STM32F072VBT6TR [STMICROELECTRONICS]

32-BIT, FLASH, 48MHz, RISC MICROCONTROLLER, PQFP100, 14 X 14 MM, ROHS COMPLIANT, LQFP-100;
STM32F072VBT6TR
型号: STM32F072VBT6TR
厂家: ST    ST
描述:

32-BIT, FLASH, 48MHz, RISC MICROCONTROLLER, PQFP100, 14 X 14 MM, ROHS COMPLIANT, LQFP-100

时钟 外围集成电路
文件: 总124页 (文件大小:1741K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F072xx  
ARM-based 32-bit MCU, up to 128 KB Flash, crystal-less USB  
FS 2.0, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6 V  
Datasheet - production data  
Features  
®
®
Core: ARM 32-bit Cortex -M0 CPU,  
frequency up to 48 MHz  
LQFP100 14x14 mm  
LQFP64 10x10 mm  
LQFP48 7x7 mm  
UFQFPN48  
7x7 mm  
UFBGA100  
7x7 mm  
WLCSP49  
0.4 mm pitch  
Memories  
– 64 to 128 Kbytes of Flash memory  
– 16 Kbytes of SRAM with HW parity  
Calendar RTC with alarm and periodic wakeup  
from Stop/Standby  
CRC calculation unit  
12 timers  
Reset and power management  
– One 16-bit advanced-control timer for  
6 channel PWM output  
– Digital & I/Os supply: V = 2.0 V to 3.6 V  
DD  
– One 32-bit and seven 16-bit timers, with up  
to 4 IC/OC, OCN, usable for IR control  
decoding or DAC control  
– Analog supply: V  
= V to 3.6 V  
DD  
DDA  
– Selected I/Os: V  
= 1.65 V to 3.6 V  
DDIO2  
– Power-on/Power down reset (POR/PDR)  
– Programmable voltage detector (PVD)  
– Low power modes: Sleep, Stop, Standby  
– Independent and system watchdog timers  
– SysTick timer  
Communication interfaces  
– V  
supply for RTC and backup registers  
BAT  
2
– Two I C interfaces supporting Fast Mode  
Clock management  
Plus (1 Mbit/s) with 20 mA current sink; one  
supporting SMBus/PMBus and wakeup  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
– Four USARTs supporting master  
synchronous SPI and modem control; two  
with ISO7816 interface, LIN, IrDA, auto  
baud rate detection and wakeup feature  
– Internal 48 MHz oscillator with automatic  
trimming based on ext. synchronization  
– Two SPIs (18 Mbit/s) with 4 to 16  
2
programmable bit frames, and with I S  
interface multiplexed  
Up to 87 fast I/Os  
– All mappable on external interrupt vectors  
– CAN interface  
– Up to 68 I/Os with 5V tolerant capability  
– USB 2.0 full-speed interface, able to run  
from internal 48 MHz oscillator and with  
BCD and LPM support  
and 19 with independent supply V  
DDIO2  
7-channel DMA controller  
One 12-bit, 1.0 μs ADC (up to 16 channels)  
– Conversion range: 0 to 3.6 V  
HDMI CEC wakeup on header reception  
Serial wire debug (SWD)  
96-bit unique ID  
– Separate analog supply: 2.4 V to 3.6 V  
One 12-bit D/A converter (with 2 channels)  
®
All packages ECOPACK 2  
Two fast low-power analog comparators with  
programmable input and output  
Table 1. Device summary  
Up to 24 capacitive sensing channels for  
Reference  
Part number  
touchkey, linear and rotary touch sensors  
STM32F072C8, STM32F072R8, STM32F072V8,  
STM32F072CB, STM32F072RB, STM32F072VB  
STM32F072xx  
February 2014  
DocID025004 Rev 2  
1/124  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F072xx  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
ARM Cortex-M0 core with embedded Flash and SRAM . . . . . . . . . . . . . 13  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 18  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
REFINT  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BAT  
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14.2 General-purpose timers (TIM2..3, TIM14..17) . . . . . . . . . . . . . . . . . . . . 23  
3.14.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/124  
DocID025004 Rev 2  
STM32F072xx  
Contents  
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24  
2
3.16 Inter-integrated circuit interfaces (I C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17 Universal synchronous/asynchronous receiver transmitters (USART) . . 26  
2
3.18 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I S) . 27  
3.19 High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.20 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.21 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.22 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.23 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4
5
6
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 52  
Embedded reset and power control block characteristics . . . . . . . . . . . 52  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DocID025004 Rev 2  
3/124  
4
Contents  
STM32F072xx  
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.11  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6.3.20  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
BAT  
6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.3.22 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
7.1  
7.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
7.2.1  
7.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 119  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
4/124  
DocID025004 Rev 2  
STM32F072xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F072xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 11  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Capacitive sensing GPIOs available on STM32F072xx devices . . . . . . . . . . . . . . . . . . . . 21  
No. of capacitive sensing channels available on STM32F072xx devices. . . . . . . . . . . . . . 21  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
Table 9.  
STM32F072xx I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
STM32F072xx USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STM32F072xx SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32F072xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 40  
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 41  
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 42  
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 42  
Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 43  
Alternate functions available on port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
STM32F072xx peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical and maximum current consumption from V supply at V = 3.6 V . . . . . . . . . . 54  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . . 56  
DDA  
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 57  
Typical and maximum current consumption from the V supply. . . . . . . . . . . . . . . . . . . 58  
BAT  
Typical current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Typical current consumption in Sleep mode, code running from Flash . . . . . . . . . . . . . . . 60  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DocID025004 Rev 2  
5/124  
6
List of tables  
STM32F072xx  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 104  
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 107  
LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . 110  
UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . 114  
WLCSP49 – 0.4 mm pitch package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
WLCSP49 recommended PCB design rules (0.4 mm pitch BGA) . . . . . . . . . . . . . . . . . . 118  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
6/124  
DocID025004 Rev 2  
STM32F072xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
UFBGA100 package ballout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LQFP100 100-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LQFP64 64-pin package pinout (top view)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
UFQFPN48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
WLCSP49 49-pin package ballout (bottom view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
STM32F072xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 12. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 18. HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 19. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 20. HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 21. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 25. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 26. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 27. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 28. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 29. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 30. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 31. I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 32. I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 34. UFBGA100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 35. UFBGA100 package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 36. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline. . . . . . . . . . . . . . . 104  
Figure 37. LQFP100 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 38. LQFP100 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 39. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline. . . . . . . . . . . . . . . . . 107  
Figure 40. LQFP64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 41. LQFP64 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 42. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 110  
Figure 43. LQFP48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 44. LQFP48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 45. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 46. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 47. UFQFPN48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
DocID025004 Rev 2  
7/124  
8
List of figures  
STM32F072xx  
Figure 48. WLCSP49 – 0.4 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 49. WLCSP49 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 50. WLCSP49 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 51. LQFP64 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
D
A
8/124  
DocID025004 Rev 2  
STM32F072xx  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F072xx microcontrollers.  
This document should be read in conjunction with the STM32F0xxxx reference manual  
(RM0091). The reference manual is available from the STMicroelectronics website  
www.st.com.  
®
®
®
For information on the ARM Cortex -M0 core, please refer to the Cortex -M0 Technical  
Reference Manual, available from the www.arm.com website.  
DocID025004 Rev 2  
9/124  
28  
 
Description  
STM32F072xx  
2
Description  
®
®
The STM32F072xx microcontrollers incorporate the high-performance ARM Cortex -M0  
32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to  
128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced  
2
peripherals and I/Os. All devices offer standard communication interfaces (two I Cs, two  
SPIs/one I2S, one HDMI CEC and four USARTs), one USB Full speed device (crystal-less),  
one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven general-purpose 16-bit  
timers, a 32-bit timer and an advanced-control PWM timer.  
The STM32F072xx microcontrollers operate in the -40 to +85 °C and -40 to +105 °C  
temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
modes allows the design of low-power applications.  
The STM32F072xx microcontrollers include devices in six different packages ranging from  
48 pins to 100 pins with a die form also available upon request. Depending on the device  
chosen, different sets of peripherals are included. The description below provides an  
overview of the complete range of STM32F072xx peripherals proposed.  
These features make the STM32F072xx microcontrollers suitable for a wide range of  
applications such as application control and user interfaces, handheld equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs.  
10/124  
DocID025004 Rev 2  
 
STM32F072xx  
Description  
Table 2. STM32F072xx family device features and peripheral counts  
Peripheral  
Flash (Kbytes)  
SRAM (Kbytes)  
Advanced  
STM32F072Cx  
64 128  
STM32F072Rx  
64 128  
STM32F072Vx  
64 128  
16  
16  
16  
1 (16-bit)  
control  
Timers  
General  
purpose  
5 (16-bit)  
1 (32-bit)  
Basic  
SPI [I2S](1)  
I2C  
2 (16-bit)  
2 [1]  
2
4
1
1
1
USART  
CAN  
Comm.  
interfaces  
USB  
CEC  
12-bit ADC  
1
1
(number of channels)  
(10 ext. + 3 int.)  
(16 ext. + 3 int.)  
GPIOs  
37  
51  
18  
87  
24  
Capacitive sensing  
channels  
17  
12-bit DAC  
1
(number of channels)  
(2)  
Analog comparator  
Max. CPU frequency  
Operating voltage  
2
48 MHz  
2.0 to 3.6 V  
Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C  
Junction temperature: -40 °C to 125 °C  
Operating temperature  
LQFP48  
LQFP100  
Packages  
UFQFPN48  
WLCSP49  
LQFP64  
UFBGA100  
1. The SPI interface can be used either in SPI mode or in I2S audio mode.  
DocID025004 Rev 2  
11/124  
28  
 
Description  
STM32F072xx  
Figure 1. Block diagram  
32:(5  
9''ꢁꢍ  
6HULDOꢅ:LUHꢅ  
'HEXJ  
6:&/.  
6:',2  
DVꢅ$)  
9'',2ꢅ ꢅꢄꢅWRꢅꢀꢆꢒꢅ9  
966ꢅ  
92/7ꢆ5(*  
ꢀꢆꢀꢅ9ꢅ72ꢅꢁꢆꢍꢅ9  
)ODVKꢅ*3/ꢅ  
#ꢅ9'',2  
8SꢅWRꢅꢁꢄꢍꢅ.%  
&257(;ꢑ0ꢃꢅ&38  
I0$;ꢅ ꢅꢂꢍꢅ0+]  
ꢀꢄꢅELWV  
9''86%2.,1ꢅꢅ  
6833/<ꢅ  
683(59,6,21  
325  
5HVHW  
,QW  
1567  
9''$ꢅ  
325ꢏ3'5  
39'  
65$0  
ꢁꢒꢅ.%  
966$  
#ꢅ9''$  
19,&  
5&ꢅ+6ꢅꢁꢂꢅ0+]  
5&ꢅ+6ꢅꢍꢅ0+]  
3//  
#ꢅ9''$  
#ꢅ9'',2  
*3ꢅ'0$  
ꢐꢅFKDQQHOV  
26&B,1ꢅꢈ3)ꢃꢊ  
26&B287ꢅꢈ3)ꢁꢊ  
;7$/ꢅ26&  
ꢂꢑꢀꢄꢅ0+]  
5&ꢅ/6  
5&ꢅ+6ꢅꢂꢍ0+]  
,QGꢆꢅ:LQGRZꢅ:'*  
3RZHU  
3$>ꢁꢋꢌꢃ@  
3%>ꢁꢋꢌꢃ@  
3&>ꢁꢋꢌꢃ@  
3'>ꢁꢋꢌꢃ@  
$+%3&/.  
*3,2ꢅSRUWꢅ$  
*3,2ꢅSRUWꢅ%  
*3,2ꢅSRUWꢅ&  
*3,2ꢅSRUWꢅ'  
*3,2ꢅSRUWꢅ(  
*3,2ꢅSRUWꢅ)  
&RQWUROOHU  
$3%3&/.  
$'&&/.  
&(&&/.  
86$57&/.  
+&/.  
)&/.  
86%&/.  
9%$7ꢅ ꢅꢁꢆꢒꢋꢅWRꢅꢀꢆꢒꢅ9  
5(6(7ꢅꢓꢅ  
&/2&.ꢅ  
#ꢅ96:ꢅ  
26&ꢀꢄB,1ꢅꢅ  
26&ꢀꢄB287  
&21752/  
;7$/ꢀꢄꢅN+]  
%DFNXSꢅ  
57&  
UHJ  
ꢀꢅ7$03(5ꢑ57&  
ꢈ$/$50ꢅ287ꢊ  
3(>ꢁꢋꢌꢃ@  
57&ꢅLQWHUIDFH  
3:0ꢅ7,0(5ꢅꢁ  
3)>ꢀꢁꢂꢃ@ꢄꢅ3)ꢆꢄꢅ  
3)>ꢇꢂꢁ@  
&56  
6<1&  
ꢂꢅFKDQQHOV  
&5&  
ꢀꢅFRPSOꢆꢅFKDQQHOV  
%5.ꢇꢅ(75ꢅLQSXWꢅDVꢅ$)  
3$'  
ꢍꢅJURXSVꢅRI  
ꢂꢅFKDQQHOV  
7RXFKꢅ  
$QDORJꢅ  
6HQVLQJꢅ  
ꢂꢅFKꢆꢇꢅ(75ꢅDVꢅ$)  
7,0(5ꢅꢄꢅꢀꢄꢑELW  
7,0(5ꢅꢀ  
VZLWFKHV  
&RQWUROOHU  
$+%  
$3%  
6<1&  
ꢍꢎꢅ$)  
ꢂꢅFKꢆꢇꢅ(75ꢅDVꢅ$)  
(;7ꢅ,7  
:.83  
7,0(5ꢅꢁꢂ  
ꢁꢅFKDQQHOꢅDVꢅ$)  
ꢄꢅFKDQQHOV  
ꢁꢅFRPSOꢇꢅ%5.ꢅDVꢅ$)  
86%  
3+<  
7,0(5ꢅꢁꢋ  
86%  
'ꢉꢇꢅ'ꢑ  
65$0ꢅ  
ꢐꢒꢍ%  
ꢁꢅFKDQQHO  
#ꢅ9''86%  
7,0(5ꢅꢁꢒ  
7,0(5ꢅꢁꢐ  
ꢁꢅFRPSOꢇꢅ%5.ꢅDVꢅ$)  
65$0ꢅ  
ꢄꢋꢒ%  
:,QGRZꢅ:'*  
'%*0&8  
ꢁꢅFKDQQHO  
ꢁꢅFRPSOꢇꢅ%5.ꢅDVꢅ$)  
7;ꢇꢅ5;ꢅDVꢅ$)  
%[&$1  
,5B287ꢅDVꢅ$)  
026,ꢏ6'ꢇ  
0,62ꢏ0&.ꢇ  
6&.ꢏ&.ꢇ  
5;ꢇꢅ7;ꢇ&76ꢇꢅ576ꢇ  
&.ꢅDVꢅ$)  
86$57ꢁ  
86$57ꢄ  
86$57ꢀ  
86$57ꢂ  
63,ꢁꢏ,ꢄ6ꢁ  
166ꢏ:6ꢅDVꢅ$)  
5;ꢇꢅ7;ꢇ&76ꢇꢅ576ꢇ  
&.ꢅDVꢅ$)  
026,ꢏ6'ꢇ  
0,62ꢏ0&.ꢇ  
6&.ꢏ&.ꢇ  
63,ꢄꢏ,ꢄ6ꢄ  
5;ꢇꢅ7;ꢇ&76ꢇꢅ576ꢇ  
&.ꢅDVꢅ$)  
6<6&)*ꢅ,)  
166ꢏ:6ꢅDVꢅ$)  
5;ꢇꢅ7;ꢇ&76ꢇꢅ576ꢇ  
&.ꢅDVꢅ$)  
6&/ꢇꢅ6'$ꢇꢅ60%$  
ꢈꢄꢃꢅP$ꢅIRUꢅ)0ꢉꢊ  
DVꢅ$)  
6&/ꢇꢅ6'$ꢅꢈꢄꢃꢅP$ꢅ  
IRUꢅ)0ꢉꢊꢅDVꢅ$)  
,ꢄ&ꢁ  
,ꢄ&ꢄ  
,1387ꢉꢇ  
,1387ꢑꢇ  
287387  
ꢅDVꢅ$)  
*3ꢅFRPSDUDWRUꢅꢁ  
*3ꢅFRPSDUDWRUꢅꢄ  
#ꢅ9''$  
&(&ꢅDVꢅ$)  
+'0,ꢑ&(&  
ꢁꢄꢑELWꢅꢅ  
7HPSꢆꢅ  
VHQVRU  
7,0(5ꢅꢒ  
7,0(5ꢅꢐ  
ꢁꢒꢅ  
$'ꢅLQSXWV  
ꢁꢄꢑELWꢅ  
$'&  
'$&B287ꢁ  
'$&B287ꢄ  
,)  
'$&  
,)  
ꢁꢄꢑELWꢅ  
'$&  
9''$  
966$  
#ꢅ9''$  
#ꢅ9''$  
06Yꢀꢁꢂꢃꢂ9ꢄ  
12/124  
DocID025004 Rev 2  
 
STM32F072xx  
Functional overview  
3
Functional overview  
3.1  
ARM Cortex-M0 core with embedded Flash and SRAM  
The ARM Cortex-M0 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex-M0 32-bit RISC processor features exceptional code-efficiency, delivering  
the high-performance expected from an ARM core in the memory size usually associated  
with 8- and 16-bit devices.  
The STM32F0xx family has an embedded ARM core and is therefore compatible with all  
ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
3.2  
Memories  
The device has the following features:  
16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states and featuring embedded parity checking with exception generation for fail-critical  
applications.  
The non-volatile memory is divided into two arrays:  
64 to 128 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot  
in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bits are used to select one of the three boot  
options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART on pins PA14/PA15 or PA9/PA10, I2C on pins PB6/PB7 or through the USB  
DFU interface.  
DocID025004 Rev 2  
13/124  
28  
 
 
 
 
Functional overview  
STM32F072xx  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided  
DD  
externally through V pins.  
DD  
V
= 2.0 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and  
DDA  
PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used). The V  
DDA  
DDA  
voltage level must be always greater or equal to the V voltage level and must be  
DD  
provided first.  
V
= 1.65 to 3.6 V: external power supply for marked I/Os. Provided externally  
DDIO2  
through the VDDIO2 pin. The V  
or V  
diagrams or tables for concerned I/Os list.  
voltage level is completely independent from V  
DDIO2  
DD  
, but it must not be provided without a valid supply on V . Refer to the pinout  
DDA  
DD  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
3.5.2  
Power supply supervisors  
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
V
, without the need for an external reset circuit.  
POR/PDR  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
should arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
supply voltages, however the V  
power  
DDA  
DD  
DDA  
DDA  
equal to V  
.
DD  
The V  
supply is monitored and compared with the internal reference voltage (V  
).  
REFINT  
DDIO2  
When the V  
is below this threshold, all the I/Os supplied from this rail are disabled by  
DDIO2  
hardware. The output of this comparator is connected to EXTI line 31 and it can be used to  
generate an interrupt.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
V
power supply and compares it to the V  
threshold. An interrupt can be generated  
DD  
PVD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state. The PVD is enabled by software.  
14/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Functional overview  
3.5.3  
Voltage regulator  
The regulator has two operating modes and it is always enabled after reset.  
Main (MR) is used in normal operating mode (Run).  
Low power (LPR) can be used in Stop mode where the power demand is reduced.  
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high  
impedance and the kernel circuitry is powered down, inducing zero consumption (but the  
contents of the registers and SRAM are lost).  
3.5.4  
Low-power modes  
The STM32F072xx microcontrollers support three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled. The voltage regulator can also be put either in  
normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines, the PVD output, RTC alarm, I2C1, USART1  
or the CEC.  
The I2C1, USART1 and the CEC can be configured to enable the HSI RC oscillator for  
processing incoming data. If this is used when the voltage regulator is put in low power  
mode, the regulator is first switched to normal mode before the clock is provided to the  
given peripheral.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the RTC  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pins, or an RTC event occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering  
Stop or Standby mode.  
DocID025004 Rev 2  
15/124  
28  
 
