STM32F091VBU6TP [STMICROELECTRONICS]

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V;
STM32F091VBU6TP
型号: STM32F091VBU6TP
厂家: ST    ST
描述:

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

文件: 总128页 (文件大小:1918K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F091xB STM32F091xC  
ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers,  
ADC, DAC, and comm. interfaces, 2.0 - 3.6V  
Datasheet - production data  
Features  
)%*$  
®
®
Core: ARM 32-bit Cortex -M0 CPU,  
frequency up to 48 MHz  
LQFP100 14x14 mm  
LQFP64 10x10 mm  
LQFP48 7x7 mm  
UFQFPN48  
7x7 mm  
UFBGA100  
7x7 mm  
UFBGA64  
5x5 mm  
WLCSP64  
3.3x3.6mm  
Memories  
– 128 to 256 Kbytes of Flash memory  
– 32 Kbytes of SRAM with HW parity  
12 timers  
– One 16-bit advanced-control timer for  
6 channel PWM output  
CRC calculation unit  
Reset and power management  
– One 32-bit and seven 16-bit timers, with up  
to 4 IC/OC, OCN, usable for IR control  
decoding or DAC control  
– Digital & I/Os supply: V = 2.0 V to 3.6 V  
DD  
– Analog supply: V  
= V to 3.6 V  
DD  
DDA  
– Power-on/Power down reset (POR/PDR)  
– Programmable voltage detector (PVD)  
– Low power modes: Sleep, Stop, Standby  
– Independent and system watchdog timers  
– SysTick timer  
Communication interfaces  
– V  
supply for RTC and backup registers  
BAT  
2
– Two I C interfaces supporting Fast Mode  
Clock management  
Plus (1 Mbit/s) with 20 mA current sink, one  
supporting SMBus/PMBus and wakeup  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x6 PLL option  
– Internal 40 kHz RC oscillator  
– Up to eight USARTs supporting master  
synchronous SPI and modem control, three  
with ISO7816 interface, LIN, IrDA, auto  
baud rate detection and wakeup feature  
– Internal 48 MHz oscillator with automatic  
trimming based on ext. synchronization  
– Two SPIs (18 Mbit/s) with 4 to 16  
2
programmable bit frames, and with I S  
Up to 88 fast I/Os  
interface multiplexed  
– All mappable on external interrupt vectors  
– CAN interface  
– Up to 69 I/Os with 5V-tolerant capability  
HDMI CEC wakeup on header reception  
Serial wire debug (SWD)  
96-bit unique ID  
and 19 with independent supply V  
DDIO2  
12-channel DMA controller  
One 12-bit, 1.0 µs ADC (up to 16 channels)  
– Conversion range: 0 to 3.6 V  
®
All packages ECOPACK 2  
– Separate analog supply: 2.4 V to 3.6 V  
Table 1. Device summary  
One 12-bit D/A converter (with 2 channels)  
Reference  
Part number  
Two fast low-power analog comparators with  
STM32F091xB  
STM32F091xC  
STM32F091CB, STM32F091RB, STM32F091VB  
STM32F091CC, STM32F091RC, STM32F091VC  
programmable input and output  
Up to 24 capacitive sensing channels for  
touchkey, linear and rotary touch sensors  
Calendar RTC with alarm and periodic wakeup  
from Stop/Standby  
January 2017  
DocID026284 Rev 4  
1/128  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F091xB STM32F091xC  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
ARM®-Cortex®-M0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 14  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.6  
3.7  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 17  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 18  
3.10 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REFINT  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BAT  
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.12 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.13 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.14.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17) . . . . . . . . . . . . . . . . . 22  
3.14.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Contents  
3.14.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23  
3.16 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.17 Universal synchronous/asynchronous receiver/transmitter (USART) . . . 25  
3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I2S) . 26  
3.19 High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.20 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.21 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.22 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4
5
6
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 54  
Embedded reset and power control block characteristics . . . . . . . . . . . 55  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DocID026284 Rev 4  
3/128  
4
Contents  
STM32F091xB STM32F091xC  
6.3.11  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6.3.18 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.3.20  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
BAT  
6.3.21 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.3.22 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
7.8.1  
7.8.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 121  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
4/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F091xB/xC family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . 11  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Capacitive sensing GPIOs available on STM32F091xB/xC devices . . . . . . . . . . . . . . . . . 20  
Number of capacitive sensing channels available  
on STM32F091xB/xC devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 7.  
Table 8.  
Table 9.  
2
Comparison of I C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
STM32F091xB/xC I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
STM32F091xB/xC USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM32F091xB/xC SPI/I S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32F091xB/xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 41  
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 42  
Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 43  
Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 43  
Alternate functions selected through GPIOE_AFR registers for port E . . . . . . . . . . . . . . . 44  
Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 44  
STM32F091xB/xC peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . 46  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Typical and maximum current consumption from V supply at V = 3.6 V . . . . . . . . . . 58  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . 59  
DDA  
Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 60  
Typical and maximum current consumption from the V supply. . . . . . . . . . . . . . . . . . . 61  
BAT  
Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DocID026284 Rev 4  
5/128  
6
List of tables  
STM32F091xB STM32F091xC  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
2
I C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
UFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
UFBGA100 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
UFBGA64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
UFBGA64 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
WLCSP64 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
WLCSP64 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UFQFPN48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
6/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
UFBGA100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
LQFP100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
UFBGA64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LQFP64 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
WLCSP64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LQFP48 package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
UFQFPN48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 10. STM32F091xC memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 72  
Figure 20. HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 21. HSI48 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 22. TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 26. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 27. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 28. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 29. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 30. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
2
Figure 31. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
2
Figure 32. I S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 33. UFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 34. Recommended footprint for UFBGA100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 35. UFBGA100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 36. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 37. Recommended footprint for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 38. LQFP100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 39. UFBGA64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 40. Recommended footprint for UFBGA64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 41. UFBGA64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 42. WLCSP64 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 43. Recommended footprint for WLCSP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 44. WLCSP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 45. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 46. Recommended footprint for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 47. LQFP64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 48. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
DocID026284 Rev 4  
7/128  
8
List of figures  
STM32F091xB STM32F091xC  
Figure 49. Recommended footprint for LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Figure 50. LQFP48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 51. UFQFPN48 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 52. Recommended footprint for UFQFPN48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 53. UFQFPN48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 54. LQFP64 P max versus T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
D
A
8/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F091xB/xC microcontrollers.  
This document should be read in conjunction with the STM32F0xxxx reference manual  
(RM0091). The reference manual is available from the STMicroelectronics website  
www.st.com.  
®
®
®
For information on the ARM Cortex -M0 core, please refer to the Cortex -M0 Technical  
Reference Manual, available from the www.arm.com website.  
DocID026284 Rev 4  
9/128  
27  
 
Description  
STM32F091xB STM32F091xC  
2
Description  
The STM32F091xB/xC microcontrollers incorporate the high-performance  
®
®
ARM Cortex -M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed  
embedded memories (up to 256 Kbytes of Flash memory and 32 Kbytes of SRAM), and an  
extensive range of enhanced peripherals and I/Os. The device offers standard  
2
2
communication interfaces (two I Cs, two SPIs/one I S, one HDMI CEC and up to eight  
USARTs), one CAN, one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit  
timers, one 32-bit timer and an advanced-control PWM timer.  
The STM32F091xB/xC microcontrollers operate in the -40 to +85 °C and -40 to +105 °C  
temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of  
power-saving modes allows the design of low-power applications.  
The STM32F091xB/xC microcontrollers include devices in seven different packages ranging  
from 48 pins to 100 pins with a die form also available upon request. Depending on the  
device chosen, different sets of peripherals are included.  
These features make the STM32F091xB/xC microcontrollers suitable for a wide range of  
applications such as application control and user interfaces, hand-held equipment, A/V  
receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications,  
PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.  
10/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Description  
Table 2. STM32F091xB/xC family device features and peripheral counts  
Peripheral  
STM32F091Cx  
128 256  
STM32F091Rx  
128 256  
STM32F091Vx  
128 256  
Flash memory (Kbyte)  
SRAM (Kbyte)  
32  
Advanced  
control  
1 (16-bit)  
Timers  
General  
purpose  
5 (16-bit)  
1 (32-bit)  
Basic  
SPI [I2S](1)  
I2C  
2 (16-bit)  
2 [2]  
2
Comm.  
interfaces  
USART  
CAN  
6
8
1
1
1
CEC  
12-bit ADC  
1
(number of channels)  
(10 ext. + 3 int.)  
(16 ext. + 3 int.)  
12-bit DAC  
1
(number of channels)  
(2)  
Analog comparator  
GPIOs  
2
38  
17  
52  
88  
24  
Capacitive sensing  
channels  
18  
Max. CPU frequency  
Operating voltage  
48 MHz  
2.0 to 3.6 V  
Ambient operating temperature: -40°C to 85°C / -40°C to 105°C  
Junction temperature: -40°C to 105°C / -40°C to 125°C  
Operating temperature  
LQFP64  
LQFP48  
UFQFPN48  
LQFP100  
Packages  
UFBGA64  
WLCSP64  
UFBGA100  
1. The SPI interface can be used either in SPI mode or in I2S audio mode.  
DocID026284 Rev 4  
11/128  
27  
 
