEH OSC_IN input pin high level voltage  
1
8
-
32  
MHz  
0.7 VDDIOx  
VSS  
VDDIOx  
V
VHSEL  
OSC_IN input pin low level voltage  
OSC_IN high or low time  
-
0.3 VDDIOx  
tw(HSEH)  
tw(HSEL)  
15  
-
-
-
-
ns  
tr(HSE)  
tf(HSE)  
OSC_IN rise or fall time  
20  
1. Guaranteed by design, not tested in production.  
Figure 15. High-speed external clock source AC timing diagram  
t
w(HSEH)  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
t
r(HSE)  
f(HSE)  
w(HSEL)  
T
HSE  
MS19214V2  
52/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 16.  
Table 32. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
450  
-
-
-
-
ns  
tr(LSE)  
OSC32_IN rise or fall time  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 16. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 33. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 33. HSE oscillator characteristics  
Symbol  
fOSC_IN Oscillator frequency  
RF Feedback resistor  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
-
-
4
-
8
32  
-
MHz  
200  
kΩ  
DS9773 Rev 4  
53/93  
75  
 
 
 
Electrical characteristics  
Symbol  
STM32F030x4/x6/x8/xC  
Table 33. HSE oscillator characteristics  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
During startup(3)  
-
-
8.5  
VDD = 3.3 V,  
Rm = 45 Ω,  
CL = 10 pF@8 MHz  
-
0.5  
-
IDD  
HSE current consumption  
mA  
VDD = 3.3 V,  
Rm = 30 Ω,  
CL = 20 pF@32 MHz  
-
1.5  
-
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 17). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 17. Typical application with an 8 MHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
54/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
obtained with typical external components specified in Table 34. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
low drive capability  
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
-
0.5  
0.9  
-
-
1
LSE current  
consumption  
IDD  
µA  
-
1.3  
-
-
1.6  
low drive capability  
5
8
15  
25  
-
-
-
-
-
-
-
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
Oscillator  
transconductance  
gm  
µA/V  
s
-
-
(3)  
tSU(LSE)  
Startup time  
VDDIOx is stabilized  
2
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly  
with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 18. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
DS9773 Rev 4  
55/93  
75  
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 35 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI) RC oscillator  
(1)  
Table 35. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
8
-
1(2)  
55(2)  
-
MHz  
%
TRIM  
-
-
45(2)  
-
-
-
DuCyHSI Duty cycle  
-
TA = -40 to 85°C  
TA = 25°C  
-
%
±5  
±1(3)  
-
%
Accuracy of the HSI oscillator  
(factory calibrated)  
ACCHSI  
-
-
%
tSU(HSI)  
HSI oscillator startup time  
1(2)  
2(2)  
µs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
-
80  
-
µA  
1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. With user calibration.  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 36. HSI14 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI14 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
-
-
-
-
-
14  
-
-
MHz  
%
1(2)  
55(2)  
DuCy(HSI14) Duty cycle  
Accuracy of the HSI14  
45(2)  
-
%
ACCHSI14  
TA = –40 to 85 °C  
-
1(2)  
-
±5  
-
-
2(2)  
-
%
µs  
µA  
oscillator (factory calibrated)  
tsu(HSI14) HSI14 oscillator startup time  
-
-
HSI14 oscillator power  
IDDA(HSI14)  
100  
consumption  
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 37. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
50  
Unit  
kHz  
fLSI  
Frequency  
30  
40  
56/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Symbol  
Electrical characteristics  
(1)  
Table 37. LSI oscillator characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
tsu(LSI)  
LSI oscillator startup time  
-
-
-
85  
-
µs  
(2)  
IDDA(LSI)  
LSI oscillator power consumption  
0.75  
µA  
1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.9  
PLL characteristics  
The parameters given in Table 38 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions.  
Table 38. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
6.3.10  
Memory characteristics  
Flash memory  
The characteristics are given at T = -40 to 85 °C unless otherwise specified.  
A
Table 39. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = -40 to +85 °C  
-
53.5  
-
-
µs  
ms  
ms  
mA  
mA  
V
tERASE Page erase time(2)  
TA = -40 to +85 °C  
TA = -40 to +85 °C  
Write mode  
Erase mode  
-
-
-
30  
30  
-
tME  
Mass erase time  
-
-
10  
12  
3.6  
IDD  
Supply current  
-
-
Vprog Programming voltage  
2.4  
-
1. Guaranteed by design, not tested in production.  
2. Page size is 1KB for STM32F030x4/6/8 devices and 2KB for STM32F030xC devices  
DS9773 Rev 4  
57/93  
75  
 