 
Functional overview  
STM32F072xx  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL  
input source. This oscillator can be automatically fine-trimmed by the means of the CRS  
peripheral using the external synchronization.  
16/124  
DocID025004 Rev 2  
 
STM32F072xx  
Functional overview  
Figure 2. Clock tree  
)/,7)&/.  
WRꢅ)ODVKꢅ  
SURJUDPPLQJꢅLQWHUIDFH  
+6,  
&56  
WRꢅ,ꢄ&ꢁ  
6<6&/.  
WRꢅ,ꢄ6ꢁꢇꢄ  
ꢂꢍꢅ0+]  
+6,ꢂꢍꢅ5&  
+6,ꢂꢍ  
/6(  
ꢏꢄꢂꢂ  
WRꢅ&(&  
ꢍꢅ0+]  
+6,ꢅ5&  
+6,  
+&/.  
ꢏꢍ  
WRꢅ$+%ꢅEXVꢇꢅFRUHꢇꢅ  
PHPRU\ꢅDQGꢅ'0$  
6:  
WRꢅFRUWH[ꢅ6\VWHPꢅWLPHUꢅ  
)&/.ꢅ&RUWH[ꢅIUHHꢅUXQQLQJꢅFORFNꢅ  
3//65&  
3//08/  
3//  
+6,  
3//&/.  
$+%  
$3%  
SUHVFDOHU  
ꢏꢁꢇꢄꢇꢂꢇꢍꢇꢁꢒ  
ꢏꢁꢇꢄꢇ  
ꢀꢇꢆꢆꢁꢒ  
3&/.  
[ꢄꢇ[ ꢇꢆꢆ  
WRꢅ$3%ꢅSHULSKHUDOV  
SUHVFDOHU  
[ꢁꢒ  
ꢏꢁꢇꢄꢇꢆꢆꢋꢁꢄ  
6<6&/.  
+6(  
35(',9  
&66  
,Iꢅꢈ$3%ꢁꢅSUHVFDOHUꢅ  
 ꢁꢊꢅ[ꢁꢅHOVHꢅ[ꢄ  
WRꢅ7,0ꢁꢇꢄꢇꢀꢇꢒꢇꢐ  
ꢁꢂꢇꢁꢋꢇꢁꢒꢇꢁꢐ  
26&B287  
26&B,1  
ꢂꢑꢀꢄꢅ0+]  
3&/.  
+6(ꢅ26&  
6<6&/.  
WRꢅ86$57ꢁ  
WRꢅ86$57ꢄ  
+6,  
/6(  
ꢏꢀꢄ  
57&&/.  
26&ꢀꢄB,1  
WRꢅ57&  
WRꢅ86%  
/6(ꢅ26&  
ꢀꢄꢆꢐꢒꢍN+]  
/6(  
26&ꢀꢄB287  
+6,ꢂꢍ  
1--$-,  
57&6(/>ꢁꢌꢃ@  
/6,  
/6,ꢅ5&ꢅ  
ꢂꢃN+]  
WRꢅ,:'*  
3//12',9  
0&235(  
0DLQꢅFORFN  
3//&/.  
ꢏꢁꢇꢄ  
+6,  
+6,ꢂꢍ  
+6,ꢁꢂ  
+6(  
ꢁꢂꢅ0+]  
+6,ꢁꢂꢅ5&  
+6,ꢁꢂ  
RXWSXW  
WRꢅ$'&ꢅ  
ꢏꢁꢇꢄꢇꢂꢇ  
0&2  
DV\QFKURQRXV  
FORFNꢅLQSXWꢅ  
ꢆꢆꢅꢁꢄꢍ  
6<6&/.  
/6,  
/6(  
WRꢅ7,0ꢁꢂ  
0&2  
06ꢀꢁꢂꢁꢍ9ꢁ  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
The I/O configuration can be locked if needed following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
DocID025004 Rev 2  
17/124  
28  
 
 
Functional overview  
STM32F072xx  
3.8  
Direct memory access controller (DMA)  
The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory  
and memory-to-peripheral transfers.  
The DMA supports circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except  
TIM14), DAC and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to  
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex-M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 32 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 87  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Analog to digital converter (ADC)  
The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature  
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions  
in single-shot or scan modes. In scan mode, automatic conversion is performed on a  
selected group of analog inputs.  
The ADC can be served by the DMA controller.  
18/124  
DocID025004 Rev 2  
 
 
 
 
 
STM32F072xx  
Functional overview  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 3. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
TS_CAL1  
temperature of 30 °C (5 °C),  
0x1FFF F7B8 - 0x1FFF F7B9  
VDDA= 3.3 V (10 mV)  
TS ADC raw data acquired at a  
TS_CAL2  
temperature of 110 °C (5 °C), 0x1FFF F7C2 - 0x1FFF F7C3  
DDA= 3.3 V (10 mV)  
V
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC. V  
is internally connected to the ADC_IN17 input channel. The precise voltage  
REFINT  
of V  
is individually measured for each part by ST during production test and stored in  
REFINT  
the system memory area. It is accessible in read-only mode.  
Table 4. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT_CAL  
temperature of 30 °C (5 °C), 0x1FFF F7BA - 0x1FFF F7BB  
DDA= 3.3 V (10 mV)  
V
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN18. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
DocID025004 Rev 2  
19/124  
28  
 
 
 
 
 
Functional overview  
STM32F072xx  
3.11  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert digital signals into analog  
voltage signal outputs. The chosen design structure is composed of integrated resistor  
strings and an amplifier in non-inverting configuration.  
This digital Interface supports the following features:  
8-bit or 12-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger  
outputs and the DAC interface is generating its own DMA requests.  
3.12  
Comparators (COMP)  
The device embeds two fast rail-to-rail low-power comparators with programmable  
reference voltage (internal or external), hysteresis and speed (low speed for low power) and  
with selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output pins  
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 28: Embedded  
internal reference voltage for the value and precision of the internal reference voltage.  
Both comparators can wake up from STOP mode, generate interrupts and breaks for the  
timers and can be also combined into a window comparator.  
3.13  
Touch sensing controller (TSC)  
The STM32F072xx devices provide a simple solution for adding capacitive sensing  
functionality to any application. These devices offer up to 24 capacitive sensing channels  
distributed over 8 analog I/O groups.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
20/124  
DocID025004 Rev 2  
 
 
 
STM32F072xx  
Functional overview  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library, which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
Table 5. Capacitive sensing GPIOs available on STM32F072xx devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PC5  
PB0  
PB1  
PB2  
PA9  
PA10  
PA11  
PA12  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TSC_G7_IO1  
TSC_G7_IO2  
TSC_G7_IO3  
TSC_G7_IO4  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
PB3  
PB4  
1
5
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
PE2  
2
3
4
6
7
8
PE3  
PE4  
PE5  
PD12  
PD13  
PD14  
PD15  
Table 6. No. of capacitive sensing channels available on STM32F072xx devices  
Number of capacitive sensing channels  
Analog I/O group  
STM32F072Vx  
STM32F072Rx  
STM32F072Cx  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
3
3
2
3
3
3
0
0
Number of capacitive  
sensing channels  
24  
18  
17  
DocID025004 Rev 2  
21/124  
28  
 
 
Functional overview  
STM32F072xx  
3.14  
Timers and watchdogs  
The STM32F072xx devices include up to six general-purpose timers, two basic timers and  
an advanced control timer.  
Table 7 compares the features of the advanced-control, general-purpose and basic timers.  
Table 7. Timer feature comparison  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler DMA request Capture/compare Complementary  
Timer  
factor  
generation  
channels  
outputs  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
Advanced  
control  
TIM1  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
4
Yes  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
TIM2  
TIM3  
Yes  
Yes  
No  
4
4
1
2
1
0
No  
No  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
Any integer  
between 1  
and 65536  
General  
purpose  
TIM14  
TIM15  
Up  
Up  
Up  
Up  
No  
Any integer  
between 1  
and 65536  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Any integer  
between 1  
and 65536  
TIM16,  
TIM17  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
Basic  
22/124  
DocID025004 Rev 2  
 
 
 
STM32F072xx  
Functional overview  
3.14.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The four independent channels can  
be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
3.14.2  
General-purpose timers (TIM2..3, TIM14..17)  
There are six synchronizable general-purpose timers embedded in the STM32F072xx  
devices (see Table 7 for differences). Each general-purpose timer can be used to generate  
PWM outputs, or as simple time base.  
TIM2, TIM3  
STM32F072xx devices feature two synchronizable 4-channel general-purpose timers. TIM2  
is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a  
16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent  
channels each for input capture/output compare, PWM or one-pulse mode output. This  
gives up to 12 input captures/output compares/PWMs on the largest packages.  
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-  
control timer via the Timer Link feature for synchronization or event chaining.  
TIM2 and TIM3 both have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM15, TIM16 and TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single  
DocID025004 Rev 2  
23/124  
28  
 
 
Functional overview  
STM32F072xx  
channel for input capture/output compare, PWM or one-pulse mode output.  
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate  
withTIM1 via the Timer Link feature for synchronization or event chaining.  
TIM15 can be synchronized with TIM16 and TIM17.  
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation.  
Their counters can be frozen in debug mode.  
3.14.3  
3.14.4  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with  
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
operates independently from the main clock, it can operate in Stop and Standby modes. It  
can be used either as a watchdog to reset the device when a problem occurs, or as a free  
running timer for application timeout management. It is hardware or software configurable  
through the option bytes. The counter can be frozen in debug mode.  
3.14.5  
3.14.6  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source (HCLK or HCLK/8)  
3.15  
Real-time clock (RTC) and backup registers  
The RTC and the 5 backup registers are supplied through a switch that takes power either  
on V supply when present or through the V  
pin. The backup registers are five 32-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, or when the device wakes up from Standby  
mode.  
24/124  
DocID025004 Rev 2  
 
 
 
 
 
STM32F072xx  
Functional overview  
The RTC is an independent BCD timer/counter. Its main features are the following:  
Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month.  
Programmable alarm with wake up from Stop and Standby mode capability.  
Periodic wakeup unit with programmable resolution and period.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
3 anti-tamper detection pins with programmable filter. The MCU can be woken up from  
Stop and Standby modes on tamper event detection.  
Timestamp feature which can be used to save the calendar content. This function can  
triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 40 kHz)  
The high-speed external clock divided by 32  
3.16  
Inter-integrated circuit interfaces (I2C)  
2
Up to two I C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both  
can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode  
Plus (up to 1 Mbit/s) with 20 mA output drive on some I/Os.  
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2  
addresses, 1 with configurable mask). They also include programmable analog and digital  
noise filters.  
Table 8. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
2. Stable length  
Benefits  
Available in Stop mode  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
DocID025004 Rev 2  
25/124  
28  
 
 
Functional overview  
STM32F072xx  
verifications and ALERT protocol management. I2C1 also has a clock domain independent  
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address  
match.  
The I2C interfaces can be served by the DMA controller.  
Refer to Table 9 for the differences between I2C1 and I2C2.  
2
Table 9. STM32F072xx I C implementation  
I2C features(1)  
I2C1  
I2C2  
X
X
X
X
X
X
X
X
X
X
X
X
X
7-bit addressing mode  
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
3.17  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The device embeds up to four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART4), which communicate at speeds of up to 6  
Mbit/s.  
They provide hardware management of the CTS, RTS and RS485 DE signals,  
multiprocessor communication mode, master synchronous communication and single-wire  
half-duplex communication mode. USART1 and USART2 support also SmartCard  
communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud  
rate feature, and have a clock domain independent from the CPU clock, allowing USART1  
and USART2 to wake up the MCU from Stop mode.  
The USART interfaces can be served by the DMA controller.  
Refer to Table 10 for the differences between USART1, USART2, USART3 and USART4.  
Table 10. STM32F072xx USART implementation  
USART1 and  
USART2  
USART3 and  
USART4  
USART modes/features(1)  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
26/124  
DocID025004 Rev 2  
 
 
 
 
 
STM32F072xx  
Functional overview  
Table 10. STM32F072xx USART implementation (continued)  
USART1 and  
USART2  
USART3 and  
USART4  
USART modes/features(1)  
Smartcard mode  
X
X
X
X
X
X
X
X
X
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
X
1. X = supported.  
3.18  
Serial peripheral interface (SPI)/Inter-integrated sound  
interfaces (I2S)  
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-  
duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
2
Two standard I S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four  
different audio standards can operate as master or slave at half-duplex communication  
mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data  
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to  
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master  
mode, they can output a clock for an external audio component at 256 times the sampling  
frequency.  
Both SPI1 and SPI2 are identical and implement the set of features shown in the following  
table.  
Table 11. STM32F072xx SPI/I2S implementation  
SPI features(1)  
SPI1 and SPI2  
Hardware CRC calculation  
Rx/Tx FIFO  
X
X
X
X
X
NSS pulse mode  
I2S mode  
TI mode  
1. X = supported.  
DocID025004 Rev 2  
27/124  
28  
 
 
Functional overview  
STM32F072xx  
3.19  
High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC)  
The device embeds a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC  
controller to wakeup the MCU from Stop mode on data reception.  
3.20  
3.21  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Universal serial bus (USB)  
The STM32F072xx embeds a full-speed USB device peripheral compliant with the USB  
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP  
pull-up and also battery charging detection according to Battery Charging Specification  
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with  
added support for USB 2.0 Link Power Management. It has software-configurable endpoint  
setting with packet memory up-to 1 KB (the last 256 bytes are used for CAN peripheral if  
enabled) and suspend/resume support. It requires a precise 48 MHz clock which can be  
generated from the internal main PLL (the clock source must use an HSE crystal oscillator)  
or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this  
oscillator can be taken from the USB data stream itself (SOF signalization) which allows  
crystal-less operation.  
3.22  
Clock recovery system (CRS)  
The STM32F072xx embeds a special block which allows automatic trimming of the internal  
48 MHz oscillator to guarantee its optimal accuracy over the whole device operational  
range. This automatic trimming is based on the external synchronization signal, which could  
be either derived from USB SOF signalization, from LSE oscillator, from an external signal  
on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also  
possible to combine automatic trimming with manual trimming action.  
3.23  
Serial wire debug port (SW-DP)  
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected  
to the MCU.  
28/124  
DocID025004 Rev 2  
 
 
 
 
 
STM32F072xx  
Pinouts and pin descriptions  
4
Pinouts and pin descriptions  
Figure 3. UFBGA100 package ballout (top view)  
ꢈꢉ  
ꢈꢈ  
ꢈꢀ  
3'ꢋ  
3'ꢒ  
3$ꢁꢄ  
3$ꢁꢁ  
%227ꢃ  
3%ꢐ  
3'ꢐ  
3%ꢀ  
3'ꢀ  
3'ꢄ  
3$ꢁꢀ  
3&ꢁꢃ  
3)ꢒ  
3%ꢍ  
3$ꢁꢋ  
3'ꢁ  
3%ꢂ  
3'ꢂ  
3$ꢁꢂ  
3&ꢁꢄ  
3(ꢀ  
3(ꢂ  
3(ꢁ  
$
%
&
3%ꢎ  
3(ꢃ  
966  
1&  
3%ꢒ  
3%ꢋ  
3(ꢄ  
3(ꢋ  
9''  
3$ꢁꢃ  
3&ꢎ  
3'ꢃ  
3&ꢁꢁ  
3$ꢎ  
3&ꢁꢀ  
'
(
3$ꢍ  
3(ꢒ  
3&ꢁꢂ  
3&ꢁꢋ  
3)ꢃ  
3&ꢐ  
3&ꢒ  
3&ꢍ  
9%$7  
3)ꢎ  
966  
)
966  
9'',2ꢄ  
3'ꢁꢂ  
3'ꢁꢁ  
*
9''  
3'ꢁꢀ  
3'ꢁꢃ  
3%ꢁꢀ  
3%ꢁꢄ  
3)ꢁꢃ  
1567  
3&ꢁ  
3)ꢁ  
3'ꢁꢋ  
3'ꢁꢄ  
3%ꢁꢋ  
3%ꢁꢃ  
3(ꢁꢀ  
+
-
9''  
3&ꢄ  
3$ꢄ  
3$ꢀ  
3&ꢃ  
3)ꢄ  
3&ꢂ  
3'ꢎ  
3%ꢁꢂ  
3%ꢁꢁ  
3$ꢋ  
3$ꢒ  
3$ꢐ  
3'ꢍ  
.
/
966$  
3&ꢀ  
3%ꢄ  
3%ꢁ  
3(ꢁꢃ 3(ꢁꢄ  
3(ꢍ  
3(ꢐ  
3&ꢋ  
3%ꢃ  
3)ꢀ  
3$ꢃ  
3$ꢁ  
3(ꢎ  
3(ꢁꢁ  
3(ꢁꢂ  
3(ꢁꢋ  
3$ꢂ  
0
9''$  
,ꢏ2ꢅSLQꢅVXSSOLHGꢅE\ꢅ9'',2ꢄ  
06ꢀꢀꢁꢒꢐ9ꢀ  
DocID025004 Rev 2  
29/124  
39  
 
 
Pinouts and pin descriptions  
STM32F072xx  
Figure 4. LQFP100 100-pin package pinout (top view)  
3(ꢄ  
ꢐꢋ  
9'',2ꢄ  
966  
3(ꢀ  
ꢐꢂ  
ꢐꢀ  
ꢐꢄ  
ꢐꢁ  
ꢐꢃ  
ꢒꢎ  
ꢒꢍ  
ꢒꢐ  
ꢒꢒ  
ꢒꢋ  
ꢒꢂ  
ꢒꢀ  
ꢒꢄ  
ꢒꢁ  
ꢒꢃ  
ꢋꢎ  
ꢋꢍ  
ꢋꢐ  
ꢋꢒ  
ꢋꢋ  
ꢋꢂ  
ꢋꢀ  
ꢋꢄ  
ꢋꢁ  
3(ꢂ  
3)ꢒ  
3(ꢋ  
3$ꢁꢀꢅ  
3$ꢁꢄꢅ  
3$ꢁꢁ    
3$ꢁꢃꢅ  
3$ꢎꢅ   
3$ꢍꢅꢅ   
3&ꢎꢅꢅ  
3(ꢒ  
9%$7  
3&ꢁꢀ  
3&ꢁꢂꢑ26&ꢀꢄB,1  
3&ꢁꢋꢑ26&ꢀꢄB287  
3)ꢎ  
3)ꢁꢃ  
ꢁꢃ  
ꢁꢁ  
ꢁꢄ  
ꢁꢀ  
ꢁꢂ  
ꢁꢋ  
ꢁꢒ  
ꢁꢐ  
ꢁꢍ  
ꢁꢎ  
ꢄꢃ  
ꢄꢁ  
ꢄꢄ  
ꢄꢀ  
ꢄꢂ  
ꢄꢋ  
3&ꢍꢅꢅ  
3)ꢃꢑ26&B,1  
3)ꢁꢑ26&B287  
1567  
3&ꢃ  
3&ꢐꢅꢅ  
3&ꢒꢅꢅ  
/4)3ꢁꢃꢃ  
3'ꢁꢋꢅꢅ  
3'ꢁꢂꢅꢅ  
3'ꢁꢀꢅꢅ  
3'ꢁꢄꢅꢅ  
3'ꢁꢁꢅꢅ  
3'ꢁꢃꢅꢅ  
3'ꢎꢅꢅ  
3&ꢁ  
3&ꢄ  
3&ꢀ  
3)ꢄ  
966$  
9''$  
3)ꢀ  
3'ꢍꢅꢅ  
3%ꢁꢋꢅꢅ  
3%ꢁꢂꢅꢅ  
3%ꢁꢀ   
3%ꢁꢄꢅꢅ  
3$ꢃ  
3$ꢁ  
3$ꢄ  
*ꢊ0ꢋQJOꢋTVQQMJFEꢋCZꢋ7%%*0ꢀ  
06ꢀꢁꢂꢁꢃ9ꢁ  
30/124  
DocID025004 Rev 2  
 