 
Description  
STM32F091xB STM32F091xC  
Figure 1. Block diagram  
32:(5  
6:&/.ꢆ  
6:',2  
DVꢆ$)  
6HULDOꢆ:LUHꢆ  
'HEXJ  
92/7ꢈ5(*ꢆ  
ꢀꢈꢀꢆ9ꢆWRꢆꢊꢈꢍꢆ9  
9''ꢆ ꢆꢅꢆWRꢆꢀꢈꢌꢆ9  
966ꢆ  
9''ꢊꢍ  
)ODVKꢆ*3/ꢆ  
XSꢆWRꢆꢅꢃꢌꢆ.%ꢆ  
ꢀꢅꢏELW  
#ꢆ9''  
&257(;ꢏ0ꢋꢆ&38ꢆ  
I0$;ꢆ ꢆꢁꢍꢆ0+]  
6833/<ꢆ  
9'',2ꢅꢆ2.,1ꢆ  
325  
683(59,6,21  
1567  
9''$ꢆ  
966$  
65$0ꢆ  
ꢀꢅꢆ.%  
5HVHW  
,QW  
325ꢎ3'5  
19,&  
#ꢆ9''$  
9''ꢆ  
+6,ꢊꢁ  
39'  
5&ꢆꢊꢁꢆ0+]  
+6,  
3//&/.  
/6,  
5&ꢆꢍꢆ0+]  
3//  
#ꢆ9''$  
#ꢆ9''  
*3ꢆ'0$ꢆ  
ꢊꢅꢆFKDQQHOV  
;7$/ꢆ26&ꢆ  
ꢁꢏꢀꢅꢆ0+]  
5&ꢆꢁꢋꢆN+]  
5&ꢆꢁꢍ0+]  
26&B,1  
26&B287  
+6,ꢁꢍ  
,QGꢈꢆ:LQGRZꢆ:'*  
3RZHUꢆ  
3$>ꢊꢃꢇꢋ@  
3%>ꢊꢃꢇꢋ@  
3&>ꢊꢃꢇꢋ@  
3'>ꢊꢃꢇꢋ@  
3(>ꢊꢃꢇꢋ@  
*3,2ꢆSRUWꢆ$  
*3,2ꢆSRUWꢆ%  
*3,2ꢆSRUWꢆ&  
*3,2ꢆSRUWꢆ'  
*3,2ꢆSRUWꢆ(  
*3,2ꢆSRUWꢆ)  
9''  
&RQWUROOHU  
5(6(7ꢆꢒꢆ&/2&.ꢆ  
&21752/  
9%$7ꢆ ꢆꢊꢈꢌꢃꢆWRꢆꢀꢈꢌꢆ9  
#ꢆ9%$7  
26&ꢀꢅB,1ꢆ  
26&ꢀꢅB287  
;7$/ꢀꢅꢆN+]  
6\VWHPꢆDQGꢆSHULSKHUDOꢆ  
FORFNV  
%DFNXSꢆ  
ꢀꢆ7$03(5ꢏ57&  
ꢐ$/$50ꢆ287ꢑ  
57&  
UHJ  
57&ꢆLQWHUIDFH  
3)>ꢊꢋꢇꢂ@ꢉꢆ3)ꢌ  
3)>ꢀꢇꢋ@  
&56  
&5&  
6<1&  
ꢁꢆFKDQQHOV  
3:0ꢆ7,0(5ꢆꢊ  
7,0(5ꢆꢅꢆꢀꢅꢏELW  
7,0(5ꢆꢀ  
ꢀꢆFRPSOꢈꢆFKDQQHOV  
3$'ꢆ  
%5.ꢉꢆ(75ꢆLQSXWꢆDVꢆ$)  
ꢍꢆJURXSVꢆRIꢆ  
ꢁꢆFKDQQHOV  
7RXFK  
$QDORJꢆ  
ꢁꢆFKꢈꢉꢆ(75ꢆDVꢆ$)  
ꢁꢆFKꢈꢉꢆ(75ꢆDVꢆ$)  
ꢊꢆFKDQQHOꢆDVꢆ$)  
6HQVLQJꢆꢆ  
VZLWFKHV  
&RQWUROOHU  
$+%  
$3%  
6<1&  
ꢍꢍꢆ$)  
7,0(5ꢆꢊꢁ  
(;7ꢆ,7ꢆꢆ:.83  
ꢅꢆFKDQQHOV  
7,0(5ꢆꢊꢃ  
ꢊꢆFRPSOꢉꢆ%5.ꢆDVꢆ$)  
65$0  
ꢅꢃꢌꢆ%  
ꢊꢆFKDQQHO  
7,0(5ꢆꢊꢌ  
ꢊꢆFRPSOꢉꢆ%5.ꢆDVꢆ$)  
ꢊꢆFKDQQHO  
7,0(5ꢆꢊꢄ  
ꢊꢆFRPSOꢉꢆ%5.ꢆDVꢆ$)  
%[&$1  
7;ꢉꢆ5;ꢆDVꢆ$)  
,5B287ꢆDVꢆ$)  
:LQGRZꢆ:'*  
'%*0&8  
5;ꢉꢆ7;ꢉ&76ꢉꢆ576ꢉꢆ  
86$57ꢊ  
86$57ꢅ  
86$57ꢀ  
86$57ꢁ  
86$57ꢃ  
86$57ꢌ  
86$57ꢄ  
86$57ꢍ  
026,ꢎ6'ꢆ  
0,62ꢎ0&.ꢆ  
6&.ꢎ&.ꢆ  
&.ꢆDVꢆ$)  
63,ꢊꢎ,ꢅ6ꢊ  
5;ꢉꢆ7;ꢉ&76ꢉꢆ576ꢉꢆ  
&.ꢆDVꢆ$)  
166ꢎ:6ꢆDVꢆ$)  
5;ꢉꢆ7;ꢉ&76ꢉꢆ576ꢉꢆ  
&.ꢆDVꢆ$)  
026,ꢎ6'ꢆ  
0,62ꢎ0&.ꢆ  
6&.ꢎ&.ꢆ  
63,ꢅꢎ,ꢅ6ꢅ  
5;ꢉꢆ7;ꢉ&76ꢉꢆ576ꢉꢆ  
&.ꢆDVꢆ$)  
166ꢎ:6ꢆDVꢆ$)  
6<6&)*ꢆ,)  
5;ꢉꢆ7;ꢉꢆ576ꢉꢆ&.ꢆDVꢆ$)  
5;ꢉꢆ7;ꢉꢆ576ꢉꢆ&.ꢆDVꢆ$)  
5;ꢉꢆ7;ꢉꢆ576ꢉꢆ&.ꢆDVꢆ$)  
5;ꢉꢆ7;ꢉꢆ576ꢉꢆ&.ꢆDVꢆ$)  
,1387ꢆꢓ  
,1387ꢆꢏ  
287387  
DVꢆ$)  
*3ꢆFRPSDUDWRUꢆꢊ  
*3ꢆFRPSDUDWRUꢆꢅ  
#ꢆ9''$  
6&/ꢉꢆ6'$ꢉꢆ60%$ꢆ  
ꢐꢅꢋꢆP$ꢆ)0ꢓꢑꢆDVꢆ$)  
6&/ꢉꢆ6'$ꢆ  
ꢐꢅꢋꢆP$ꢆ)0ꢓꢑꢆDVꢆ$)  
,ꢅ&ꢊ  
,ꢅ&ꢅ  
7HPSꢈꢆ  
VHQVRU  
ꢊꢌ[ꢆꢆ  
$'ꢆLQSXW  
ꢊꢅꢏELWꢆ$'& ,)  
+'0,ꢏ&(&  
&(&ꢆDVꢆ$)  
7,0(5ꢆꢌ  
7,0(5ꢆꢄ  
'$&B287ꢊ  
'$&B287ꢅ  
9''$  
966$  
ꢊꢅꢏELWꢆꢆ'$&  
,)  
ꢊꢅꢏELWꢆ'$&  
#ꢆ9''$  
#ꢆ9''$  
3RZHUꢆGRPDLQꢆRIꢆDQDORJꢆEORFNVꢆꢇ  
9%$7  
9''  
9''$  
06Yꢀꢁꢂꢃꢄ9ꢅ  
12/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Functional overview  
3
Functional overview  
Figure 1 shows the general block diagram of the STM32F091xB/xC devices.  
3.1  
ARM®-Cortex®-M0 core  
®
®
The ARM Cortex -M0 is a generation of ARM 32-bit RISC processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The ARM Cortex -M0 processors feature exceptional code-efficiency, delivering the high  
performance expected from an ARM core, with memory sizes usually associated with 8- and  
16-bit devices.  
The STM32F091xB/xC devices embed ARM core and are compatible with all ARM tools  
and software.  
3.2  
Memories  
The device has the following features:  
32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states and featuring embedded parity checking with exception generation for fail-critical  
applications.  
The non-volatile memory is divided into two arrays:  
up to 256 Kbytes of embedded Flash memory for programs and data  
Option bytes  
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
®
Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and  
boot in RAM selection disabled  
3.3  
Boot modes  
At startup, the boot pin and boot selector option bits are used to select one of the three boot  
options:  
boot from User Flash memory  
boot from System Memory  
boot from embedded SRAM  
The boot pin is shared with the standard GPIO and can be disabled through the boot  
selector option bits. The boot loader is located in System Memory. It is used to reprogram  
2
the Flash memory by using USART on pins PA14/PA15 or PA9/PA10 or I C on pins  
PB6/PB7.  
DocID026284 Rev 4  
13/128  
27  
 
