STM32F051T8 [STMICROELECTRONICS]

主流ARM Cortex-M0基本型系列MCU,具有64 KB Flash、48 MHz CPU、运动控制和CEC功能;
STM32F051T8
型号: STM32F051T8
厂家: ST    ST
描述:

主流ARM Cortex-M0基本型系列MCU,具有64 KB Flash、48 MHz CPU、运动控制和CEC功能

文件: 总104页 (文件大小:1170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F051x4 STM32F051x6  
STM32F051x8  
Low- and medium-density advanced ARM™-based 32-bit MCU with  
16 to 64 Kbytes Flash, timers, ADC, DAC and comm. interfaces  
Datasheet production data  
Features  
Core: ARM 32-bit Cortex™-M0 CPU,  
frequency up to 48 MHz  
LQFP64 10x10 mm  
Memories  
UFQFPN32 5x5 mm  
LQFP48 7x7 mm  
– 16 to 64 Kbytes of Flash memory  
LQFP32 7x7 mm  
– 8 Kbytes of SRAM with HW parity checking  
– One 16-bit timer, with 2 IC/OC, 1 OCN,  
deadtime generation and emergency stop  
CRC calculation unit  
Two 16-bit timers, each with IC/OC and  
OCN, deadtime generation, emergency  
stop and modulator gate for IR control  
Reset and power management  
– Voltage range: 2.0 V to 3.6 V  
– Power-on/Power down reset (POR/PDR)  
– Programmable voltage detector (PVD)  
– Low power modes: Sleep, Stop, Standby  
– One 16-bit timer with 1 IC/OC  
– Independent and system watchdog timers  
– SysTick timer: 24-bit downcounter  
– One 16-bit basic timer to drive the DAC  
– V  
supply for RTC and backup registers  
BAT  
Clock management  
Calendar RTC with alarm and periodic wakeup  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
from Stop/Standby  
Communication interfaces  
2
– Up to two I C interfaces; one supporting  
Fast Mode Plus (1 Mbit/s) with 20 mA  
current sink, SMBus/PMBus, and wakeup  
from STOP  
Up to 55 fast I/Os  
– All mappable on external interrupt vectors  
– Up to 36 I/Os with 5 V tolerant capability  
– Up to two USARTs supporting master  
synchronous SPI and modem control; one  
with ISO7816 interface, LIN, IrDA  
capability, auto baud rate detection and  
wakeup feature  
5-channel DMA controller  
1 × 12-bit, 1.0 µs ADC (up to 16 channels)  
– Conversion range: 0 to 3.6V  
– Up to two SPIs (18 Mbit/s) with 4 to 16  
– Separate analog supply from 2.4 up to 3.6  
2
programmable bit frame, 1 with I S  
interface multiplexed  
One 12-bit D/A converter  
Two fast low-power analog comparators with  
– HDMI CEC interface, wakeup on header  
reception  
programmable input and output  
Up to 18 capacitive sensing channels  
supporting touchkey, linear and rotary touch  
sensors  
Serial wire debug (SWD)  
96-bit unique ID  
Up to 11 timers  
Table 1.  
Device summary  
– One 16-bit 7-channel advanced-control  
timer for 6 channels PWM output, with  
deadtime generation and emergency stop  
– One 32-bit and one 16-bit timer, with up to  
4 IC/OC, usable for IR control decoding  
Reference  
Part number  
STM32F051x4  
STM32F051x6  
STM32F051x8  
STM32F051K4, STM32F051C4, STM32F051R4  
STM32F051K6, STM32F051C6, STM32F051R6  
STM32F051C8, STM32F051R8, STM32F051K8  
July 2012  
Doc ID 022265 Rev 3  
1/105  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
STM32F051x  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
3.4  
3.5  
ARM® CortexTM-M0 core with embedded Flash and SRAM . . . . . . . . . 12  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16  
3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
REFINT  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
BAT  
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14.2 General-purpose timers (TIM2..3, TIM14..17) . . . . . . . . . . . . . . . . . . . . 21  
3.14.3 Basic timer TIM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/105  
Doc ID 022265 Rev 3  
STM32F051x  
Contents  
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 22  
3.16 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.17 Universal synchronous/asynchronous receiver transmitters (USART) . . . 24  
3.18 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 24  
3.19 High-definition multimedia interface (HDMI) - consumer electronics control  
(CEC) 25  
3.20 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
4
5
6
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 43  
Embedded reset and power control block characteristics . . . . . . . . . . . 43  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Doc ID 022265 Rev 3  
3/105  
Contents  
STM32F051x  
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.17 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.19  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
BAT  
6.3.20 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.21 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
7.1  
7.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
7.2.1  
7.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 100  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
4/105  
Doc ID 022265 Rev 3  
STM32F051x  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F051x family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . 10  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Capacitive sensing GPIOs available on STM32F051x devices . . . . . . . . . . . . . . . . . . . . . 19  
No. of capacitive sensing channels available on STM32F051x devices. . . . . . . . . . . . . . . 19  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
Table 9.  
STM32F051x I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
STM32F051x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM32F051x SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 33  
Alternate functions selected through GPIOA_AFR registers for port B . . . . . . . . . . . . . . . 34  
STM32F051x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Typical and maximum current consumption from V supply at VDD = 3.6 V. . . . . . . . . . 46  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . . 47  
DDA  
Typical and maximum V consumption in Stop and Standby modes . . . . . . . . . . . . . . . 48  
DD  
Typical and maximum V  
consumption in Stop and Standby modes . . . . . . . . . . . . . . 49  
DDA  
Typical and maximum current consumption from V  
supply. . . . . . . . . . . . . . . . . . . . . . 49  
BAT  
Typical current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 51  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Doc ID 022265 Rev 3  
5/105  
List of tables  
STM32F051x  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
AIN  
ADC  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
WWDG min-max timeout value @48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . . 92  
LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 94  
LQFP32 7 x 7mm 32-pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . 96  
UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Table 72.  
Table 73.  
Table 74.  
6/105  
Doc ID 022265 Rev 3  
STM32F051x  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LQFP64 64-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LQFP32 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
UFQFPN32 32-pin package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32F051x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 12. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 13. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 14. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 15. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 16. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 17. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 71  
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port. . . . . . . . . . . . . . . . . . . 71  
Figure 20. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 22. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 24. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
2
Figure 25. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
(1)  
Figure 28. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 29. I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 30. I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 31. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 92  
Figure 32. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 33. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 94  
Figure 34. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 35. LQFP32 7 x 7mm 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . 96  
Figure 36. LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5). . . . . . 98  
Figure 38. UFQFPN32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 39. LQFP64 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
D
A
Doc ID 022265 Rev 3  
7/105  
Introduction  
STM32F051x  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F051x microcontrollers.  
This STM32F051x4, STM32F051x6, and STM32F051x8 datasheet should be read in  
conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is  
available from the STMicroelectronics website www.st.com.  
For information on the ARM Cortex™-M0 core, please refer to the Cortex™-M0 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html.  
8/105  
Doc ID 022265 Rev 3  
STM32F051x  
Description  
2
Description  
The STM32F051x family incorporates the high-performance ARM Cortex™-M0 32-bit RISC  
core operating at a 48 MHz frequency, high-speed embedded memories (Flash memory up  
to 64 Kbytes and SRAM up to 8 Kbytes), and an extensive range of enhanced peripherals  
2
and I/Os. All devices offer standard communication interfaces (up to two I Cs, two SPIs, one  
I2S, one HDMI CEC, and up to two USARTs), one 12-bit ADC, one 12-bit DAC, up to five  
general-purpose 16-bit timers, a 32-bit timer and an advanced-control PWM timer.  
The STM32F051x family operates in the -40 to +85 °C and -40 to +105 °C temperature  
ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes  
allows the design of low-power applications.  
The STM32F051x family includes devices in four different packages ranging from 32 pins to  
64 pins. Depending on the device chosen, different sets of peripherals are included. The  
description below provides an overview of the complete range of peripherals proposed in  
this family.  
These features make the STM32F051x microcontroller family suitable for a wide range of  
applications such as application control and user interfaces, handheld equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.  
Doc ID 022265 Rev 3  
9/105  
Description  
Table 2.  
STM32F051x  
STM32F051x family device features and peripheral counts  
Peripheral  
STM32F051Kx  
STM32F051Cx  
STM32F051Rx  
32  
Flash (Kbytes)  
SRAM (Kbytes)  
16  
32  
4
64  
8
16  
32  
4
64  
8
16  
64  
8
4
Advanced  
control  
1 (16-bit)  
5 (16-bit)  
1 (32-bit)  
Timers  
General  
purpose  
Basic  
1 (16-bit)  
SPI [I2S](1)  
I2C  
1[1] (2)  
1(3)  
2
1[1] (2)  
2[1]  
2
1[1] (2)  
1(3)  
2[1]  
2
1(3)  
Comm.  
interfaces  
USART  
CEC  
1(4)  
1(4)  
2
1(4)  
2
1
12-bit synchronized  
ADC  
(number of channels)  
1
1
(10 ext. + 3 int.)  
(16 ext. + 3 int.)  
25 (on LQFP32)  
GPIOs  
39  
17  
55  
18  
27 (on UFQFPN32)  
13 (on LQFP32)  
Capacitive sensing  
channels  
14 (on UFQFPN32)  
12-bit DAC  
1
(number of channels)  
(1)  
Analog comparator  
Max. CPU frequency  
Operating voltage  
2
48 MHz  
2.0 to 3.6 V  
Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C  
Junction temperature: -40 °C to 125 °C  
Operating temperature  
Packages  
LQFP32  
LQFP48  
LQFP64  
UFQFPN32  
1. The SPI1 interface can be used either in SPI mode or in I2S audio mode.  
2. SPI2 is not present  
3. I2C2 is not present  
4. USART2 is not present  
10/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Description  
Figure 1.  
Block diagram  
0/7%2  
37#,+  
37$!4  
AS !&  
3ERIAL 7IRE  
$EBUG  
6
$$ꢀꢎ  
6$$ ꢈꢅ TO ꢉꢄꢇ6  
6/,4ꢄ 2%'ꢄ  
ꢉꢄꢉ 6 4/ ꢄꢎ 6  
6
33  
&,!3(  
ꢇꢋ +"  
ꢉꢅ BITS  
 6  
$$  
#/24%8ꢆ-ꢃ #05  
F
 ꢋꢎ -(Z  
0/2  
2ESET  
)NT  
3500,9  
350%26)3)/.  
(#,+  
.234  
6
32!-  
 +"  
$$!  
0/2  0$2  
.6)#  
 6  
$$!  
6
$$  
06$  
2# (3 ꢀꢋ -(Z  
2# (3  -(Z  
2# ,3  
 6  
$$!  
 6  
$$  
'0 $-!  
 CHANNELS  
/3#?). ꢌ0&ꢃꢍ  
/3#?/54 ꢌ0&ꢀꢍ  
84!, /3#  
ꢋꢆꢉꢅ -(Z  
0,,  
)77$'  
!("0#,+  
0OWER  
!0"0#,+  
!$##,+  
#%##,+  
#ONTROLLER  
6"!4ꢈꢀꢄꢇ6 TO ꢉꢄꢇ 6  
2%3%4  
 #,/#+  
 637  
53!24#,+  
(#,+  
#/.42/,  
/3#ꢉꢅ?). ꢌ0#ꢀꢋꢍ  
/3#ꢉꢅ?/54 ꢌ0#ꢀꢁꢍ  
84!, ꢉꢅK(Z  
'0)/ PORT !  
'0)/ PORT "  
'0)/ PORT #  
'0)/ PORT $  
'0)/ PORT &  
0!;ꢀꢁꢂꢃ=  
0";ꢀꢁꢂꢃ=  
&#,+  
"ACKUP  
REG  
4!-0%2ꢆ24#  
ꢌ!,!2- /54ꢍ  
24#  
24# INTERFACE  
0#;ꢀꢁꢂꢃ=  
0$ꢅ  
#2#  
 CHANNELS  
 COMPLꢄ CHANNELS  
"2+%42 INPUT AS !&  
4)-%2   
4)-%2   
4)-%2   
4)-%2 ꢀꢋ  
4)-%2 ꢀꢁ  
4)-%2 ꢀꢇ  
4)-%2 ꢀꢑ  
0&;ꢀꢂꢃ=  
0&;ꢑꢂꢋ=  
 CHꢊ%42 AS !&  
 CHꢊ %42 AS !&  
 CHANNEL AS !&  
 GROUPS OF  
 CHANNELS  
!NALOG  
SWITCHES  
4OUCH 3ENSING  
#ONTROLLER  
39.#  
ꢁꢁ !&  
!("  
!0"  
 CHANNELS  
 COMPLꢊ "2+ AS !&  
 CHANNELꢊ  
 COMPLꢊ "2+ AS !&  
%84ꢄ)4  
7+50  
 CHANNELꢊ  
 COMPLꢊ "2+ AS !&  
77$'  
-/3)ꢏ3$ꢊ  
)2?/54 AS !&  
-)3/ꢏ-#+ꢊ  
30)ꢀꢏ)ꢅ3ꢀ  
3#+ꢏ#+ꢊ  
.33ꢏ73 AS !&  
$"'-#5  
28ꢊ48ꢊ #43ꢊ 243ꢊ  
#+ AS !&  
53!24ꢀ  
53!24ꢅ  
-/3)ꢊ -)3/ꢊ  
3#+ꢊ .33  
AS !&  
30)ꢅ  
28ꢊ48ꢊ #43ꢊ 243ꢊ  
#+ AS !&  
3#,ꢊ3$!ꢊ3-"AL  
ꢌꢅꢃ M! FOR &-ꢒꢍ  
AS !&  
393#&' )&  
)ꢅ#ꢀ  
)ꢅ#ꢅ  
3#,ꢊ3$!  
AS !&  
'0 #OMPARATOR   
'0 #OMPARATOR   
).054ꢒꢊ  
).054  
/54054  
AS !&  
 6  
$$!  
#%# AS !&  
($-)ꢆ#%#  
4EMP SENSOR  
ꢀꢅꢆBIT !$#ꢀ  
ꢀꢇ  
!$ INPUTS  
)&  
ꢀꢅꢆBIT $!#ꢀ  
)&  
4)-%2   
$!#ꢀ?/54 AS !&  
-3ꢀꢓꢉꢀꢁ6ꢀ  
6
$$!  
6
33!  
 6  
$$!  
 6  
$$!  
Doc ID 022265 Rev 3  
11/105  
 