STM32F072xx  
Pinouts and pin descriptions  
Figure 5. LQFP64 64-pin package pinout (top view)  
ꢒꢂ ꢒꢀ ꢒꢄ ꢒꢁ ꢒꢃ ꢋꢎ ꢋꢍ ꢋꢐ ꢋꢒ ꢋꢋ ꢋꢂ ꢋꢀ ꢋꢄ ꢋꢁ ꢋꢃ ꢂꢎ  
ꢂꢍ  
9'',2ꢄ  
966  
9%$7  
3&ꢁꢀ  
3&ꢁꢂꢑ26&ꢀꢄB,1  
3&ꢁꢋꢑ26&ꢀꢄB287  
ꢂꢐ  
ꢅꢂꢒ  
ꢅꢂꢋ  
ꢅꢂꢂ  
ꢅꢂꢀ  
ꢂꢄ  
ꢂꢁ  
ꢂꢃ  
ꢀꢎ  
ꢀꢍ  
ꢀꢐ  
ꢀꢒ  
ꢀꢋ  
ꢀꢂ  
ꢀꢀ  
3$ꢁꢀ  
3$ꢁꢄ  
3$ꢁꢁ  
3$ꢁꢃ  
3$ꢎ  
3$ꢍ  
3&ꢎ  
3&ꢍ  
3&ꢐ  
3)ꢃꢑ26&B,1  
3)ꢁꢑ26&B287  
1567  
3&ꢃ  
ꢒꢅ  
ꢐꢅ  
ꢍꢅ  
ꢎꢅ  
ꢁꢃ  
 
ꢁꢄꢅ  
ꢁꢀ  
ꢁꢂ  
ꢁꢋ  
ꢁꢒ  
/4)3ꢒꢂ  
3&ꢁ  
3&ꢄ  
3&ꢀ  
966$  
9''$  
3$ꢃ  
3$ꢁ  
3&ꢒ  
3%ꢁꢋ  
3%ꢁꢂ  
3%ꢁꢀ  
3%ꢁꢄ  
3$ꢄ  
ꢁꢐ ꢁꢍ ꢁꢎ ꢄꢃ ꢄꢁ ꢄꢄ ꢄꢀ ꢄꢂ ꢄꢋ ꢄꢒ ꢄꢐ ꢄꢍ ꢄꢎ ꢀꢃ ꢀꢁ ꢀꢄ  
*ꢊ0ꢋQJOꢋTVQQMJFEꢋCZꢋ7%%*0ꢀ  
06ꢀꢁꢂꢁꢁ9ꢁ  
Figure 6. LQFP48 48-pin package pinout (top view)  
ꢂꢍ ꢂꢐ ꢂꢒ ꢂꢋ ꢂꢂ ꢂꢀ ꢂꢄ ꢂꢁ ꢂꢃ ꢀꢎ ꢀꢍ ꢀꢐ  
ꢀꢒ  
ꢀꢋ  
ꢀꢂ  
ꢀꢀ  
ꢀꢄ  
ꢀꢁ  
ꢀꢃ  
ꢄꢎ  
ꢄꢍ  
ꢄꢐ  
ꢄꢒ  
ꢄꢋ  
9'',2ꢄ  
966  
9%$7  
3&ꢁꢀ  
3&ꢁꢂꢑ26&ꢀꢄB,1  
3$ꢁꢀ  
3$ꢁꢄ  
3$ꢁꢁ  
3$ꢁꢃ  
3$ꢎ  
3&ꢁꢋꢑ26&ꢀꢄB287  
3)ꢃꢑ26&B,1  
3)ꢁꢑ26&B287  
1567  
ꢒꢅ  
ꢐꢅ  
ꢍꢅ  
ꢎꢅ  
/4)3ꢂꢍ  
3$ꢍ  
966$  
9''$  
3%ꢁꢋ  
3%ꢁꢂ  
3%ꢁꢀ  
3%ꢁꢄ  
3$ꢃ ꢁꢃ  
3$ꢁ ꢁꢁ  
ꢁꢄ  
3$ꢄ  
ꢄꢂ  
ꢁꢀ ꢁꢂ ꢁꢋ ꢁꢒ ꢁꢐ ꢁꢍ ꢁꢎ ꢄꢃ ꢄꢁ ꢄꢄ ꢄꢀ  
*ꢊ0ꢋQJOꢋTVQQMJFEꢋCZꢋ7%%*0ꢀ  
06ꢀꢁꢂꢁꢄ9ꢁ  
DocID025004 Rev 2  
31/124  
39  
 
 
Pinouts and pin descriptions  
STM32F072xx  
Figure 7. UFQFPN48 48-pin package pinout (top view)  
ꢂꢍ ꢂꢐ ꢂꢒ ꢂꢋ ꢂꢂ ꢂꢀ ꢂꢄ ꢂꢁ ꢂꢃ ꢀꢎ ꢀꢍ ꢀꢐ  
ꢀꢒ  
ꢀꢋ  
6$$)/ꢅ  
633  
6"!4  
0#ꢁꢂ  
ꢀꢂ  
ꢀꢀ  
0!ꢁꢂ  
0!ꢁꢅ  
0!ꢁꢁ  
0#ꢁꢃꢄ/3#ꢂꢅ?).  
0#ꢁꢆꢄ/3#ꢂꢅ?/54  
0&ꢀꢄ/3#?).  
ꢀꢄ  
ꢀꢁ  
0!ꢁꢀ  
0!ꢉ  
0&ꢁꢄ/3#?/54  
8)4)31ꢂꢍ  
ꢀꢃ  
ꢄꢎ  
.234  
633!  
6$$!  
0!ꢀ  
0!ꢊ  
ꢄꢍ  
ꢄꢐ  
0"ꢁꢆ  
0"ꢁꢃ  
0"ꢁꢂ  
0"ꢁꢅ  
ꢁꢃ  
ꢄꢒ  
0!ꢁ  
0!ꢅ  
ꢁꢁ  
ꢁꢄ  
ꢄꢋ  
ꢄꢂ  
ꢁꢀ ꢁꢂ ꢁꢋ ꢁꢒ ꢁꢐ ꢁꢍ ꢁꢎ ꢄꢃ ꢄꢁ ꢄꢄ ꢄꢀ  
*ꢊ0ꢋQJOꢋTVQQMJFEꢋCZꢋ7%%*0ꢀ  
06ꢀꢄꢁꢒꢒ9ꢁ  
Figure 8. WLCSP49 49-pin package ballout (bottom view)  
9''  
966 %227ꢃ  
3%ꢂ  
3%ꢀ  
3$ꢁꢋ  
3$ꢁꢂ  
$
%
9%$7  
1&  
3%ꢍ  
3%ꢎ  
3%ꢋ  
3%ꢒ  
3$ꢁꢀ  
3$ꢁꢄ  
966  
9'',2ꢄ  
3$ꢁꢃ  
3&ꢁꢋꢑ  
26&ꢀꢄ  
B287  
3&ꢁꢂꢑ  
26&ꢀꢄ  
B,1  
3$ꢁꢁ  
&
3)ꢃꢑ  
3)ꢁꢑ  
3&ꢁꢀ  
3$ꢄ  
3%ꢐ  
3$ꢀ  
966  
3$ꢎ  
3$ꢍ  
'
(
26&B,126&B287  
966$  
3$ꢃ  
3$ꢂ  
3%ꢁꢃ  
3%ꢁꢄ  
3%ꢁꢋ  
1567  
9''$  
3$ꢁ  
3$ꢋ  
3%ꢃ  
3$ꢒ  
3%ꢁ  
3$ꢐ  
3%ꢄ  
9''  
3%ꢁꢂ  
3%ꢁꢀ  
)
3%ꢁꢁ  
*
)ꢋ/ PIN SUPPLIED BY 6$$)/ꢅ  
06ꢀꢄꢁꢒꢋ9ꢄ  
32/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Pinouts and pin descriptions  
Table 12. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Definition  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
FTf  
TTa  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
3.3 V tolerant I/O directly connected to ADC  
Standard 3.3 V I/O  
I/O structure  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset.  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 13. STM32F072xx pin definitions  
Pin functions  
Pin numbers  
Pin name  
Pin  
(function after  
Additional  
functions  
type  
Alternate functions  
reset)  
B2  
A1  
B1  
C2  
1
2
3
4
-
-
-
-
-
-
-
-
-
-
-
-
PE2  
PE3  
PE4  
PE5  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
TSC_G7_IO1, TIM3_ETR  
TSC_G7_IO2, TIM3_CH1  
TSC_G7_IO3, TIM3_CH2  
TSC_G7_IO4, TIM3_CH3  
-
-
-
-
WKUP3,  
RTC_TAMP3  
D2  
E2  
5
6
-
-
-
PE6  
I/O  
S
FT  
TIM3_CH4  
1
1
B7  
VBAT  
Backup power supply  
WKUP2,  
RTC_TAMP1,  
RTC_TS,  
(1)  
(2)  
C1  
7
2
2
D5  
PC13  
I/O  
TC  
-
RTC_OUT  
DocID025004 Rev 2  
33/124  
39  
 
 
Pinouts and pin descriptions  
STM32F072xx  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
(1)  
(2)  
PC14-OSC32_IN  
(PC14)  
D1  
E1  
8
9
3
4
3
4
C7  
C6  
I/O  
I/O  
TC  
TC  
-
-
OSC32_IN  
PC15-  
OSC32_OUT  
(PC15)  
(1)  
(2)  
OSC32_OUT  
F2 10  
G2 11  
-
-
-
-
-
-
PF9  
I/O  
I/O  
FT  
FT  
TIM15_CH1  
TIM15_CH2  
-
-
PF10  
PF0-OSC_IN  
(PF0)  
F1 12  
G1 13  
5
6
7
5
6
7
D7  
D6  
E7  
I
FT  
FT  
CRS_ SYNC  
-
OSC_IN  
PF1-OSC_OUT  
(PF1)  
O
OSC_OUT  
Device reset input / internal reset output  
(active low)  
H2 14  
H1 15  
NRST  
I/O RST  
8
9
-
-
-
-
PC0  
PC1  
I/O  
I/O  
TTa  
TTa  
EVENTOUT  
EVENTOUT  
ADC_IN10  
ADC_IN11  
J2  
J3  
16  
SPI2_MISO, I2S2_MCK,  
EVENTOUT  
17 10  
-
-
-
-
PC2  
PC3  
I/O  
I/O  
TTa  
ADC_IN12  
SPI2_MOSI, I2S2_SD,  
EVENTOUT  
K2 18 11  
J1 19  
TTa  
FT  
ADC_IN13  
WKUP8  
-
-
8
9
-
-
PF2  
VSSA  
VDDA  
PF3  
I/O  
S
EVENTOUT  
K1 20 12  
M1 21 13  
E6  
F7  
-
Analog ground  
Analog power supply  
EVENTOUT  
S
L1 22  
-
I/O  
FT  
RTC_ TAMP2,  
WKUP1,  
COMP1_OUT,  
ADC_IN0,  
USART2_CTS,  
TIM2_CH1_ETR,  
TSC_G1_IO1,  
USART4_TX  
L2 23 14 10 F6  
PA0  
PA1  
I/O  
I/O  
TTa  
COMP1_INM6  
USART2_RTS, TIM2_CH2,  
TIM15_CH1N,  
ADC_IN1,  
M2 24 15 11 G7  
TTa  
TSC_G1_IO2,  
COMP1_INP  
USART4_RX, EVENTOUT  
34/124  
DocID025004 Rev 2  
STM32F072xx  
Pinouts and pin descriptions  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
ADC_IN2,  
USART2_TX, TIM2_CH3,  
TIM15_CH1, TSC_G1_IO3 COMP2_INM6,  
WKUP4  
COMP2_OUT,  
K3 25 16 12 E5  
L3 26 17 13 E4  
PA2  
PA3  
I/O  
I/O  
TTa  
TTa  
USART2_RX,TIM2_CH4,  
TIM15_CH2, TSC_G1_IO4  
ADC_IN3,  
COMP2_INP  
D3 27 18  
H3 28 19  
-
-
-
-
VSS  
VDD  
S
S
Ground  
Digital power supply  
COMP1_INM4,  
COMP2_INM4,  
ADC_IN4,  
SPI1_NSS, I2S1_WS,  
TIM14_CH1, TSC_G2_IO1,  
USART2_CK  
M3 29 20 14 G6  
PA4  
PA5  
I/O  
I/O  
TTa  
TTa  
DAC_OUT1  
COMP1_INM5,  
COMP2_INM5,  
ADC_IN5,  
SPI1_SCK, I2S1_CK, CEC,  
TIM2_CH1_ETR,  
K4 30 21 15 F5  
TSC_G2_IO2  
DAC_OUT2  
SPI1_MISO, I2S1_MCK,  
TIM3_CH1, TIM1_BKIN,  
TIM16_CH1,  
COMP1_OUT,  
TSC_G2_IO3, EVENTOUT,  
USART3_CTS  
L4 31 22 16 F4  
PA6  
PA7  
I/O  
I/O  
TTa  
TTa  
ADC_IN6  
SPI1_MOSI, I2S1_SD,  
TIM3_CH2, TIM14_CH1,  
TIM1_CH1N, TIM17_CH1,  
COMP2_OUT,  
M4 32 23 17 F3  
ADC_IN7  
TSC_G2_IO4,  
EVENTOUT  
K5 33 24  
L5 34 25  
-
-
-
-
PC4  
PC5  
I/O  
I/O  
TTa  
TTa  
EVENTOUT, USART3_TX  
ADC_IN14  
TSC_G3_IO1,  
USART3_RX  
ADC_IN15,  
WKUP5  
TIM3_CH3, TIM1_CH2N,  
TSC_G3_IO2, EVENTOUT,  
USART3_CK  
M5 35 26 18 G5  
PB0  
I/O  
TTa  
ADC_IN8  
TIM3_CH4, USART3_RTS,  
TIM14_CH1, TIM1_CH3N,  
TSC_G3_IO3  
M6 36 27 19 G4  
L6 37 28 20 G3  
PB1  
PB2  
I/O  
I/O  
TTa  
FT  
ADC_IN9  
-
TSC_G3_IO4  
DocID025004 Rev 2  
35/124  
39  
Pinouts and pin descriptions  
STM32F072xx  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
M7 38  
L7 39  
M8 40  
L8 41  
M9 42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE7  
PE8  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
-
-
-
-
-
PE9  
PE10  
PE11  
SPI1_NSS, I2S1_WS,  
TIM1_CH3N  
L9 43  
M10 44  
M11 45  
M12 46  
-
-
-
-
-
-
-
-
-
-
-
-
PE12  
PE13  
PE14  
PE15  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
SPI1_SCK, I2S1_CK,  
TIM1_CH3  
SPI1_MISO, I2S1_MCK,  
TIM1_CH4  
SPI1_MOSI, I2S1_SD,  
TIM1_BKIN  
SPI2_SCK, I2C2_SCL,  
USART3_TX, CEC,  
TSC_SYNC, TIM2_CH3  
L10 47 29 21 E3  
L11 48 30 22 G2  
PB10  
PB11  
I/O  
I/O  
FT  
FT  
-
-
USART3_RX, TIM2_CH4,  
EVENTOUT, TSC_G6_IO1,  
I2C2_SDA  
F12 49 31 23 D3  
G12 50 32 24 F2  
VSS  
VDD  
S
S
Ground  
Digital power supply  
TIM1_BKIN, TIM15_BKIN,  
SPI2_NSS, I2S2_WS,  
USART3_CK,  
L12 51 33 25 E2  
PB12  
I/O  
FT  
-
TSC_G6_IO2,  
EVENTOUT  
SPI2_SCK, I2S2_CK,  
I2C2_SCL, USART3_CTS,  
TIM1_CH1N, TSC_G6_IO3  
K12 52 34 26 G1  
K11 53 35 27 F1  
PB13  
PB14  
I/O  
I/O  
FTf  
FTf  
-
-
SPI2_MISO, I2S2_MCK,  
I2C2_SDA, USART3_RTS,  
TIM1_CH2N, TIM15_CH1,  
TSC_G6_IO4  
36/124  
DocID025004 Rev 2  
STM32F072xx  
Pinouts and pin descriptions  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
SPI2_MOSI, I2S2_SD,  
TIM1_CH3N,  
WKUP7,  
RTC_REFIN  
K10 54 36 28 E1  
PB15  
I/O  
FT  
TIM15_CH1N,  
TIM15_CH2  
K9 55  
K8 56  
J12 57  
J11 58  
-
-
-
-
-
-
-
-
-
-
-
-
PD8  
PD9  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
-
-
-
-
PD10  
PD11  
USART3_RTS,  
TSC_G8_IO1  
J10 59  
-
-
-
PD12  
I/O  
FT  
-
H12 60  
H11 61  
H10 62  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD13  
PD14  
PD15  
PC6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4, CRS_SYNC  
TIM3_CH1  
-
-
-
-
-
-
-
(3)  
(3)  
(3)  
(3)  
E12 63 37  
E11 64 38  
E10 65 39  
D12 66 40  
PC7  
TIM3_CH2  
PC8  
TIM3_CH3  
PC9  
TIM3_CH4  
USART1_CK, TIM1_CH1,  
EVENTOUT, MCO,  
CRS_SYNC  
(3)  
(3)  
(3)  
(3)  
(3)  
D11 67 41 29 D1  
D10 68 42 30 D2  
C12 69 43 31 C2  
B12 70 44 32 C1  
PA8  
PA9  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
USART1_TX, TIM1_CH2,  
TIM15_BKIN,  
-
TSC_G4_IO1  
USART1_RX, TIM1_CH3,  
TIM17_BKIN,  
PA10  
PA11  
-
TSC_G4_IO2  
CAN_RX, USART1_CTS,  
TIM1_CH4, COMP1_OUT,  
TSC_G4_IO3, EVENTOUT  
USB_DM  
CAN_TX, USART1_RTS,  
TIM1_ETR, COMP2_OUT,  
TSC_G4_IO4, EVENTOUT  
A12 71 45 33 C3  
A11 72 46 34 B3  
PA12  
PA13  
I/O  
I/O  
FT  
FT  
USB_DP  
-
(3)  
(4)  
IR_OUT, SWDIO,  
USB_NOE  
DocID025004 Rev 2  
37/124  
39  
Pinouts and pin descriptions  
STM32F072xx  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
(3)  
C11 73  
-
-
-
PF6  
VSS  
I/O  
S
FT  
-
-
F11 74 47 35 B1  
G11 75 48 36 B2  
Ground  
Digital power supply  
VDDIO2  
S
(3)  
(4)  
A10 76 49 37 A1  
PA14  
PA15  
I/O  
I/O  
FT  
FT  
USART2_TX, SWCLK  
-
-
SPI1_NSS, I2S1_WS,  
USART2_RX,  
USART4_RTS,  
TIM2_CH1_ETR,  
EVENTOUT  
(3)  
A9 77 50 38 A2  
(3)  
(3)  
B11 78 51  
C10 79 52  
-
-
-
-
PC10  
PC11  
I/O  
I/O  
FT  
FT  
USART3_TX, USART4_TX  
USART3_RX, USART4_RX  
-
-
USART3_CK,  
USART4_CK  
(3)  
(3)  
B10 80 53  
-
-
-
-
PC12  
PD0  
I/O  
I/O  
FT  
FT  
-
-
SPI2_NSS, I2S2_WS,  
CAN_RX  
C9 81  
B9 82  
-
-
SPI2_SCK, I2S2_CK,  
CAN_TX  
(3)  
(3)  
-
-
-
-
-
-
PD1  
PD2  
PD3  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
C8 83 54  
USART3_RTS, TIM3_ETR  
SPI2_MISO, I2S2_MCK,  
USART2_CTS  
B8 84  
B7 85  
-
-
SPI2_MOSI, I2S2_SD,  
USART2_RTS  
-
-
PD4  
I/O  
FT  
-
A6 86  
B6 87  
A5 88  
-
-
-
-
-
-
-
-
-
PD5  
PD6  
PD7  
I/O  
I/O  
I/O  
FT  
FT  
FT  
USART2_TX  
USART2_RX  
USART2_CK  
-
-
-
SPI1_SCK, I2S1_CK,  
TIM2_CH2, TSC_G5_IO1,  
EVENTOUT  
A8 89 55 39 A3  
A7 90 56 40 A4  
C5 91 57 41 B4  
PB3  
PB4  
PB5  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
SPI1_MISO, I2S1_MCK,  
TIM17_BKIN, TIM3_CH1,  
TSC_G5_IO2, EVENTOUT  
-
SPI1_MOSI, I2S1_SD,  
I2C1_SMBA, TIM16_BKIN,  
TIM3_CH2  
WKUP6  
38/124  
DocID025004 Rev 2  
STM32F072xx  
Pinouts and pin descriptions  
Table 13. STM32F072xx pin definitions (continued)  
Pin numbers  
Pin functions  
Pin name  
(function after  
reset)  
Pin  
type  
Additional  
functions  
Alternate functions  
I2C1_SCL, USART1_TX,  
TIM16_CH1N,  
B5 92 58 42 C4  
PB6  
PB7  
I/O  
I/O  
FTf  
FTf  
-
-
TSC_G5_I03  
I2C1_SDA, USART1_RX,  
USART4_CTS,  
B4 93 59 43 D4  
TIM17_CH1N,  
TSC_G5_IO4  
A4 94 60 44 A5  
A3 95 61 45 B5  
BOOT0  
PB8  
I
B
Boot memory selection  
I2C1_SCL, CEC,  
TIM16_CH1, TSC_SYNC,  
CAN_RX  
I/O  
FTf  
-
-
SPI2_NSS, I2S2_WS,  
I2C1_SDA, IR_OUT,  
TIM17_CH1, EVENTOUT,  
CAN_TX  
B3 96 62 46 C5  
PB9  
I/O  
FTf  
C3 97  
A2 98  
-
-
-
-
-
-
PE0  
PE1  
VSS  
VDD  
I/O  
I/O  
S
FT  
FT  
EVENTOUT, TIM16_CH1  
EVENTOUT, TIM17_CH1  
Ground  
-
-
D3 99 63 47 A6  
C4 100 64 48 A7  
S
Digital power supply  
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of  
current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends  
on the content of the RTC registers which are not reset by the system reset. For details on how to manage  
these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual.  
3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1  
and PD2 I/Os are supplied by VDDIO2.  
4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on  
the SWDIO pin and the internal pull-down on the SWCLK pin are activated.  
DocID025004 Rev 2  
39/124  
39  
Table 14. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
PA0  
PA1  
USART2_CTS TIM2_CH1_ETR TSC_G1_IO1  
USART4_TX  
COMP1_OUT  
EVENTOUT  
TIM15_CH1  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
CEC  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
TSC_G1_IO2 USART4_RX TIM15_CH1N  
TSC_G1_IO3  
PA2  
COMP2_OUT  
PA3  
TIM15_CH2  
TSC_G1_IO4  
PA4  
SPI1_NSS, I2S1_WS  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
MCO  
TSC_G2_IO1  
TIM2_CH1_ETR TSC_G2_IO2  
TIM14_CH1  
PA5  
PA6  
TIM3_CH1  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
USB_NOE  
TSC_G2_IO3 USART3_CTS TIM16_CH1  
EVENTOUT COMP1_OUT  
EVENTOUT COMP2_OUT  
PA7  
TIM3_CH2  
TSC_G2_IO4  
EVENTOUT  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
TIM14_CH1  
CRS_SYNC  
TIM17_CH1  
PA8  
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
IR_OUT  
PA9  
TIM15_BKIN  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM17_BKIN  
EVENTOUT  
CAN_RX  
CAN_TX  
COMP1_OUT  
COMP2_OUT  
EVENTOUT  
SWDIO  
SWCLK  
USART2_TX  
USART2_RX  
SPI1_NSS, I2S1_WS  
TIM2_CH1_ETR EVENTOUT USART4_RTS  
 