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
3.4  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.5  
Power management  
3.5.1  
Power supply schemes  
V
= V  
= 2.0 to 3.6 V: external power supply for I/Os (V  
) and the internal  
DDIO1  
DD  
DDIO1  
regulator. It is provided externally through VDD pins.  
V
= from V to 3.6 V: external analog power supply for ADC, DAC, Reset blocks,  
DDA  
DD  
RCs and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC or DAC  
DDA  
are used). It is provided externally through VDDA pin. The V  
voltage level must be  
DDA  
always greater or equal to the V voltage level and must be established first.  
DD  
V
= 1.65 to 3.6 V: external power supply for marked I/Os. V  
is provided  
DDIO2  
DDIO2  
externally through the VDDIO2 pin. The V  
voltage level is completely independent  
DDIO2  
from V or V  
, but it must not be provided without a valid supply on V . The  
DD  
DDA  
DD  
V
supply is monitored and compared with the internal reference voltage  
DDIO2  
(V  
). When the V  
is below this threshold, all the I/Os supplied from this rail  
REFINT  
DDIO2  
are disabled by hardware. The output of this comparator is connected to EXTI line 31  
and it can be used to generate an interrupt. Refer to the pinout diagrams or tables for  
concerned I/Os list.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 13: Power supply scheme.  
3.5.2  
Power supply supervisors  
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
V
, without the need for an external reset circuit.  
POR/PDR  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
should arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
supply voltages, however the V  
power  
DD  
DDA  
DDA  
DDA  
equal to V  
.
DD  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
14/128  
DocID026284 Rev 4  
 
 
 
 
STM32F091xB STM32F091xC  
Functional overview  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state. The PVD is enabled by software.  
3.5.3  
3.5.4  
Voltage regulator  
The regulator has two operating modes and it is always enabled after reset.  
Main (MR) is used in normal operating mode (Run).  
Low power (LPR) can be used in Stop mode where the power demand is reduced.  
In Standby mode, it is put in power down mode. In this mode, the regulator output is in high  
impedance and the kernel circuitry is powered down, inducing zero consumption (but the  
contents of the registers and SRAM are lost).  
Low-power modes  
The STM32F091xB/xC microcontrollers support three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves very low power consumption while retaining the content of SRAM  
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the  
HSE crystal oscillators are disabled. The voltage regulator can also be put either in  
normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line  
source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,  
USART2, USART3, COMPx, V  
supply comparator or the CEC.  
DDIO2  
The CEC, USART1, USART2, USART3 and I2C1 peripherals can be configured to  
enable the HSI RC oscillator so as to get clock for processing incoming data. If this is  
used when the voltage regulator is put in low power mode, the regulator is first  
switched to normal mode before the clock is provided to the given peripheral.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the RTC  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pins, or an RTC event occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
DocID026284 Rev 4  
15/128  
27  
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Figure 2. Clock tree  
)ODVKꢆPHPRU\ꢆ  
SURJUDPPLQJꢆ  
LQWHUIDFH  
)/,7)&/.  
/6(  
6<1&  
6<1&65&  
,ꢅ&ꢊ6:  
+6,  
,ꢅ&ꢊ  
6<6&/.  
&56  
7ULP  
+6,  
,ꢅ6ꢊꢎ63,ꢊ  
,ꢅ6ꢅꢎ63,ꢅ  
+6,ꢁꢍ  
+6,ꢁꢍ  
+6,  
ꢁꢍꢆ0+]  
&(&6:  
+6,ꢆ5&  
/6(  
ꢎꢅꢁꢁ  
&(&  
ꢍꢆ0+]  
+6,ꢆ5&  
$+%ꢉꢆFRUHꢉꢆPHPRU\ꢉꢆ'0$ꢉꢆ  
&RUWH[ꢆ)&/.ꢆIUHHꢏUXQꢆFORFN  
+&/.  
ꢎꢍ  
6:  
35(',9  
3//65&  
6<6&/.  
&RUWH[ꢆ  
V\VWHPꢆWLPHUꢆ  
+6,ꢁꢍ  
3//08/  
+6,  
3//&/.  
+6(  
3&/.  
$3%ꢆ  
ꢎꢊꢉꢎꢅꢉ«  
ꢎꢊꢉꢎꢅꢉꢎꢁꢉ  
ꢎꢍꢉꢎꢊꢌ  
3//  
[ꢅꢉ[ꢀꢉꢈꢈ  
ꢈꢈꢈ[ꢊꢌ  
ꢎꢊꢉꢎꢅꢉꢈꢈꢆ  
«ꢎꢃꢊꢅ  
SHULSKHUDOV  
ꢈꢈꢎꢊꢌ  
+35(  
335(  
335(  
[ꢊꢉꢆ[ꢅ  
&66  
7,0ꢊꢉꢅꢉꢀꢉꢌꢉꢄꢉ  
ꢊꢁꢉꢊꢃꢉꢊꢌꢉꢊꢄ  
26&B287  
26&B,1  
+6(  
ꢁꢏꢀꢅꢆ0+]  
+6(ꢆ26&  
86$57[6:  
3&/.  
/6(  
6<6&/.  
+6,  
86$57ꢊ  
86$57ꢅ  
86$57ꢀ  
ꢎꢀꢅ  
/6(  
/6(  
57&&/.  
26&ꢀꢅB,1  
ꢀꢅꢈꢄꢌꢍꢆN+]  
/6(ꢆ26&  
57&  
26&ꢀꢅB287  
57&6(/  
/6,  
ꢁꢋꢆN+]  
/6,ꢆ5&  
,:'*  
3//12',9  
ꢎꢊꢉꢎꢅ  
$'&ꢆ  
ꢊꢁꢆ0+]ꢆ5&  
+6,ꢊꢁ  
+6,ꢊꢁ  
DV\QFKURQRXVꢆ  
FORFNꢆLQSXW  
3//&/.  
+6,ꢁꢍ  
+6(  
0&235(  
+6,  
0DLQꢆFORFN  
RXWSXW  
ꢎꢊꢉꢎꢅꢉꢎꢁꢉꢈꢈ  
ꢈꢈꢎꢊꢅꢍ  
+6,ꢊꢁ  
6<6&/.  
/6(  
0&2  
/HJHQG  
EODFN  
ZKLWH  
FORFNꢆWUHHꢆHOHPHQW  
/6,  
FORFNꢆWUHHꢆFRQWUROꢆHOHPHQW  
FORFNꢆOLQH  
7,0ꢊꢁ  
0&2  
FRQWUROꢆOLQH  
06Yꢀꢁꢂꢃꢍ9ꢅ  
Several prescalers allow the application to configure the frequency of the AHB and the APB  
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.  
16/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Functional overview  
Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL  
input source. This oscillator can be automatically fine-trimmed by the means of the CRS  
peripheral using the external synchronization.  
3.7  
3.8  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
The I/O configuration can be locked if needed following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Direct memory access controller (DMA)  
The 12-channel general-purpose DMAs (seven channels for DMA1 and five channels for  
DMA2) manage memory-to-memory, peripheral-to-memory and memory-to-peripheral  
transfers.  
The DMAs support circular buffer management, removing the need for user code  
intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers  
(except TIM14), DAC and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to  
®
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4  
priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
DocID026284 Rev 4  
17/128  
27  
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
3.9.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 32 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 88  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Analog-to-digital converter (ADC)  
The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature  
sensor, voltage reference, VBAT voltage measurement) channels and performs conversions  
in single-shot or scan modes. In scan mode, automatic conversion is performed on a  
selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 3. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
VDDA= 3.3 V (± 10 mV)  
TS ADC raw data acquired at a  
temperature of 110 °C (± 5 °C),  
TS_CAL2  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V (± 10 mV)  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and comparators. V  
is internally connected to the ADC_IN17 input channel. The  
REFINT  
18/128  
DocID026284 Rev 4  
 
 
 
 
 