 
 
 
Electrical characteristics  
Symbol  
STM32F030x4/x6/x8/xC  
Table 40. Flash memory endurance and data retention  
Parameter  
Conditions  
TA = -40 to +85 °C  
1 kcycle(2) at TA = 85 °C  
Min(1)  
Unit  
NEND  
tRET  
Endurance  
kcycle  
Years  
1
Data retention  
20  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 41. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 41. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3V, LQFP48, TA = +25 °C,  
fHCLK = 48 MHz,  
conforming to IEC 61000-4-2  
3B(1)  
2B(2)  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
Fast transient voltage burst limits to be  
VDD = 3.3V, LQFP48, TA = +25°C,  
VEFTB applied through 100 pF on VDD and VSS fHCLK = 48 MHz,  
pins to induce a functional disturbance conforming to IEC 61000-4-4  
4B  
1. Applies to STM32F030xC.  
2. Applies to STM32F030x4/x6/x8.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
58/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 42. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/48 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
-3  
23  
17  
4
VDD = 3.6 V, TA = 25 °C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DS9773 Rev 4  
59/93  
75  
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Maximum  
Table 43. ESD absolute maximum ratings  
Conditions  
Symbol  
VESD(HBM)  
VESD(CDM)  
Ratings  
Packages Class  
Unit  
value(1)  
Electrostatic discharge voltage TA = +25 °C, conforming  
(human body model)  
All  
2
2000  
V
to JESD22-A114  
C4(2)  
C3(3)  
500(2)  
250(3)  
Electrostatic discharge voltage TA = +25 °C, conforming  
(charge device model) to ANSI/ESD STM5.3.1  
All  
V
1. Data based on characterization results, not tested in production.  
2. Applicable to STM32F030xC  
3. Applicable to STM32F030x4, STM32F030x6, and STM32F030x8  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 44. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 45.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
60/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Table 45. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on BOOT0 and PF1 pins  
-0  
-5  
NA  
NA  
Injected current on PA9, PB3, PB13, PF11 pins with induced  
leakage current on adjacent pins less than 50 µA  
Injected current on PA11 and PA12 pins with induced  
leakage current on adjacent pins less than -1 mA  
-5  
NA  
IINJ  
mA  
Injected current on all other FT and FTf pins  
Injected current on PB0 and PB1 pins  
Injected current on PC0 pin  
-5  
-5  
-0  
-5  
NA  
NA  
+5  
Injected current on all other TTa, TC and RST pins  
+5  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 46 are derived from tests  
performed under the conditions summarized in Table 21: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).  
Table 46. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
-
-
-
0.3 VDDIOx+0.07(1)  
0.475 VDDIOx–0.2(1)  
0.3 VDDIOx–0.3(1)  
Low level input  
voltage  
VIL  
V
All I/Os except  
BOOT0 pin  
-
-
0.3 VDDIOx  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
0.445 VDDIOx+0.398(1)  
0.5 VDDIOx+0.2(1)  
-
-
-
-
-
-
High level input  
voltage  
0.2 VDDIOx+0.95(1)  
VIH  
V
All I/Os except  
BOOT0 pin  
0.7 VDDIOx  
-
-
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
200(1)  
100(1)  
300(1)  
-
-
-
Schmitt trigger  
hysteresis  
Vhys  
mV  
DS9773 Rev 4  
61/93  
75  
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Table 46. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC, FT and FTf I/O  
TTa in digital mode  
VSS VIN VDDIOx  
-
-
0.1  
TTa in digital mode  
VDDIOx VIN VDDA  
-
-
-
-
-
-
1
Input leakage  
current(2)  
Ilkg  
µA  
TTa in analog mode  
VSS VIN VDDA  
0.2  
10  
FT and FTf I/O (3)  
VDDIOx VIN 5 V  
Weak pull-up  
RPU  
equivalent resistor VIN = VSS  
25  
40  
55  
kΩ  
(4)  
Weak pull-down  
RPD  
CIO  
equivalent  
VIN = VDDIOx  
25  
-
40  
5
55  
-
kΩ  
resistor(4)  
I/O pin capacitance  
-
pF  
1. Data based on design simulation only. Not tested in production.  
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45:  
I/O current injection susceptibility.  
3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled.  
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 19 for standard I/Os, and in Figure 20 for  
5 V tolerant I/Os. The following curves are design simulation results, not tested in  
production.  
62/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Figure 19. TC and TTa I/O input characteristics  
3
2.5  
2
TESTED RANGE  
TTL standard requirement  
VIN (V)  
1.5  
UNDEFINED INPUT RANGE  
1
0.5  
0
TTL standard requirement  
TESTED RANGE  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VDDIOx (V)  
MSv32130V4  
Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics  
3
2.5  
2
TESTED RANGE  
TTL standard requirement  
VIN (V)  
1.5  
UNDEFINED INPUT RANGE  
1
TTL standard requirement  
0.5  
0
TESTED RANGE  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VDDIOx (V)  
MSv32131V4  
DS9773 Rev 4  
63/93  
75  
 