Table 15. Alternate functions selected through GPIOB_AFR registers for port B  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
PB0  
PB1  
EVENTOUT  
TIM14_CH1  
TIM3_CH3  
TIM3_CH4  
TIM1_CH2N  
TIM1_CH3N  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
I2C1_SMBA  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_SYNC  
USART3_CK  
USART3_RTS  
PB2  
PB3  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
USART1_TX  
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
EVENTOUT  
TIM2_CH2  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
PB4  
TIM17_BKIN  
PB5  
PB6  
PB7  
USART1_RX  
USART4_CTS  
CAN_RX  
PB8  
CEC  
PB9  
IR_OUT  
EVENTOUT  
TSC_SYNC  
CAN_TX  
SPI2_NSS, I2S2_WS  
SPI2_SCK, I2S2_CK  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
CEC  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
EVENTOUT  
TIM2_CH4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TIM15_CH1N  
SPI2_NSS, I2S2_WS  
SPI2_SCK, I2S2_CK  
SPI2_MISO, I2S2_MCK  
SPI2_MOSI, I2S2_SD  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
TIM15_BKIN  
I2C2_SCL  
I2C2_SDA  
TIM15_CH1  
TIM15_CH2  
 
STM32F072xx  
Table 16. Alternate functions selected through GPIOC_AFR registers for port C  
Pin name  
AF0  
AF1  
PC0  
PC1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_G3_IO1  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
USART4_TX  
USART4_RX  
USART4_CK  
-
-
-
PC2  
SPI2_MISO, I2S2_MCK  
PC3  
SPI2_MOSI, I2S2_SD  
PC4  
USART3_TX  
PC5  
USART3_RX  
PC6  
-
PC7  
-
PC8  
-
PC9  
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
USART3_TX  
USART3_RX  
USART3_CK  
-
-
-
-
-
Table 17. Alternate functions selected through GPIOD_AFR registers for port D  
Pin name  
AF0  
AF1  
PD0  
PD1  
CAN_RX  
CAN_TX  
SPI2_NSS, I2S2_WS  
SPI2_SCK, I2S2_CK  
PD2  
TIM3_ETR  
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
-
USART3_RTS  
PD3  
SPI2_MISO, I2S2_MCK  
PD4  
SPI2_MOSI, I2S2_SD  
PD5  
-
PD6  
-
PD7  
-
PD8  
-
PD9  
-
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
-
CRS_SYNC  
42/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Table 18. Alternate functions selected through GPIOE_AFR registers for port E  
Pin name  
AF0  
AF1  
PE0  
PE1  
TIM16_CH1  
TIM17_CH1  
TIM3_ETR  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
EVENTOUT  
EVENTOUT  
PE2  
TSC_G7_IO1  
PE3  
TSC_G7_IO2  
PE4  
TSC_G7_IO3  
PE5  
TSC_G7_IO4  
PE6  
-
PE7  
-
PE8  
-
PE9  
-
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
-
SPI1_NSS, I2S1_WS  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
Table 19. Alternate functions available on port F  
AF  
Pin name  
PF0  
PF1  
PF2  
PF3  
PF6  
PF9  
PF10  
CRS_SYNC  
-
EVENTOUT  
EVENTOUT  
-
TIM15_CH1  
TIM15_CH2  
DocID025004 Rev 2  
43/124  
43  
 
 
Memory mapping  
STM32F072xx  
5
Memory mapping  
Figure 9. STM32F072xx memory map  
ꢀX&&&& &&&&  
ꢀXꢃꢊꢀꢀ ꢁꢈ&&  
ꢀXꢃꢊꢀꢀ ꢀꢀꢀꢀ  
!("ꢅ  
ꢀX%ꢀꢁꢀ ꢀꢀꢀꢀ  
#ORTEXꢄ -)NTERNAL  
0ERIPHERALS  
ꢀX%ꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
ꢀX#ꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢃꢀꢀꢅ ꢃꢂ&&  
ꢀXꢃꢀꢀꢅ ꢀꢀꢀꢀ  
")#ꢈ  
RESERVED  
ꢀX!ꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢃꢀꢀꢁ ꢊꢀꢀꢀ  
ꢀXꢃꢀꢀꢁ ꢀꢀꢀꢀ  
"1#  
ꢀXꢁ&&& &&&&  
/PTION BYTES  
ꢀXꢁ&&& &ꢊꢀꢀ  
ꢀXꢊꢀꢀꢀ ꢀꢀꢀꢀ  
3YSTEM MEMORY  
RESERVED  
ꢀXꢃꢀꢀꢀ ꢊꢀꢀꢀ  
ꢀXꢃꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢁ&&& #ꢊꢀꢀ  
"1#  
ꢀXꢇꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
0ERIPHERALS  
ꢀXꢃꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢀꢊꢀꢅ ꢀꢀꢀꢀ  
&LASH MEMORY  
32!-  
#/$%  
ꢀXꢅꢀꢀꢀ ꢀꢀꢀꢀ  
ꢉYꢉꢆꢉꢉꢋꢉꢉꢉꢉ  
RESERVED  
ꢀXꢀꢀꢀꢅ ꢀꢀꢀꢀ  
'MBTIꢌꢋTZTUFNꢋNFNPSZ  
PSꢋ43".ꢌꢋEFQFOEJOHꢋPO  
#005ꢋDPOGJHVSBUJPO  
ꢀXꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢀꢀꢀꢀ ꢀꢀꢀꢀ  
2ESERVED  
-3ꢂꢁꢃꢀꢉ6ꢁ  
44/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Bus  
Memory mapping  
Table 20. STM32F072xx peripheral register boundary addresses  
Boundary address  
Size  
Peripheral  
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 0800 - 0x4001 23FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 8000 - 0x4000 FFFF  
~384 MB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
~128 MB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
3 KB  
1 KB  
32 KB  
9 KB  
1 KB  
3 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
7 KB  
1 KB  
1 KB  
32 KB  
Reserved  
GPIOF  
GPIOE  
GPIOD  
AHB2  
GPIOC  
GPIOB  
GPIOA  
Reserved  
TSC  
Reserved  
CRC  
Reserved  
FLASH Interface  
Reserved  
RCC  
AHB1  
Reserved  
DMA  
Reserved  
Reserved  
DBGMCU  
Reserved  
TIM17  
TIM16  
TIM15  
Reserved  
USART1  
Reserved  
SPI1/I2S1  
TIM1  
APB  
Reserved  
ADC  
Reserved  
EXTI  
SYSCFG + COMP  
Reserved  
DocID025004 Rev 2  
45/124  
46  
 
Memory mapping  
STM32F072xx  
Table 20. STM32F072xx peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
Peripheral  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 3C00 - 0x4000 43FF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1800 - 0x4000 1FFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0800 - 0x4000 0FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
Reserved  
CEC  
DAC  
PWR  
CRS  
Reserved  
BxCAN  
USB/CAN RAM  
USB  
I2C2  
I2C1  
Reserved  
USART4  
USART3  
USART2  
Reserved  
SPI2  
APB  
Reserved  
IWDG  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM7  
TIM6  
Reserved  
TIM3  
TIM2  
46/124  
DocID025004 Rev 2  
STM32F072xx  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3.3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
-#5 PIN  
-#5 PIN  
&ꢅ ꢅꢋꢃꢅS)  
6
).  
-3ꢁꢉꢅꢁꢀ6ꢁ  
-3ꢁꢉꢅꢁꢁ6ꢁ  
DocID025004 Rev 2  
47/124  
100  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F072xx  
6.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
9%$7  
%DFNXSꢅFLUFXLWU\  
ꢈ/6(ꢇꢅ57&ꢇ  
%DFNXSꢅUHJLVWHUVꢊ  
ꢁꢆꢒꢋꢅ±ꢅꢀꢆꢒꢅ9  
3RZHUꢅVZLWFK  
9''  
9&25(  
ꢀꢅ[ꢅ9''  
5HJXODWRU  
9'',2ꢁ  
287  
.HUQHOꢅORJLF  
ꢈ&38ꢇꢅ'LJLWDO  
ꢓꢅ0HPRULHVꢊ  
,2  
ꢀꢅ[ꢅꢁꢃꢃꢅQ)  
ꢉꢁꢅ[ꢅꢂꢆꢐꢅ—)  
*3,2V  
ORJLF  
,1  
ꢀꢅ[ꢅ966  
9'',2ꢄ  
9'',2ꢄ  
9'',2ꢄ  
287  
ꢁꢃꢃꢅQ)  
ꢉꢂꢆꢐꢅ—)ꢅ  
,2  
*3,2V  
ORJLF  
,1  
966  
9''$  
9''$  
$QDORJꢌ  
ꢈ5&Vꢇꢅ3//ꢇꢅ«ꢊ  
ꢁꢃꢅQ)  
ꢉꢁꢅ—)  
$'&ꢏ  
'$&  
95()ꢉ  
95()ꢑ  
966$  
06Yꢀꢄꢁꢎꢃ9ꢁ  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
48/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
6.1.7  
Current consumption measurement  
Figure 13. Current consumption measurement scheme  
*
%%@7#"5  
6
"!4  
)
$$  
6
$$  
6
$$)/ꢅ  
)
$$!  
6
$$!  
-3ꢂꢁꢉꢉꢉ6ꢁ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics,  
Table 22: Current characteristics and Table 23: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 21. Voltage characteristics  
Symbol  
DDx–VSS  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
(including VDDA, VDD, VDDIO2 and VBAT  
V
–0.3  
4.0  
V
)
VDD–VDDA Allowed voltage difference for VDD > VDDA  
-
0.4  
V
V
Input voltage on FT and FTf pins  
VSS 0.3  
VSS 0.3  
VSS 0.3  
-
VDDIOx + 4.0  
(2)  
VIN  
Input voltage on TTa pins  
4.0  
4.0  
50  
V
Input voltage on any other pin  
V
|VDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|VSSx VSS  
|
-
50  
mV  
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.12: Electrical  
sensitivity characteristics  
VESD(HBM)  
1. All main power (V , V  
) and ground (V , V  
) pins must always be connected to the external power  
SSA  
DD  
DDA  
SS  
supply, in the permitted range.  
V maximum must always be respected. Refer to Table 22: Current characteristics for the maximum  
IN  
2.  
allowed injected current values.  
DocID025004 Rev 2  
49/124  
100  
 
 
 
 
 
 
Electrical characteristics  
STM32F072xx  
Table 22. Current characteristics  
Ratings  
Symbol  
Max.  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
120  
-120  
100  
-100  
25  
mA  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
Output current source by any I/O and control pin  
Total output current sunk by sum of all IOs and control pins(2)  
Total output current sourced by sum of all IOs and control pins(2)  
Total output current sourced by sum of all IOs supplied by VDDIO2  
Injected current on FT, FTf and B pins  
-25  
80  
IIO(PIN)  
-80  
-40  
-5/+0(4)  
(3)  
IINJ(PIN)  
Injected current on TC and RST pin  
± 5  
Injected current on TTa pins(5)  
± 5  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
3. A positive injection is induced by V > V  
while a negative injection is induced by V < V . I  
must never be  
IN  
DDIOx  
IN  
SS INJ(PIN)  
exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. On these I/Os, a positive injection is induced by V > V  
. Negative injection disturbs the analog performance of the  
DDA  
IN  
(2)  
device. See note  
below Table 60: ADC accuracy.  
6. When several inputs are submitted to a current injection, the maximum I  
is the absolute sum of the positive and  
INJ(PIN)  
negative injected currents (instantaneous values).  
Table 23. Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
–65 to +150  
150  
°C  
°C  
50/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 24. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
0
0
2
48  
48  
MHz  
3.6  
V
V
Must not be supplied if VDD  
is not present  
VDDIO2  
I/O supply voltage  
1.65  
2
3.6  
3.6  
3.6  
Analog operating voltage  
(ADC and DAC not used)  
Must have a potential equal  
to or higher than VDD  
VDDA  
V
V
Analog operating voltage  
(ADC and DAC used)  
2.4  
VBAT  
Backup operating voltage  
1.65  
–0.3  
–0.3  
–0.3  
0
3.6  
VDDIOx+0.3  
VDDA+0.3  
5.5(1)  
9.0  
TC and RST I/O  
TTa I/O  
VIN  
PD  
TA  
I/O input voltage  
V
FT and FTf I/O  
BOOT0  
UFBGA100  
-
364  
LQFP100  
-
476  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(2)  
LQFP64  
-
455  
mW  
LQFP48  
-
370  
UFQFPN48  
-
625  
WLCSP49  
-
408  
Maximum power dissipation  
Low power dissipation(3)  
Maximum power dissipation  
Low power dissipation(3)  
Suffix 6 version  
Suffix 7 version  
–40  
–40  
–40  
–40  
–40  
–40  
85  
Ambient temperature for the  
suffix 6 version  
°C  
°C  
°C  
105  
105  
Ambient temperature for the  
suffix 7 version  
125  
105  
TJ  
Junction temperature range  
125  
1. To sustain a voltage higher than V  
+0.3 V, the internal pull-up/pull-down resistors must be disabled.  
DDIOx  
2. If T is lower, higher P values are allowed as long as T does not exceed T (see Section 7.2: Thermal characteristics).  
Jmax  
A
D
J
3. In low power dissipation state, T can be extended to this range as long as T does not exceed T (see Section 7.2:  
Jmax  
A
J
Thermal characteristics).  
DocID025004 Rev 2  
51/124  
100  
 
 
 
 
 