 
STM32F091xB STM32F091xC  
Functional overview  
precise voltage of V  
is individually measured for each part by ST during production  
REFINT  
test and stored in the system memory area. It is accessible in read-only mode.  
Table 4. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT_CAL  
temperature of 30 °C (± 5 °C),  
0x1FFF F7BA - 0x1FFF F7BB  
VDDA= 3.3 V (± 10 mV)  
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN18. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
3.11  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert digital signals into analog  
voltage signal outputs. The chosen design structure is composed of integrated resistor  
strings and an amplifier in non-inverting configuration.  
This digital Interface supports the following features:  
8-bit or 12-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Six DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger  
outputs and the DAC interface is generating its own DMA requests.  
3.12  
Comparators (COMP)  
The device embeds two fast rail-to-rail low-power comparators with programmable  
reference voltage (internal or external), hysteresis and speed (low speed for low power) and  
with selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output pins  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to Table 28: Embedded  
internal reference voltage for the value and precision of the internal reference voltage.  
DocID026284 Rev 4  
19/128  
27  
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
Both comparators can wake up from STOP mode, generate interrupts and breaks for the  
timers and can be also combined into a window comparator.  
3.13  
Touch sensing controller (TSC)  
The STM32F091xB/xC devices provide a simple solution for adding capacitive sensing  
functionality to any application. These devices offer up to 24 capacitive sensing channels  
distributed over 8 analog I/O groups.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists in  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
For operation, one capacitive sensing GPIO in each group is connected to an external  
capacitor and cannot be used as effective touch sensing channel.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library, which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
Table 5. Capacitive sensing GPIOs available on STM32F091xB/xC devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PC5  
PB0  
PB1  
PB2  
PA9  
PA10  
PA11  
PA12  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TSC_G7_IO1  
TSC_G7_IO2  
TSC_G7_IO3  
TSC_G7_IO4  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
PB3  
PB4  
1
5
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
PE2  
2
3
4
6
7
8
PE3  
PE4  
PE5  
PD12  
PD13  
PD14  
PD15  
20/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Functional overview  
Table 6. Number of capacitive sensing channels available  
on STM32F091xB/xC devices  
Number of capacitive sensing channels  
STM32F091Vx STM32F091Rx STM32F091Cx  
Analog I/O group  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
3
3
2
3
3
3
0
0
Number of capacitive  
sensing channels  
24  
18  
17  
3.14  
Timers and watchdogs  
The STM32F091xB/xC devices include up to six general-purpose timers, two basic timers  
and an advanced control timer.  
Table 7 compares the features of the different timers.  
Table 7. Timer feature comparison  
DMA  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Capture/compare Complementary  
Timer  
request  
generation  
channels  
outputs  
Advanced  
control  
Up, down, integer from  
up/down 1 to 65536  
TIM1  
TIM2  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
1
2
1
-
3
-
Up, down, integer from  
up/down 1 to 65536  
Up, down, integer from  
TIM3  
-
up/down  
1 to 65536  
General  
purpose  
integer from  
1 to 65536  
TIM14  
TIM15  
Up  
-
integer from  
1 to 65536  
Up  
Up  
Up  
Yes  
Yes  
Yes  
1
1
-
TIM16  
TIM17  
integer from  
1 to 65536  
TIM6  
TIM7  
integer from  
1 to 65536  
Basic  
DocID026284 Rev 4  
21/128  
27  
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
3.14.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The four independent channels can  
be used for:  
input capture  
output compare  
PWM generation (edge or center-aligned modes)  
one-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard timers which have the same  
architecture. The advanced control timer can therefore work together with the other timers  
via the Timer Link feature for synchronization or event chaining.  
3.14.2  
General-purpose timers (TIM2, 3, 14, 15, 16, 17)  
There are six synchronizable general-purpose timers embedded in the STM32F091xB/xC  
devices (see Table 7 for differences). Each general-purpose timer can be used to generate  
PWM outputs, or as simple time base.  
TIM2, TIM3  
STM32F091xB/xC devices feature two synchronizable 4-channel general-purpose timers.  
TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based  
on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent  
channels each for input capture/output compare, PWM or one-pulse mode output. This  
gives up to 12 input captures/output compares/PWMs on the largest packages.  
The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advanced-  
control timer via the Timer Link feature for synchronization or event chaining.  
TIM2 and TIM3 both have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM14  
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM14 features one single channel for input capture/output compare, PWM or one-pulse  
mode output.  
Its counter can be frozen in debug mode.  
TIM15, TIM16 and TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
22/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Functional overview  
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single  
channel for input capture/output compare, PWM or one-pulse mode output.  
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate  
withTIM1 via the Timer Link feature for synchronization or event chaining.  
TIM15 can be synchronized with TIM16 and TIM17.  
TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation.  
Their counters can be frozen in debug mode.  
3.14.3  
3.14.4  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as generic  
16-bit time bases.  
Independent watchdog (IWDG)  
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with  
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it  
operates independently from the main clock, it can operate in Stop and Standby modes. It  
can be used either as a watchdog to reset the device when a problem occurs, or as a free  
running timer for application timeout management. It is hardware or software configurable  
through the option bytes. The counter can be frozen in debug mode.  
3.14.5  
3.14.6  
System window watchdog (WWDG)  
The system window watchdog is based on a 7-bit downcounter that can be set as free  
running. It can be used as a watchdog to reset the device when a problem occurs. It is  
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the  
counter can be frozen in debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
a 24-bit down counter  
autoreload capability  
maskable system interrupt generation when the counter reaches 0  
programmable clock source (HCLK or HCLK/8)  
3.15  
Real-time clock (RTC) and backup registers  
The RTC and the five backup registers are supplied through a switch that takes power either  
on V supply when present or through the V  
pin. The backup registers are five 32-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, or at wake up from Standby mode.  
DocID026284 Rev 4  
23/128  
27  
 
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
The RTC is an independent BCD timer/counter. Its main features are the following:  
calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format  
automatic correction for 28, 29 (leap year), 30, and 31 day of the month  
programmable alarm with wake up from Stop and Standby mode capability  
Periodic wakeup unit with programmable resolution and period.  
on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize the RTC with a master clock  
digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy  
Three anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stop and Standby modes on tamper event detection  
timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection  
reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision  
The RTC clock sources can be:  
a 32.768 kHz external crystal  
a resonator or oscillator  
the internal low-power RC oscillator (typical frequency of 40 kHz)  
the high-speed external clock divided by 32  
3.16  
Inter-integrated circuit interface (I2C)  
2
Up to two I C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both  
can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode  
Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os.  
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two  
addresses, one with configurable mask). They also include programmable analog and  
digital noise filters.  
2
Table 8. Comparison of I C analog and digital filters  
Aspect  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2Cx peripheral clocks  
50 ns  
–Extra filtering capability vs.  
standard requirements  
Benefits  
Available in Stop mode  
–Stable length  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
24/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Functional overview  
verifications and ALERT protocol management. I2C1 also has a clock domain independent  
from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address  
match.  
The I2C peripherals can be served by the DMA controller.  
Refer to Table 9 for the differences between I2C1 and I2C2.  
2
Table 9. STM32F091xB/xC I C implementation  
I2C features(1)  
I2C1  
I2C2  
7-bit addressing mode  
10-bit addressing mode  
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os  
Independent clock  
SMBus  
-
Wakeup from STOP  
-
1. X = supported.  
3.17  
Universal synchronous/asynchronous receiver/transmitter  
(USART)  
The device embeds up to eight universal synchronous/asynchronous receivers/transmitters  
(USART1, USART2, USART3, USART4, USART5, USART6, USART7, USART8) which  
communicate at speeds of up to 6 Mbit/s.  
They provide hardware management of the CTS, RTS and RS485 DE signals,  
multiprocessor communication mode, master synchronous communication and single-wire  
half-duplex communication mode. USART1, USART2 and USART3 support also SmartCard  
communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud  
rate feature, and have a clock domain independent of the CPU clock, allowing to wake up  
the MCU from Stop mode.  
The USART interfaces can be served by the DMA controller.  
Table 10. STM32F091xB/xC USART implementation  
USART5  
USART1  
USART6  
USART modes/features(1)  
USART2  
USART3  
USART4  
USART7  
USART8  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
-
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
-
Smartcard mode  
DocID026284 Rev 4  
25/128  
27  
 
 
 
 
Functional overview  
STM32F091xB STM32F091xC  
Table 10. STM32F091xB/xC USART implementation (continued)  
USART5  
USART6  
USART7  
USART8  
USART1  
USART2  
USART3  
USART modes/features(1)  
USART4  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
X
X
X
-
X
-
-
-
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
-
-
-
-
-
-
-
-
X
X
1. X = supported.  
3.18  
Serial peripheral interface (SPI) / Inter-integrated sound  
interface (I2S)  
Two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in full-duplex  
and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
2
Two standard I S interfaces (multiplexed with SPI1 and SPI2 respectively) supporting four  
different audio standards can operate as master or slave at half-duplex communication  
mode. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data  
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to  
192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master  
mode, they can output a clock for an external audio component at 256 times the sampling  
frequency.  
2
Table 11. STM32F091xB/xC SPI/I S implementation  
SPI features(1)  
SPI1 and SPI2  
Hardware CRC calculation  
Rx/Tx FIFO  
X
X
X
X
X
NSS pulse mode  
I2S mode  
TI mode  
1. X = supported.  
26/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Functional overview  
3.19  
High-definition multimedia interface (HDMI) - consumer  
electronics control (CEC)  
The device embeds a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC  
controller to wakeup the MCU from Stop mode on data reception.  
3.20  
3.21  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Clock recovery system (CRS)  
The STM32F091xB/xC embeds a special block which allows automatic trimming of the  
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device  
operational range. This automatic trimming is based on the external synchronization signal,  
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC  
pin or generated by user software. For faster lock-in during startup it is also possible to  
combine automatic trimming with manual trimming action.  
3.22  
Serial wire debug port (SW-DP)  
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected  
to the MCU.  
DocID026284 Rev 4  
27/128  
27  
 