Functional overview  
STM32F051x  
3
Functional overview  
3.1  
ARM® CortexTM-M0 core with embedded Flash and SRAM  
The ARM Cortex™-M0 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M0 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F051x family has an embedded ARM core and is therefore compatible with all  
ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
3.2  
Memories  
The device has the following features:  
Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0  
wait states and featuring embedded parity checking with exception generation for fail-  
critical applications.  
The non-volatile memory is divided into two arrays:  
16 to 64 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot  
in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bit are used to select one of three boot  
options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1.  
12/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Functional overview  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a CRC-32 (Ethernet) polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
= 2.0 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL  
DDA  
(minimum voltage to be applied to V  
is 2.4 V when the ADC and DAC are used).  
DDA  
The V  
voltage level must be always greater or equal to the V voltage level and  
DDA  
DD  
must be provided first.  
V
BAT  
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.  
3.5.2  
Power supply supervisors  
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
V
, without the need for an external reset circuit.  
POR/PDR  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
should arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply voltages, however the V  
power  
DDA  
DD  
DDA  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
DDA  
equal to V  
.
DD  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state. The PVD is enabled by software.  
Doc ID 022265 Rev 3  
13/105  
 
Functional overview  
STM32F051x  
3.5.3  
Voltage regulator  
The regulator has three operating modes: main (MR), low power (LPR) and power down.  
MR is used in normal operating mode (Run)  
LPR can be used in Stop mode where the power demand is reduced  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode, providing high  
impedance output.  
3.5.4  
Low-power modes  
The STM32F051x family supports three low-power modes to achieve the best compromise  
between low power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled. The voltage regulator can also be put either in  
normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines, the PVD output, RTC alarm, COMPx, I2C1,  
USART1 or the CEC.  
The I2C1, USART1 and the CEC can be configured to enable the HSI RC oscillator for  
processing incoming data. If this is used, the voltage regulator should not be put in the  
low-power mode but kept in normal mode.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pins, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
14/105  
Doc ID 022265 Rev 3  
STM32F051x  
Functional overview  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
Figure 2.  
Clock tree  
&,)4&#,+  
TO &LASH PROGRAMMING INTERFACE  
(3)  
TO )ꢅ#ꢀ  
393#,+  
TO )ꢅ3ꢀ  
,3%  
ꢏꢅꢋꢋ  
TO #%#  
(3)  
 -(Z  
(3) 2#  
ꢏꢅ  
(#,+  
ꢏꢎ  
TO !(" BUSꢊ COREꢊ  
MEMORY AND $-!  
0,,32#  
TO CORTEX 3YSTEM TIMER  
&(#,+ #ORTEX FREE RUNNING CLOCK  
37  
0,,-5,  
(3)  
!("  
PRESCALER  
ꢏꢀꢊꢅꢊꢄꢄꢁꢀꢅ  
!0"  
PRESCALER  
ꢏꢀꢊꢅꢊꢋꢊꢎꢊꢀꢇ  
0,,  
XꢅꢊXꢉꢊꢄꢄ  
Xꢀꢇ  
0#,+  
0,,#,+  
TO !0" PERIPHERALS  
(3%  
#33  
393#,+  
)F ꢌ!0"ꢀ PRESCALER  
ꢈꢀꢍ Xꢀ ELSE Xꢅ  
TO 4)-ꢀꢊꢅꢊꢉꢊꢇꢊ  
ꢀꢋꢊꢀꢁꢊꢀꢇꢊꢀꢑ  
ꢏꢀꢊꢅꢊ  
ꢉꢊꢄꢄꢀꢇ  
!$#  
0RESCALER  
ꢏꢅꢊꢋ  
/3#?/54  
TO !$#  
ꢀꢋ -(Z MAX  
ꢋꢆꢉꢅ -(Z  
(3% /3#  
ꢀꢋ -(Z  
(3)ꢀꢋ 2#  
(3)ꢀꢋ  
/3#?).  
0#,+  
393#,+  
ꢏꢉꢅ  
TO 53!24ꢀ  
24##,+  
(3)  
/3#ꢉꢅ?).  
TO 24#  
,3%  
,3% /3#  
,3%  
ꢉꢅꢄꢑꢇꢎK(Z  
/3#ꢉꢅ?/54  
24#3%,;ꢀꢂꢃ=  
,3)  
,3) 2#  
ꢋꢃK(Z  
TO )7$'  
ꢏꢅ  
0,,#,+  
(3)  
(3)ꢀꢋ  
(3%  
393#,+  
-AIN CLOCK  
OUTPUT  
-#/  
-#/  
-3ꢀꢓꢓꢉꢁ6ꢅ  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
Doc ID 022265 Rev 3  
15/105  
Functional overview  
STM32F051x  
The I/O configuration can be locked if needed following a specific sequence in order to avoid  
spurious writing to the I/Os registers.  
3.8  
Direct memory access controller (DMA)  
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory  
and memory-to-peripheral transfers.  
The DMA supports circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except  
TIM14), DAC and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F051x family embeds a nested vectored interrupt controller able to handle up to  
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 24 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 55  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Analog to digital converter (ADC)  
The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature  
16/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Functional overview  
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions  
in single-shot or scan modes. In scan mode, automatic conversion is performed on a  
selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy  
of the temperature measurement. As the offset of the temperature sensor varies from chip  
to chip due to process variation, the uncalibrated internal temperature sensor is suitable for  
applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 3.  
Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
VDDA= 3.3 V  
TS_CAL1  
TS_CAL2  
0x1FFF F7B8 - 0x1FFF F7B9  
TS ADC raw data acquired at  
temperature of 110 °C  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN17 input channel. The  
REFINT  
precise voltage of V  
is individually measured for each part by ST during production  
REFINT  
test and stored in the system memory area. It is accessible in read-only mode.  
Table 4.  
Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 30 °C  
VREFINT_CAL  
0x1FFF F7BA - 0x1FFF F7BB  
VDDA= 3.3 V  
Doc ID 022265 Rev 3  
17/105  
Functional overview  
STM32F051x  
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN18. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
3.11  
Digital-to-analog converter (DAC)  
The 12-bit buffered DAC channel can be used to convert digital signals into analog voltage  
signal outputs. The chosen design structure is composed of integrated resistor strings and  
an amplifier in non-inverting configuration.  
This digital Interface supports the following features:  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
DMA capability  
External triggers for conversion  
Five DAC trigger inputs are used in the device. The DAC is triggered through the timer  
trigger outputs and the DAC interface is generating it’s own DMA requests.  
3.12  
Comparators (COMP)  
The device embeds two fast rail-to-rail low-power comparators with programmable reference  
voltage (internal or external), hysteresis and speed (low speed for low power) and with  
selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output pin  
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 24: Embedded  
internal reference voltage for the value and precision of the internal reference voltage.  
Both comparators can wake up from STOP mode, generate interrupts and breaks for the  
timers and can be also combined into a window comparator.  
The internal voltage reference is also connected to ADC_IN17 input channel of the ADC.  
3.13  
Touch sensing controller (TSC)  
The STM32F051x devices provide a simple solution for adding capacitive sensing  
functionality to any application. Capacitive sensing technology is able to detect the presence  
of a finger near an electrode which is protected from direct touch by a dielectric (glass,  
plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is  
measured using a proven implementation based on a surface charge transfer acquisition  
principle. It consists of charging the electrode capacitance and then transferring a part of the  
accumulated charges into a sampling capacitor until the voltage across this capacitor has  
reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly  
managed by the hardware touch sensing controller and only requires few external  
18/105  
Doc ID 022265 Rev 3  
STM32F051x  
Functional overview  
components to operate. The STM32F051x devices offer up to 18 capacitive sensing  
channels distributed over 6 analog I/O groups.  
Table 5.  
Group  
Capacitive sensing GPIOs available on STM32F051x devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PC5  
PB0  
PB1  
PB2  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
PA9  
PA10  
PA11  
PA12  
PB3  
1
2
3
4
PB4  
5
6
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
Table 6.  
No. of capacitive sensing channels available on STM32F051x devices  
Number of capacitive sensing channels  
Analog I/O group  
STM32F051Kx  
(UFQFPN32)  
STM32F051Kx  
STM32F051Rx  
STM32F051Cx  
(LQFP32)  
G1  
G2  
G3  
G4  
G5  
G6  
3
3
3
3
3
3
3
3
2
3
3
3
3
3
2
3
3
0
3
3
1
3
3
0
Number of capacitive  
sensing channels  
18  
17  
14  
14  
Doc ID 022265 Rev 3  
19/105  
 
Functional overview  
STM32F051x  
3.14  
Timers and watchdogs  
The STM32F051x family devices include up to six general-purpose timers, one basic timer  
and an advanced control timer.  
Table 7 compares the features of the advanced-control, general-purpose and basic timers.  
Table 7.  
Timer feature comparison  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler DMA request Capture/compare Complementary  
Timer  
factor  
generation  
channels  
outputs  
Any integer  
between 1  
and 65536  
Advanced  
control  
Up,down,  
up/down  
TIM1  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
4
Yes  
Any integer  
between 1  
and 65536  
Up,down,  
up/down  
TIM2  
TIM3  
Yes  
Yes  
No  
4
4
1
2
1
0
No  
No  
No  
Yes  
Yes  
No  
Any integer  
between 1  
and 65536  
Up,down,  
up/down  
Any integer  
between 1  
and 65536  
General  
purpose  
TIM14  
TIM15  
Up  
Up  
Up  
Up  
Any integer  
between 1  
and 65536  
Yes  
Yes  
Yes  
Any integer  
between 1  
and 65536  
TIM16,  
TIM17  
Any integer  
between 1  
and 65536  
Basic  
TIM6  
3.14.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The 4 independent channels can be  
used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
20/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Functional overview  
3.14.2  
General-purpose timers (TIM2..3, TIM14..17)  
There are six synchronizable general-purpose timers embedded in the STM32F051x  
devices (see Table 7 for differences). Each general-purpose timer can be used to generate  
PWM outputs, or as simple time base.  
TIM2, TIM3  
STM32F051x devices feature two synchronizable 4-channel general-purpose timers. TIM2  
is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a  
16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent  
channels each for input capture/output compare, PWM or one-pulse mode output. This  
gives up to 12 input captures/output compares/PWMs on the largest packages.  
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-  
control timer via the Timer Link feature for synchronization or event chaining.  
TIM2 and TIM3 both have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM15, TIM16 and TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single  
channel for input capture/output compare, PWM or one-pulse mode output.  
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with  
TIM1 via the Timer Link feature for synchronization or event chaining.  
TIM15 can be synchronized with TIM16 and TIM17.  
TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation  
Their counters can be frozen in debug mode.  
3.14.3  
3.14.4  
Basic timer TIM6  
This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit  
time base.  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-  
defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
Doc ID 022265 Rev 3  
21/105  
Functional overview  
STM32F051x  
operates independently from the main clock, it can operate in Stop and Standby modes. It  
can be used either as a watchdog to reset the device when a problem occurs, or as a free  
running timer for application timeout management. It is hardware or software configurable  
through the option bytes. The counter can be frozen in debug mode.  
3.14.5  
3.14.6  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source (HCLK or HCLK/8)  
3.15  
Real-time clock (RTC) and backup registers  
The RTC and the 5 backup registers are supplied through a switch that takes power either  
on V supply when present or through the V  
pin. The backup registers are five 32-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, or when the device wakes up from Standby  
mode.  
The RTC is an independent BCD timer/counter. Its main features are the following:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month.  
Programmable alarm with wake up from Stop and Standby mode capability.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from  
Stop and Standby modes on tamper event detection.  
Timestamp feature which can be used to save the calendar content. This function can  
triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 40 kHz)  
The high-speed external clock divided by 32.  
22/105  
Doc ID 022265 Rev 3  
STM32F051x  
Functional overview  
3.16  
Inter-integrated circuit interfaces (I2C)  
2
Up to two I C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both  
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s) and I2C1  
supports also Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.  
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2  
addresses, 1 with configurable mask). They also include programmable analog and digital  
noise filters.  
Table 8.  
Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
Benefits  
Available in Stop mode  
2. Stable length  
Variations depending on  
temperature, voltage, process  
Disabled when Wakeup from Stop  
mode is enabled  
Drawbacks  
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
verifications and ALERT protocol management. I2C1 also has a clock domain independent  
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address  
match.  
The I2C interfaces can be served by the DMA controller.  
Refer to Table 9 for the differences between I2C1 and I2C2.  
2
Table 9.  
STM32F051x I C implementation  
I2C features(1)  
I2C1  
I2C2  
X
X
X
X
X
X
X
X
X
X
X
X
7-bit addressing mode  
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
Doc ID 022265 Rev 3  
23/105  
 
Functional overview  
STM32F051x  
3.17  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The device embeds up to two universal synchronous/asynchronous receiver transmitters  
(USART1 and USART2), which communicate at speeds of up to 6 Mbit/s.  
They provide hardware management of the CTS, RTS and RS485 DE signals,  
multiprocessor communication mode, master synchronous communication and single-wire  
half-duplex communication mode. The USART1 supports also SmartCard communication  
(ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a  
clock domain independent from the CPU clock, allowing the USART1 to wake up the MCU  
from Stop mode.  
The USART interfaces can be served by the DMA controller.  
Refer to Table 10 for the differences between USART1 and USART2.  
Table 10. STM32F051x USART implementation  
USART modes/features(1)  
USART1  
USART2  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
X
1. X = supported.  
3.18  
Serial peripheral interface (SPI)/Inter-integrated sound  
interfaces (I2S)  
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
2
One standard I S interface (multiplexed with SPI1) supporting four different audio standards  
can operate as master or slave at simplex communication mode. It can be configured to  
transfer 16 and 24 or 32 bits with16-bit or 32-bit data resolution and synchronized by a  
specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit  
24/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Functional overview  
programmable linear prescaler. When operating in master mode it can output a clock for an  
external audio component at 256 times the sampling frequency.  
Refer to Table 11 for the differences between SPI1 and SPI2.  
Table 11. STM32F051x SPI/I2S implementation  
SPI features(1)  
SPI1  
SPI2  
Hardware CRC calculation  
X
X
X
X
X
X
X
X
Rx/Tx FIFO  
NSS pulse mode  
I2S mode  
TI mode  
X
1. X = supported.  
3.19  
3.20  
High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC)  
The device embeds a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC  
controller to wakeup the MCU from Stop mode on data reception.  
Serial wire debug port (SW-DP)  
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected  
to the MCU.  
Doc ID 022265 Rev 3  
25/105  
 