Electrical characteristics  
STM32F072xx  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 25 are derived from tests performed under the ambient  
temperature condition summarized in Table 24.  
Table 25. Operating conditions at power-up / power-down  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
20  
0
μs/V  
tVDDA  
20  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 26 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 26. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Falling edge(2)  
Rising edge  
1.96(3)  
2.00  
-
1.80  
1.84(3)  
-
1.88  
1.92  
40  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
VPDRhyst  
PDR hysteresis  
mV  
ms  
(4)  
tRSTTEMPO  
Reset temporization  
1.50  
2.50  
4.50  
1. The PDR detector monitors V and also V  
(if kept enabled in the option bytes). The POR detector  
DD  
DDA  
monitors only V  
.
DD  
2. The product behavior is guaranteed by design down to the minimum V  
3. Data based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
value.  
POR/PDR  
Table 27. Programmable voltage detector characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.1  
2
2.18  
2.08  
2.28  
2.18  
2.38  
2.28  
2.48  
2.38  
2.26  
2.16  
2.37  
2.27  
2.48  
2.38  
2.58  
2.48  
V
V
V
V
V
V
V
V
VPVD0  
PVD threshold 0  
2.19  
2.09  
2.28  
2.18  
2.38  
2.28  
VPVD1  
VPVD2  
VPVD3  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
52/124  
DocID025004 Rev 2  
 
 
 
 
 
 
 
STM32F072xx  
Electrical characteristics  
Table 27. Programmable voltage detector characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.47  
2.37  
2.57  
2.47  
2.66  
2.56  
2.76  
2.66  
-
2.58  
2.48  
2.68  
2.58  
2.78  
2.68  
2.88  
2.78  
100  
2.69  
2.59  
2.79  
2.69  
2.9  
2.8  
3
V
V
VPVD4  
PVD threshold 4  
V
VPVD5  
VPVD6  
VPVD7  
PVD threshold 5  
PVD threshold 6  
PVD threshold 7  
V
V
V
V
2.9  
-
V
(1)  
VPVDhyst  
IDD(PVD)  
PVD hysteresis  
mV  
μA  
PVD current consumption  
-
0.15 0.26(1)  
1. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 28 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 28. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
–40 °C < TA < +105 °C  
–40 °C < TA < +85 °C  
1.16  
1.16  
1.2 1.25  
V
V
Internal reference voltage  
V
REFINT  
1.2 1.24(1)  
ADC sampling time when  
reading the internal  
reference voltage  
4(2)  
tS_vrefint  
-
-
μs  
Internal reference voltage  
VREFINT spread over the  
10(2)  
VDDA = 3 V  
-
-
-
-
mV  
temperature range  
100(2)  
TCoeff  
Temperature coefficient  
ppm/°C  
1. Data based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production.  
DocID025004 Rev 2  
53/124  
100  
 
 
 
 
Electrical characteristics  
STM32F072xx  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 13: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled f  
PCLK  
HCLK  
The parameters given in Table 29 to Table 34 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 24: General  
operating conditions.  
Table 29. Typical and maximum current consumption from V supply at V = 3.6 V  
DD  
DD  
All peripherals enabled(1)  
All peripherals disabled  
(2)  
(2)  
Max @ TA  
Max @ TA  
Conditions  
fHCLK  
Unit  
Typ  
Typ  
25 °C  
85 °C 105 °C  
25 °C 85 °C 105 °C  
HSI48  
48 MHz 24.3  
48 MHz 24.1  
32 MHz 16.0  
24 MHz 12.3  
26.9  
26.8  
18.3  
13.7  
5.25  
1.39  
27.1  
18.2  
14.0  
27.2  
27.0  
18.6  
14.3  
5.28  
1.58  
27.6  
18.9  
14.4  
27.9  
27.7  
19.2  
14.7  
5.61  
1.87  
27.8  
19.3  
14.8  
13.1 14.8  
13.0 14.6  
8.76 9.56  
7.36 7.94  
2.89 3.17  
0.93 1.06  
12.9 14.7  
8.82 9.69  
7.31 7.92  
14.9  
14.8  
9.73  
8.37  
3.26  
1.15  
14.9  
9.83  
8.34  
15.5  
15.4  
10.6  
8.81  
3.34  
1.34  
15.5  
10.7  
8.75  
HSEbypass,  
PLL on  
8 MHz  
1 MHz  
4.52  
1.25  
HSEbypass,  
PLL off  
IDD  
mA  
48 MHz 24.1  
32 MHz 16.1  
24 MHz 12.4  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
4.52  
5.25  
5.35  
5.61  
2.87 3.16  
3.25  
3.33  
54/124  
DocID025004 Rev 2  
 
 
 
STM32F072xx  
Electrical characteristics  
Table 29. Typical and maximum current consumption from V supply at V = 3.6 V (continued)  
DD  
DD  
All peripherals enabled(1)  
All peripherals disabled  
(2)  
(2)  
Max @ TA  
Max @ TA  
Conditions  
fHCLK  
Unit  
Typ  
Typ  
25 °C  
85 °C 105 °C  
25 °C 85 °C 105 °C  
HSI48  
48 MHz 23.1  
25.4  
25.8  
25.7  
17.8  
13.5  
4.89  
0.92  
25.0  
17.7  
13.6  
26.6  
12.8 13.5  
13.7  
13.9  
48 MHz 23.0 25.3(3)  
26.5(3) 12.6 13.3(3) 13.5 13.8(3)  
HSEbypass,  
PLL on  
32 MHz 15.4  
24 MHz 11.4  
17.3  
12.9  
4.6  
18.3  
13.7  
5.25  
1.15  
25.2  
18.2  
13.9  
7.96 8.92  
6.48 8.04  
9.17  
8.23  
2.35  
0.59  
13.9  
9.16  
8.21  
9.73  
8.41  
2.94  
0.82  
14.0  
9.94  
8.47  
8 MHz  
1 MHz  
4.21  
0.78  
2.07  
2.3  
HSEbypass,  
PLL off  
0.9  
0.36 0.48  
12.6 13.7  
8.05 8.85  
6.49 8.06  
48 MHz 23.1  
32 MHz 15.4  
24 MHz 11.5  
24.5  
17.4  
13.0  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
4.34  
4.75  
5.03  
5.41  
2.11  
2.36  
2.38  
2.98  
IDD  
mA  
HSI48  
48 MHz 15.1  
16.6  
16.8  
16.7  
11.6  
8.71  
3.26  
0.55  
17.3  
11.6  
8.87  
17.5  
3.08 3.43  
3.56  
3.61  
48 MHz 15.0 16.5(3)  
17.3(3) 2.93 3.28(3) 3.41 3.46(3)  
HSEbypass,  
PLL on  
32 MHz  
9.9  
11.4  
8.17  
3.09  
0.54  
17.2  
11.3  
8.45  
11.9  
8.82  
3.66  
0.67  
17.9  
11.7  
8.95  
2.0  
2.24  
2.32  
1.88  
0.91  
0.41  
3.41  
2.44  
1.9  
2.49  
1.9  
24 MHz 7.43  
1.63 1.82  
0.76 0.88  
0.28 0.39  
3.04 3.37  
8 MHz  
1 MHz  
2.83  
0.42  
0.93  
0.43  
3.46  
2.65  
1.93  
HSEbypass,  
PLL off  
48 MHz 15.0  
32 MHz 9.93  
24 MHz 7.53  
HSI clock,  
PLL on  
2.11  
2.35  
1.64 1.83  
HSI clock,  
PLL off  
8 MHz  
2.95  
3.24  
3.41  
3.8  
0.8  
0.92  
0.94  
0.97  
1. USB is kept disabled as this IP functions only with a 48 MHz clock.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
3. Data based on characterization results and tested in production (using one common test limit for sum of I and I  
).  
DD  
DDA  
DocID025004 Rev 2  
55/124  
100  
Electrical characteristics  
STM32F072xx  
Table 30. Typical and maximum current consumption from the V  
supply  
DDA  
V
= 2.4 V  
V
= 3.6 V  
DDA  
DDA  
Para-  
meter  
Conditions  
(2)  
(2)  
Symbol  
fHCLK  
Unit  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
(1)  
Typ  
Typ  
HSI48  
48 MHz 311  
48 MHz 152 170(3)  
32 MHz 105 121  
24 MHz 81.9 95.9  
326  
334  
178  
126  
99.5  
4.3  
343  
322  
337  
345  
354  
200(3)  
138  
182(3) 165 184(3) 196  
HSE  
bypass,  
PLL on  
128  
101  
4.6  
113  
129  
136  
107  
5.2  
Supply  
current in  
Run or  
Sleep  
88.7 102  
108  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
2.7  
2.7  
3.8  
3.8  
3.6  
3.6  
4.7  
4.7  
5.5  
mode,  
code  
IDDA  
μA  
4.3  
4.6  
5.2  
5.5  
executing  
from  
Flash or  
RAM  
48 MHz 223  
32 MHz 176  
24 MHz 154  
244  
195  
171  
255  
203  
178  
260  
206  
181  
245  
193  
168  
265  
212  
185  
279  
221  
192  
284  
224  
195  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz 74.2 83.4  
86.4  
87.3  
83.4 92.5  
95.3  
96.6  
1. Current consumption from the V  
supply is independent of whether the digital peripherals are enabled or disabled, being  
DDA  
in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, I  
frequency.  
is independent from the  
DDA  
2. Data based on characterization results, not tested in production unless otherwise specified.  
3. Data based on characterization results and tested in production (using one common test limit for sum of I and I  
).  
DDA  
DD  
56/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
Table 31. Typical and maximum consumption in Stop and Standby modes  
Typ @VDD (VDD = VDDA  
)
Max(1)  
Sym-  
bol  
Para-  
meter  
Conditions  
Unit  
TA =  
TA =  
TA =  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
25 °C 85 °C 105 °C  
Regulator in run  
mode, all  
oscillators OFF  
15.4 15.5 15.6 15.7 15.8 15.9 23(2)  
49  
33  
68(2)  
51(2)  
Supply  
current in  
Stop  
Regulator in low-  
power mode, all  
oscillators OFF  
8(2)  
mode  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
IDD  
LSI ON and IWDG  
ON  
Supply  
current in  
Standby  
mode  
0.8  
0.6  
1.0  
0.7  
1.1  
0.9  
1.2  
0.9  
1.3  
1.0  
1.4  
1.1  
-
-
-
LSI OFF and IWDG  
OFF  
2.1(2)  
2.6  
3.1(2)  
Regulator in  
run mode, all  
oscillators  
OFF  
2.1  
2.1  
2.2  
2.2  
2.3  
2.3  
2.5  
2.5  
2.6  
2.6  
2.8  
2.8  
3.5(2)  
3.6  
3.6  
4.6(2)  
Supply  
current in  
Stop  
Regulator in  
low-power  
mode, all  
oscillators  
OFF  
mode  
3.5(2)  
4.6(2)  
μA  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
2.5  
1.9  
2.7  
2.1  
2.8  
2.2  
3.0  
2.3  
3.2  
2.5  
3.5  
2.6  
-
-
-
LSI OFF and  
IWDG OFF  
3.5(2)  
3.6  
4.6(2)  
IDDA  
Regulator in  
run mode, all  
oscillators  
OFF  
1.3  
1.3  
1.3  
1.3  
1.4  
1.4  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
-
-
-
-
-
-
Supply  
current in  
Stop  
Regulator in  
low-power  
mode, all  
oscillators  
OFF  
mode  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
1.7  
1.2  
1.8  
1.2  
1.9  
1.2  
2.0  
1.3  
2.1  
1.3  
2.2  
1.4  
-
-
-
-
-
-
LSI OFF and  
IWDG OFF  
1. Data based on characterization results, not tested in production unless otherwise specified.  
2. Data based on characterization results and tested in production (using one common test limit for sum of I and I  
).  
DDA  
DD  
DocID025004 Rev 2  
57/124  
100  
 
Electrical characteristics  
STM32F072xx  
Table 32. Typical and maximum current consumption from the V  
supply  
BAT  
Typ @ VBAT  
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C 85 °C 105 °C  
LSE & RTC ON; “Xtal  
mode”: lower driving  
capability;  
0.5 0.6 0.7 0.8 1.1 1.2 TBD  
TBD  
TBD  
TBD  
TBD  
RTC  
domain  
supply  
current  
LSEDRV[1:0] = '00'  
IDD VBAT  
_
μA  
LSE & RTC ON; “Xtal  
mode” higher driving  
capability;  
0.8 0.9 1.1 1.2 1.4 1.6 TBD  
LSEDRV[1:0] = '11'  
1. Data based on characterization results, not tested in production.  
Typical current consumption  
The MCU is placed under the following conditions:  
V
=V  
=3.3 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash access time is adjusted to f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled, f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
58/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
Table 33. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
23.5  
18.3  
16.0  
12.3  
8.6  
13.5  
10.5  
9.6  
7.6  
Supply current in Run  
mode from VDD  
supply  
5.3  
IDD  
mA  
4.8  
3.1  
4 MHz  
3.1  
2.1  
2 MHz  
2.1  
1.6  
Running from  
HSE crystal  
clock 8 MHz,  
code  
executing  
from Flash  
1 MHz  
1.6  
1.3  
500 KHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.3  
1.2  
163.3  
124.3  
111.9  
87.1  
62.5  
2.5  
163.3  
124.3  
111.9  
87.1  
62.5  
2.5  
Supply current in Run  
mode from VDDA  
supply  
IDDA  
μA  
4 MHz  
2.5  
2.5  
2 MHz  
2.5  
2.5  
1 MHz  
2.5  
2.5  
500 KHz  
2.5  
2.5  
DocID025004 Rev 2  
59/124  
100  
Electrical characteristics  
STM32F072xx  
Table 34. Typical current consumption in Sleep mode, code running from Flash  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals Peripherals  
enabled  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
14.6  
11.1  
10.0  
7.8  
3.5  
2.9  
2.7  
2.2  
Supply current in  
Sleep mode from VDD  
supply  
5.5  
1.7  
IDD  
mA  
3.1  
1.2  
4 MHz  
2.2  
1.1  
2 MHz  
1.6  
1.0  
1 MHz  
1.4  
1.0  
Running from  
HSE crystal  
clock 8 MHz,  
code executing  
from Flash  
500 KHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.2  
1.0  
163.3  
124.3  
111.9  
87.1  
62.5  
2.5  
163.3  
124.3  
111.9  
87.1  
62.5  
2.5  
Supply current in  
Sleep mode from  
IDDA  
μA  
VDDA supply  
4 MHz  
2.5  
2.5  
2 MHz  
2.5  
2.5  
1 MHz  
2.5  
2.5  
500 KHz  
2.5  
2.5  
60/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 36: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx fSW C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+ C  
S
INT  
EXT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID025004 Rev 2  
61/124  
100  
Electrical characteristics  
Symbol  
STM32F072xx  
Table 35. Switching output I/O current consumption  
I/O toggling  
Parameter  
Conditions(1)  
Typ  
Unit  
frequency (fSW  
)
4 MHz  
0.07  
8 MHz  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
0.15  
0.31  
0.53  
0.92  
0.18  
0.37  
0.76  
1.39  
2.188  
0.32  
0.64  
1.25  
2.23  
4.442  
0.49  
0.94  
2.38  
3.99  
0.64  
1.25  
3.24  
5.02  
0.81  
1.7  
V
DDIOx = 3.3 V  
C =CINT  
8 MHz  
VDDIOx = 3.3 V  
C
EXT = 0 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
8 MHz  
VDDIOx = 3.3 V  
CEXT = 10 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
I/O current  
consumption  
ISW  
mA  
VDDIOx = 3.3 V  
8 MHz  
C
EXT = 22 pF  
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDDIOx = 3.3 V  
EXT = 33 pF  
8 MHz  
C
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDDIOx = 3.3 V  
C
EXT = 47 pF  
8 MHz  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
3.67  
4 MHz  
8 MHz  
0.66  
1.43  
2.45  
4.97  
VDDIOx = 2.4 V  
CEXT = 47 pF  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
24 MHz  
1.  
C = 7 pF (estimated value).  
S
62/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 36. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
All peripherals are disabled unless otherwise mentioned  
The given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
Ambient operating temperature and supply voltage conditions summarized in Table 21:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in Table  
35. The power consumption of the analog part of the peripherals (where applicable) is  
indicated in each related section of the datasheet.  
Table 36. Peripheral current consumption  
Peripheral  
BusMatrix(1)  
Typical consumption at 25 °C  
Unit  
2.2  
1.6  
5.7  
13.0  
8.2  
8.5  
2.3  
1.9  
2.2  
1.2  
0.9  
5.0  
52.6  
CRC  
DMA  
Flash interface  
GPIOA  
GPIOB  
AHB  
GPIOC  
μA/MHz  
GPIOD  
GPIOE  
GPIOF  
SRAM  
TSC  
ALL AHB Peripherals  
DocID025004 Rev 2  
63/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Unit  
Table 36. Peripheral current consumption (continued)  
Peripheral  
Typical consumption at 25 °C  
APB-Bridge(2)  
2.8  
4.1  
12.4  
1.5  
0.8  
4.7  
0.1  
3.9  
4.0  
1.3  
8.7  
8.5  
1.7  
14.9  
15.5  
11.4  
2.5  
2.3  
5.3  
9.1  
6.6  
6.8  
17.0  
16.7  
5.4  
5.4  
7.2  
1.4  
182  
ADC(3)  
CAN  
CEC  
CRS  
DAC(3)  
DEBUG (MCU debug feature)  
I2C1  
I2C2  
PWR  
SPI1  
SPI2  
SYSCFG & COMP  
TIM1  
APB  
TIM2  
μA/MHz  
TIM3  
TIM6  
TIM7  
TIM14  
TIM15  
TIM16  
TIM17  
USART1  
USART2  
USART3  
USART4  
USB  
WWDG  
ALL APB Peripherals  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.  
3. The power consumption of the analog part (I  
) of peripherals such as ADC, DAC, Comparators, is not  
DDA  
included. Refer to the tables of characteristics in the subsequent sections.  
64/124  
DocID025004 Rev 2  
STM32F072xx  
Electrical characteristics  
6.3.6  
Wakeup time from low-power mode  
The wakeup times given in Table 37 are the latency between the event and the execution of  
the first user instruction. The device goes in low-power mode after the WFE (Wait For  
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles  
must be added to the following timings due to the interrupt latency in the Cortex M0  
architecture.  
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. After  
wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.  
The wakeup source from Sleep and Stop mode is an EXTI Line configured in event mode.  
The wakeup source from Standby mode is the WKUP1 pin (PA0).  
All timings are derived from tests performed under the ambient temperature and supply  
voltage conditions summarized in Table 24: General operating conditions except when  
explicitly mentioned  
Table 37. Low-power mode wakeup timings  
Typ @VDD = VDDA  
Symbol  
Parameter  
Conditions  
Max Unit  
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V  
Regulator in run  
mode  
3.2  
7.0  
3.1  
5.8  
2.9  
5.2  
2.9  
4.9  
52  
2.8  
4.6  
51  
5
Wakeup from Stop  
mode  
tWUSTOP  
Regulator in low  
power mode  
9
μs  
Wakeup from  
Standby mode  
tWUSTANDBY  
60.4  
55.6  
53.5  
-
Wakeup from Sleep  
mode  
tWUSLEEP  
4 SYSCLK cycles  
-
DocID025004 Rev 2  
65/124  
100  
 
 
 