 
 
 
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
4
Pinouts and pin descriptions  
Figure 3. UFBGA100 package pinout  
7RSꢆYLHZ  
ꢊꢋ  
ꢊꢊ  
ꢊꢅ  
3)ꢊꢊꢏ  
3(ꢀ  
3(ꢁ  
3(ꢊ  
3(ꢅ  
3%ꢍ  
3%ꢂ  
3(ꢋ  
966  
1&  
3'ꢄ  
3%ꢌ  
3%ꢃ  
3'ꢃ  
3'ꢌ  
3%ꢁ  
3'ꢁ  
3%ꢀ  
3'ꢀ  
3'ꢅ  
3$ꢊꢃ  
3'ꢊ  
3'ꢋ  
3$ꢊꢁ  
3&ꢊꢅ  
3&ꢊꢊ  
3$ꢂ  
3$ꢊꢀ  
3&ꢊꢋ  
3)ꢌ  
3$ꢊꢅ  
3$ꢊꢊ  
3$ꢊꢋ  
3&ꢂ  
$
%
&
'
(
)
%227ꢋ  
3%ꢄ  
3&ꢊꢀ  
3(ꢃ  
9''  
3&ꢊꢁꢏ  
26&ꢀꢅB  
,1  
3(ꢌ  
3$ꢍ  
3&ꢊꢃꢏ  
26&ꢀꢅB  
287  
9%$7  
3)ꢂ  
3&ꢍ  
3&ꢄ  
966  
3&ꢌ  
3)ꢋꢏ  
26&B  
,1  
966  
3)ꢊꢏ  
26&B  
287  
3)ꢊꢋ  
1567  
3&ꢊ  
3&ꢀ  
3$ꢋ  
9''  
3'ꢊꢀ  
3'ꢊꢋ  
3%ꢊꢀ  
3%ꢊꢅ  
3(ꢊꢃ  
*
+
-
9'',2ꢅ  
3'ꢊꢁ  
3'ꢊꢊ  
3%ꢊꢁ  
3%ꢊꢊ  
3&ꢋ  
3)ꢅ  
9''  
3&ꢅ  
3$ꢅ  
3$ꢀ  
3$ꢁ  
3'ꢊꢃ  
3'ꢊꢅ  
3%ꢊꢃ  
3%ꢊꢋ  
3(ꢊꢀ  
966$  
3)ꢀ  
3$ꢃ  
3$ꢌ  
3$ꢄ  
3&ꢁ  
3&ꢃ  
3%ꢋ  
3'ꢂ  
3(ꢊꢋ  
3(ꢂ  
3'ꢍ  
3(ꢊꢅ  
3(ꢊꢊ  
.
/
3%ꢅ  
3%ꢊ  
3(ꢍ  
3(ꢄ  
9''$  
3$ꢊ  
3(ꢊꢁ  
0
8)%*$ꢊꢋꢋ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢀꢃ9ꢅ  
28/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Figure 4. LQFP100 package pinout  
7RSꢆYLHZ  
ꢄꢃ  
ꢄꢁ  
ꢄꢀ  
ꢄꢅ  
ꢄꢊ  
ꢄꢋ  
ꢌꢂ  
ꢌꢍ  
ꢌꢄ  
ꢌꢌ  
ꢌꢃ  
ꢌꢁ  
ꢌꢀ  
ꢌꢅ  
ꢌꢊ  
ꢌꢋ  
ꢃꢂ  
ꢃꢍ  
ꢃꢄ  
ꢃꢌ  
ꢃꢃ  
ꢃꢁ  
ꢃꢀ  
ꢃꢅ  
ꢃꢊ  
3(ꢅ  
3(ꢀ  
3(ꢁ  
3(ꢃ  
3(ꢌ  
9%$7  
3&ꢊꢀ  
9'',2ꢅ  
966  
3)ꢌ  
3$ꢊꢀ  
3$ꢊꢅ  
3$ꢊꢊ  
3$ꢊꢋ  
3$ꢂ  
3$ꢍ  
3&ꢂ  
3&ꢍ  
3&ꢄ  
3&ꢊꢁꢏ26&ꢀꢅB,1  
3&ꢊꢃꢏ26&ꢀꢅB287  
ꢊꢋ  
ꢊꢊ  
ꢊꢅ  
ꢊꢀ  
ꢊꢁ  
ꢊꢃ  
ꢊꢌ  
ꢊꢄ  
ꢊꢍ  
ꢊꢂ  
ꢅꢋ  
ꢅꢊ  
ꢅꢅ  
ꢅꢀ  
ꢅꢁ  
ꢅꢃ  
3)ꢂ  
3)ꢊꢋ  
3)ꢋꢏ26&B,1  
3)ꢊꢏ26&B287  
1567  
3&ꢋ  
3&ꢌ  
/4)3ꢊꢋꢋ  
3'ꢊꢃ  
3'ꢊꢁ  
3'ꢊꢀ  
3'ꢊꢅ  
3'ꢊꢊ  
3'ꢊꢋ  
3'ꢂ  
3&ꢊ  
3&ꢅ  
3&ꢀ  
3)ꢅ  
966$  
9''$  
3)ꢀ  
3$ꢋ  
3$ꢊ  
3'ꢍ  
3%ꢊꢃ  
3%ꢊꢁ  
3%ꢊꢀ  
3%ꢊꢅ  
3$ꢅ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢀꢌ9ꢅ  
DocID026284 Rev 4  
29/128  
40  
 
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Figure 5. UFBGA64 package pinout  
7RSꢆYLHZ  
3&ꢊꢁꢏ  
26&ꢀꢅB  
,1  
$
%
&
'
(
)
3&ꢊꢀ  
9%$7  
966  
9''  
3&ꢊ  
3&ꢅ  
3$ꢋ  
3%ꢂ  
3%ꢍ  
3%ꢄ  
3%ꢌ  
3&ꢋ  
3$ꢅ  
3$ꢀ  
3$ꢁ  
3%ꢁ  
3%ꢀ  
3'ꢅ  
3$ꢊꢃ  
3&ꢊꢊ  
3$ꢊꢋ  
966  
3$ꢊꢁ  
3&ꢊꢋ  
3$ꢂ  
3$ꢊꢀ  
3$ꢊꢅ  
3$ꢊꢊ  
3&ꢂ  
3&ꢊꢃꢏ  
26&ꢀꢅB  
287  
3)ꢊꢊꢏ  
%227ꢋ  
3)ꢋꢏ  
26&B  
,1  
3%ꢃ  
966  
9''  
3$ꢃ  
3$ꢌ  
3$ꢄ  
3&ꢊꢅ  
966  
3)ꢊꢏ  
26&B  
287  
3$ꢍ  
1567  
966$  
3&ꢀ  
9'' 9'',2ꢅ  
3&ꢄ  
3&ꢍ  
3%ꢋ  
3%ꢊ  
3&ꢁ  
3&ꢌ  
3%ꢅ  
3&ꢃ  
3%ꢊꢃ  
3%ꢊꢋ  
3%ꢊꢊ  
3%ꢊꢁ  
3%ꢊꢀ  
3%ꢊꢅ  
*
+
9''$  
3$ꢊ  
8)%*$ꢌꢁ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢃꢃꢌꢍ9ꢅ  
30/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Figure 6. LQFP64 package pinout  
7RSꢆYLHZ  
ꢁꢍ  
ꢁꢄ  
ꢁꢌ  
ꢁꢃ  
ꢁꢁ  
ꢁꢀ  
ꢁꢅ  
ꢁꢊ  
ꢁꢋ  
ꢀꢂ  
ꢀꢍ  
ꢀꢄ  
ꢀꢌ  
ꢀꢃ  
ꢀꢁ  
ꢀꢀ  
9%$7  
3&ꢊꢀ  
3&ꢊꢁꢏ26&ꢀꢅB,1  
3&ꢊꢃꢏ26&ꢀꢅB287  
9'',2ꢅ  
966  
3$ꢊꢀ  
3$ꢊꢅ  
3$ꢊꢊ  
3$ꢊꢋ  
3$ꢂ  
3$ꢍ  
3&ꢂ  
3&ꢍ  
3&ꢄ  
3)ꢋꢏ26&B,1  
3)ꢊꢏ26&B287  
1567  
3&ꢋ  
/4)3ꢌꢁ  
3&ꢊ  
3&ꢅ  
3&ꢀ  
966$  
9''$  
3$ꢋ  
3$ꢊ  
ꢊꢋ  
ꢊꢊ  
ꢊꢅ  
ꢊꢀ  
ꢊꢁ  
ꢊꢃ  
ꢊꢌ  
3&ꢌ  
3%ꢊꢃ  
3%ꢊꢁ  
3%ꢊꢀ  
3%ꢊꢅ  
3$ꢅ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢀꢄ9ꢅ  
DocID026284 Rev 4  
31/128  
40  
 