Pinouts and pin description  
STM32F051x  
4
Pinouts and pin description  
Figure 3.  
LQFP64 64-pin package pinout  
ꢇꢋ ꢇꢉ ꢇꢅ ꢇꢀ ꢇꢃ ꢁꢓ ꢁꢎ ꢁꢑ ꢁꢇ ꢁꢁ ꢁꢋ ꢁꢉ ꢁꢅ ꢁꢀ ꢁꢃ ꢋꢓ  
0&ꢑ  
6"!4  
0#ꢀꢉ  
ꢋꢎ  
ꢋꢑ  
ꢋꢇ  
ꢋꢁ  
ꢋꢋ  
ꢋꢉ  
ꢋꢅ  
ꢋꢀ  
ꢋꢃ  
ꢉꢓ  
ꢉꢎ  
ꢉꢑ  
ꢉꢇ  
ꢉꢁ  
ꢉꢋ  
ꢉꢉ  
0&ꢇ  
0!ꢀꢉ  
0!ꢀꢅ  
0!ꢀꢀ  
0!ꢀꢃ  
0!  
0#ꢀꢋꢏ/3#ꢉꢅ?).  
0#ꢀꢁꢏ/3#ꢉꢅ?/54  
0&ꢃꢏ/3#?).  
0&ꢀꢏ/3#?/54  
.234  
0#ꢃ  
0!  
,1&0ꢇꢋ  
0#ꢓ  
0#ꢎ  
0#ꢑ  
0#ꢇ  
0"ꢀꢁ  
0"ꢀꢋ  
0"ꢀꢉ  
0"ꢀꢅ  
0#ꢀ  
0#ꢅ  
ꢀꢃ  
ꢀꢀ  
ꢀꢅ  
ꢀꢉ  
ꢀꢋ  
ꢀꢁ  
ꢀꢇ  
0#ꢉ  
633!  
6$$!  
0!  
0!  
0!  
ꢀꢑ ꢀꢎ ꢀꢓ ꢅꢃ ꢅꢀ ꢅꢅ ꢅꢉ ꢅꢋ ꢅꢁ ꢅꢇ ꢅꢑ ꢅꢎ ꢅꢓ ꢉꢃ ꢉꢀ ꢉꢅ  
-3ꢀꢓꢎꢋꢉ6ꢀ  
26/105  
Doc ID 022265 Rev 3  
STM32F051x  
Figure 4.  
Pinouts and pin description  
LQFP48 48-pin package pinout  
ꢋꢎ ꢋꢑ ꢋꢇ ꢋꢁ ꢋꢋ ꢋꢉ ꢋꢅ ꢋꢀ ꢋꢃ ꢉꢓ ꢉꢎ ꢉꢑ  
0&ꢑ  
ꢉꢇ  
ꢉꢁ  
ꢉꢋ  
ꢉꢉ  
ꢉꢅ  
ꢉꢀ  
ꢉꢃ  
ꢅꢓ  
ꢅꢎ  
ꢅꢑ  
ꢅꢇ  
ꢅꢁ  
ꢀꢃ  
6"!4  
0#ꢀꢉ  
0&ꢇ  
0!ꢀꢉ  
0!ꢀꢅ  
0!ꢀꢀ  
0!ꢀꢃ  
0!  
0#ꢀꢋꢏ/3#ꢉꢅ?).  
0#ꢀꢁꢏ/3#ꢉꢅ?/54  
0&ꢃꢏ/3#?).  
0&ꢀꢏ/3#?/54  
.234  
,1&0ꢋꢎ  
0!  
633!  
0"ꢀꢁ  
0"ꢀꢋ  
0"ꢀꢉ  
0"ꢀꢅ  
6$$!  
0!  
0! ꢀꢀ  
ꢀꢅ  
0!  
ꢅꢋ  
ꢀꢉ ꢀꢋ ꢀꢁ ꢀꢇ ꢀꢑ ꢀꢎ ꢀꢓ ꢅꢃ ꢅꢀ ꢅꢅ ꢅꢉ  
-3ꢀꢓꢎꢋꢅ6ꢀ  
Figure 5.  
LQFP32 32-pin package pinout  
ꢉꢅ ꢉꢀ ꢉꢃ ꢅꢓ ꢅꢎ ꢅꢑ ꢅꢇ ꢅꢁ  
ꢅꢋ  
ꢅꢉ  
ꢅꢅ  
0!ꢀꢋ  
0!ꢀꢉ  
0!ꢀꢅ  
0!ꢀꢀ  
0!ꢀꢃ  
0!  
6$$  
0&ꢃꢏ/3#?).  
0&ꢀꢏ/3#?/54  
.234  
6$$!  
0!  
ꢅꢀ  
ꢅꢃ  
,1&0ꢉꢅ  
ꢀꢓ  
ꢀꢎ  
ꢀꢑ  
0!  
0!  
6$$  
0!  
 ꢀꢃ ꢀꢀ ꢀꢅ ꢀꢉ ꢀꢋ ꢀꢁ ꢀꢇ  
-3ꢉꢃꢋꢑꢁ6ꢀ  
Doc ID 022265 Rev 3  
27/105  
Pinouts and pin description  
Figure 6. UFQFPN32 32-pin package pinout  
STM32F051x  
ꢉꢅ ꢉꢀ ꢉꢃ ꢅꢓ ꢅꢎ ꢅꢑ ꢅꢇ ꢅꢁ  
6$$  
0&ꢃꢏ/3#?).  
0&ꢀꢏ/3#?/54  
.234  
ꢅꢋ  
0!ꢀꢋ  
0!ꢀꢉ  
0!ꢀꢅ  
0!ꢀꢀ  
0!ꢀꢃ  
0!  
ꢅꢉ  
ꢅꢅ  
ꢅꢀ  
633  
633!  
6$$!  
0!  
0!  
0!  
ꢅꢃ  
ꢀꢓ  
ꢀꢎ  
ꢀꢑ  
0!  
6$$  
ꢀꢃ ꢀꢀ ꢀꢅ  ꢀꢋ ꢀꢁ ꢀꢇ  
-3ꢀꢓꢎꢋꢋ6ꢅ  
Table 12. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Definition  
Unless otherwise specified in brackets below the pin name, the pin function  
during and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
3.3 V tolerant I/O directly connected to ADC  
Standard 3.3V I/O  
I/O structure  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during  
and after reset  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
28/105  
Doc ID 022265 Rev 3  
STM32F051x  
Pinouts and pin description  
Pin functions  
Table 13. Pin definitions  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
1
2
1
2
-
-
-
-
VBAT  
PC13  
S
Backup power supply  
RTC_TAMP1,  
RTC_TS, RTC_OUT,  
WKUP2  
(1)(2)  
(1)(2)  
(1)(2)  
I/O TC  
PC14-OSC32_IN  
(PC14)  
3
4
3
4
-
-
-
-
I/O TC  
I/O TC  
OSC32_IN  
OSC32_OUT  
OSC_IN  
PC15-  
OSC32_OUT  
(PC15)  
PF0-OSC_IN  
(PF0)  
5
6
5
6
2
3
2
3
I/O  
I/O  
FT  
FT  
PF1-OSC_OUT  
(PF1)  
OSC_OUT  
7
7
-
4
-
4
-
NRST  
PC0  
I/O RST  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
S
Device reset input / internal reset output (active low)  
8
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
9
-
-
-
PC1  
10  
11  
12  
13  
-
-
-
PC2  
-
-
-
PC3  
8
9
-
0
5
VSSA  
VDDA  
Analog ground  
Analog power supply  
5
S
USART2_CTS,  
ADC_IN0,  
COMP1_INM6,  
RTC_TAMP2,  
WKUP1  
TIM2_CH1_ETR,  
COMP1_OUT,  
TSC_G1_IO1  
14 10  
15 11  
16 12  
17 13  
6
7
8
9
6
7
8
9
PA0  
PA1  
PA2  
PA3  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
USART2_RTS, TIM2_CH2,  
TSC_G1_IO2, EVENTOUT  
ADC_IN1,  
COMP1_INP  
USART2_TX, TIM2_CH3,  
TIM15_CH1,  
ADC_IN2,  
COMP2_INM6  
COMP2_OUT,  
TSC_G1_IO3  
USART2_RX, TIM2_CH4,  
TIM15_CH2, TSC_G1_IO4  
ADC_IN3,  
COMP2_INP  
18  
19  
-
-
-
-
-
-
PF4  
PF5  
I/O  
I/O  
FT  
FT  
EVENTOUT  
EVENTOUT  
Doc ID 022265 Rev 3  
29/105  
 
Pinouts and pin description  
STM32F051x  
Table 13. Pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
ADC_IN4,  
COMP1_INM4,  
COMP2_INM4,  
DAC1_OUT  
SPI1_NSS/I2S1_WS,  
USART2_CK, TIM14_CH1,  
TSC_G2_IO1  
20 14 10 10  
21 15 11 11  
PA4  
PA5  
I/O TTa  
I/O TTa  
SPI1_SCK/I2S1_CK, CEC,  
TIM2_CH1_ETR,  
ADC_IN5,  
COMP1_INM5,  
COMP2_INM5  
TSC_G2_IO2  
SPI1_MISO/I2S1_MCK,  
TIM3_CH1, TIM1_BKIN,  
TIM16_CH1,  
COMP1_OUT,  
TSC_G2_IO3, EVENTOUT  
22 16 12 12  
PA6  
PA7  
I/O TTa  
I/O TTa  
ADC_IN6  
ADC_IN7  
SPI1_MOSI/I2S1_SD,  
TIM3_CH2, TIM14_CH1,  
TIM1_CH1N, TIM17_CH1,  
COMP2_OUT,  
23 17 13 13  
TSC_G2_IO4, EVENTOUT  
24  
25  
-
-
-
-
-
-
PC4  
PC5  
I/O TTa  
I/O TTa  
EVENTOUT  
ADC_IN14  
ADC_IN15  
TSC_G3_IO1  
TIM3_CH3, TIM1_CH2N,  
TSC_G3_IO2, EVENTOUT  
26 18 14 14  
27 19 15 15  
PB0  
I/O TTa  
I/O TTa  
ADC_IN8  
ADC_IN9  
TIM3_CH4, TIM14_CH1,  
TIM1_CH3N, TSC_G3_IO3  
PB1  
PB2  
(3)  
28 20  
29 21  
-
-
16  
-
I/O  
I/O  
FT  
FT  
TSC_G3_IO4  
I2C2_SCL, CEC,  
TIM2_CH3, TSC_SYNC  
PB10  
I2C2_SDA, TIM2_CH4,  
TSC_G6_IO1, EVENTOUT  
30 22  
-
-
PB11  
I/O  
FT  
31 23 16  
0
VSS  
VDD  
S
S
Ground  
Digital power supply  
SPI2_NSS, TIM1_BKIN,  
32 24 17 17  
33 25  
34 26  
35 27  
36 28  
-
-
-
-
-
-
PB12  
PB13  
PB14  
I/O  
I/O  
I/O  
FT  
FT  
FT  
TSC_G6_IO2, EVENTOUT  
SPI2_SCK, TIM1_CH1N,  
TSC_G6_IO3  
SPI2_MISO, TIM1_CH2N,  
TIM15_CH1, TSC_G6_IO4  
SPI2_MOSI, TIM1_CH3N,  
TIM15_CH1N, TIM15_CH2  
-
-
-
-
PB15  
PC6  
I/O  
I/O  
FT  
FT  
RTC_REFIN  
37  
-
TIM3_CH1  
30/105  
Doc ID 022265 Rev 3  
STM32F051x  
Pinouts and pin description  
Pin functions  
Table 13. Pin definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
38  
39  
40  
-
-
-
-
-
-
-
-
-
PC7  
PC8  
PC9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
USART1_CK, TIM1_CH1,  
EVENTOUT, MCO  
41 29 18 18  
42 30 19 19  
PA8  
PA9  
I/O  
I/O  
FT  
FT  
USART1_TX, TIM1_CH2,  
TIM15_BKIN,  
TSC_G4_IO1  
USART1_RX, TIM1_CH3,  
TIM17_BKIN,  
43 31 20 20  
44 32 21 21  
PA10  
PA11  
PA12  
I/O  
I/O  
FT  
FT  
TSC_G4_IO2  
USART1_CTS, TIM1_CH4,  
COMP1_OUT,  
TSC_G4_IO3, EVENTOUT  
USART1_RTS, TIM1_ETR,  
COMP2_OUT,  
TSC_G4_IO4, EVENTOUT  
45 33 22 22  
46 34 23 23  
I/O  
I/O  
FT  
FT  
PA13  
(4)  
IR_OUT, SWDAT  
(SWDAT)  
47 35  
48 36  
-
-
-
-
PF6  
PF7  
I/O  
I/O  
FT  
FT  
I2C2_SCL  
I2C2_SDA  
PA14  
(4)  
49 37 24 24  
I/O  
FT  
USART2_TX, SWCLK  
(SWCLK)  
SPI1_NSS/I2S1_WS,  
USART2_RX,  
TIM2_CH1_ETR,  
EVENTOUT  
50 38 25 25  
PA15  
I/O  
FT  
51  
52  
53  
54  
-
-
-
-
-
-
-
-
-
-
-
-
PC10  
PC11  
PC12  
PD2  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
TIM3_ETR  
SPI1_SCK/I2S1_CK,  
TIM2_CH2, TSC_G5_IO1,  
EVENTOUT  
55 39 26 26  
56 40 27 27  
PB3  
PB4  
I/O  
I/O  
FT  
FT  
SPI1_MISO/I2S1_MCK,  
TIM3_CH1, TSC_G5_IO2,  
EVENTOUT  
Doc ID 022265 Rev 3  
31/105  
Pinouts and pin description  
STM32F051x  
Table 13. Pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function after  
reset)  
Notes  
Alternate functions  
Additional functions  
SPI1_MOSI/I2S1_SD,  
I2C1_SMBA, TIM16_BKIN,  
TIM3_CH2  
57 41 28 28  
58 42 29 29  
PB5  
PB6  
PB7  
I/O  
FT  
I2C1_SCL, USART1_TX,  
TIM16_CH1N,  
I/O FTf  
I/O FTf  
TSC_G5_IO3  
I2C1_SDA, USART1_RX,  
TIM17_CH1N,  
59 43 30 30  
60 44 31 31  
TSC_G5_IO4  
BOOT0  
PB8  
I
B
Boot memory selection  
I2C1_SCL, CEC,  
TIM16_CH1, TSC_SYNC  
(3)  
61 45  
62 46  
-
-
32  
-
I/O FTf  
I/O FTf  
I2C1_SDA, IR_OUT,  
TIM17_CH1, EVENTOUT  
PB9  
63 47 32  
64 48  
0
1
VSS  
VDD  
S
S
Ground  
Digital power supply  
1
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIO PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- these GPIOs must not be used as a current sources (e.g. to drive an LED).  
2. After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the  
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to  
the Battery backup domain and BKP register description sections in the reference manual.  
3. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the  
package, they are not forced to a defined level by hardware).  
4. After reset, these pins are configured as SWDAT and SWCLK alternate functions, and the internal pull-up on SWDAT pin  
and internal pull-down on SWCLK pin are activated.  
32/105  
Doc ID 022265 Rev 3  
 