Electrical characteristics  
STM32F072xx  
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 14: High-speed external clock  
source AC timing diagram.  
Table 38. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fHSE_ext User external clock source frequency  
VHSEH OSC_IN input pin high level voltage  
VHSEL OSC_IN input pin low level voltage  
1
8
-
32  
MHz  
0.7 VDDIOx  
VSS  
VDDIOx  
V
-
0.3 VDDIOx  
tw(HSEH)  
OSC_IN high or low time  
tw(HSEL)  
15  
-
-
-
-
ns  
tr(HSE)  
OSC_IN rise or fall time  
tf(HSE)  
20  
1. Guaranteed by design, not tested in production.  
Figure 14. High-speed external clock source AC timing diagram  
T
Wꢌ(3%(ꢍ  
6
(3%(  
ꢎ  
ꢎ  
6
(3%,  
T
T
T
T
Rꢌ(3%ꢍ  
Fꢌ(3%ꢍ  
Wꢌ(3%,ꢍ  
4
(3%  
-3ꢁꢉꢅꢁꢃ6ꢅ  
66/124  
DocID025004 Rev 2  
 
 
 
STM32F072xx  
Electrical characteristics  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 15.  
Table 39. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
450  
-
-
-
-
ns  
tr(LSE)  
OSC32_IN rise or fall time  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 15. Low-speed external clock source AC timing diagram  
T
Wꢌ,3%(ꢍ  
6
,3%(  
ꢎ  
ꢎ  
6
,3%,  
T
T
T
Rꢌ,3%ꢍ  
Fꢌ,3%ꢍ  
T
Wꢌ,3%,ꢍ  
4
,3%  
-3ꢁꢉꢅꢁꢆ6ꢅ  
DocID025004 Rev 2  
67/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 40. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 40. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
4
-
8
32  
-
MHz  
RF  
Feedback resistor  
200  
k  
During startup(3)  
-
8.5  
VDD = 3.3 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
VDD = 3.3 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 3.3 V,  
IDD  
HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@32 MHz  
VDD = 3.3 V,  
Rm = 30 ,  
CL = 10 pF@32 MHz  
VDD = 3.3 V,  
Rm = 30 ,  
1.5  
CL = 20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the t  
startup time  
SU(HSE)  
4.  
t
is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
SU(HSE)  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 16). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
68/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
Figure 16. Typical application with an 8 MHz crystal  
2ESONATOR WITH  
INTEGRATED CAPACITORS  
#
,ꢁ  
F
/3#?).  
(3%  
"IAS  
CONTROLLED  
GAIN  
ꢊ -(Z  
RESONATOR  
2
&
/3#?/54  
ꢌꢁꢍ  
2
%84  
#
,ꢅ  
-3ꢁꢉꢊꢈꢇ6ꢁ  
1.  
R
value depends on the crystal characteristics.  
EXT  
DocID025004 Rev 2  
69/124  
100  
 
Electrical characteristics  
STM32F072xx  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 41. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
LSEDRV[1:0]=00  
lower driving capability  
-
-
0.5  
0.9  
1
LSEDRV[1:0]= 01  
medium low driving capability  
-
-
-
-
-
-
IDD  
LSE current consumption  
μA  
LSEDRV[1:0] = 10  
medium high driving capability  
-
1.3  
1.6  
-
LSEDRV[1:0]=11  
higher driving capability  
-
LSEDRV[1:0]=00  
lower driving capability  
5
8
15  
LSEDRV[1:0]= 01  
medium low driving capability  
-
Oscillator  
transconductance  
gm  
μA/V  
LSEDRV[1:0] = 10  
medium high driving capability  
-
LSEDRV[1:0]=11  
higher driving capability  
25  
-
-
-
-
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3.  
t
is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
SU(LSE)  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
70/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
Figure 17. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢅZLWK  
LQWHJUDWHGꢅFDSDFLWRUV  
&
/ꢁ  
I
26&ꢀꢄB,1  
/6(  
'ULYH  
ꢅSURJUDPPDEOHꢅ  
DPSOLILHU  
ꢀꢄꢆꢐꢒꢍꢅN+]  
UHVRQDWRU  
26&ꢀꢄB287  
&
/ꢄ  
06ꢀꢃꢄꢋꢀ9ꢁ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
DocID025004 Rev 2  
71/124  
100  
 
Electrical characteristics  
STM32F072xx  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 42 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI) RC oscillator  
(1)  
Table 42. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
8
-
-
-
-
-
-
-
MHz  
%
TRIM  
-
1(2)  
DuCy(HSI) Duty cycle  
45(2)  
–3.8(3)  
–2.9(3)  
–1.3(3)  
–1  
55(2)  
4.6(3)  
2.9(3)  
2.2(3)  
1
%
TA = –40 to 105 °C  
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
%
Accuracy of the HSI  
oscillator (factory  
calibrated)  
%
ACCHSI  
%
%
HSI oscillator startup  
time  
tsu(HSI)  
1(2)  
-
2(2)  
μs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
80  
100(2)  
μA  
1.  
V
= 3.3 V, T = 40 to 105 °C unless otherwise specified.  
DDA A  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 18. HSI oscillator accuracy characterization results  
ꢆꢎ  
-!8  
-).  
ꢃꢎ  
ꢂꢎ  
ꢅꢎ  
ꢁꢎ  
ꢀꢎ  
4 ; #=  
!
ꢄꢃꢀ  
ꢄꢅꢀ  
ꢅꢀ  
ꢃꢀ  
ꢇꢀ  
ꢊꢀ  
ꢁꢀꢀ  
ꢁꢅꢀ  
ꢄꢁꢎ  
ꢄꢅꢎ  
ꢄꢂꢎ  
ꢄꢃꢎ  
ꢄꢆꢎ  
-3ꢂꢀꢉꢊꢆ6ꢂ  
72/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Electrical characteristics  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 43. HSI14 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI14 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
-
-
14  
-
-
MHz  
%
1(2)  
DuCy(HSI14) Duty cycle  
45(2)  
-
55(2)  
5.1(3)  
3.1(3)  
2.2(3)  
1
%
TA = –40 to 105 °C –4.2(3)  
TA = –10 to 85 °C –3.2(3)  
-
%
-
%
Accuracy of the HSI14  
oscillator (factory calibrated)  
ACCHSI14  
TA = 0 to 70 °C  
TA = 25 °C  
–1.3(3)  
-
%
–1  
-
%
tsu(HSI14) HSI14 oscillator startup time  
1(2)  
-
2(2)  
μs  
HSI14 oscillator power  
IDDA(HSI14)  
-
100  
150(2)  
μA  
consumption  
1.  
V
= 3.3 V, T = 40 to 105 °C unless otherwise specified.  
DDA A  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 19. HSI14 oscillator accuracy characterization results  
ꢆꢎ  
-!8  
-).  
ꢃꢎ  
ꢂꢎ  
ꢅꢎ  
ꢁꢎ  
ꢀꢎ  
4 ; #=  
!
ꢄꢃꢀ  
ꢄꢅꢀ  
ꢅꢀ  
ꢃꢀ  
ꢇꢀ  
ꢊꢀ  
ꢁꢀꢀ  
ꢁꢅꢀ  
ꢁꢎ  
ꢅꢎ  
ꢂꢎ  
ꢄꢃꢎ  
ꢄꢆꢎ  
-3ꢂꢀꢉꢊꢇ6ꢅ  
DocID025004 Rev 2  
73/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 44. HSI48 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI48 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
-
48  
-
MHz  
%
0.09(2)  
45(2)  
0.14  
0.2(2)  
55(2)  
4.7(3)  
3.7(3)  
3.4(3)  
2.9  
DuCy(HSI48) Duty cycle  
-
-
-
-
-
-
%
TA = –40 to 105 °C -4.9(3)  
%
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
-4.1(3)  
-3.8(3)  
-2.8  
-
%
Accuracy of the HSI48  
oscillator (factory calibrated)  
ACCHSI48  
%
%
tsu(HSI48) HSI48 oscillator startup time  
6(2)  
μs  
HSI48 oscillator power  
IDDA(HSI48)  
-
312  
350(2)  
μA  
consumption  
1.  
V
= 3.3 V, T = 40 to 105 °C unless otherwise specified.  
DDA A  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 20. HSI48 oscillator accuracy characterization results  
ꢆꢎ  
-!8  
-).  
ꢃꢎ  
ꢂꢎ  
ꢅꢎ  
ꢁꢎ  
ꢀꢎ  
4 ; #=  
!
ꢄꢃꢀ  
ꢄꢅꢀ  
ꢅꢀ  
ꢃꢀ  
ꢇꢀ  
ꢊꢀ  
ꢁꢀꢀ  
ꢁꢅꢀ  
ꢁꢎ  
ꢅꢎ  
ꢂꢎ  
ꢄꢃꢎ  
ꢄꢆꢎ  
-3ꢂꢃꢅꢀꢇ6ꢁ  
74/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 45. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
μs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDDA(LSI)  
LSI oscillator power consumption  
-
0.75  
1.2  
μA  
1.  
V
= 3.3 V, T = 40 to 105 °C unless otherwise specified.  
DDA A  
2. Guaranteed by design, not tested in production.  
6.3.9  
PLL characteristics  
The parameters given in Table 46 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 46. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
μs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by f  
.
PLL_OUT  
2. Guaranteed by design, not tested in production.  
DocID025004 Rev 2  
75/124  
100  
 
 
 
 
Electrical characteristics  
STM32F072xx  
6.3.10  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 47. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA–40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
3.6  
μs  
ms  
ms  
mA  
mA  
V
tERASE Page (2 KB) erase time TA –40 to +105 °C  
-
-
-
-
-
tME  
Mass erase time  
TA –40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
Vprog Programming voltage  
2
1. Guaranteed by design, not tested in production.  
Table 48. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = –40 to +105 °C  
kcycles  
10  
30  
10  
20  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
tRET  
Data retention  
Years  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 49. They are based on the EMS levels and classes  
defined in application note AN1709.  
76/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Electrical characteristics  
Level/  
Table 49. EMS characteristics  
Symbol  
Parameter  
Conditions  
Class  
VDD 3.3 V, LQFP100, TA +25 °C,  
fHCLK 48 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD3.3 V, LQFP100, TA +25 °C,  
fHCLK 48 MHz,  
conforming to IEC 61000-4-4  
4B  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 50. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
EMI Level  
-3  
23  
14  
4
VDD 3.6 V, TA 25 °C,  
LQFP100 package  
compliant with IEC  
61967-2  
dBμV  
SEMI  
Peak level  
-
DocID025004 Rev 2  
77/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 51. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) to JESD22-A114  
TA +25 °C, conforming  
VESD(HBM)  
2
2000  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA +25 °C, conforming  
to ANSI/ESD STM5.3.1  
II  
500  
1. Data based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 52. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA +105 °C conforming to JESD78A  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
78/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Electrical characteristics  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 μA/+0 μA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 53.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
Table 53. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on BOOT0 and PF1 pins  
Injected current on PC0 pin  
–0  
–0  
NA  
+5  
Injected current on PA11 and PA12 pins with induced  
leakage current on adjacent pins less than -1 mA  
IINJ  
–5  
NA  
mA  
Injected current on all other FT and FTf pins  
–5  
–5  
NA  
+5  
Injected current on all other TTa, TC and RST pins  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 54 are derived from tests  
performed under the conditions summarized in Table 24: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant (except BOOT0).  
Table 54. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
-
-
-
0.3 VDDIOx+0.07(1)  
0.475 VDDIOx–0.2(1)  
0.3 VDDIOx–0.3(1)  
Low level input  
voltage  
VIL  
V
All I/Os except  
BOOT0 pin  
-
-
0.3 VDDIOx  
DocID025004 Rev 2  
79/124  
100  
 
 
 
 
 
 
Electrical characteristics  
STM32F072xx  
Table 54. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
0.445 VDDIOx+0.398(1)  
0.5 VDDIOx+0.2(1)  
-
-
-
-
-
-
High level input  
voltage  
0.2 VDDIOx+0.95(1)  
VIH  
V
All I/Os except  
BOOT0 pin  
0.7 VDDIOx  
-
-
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
200(1)  
100(1)  
300(1)  
-
-
-
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT and FTf I/O  
TTa in digital mode  
VSS VIN  VDDIOx  
-
-
0.1  
TTa in digital mode  
VDDIOx VIN  VDDA  
-
-
-
-
-
-
1
Input leakage  
current(2)  
Ilkg  
μA  
k  
TTa in analog mode  
VSS VIN  VDDA  
0.2  
10  
FT and FTf I/O (3)  
VDDIOx  VIN  5 V  
Weak pull-up  
RPU  
equivalent resistor VIN VSS  
25  
40  
55  
(4)  
Weak pull-down  
RPD  
CIO  
equivalent  
VIN VDDIOx  
25  
-
40  
5
55  
-
k  
resistor(4)  
I/O pin capacitance  
pF  
1. Data based on design simulation only. Not tested in production.  
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 53:  
I/O current injection susceptibility.  
3. To sustain a voltage higher than V  
+0.3 V, the internal pull-up/pull-down resistors must be disabled.  
DDIOx  
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
80/124  
DocID025004 Rev 2  
STM32F072xx  
Electrical characteristics  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 20 for standard I/Os, and in Figure 21 for  
5 V tolerant I/Os.  
Figure 21. TC and TTa I/O input characteristics  
9ꢅꢅꢈ9ꢊ  
,1  
ꢄꢆꢋ  
7HVWHGꢅUDQJH  
77/ꢅVWDQGDUGꢅUHTXLUHPHQW  
ꢁꢆꢋ  
8QGHILQHGꢅLQSXWꢅUDQJH  
77/ꢅVWDQGDUGꢅUHTXLUHPHQW  
7HVWHGꢅUDQJH  
ꢃꢆꢋ  
ꢄꢆꢄ  
ꢄꢆꢂ  
ꢄꢆꢒ  
ꢄꢆꢍ  
ꢀꢆꢄ  
ꢀꢆꢂ  
ꢀꢆꢒ  
9'',2[9ꢊ  
06ꢀꢄꢁꢀꢃ9ꢄ  
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics  
9ꢅꢅꢅꢈ9ꢊ  
,1ꢅꢅ  
ꢄꢆꢋ  
7HVWHGꢅUDQJH  
77/ꢅVWDQGDUGꢅUHTXLUHPHQW  
ꢁꢆꢋ  
8QGHILQHGꢅLQSXWꢅUDQJH  
77/ꢅVWDQGDUGꢅUHTXLUHPHQW  
ꢃꢆꢋ  
7HVWHGꢅUDQJH  
ꢄꢆꢄ  
ꢄꢆꢂ  
ꢄꢆꢒ  
ꢄꢆꢍ  
ꢀꢆꢄ  
ꢀꢆꢂ  
ꢀꢆꢒ  
9'',2[9ꢊ  
06ꢀꢄꢁꢀꢁ9ꢄ  
DocID025004 Rev 2  
81/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum  
DDIOx,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I  
(see Table 21: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating I  
(see  
SS  
VSS  
Table 21: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or  
TC unless otherwise specified).  
(1)  
Table 55. Output voltage characteristics  
Symbol  
VOL  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
-
0.4  
VD|IDIO| =x 8 2m.7AV  
V
IO  
VOH  
VDDIOx–0.4  
-
VOL  
TTL port(2)  
-
0.4  
VD|IDIO| =x 8 2m.7AV  
V
IO  
VOH  
2.4  
-
(3)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
V
-
|IIO| = 20 mA  
VDDIOx 2.7 V  
(3)  
VOH  
VDDIOx–1.3  
(3)  
VOL  
-
0.4  
V
-
|IIO| = 6 mA  
VDDIOx 2 V  
(3)  
VOH  
VDDIOx–0.4  
-
(3)  
VOL  
0.4  
-
V
V
|IIO| = 4 mA  
(3)  
VOH  
VDDIOx–0.4  
|IIO| = 20 mA  
VDDIOx 2.7 V  
-
-
0.4  
0.4  
V
V
Output low level voltage for an FTf I/O pin in  
FM+ mode  
(4)  
VOLFM+  
|IIO| = 10 mA  
1. The I current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:  
IO  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings I  
.
IO  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Data based on characterization results. Not tested in production.  
4. Data based on design simulation only. Not tested in production.  
82/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 23 and  
Table 56, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 24: General  
operating conditions.  
(1)(2)  
Table 56. I/O AC characteristics  
OSPEEDRy  
[1:0] value(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
125  
125  
1
CL = 50 pF, VDDIOx 2 V  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
x0  
MHz  
ns  
CL = 50 pF, VDDIOx 2 V  
CL = 50 pF, VDDIOx 2 V  
CL = 50 pF, VDDIOx 2 V  
125  
125  
10  
25  
25  
4
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
01  
MHz  
ns  
62.5  
62.5  
50  
30  
20  
10  
5
tr(IO)out Output rise time  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2 V  
fmax(IO)out Maximum frequency(3)  
MHz  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2 V  
8
11  
tf(IO)out Output fall time  
12  
25  
5
ns  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2 V  
8
tr(IO)out Output rise time  
12  
25  
DocID025004 Rev 2  
83/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
(1)(2)  
Table 56. I/O AC characteristics  
(continued)  
OSPEEDRy  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
[1:0] value(1)  
fmax(IO)out Maximum frequency(3)  
-
-
-
-
-
-
2
tf(IO)out Output fall time  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
tr(IO)out Output rise time  
CL = 50 pF, VDDIOx 2 V  
12  
34  
0.5  
16  
44  
FM+  
configuration  
(4)  
MHz  
ns  
CL = 50 pF, VDDIOx 2 V  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a  
description of GPIO Port configuration register.  
2. Guaranteed by design, not tested in production.  
3. The maximum frequency is defined in Figure 23.  
4. When FM+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091  
for a detailed description of FM+ I/O configuration.  
Figure 23. I/O AC characteristics definition  
ꢁꢃꢔ  
ꢎꢃꢔ  
ꢋꢃꢔ  
ꢋꢃꢔ  
ꢁꢃꢔ  
ꢎꢃꢔ  
W
W
Uꢈ,2ꢊRXW  
Iꢈ,2ꢊRXW  
7
0D[LPXPꢅIUHTXHQF\ꢅLVꢅDFKLHYHGꢅLIꢅꢈWꢅꢅꢉꢅWꢅꢅꢈ”ꢅꢄꢏꢀꢊ7ꢅDQGꢅLIꢅWKHꢅGXW\ꢅF\FOHꢅLVꢅꢈꢂꢋꢑꢋꢋꢔꢊ  
U
I
ZKHQꢅORDGHGꢅE\ꢅWKHꢅVSHFLILHGꢅFDSDFLWDQFHꢆ  
06ꢀꢄꢁꢀꢄ9ꢄ  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions.  
Table 57. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
-
-
-
0.3 VDD+0.07(1)  
-
V
0.445 VDD+0.398(1)  
84/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Symbol  
Electrical characteristics  
Table 57. NRST pin characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST Schmitt trigger voltage  
hysteresis  
Vhys(NRST)  
-
200  
-
mV  
Weak pull-up equivalent  
resistor(2)  
RPU  
VIN VSS  
25  
40  
55  
k  
VF(NRST) NRST input filtered pulse  
-
-
-
-
100(1)  
ns  
2.7 < VDD < 3.6  
2.0 < VDD < 3.6  
300(1)  
500(1)  
-
-
VNF(NRST) NRST input not filtered pulse  
ns  
1. Data based on design simulation only. Not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
Figure 24. Recommended NRST pin protection  
([WHUQDO  
9''  
538  
UHVHWꢅFLUFXLWꢈꢁꢊ  
1567ꢈꢄꢊ  
,QWHUQDOꢅUHVHW  
)LOWHU  
ꢃꢆꢁꢅ—)  
06ꢁꢎꢍꢐꢍ9ꢄ  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the V  
max level specified in  
IL(NRST)  
Table 57: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
6.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 58 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 24: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 58. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
2.4  
-
V
Current consumption of  
the ADC(1)  
IDDA (ADC)  
fADC  
VDD = VDDA = 3.3 V  
-
0.9  
-
mA  
ADC clock frequency  
Sampling rate  
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
fS  
0.05  
DocID025004 Rev 2  
85/124  
100  
 