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum  
DDIOx,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 18: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 18: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or  
TC unless otherwise specified).  
(1)  
Table 47. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
VOL  
VOH  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
0.4  
V
VD|IDIO| =x 8 2m.7AV  
IO  
VDDIOx–0.4  
-
(2)  
VOL  
-
1.3  
V
-
|IIO| = 20 mA  
VDDIOx 2.7 V  
(2)  
VOH  
VDDIOx–1.3  
-
(2)  
VOL  
0.4  
V
-
|IIO| = 6 mA  
(2)  
VOH  
VDDIOx–0.4  
|IIO| = 20 mA  
VDDIOx 2.7 V  
-
-
0.4  
0.4  
V
V
Output low level voltage for an FTf I/O pin in  
Fm+ mode  
(2)  
VOLFm+  
|IIO| = 10 mA  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣI  
.
IO  
2. Data based on characterization results. Not tested in production.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 21 and  
Table 48, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 21: General  
operating conditions.  
64/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
(1)(2)  
Table 48. I/O AC characteristics  
OSPEEDRy  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
[1:0] value(1)  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
125  
125  
10  
25  
25  
50  
30  
20  
5
x0  
01  
CL = 50 pF, VDDIOx 2.4 V  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
CL = 50 pF, VDDIOx 2.4 V  
tr(IO)out Output rise time  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2.4 V VDDIOx < 2.7 V  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2.4 V VDDIOx < 2.7 V  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2.4 V VDDIOx < 2.7 V  
fmax(IO)out Maximum frequency(3)  
MHz  
11  
tf(IO)out Output fall time  
8
12  
5
ns  
tr(IO)out Output rise time  
8
12  
2
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
Fm+  
configuration  
CL = 50 pF, VDDIOx 2.4 V  
12  
34  
(4)  
tr(IO)out Output rise time  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
-
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a  
description of GPIO Port configuration register.  
2. Guaranteed by design, not tested in production.  
3. The maximum frequency is defined in Figure 21.  
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360  
for a detailed description of Fm+ I/O configuration.  
DS9773 Rev 4  
65/93  
75  
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Figure 21. I/O AC characteristics definition  
10%  
90%  
50%  
50%  
10%  
90%  
t
t
r(IO)out  
f(IO)out  
T
2
3
Maximum frequency is achieved if (t + t ) ≤  
T and if the duty cycle is (45-55%)  
r
f
when loaded by C (see the table I/O AC characteristics definition)  
L
MS32132V3  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 21: General operating conditions.  
Table 49. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
-
-
-
-
-
0.3 VDD+0.07(1)  
-
V
0.445 VDD+0.398(1)  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
-
-
200  
40  
-
mV  
Weak pull-up equivalent  
RPU  
VIN = VSS  
25  
55  
kΩ  
resistor(2)  
VF(NRST) NRST input filtered pulse  
-
-
-
-
-
100(1)  
ns  
2.7 < VDD < 3.6  
2.4 < VDD < 3.6  
300(3)  
500(3)  
-
-
VNF(NRST) NRST input not filtered pulse  
ns  
1. Data based on design simulation only. Not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
3. Data based on design simulation only. Not tested in production.  
66/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Figure 22. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF(3)  
MS19878V4  
1. The external capacitor protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
6.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 50 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 21: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 50. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
-
2.4  
-
V
Current consumption of  
the ADC(1)  
IDDA (ADC)  
fADC  
VDD = VDDA = 3.3 V  
-
0.9  
-
mA  
ADC clock frequency  
Sampling rate  
-
0.6  
-
-
-
-
-
14  
1
MHz  
MHz  
kHz  
(2)  
fS  
-
0.05  
fADC = 14 MHz  
-
-
823  
17  
External trigger  
frequency  
(2)  
fTRIG  
-
-
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
0
VDDA  
See Equation 1 and  
Table 51 for details  
(2)  
RAIN  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
Sampling switch  
resistance  
(2)  
-
-
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
DS9773 Rev 4  
67/93  
75  
 