 
Table 14. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
TIM2_CH1_  
ETR  
PA0  
USART2_CTS  
TSC_G1_IO1  
COMP1_OUT  
PA1  
PA2  
PA3  
EVENTOUT  
TIM15_CH1  
TIM15_CH2  
USART2_RTS  
USART2_TX  
USART2_RX  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
COMP2_OUT  
SPI1_NSS/  
I2S1_WS  
PA4  
PA5  
PA6  
PA7  
USART2_CK  
CEC  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TIM14_CH1  
TIM14_CH1  
SPI1_SCK/  
I2S1_CK  
TIM2_CH1_  
ETR  
SPI1_MISO/  
I2S1_MCK  
TIM3_CH1  
TIM3_CH2  
TIM1_BKIN  
TIM1_CH1N  
TIM16_CH1  
TIM17_CH1  
EVENTOUT  
EVENTOUT  
COMP1_OUT  
COMP2_OUT  
SPI1_MOSI/  
I2S1_SD  
PA8  
PA9  
MCO  
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
IR_OUT  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
EVENTOUT  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
TIM15_BKIN  
TIM17_BKIN  
EVENTOUT  
EVENTOUT  
SWDAT  
PA10  
PA11  
PA12  
PA13  
PA14  
COMP1_OUT  
COMP2_OUT  
SWCLK  
USART2_TX  
SPI1_NSS/  
I2S1_WS  
TIM2_CH1_  
ETR  
PA15  
USART2_RX  
EVENTOUT  
 
Table 15. Alternate functions selected through GPIOA_AFR registers for port B  
Pin name  
AF0  
AF1  
AF2  
AF3  
PB0  
PB1  
EVENTOUT  
TIM14_CH1  
TIM3_CH3  
TIM3_CH4  
TIM1_CH2N  
TIM1_CH3N  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
I2C1_SMBA  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_SYNC  
PB2  
PB3  
SPI1_SCK / I2S1_CK  
SPI1_MISO / I2S1_MCK  
SPI1_MOSI / I2S1_SD  
USART1_TX  
USART1_RX  
CEC  
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
EVENTOUT  
TIM2_CH2  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
IR_OUT  
EVENTOUT  
TSC_SYNC  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
CEC  
EVENTOUT  
SPI2_NSS  
TIM2_CH4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TIM15_CH1N  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
SPI2_SCK  
SPI2_MISO  
TIM15_CH1  
TIM15_CH2  
SPI2_MOSI  
 
STM32F051x  
Memory mapping  
5
Memory mapping  
Figure 7.  
STM32F051x memory map  
ꢃX&&&& &&&&  
ꢃXꢋꢎꢃꢃ ꢀꢑ&&  
!("ꢅ  
ꢃXꢋꢎꢃꢃ ꢃꢃꢃꢃ  
ꢃX%ꢃꢀꢃ ꢃꢃꢃꢃ  
#ORTEXꢆ -)NTERNAL  
0ERIPHERALS  
ꢃX%ꢃꢃꢃ ꢃꢃꢃꢃ  
RESERVED  
ꢃX#ꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃXꢋꢃꢃꢅ ꢋꢉ&&  
ꢃXꢋꢃꢃꢅ ꢃꢃꢃꢃ  
")#ꢄ  
RESERVED  
ꢃX!ꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃXꢋꢃꢃꢀ ꢎꢃꢃꢃ  
ꢃXꢋꢃꢃꢀ ꢃꢃꢃꢃ  
"1#  
ꢃXꢀ&&& &&&&  
ꢃXꢀ&&& &#ꢃꢃ  
RESERVED  
/PTION "YTES  
ꢃXꢀ&&& &ꢎꢃꢃ  
ꢃXꢎꢃꢃꢃ ꢃꢃꢃꢃ  
RESERVED  
3YSTEM MEMORY  
ꢃXꢋꢃꢃꢃ ꢎꢃꢃꢃ  
ꢃXꢋꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃXꢀ&&& %#ꢃꢃ  
"1#  
ꢃXꢇꢃꢃꢃ ꢃꢃꢃꢃ  
RESERVED  
0ERIPHERALS  
ꢃXꢋꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃXꢃꢎꢃꢀ ꢃꢃꢃꢃ  
&LASH MEMORY  
RESERVED  
32!-  
ꢃXꢅꢃꢃꢃ ꢃꢃꢃꢃ  
ꢀYꢀꢃꢀꢀꢂꢀꢀꢀꢀ  
#/$%  
ꢃXꢃꢃꢃꢀ ꢃꢃꢃꢃ  
'MBTIꢁꢂTZTUFNꢂNFNPSZ  
PSꢂ43".ꢁꢂEFQFOEJOHꢂPO  
#005ꢂDPOGJHVSBUJPO  
ꢃXꢃꢃꢃꢃ ꢃꢃꢃꢃ  
ꢃXꢃꢃꢃꢃ ꢃꢃꢃꢃ  
2ESERVED  
-3ꢀꢓꢎꢋꢃ6ꢀ  
Doc ID 022265 Rev 3  
35/105  
Memory mapping  
STM32F051x  
Table 16. STM32F051x peripheral register boundary addresses  
Bus  
Boundary address  
Size  
Peripheral  
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 0800 - 0x4001 23FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 8000 - 0x4000 FFFF  
~384 MB Reserved  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
GPIOF  
Reserved  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
AHB2  
~128 MB Reserved  
1KB  
3KB  
1KB  
3KB  
1KB  
3KB  
1KB  
3KB  
1KB  
32KB  
9KB  
1KB  
3KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
7KB  
1KB  
1KB  
32KB  
TSC  
Reserved  
CRC  
Reserved  
AHB1  
FLASH Interface  
Reserved  
RCC  
Reserved  
DMA  
Reserved  
Reserved  
DBGMCU  
Reserved  
TIM17  
TIM16  
TIM15  
Reserved  
USART1  
Reserved  
SPI1/I2S1  
TIM1  
APB  
Reserved  
ADC  
Reserved  
EXTI  
SYSCFG + COMP  
Reserved  
36/105  
Doc ID 022265 Rev 3  
STM32F051x  
Memory mapping  
Table 16. STM32F051x peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
1KB  
Peripheral  
Reserved  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 5C00 - 0x4000 6FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 4800 - 0x4000 53FF  
0x4000 4400 - 0x4000 47FF  
0x4000 3C00 - 0x4000 43FF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1400 - 0x4000 1FFF  
0x4000 1000 - 0x4000 13FF  
0x4000 0800 - 0x4000 0FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
1KB  
1KB  
1KB  
5KB  
1KB  
1KB  
3 KB  
1KB  
2KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
1KB  
3KB  
1KB  
2KB  
1KB  
1KB  
CEC  
DAC  
PWR  
Reserved  
I2C2  
I2C1  
Reserved  
USART2  
Reserved  
SPI2  
APB  
Reserved  
IWDG  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM6  
Reserved  
TIM3  
TIM2  
Doc ID 022265 Rev 3  
37/105  
STM32F051x  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3.3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Figure 8.  
Pin loading conditions  
Figure 9.  
Pin input voltage  
-#5 PIN  
-#5 PIN  
C = 50 pF  
6
).  
-3ꢀꢓꢅꢀꢃ6ꢀ  
-3ꢀꢓꢅꢀꢀ6ꢀ  
Doc ID 022265 Rev 3  
39/105  
 
 
Electrical characteristics  
STM32F051x  
6.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
6
"!4  
"ACKUP CIRCUITRY  
ꢌ,3%ꢊ24#ꢊ  
7AKEꢆUP LOGIC  
0O WER SWITCH  
ꢇꢁꢆꢉꢄꢇ6  
"ACKUP REGISTERSꢍ  
/54  
).  
)/  
,OGIC  
'0 )ꢏ/S  
+ERNEL LOGIC  
ꢌ#05ꢊ  
$IGITAL  
 -EMORIESꢍ  
6
$$  
 §  
 §  
6
6
$$  
2EGULATOR  
 § ꢀꢃꢃ N&  
  § ꢋꢄꢑ —&  
33  
6
$$!  
6
$$!  
6
6
!$#ꢏ  
$!#  
!NALOGꢂ  
2%&ꢒ  
2%&ꢆ  
ꢀꢃ N&  
  —&  
2#Sꢊ 0,,ꢊ  
ꢄꢄꢄ  
6
33!  
-3ꢀꢓꢎꢑꢁ6ꢀ  
Caution:  
Each power supply pair (V /V , V  
/V  
etc..) must be decoupled with filtering  
DD SS  
DDA SSA  
ceramic capacitors as shown above. These capacitors must be placed as close as possible  
to, or below, the appropriate pins on the underside of the PCB to ensure the good  
functionality of the device.  
6.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
*
%%@7#"5  
6
"!4  
)
$$  
6
$$  
)
$$!  
6
$$!  
-3ꢀꢓꢅꢀꢉ6ꢀ  
40/105  
Doc ID 022265 Rev 3  
 
 
STM32F051x  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 17: Voltage characteristics,  
Table 18: Current characteristics, and Table 19: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 17. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDD–VSS  
–0.3  
4.0  
V
(including VDDA and VDD  
)
Allowed voltage difference for VDD  
> VDDA  
VDD–VDDA  
-
0.4  
V
Input voltage on FT and FTf pins  
Input voltage on TTa pins  
VSS 0.3  
VSS 0.3  
VSS 0.3  
VDD + 4.0  
4.0  
V
V
V
(2)  
VIN  
Input voltage on any other pin  
4.0  
Variations between different VDD  
power pins  
|ΔVDDx  
|
-
-
50  
50  
mV  
mV  
Variations between all the different  
ground pins  
|VSSX VSS  
|
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.11: Electrical  
sensitivity characteristics  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 18: Current characteristics for the maximum  
allowed injected current values.  
Doc ID 022265 Rev 3  
41/105  
 
 
Electrical characteristics  
STM32F051x  
Unit  
Table 18. Current characteristics  
Symbol  
Ratings  
Max.  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on FT, FTf and B pins  
Injected current on TC and RST pin  
100  
100  
25  
IIO  
25  
-5(2)  
5(3)  
5(4)  
mA  
IINJ(PIN)  
Injected current on TTa pins  
Total injected current (sum of all I/O and control  
pins)(5)  
ΣIINJ(PIN)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
3. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN <VSS. IINJ(PIN) must  
never be exceeded. Refer also to Table 17: Voltage characteristics for the maximum allowed input voltage  
values.  
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer also to Table 17: Voltage characteristics for the maximum allowed input voltage  
values. Negative injection disturbs the analog performance of the device. See note 2 below Table 56 on  
page 78.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 19. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
42/105  
Doc ID 022265 Rev 3  
 
 
 
STM32F051x  
Electrical characteristics  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 20. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
0
0
2
48  
48  
MHz  
V
3.6  
Analog operating voltage  
(ADC and DAC not used)  
2
3.6  
3.6  
Must have a potential equal  
to or higher than VDD  
(1)  
VDDA  
V
V
Analog operating voltage  
(ADC and DAC used)  
2.4  
VBAT  
Backup operating voltage  
1.65  
3.6  
444  
364  
357  
526  
85  
LQFP64  
LQFP48  
LQFP32  
-
-
-
-
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(2)  
PD  
mW  
UFQFPN32  
Maximum power dissipation –40  
Low power dissipation(3)  
–40  
Maximum power dissipation –40  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Low power dissipation(3)  
–40  
–40  
–40  
6 suffix version  
Junction temperature range  
7 suffix version  
1. When the ADC is used, refer to Table 54: ADC characteristics.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 19: Thermal  
characteristics).  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 19: Thermal characteristics).  
Doc ID 022265 Rev 3  
43/105  
 
 
Electrical characteristics  
STM32F051x  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 21 are derived from tests performed under the ambient  
temperature condition summarized in Table 20.  
Table 21. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
0
Max  
Unit  
VDD rise time rate  
tVDD  
V
DD fall time rate  
20  
0
µs/V  
VDDA rise time rate  
VDDA fall time rate  
tVDDA  
20  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 20.  
DD  
Table 22. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
1.8(2)  
Falling edge  
Rising edge  
1.88 1.96  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
1.84 1.92 2.0  
(1)  
VPDRhyst  
PDR hysteresis  
-
40  
-
mV  
ms  
(3)  
tRSTTEMPO  
Reset temporization  
1.5  
2.5  
4.5  
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector  
monitors only VDD  
.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
3. Guaranteed by design, not tested in production.  
Table 23. Programmable voltage detector characteristics  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ Max(1) Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.1  
2
2.18  
2.08  
2.28  
2.18  
2.38  
2.28  
2.48  
2.38  
2.58  
2.48  
2.26  
2.16  
2.37  
2.27  
2.48  
2.38  
2.58  
2.48  
2.69  
2.59  
V
V
V
V
V
V
V
V
V
V
VPVD0  
PVD threshold 0  
2.19  
2.09  
2.28  
2.18  
2.38  
2.28  
2.47  
2.37  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
44/105  
Doc ID 022265 Rev 3  
 