 
 
 
Electrical characteristics  
STM32F072xx  
Table 58. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
f
ADC = 14 MHz  
-
-
-
-
-
823  
17  
kHz  
1/fADC  
V
(2)  
External trigger frequency  
fTRIG  
VAIN  
Conversion voltage range  
External input impedance  
0
VDDA  
See Equation 1 and  
Table 59 for details  
(2)  
RAIN  
-
-
-
-
-
-
50  
1
k  
k  
pF  
Sampling switch  
resistance  
(2)  
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
fADC = 14 MHz  
5.9  
83  
μs  
(2)  
Calibration time  
tCAL  
1/fADC  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
fPCLK cycles  
ADC clock = HSI14  
-
ADC_DR register write  
latency  
(2)  
fPCLK  
cycle  
WLATENCY  
ADC clock = PCLK/2  
ADC clock = PCLK/4  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
f
ADC = fPCLK/2 = 14 MHz  
fADC = fPCLK/2  
0.196  
5.5  
μs  
1/fPCLK  
μs  
(2)  
Trigger conversion latency fADC = fPCLK/4 = 12 MHz  
fADC = fPCLK/4  
0.219  
10.5  
-
tlatr  
1/fPCLK  
μs  
fADC = fHSI14 = 14 MHz  
0.188  
-
0.259  
-
ADC jitter on trigger  
conversion  
JitterADC  
fADC = fHSI14  
1
1/fHSI14  
fADC = 14 MHz  
0.107  
1.5  
0
-
-
17.1  
239.5  
1
μs  
1/fADC  
μs  
(2)  
Sampling time  
Power-up time  
tS  
(2)  
tSTAB  
0
-
fADC = 14 MHz  
1
18  
μs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on I  
and 60 μA  
DDA  
on I should be taken into account.  
DD  
2. Guaranteed by design, not tested in production.  
Equation 1: R  
max formula  
AIN  
TS  
RAIN ------------------------------------------------------------- – RADC  
fADC CADC ln2N + 2  
86/124  
DocID025004 Rev 2  
STM32F072xx  
Electrical characteristics  
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
Table 59. R  
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (μs)  
RAIN max (k)(1)  
1.5  
7.5  
0.11  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
0.4  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)(3)  
Table 60. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±1.3  
±1  
±2  
±1.5  
±1.5  
±1  
f
f
PCLK = 48 MHz,  
ADC = 14 MHz, RAIN < 10 k  
DDA = 3 V to 3.6 V  
Gain error  
±0.5  
±0.7  
±0.8  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
LSB  
V
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
TA = 25 °C  
±1.5  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
f
±2.8  
±3  
ADC = 14 MHz, RAIN < 10 k  
DDA = 2.7 V to 3.6 V  
Gain error  
LSB  
LSB  
V
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.3  
±1.7  
±4  
TA = 40 to 105 °C  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
±2.8  
±3  
f
ADC = 14 MHz, RAIN < 10 k  
DDA = 2.4 V to 3.6 V  
TA = 25 °C  
Gain error  
V
Differential linearity error  
Integral linearity error  
±1.3  
±1.7  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for I  
affect the ADC accuracy.  
and I  
in Section 6.3.14 does not  
INJ(PIN)  
INJ(PIN)  
3. Better performance may be achieved in restricted V  
, frequency and temperature ranges.  
DDA  
4. Data based on characterization results, not tested in production.  
DocID025004 Rev 2  
87/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Figure 25. ADC accuracy characteristics  
(
*
ꢈꢁꢊ ([DPSOHꢅRIꢅDQꢅDFWXDO WUDQVIHUꢅFXUYH  
ꢈꢄꢊꢅ7KHꢅLGHDOꢅWUDQVIHUꢅFXUYH  
ꢈꢀꢊꢅ(QG SRLQWꢅFRUUHODWLRQꢅOLQH  
ꢂꢃꢎꢋ  
ꢂꢃꢎꢂ  
ꢂꢃꢎꢀ  
ꢈꢄꢊ  
(  7RWDOꢅ 8QDGMXVWHG (UURUꢌꢅ PD[LPXP GHYLDWLRQ  
7
(
EHWZHHQ WKHꢅDFWXDOꢅDQGꢅWKHꢅLGHDOꢅWUDQVIHU FXUYHVꢆ  
7
ꢈꢀꢊ  
(  2IIVHWꢅ(UURUꢌꢅGHYLDWLRQꢅEHWZHHQꢅWKHꢅILUVWꢅDFWXDO  
2
WUDQVLWLRQꢅDQGꢅWKH ILUVWꢅLGHDOꢅRQHꢆ  
ꢈꢁꢊ  
(  *DLQꢅ (UURUꢌ GHYLDWLRQꢅ EHWZHHQ WKHꢅ ODVWꢅ LGHDO  
*
WUDQVLWLRQꢅDQGꢅWKH ODVWꢅDFWXDOꢅRQHꢆ  
(
(
2
/
(  'LIIHUHQWLDOꢅ/LQHDULW\ꢅ(UURUꢌ PD[LPXPꢅGHYLDWLRQ  
'
EHWZHHQ DFWXDOꢅVWHSVꢅDQGꢅWKHꢅLGHDOꢅRQHꢆ  
(  ,QWHJUDOꢅ /LQHDULW\ (UURUꢌꢅ PD[LPXPꢅ GHYLDWLRQ  
/
(
EHWZHHQ DQ\ꢅ DFWXDOꢅ WUDQVLWLRQꢅ DQGꢅ WKH HQG SRLQW  
FRUUHODWLRQꢅOLQHꢆ  
'
 /6%  
,'($/  
9
ꢂꢃꢎꢀ ꢂꢃꢎꢂ ꢂꢃꢎꢋ ꢂꢃꢎꢒ  
9
''$  
66$  
-3ꢁꢉꢊꢊꢀ6ꢁ  
Figure 26. Typical connection diagram using the ADC  
9
''$  
6DPSOHꢅDQGꢅKROGꢅ$'&  
FRQYHUWHU  
9
7
ꢈꢁꢊ  
5
5
$'&  
$,1  
$,1[  
ꢁꢄꢑELW  
FRQYHUWHU  
, “ꢁ —$  
/
&
9
SDUDVLWLF  
7
9
$,1  
&
$'&  
06ꢀꢀꢎꢃꢃ9ꢁ  
1. Refer to Table 58: ADC characteristics for the values of R , R  
and C  
.
ADC  
AIN  
ADC  
2.  
C
represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
parasitic  
pad capacitance (roughly 7 pF). A high C  
value will downgrade conversion accuracy. To remedy  
parasitic  
this, f  
should be reduced.  
ADC  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 12: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
88/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
6.3.17  
DAC electrical specifications  
Table 61. DAC characteristics  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Analog supply voltage for  
DAC ON  
2.4  
-
3.6  
V
Resistive load with buffer  
ON  
(1)  
RLOAD  
5
-
-
-
-
kLoad is referred to ground  
When the buffer is OFF, the  
Impedance output with  
buffer OFF  
Minimum resistive load between  
DAC_OUT and VSS to have a  
(1)  
RO  
15  
k  
1% accuracy is 1.5 M  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer  
is ON).  
(1)  
CLOAD  
Capacitive load  
-
-
-
50  
-
It gives the maximum output  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
excursion of the DAC.  
0.2  
V
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
DAC_OUT Higher DAC_OUT voltage  
max(1)  
with buffer ON  
V
DDA = 3.6 V and (0x155) and  
-
-
-
-
-
-
V
DDA – 0.2  
V
mV  
V
(0xEAB) at VDDA = 2.4 V  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer OFF  
0.5  
-
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
-
-
-
VDDA – 1LSB  
max(1)  
with buffer OFF  
With no load, middle code  
(0x800) on the input  
380  
μA  
μA  
DAC DC current  
consumption in quiescent  
mode(2)  
(1)  
IDDA  
With no load, worst code  
(0xF1C) on the input  
480  
Given for the DAC in 10-bit  
configuration  
-
-
±0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(3)  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
±2  
±1  
LSB  
LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(3)  
Given for the DAC in 12-bit  
configuration  
-
-
±4  
LSB  
-
-
-
-
±10  
±3  
mV  
Offset error  
Given for the DAC in 10-bit at  
(difference between  
measured value at Code  
(0x800) and the ideal value  
= VDDA/2)  
LSB  
Offset(3)  
VDDA = 3.6 V  
Given for the DAC in 12-bit at  
-
-
-
-
±12  
LSB  
%
VDDA = 3.6 V  
Given for the DAC in 12-bit  
configuration  
Gain error(3) Gain error  
±0.5  
DocID025004 Rev 2  
89/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Table 61. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value ±1LSB  
(3)  
tSETTLING  
-
3
4
μs CLOAD 50 pF, RLOAD 5 k  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(3)  
-
-
1
MS/s CLOAD 50 pF, RLOAD 5 k  
CLOAD 50 pF, RLOAD 5 k  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(3)  
tWAKEUP  
-
-
6.5  
10  
μs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.  
3. Data based on characterization results, not tested in production.  
Figure 27. 12-bit buffered / non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
RLOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
CLOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
90/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
6.3.18  
Comparator characteristics  
Table 62. Comparator characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min(1) Typ Max(1) Unit  
Analog supply voltage  
2
0
-
-
3.6  
V
Comparator input  
voltage range  
VIN  
VDDA  
VREFINT scaler offset  
voltage  
VSC  
tS_SC  
tSTART  
-
-
-
±5  
-
±10  
0.2  
60  
mV  
ms  
μs  
VREFINT scaler startup  
time from power down  
Comparator startup  
time  
Startup time to reach propagation delay  
specification  
-
Ultra-low power mode  
Low power mode  
-
-
-
-
-
-
-
-
-
-
-
2
4.5  
1.5  
0.6  
100  
240  
7
0.7  
0.3  
50  
μs  
ns  
μs  
ns  
Propagation delay for  
200 mV step with  
100 mV overdrive  
Medium power mode  
VDDA 2.7 V  
High speed mode  
VDDA 2.7 V  
100  
2
tD  
Ultra-low power mode  
Low power mode  
0.7  
0.3  
90  
2.1  
1.2  
180  
300  
10  
Propagation delay for  
full range step with  
100 mV overdrive  
Medium power mode  
VDDA 2.7 V  
High speed mode  
VDDA 2.7 V  
110  
4  
Voffset  
Comparator offset error  
mV  
Offset error  
temperature coefficient  
dVoffset/dT  
-
18  
-
μV/°C  
Ultra-low power mode  
Low power mode  
-
-
-
-
1.2  
3
1.5  
5
COMP current  
consumption  
IDD(COMP)  
μA  
Medium power mode  
High speed mode  
10  
75  
15  
100  
DocID025004 Rev 2  
91/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Table 62. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
No hysteresis  
(COMPxHYST[1:0]=00)  
-
3
0
8
-
High speed mode  
13  
10  
26  
19  
49  
40  
Low hysteresis  
(COMPxHYST[1:0]=01)  
All other power  
modes  
5
Vhys  
Comparator hysteresis  
High speed mode  
7
mV  
Medium hysteresis  
(COMPxHYST[1:0]=10)  
15  
31  
All other power  
modes  
9
High speed mode  
18  
19  
High hysteresis  
(COMPxHYST[1:0]=11)  
All other power  
modes  
1. Data based on characterization results, not tested in production.  
6.3.19  
Temperature sensor characteristics  
Table 63. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1  
4.3  
1.43  
-
2  
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
V30  
Voltage at 30 °C (5 °C)(2)  
(1)  
(1)  
tSTART  
Startup time  
μs  
ADC sampling time when reading the  
temperature  
tS_temp  
4
-
-
μs  
1. Guaranteed by design, not tested in production.  
2. Measured at V = 3.3 V 10 mV. The V ADC conversion result is stored in the TS_CAL1 byteRefer to  
DDA  
30  
Table 3: Temperature sensor calibration values.  
6.3.20  
V
monitoring characteristics  
BAT  
Table 64. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
2
-
-
-
k  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
4
+1  
-
%
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
μs  
1. Guaranteed by design, not tested in production.  
92/124  
DocID025004 Rev 2  
 
 
 
 
STM32F072xx  
Electrical characteristics  
6.3.21  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 65. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
20.8  
0
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 48 MHz  
TIMxCLK = 48 MHz  
-
fTIMxCLK/2  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
f
0
24  
16  
MHz  
TIMx (except  
TIM2)  
-
ResTIM  
Timer resolution  
bit  
TIM2  
-
32  
65536  
tTIMxCLK  
1
16-bit counter clock  
period  
tCOUNTER  
fTIMxCLK = 48 MHz 0.0208  
-
1365  
μs  
tTIMxCLK  
65536 × 65536  
89.48  
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 48 MHz  
-
s
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM6, TIM14, TIM15, TIM16 and TIM17  
timers.  
(1)  
Table 66. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from  
30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the  
phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of  
uncertainty.  
DocID025004 Rev 2  
93/124  
100  
 
 
 
Electrical characteristics  
Prescaler  
STM32F072xx  
Table 67. WWDG min/max timeout value at 48 MHz (PCLK)  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
6.3.22  
Communication interfaces  
2
I C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FTf I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O  
port characteristics for the I2C I/Os characteristics.  
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
(1)  
Table 68. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes  
that are suppressed by the analog  
filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with widths below t  
3. Spikes with widths above t  
are filtered.  
AF(min)  
are not filtered  
AF(max)  
94/124  
DocID025004 Rev 2  
 
 
 
STM32F072xx  
Electrical characteristics  
2
SPI/I S characteristics  
2
Unless otherwise specified, the parameters given in Table 69 for SPI or in Table 70 for I S  
are derived from tests performed under the ambient temperature, f  
frequency and  
PCLKx  
supply voltage conditions summarized in Table 24: General operating conditions.  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1)  
Table 69. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
ns  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4Tpclk  
-
-
2Tpclk + 10  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
5
-
tsu(MI)  
tsu(SI)  
-
th(MI)  
th(SI)  
4
-
Data input hold time  
5
-
(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(3)  
tdis(SO)  
0
18  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
22.5  
-
6
-
11.5  
2
Data output hold time  
-
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
25  
75  
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
DocID025004 Rev 2  
95/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
Figure 28. SPI timing diagram - slave mode and CPHA = 0  
.33 INPUT  
T
Cꢌ3#+ꢍ  
T
T
Hꢌ.33ꢍ  
35ꢌ.33ꢍ  
#0(!ꢀ  
#0/,ꢏꢀ  
T
T
Wꢌ3#+(ꢍ  
Wꢌ3#+,ꢍ  
#0(!ꢀ  
#0/,ꢏꢁ  
T
T
T
T
T
T
DISꢌ3/ꢍ  
Rꢌ3#+ꢍ  
Fꢌ3#+ꢍ  
Vꢌ3/ꢍ  
Aꢌ3/ꢍ  
Hꢌ3/ꢍ  
-)3/  
/54 054  
-3 " / 54  
") 4ꢇ /54  
")4ꢁ ).  
,3" /54  
T
SUꢌ3)ꢍ  
-/3)  
- 3" ).  
,3" ).  
).054  
T
Hꢌ3)ꢍ  
AIꢁꢃꢁꢂꢃC  
Figure 29. SPI timing diagram - slave mode and CPHA = 1  
.33 INPUT  
T
T
T
Hꢌ.33ꢍ  
35ꢌ.33ꢍ  
T
Cꢌ3#+ꢍ  
#0(!ꢁ  
#0/,ꢏꢀ  
Wꢌ3#,(ꢍ  
#0(!ꢁ  
#0/,ꢏꢁ  
T
Wꢌ3#,,ꢍ  
T
T
Rꢌ3#,ꢍ  
Fꢌ3#,ꢍ  
T
T
T
Vꢌ3/ꢍ  
Hꢌ3/ꢍ  
DISꢌ3/ꢍ  
T
Aꢌ3/ꢍ  
-)3/  
/54 054  
-3 " / 54  
") 4ꢇ /54  
,3" /54  
T
T
SUꢌ3)ꢍ  
Hꢌ3)ꢍ  
-/3)  
- 3" ).  
")4ꢁ ).  
,3" ).  
).054  
AIꢁꢃꢁꢂꢆ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
96/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Electrical characteristics  
Figure 30. SPI timing diagram - master mode  
(IGH  
.33 INPUT  
T
Cꢌ3#+ꢍ  
#0(!ꢀ  
#0/,ꢏꢀ  
#0(!ꢀ  
#0/,ꢏꢁ  
#0(!ꢁ  
#0/,ꢏꢀ  
#0(!ꢁ  
#0/,ꢏꢁ  
T
T
T
T
Wꢌ3#+(ꢍ  
Wꢌ3#+,ꢍ  
Rꢌ3#+ꢍ  
Fꢌ3#+ꢍ  
T
SUꢌ-)ꢍ  
-)3/  
).054  
-3").  
T
")4ꢇ ).  
,3" ).  
Hꢌ-)ꢍ  
-/3)  
- 3" /54  
")4ꢁ /54  
,3" /54  
/54054  
T
T
Vꢌ-/ꢍ  
Hꢌ-/ꢍ  
AIꢁꢃꢁꢂꢇ6ꢅ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
2
(1)  
Table 70. I S characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
Master mode (data: 16 bits, Audio  
frequency = 48 kHz)  
1.597  
1.601  
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
Slave mode  
0
-
6.5  
10  
12  
tr(CK)  
tf(CK)  
I2S clock rise time  
I2S clock fall time  
Capacitive load CL = 15 pF  
-
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
tw(CKH)  
I2S clock high time  
306  
-
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
I2S clock low time  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
312  
2
-
-
-
-
-
ns  
Master mode  
Master mode  
Slave mode  
Slave mode  
2
7
0
I2S slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
%
DocID025004 Rev 2  
97/124  
100  
 
 
Electrical characteristics  
STM32F072xx  
2
(1)  
Table 70. I S characteristics (continued)  
Conditions  
Symbol  
Parameter  
Data input setup time  
Min  
Max  
Unit  
tsu(SD_MR)  
tsu(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
6
2
-
-
Data input setup time  
(2)  
th(SD_MR)  
4
-
Data input hold time  
(2)  
th(SD_SR)  
0.5  
-
-
ns  
(2)  
tv(SD_ST)  
th(SD_ST)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
20  
-
Slave transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
13  
-
(2)  
tv(SD_MT)  
th(SD_MT)  
4
-
0
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on f . For example, if f = 8 MHz, then T = 1/f = 125 ns.  
PCLK  
PCLK  
PCLK  
PLCLK  
Figure 31. I2S slave timing diagram (Philips protocol)  
T
Cꢌ#+ꢍ  
#0/, ꢏ ꢀ  
#0/, ꢏ ꢁ  
73 INPUT  
T
T
T
Wꢌ#+,ꢍ  
Hꢌ73ꢍ  
Wꢌ#+(ꢍ  
T
T
T
Hꢌ3$?34ꢍ  
T
Vꢌ3$?34ꢍ  
SUꢌ73ꢍ  
3$  
TRANSMIT  
RECEIVE  
ꢌꢅꢍ  
,3" TRANSMIT  
-3" TRANSMIT  
-3" RECEIVE  
"ITN TRANSMIT  
,3" TRANSMIT  
T
SUꢌ3$?32ꢍ  
ꢌꢅꢍ  
Hꢌ3$?32ꢍ  
,3" RECEIVE  
"ITN RECEIVE  
,3" RECEIVE  
3$  
AIꢁꢃꢊꢊꢁB  
1. Measurement points are done at CMOS levels: 0.3 × V  
and 0.7 × V  
.
DDIOx  
DDIOx  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
98/124  
DocID025004 Rev 2  
 