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Table 50. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
5.9  
83  
Max  
Unit  
µs  
fADC = 14 MHz  
-
(2)(3)  
Calibration time  
tCAL  
1/fADC  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
PCLK cycles  
ADC clock = HSI14  
-
-
f
ADC_DR register write  
latency  
(2)(4)  
fPCLK  
cycle  
WLATENCY  
ADC clock = PCLK/2  
ADC clock = PCLK/4  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
fADC = fPCLK/2 =  
14 MHz  
0.196  
5.5  
µs  
1/fPCLK  
µs  
f
ADC = fPCLK/2  
Trigger conversion  
latency  
(2)  
fADC = fPCLK/4 =  
12 MHz  
tlatr  
0.219  
fADC = fPCLK/4  
10.5  
-
1/fPCLK  
µs  
fADC = fHSI14 = 14 MHz  
0.188  
-
0.259  
-
ADC jitter on trigger  
conversion  
JitterADC  
fADC = fHSI14  
1
1/fHSI14  
fADC = 14 MHz  
0.107  
1.5  
-
-
17.1  
µs  
(2)  
Sampling time  
tS  
-
-
239.5  
1/fADC  
1/fADC  
(2)  
tSTAB  
Stabilization time  
14  
fADC = 14 MHz,  
12-bit resolution  
1
-
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
12-bit resolution  
1/fADC  
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA  
on IDD should be taken into account.  
2. Guaranteed by design, not tested in production.  
3. Specified value includes only ADC timing. It does not include the latency of the register access.  
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.  
Equation 1: R  
max formula  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
68/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Ts (cycles)  
Electrical characteristics  
Table 51. R  
max for f  
tS (µs)  
= 14 MHz  
ADC  
AIN  
RAIN max (kΩ)(1)  
1.5  
7.5  
0.11  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
0.4  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)(3)  
Table 52. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
±4  
fPCLK = 48 MHz,  
±2.8  
±3  
fADC = 14 MHz, RAIN < 10 kΩ  
VDDA = 2.7 V to 3.6 V  
TA = 40 to 85 °C  
Gain error  
LSB  
Differential linearity error  
Integral linearity error  
±1.3  
±1.7  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input  
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog  
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
DS9773 Rev 4  
69/93  
75  
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Figure 23. ADC accuracy characteristics  
V
SSA  
EG  
(1) Example of an actual transfer curve  
4095  
4094  
4093  
(2) The ideal transfer curve  
(3) End point correlation line  
E
T
= total unajusted error: maximum deviation  
(2)  
between the actual and ideal transfer curves.  
ET  
E
O
= offset error: maximum deviation  
(3)  
7
between the first actual transition and  
the first ideal one.  
(1)  
6
5
4
3
2
1
E
E
E
G
= gain error: deviation between the last  
ideal transition and the last actual one.  
= differential linearity error: maximum  
EO  
EL  
D
deviation between actual steps and the ideal ones.  
= integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
L
1 LSB IDEAL  
0
4096  
VDDA  
4094 4095  
7
4093  
2
3
4
5
6
1
MS19880V2  
Figure 24. Typical connection diagram using the ADC  
V
DDA  
Sample and hold ADC  
converter  
V
T
(1)  
R
R
ADC  
AIN  
AINx  
12-bit  
converter  
I
1 μA  
L
C
V
parasitic  
T
V
AIN  
C
ADC  
MS33900V1  
1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 13: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
70/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
6.3.17  
Temperature sensor characteristics  
Table 53. TS characteristics  
Parameter Min  
VSENSE linearity with temperature  
Avg_Slope(1) Average slope  
Symbol  
Typ  
Max  
Unit  
(1)  
TL  
-
4.0  
1.34  
-
1
4.3  
1.43  
-
2
4.6  
1.52  
10  
°C  
mV/°C  
V
V30  
Voltage at 30 °C ( 5 °C)(2)  
(1)  
(1)  
tSTART  
ADC_IN16 buffer startup time  
µs  
ADC sampling time when reading the  
temperature  
tS_temp  
4
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Measured at VDDA = 3.3 V 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:  
Temperature sensor calibration values.  
6.3.18  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 54. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTIMxCLK  
ns  
-
-
-
-
1
-
-
-
tres(TIM)  
Timer resolution  
fTIMxCLK = 48 MHz  
-
20.8  
Timer external clock  
frequency on CH1 to  
CH4  
fTIMxCLK/2  
MHz  
fEXT  
f
TIMxCLK = 48 MHz  
-
24  
-
MHz  
216  
tTIMxCLK  
-
-
-
-
-
-
-
-
-
16-bit timer maximum  
period  
fTIMxCLK = 48 MHz  
-
1365  
µs  
tMAX_COUNT  
232  
tTIMxCLK  
32-bit timer maximum  
period  
fTIMxCLK = 48 MHz  
89.48  
s
DS9773 Rev 4  
71/93  
75  
 