 
STM32F051x  
Electrical characteristics  
Table 23. Programmable voltage detector characteristics (continued)  
Symbol  
Parameter  
PVD threshold 5  
Conditions  
Min(1)  
Typ Max(1) Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.57  
2.47  
2.66  
2.56  
2.76  
2.66  
-
2.68  
2.58  
2.78  
2.68  
2.88  
2.78  
100  
2.79  
2.69  
2.9  
2.8  
3
V
V
VPVD5  
V
VPVD6  
PVD threshold 6  
PVD threshold 7  
V
V
VPVD7  
2.9  
-
V
(2)  
VPVDhyst  
IDD(PVD)  
PVD hysteresis  
mV  
µA  
PVD current consumption  
-
0.15  
0.26  
1. Data based on characterization results only, not tested in production.  
2. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 24 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 20.  
DD  
Table 24. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
–40 °C < TA < +105 °C 1.16  
1.2  
1.2  
1.25  
V
V
Internal reference voltage  
V
REFINT  
–40 °C < TA < +85 °C  
1.16  
-
1.24(1)  
ADC sampling time when  
reading the internal  
reference voltage  
17.1(3)  
µs  
(2)  
TS_vrefint  
5.1  
Internal reference voltage  
VRERINT spread over the  
temperature range  
10(3)  
VDD = 3 V 10 mV  
-
-
-
-
mV  
100(3)  
TCoeff  
Temperature coefficient  
ppm/°C  
1. Data based on characterization results, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
3. Guaranteed by design, not tested in production.  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
Doc ID 022265 Rev 3  
45/105  
 
Electrical characteristics  
STM32F051x  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
to 24 MHz and 1 wait state above 24 MHz)  
frequency (0 wait state from 0  
HCLK  
Prefetch is ON when the peripherals are enabled, otherwise it is OFF (to enable  
prefetch the PRFTBE bit in the FLASH_ACR register must be set before clock setting  
and bus prescaling)  
When the peripherals are enabled f  
= f  
HCLK  
PCLK  
The parameters given in Table 25 to Table 29 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 20.  
46/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Table 25. Typical and maximum current consumption from V supply at V = 3.6 V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Symbol Parameter Conditions fHCLK  
Max @ TA  
Max @ TA  
Unit  
Typ  
Typ  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
48 MHz 22  
32 MHz 15  
22.8  
15.5  
22.8  
15.5  
13.2  
5.2  
23.8  
16.0  
13.6  
5.4  
11.8 12.7  
12.7  
8.7  
13.3  
9.0  
8.1  
3.0  
HSE  
bypass,  
PLL on  
7.6  
7.2  
2.7  
8.7  
7.9  
2.9  
24 MHz 12.2 13.2  
7.9  
Supply  
current in  
Run mode,  
code  
executing  
from Flash  
HSE  
bypass,  
PLL off  
8 MHz 4.4  
1 MHz  
5.2  
1.3  
2.9  
1
1.3  
1.4  
0.7  
0.9  
0.9  
0.9  
48 MHz 22  
32 MHz 15  
22.8  
15.5  
22.8  
15.5  
13.2  
23.8  
16.0  
13.6  
11.8 12.7  
12.7  
8.7  
13.3  
9.0  
HSI clock,  
PLL on  
7.6  
7.2  
8.7  
7.9  
24 MHz 12.2 13.2  
8 MHz 4.4 5.2  
7.9  
8.1  
HSI clock,  
PLL off  
5.2  
5.4  
2.7  
2.9  
2.9  
3.0  
48 MHz 22.2 23.2(2) 23.2 24.4(2) 12.0 12.7(2) 12.7 13.3(2)  
HSE  
bypass,  
PLL on  
32 MHz 15.4 16.3  
24 MHz 11.2 12.2  
16.3  
12.2  
4.5  
16.8  
12.8  
4.7  
7.8  
6.2  
1.9  
8.7  
7.9  
2.9  
8.7  
7.9  
2.9  
9.0  
8.1  
3.0  
Supply  
current in  
Run mode,  
code  
executing  
from RAM  
HSE  
bypass,  
PLL off  
8 MHz 4.0  
1 MHz 0.6  
4.5  
0.8  
0.8  
0.9  
0.3  
0.6  
0.6  
0.7  
IDD  
mA  
48 MHz 22.2 23.2  
32 MHz 15.4 16.3  
24 MHz 11.2 12.2  
23.2  
16.3  
12.2  
24.4  
16.8  
12.8  
12.0 12.7  
12.7  
8.7  
13.3  
9.0  
HSI clock,  
PLL on  
7.8  
6.2  
8.7  
7.9  
7.9  
8.1  
HSI clock,  
PLL off  
8 MHz 4.0  
4.5  
4.5  
4.7  
1.9  
2.9  
2.9  
3.0  
48 MHz 14 15.3(2) 15.3 16.0(2) 2.8 3.0(2)  
3.0  
2.1  
1.7  
0.8  
3.2(2)  
2.3  
HSE  
bypass,  
PLL on  
32 MHz 9.5 10.2  
10.2  
7.8  
10.7  
8.3  
2.0  
1.5  
0.6  
2.1  
1.7  
0.8  
24 MHz 7.3  
8 MHz 2.6  
7.8  
2.9  
1.9  
Supply  
current in  
Sleep  
mode,  
code  
HSE  
2.9  
3.0  
0.8  
bypass,  
PLL off  
1 MHz 0.4  
48 MHz 14  
0.6  
0.6  
0.6  
0.2  
0.4  
0.4  
0.4  
15.3  
15.3  
10.2  
7.8  
16.0  
10.7  
8.3  
3.8  
2.6  
2.0  
4.0  
2.7  
2.1  
4.1  
2.8  
2.1  
4.2  
2.8  
2.1  
executing  
from Flash  
or RAM  
HSI clock,  
PLL on  
32 MHz 9.5 10.2  
24 MHz 7.3  
8 MHz 2.6  
7.8  
2.9  
HSI clock,  
PLL off  
2.9  
3.0  
0.6  
0.8  
0.8  
0.8  
1. Data based on characterization results, not tested in production unless otherwise specified.  
2. Data based on characterization results and tested in production with code executing from RAM.  
Doc ID 022265 Rev 3  
47/105  
 
Electrical characteristics  
STM32F051x  
Table 26. Typical and maximum current consumption from the V  
supply  
DDA  
V
= 2.4 V  
V
= 3.6 V  
DDA  
DDA  
Conditions  
(2)  
(2)  
Symbol Parameter  
fHCLK  
Unit  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
(1)  
Typ  
Typ  
48 MHz 150  
32 MHz 104  
24 MHz 82  
170  
121  
96  
178  
126  
100  
3.1  
182  
128  
103  
3.3  
164  
113  
88  
183  
129  
102  
3.8  
195  
135  
106  
4.1  
198  
138  
108  
4.4  
HSE  
bypass,  
PLL on  
Supply  
current in  
Run mode,  
code  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
2.0  
2.0  
2.7  
3.5  
2.7  
3.1  
3.3  
3.5  
3.8  
4.1  
4.4  
executing  
from Flash  
or RAM  
48 MHz 220  
32 MHz 174  
24 MHz 152  
240  
191  
167  
248  
196  
173  
252  
198  
174  
244  
193  
168  
263  
209  
183  
275  
215  
190  
278  
218  
192  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
72  
79  
82  
83  
83.5  
91  
94  
95  
IDDA  
µA  
48 MHz 150  
32 MHz 104  
24 MHz 82  
170  
121  
96  
178  
126  
100  
3.1  
182  
128  
103  
3.3  
164  
113  
88  
183  
129  
102  
3.8  
195  
135  
106  
4.1  
198  
138  
108  
4.4  
HSE  
bypass,  
PLL on  
Supply  
current in  
Sleep  
mode,  
code  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
2.0  
2.0  
2.7  
3.5  
2.7  
3.1  
3.3  
3.5  
3.8  
4.1  
4.4  
48 MHz 220  
32 MHz 174  
24 MHz 152  
240  
191  
167  
248  
196  
173  
252  
198  
174  
244  
193  
168  
263  
209  
183  
275  
215  
190  
278  
218  
192  
executing  
from Flash  
or RAM  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
72  
79  
82  
83  
83.5  
91  
94  
95  
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the  
PLL is off, IDDA is independent from the frequency.  
2. Data based on characterization results, not tested in production.  
48/105  
Doc ID 022265 Rev 3  
STM32F051x  
Table 27.  
Electrical characteristics  
Typical and maximum V consumption in Stop and Standby modes  
DD  
Typ @VDD (VDD = VDDA  
)
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in run mode,  
all oscillators OFF  
15 15.1 15.25 15.45 15.7 16  
22(2)  
48  
32  
64(2)  
45(2)  
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators  
OFF  
3.15 3.25 3.35 3.45 3.7  
0.8 0.95 1.05 1.2 1.35 1.5  
0.65 0.75 0.85 0.95 1.1 1.3  
4
7(2)  
IDD  
µA  
Supply  
current in  
Standby  
mode  
LSI ON and IWDG ON  
-
-
-
LSI OFF and IWDG  
OFF  
2(2)  
2.5  
3(2)  
1. Data based on characterization results, not tested in production unless otherwise specified.  
2. Data based on characterization results and tested in production.  
Doc ID 022265 Rev 3  
49/105  
Electrical characteristics  
STM32F051x  
Table 28.  
Typical and maximum V  
consumption in Stop and Standby modes  
DDA  
Typ @VDD (VDD = VDDA  
)
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in run mode,  
all oscillators OFF  
1.85  
1.85  
2
2
2.15 2.3 2.45 2.6  
2.15 2.3 2.45 2.6  
3.5  
3.5  
3.5  
3.5  
4.5  
4.5  
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators  
OFF  
Supply  
LSI ON and IWDG ON 2.25 2.5 2.65 2.85 3.05 3.3  
-
-
-
current in  
Standby  
mode  
LSI OFF and IWDG  
OFF  
1.75 1.9  
2
2.15 2.3 2.5  
3.5  
3.5  
4.5  
IDDA  
µA  
Regulator in run mode,  
all oscillators OFF  
1.11 1.15 1.18 1.22 1.27 1.35  
1.11 1.15 1.18 1.22 1.27 1.35  
-
-
-
-
-
-
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators  
OFF  
Supply  
current in  
Standby  
mode  
LSI ON and IWDG ON 1.5 1.58 1.65 1.78 1.91 2.04  
-
-
-
-
-
-
LSI OFF and IWDG  
1
1.02 1.05 1.05 1.15 1.22  
OFF  
1. Data based on characterization results, not tested in production.  
Table 29. Typical and maximum current consumption from V  
Typ @ VBAT  
supply  
BAT  
Max(1)  
TA =  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
25 °C 85 °C 105 °C  
LSE & RTC ON; "Xtal  
mode": lower driving  
capability;  
0.41 0.43 0.53 0.58 0.71 0.80 0.85  
0.71 0.75 0.85 0.91 1.06 1.16 1.25  
1.1  
1.5  
2
Backup  
domain  
supply  
current  
LSEDRV[1:0] = '00'  
IDD  
_
µA  
VBAT  
LSE & RTC ON; "Xtal  
mode" higher driving  
capability;  
1.55  
LSEDRV[1:0] = '11'  
1. Data based on characterization results, not tested in production.  
50/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Electrical characteristics  
Typical current consumption  
The MCU is placed under the following conditions:  
V
=V  
=3.3 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash access time is adjusted to f  
1 wait state above)  
frequency (0 wait states from 0 to 24 MHz,  
HCLK  
Prefetch is ON when the peripherals are enabled, otherwise it is OFF  
When the peripherals are enabled, f = f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
A development tool is connected to the board and the parasitic pull-up current is around  
30 µA  
Table 30. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
23.3  
17.6  
15.9  
12.4  
8.5  
11.5  
9.0  
8.0  
7.5  
Supply current in Run  
mode from VDD  
supply  
5.2  
IDD  
mA  
4.5  
3.0  
4 MHz  
2.8  
1.9  
2 MHz  
1.7  
1.3  
Running from  
HSE crystal  
clock 8 MHz,  
code  
executing  
from Flash  
1 MHz  
1.3  
1.0  
500 kHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.0  
0.9  
158  
120  
108  
83  
158  
120  
108  
83  
Supply current in Run  
mode from VDDA  
supply  
60  
60  
IDDA  
µA  
2.43  
2.43  
2.43  
2.43  
2.43  
2.43  
2.43  
2.43  
2.43  
2.43  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
Doc ID 022265 Rev 3  
51/105  
Electrical characteristics  
STM32F051x  
Table 31. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals Peripherals  
enabled  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
13.9  
10.55  
9.6  
2.98  
2.84  
2.6  
7.23  
5.01  
2.68  
1.81  
1.27  
1.03  
0.9  
2.09  
1.58  
0.99  
0.85  
0.77  
0.73  
0.71  
0.69  
157  
119  
107  
83  
Supply current in  
Sleep mode from VDD  
supply  
IDD  
mA  
4 MHz  
2 MHz  
1 MHz  
Running from  
HSE crystal  
clock 8 MHz,  
code executing  
from Flash or  
RAM  
500 kHz  
125 kHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
0.78  
158  
119  
108  
83  
60  
60  
Supply current in  
Sleep mode from  
VDDA supply  
IDDA  
2.36  
2.36  
2.36  
2.36  
2.36  
2.36  
2.38  
2.38  
2.38  
2.38  
2.38  
2.38  
µA  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
52/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 50: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 33: Peripheral current consumption), the I/Os used by an application also contribute to  
the current consumption. When an I/O pin switches, it uses the current from the MCU supply  
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or  
external) connected to the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+ C  
S
INT  
EXT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
Doc ID 022265 Rev 3  
53/105  
Electrical characteristics  
STM32F051x  
Table 32. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
)
4 MHz  
0.07  
8 MHz  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
0.15  
0.31  
0.53  
0.92  
0.18  
0.37  
0.76  
1.39  
2.188  
0.32  
0.64  
1.25  
2.23  
4.442  
0.49  
0.94  
2.38  
3.99  
0.64  
1.25  
3.24  
5.02  
0.81  
1.7  
VDD = 3.3 V  
C =CINT  
8 MHz  
VDD = 3.3 Volts  
CEXT = 0 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
8 MHz  
V
DD = 3.3 Volts  
CEXT = 10 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
I/O current  
consumption  
ISW  
mA  
VDD = 3.3 Volts  
CEXT = 22 pF  
8 MHz  
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDD = 3.3 Volts  
CEXT = 33 pF  
8 MHz  
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDD = 3.3 Volts  
CEXT = 47 pF  
8 MHz  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
3.67  
4 MHz  
8 MHz  
0.66  
1.43  
2.45  
4.97  
V
DD = 2.4 Volts  
CEXT = 47 pF  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
24 MHz  
1. CS = 7 pF (estimated value).  
54/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 33. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 17  
Doc ID 022265 Rev 3  
55/105  
Electrical characteristics  
STM32F051x  
Unit  
Table 33. Peripheral current consumption  
Typical consumption at 25 °C  
Peripheral  
IDD  
IDDA  
ADC(1)  
0.53  
0.24  
0.10  
0.27  
0.18  
0.35  
0.48  
0.58  
0.12  
0.04  
0.06  
0.43  
0.42  
0.22  
0.63  
0.53  
0.28  
1.01  
1.00  
0.78  
0.32  
0.45  
0.66  
0.57  
0.59  
0.28  
1.07  
0.48  
0.22  
0.964  
CEC  
-
CRC  
-
DAC(2)  
DBGMCU  
DMA  
0.408  
-
-
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOF  
I2C1  
-
-
-
-
-
-
I2C2  
-
PWR  
-
SPI1/I2S1  
SPI2  
-
mA  
-
See note (3)  
SYSCFG & COMP  
TIM1  
-
-
-
-
-
-
-
-
-
-
-
-
TIM2  
TIM3  
TIM6  
TIM14  
TIM15  
TIM16  
TIM17  
TSC  
USART1  
USART2  
WWDG  
1. ADC is in ready state after setting the ADEN bit in the ADC_CR register (ADRDY bit in ADC_ISR is high).  
2. DAC channel 1 enabled by setting EN1 bit in DAC_CR.  
3. COMP IDDA is specified as IDD(COMP) in Table 58: Comparator characteristics  
56/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 12.  
Table 34. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fHSE_ext  
1
8
32  
MHz  
VHSEH  
VHSEL  
tw(HSEH)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time  
OSC_IN rise or fall time  
15  
-
-
-
-
tw(HSEL)  
ns  
tr(HSE)  
tf(HSE)  
20  
1. Guaranteed by design, not tested in production.  
Figure 12. High-speed external clock source AC timing diagram  
T
7ꢌ(3%(ꢍ  
6
(3%(  
 