STM32F072xx  
Electrical characteristics  
Figure 32. I2S master timing diagram (Philips protocol)  
T
T
Rꢌ#+ꢍ  
Fꢌ#+ꢍ  
T
Cꢌ#+ꢍ  
#0/, ꢏ ꢀ  
#0/, ꢏ ꢁ  
73 OUTPUT  
T
Wꢌ#+(ꢍ  
T
T
Hꢌ73ꢍ  
T
Vꢌ73ꢍ  
Wꢌ#+,ꢍ  
T
T
Vꢌ3$?-4ꢍ  
Hꢌ3$?-4ꢍ  
ꢌꢅꢍ  
3$  
TRANSMIT  
RECEIVE  
,3" TRANSMIT  
T
-3" TRANSMIT  
-3" RECEIVE  
"ITN TRANSMIT  
,3" TRANSMIT  
T
Hꢌ3$?-2ꢍ  
SUꢌ3$?-2ꢍ  
ꢌꢅꢍ  
3$  
,3" RECEIVE  
"ITN RECEIVE  
,3" RECEIVE  
AIꢁꢃꢊꢊꢃB  
1. Data based on characterization results, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID025004 Rev 2  
99/124  
100  
 
Electrical characteristics  
STM32F072xx  
USB characteristics  
The STM32F072xx USB interface is fully compliant with the USB specification version 2.0  
and is USB-IF certified (for Full-speed device operation).  
Table 71. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ  
Max.  
Unit  
USB transceiver operating  
voltage  
VDDIO2  
3.0(1)  
-
-
-
3.6  
1.0  
1.5  
V
(2)  
tSTARTUP  
USB transceiver startup time  
μs  
Embedded USB_DP pull-up  
value during idle  
RPUI  
1.1  
1.26  
k  
Embedded USB_DP pull-up  
value during reception  
RPUR  
2.0  
28  
2.26  
40  
2.6  
44  
Driving high  
and low  
(2)  
ZDRV  
Output driver impedance(3)  
1. The STM32F072xx USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V voltage range.  
2. Guaranteed by design, not tested in production.  
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
CAN (controller area network) interface  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
100/124  
DocID025004 Rev 2  
 
STM32F072xx  
Package characteristics  
7
Package characteristics  
7.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
DocID025004 Rev 2  
101/124  
122  
 
 
Package characteristics  
STM32F072xx  
Figure 33. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch,  
package outline  
0.10  
Z
D1  
D
X
FD  
A1 ball  
pad corner  
A1 ball  
pad corner  
Y
0.50  
1.75  
b
e
1.75  
E1  
E
A1  
A
0.10  
FE  
A2  
Top view  
Side view  
Bottom view  
A0C2_ME  
1. Drawing is not to scale.  
Table 72. UFBGA100 – ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.460  
0.530  
0.080  
0.450  
0.250  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.750  
0.600  
0.0181  
0.0209  
0.0031  
0.0177  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0295  
0.0236  
0.060  
0.100  
0.0024  
0.0039  
0.400  
0.500  
0.0157  
0.0197  
0.200  
0.300  
0.0079  
0.0118  
D
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D1  
E
E1  
e
FD  
FE  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
102/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Package characteristics  
Figure 34. UFBGA100 recommended footprint  
'SDG  
'VP  
06ꢁꢍꢎꢒꢋ9ꢄ  
Table 73. UFBGA100 recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
0.50 mm  
0.27 mm  
Dpad  
Dsm  
0.35 mm typ (depending on the soldermask registration tolerance)  
0.27 mm aperture diameter  
Solder paste  
Marking of engineering samples for UFBGA100  
The following figure shows the engineering sample marking for the UFBGA100 package.  
Only the information field containing the engineering sample marking is shown.  
Figure 35. UFBGA100 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(6  
06ꢀꢀꢁꢒꢍ9ꢁ  
1. Samples marked “E” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID025004 Rev 2  
103/124  
122  
 
 
 
Package characteristics  
STM32F072xx  
Figure 36. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢀꢐꢅꢆ MM  
'!5'% 0,!.%  
CCC  
#
,
$
,ꢁ  
$ꢁ  
$ꢂ  
ꢈꢆ  
ꢆꢁ  
ꢆꢀ  
ꢈꢇ  
ꢁꢀꢀ  
ꢅꢇ  
0). ꢁ  
)$%.4)&)#!4)/.  
ꢅꢆ  
E
ꢁ,?-%?6ꢂ  
1. Drawing is not to scale.  
Table 74. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
104/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Package characteristics  
Table 74. LQFP100 – 14 x 14 mm low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
-
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
-
0.5591  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
ccc  
K
-
-
-
-
0.080  
7°  
0.0031  
7°  
0°  
3.5°  
0°  
3.5°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 37. LQFP100 recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906b  
1. Dimensions are in millimeters.  
DocID025004 Rev 2  
105/124  
122  
 
Package characteristics  
STM32F072xx  
Marking of engineering samples for LQFP100  
The following figure shows the engineering sample marking for the LQFP100 package. Only  
the information field containing the engineering sample marking is shown.  
Figure 38. LQFP100 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(6  
.4ꢁꢈꢂꢅꢈ7ꢈ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
106/124  
DocID025004 Rev 2  
 
STM32F072xx  
Package characteristics  
Figure 39. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢀꢐꢅꢆ MM  
'!5'% 0,!.%  
CCC  
#
,
$
,ꢁ  
$ꢁ  
$ꢂ  
ꢂꢂ  
ꢃꢊ  
ꢂꢅ  
ꢃꢉ  
B
ꢇꢃ  
ꢁꢈ  
ꢁꢇ  
0). ꢁ  
)$%.4)&)#!4)/.  
E
ꢆ7?-%?6ꢅ  
1. Drawing is not to scale.  
Table 75. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
12.200  
10.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.4803  
0.4016  
-
0.050  
1.350  
0.170  
0.090  
11.800  
9.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.4646  
0.3858  
-
-
1.400  
0.220  
0.0551  
0.0087  
-
c
D
12.000  
10.000  
7.500  
0.4724  
0.3937  
0.2953  
D1  
D3  
DocID025004 Rev 2  
107/124  
122  
 
 
Package characteristics  
STM32F072xx  
Table 75. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E
E1  
E3  
e
11.800  
12.000  
10.000  
7.500  
0.500  
0.600  
1.000  
-
12.200  
0.4646  
0.4724  
0.3937  
0.2953  
0.0197  
0.0236  
0.0394  
-
0.4803  
9.800  
10.200  
0.3858  
0.4016  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
ccc  
K
-
-
-
-
0.080  
7°  
0.0031  
7°  
0°  
3.5°  
0°  
3.5°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 40. LQFP64 recommended footprint  
ꢃꢊ  
ꢂꢂ  
ꢀꢐꢂ  
ꢀꢐꢆ  
ꢃꢉ  
ꢂꢅ  
ꢁꢅꢐꢈ  
ꢁꢀꢐꢂ  
ꢁꢀꢐꢂ  
ꢇꢃ  
ꢁꢈ  
ꢁꢐꢅ  
ꢁꢇ  
ꢈꢐꢊ  
ꢁꢅꢐꢈ  
AIꢁꢃꢉꢀꢉB  
1. Dimensions are in millimeters.  
108/124  
DocID025004 Rev 2  
 
STM32F072xx  
Package characteristics  
Marking of engineering samples for LQFP64  
The following figure shows the engineering sample marking for the LQFP64 package. Only  
the information field containing the engineering sample marking is shown.  
Figure 41. LQFP64 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(6  
.4ꢁꢈꢂꢅꢉ7ꢈ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID025004 Rev 2  
109/124  
122  
 
Package characteristics  
STM32F072xx  
Figure 42. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢀꢐꢅꢆ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢁ  
$ꢂ  
,ꢁ  
ꢂꢇ  
ꢅꢆ  
ꢂꢈ  
ꢅꢃ  
B
ꢃꢊ  
ꢁꢂ  
0). ꢁ  
)$%.4)&)#!4)/.  
ꢁꢅ  
E
ꢆ"?-%?6ꢅ  
1. Drawing is not to scale.  
Table 76. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
110/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Package characteristics  
Table 76. LQFP48 – 7 x 7 mm low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
e
L
-
0.500  
0.600  
1.000  
-
-
0.750  
-
-
0.0197  
0.0236  
0.0394  
-
-
0.0295  
-
0.450  
0.0177  
L1  
ccc  
K
-
-
-
-
0.080  
7°  
0.0031  
7°  
0°  
3.5°  
0°  
3.5°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 43. LQFP48 recommended footprint  
ꢀꢐꢆꢀ  
ꢁꢐꢅꢀ  
ꢀꢐꢂꢀ  
ꢂꢇ  
ꢅꢆ  
ꢂꢈ  
ꢅꢃ  
ꢀꢐꢅꢀ  
ꢈꢐꢂꢀ  
ꢉꢐꢈꢀ ꢆꢐꢊꢀ  
ꢈꢐꢂꢀ  
ꢃꢊ  
ꢁꢂ  
ꢁꢅ  
ꢁꢐꢅꢀ  
ꢆꢐꢊꢀ  
ꢉꢐꢈꢀ  
AIꢁꢃꢉꢁꢁD  
1. Dimensions are in millimeters.  
DocID025004 Rev 2  
111/124  
122  
 
Package characteristics  
STM32F072xx  
Marking of engineering samples for LQFP48  
The following figure shows the engineering sample marking for the LQFP48 package. Only  
the information field containing the engineering sample marking is shown.  
Figure 44. LQFP48 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(6  
06ꢀꢄꢁꢒꢃ9ꢁ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
112/124  
DocID025004 Rev 2  
 
STM32F072xx  
Package characteristics  
Figure 45. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline  
3LQꢅꢁꢅLGHQWLILHU  
ODVHUꢅPDUNLQJꢅDUHD  
'
$
(
<
(
6HDWLQJꢅ  
SODQH  
7
GGG  
$ꢁ  
E
H
'HWDLOꢅ<  
'
([SRVHGꢅSDGꢅ  
DUHD  
'ꢄ  
/
ꢂꢍ  
&ꢅꢃꢆꢋꢃꢃ[ꢂꢋƒ  
SLQꢁꢅFRUQHU  
5ꢅꢃꢆꢁꢄꢋꢅW\Sꢆ  
'HWDLOꢅ=  
(ꢄ  
ꢂꢍ  
=
$ꢃ%ꢎB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
DocID025004 Rev 2  
113/124  
122  
 
Package characteristics  
STM32F072xx  
Table 77. UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
A1  
D
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 46. UFQFPN48 recommended footprint  
2
2
2
2
2
2
1. Dimensions are in millimeters.  
114/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Package characteristics  
Marking of engineering samples for UFQFPN48  
The following figure shows the engineering sample marking for the UFQFPN48 package.  
Only the information field containing the engineering sample marking is shown.  
Figure 47. UFQFPN48 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(6  
06ꢀꢁꢂꢒꢎ9ꢁ  
1. Samples marked “ES” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
DocID025004 Rev 2  
115/124  
122  
 
Package characteristics  
STM32F072xx  
Figure 48. WLCSP49 – 0.4 mm pitch, package outline  
Hꢁ  
EEE  
=
)
$ꢁꢅEDOOꢅORFDWLRQ  
$
*
'HWDLOꢅ$  
Hꢄ  
(
H
*
$
$ꢄ  
H
%XPSꢅVLGH  
6LGHꢅYLHZ  
$ꢀ  
)URQWꢅYLHZ  
'
%XPS  
$ꢁ  
HHH  
=
E
6HDWLQJꢅSODQH  
(
'HWDLOꢅ$  
$ꢁꢅRULHQWDWLRQꢅ  
UHIHUHQFH  
ꢈURWDWHGꢅꢎꢃꢅƒꢊ  
DDD  
ꢈꢂ;ꢊ  
:DIHUꢅEDFNꢅVLGH  
1. Drawing is not to scale.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z  
$ꢃ;/B0(B9ꢁ  
116/124  
DocID025004 Rev 2  
 
STM32F072xx  
Package characteristics  
Table 78. WLCSP49 – 0.4 mm pitch package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
b
0.525  
0.555  
0.175  
0.380  
0.025  
0.250  
3.277  
3.109  
0.400  
2.400  
2.400  
0.438  
0.354  
0.585  
0.0207  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.1290  
0.1224  
0.0157  
0.0945  
0.0945  
0.0173  
0.0140  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
0.0087  
0.0110  
D
3.242  
3.312  
0.1276  
0.1304  
E
3.074  
3.144  
0.1210  
0.1238  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
G
N
49  
aaa  
bbb  
ccc  
ddd  
eee  
-
-
-
-
-
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
-
-
-
-
-
-
-
-
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 49. WLCSP49 recommended footprint  
'SDG  
'VP  
06ꢁꢍꢎꢒꢋ9ꢄ  
DocID025004 Rev 2  
117/124  
122  
 
 
Package characteristics  
STM32F072xx  
Table 79. WLCSP49 recommended PCB design rules (0.4 mm pitch BGA)  
Dimension  
Recommended values  
Pitch  
Dpad  
0.4 mm  
260 μm max. (circular)  
220 μm recommended  
Dsm  
300 μm min. (for 260 μm diameter pad)  
PCB pad design  
Non-solder mask defined via underbump allowed  
Marking of engineering samples for WLCSP49  
The following figure shows the engineering sample marking for the WLCSP49 package.  
Only the information field containing the engineering sample marking is shown.  
Figure 50. WLCSP49 package top view  
(QJLQHHULQJꢅVDPSOHꢅPDUNLQJ  
(
06ꢀꢂꢄꢁꢐ9ꢁ  
1. Samples marked “E” are to be considered as “Engineering Samples”: i.e. they are intended to be sent to  
customer for electrical compatibility evaluation and may be used to start customer qualification where  
specifically authorized by ST in writing. In no event ST will be liable for any customer usage in production.  
Only if ST has authorized in writing the customer qualification Engineering Samples can be used for  
reliability qualification trials.  
118/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Package characteristics  
7.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 24: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x )  
J
A
D
JA  
Where:  
T max is the maximum temperature in °C,  
A
is the package junction-to- thermal resistance, in C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = (V × I ) + ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 80. Package thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-  
UFBGA100 - 7 × 7 mm  
55  
Thermal resistance junction-  
LQFP100 - 14 × 14 mm  
42  
44  
54  
32  
49  
Thermal resistance junction-  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
JA  
°C/W  
Thermal resistance junction-  
LQFP48 - 7 × 7 mm  
Thermal resistance junction-  
UFQFPN48 - 7 × 7 mm  
Thermal resistance junction-  
WLCSP49 - 0.4 mm pitch  
7.2.1  
7.2.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Part numbering.  
Each temperature range suffix corresponds to a specific guaranteed temperature at  
maximum dissipation and to a specific maximum junction temperature.  
DocID025004 Rev 2  
119/124  
122  
 
 
 
 
 
Package characteristics  
STM32F072xx  
As applications do not commonly use the STM32F072xx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range is best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum temperature T  
= 82 °C (measured according to JESD51-2), I  
= 50  
DDmax  
Amax  
mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I  
DD  
OL  
= 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output at low level  
OL  
with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Using the values obtained in Table 80 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8: Part numbering).  
Note:  
With this given P  
we can find the T  
allowed for a given device temperature range  
Dmax  
Amax  
(order code suffix 6 or 7).  
Suffix 6: T  
Suffix 7: T  
= T  
= T  
- (45°C/W × 447 mW) = 105-20.115 = 84.885 °C  
- (45°C/W × 447 mW) = 125-20.115 = 104.885 °C  
Amax  
Amax  
Jmax  
Jmax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high temperatures  
with a low dissipation, as long as junction temperature T remains within the specified  
J
range.  
Assuming the following application conditions:  
Maximum temperature T  
= 100 °C (measured according to JESD51-2), I  
=
DDmax  
Amax  
20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low level with  
DD  
I
= 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Using the values obtained in Table 80 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C  
DocID025004 Rev 2  
Jmax  
120/124  
STM32F072xx  
Package characteristics  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8: Part numbering) unless we reduce the power dissipation in order to be able to  
use suffix 6 parts.  
Refer to Figure 51 to select the required temperature range (suffix 6 or 7) according to your  
temperature or power requirements.  
Figure 51. LQFP64 P max vs. T  
D
A
ꢐꢃꢃ  
ꢒꢃꢃ  
ꢋꢃꢃ  
ꢂꢃꢃ  
ꢀꢃꢃ  
ꢄꢃꢃ  
ꢁꢃꢃ  
6XIIL[ꢅꢒ  
6XIIL[ꢅꢐ  
ꢒꢋ  
ꢐꢋ  
ꢍꢋ  
ꢎꢋ ꢁꢃꢋ ꢁꢁꢋ ꢁꢄꢋ ꢁꢀꢋ  
7$ꢅꢈƒ&ꢊ  
06Yꢀꢄꢁꢂꢀ9ꢁ  
DocID025004 Rev 2  
121/124  
122  
 
Part numbering  
STM32F072xx  
8
Part numbering  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
Table 81. Ordering information scheme  
Example:  
STM32  
F
072  
R
B
T
6
x
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
072 = STM32F072xx  
Pin count  
C = 48/49 pins  
R = 64 pins  
V = 100 pins  
Code size  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
H = UFBGA  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = –40 to 85 °C  
7 = –40 to 105 °C  
Options  
xxx = programmed parts  
TR = tape and reel  
122/124  
DocID025004 Rev 2  
 
 
STM32F072xx  
Revision history  
9
Revision history  
Table 82. Document revision history  
Date  
Revision  
Changes  
13-Jan-2014  
1
Initial release.  
Updated “Reset and power management“ data in  
Features.  
Updated tS_vrefint in Table 28: Embedded internal  
reference voltage.  
Updated VHSEH and VHSEL in Table 38: High-speed  
external user clock characteristics.  
Updated VLSEH and VLSEL in Table 39: Low-speed  
external user clock characteristics.  
21-Feb-2014  
2
Updated tS_temp in Table 63: TS characteristics.  
Updated tS_vbat in Table 64: VBAT monitoring  
characteristics.  
Updated I2C interface characteristics section.  
Updated Figure 35: UFBGA100 package top view and  
Figure 50: WLCSP49 package top view.  
Modified value of ts_sc and removed row VBG in  
Table 62: Comparator characteristics.  
DocID025004 Rev 2  
123/124  
123  
 
 
STM32F072xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
124/124  
DocID025004 Rev 2  

相关型号:

STM32F072X8

Reset and power management
STMICROELECTR

STM32F072xB

Reset and power management
STMICROELECTR

STM32F078CB

CRC calculation unit
STMICROELECTR

STM32F078RB

CRC calculation unit
STMICROELECTR

STM32F078VB

CRC calculation unit
STMICROELECTR

STM32F091

ARM-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CB

ARM-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CBH6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CBH7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CBT6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CBT7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V
STMICROELECTR

STM32F091CBU6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V
STMICROELECTR