 
 
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
(1)  
Table 55. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
Table 56. WWDG min/max timeout value at 48 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
6.3.19  
Communication interfaces  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FTf I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O  
port characteristics for the I2C I/Os characteristics.  
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
72/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
(1)  
Table 57. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 21: General operating conditions.  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 58. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
ns  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4Tpclk  
-
-
2Tpclk + 10  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
5
-
tsu(MI)  
tsu(SI)  
-
th(MI)  
th(SI)  
4
-
Data input hold time  
5
-
(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(3)  
tdis(SO)  
0
18  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
22.5  
-
6
-
11.5  
2
Data output hold time  
-
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
25  
75  
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
DS9773 Rev 4  
73/93  
75  
 
 
Electrical characteristics  
STM32F030x4/x6/x8/xC  
Figure 25. SPI timing diagram - slave mode and CPHA = 0  
Figure 26. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tSU(NSS)  
th(NSS)  
tc(SCK)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(SO)  
tdis(SO)  
tv(SO)  
ta(SO)  
MISO  
MSB OUT  
MSB IN  
BIT6 OUT  
LSB OUT  
OUTPUT  
th(SI)  
tsu(SI)  
MOSI  
INPUT  
LSB IN  
BIT 1 IN  
ai14135b  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
74/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Electrical characteristics  
Figure 27. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
t
su(MI)  
f(SCK)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DS9773 Rev 4  
75/93  
75  
 
Package information  
STM32F030x4/x6/x8/xC  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP64 package information  
LQFP64 is 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 28. LQFP64 outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 59. LQFP64 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
-
-
-
1.600  
0.150  
1.450  
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.050  
1.350  
0.0020  
0.0531  
-
1.400  
0.0551  
76/93  
DS9773 Rev 4  
 