 
6
(3%,  
T
T
T
T
Rꢌ(3%ꢍ  
Fꢌ(3%ꢍ  
7ꢌ(3%,ꢍ  
4
(3%  
-3ꢀꢓꢅꢀꢋ6ꢅ  
Doc ID 022265 Rev 3  
57/105  
 
Electrical characteristics  
STM32F051x  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.13. However,  
the recommended clock input waveform is shown in Figure 13.  
Table 35. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSEH)  
0.7VDD  
VSS  
450  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
OSC32_IN high or low time  
OSC32_IN rise or fall time  
tw(LSEL)  
ns  
tr(LSE)  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 13. Low-speed external clock source AC timing diagram  
T
7ꢌ,3%(ꢍ  
6
,3%(  
 
 
6
,3%,  
T
T
T
Rꢌ,3%ꢍ  
Fꢌ,3%ꢍ  
T
7ꢌ,3%,ꢍ  
4
,3%  
-3ꢀꢓꢅꢀꢁ6ꢅ  
58/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 36. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 36. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
4
-
8
32  
-
MHz  
RF  
Feedback resistor  
200  
kΩ  
During startup(3)  
-
8.5  
V
DD=3.3 V, Rm= 30Ω,  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
CL=10 pF@8 MHz  
VDD=3.3 V, Rm= 45Ω,  
CL=10 pF@8 MHz  
IDD  
HSE current consumption  
mA  
VDD=3.3 V, Rm= 30Ω,  
CL=5 pF@32 MHz  
VDD=3.3 V, Rm= 30Ω,  
CL=10 pF@32 MHz  
V
DD=3.3 V, Rm= 30Ω,  
1.5  
CL=20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 14). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on electing the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Doc ID 022265 Rev 3  
59/105  
 
Electrical characteristics  
Figure 14. Typical application with an 8 MHz crystal  
STM32F051x  
2ESONATOR WITH  
INTEGRATED CAPACITORS  
#
,ꢀ  
F
/3#?).  
(3%  
"IAS  
CONTROLLED  
GAIN  
 -(Z  
RESONATOR  
2
&
/3#?/54  
ꢌꢀꢍ  
2
%84  
#
,ꢅ  
-3ꢀꢓꢎꢑꢇ6ꢀ  
1. REXT value depends on the crystal characteristics.  
60/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 37. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 37. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
LSEDRV[1:0]=00  
lower driving capability  
-
-
0.5  
0.9  
1
LSEDRV[1:0]= 01  
medium low driving capability  
-
-
-
-
-
-
IDD  
LSE current consumption  
µA  
LSEDRV[1:0] = 10  
medium high driving capability  
-
1.3  
1.6  
-
LSEDRV[1:0]=11  
higher driving capability  
-
LSEDRV[1:0]=00  
lower driving capability  
5
8
15  
LSEDRV[1:0]= 01  
medium low driving capability  
-
Oscillator  
transconductance  
gm  
µA/V  
LSEDRV[1:0] = 10  
medium high driving capability  
-
LSEDRV[1:0]=11  
higher driving capability  
25  
-
-
-
-
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Doc ID 022265 Rev 3  
61/105  
 
Electrical characteristics  
Figure 15. Typical application with a 32.768 kHz crystal  
STM32F051x  
2ESONATOR WITH  
INTEGRATED CAPACITORS  
#
,ꢀ  
F
/3#ꢉꢅ?).  
,3%  
$RIVE  
PROGRAMMABLE  
AMPLIFIER  
ꢉꢅꢄꢑꢇꢎ K(Z  
RESONATOR  
/3#ꢉꢅ?/54  
#
,ꢅ  
-3ꢉꢃꢅꢁꢉ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
6.3.7  
Internal clock source characteristics  
The parameters given in Table 38 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 20.  
High-speed internal (HSI) RC oscillator  
(1)  
Table 38. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
8
-
-
-
-
-
-
MHz  
%
TRIM  
-
1(2)  
55(2)  
4.6(3)  
2.9(3)  
2.2(3)  
1
DuCy(HSI) Duty cycle  
45(2)  
–3.8(3)  
–2.9(3)  
–1.3(3)  
–1  
%
TA = –40 to 105 °C  
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
%
Accuracy of the HSI  
oscillator (factory  
calibrated)  
%
ACCHSI  
%
%
HSI oscillator startup  
time  
tsu(HSI)  
1(2)  
-
2(2)  
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
-
80  
100(2)  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
62/105  
Doc ID 022265 Rev 3  
 
 
STM32F051x  
Electrical characteristics  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 39. HSI14 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI14 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
-
-
14  
-
MHz  
%
1(2)  
55(2)  
5.1(3)  
3.1(3)  
2.2(3)  
1
DuCy(HSI14) Duty cycle  
45(2)  
-
%
TA = –40 to 105 °C –4.2(3)  
TA = –10 to 85 °C –3.2(3)  
-
%
-
%
Accuracy of the HSI14  
oscillator (factory calibrated)  
ACCHSI14  
TA = 0 to 70 °C  
TA = 25 °C  
–1.3(3)  
-
%
–1  
-
%
tsu(HSI14) HSI14 oscillator startup time  
1(2)  
-
2(2)  
µs  
HSI14 oscillator power  
IDD(HSI14)  
-
100 150(2)  
µA  
consumption  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 40. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.75  
1.2  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 41 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The event used to wake up the device depends from the current operating mode:  
Stop or sleep mode: the wakeup event is WFE  
The wakeup pin used in stop and sleep mode is PA0 and in standby mode is the PA1.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 20.  
Doc ID 022265 Rev 3  
63/105  
 
Electrical characteristics  
STM32F051x  
Max Unit  
Table 41. Low-power mode wakeup timings  
Typ @VDD  
Symbol  
Parameter  
Conditions  
= 2.0 V = 2.4 V =2.7V  
= 3 V =3.3V  
Regulator in run  
mode  
4.2  
8.05  
60.35  
1.1  
4.2  
7.05  
55.6  
1.1  
4.2  
6.6  
4.2  
6.27  
52.02  
1.1  
4.2  
6.05  
50.96  
1.1  
5
9
Wakeup from Stop  
mode  
tWUSTOP  
Regulator in low  
power mode  
µs  
Wakeup from  
Standby mode  
tWUSTANDBY  
53.5  
1.1  
Wakeup from Sleep  
mode  
tWUSLEEP  
6.3.8  
PLL characteristics  
The parameters given in Table 42 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 20.  
Table 42. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
6.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
64/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Electrical characteristics  
Table 43. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = –40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
3.6  
µs  
ms  
ms  
mA  
mA  
V
tERASE Page (1 KB) erase time TA = –40 to +105 °C  
-
-
-
-
-
tME  
Mass erase time  
TA = –40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
Vprog Programming voltage  
2
1. Guaranteed by design, not tested in production.  
Table 44. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
NEND  
Endurance  
kcycles  
Years  
10  
TA = –40 to +105 °C (7 suffix versions)  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
Doc ID 022265 Rev 3  
65/105  
Electrical characteristics  
STM32F051x  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 45. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 45. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP64, TA = +25 °C,  
fHCLK = 48 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
3B  
conforms to IEC 61000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP64, TA = +25 °C,  
fHCLK = 48 MHz  
conforms to IEC 61000-4-4  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
66/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Prequalification trials  
Electrical characteristics  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 46. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
-3  
28  
23  
4
VDD = 3.6 V, TA = 25 °C,  
LQFP64 package  
compliant with IEC  
61967-2  
dBµV  
-
SEMI  
Peak level  
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 47. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
TA = +25 °C, conforming  
V
2
II  
2000  
500  
ESD(HBM) voltage (human body model) to JESD22-A114  
V
Electrostatic discharge  
TA = +25 °C, conforming  
V
ESD(CDM) voltage (charge device model) to JESD22-C101  
1. Data based on characterization results, not tested in production.  
Doc ID 022265 Rev 3  
67/105  
Electrical characteristics  
Static latch-up  
STM32F051x  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 48. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of current injection on adjacent pins (lower than 5 µA  
or lower than 10 µA), or other functional failure (for example reset, oscillator frequency  
deviation).  
The characterization results are given in Table 49.  
Table 49. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0, PF0-OSC_IN  
and PF1-OSC_OUT pins  
–0  
–5  
NA  
NA  
Injected current on PA10, PA12, PB4, PB5,  
PB10, PB15 and PD2 with current injection  
on adjacent pins > –5 µA and <–10 µA  
mA  
Injected current on other FT and FTf pins  
with current injection on adjacent pins  
<–5 µA  
IINJ  
–5  
NA  
Injected current on PA6 and PC0 pins  
Injected current on all other TTa pins  
Injected current on TC and RST pins  
–0  
–5  
–5  
+5  
+5  
+5  
68/105  
Doc ID 022265 Rev 3  
 
 
STM32F051x  
Electrical characteristics  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under the conditions summarized in Table 20. All I/Os are CMOS and TTL  
compliant.  
Table 50. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Standard I/O input low  
level voltage  
–0.3  
-
0.3VDD+0.07  
TTa I/O input low level  
voltage  
–0.3  
–0.3  
-
-
-
-
-
-
-
0.3VDD+0.07  
0.475VDD–0.2  
0.3VDD–0.3  
VDD+0.3  
VDD+0.3  
5.5  
VIL  
FT and FTf(1) I/O input  
low level voltage  
BOOT0 input low level  
voltage  
0
V
Standard I/O input high  
level voltage  
0.445VDD+0.398  
0.445VDD+0.398  
0.5VDD+0.2  
0.2VDD+0.95  
TTa I/O input high level  
voltage  
VIH  
FT and FTf(1) I/O input  
high level voltage  
BOOT0 input high level  
voltage  
5.5  
Standard I/O Schmitt  
trigger voltage  
200  
200  
100  
-
-
-
-
-
-
hysteresis(2)  
TTa I/O Schmitt trigger  
voltage hysteresis(2)  
Vhys  
mV  
FT and FTf I/O Schmitt  
trigger voltage  
hysteresis(2)  
BOOT0 input Schmitt  
trigger voltage  
300  
-
-
hysteresis(2)  
Doc ID 022265 Rev 3  
69/105  
 
 
 
Electrical characteristics  
STM32F051x  
Unit  
Table 50. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
VSS VIN VDD  
I/O TC, FT and FTf  
-
-
±±01  
VSS VIN VDD  
2 VVDD VDDA 3.6 V  
-
-
-
-
±±01  
I/O TTa used in digital  
mode  
VIN= 5 V  
I/O FT and FTf  
10  
Ilkg  
Input leakage current (3)  
µA  
VIN= 3.6 V,  
2 VVDD VIN  
VDDA = 3.6 V  
-
-
1
I/O TTa used in digital  
mode  
VSS VIN VDDA  
2 VVDD VDDA 3.6 V  
-
-
±±02  
I/O TTa used in analog  
mode  
Weak pull-up equivalent  
resistor(4)  
RPU  
VIN = VSS  
VIN = VDD  
30  
40  
50  
kΩ  
Weak pull-down  
RPD  
CIO  
30  
-
40  
5
50  
-
kΩ  
equivalent resistor(4)  
I/O pin capacitance  
pF  
1. To sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled.  
2. Hysteresis voltage between Schmitt trigger switching levels. Data based on characterization, not tested in production.  
3. Leakage could be higher than max. if negative current is injected on adjacent pins.  
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 16 and Figure 17 for standard I/Os, and  
in Figure 18 and Figure 19 for 5 V tolerant I/Os.  
70/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Figure 16. TC and TTa I/O input characteristics - CMOS port  
VIL/VIH (V)  
= 0.7V  
+0.398  
= 0.445V  
CMOS standard requirements V  
V
V
VIHmin 2.0  
+0.07  
= 0.3V  
1.3  
Input range not  
guaranteed  
CMOS standard requirements VILmax = 0.3VDD  
VILmax 0.7  
0.6  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30255V1  
Figure 17. TC and TTa I/O input characteristics - TTL port  
VIL/VIH (V)  
+0.398  
TTL standard requirements VIHmin = 2 V  
= 0.445V  
= 0.3V  
V
VIHmin 2.0  
1.3  
+0.07  
V
Input range not  
guaranteed  
VILmax 0.8  
0.7  
TTL standard requirements VILmax = 0.8 V  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30256V1  
Doc ID 022265 Rev 3  
71/105  
Electrical characteristics  
STM32F051x  
Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port  
VIL/VIH (V)  
+0.2  
CMOS standard requirements VIH min= 0.7VDD  
= 0.5V  
V
V
2.0  
-0.2  
= 0.475V  
Input range not  
guaranteed  
1.0  
CMOS standard requirements VILmax = 0.3VDD  
0.5  
VDD (V)  
2.0  
3.6  
MS30257V1  
Figure 19. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port  
VIL/VIH (V)  
+0.2  
TTL standard requirements VIHmin = 2 V  
= 0.5V  
V
V
2.0  
-0.2  
Input range not  
guaranteed  
= 0.475V  
1.0  
0.8  
TTL standard requirements VILmax = 0.8 V  
0.5  
VDD (V)  
2.0  
2.7  
3.6  
MS30258V1  
72/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V ).  
V
OL/ OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 18).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 18).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 51 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 20. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified).  
Table 51. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
CMOS port(2)  
IIO = +8 mA  
VOL  
-
0.4  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–0.4  
-
0.4  
-
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
TTL port(2)  
IIO =+ 8mA  
VOL  
-
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)  
2.7 V < VDD < 3.6 V  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 5 pins are sunk at same time  
(1)(4)  
VOL  
-
1.3  
-
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 5 pins are sourced at same time  
(3)(4)  
VOH  
VDD–1.3  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(4)  
VOL  
-
0.4  
-
IIO = +6 mA  
V
V
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)(4)  
VOH  
VDD–0.4  
-
IIO = +20 mA  
Output low level voltage for an FTf I/O  
pin in FM+ mode  
VOLFM+  
0.4  
2.7 V < VDD < 3.6 V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 18  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 18 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Data based on characterization results, not tested in production.  
Doc ID 022265 Rev 3  
73/105  
 