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Figure 7. WLCSP64 package pinout  
7RSꢆYLHZ  
$
%
&
'
(
)
9'',2ꢅ 3$ꢊꢃ  
3&ꢊꢋ  
3'ꢅ  
3%ꢌ  
3%ꢍ  
966  
9''  
3$ꢊꢅ  
3$ꢂ  
966  
3$ꢊꢋ  
3$ꢍ  
3$ꢊꢁ  
3$ꢊꢀ  
3$ꢊꢊ  
3&ꢂ  
3&ꢊꢅ  
3&ꢊꢊ  
3%ꢀ  
3$ꢄ  
3%ꢄ  
3%ꢃ  
3%ꢁ  
3$ꢅ  
3$ꢃ  
3$ꢌ  
3&ꢁ  
3%ꢂ  
3&ꢊꢀ  
9%$7  
3&ꢊꢃꢏ 3&ꢊꢁꢏ  
3)ꢊꢊꢏ  
%227ꢋ  
26&ꢀꢅB 26&ꢀꢅB  
287  
,1  
3)ꢋꢏ  
26&B  
,1  
3&ꢄ  
3&ꢅ  
3&ꢀ  
3$ꢊ  
9''  
3$ꢁ  
1567  
3)ꢊꢏ  
26&B  
287  
3&ꢌ  
3&ꢍ  
3&ꢋ  
3$ꢋ  
966  
3$ꢀ  
3%ꢊꢃ  
3%ꢊꢁ  
9''  
3%ꢊꢀ  
3%ꢊꢅ  
966  
3%ꢊ  
3&ꢃ  
3%ꢋ  
3%ꢅ  
3&ꢊ  
3%ꢊꢋ  
3%ꢊꢊ  
966$  
9''$  
*
+
:/&63ꢌꢁ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢌꢊ9ꢁ  
1. The above figure shows the package in top view, changing from bottom view in the previous document  
versions.  
Figure 8. LQFP48 package pinout  
7RSꢆYLHZ  
ꢀꢌ  
ꢀꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢅ  
ꢀꢊ  
ꢀꢋ  
ꢅꢂ  
ꢅꢍ  
ꢅꢄ  
ꢅꢌ  
ꢅꢃ  
9%$7  
3&ꢊꢀ  
9'',2ꢅ  
966  
3&ꢊꢁꢏ26&ꢀꢅB,1  
3&ꢊꢃꢏ26&ꢀꢅB287  
3)ꢋꢏ26&B,1  
3)ꢊꢏ26&B287  
1567  
3$ꢊꢀ  
3$ꢊꢅ  
3$ꢊꢊ  
3$ꢊꢋ  
3$ꢂ  
/4)3ꢁꢍ  
966$  
9''$  
3$ꢋ  
3$ꢊ  
3$ꢍ  
3%ꢊꢃ  
3%ꢊꢁ  
3%ꢊꢀ  
3%ꢊꢅ  
ꢊꢋ  
ꢊꢊ  
ꢊꢅ  
3$ꢅ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢀꢍ9ꢅ  
32/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Figure 9. UFQFPN48 package pinout  
7RSꢆYLHZ  
9%$7  
3&ꢊꢀ  
ꢀꢌ  
ꢀꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢅ  
ꢀꢊ  
ꢀꢋ  
ꢅꢂ  
ꢅꢍ  
ꢅꢄ  
ꢅꢌ  
ꢅꢃ  
9'',2ꢅ  
966  
3&ꢊꢁꢏ26&ꢀꢅB,1  
3&ꢊꢃꢏ26&ꢀꢅB287  
3)ꢋꢏ26&B,1  
3)ꢊꢏ26&B287  
1567  
3$ꢊꢀ  
3$ꢊꢅ  
3$ꢊꢊ  
3$ꢊꢋ  
3$ꢂ  
8)4)31ꢁꢍ  
966$  
3$ꢍ  
9''$  
3%ꢊꢃ  
3%ꢊꢁ  
3%ꢊꢀ  
3%ꢊꢅ  
3$ꢋ  
ꢊꢋ  
ꢊꢊ  
ꢊꢅ  
([SRVHGꢆSDG  
3$ꢊ  
3$ꢅ  
,ꢎ2ꢆVXSSOLHGꢆIURPꢆ9'',2ꢅ  
06Yꢀꢁꢂꢀꢂ9ꢅ  
Table 12. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
Supply pin  
Pin type  
I/O  
Input / output pin  
FT  
5 V-tolerant I/O  
FTf  
TTa  
TC  
5 V-tolerant I/O, FM+ capable  
3.3 V-tolerant I/O directly connected to ADC  
Standard 3.3 V I/O  
I/O structure  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset.  
Notes  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
DocID026284 Rev 4  
33/128  
40  
 