 
 
 
 
STM32F030x4/x6/x8/xC  
Symbol  
Package information  
Table 59. LQFP64 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
b
c
0.170  
0.220  
-
0.270  
0.0067  
0.0087  
-
0.0106  
0.090  
0.200  
0.0035  
0.0079  
D
-
12.000  
10.000  
7.500  
12.000  
10.000  
7.500  
0.500  
3.5°  
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
3.5°  
-
D1  
D3  
E
-
-
-
-
-
-
-
-
-
-
-
-
E1  
E3  
e
-
-
-
-
-
-
-
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 29. LQFP64 recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are expressed in millimeters.  
DS9773 Rev 4  
77/93  
89  
 
Package information  
STM32F030x4/x6/x8/xC  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 30. LQFP64 marking example (package top view)  
Revision code  
R
Product identification (1)  
STM32F030  
RCT6  
Date code  
Y
WW  
Pin 1 identifier  
MSv36475V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
78/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Package information  
7.2  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package  
Figure 31. LQFP48 outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
Table 60. LQFP48 mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
0.3543  
0.2756  
0.2165  
0.3543  
D1  
D3  
E
8.800  
9.200  
0.3465  
0.3622  
DS9773 Rev 4  
79/93  
89  
 
 
 
Package information  
STM32F030x4/x6/x8/xC  
Table 60. LQFP48 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E1  
E3  
e
6.800  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
7.200  
0.2677  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
0.2835  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 32. LQFP48 recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Dimensions are expressed in millimeters.  
80/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 33. LQFP48 marking example (package top view)  
Product identification(1)  
STM32F  
030CCT6  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
R
MSv36476V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS9773 Rev 4  
81/93  
89  
 
Package information  
STM32F030x4/x6/x8/xC  
7.3  
LQFP32 package information  
LQFP32 is a 32-pin, 7 x 7 mm low-profile quad flat package  
Figure 34. LQFP32 outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
K
D
D1  
D3  
L
L1  
24  
17  
16  
25  
32  
9
PIN 1  
IDENTIFICATION  
1
8
e
5V_ME_V2  
1. Drawing is not to scale.  
Table 61. LQFP32 mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
-
-
-
1.600  
0.150  
1.450  
-
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.050  
1.350  
0.0020  
0.0531  
1.400  
0.0551  
82/93  
DS9773 Rev 4  
 
 
 
STM32F030x4/x6/x8/xC  
Symbol  
Package information  
Table 61. LQFP32 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
b
c
0.300  
0.370  
-
0.450  
0.200  
9.200  
7.200  
-
0.0118  
0.0146  
-
0.0177  
0.0079  
0.3622  
0.2835  
-
0.090  
0.0035  
D
8.800  
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3465  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
6.800  
0.2677  
-
-
8.800  
9.200  
7.200  
-
0.3465  
0.3622  
0.2835  
-
E1  
E3  
e
6.800  
0.2677  
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.100  
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 35. LQFP32 recommended footprint  
0.80  
1.20  
24  
17  
25  
16  
0.50  
0.30  
7.30  
6.10  
9.70  
7.30  
32  
9
8
1
1.20  
6.10  
9.70  
5V_FP_V2  
1. Dimensions are expressed in millimeters.  
DS9773 Rev 4  
83/93  
89  
 
Package information  
STM32F030x4/x6/x8/xC  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 36. LQFP32 marking example (package top view)  
Product identification (1)  
STM32F  
030K6T6  
Date code  
Y WW  
Pin 1 identification  
Revision code  
R
MSv36477V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
84/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Package information  
7.4  
TSSOP20 package information  
TSSOP20 is a 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch package.  
Figure 37. TSSOP20 outline  
D
20  
11  
10  
c
E1  
E
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
1
PIN 1  
IDENTIFICATION  
k
aaa  
C
A1  
L
A
A2  
L1  
b
e
YA_ME_V3  
1. Drawing is not to scale.  
Table 62. TSSOP20 mechanical data  
millimeters  
inches(1)  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
6.600  
6.600  
4.500  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.2598  
0.2598  
0.1772  
-
0.050  
0.800  
0.190  
0.090  
6.400  
6.200  
4.300  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
0.2520  
0.2441  
0.1693  
-
-
1.000  
-
0.0394  
-
c
-
-
D
6.500  
6.400  
4.400  
0.650  
0.600  
1.000  
0.2559  
0.2520  
0.1732  
0.0256  
0.0236  
0.0394  
E
E1  
e
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
DS9773 Rev 4  
85/93  
89  
 