 
Electrical characteristics  
STM32F051x  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 20 and  
Table 52, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 20.  
DD  
(1)  
Table 52. I/O AC characteristics  
OSPEEDRy  
[1:0] value(1)  
Symbol  
Parameter  
Conditions  
Min Max  
Unit  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
-
-
2
MHz  
Output high to low level  
tf(IO)out  
125(3)  
x0  
01  
fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 3.6 V  
ns  
MHz  
ns  
Output low to high level  
rise time  
tr(IO)out  
-
-
-
125(3)  
10  
fmax(IO)out Maximum frequency(2)  
Output high to low level  
fall time  
tf(IO)out  
25(3)  
Output low to high level  
rise time  
tr(IO)out  
-
25(3)  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
TBD  
-
-
-
-
-
-
-
-
-
-
50  
30  
MHz  
MHz  
MHz  
fmax(IO)out Maximum frequency(2)  
20  
5(3)  
8(3)  
12(3)  
5(3)  
8(3)  
12(3)  
Output high to low level  
fall time  
11  
tf(IO)out  
ns  
Output low to high level  
rise time  
tr(IO)out  
fmax(IO)out Maximum frequency(2)  
TBD MHz  
FM+  
Output high to low level  
fall time  
tf(IO)out  
TBD  
TBD  
-
-
TBD  
ns  
configuration  
(4)  
Output low to high level  
rise time  
tr(IO)out  
TBD  
Pulse width of external  
tEXTIpw  
signals detected by the  
EXTI controller  
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0091 reference manual for a description of  
GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 20.  
3. Guaranteed by design, not tested in production.  
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F05xxx reference manual RM0091 for a  
description of FM+ I/O mode configuration.  
74/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Figure 20. I/O AC characteristics definition  
Electrical characteristics  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
Doc ID 022265 Rev 3  
75/105  
Electrical characteristics  
STM32F051x  
6.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 50).  
PU  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under ambient temperature and VDD supply voltage conditions summarized in  
Table 20.  
Table 53. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.3  
2
-
-
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.3  
NRST Schmitt trigger voltage  
hysteresis  
-
200  
-
mV  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
30  
-
40  
-
50  
100  
-
kΩ  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
-
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
Figure 21. Recommended NRST pin protection  
6
$$  
%XTERNAL  
RESET CIRCUITꢌꢀꢍ  
2
05  
ꢌꢅꢍ  
)NTERNAL 2ESET  
.234  
&ILTER  
ꢃꢄꢀ —&  
-3ꢀꢓꢎꢑꢎ6ꢀ  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 53. Otherwise the reset will not be taken into account by the device.  
76/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Electrical characteristics  
6.3.15  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 54 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 20.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 54. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
fADC  
2.4  
-
V
ADC clock frequency  
Sampling rate  
0.6  
-
-
14  
1
MHz  
MHz  
(1)  
0.05  
fS  
f
ADC = 14 MHz  
-
-
-
-
-
823  
17  
kHz  
1/fADC  
V
(1)  
External trigger frequency  
fTRIG  
VAIN  
Conversion voltage range  
External input impedance  
Sampling switch resistance  
0
VDDA  
See Equation 1 and  
Table 55 for details  
(1)  
RAIN  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
(1)  
RADC  
Internal sample and hold  
capacitor  
(1)  
8
CADC  
f
ADC = 14 MHz  
5.9  
µs  
1/fADC  
µs  
(1)  
Calibration time  
tCAL  
83  
0.196  
5.5  
fADC = fPCLK/2 = 14 MHz  
fADC = fPCLK/2  
1/fPCLK  
µs  
(1)  
Trigger conversion latency  
fADC = fPCLK/4 = 12 MHz  
0.219  
10.5  
-
tlatr  
f
ADC = fPCLK/4  
1/fPCLK  
µs  
fADC = fHSI14 = 14 MHz  
0.188  
-
0.259  
-
ADC jitter on trigger  
conversion  
JitterADC  
fADC = fHSI14  
1
1/fHSI14  
f
f
ADC = 14 MHz  
0.107  
1.5  
0
-
-
17.1  
239.5  
1
µs  
1/fADC  
µs  
(1)  
Sampling time  
Power-up time  
tS  
(1)  
tSTAB  
0
ADC = 14 MHz  
1
18  
µs  
Total conversion time  
(including sampling time)  
(1)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Guaranteed by design, not tested in production.  
Doc ID 022265 Rev 3  
77/105  
 
Electrical characteristics  
Equation 1: R  
STM32F051x  
max formula  
AIN  
TS  
RAIN < ------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 55.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (kΩ)  
1.5  
7.5  
0.11  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
0.4  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2) (3)  
Table 56. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
1.3  
1
2
1.5  
1.5  
1
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
0.5  
0.7  
0.8  
3.3  
1.9  
2.8  
0.7  
1.2  
3.3  
1.9  
2.8  
0.7  
1.2  
LSB  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
1.5  
4
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
2.8  
3
Gain error  
LSB  
LSB  
VDDA = 2.7 V to 3.6 V  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
1.3  
1.7  
4
TA = 40 to 105 °C  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 2.4 V to 3.6 V  
TA = 25 °C  
2.8  
3
Gain error  
Differential linearity error  
Integral linearity error  
1.3  
1.7  
1. ADC DC accuracy values are measured after internal calibration.  
78/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not  
affect the ADC accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
Figure 22. ADC accuracy characteristics  
V
DDA  
 
1 LSB  
IDEAL  
ꢋꢃꢓꢇ  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
4095  
4094  
4093  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E =Offset Error: deviation between the first actual  
O
transition and the first ideal one.  
(1)  
E =Gain Error: deviation between the last ideal  
G
transition and the last actual one.  
E
E
O
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
0
V
1
2
3
4
5
6
7
4093 4094 4095 4096  
V
DDA  
SSA  
-3ꢀꢓꢎꢎꢃ6ꢀ  
Figure 23. Typical connection diagram using the ADC  
6
$$!  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
(1)  
R
R
ADC  
AIN  
AINx  
12-bit  
converter  
I
1 μA  
L
C
V
T
parasitic  
V
AIN  
0.6 V  
(1)  
C
ADC  
-3ꢀꢓꢎꢎꢀ6ꢅ  
1. Refer to Table 54 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 10. The 10 nF capacitor  
should be ceramic (good quality) and it should be placed as close as possible to the chip.  
Doc ID 022265 Rev 3  
79/105  
 
Electrical characteristics  
STM32F051x  
6.3.16  
DAC electrical specifications  
Table 57. DAC characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Analog supply voltage for  
DAC ON  
VDDA  
2.4  
5
-
-
3.6  
-
V
(1)  
RLOAD  
Resistive load with buffer ON  
kΩ Load is referred to ground  
When the buffer is OFF, the Minimum  
Impedance output with buffer  
OFF  
resistive load between DAC_OUT  
and VSS to have a 1% accuracy is  
(1)  
RO  
-
-
15  
kΩ  
1.5 MΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer is  
ON).  
(1)  
CLOAD  
Capacitive load  
-
-
-
50  
-
It gives the maximum output  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
excursion of the DAC.  
0.2  
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VDDA = 3.6 V  
DAC_OUT Higher DAC_OUT voltage  
max(1)  
with buffer ON  
and (0x155) and (0xEAB) at VDDA  
2.4 V  
=
-
-
-
-
-
-
VDDA – 0.2  
V
mV  
V
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer OFF  
0.5  
-
VDDA – 1LSB  
380  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
-
-
-
max(1)  
with buffer OFF  
With no load, middle code (0x800) on  
the input  
µA  
µA  
DAC DC current  
IDDA  
consumption in quiescent  
mode (Standby mode)  
With no load, worst code (0xF1C) on  
the input  
480  
Given for the DAC in 10-bit  
configuration  
-
-
0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(2)  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
2
1
LSB  
LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(2)  
Given for the DAC in 12-bit  
configuration  
-
-
4
LSB  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
-
-
-
-
10  
3
mV  
LSB  
LSB  
%
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VDDA/2)  
Given for the DAC in 10-bit at VDDA  
3.6 V  
=
=
Offset(2)  
Given for the DAC in 12-bit at VDDA  
3.6 V  
12  
0.5  
Gain  
Given for the DAC in 12bit  
configuration  
Gain error  
error(2)  
80/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Comments  
Table 57. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value 1LSB  
(2)  
tSETTLING  
-
3
4
µs CLOAD 50 pF, RLOAD 5 kΩ  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(2)  
-
-
1
MS/s CLOAD 50 pF, RLOAD 5 kΩ  
CLOAD 50 pF, RLOAD 5 kΩ  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(2)  
tWAKEUP  
-
-
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. Data based on characterization results, not tested in production.  
Figure 24. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
RLOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
CLOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
Doc ID 022265 Rev 3  
81/105  
Electrical characteristics  
STM32F051x  
6.3.17  
Comparator characteristics  
Table 58. Comparator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max(1) Unit  
VDDA  
Analog supply voltage  
2
0
-
-
3.6  
Comparator input  
voltage range  
VIN  
VDDA  
V
VBG  
VSC  
Scaler input voltage  
Scaler offset voltage  
-
-
1.2  
5
10  
mV  
ms  
Scaler startup time  
from power down  
tS_SC  
-
-
-
-
0.1  
Comparator startup  
time  
Startup time to reach propagation delay  
specification  
tSTART  
60  
µs  
µs  
Ultra-low power mode  
Low power mode  
-
-
-
-
-
-
-
-
-
-
-
2
4.5  
1.5  
0.6  
100  
240  
7
0.7  
0.3  
50  
Propagation delay for  
200 mV step with 100 Medium power mode  
mV overdrive  
VDDA 2.7 V  
VDDA < 2.7 V  
High speed power mode  
ns  
µs  
ns  
100  
2
tD  
Ultra-low power mode  
Low power mode  
0.7  
0.3  
90  
2.1  
1.2  
180  
300  
±10  
Propagation delay for  
full range step with 100 Medium power mode  
mV overdrive  
VDDA 2.7 V  
VDDA < 2.7 V  
High speed power mode  
110  
±4  
Voffset  
Comparator offset error  
mV  
Offset error  
temperature coefficient  
dVoffset/dT  
-
18  
-
µV/°C  
Ultra-low power mode  
-
-
-
-
1.2  
3
1.5  
5
Low power mode  
COMP current  
IDD(COMP)  
µA  
consumption  
Medium power mode  
10  
75  
15  
100  
High speed power mode  
82/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
Min Typ Max(1) Unit  
Table 58. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
No hysteresis  
(COMPxHYST[1:0]=00)  
-
3
0
-
High speed power  
mode  
13  
10  
26  
19  
49  
40  
Low hysteresis  
(COMPxHYST[1:0]=01)  
8
All other power  
modes  
5
High speed power  
mode  
Vhys  
Comparator hysteresis  
7
mV  
Medium hysteresis  
(COMPxHYST[1:0]=10)  
15  
31  
All other power  
modes  
9
High speed power  
mode  
18  
19  
High hysteresis  
(COMPxHYST[1:0]=11)  
All other power  
modes  
1. Data based on characterization results, not tested in production.  
Doc ID 022265 Rev 3  
83/105  
Electrical characteristics  
STM32F051x  
6.3.18  
Temperature sensor characteristics  
Table 59. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
±1  
4.3  
1.43  
-
±2  
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
V25  
Voltage at 25 °C  
Startup time  
(1)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(1)(2)  
TS_temp  
17.1  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.19  
V
monitoring characteristics  
BAT  
Table 60.  
Symbol  
V
monitoring characteristics  
Parameter  
BAT  
Min  
Typ  
Max  
Unit  
R
Q
Er(1)  
Resistor bridge for VBAT  
Ratio on VBAT measurement  
Error on Q  
-
-
50  
2
-
-
KΩ  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1mV accuracy  
(1)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.20  
Timer characteristics  
The parameters given in Table 61 are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 61. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 48 MHz  
20.8  
-
fTIMxCLK/2  
0
0
-
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 48 MHz  
TIMx (except TIM2)  
TIM2  
24  
16  
32  
MHz  
ResTIM  
Timer resolution  
bit  
-
84/105  
Doc ID 022265 Rev 3  
 