 
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Pin functions  
Table 13. STM32F091xB/xC pin definitions  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
B2  
A1  
B1  
C2  
1
2
3
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE2  
PE3  
PE4  
PE5  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
TSC_G7_IO1, TIM3_ETR  
TSC_G7_IO2, TIM3_CH1  
TSC_G7_IO3, TIM3_CH2  
TSC_G7_IO4, TIM3_CH3  
-
-
-
-
WKUP3,  
RTC_TAMP3  
D2  
E2  
5
6
-
-
-
-
PE6  
I/O  
S
FT  
-
TIM3_CH4  
B2  
1
B8  
1
VBAT  
-
Backup power supply  
WKUP2,  
RTC_TAMP1,  
RTC_TS,  
(1)  
(2)  
C1  
7
A2  
2
B7  
2
PC13  
I/O TC  
-
RTC_OUT  
PC14-  
OSC32_IN  
(PC14)  
(1)  
(2)  
D1  
E1  
8
9
A1  
B1  
3
4
C8  
C7  
3
4
I/O TC  
I/O TC  
-
-
OSC32_IN  
PC15-  
OSC32_OUT  
(PC15)  
(1)  
(2)  
OSC32_OUT  
F2 10  
G2 11  
-
-
-
-
-
-
-
-
PF9  
I/O  
I/O  
FT  
FT  
TIM15_CH1, USART6_TX  
TIM15_CH2, USART6_RX  
-
-
PF10  
PF0-OSC_IN  
(PF0)  
F1 12 C1  
G1 13 D1  
H2 14 E1  
5
6
7
D8  
E8  
D7  
5
6
7
I/O FTf  
I/O FTf  
I/O RST  
CRS_ SYNC, I2C1_SDA  
I2C1_SCL  
OSC_IN  
PF1-OSC_OUT  
(PF1)  
OSC_OUT  
Device reset input / internal reset output  
(active low)  
NRST  
PC0  
EVENTOUT,  
USART6_TX,  
USART7_TX  
H1 15 E3  
8
9
E7  
F8  
-
-
I/O TTa  
I/O TTa  
ADC_IN10  
ADC_IN11  
EVENTOUT,  
USART6_RX,  
USART7_RX  
J2  
J3  
16 E2  
PC1  
SPI2_MISO, I2S2_MCK,  
EVENTOUT, USART8_TX  
17 F2 10 D6  
-
-
PC2  
PC3  
I/O TTa  
I/O TTa  
ADC_IN12  
ADC_IN13  
SPI2_MOSI, I2S2_SD,  
EVENTOUT, USART8_RX  
K2 18 G1 11 E6  
34/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
EVENTOUT,  
USART7_TX,  
J1  
19  
-
-
-
-
PF2  
I/O  
FT  
WKUP8  
USART7_CK_RTS  
K1 20 F1 12 G8  
M1 21 H1 13 H8  
8
9
VSSA  
VDDA  
S
S
-
-
Analog ground  
Analog power supply  
EVENTOUT,  
L1 22  
-
-
-
-
PF3  
I/O  
FT  
USART7_RX,  
USART6_CK_RTS  
USART2_CTS,  
TIM2_CH1_ETR,  
TSC_G1_IO1,  
USART4_TX  
RTC_ TAMP2,  
WKUP1,  
ADC_IN0,  
L2 23 G2 14 F7 10  
PA0  
I/O TTa  
COMP1_INM6  
COMP1_OUT  
USART2_RTS,  
TIM2_CH2,  
TIM15_CH1N,  
TSC_G1_IO2,  
USART4_RX,  
EVENTOUT  
ADC_IN1,  
COMP1_INP  
M2 24 H2 15 F6 11  
PA1  
I/O TTa  
USART2_TX, TIM2_CH3,  
TIM15_CH1,  
ADC_IN2,  
WKUP4,  
COMP2_INM6  
K3 25 F3 16 E5 12  
PA2  
PA3  
I/O TTa  
I/O TTa  
TSC_G1_IO3  
COMP2_OUT  
USART2_RX,TIM2_CH4,  
TIM15_CH2,  
ADC_IN3,  
COMP2_INP  
L3 26 G3 17 H7 13  
TSC_G1_IO4  
D3 27 C2 18 G7  
H3 28 D2 19 G6  
-
-
VSS  
VDD  
S
S
-
-
Ground  
Digital power supply  
SPI1_NSS, I2S1_WS,  
TIM14_CH1,  
COMP1_INM4,  
COMP2_INM4,  
ADC_IN4,  
M3 29 H3 20 H6 14  
PA4  
PA5  
I/O TTa  
I/O TTa  
TSC_G2_IO1,  
USART2_CK,  
USART6_TX  
DAC_OUT1  
SPI1_SCK, I2S1_CK,  
CEC,  
TIM2_CH1_ETR,  
TSC_G2_IO2,  
USART6_RX  
COMP1_INM5,  
COMP2_INM5,  
ADC_IN5,  
K4 30 F4 21 F5 15  
DAC_OUT2  
DocID026284 Rev 4  
35/128  
40  
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
SPI1_MISO, I2S1_MCK,  
TIM3_CH1, TIM1_BKIN,  
TIM16_CH1,  
L4 31 G4 22 G5 16  
PA6  
PA7  
I/O TTa  
COMP1_OUT,  
TSC_G2_IO3,  
EVENTOUT,  
USART3_CTS  
ADC_IN6  
SPI1_MOSI, I2S1_SD,  
TIM3_CH2, TIM14_CH1,  
TIM1_CH1N, TIM17_CH1,  
COMP2_OUT,  
M4 32 H4 23 E4 17  
I/O TTa  
ADC_IN7  
TSC_G2_IO4,  
EVENTOUT  
K5 33 H5 24 H5  
L5 34 H6 25 F4  
-
-
PC4  
PC5  
I/O TTa  
I/O TTa  
EVENTOUT, USART3_TX  
ADC_IN14  
TSC_G3_IO1,  
USART3_RX  
ADC_IN15,  
WKUP5  
TIM3_CH3, TIM1_CH2N,  
TSC_G3_IO2,  
M5 35 F5 26 G4 18  
PB0  
PB1  
I/O TTa  
I/O TTa  
ADC_IN8  
ADC_IN9  
EVENTOUT,  
USART3_CK  
TIM3_CH4,  
USART3_RTS,  
TIM14_CH1, TIM1_CH3N,  
TSC_G3_IO3  
M6 36 G5 27 F3 19  
L6 37 G6 28 H4 20  
PB2  
PE7  
I/O  
I/O  
FT  
FT  
TSC_G3_IO4  
-
-
TIM1_ETR,  
USART5_CK_RTS  
M7 38  
-
-
-
-
TIM1_CH1N,  
USART4_TX  
L7 39  
M8 40  
L8 41  
M9 42  
L9 43  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE8  
PE9  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
-
-
-
-
-
TIM1_CH1, USART4_RX  
TIM1_CH2N,  
USART5_TX  
PE10  
PE11  
PE12  
TIM1_CH2, USART5_RX  
SPI1_NSS, I2S1_WS,  
TIM1_CH3N  
SPI1_SCK, I2S1_CK,  
TIM1_CH3  
M10 44  
-
-
-
-
PE13  
I/O  
FT  
-
36/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
SPI1_MISO, I2S1_MCK,  
TIM1_CH4  
M11 45  
M12 46  
-
-
-
-
-
-
-
-
PE14  
PE15  
I/O  
I/O  
FT  
FT  
-
-
SPI1_MOSI, I2S1_SD,  
TIM1_BKIN  
SPI2_SCK, I2S2_CK,  
I2C2_SCL,  
USART3_TX, CEC,  
TSC_SYNC, TIM2_CH3  
L10 47 G7 29 G3 21  
PB10  
PB11  
I/O FTf  
I/O FTf  
-
-
USART3_RX, TIM2_CH4,  
EVENTOUT,  
L11 48 H7 30 H3 22  
TSC_G6_IO1,  
I2C2_SDA  
F12 49 D5 31 H2 23  
G12 50 E5 32 H1 24  
VSS  
VDD  
S
S
-
-
Ground  
Digital power supply  
TIM1_BKIN, TIM15_BKIN,  
SPI2_NSS, I2S2_WS,  
USART3_CK,  
L12 51 H8 33 G2 25  
PB12  
PB13  
I/O  
FT  
-
-
-
TSC_G6_IO2,  
EVENTOUT  
SPI2_SCK, I2S2_CK,  
I2C2_SCL,  
K12 52 G8 34 F2 26  
I/O FTf  
USART3_CTS,  
TIM1_CH1N,  
TSC_G6_IO3  
SPI2_MISO, I2S2_MCK,  
I2C2_SDA,  
USART3_RTS,  
TIM1_CH2N, TIM15_CH1,  
TSC_G6_IO4  
K11 53 F8 35 G1 27  
PB14  
PB15  
I/O FTf  
SPI2_MOSI, I2S2_SD,  
TIM1_CH3N,  
WKUP7,  
RTC_REFIN  
K10 54 F7 36 F1 28  
I/O  
FT  
TIM15_CH1N,  
TIM15_CH2  
K9 55  
K8 56  
J12 57  
J11 58  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD8  
PD9  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
-
-
-
-
PD10  
PD11  
DocID026284 Rev 4  
37/128  
40  
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
USART3_RTS,  
TSC_G8_IO1,  
J10 59  
-
-
-
-
PD12  
I/O  
FT  
-
USART8_CK_RTS  
TSC_G8_IO2,  
USART8_TX  
H12 60  
H11 61  
-
-
-
-
-
-
-
-
PD13  
PD14  
I/O  
I/O  
FT  
FT  
-
-
TSC_G8_IO3,  
USART8_RX  
TSC_G8_IO4,  
CRS_SYNC,  
H10 62  
-
-
-
-
PD15  
I/O  
FT  
-
USART7_CK_RTS  
(3)  
(3)  
(3)  
(3)  
E12 63 F6 37 E1  
E11 64 E7 38 D1  
E10 65 E8 39 E2  
D12 66 D8 40 E3  
-
-
-
-
PC6  
PC7  
PC8  
PC9  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
TIM3_CH1, USART7_TX  
TIM3_CH2, USART7_RX  
TIM3_CH3, USART8_TX  
TIM3_CH4, USART8_RX  
-
-
-
-
USART1_CK, TIM1_CH1,  
EVENTOUT, MCO,  
CRS_SYNC  
(3)  
(3)  
(3)  
D11 67 D7 41 D2 29  
D10 68 C7 42 C1 30  
C12 69 C6 43 C2 31  
PA8  
PA9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
USART1_TX, TIM1_CH2,  
TIM15_BKIN, MCO,  
TSC_G4_IO1, I2C1_SCL  
USART1_RX, TIM1_CH3,  
TIM17_BKIN,  
PA10  
TSC_G4_IO2, I2C1_SDA  
CAN_RX, USART1_CTS,  
TIM1_CH4,COMP1_OUT,  
TSC_G4_IO3,  
(3)  
(3)  
B12 70 C8 44 D3 32  
PA11  
I/O  
FT  
-
-
EVENTOUT, I2C2_SCL  
CAN_TX, USART1_RTS,  
TIM1_ETR,COMP2_OUT,  
TSC_G4_IO4,  
A12 71 B8 45 B1 33  
A11 72 A8 46 C3 34  
PA12  
PA13  
I/O  
I/O  
FT  
FT  
EVENTOUT, I2C2_SDA  
(3)  
(4)  
IR_OUT, SWDIO  
-
-
(3)  
C11 73  
-
-
-
-
PF6  
VSS  
I/O  
S
FT  
-
F11 74 D6 47 B2 35  
G11 75 E6 48 A1 36  
-
-
Ground  
VDDIO2  
S
Digital power supply  
38/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Pinouts and pin descriptions  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
(3)  
(4)  
A10 76 A7 49 B3 37  
PA14  
PA15  
I/O  
I/O  
FT  
FT  
USART2_TX, SWCLK  
-
-
SPI1_NSS, I2S1_WS,  
USART2_RX,  
USART4_RTS,  
TIM2_CH1_ETR,  
EVENTOUT  
(3)  
A9 77 A6 50 A2 38  
USART3_TX,  
USART4_TX  
(3)  
(3)  
B11 78 B7 51 A3  
C10 79 B6 52 C4  
-
-
PC10  
PC11  
I/O  
I/O  
FT  
FT  
-
-
USART3_RX,  
USART4_RX  
USART3_CK,  
USART4_CK,  
USART5_TX  
(3)  
B10 80 C5 53 B4  
-
PC12  
I/O  
FT  
-
SPI2_NSS, I2S2_WS,  
CAN_RX  
(3)  
(3)  
(3)  
C9 81  
B9 82  
-
-
-
-
-
-
-
-
-
-
-
PD0  
PD1  
PD2  
PD3  
PD4  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
-
-
-
-
-
SPI2_SCK, I2S2_CK  
CAN_TX  
USART3_RTS,  
TIM3_ETR, USART5_RX  
C8 83 B5 54 A4  
SPI2_MISO, I2S2_MCK,  
USART2_CTS  
B8 84  
B7 85  
-
-
-
-
-
-
SPI2_MOSI, I2S2_SD,  
USART2_RTS  
A6 86  
B6 87  
A5 88  
-
-
-
-
-
-
-
-
-
-
-
-
PD5  
PD6  
PD7  
I/O  
I/O  
I/O  
FT  
FT  
FT  
USART2_TX  
USART2_RX  
USART2_CK  
-
-
-
SPI1_SCK, I2S1_CK,  
TIM2_CH2, TSC_G5_IO1,  
EVENTOUT, USART5_TX  
A8 89 A5 55 D4 39  
PB3  
PB4  
I/O  
I/O  
FT  
FT  
-
-
SPI1_MISO, I2S1_MCK,  
TIM17_BKIN, TIM3_CH1,  
TSC_G5_IO2,  
A7 90 A4 56 D5 40  
EVENTOUT, USART5_RX  
DocID026284 Rev 4  
39/128  
40  
Pinouts and pin descriptions  
STM32F091xB STM32F091xC  
Pin functions  
Table 13. STM32F091xB/xC pin definitions (continued)  
Pin numbers  
Pin name  
(function upon  
reset)  
Additional  
functions  
Alternate functions  
SPI1_MOSI, I2S1_SD,  
I2C1_SMBA,  
C5 91 C4 57 C5 41  
PB5  
I/O  
FT  
TIM16_BKIN,  
WKUP6  
TIM3_CH2,  
USART5_CK_RTS  
I2C1_SCL, USART1_TX,  
TIM16_CH1N,  
B5 92 D3 58 A5 42  
PB6  
PB7  
I/O FTf  
I/O FTf  
-
-
TSC_G5_I03  
I2C1_SDA, USART1_RX,  
USART4_CTS,  
B4 93 C3 59 B5 43  
TIM17_CH1N,  
TSC_G5_IO4  
Boot memory  
selection  
A4 94 B4 60 C6 44  
A3 95 B3 61 A6 45  
PF11-BOOT0  
PB8  
I/O  
FT  
-
I2C1_SCL, CEC,  
TIM16_CH1, TSC_SYNC,  
CAN_RX  
I/O FTf  
I/O FTf  
-
-
SPI2_NSS, I2S2_WS,  
I2C1_SDA, IR_OUT,  
TIM17_CH1, EVENTOUT,  
CAN_TX  
B3 96 A3 62 B6 46  
PB9  
C3 97  
A2 98  
-
-
-
-
-
-
-
-
PE0  
PE1  
VSS  
VDD  
I/O  
I/O  
S
FT  
FT  
-
EVENTOUT, TIM16_CH1  
EVENTOUT, TIM17_CH1  
Ground  
-
-
D3 99 D4 63 A7 47  
C4 100 E4 64 A8 48  
S
-
Digital power supply  
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content  
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC  
domain and RTC register descriptions in the reference manual.  
3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os  
are supplied by VDDIO2  
4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin  
and the internal pull-down on the SWCLK pin are activated.  
40/128  
DocID026284 Rev 4  
Table 14. Alternate functions selected through GPIOA_AFR registers for port A  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
PA0  
PA1  
-
USART2_CTS TIM2_CH1_ETR TSC_G1_IO1  
USART4_TX  
-
-
-
-
-
-
-
COMP1_OUT  
EVENTOUT  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
CEC  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
-
TSC_G1_IO2 USART4_RX TIM15_CH1N  
-
PA2  
TIM15_CH1  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
-
-
COMP2_OUT  
PA3  
TIM15_CH2  
-
-
-
-
-
PA4  
SPI1_NSS, I2S1_WS  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
MCO  
TIM14_CH1  
-
USART6_TX  
USART6_RX  
PA5  
TIM2_CH1_ETR TSC_G2_IO2  
PA6  
TIM3_CH1  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
TSC_G2_IO3 USART3_CTS TIM16_CH1  
EVENTOUT COMP1_OUT  
EVENTOUT COMP2_OUT  
PA7  
TIM3_CH2  
TSC_G2_IO4  
EVENTOUT  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
-
TIM14_CH1  
CRS_SYNC  
I2C1_SCL  
I2C1_SDA  
CAN_RX  
CAN_TX  
-
TIM17_CH1  
PA8  
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
IR_OUT  
-
-
-
-
-
-
-
-
-
-
PA9  
TIM15_BKIN  
MCO  
-
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM17_BKIN  
-
-
EVENTOUT  
I2C2_SCL  
COMP1_OUT  
EVENTOUT  
I2C2_SDA  
COMP2_OUT  
SWDIO  
-
-
-
-
-
-
SWCLK  
USART2_TX  
USART2_RX  
-
-
-
SPI1_NSS, I2S1_WS  
TIM2_CH1_ETR EVENTOUT USART4_RTS  
 