 
 
Package information  
STM32F030x4/x6/x8/xC  
Table 62. TSSOP20 mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
k
0°  
-
-
-
8°  
0°  
-
-
-
8°  
aaa  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Figure 38. TSSOP20 footprint  
0.25  
6.25  
20  
11  
1.35  
0.25  
7.10 4.40  
1.35  
1
10  
0.40  
0.65  
YA_FP_V1  
1. Dimensions are expressed in millimeters.  
86/93  
DS9773 Rev 4  
 
STM32F030x4/x6/x8/xC  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 39. TSSOP20 marking example (package top view)  
Device identification (1)  
32F030F4P6  
Date code  
Pin 1 identification  
Revision code  
Y
WW  
R
MSv36478V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS9773 Rev 4  
87/93  
89  
 
Package information  
STM32F030x4/x6/x8/xC  
7.5  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 21: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
V
) × I ),  
I/O  
OL  
OL  
DD - OH OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 63. Package thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 mm x 10 mm  
44  
Thermal resistance junction-ambient  
LQFP48 - 7 mm x 7 mm  
55  
56  
76  
Θ
°C/W  
J
Thermal resistance junction-ambient  
LQFP32 - 7 mm x 7 mm  
Thermal resistance junction-ambient  
TSSOP20 - 6.5 mm x 6.4 mm  
7.5.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
88/93  
DS9773 Rev 4  
 
 
 
 
STM32F030x4/x6/x8/xC  
Ordering information  
8
Ordering information  
+
Example:  
STM32  
F
030  
C
6
T
6
x
Device family  
STM32 = Arm-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
030 = STM32F030xx  
Pin count  
F = 20 pins  
K = 32 pins  
C = 48 pins  
R = 64 pins  
Code size  
4 = 16 Kbyte of Flash memory  
6 = 32 Kbyte of Flash memory  
8 = 64 Kbyte of Flash memory  
C = 256 Kbyte of Flash memory  
Package  
P = TSSOP  
T = LQFP  
Temperature range  
6 = –40 to 85 °C  
Option  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
DS9773 Rev 4  
89/93  
89  
 
 
Revision history  
STM32F030x4/x6/x8/xC  
9
Revision history  
Table 64. Document revision history  
Date  
Revision  
Changes  
04-Jul-2013  
1
Initial release.  
Extended the applicability to STM32F030xC.  
Updated:  
Features and Table Device summary,  
– Section: Description,  
– Table: STM32F030x4/6/8/C family device features  
and peripheral counts,  
– Figure: Block diagram,  
– Section: Memories,  
Section: General-purpose inputs/outputs (GPIOs),  
– Section: Universal synchronous/asynchronous  
receiver transmitters (USART),  
– Table: STM32F030x4/6/8/C pin definitions,  
– Table: Alternate functions selected through  
GPIOA_AFR registers for port A,  
– Table: Alternate functions selected through  
GPIOB_AFR registers for port B  
15-Jan-2015  
2
– Table: Alternate functions selected through  
GPIOC_AFR registers for port C  
– Table: Alternate functions selected through  
GPIOD_AFR registers for port D,  
– Table: Alternate functions selected through  
GPIOF_AFR registers for port F,  
– Section: EMC characteristics,  
– Section: Part numbering.  
Added device marking examples:  
– Figure: LQFP64 marking example (package top view),  
– Figure: LQFP48 marking example (package top view),  
– Figure: LQFP32 marking example (package top view),  
– Figure: TSSOP20 marking example (package top  
view).  
Updated:  
Table 2: STM32F030x4/x6/x8/xC family device  
features and peripheral counts  
Figure 1: Block diagram and figure footnotes  
23-Jan-2017  
3
Figure 2: Clock tree of STM32F030x4/x6/x8 and  
figure footnotes  
Section 3.11: Timers and watchdogs - number of  
timers, counts of complementary outputs in the table  
and the footnotes  
90/93  
DS9773 Rev 4  
 