 
STM32F051x  
Table 61. TIMx characteristics (continued)  
Electrical characteristics  
(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
1
65536  
1365  
tCOUNTER  
16-bit counter clock period  
fTIMxCLK = 48 MHz 0.0208  
-
µs  
tTIMxCLK  
65536 × 65536  
89.48  
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 48 MHz  
-
s
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM6, TIM14, TIM15, TIM16 and TIM17  
timers.  
(1)  
Table 62. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from  
30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the  
phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of  
uncertainty.  
Table 63. WWDG min-max timeout value @48 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
Doc ID 022265 Rev 3  
85/105  
Electrical characteristics  
STM32F051x  
6.3.21  
Communication interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 64 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK  
DD  
summarized in Table 20.  
2
2
The I C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and V is  
DD  
disabled, but is still present.  
2
The I C characteristics are described in Table 64. Refer also to Section 6.3.13: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
(1)  
Table 64. I C characteristics  
Standard mode  
Fast mode  
Min Max  
Fast Mode Plus  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
-
1.3  
0.6  
-
0.5  
0.26  
50  
-
µs  
-
-
-
250  
0(3)  
-
100  
0(3)  
-
-
SDA data hold time  
3450(2)  
900(2)  
0(4)  
450(2)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
-
300  
-
120  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
-
300  
-
120  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
0.26  
0.26  
0.26  
0.5  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
-
550  
pF  
The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when  
I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in  
production.  
1.  
The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.  
2.  
3.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region  
of the falling edge of SCL.  
4. The device must internally provide a hold time of at least 120ns for the SDA signal in order to bridge the undefined region  
of the falling edge of SCL.  
86/105  
Doc ID 022265 Rev 3  
 
STM32F051x  
Electrical characteristics  
(1)  
Table 65. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Pulse width of spikes that are  
suppressed by the analog filter  
tSP  
50  
260  
ns  
1. Guaranteed by design, not tested in production.  
2
Figure 25. I C bus AC waveforms and measurement circuit  
6
6
$$  
$$  
-#5  
2
2
Ω  
Ω  
3$!  
3#,  
)# BUS  
34!24 2%0%!4%$  
34!24  
34!24  
T
SUꢌ34!  
3$!  
T
T
T
Rꢌ3$!ꢍ  
Fꢌ3$!ꢍ  
SUꢌ3$!ꢍ  
T
Wꢌ34/ꢂ34!  
34/0  
T
T
T
Wꢌ3#,,ꢍ  
Hꢌ3$!ꢍ  
Hꢌ34!  
3#,  
T
T
T
SUꢌ34/ꢍ  
Rꢌ3#,ꢍ  
T
Fꢌ3#,ꢍ  
Wꢌ3#,(ꢍ  
-3ꢀꢓꢎꢑꢓ6ꢀ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
SPI/I2S characteristics  
2
Unless otherwise specified, the parameters given in Table 66 for SPI or in Table 67 for I S  
are derived from tests performed under ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 20.  
Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
Table 66. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
Doc ID 022265 Rev 3  
87/105  
 
Electrical characteristics  
STM32F051x  
Table 66. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Slave mode  
Min  
Max  
Unit  
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
4Tpclk  
-
-
(1)  
th(NSS)  
Slave mode  
2Tpclk + 10  
(1)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
(1)  
(1)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
-
tsu(MI)  
tsu(SI)  
(1)  
5
-
(1)  
th(MI)  
4
-
Data input hold time  
ns  
(1)  
th(SI)  
5
-
(1)(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(1)(3)  
tdis(SO)  
tv(SO)  
tv(MO)  
th(SO)  
0
18  
(1)  
(1)  
(1)  
(1)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
-
22.5  
6
-
11.5  
2
Data output hold time  
th(MO)  
-
SPI slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
%
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
Figure 26. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
88/105  
Doc ID 022265 Rev 3  
STM32F051x  
Electrical characteristics  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)  
Figure 28. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 022265 Rev 3  
89/105  
Electrical characteristics  
STM32F051x  
2
Table 67. I S characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode (data: 16 bits, Audio  
frequency = 48 kHz)  
1.597  
1.601  
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
Slave mode  
0
-
6.5  
tr(CK)  
I2S clock rise time  
I2S clock fall time  
I2S clock high time  
I2S clock low time  
WS valid time  
10  
12  
-
Capacitive load CL = 15 pF  
tf(CK)  
-
(1)  
(1)  
tw(CKH)  
306  
312  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
tw(CKL)  
-
ns  
%
(1)  
tv(WS)  
th(WS)  
tsu(WS)  
Master mode  
Master mode  
Slave mode  
Slave mode  
-
(1)  
(1)  
(1)  
WS hold time  
2
-
WS setup time  
WS hold time  
7
-
th(WS)  
0
-
I2S slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
(1)  
tsu(SD_MR)  
Data input setup time  
Data input setup time  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
6
2
-
-
-
-
(1)  
tsu(SD_SR)  
(1)(2)  
th(SD_MR)  
th(SD_SR)  
4
Data input hold time  
(1)(2)  
0.5  
Slave transmitter (after enable  
edge)  
(1)(2)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
-
13  
-
20  
-
ns  
Slave transmitter (after enable  
edge)  
(1)  
Master transmitter (after enable  
edge)  
(1)(2)  
(1)  
4
-
Master transmitter (after enable  
edge)  
0
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.  
90/105  
Doc ID 022265 Rev 3  
STM32F051x  
Figure 29. I2S slave timing diagram (Philips protocol)  
Electrical characteristics  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
Figure 30. I2S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. Data based on characterization results, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
Doc ID 022265 Rev 3  
91/105  
Package characteristics  
STM32F051x  
7
Package characteristics  
7.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
92/105  
Doc ID 022265 Rev 3  
STM32F051x  
Package characteristics  
Figure 31. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline  
D
ccc  
C
D1  
D3  
A
A2  
33  
48  
32  
49  
b
L1  
E3  
E1 E  
L
A1  
K
64  
17  
Pin 1  
identification  
1
16  
c
5W_ME  
1. Drawing is not to scale.  
Table 68. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
12.200  
10.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.4803  
0.4016  
0.050  
1.350  
0.170  
0.090  
11.800  
9.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.4646  
0.3858  
1.400  
0.220  
0.0551  
0.0087  
c
D
12.000  
10.000  
7.500  
12.000  
10.00  
0.500  
3.5°  
0.4724  
0.3937  
D1  
D.  
E
11.800  
9.800  
12.200  
10.200  
0.4646  
0.3858  
0.4724  
0.3937  
0.0197  
3.5°  
0.4803  
0.4016  
E1  
e
k
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.080  
0.75  
0.0177  
0.0236  
0.0394  
0.0031  
0.0295  
L1  
ccc  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 022265 Rev 3  
93/105  
Package characteristics  
Figure 32. LQFP64 recommended footprint  
STM32F051x  
48  
33  
0.3  
49  
32  
0.5  
12.7  
10.3  
10.3  
64  
17  
1.2  
1
16  
7.8  
12.7  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
94/105  
Doc ID 022265 Rev 3  
STM32F051x  
Package characteristics  
Figure 33. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package outline  
D
ccc  
C
D1  
D3  
A
A2  
25  
36  
24  
37  
L1  
b
E3  
E1 E  
48  
L
13  
A1  
K
Pin 1  
identification  
1
12  
c
5B_ME  
1. Drawing is not to scale.  
Table 69. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 022265 Rev 3  
95/105  
Package characteristics  
Figure 34. LQFP48 recommended footprint  
STM32F051x  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
96/105  
Doc ID 022265 Rev 3  
STM32F051x  
Package characteristics  
Figure 35. LQFP32 7 x 7mm 32-pin low-profile quad flat package outline  
CCC  
#
$
$ꢀ  
$ꢉ  
!
!ꢅ  
ꢅꢋ  
ꢀꢑ  
ꢀꢇ  
ꢅꢁ  
ꢉꢅ  
,ꢀ  
B
%ꢉ  
%ꢀ %  
,
0IN   
IDENTIFICATION  
!ꢀ  
+
C
ꢁ6?-%  
1. Drawing is not to scale.  
Table 70. LQFP32 7 x 7mm 32-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0.0°  
0.750  
0.0177  
0.0°  
0.0295  
L1  
k
7.0°  
7.0°  
ccc  
0.100  
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 022265 Rev 3  
97/105  
Package characteristics  
Figure 36. LQFP32 recommended footprint  
STM32F051x  
ꢓꢄꢋꢃ  
ꢑꢄꢑꢃ  
ꢃꢄꢁꢋ  
ꢓꢄꢋꢃ  
ꢃꢄꢎꢃ  
ꢁ6?&0  
1. Drawing is not to scale.  
2. Dimensions are expressed in millimeters.  
98/105  
Doc ID 022265 Rev 3  
STM32F051x  
Package characteristics  
Figure 37. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5)  
Seating plane  
C
ddd  
C
A
A1  
A3  
D
e
16  
9
17  
8
b
E
E2  
24  
1
L
32  
Pin # 1 ID  
R = 0.30  
D2  
L
Bottom view  
A0B8_ME  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must  
be connected. It is referred to as pin 0 in Table 13: Pin definitions.  
Table 71. UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),  
package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.5  
0.55  
0.02  
0.152  
0.23  
5.00  
3.50  
5.00  
0.6  
0.0197  
0
0.0217  
0.0008  
0.006  
0.0236  
0.0020  
0.00  
0.05  
0.18  
4.90  
0.28  
5.10  
0.0071  
0.1929  
0.0091  
0.1969  
0.1378  
0.1969  
0.0110  
0.2008  
D
D2  
E
4.90  
3.40  
5.10  
3.60  
0.1929  
0.1339  
0.2008  
0.1417  
E2  
3.50  
0.1378  
e
L
0.500  
0.40  
0.08  
0.0197  
0.0157  
0.0031  
0.30  
0.50  
0.0118  
0.0197  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 022265 Rev 3  
99/105  
Package characteristics  
Figure 38. UFQFPN32 recommended footprint  
STM32F051x  
1. Drawing is not to scale.  
2. Dimensions are expressed in millimeters.  
7.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 20: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
100/105  
Doc ID 022265 Rev 3  
STM32F051x  
Package characteristics  
Table 72. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
45  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm  
55  
56  
38  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
LQFP32 - 7 × 7 mm  
Thermal resistance junction-ambient  
UFQFPN32 - 5 × 5 mm  
7.2.1  
7.2.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Part numbering.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F05xx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Using the values obtained in Table 72 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C) see Table 20:  
J
General operating conditions.  
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8: Part numbering).  
Doc ID 022265 Rev 3  
101/105  
 
Package characteristics  
STM32F051x  
Note:  
With this given P  
we can find the T  
allowed for a given device temperature range  
Dmax  
Amax  
(order code suffix 6 or 7).  
Suffix 6: T  
Suffix 7: T  
= T  
= T  
- (45°C/W × 447 mW) = 105-20.115 = 84.885 °C  
- (45°C/W × 447 mW) = 125-20.115 = 104.885 °C  
Amax  
Amax  
Jmax  
Jmax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Using the values obtained in Table 72 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8: Part numbering) unless we reduce the power dissipation in order to be able to  
use suffix 6 parts.  
Refer to figure 38 to select the required temperature range (suffix 6 or 7) according to your  
ambient temperature or power requirements.  
Figure 39. LQFP64 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
102/105  
Doc ID 022265 Rev 3  
STM32F051x  
Part numbering  
8
Part numbering  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
Table 73. Ordering information scheme  
Example:  
STM32  
F
051 R  
8
T
6
x
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
051 = STM32F051xx  
Pin count  
K = 32 pins  
C = 48 pins  
R = 64 pins  
Code size  
4 = 16 Kbytes of Flash memory  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
Package  
U = UFQFPN  
T = LQFP  
Temperature range  
6 = –40 °C to +85 °C  
7 = –40 °C to +105 °C  
Options  
xxx = programmed parts  
TR = tape and real  
Doc ID 022265 Rev 3  
103/105  
STM32F051x  
Revision history  
9
Revision history  
Table 74. Document revision history  
Date  
Revision  
Changes  
05-Apr-2012  
1
Initial release  
Updated Table 2: STM32F051x family device features and  
peripheral counts for 1 SPI and 1 I2C in 32-pin package  
Corrected Group 3 pin order in Table 5: Capacitive sensing  
GPIOs available on STM32F051x devices.  
25-Apr-2012  
2
Updated current consumptionTable 25 to Table 29.  
Updated Table 39: HSI14 oscillator characteristics  
Features reorganized and Section 3: Functional overview  
structure changed.  
Added LQFP32 package.  
Updated Section 3.4: Cyclic redundancy check calculation  
unit (CRC).  
Modified number of priority levels in Section 3.9.1: Nested  
vectored interrupt controller (NVIC).  
Added note 3. for PB2 and PB8, changed TIM2_CH_ETR into  
TIM2_CH1_ETR in Table 13: Pin definitions and Table 14:  
Alternate functions selected through GPIOA_AFR registers  
for port A. Added Table 15: Alternate functions selected  
through GPIOA_AFR registers for port B.  
Updated IVDD, IVSS, and IINJ(PIN) in Table 18: Current  
characteristics .  
23-Jul-2012  
3
Updated ACCHSI in Table 38: HSI oscillator characteristics  
and Table 39: HSI14 oscillator characteristics.  
Updated Table 49: I/O current injection susceptibility.  
Added BOOT0 input low and high level voltage in Table 50:  
I/O static characteristics.  
Modified number of pins in VOL and VOH description, and  
changed condition for VOLFM+ in Table 51: Output voltage  
characteristics.  
Changed VDD to VDDA in Figure 23: Typical connection  
diagram using the ADC.  
Updated Ts_temp in Table 59: TS characteristics.  
Doc ID 022265 Rev 3  
103/105  
STM32F051x  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 022265 Rev 3  
105/105  

相关型号:

STM32F051X4

Low- and medium-density advanced ARM™-based 32-bit MCU
STMICROELECTR

STM32F051X6

Low- and medium-density advanced ARM™-based 32-bit MCU
STMICROELECTR

STM32F051X8

Low- and medium-density advanced ARM™-based 32-bit MCU
STMICROELECTR

STM32F058C8

Advanced ARM-based 32-bit MCU, 64 KB Flash, 11 timers, ADC, DAC & comm. interfaces, 1.8 V
STMICROELECTR

STM32F058R8

Advanced ARM-based 32-bit MCU, 64 KB Flash, 11 timers, ADC, DAC & comm. interfaces, 1.8 V
STMICROELECTR

STM32F058T8

Advanced ARM-based 32-bit MCU, 64 KB Flash, 11 timers, ADC, DAC & comm. interfaces, 1.8 V
STMICROELECTR

STM32F070C6

Reset and power management
STMICROELECTR

STM32F070CB

Reset and power management
STMICROELECTR

STM32F070F6

Reset and power management
STMICROELECTR

STM32F070RB

Reset and power management
STMICROELECTR

STM32F070RBT6

STM32 Nucleo-64 boards
STMICROELECTR

STM32F071C8

ARM-based 32-bit MCU, up to 128 KB Flash, 12 timers, ADC, DAC & communication interfaces, 2.0 - 3.6 V
STMICROELECTR