 
STM32F030x4/x6/x8/xC  
Date  
Revision history  
Table 64. Document revision history (continued)  
Revision  
Changes  
Section 3.11.2: General-purpose timers (TIM3,  
TIM14..17) - number of timers  
Table 5: Timer feature comparison - footnotes added  
Table 7: STM32F030x4/x6/x8/xC I2C implementation -  
FM+ and footnote  
Figure 4 through Figure 7 - darker highlight on pins  
Table 11: STM32F030x4/6/8/C pin definitions -  
corrections  
Table 12: Alternate functions selected through  
GPIOA_AFR registers for port A - note order  
Table 14 through Table 16 - corrected footnotes  
Figure 10: STM32F030x4/x6/x8/xC memory map  
footnote  
Figure 13: Power supply scheme  
Table 24: Embedded internal reference voltage:  
added tSTART, changed VREFINT and tS_vrefint values  
and notes  
Table 25: Typical and maximum current consumption  
from VDD supply at VDD = 3.6 V footnotes  
Table 26: Typical and maximum current consumption  
from the VDDA supply values for STM32F030xC and  
footnotes  
23-Jan-2017  
3
Table 34: LSE oscillator characteristics (fLSE = 32.768  
kHz) LSEDRV[1:0] values removed (see ref. manual)  
Table 50: ADC characteristics - tSTAB defined relative  
to clock frequency; notes 3. and 4. added  
Section 3.14: Universal synchronous/asynchronous  
receiver/transmitter (USART) - introduction and  
Table 8: STM32F0x0 USART implementation  
Figure 10: STM32F030x4/x6/x8/xC memory map  
footnote  
Table 43: ESD absolute maximum ratings - C4 or C3  
class, depending on device variant; CDM values  
updated to match the referenced standard. (CDM  
standard was updated in the previous release, without  
duly modifying the related values.)  
Table 53: TS characteristics: removed the min. value  
for tSTART and parameter name change  
Figure 19 and Figure 20 improved  
Section 7: Package information name and structure  
change  
Section 8: Ordering information renamed from Part  
numbering  
DS9773 Rev 4  
91/93  
92  
Revision history  
STM32F030x4/x6/x8/xC  
Table 64. Document revision history (continued)  
Date  
Revision  
Changes  
Figure 2 split in two figures  
– TIM15 complementary outputs count in Table 5  
– Periodic wakeup unit feature in Section 3.12: Real-  
time clock (RTC)  
– Driver Enable for USART 6 in Table 8  
15-Jan-2019  
4
– Number of supported auto baud rate detection modes  
corrected in Table 8  
– AF4 and AF5 for PB10 in Table 13  
– Notes in Table 14, Table 15, and Table 16  
– Extension of Table 16  
– VFESD class in Table 41  
92/93  
DS9773 Rev 4  
STM32F030x4/x6/x8/xC  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2019 STMicroelectronics – All rights reserved  
DS9773 Rev 4  
93/93  
93  
 
 

相关型号:

STM32F030F4

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030K6

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030R8

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030R8T6

STM32 Nucleo-64 boards
STMICROELECTR

STM32F030RC

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030RCT6

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030x4

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030x6

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030x8

Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F030xC

Value-line Arm®-based 32-bit MCU with up to 256 KB Flash, timers, ADC, communication interfaces, 2.4-3.6 V operation
STMICROELECTR

STM32F031C4

ARM-based 32-bit MCU with up to 32 Kbyte Flash, 9 timers, ADC and communication interfaces, 2.0 - 3.6 V
STMICROELECTR

STM32F031C6

ARM-based 32-bit MCU with up to 32 Kbyte Flash, 9 timers, ADC and communication interfaces, 2.0 - 3.6 V
STMICROELECTR