Table 15. Alternate functions selected through GPIOB_AFR registers for port B  
Pin name  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
PB0  
PB1  
EVENTOUT  
TIM14_CH1  
TIM3_CH3  
TIM3_CH4  
-
TIM1_CH2N  
TIM1_CH3N  
-
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
I2C1_SMBA  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_SYNC  
USART3_CK  
USART3_RTS  
-
-
-
PB2  
-
-
PB3  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
USART1_TX  
EVENTOUT  
TIM3_CH1  
TIM3_CH2  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
EVENTOUT  
-
TIM2_CH2  
EVENTOUT  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
TIM2_CH4  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
USART5_TX  
USART5_RX  
USART5_CK_RTS  
-
-
PB4  
TIM17_BKIN  
PB5  
-
PB6  
-
PB7  
USART1_RX  
USART4_CTS  
CAN_RX  
-
PB8  
CEC  
-
PB9  
IR_OUT  
EVENTOUT  
TSC_SYNC  
CAN_TX  
SPI2_NSS, I2S2_WS  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
CEC  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
-
SPI2_SCK, I2S2_CK  
EVENTOUT  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TIM15_CH1N  
-
SPI2_NSS, I2S2_WS  
SPI2_SCK, I2S2_CK  
SPI2_MISO, I2S2_MCK  
SPI2_MOSI, I2S2_SD  
TIM15_BKIN  
I2C2_SCL  
I2C2_SDA  
-
TIM15_CH1  
TIM15_CH2  
 
STM32F091xB STM32F091xC  
Table 16. Alternate functions selected through GPIOC_AFR registers for port C  
Pin name  
AF0  
AF1  
AF2  
PC0  
PC1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_G3_IO1  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
USART4_TX  
USART4_RX  
USART4_CK  
-
USART7_TX  
USART7_RX  
SPI2_MISO, I2S2_MCK  
SPI2_MOSI, I2S2_SD  
USART3_TX  
USART3_RX  
USART7_TX  
USART7_RX  
USART8_TX  
USART8_RX  
USART3_TX  
USART3_RX  
USART3_CK  
-
USART6_TX  
USART6_RX  
PC2  
USART8_TX  
PC3  
USART8_RX  
PC4  
-
PC5  
-
PC6  
-
PC7  
-
PC8  
-
PC9  
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
USART5_TX  
-
-
-
-
-
-
-
Table 17. Alternate functions selected through GPIOD_AFR registers for port D  
Pin name  
AF0  
AF1  
AF2  
PD0  
PD1  
CAN_RX  
CAN_TX  
SPI2_NSS, I2S2_WS  
-
SPI2_SCK, I2S2_CK  
-
PD2  
TIM3_ETR  
USART3_RTS  
USART5_RX  
PD3  
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
USART8_TX  
USART8_RX  
CRS_SYNC  
SPI2_MISO, I2S2_MCK  
-
PD4  
SPI2_MOSI, I2S2_SD  
-
PD5  
-
-
PD6  
-
-
PD7  
-
-
PD8  
-
-
PD9  
-
-
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
-
-
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
USART8_CK_RTS  
-
-
USART7_CK_RTS  
DocID026284 Rev 4  
43/128  
44  
 
 
STM32F091xB STM32F091xC  
Table 18. Alternate functions selected through GPIOE_AFR registers for port E  
Pin name  
AF0  
AF1  
PE0  
PE1  
TIM16_CH1  
TIM17_CH1  
TIM3_ETR  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
EVENTOUT  
EVENTOUT  
PE2  
TSC_G7_IO1  
PE3  
TSC_G7_IO2  
PE4  
TSC_G7_IO3  
PE5  
TSC_G7_IO4  
PE6  
-
PE7  
USART5_CK_RTS  
USART4_TX  
PE8  
PE9  
USART4_RX  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
USART5_TX  
USART5_RX  
SPI1_NSS, I2S1_WS  
SPI1_SCK, I2S1_CK  
SPI1_MISO, I2S1_MCK  
SPI1_MOSI, I2S1_SD  
Table 19. Alternate functions selected through GPIOF_AFR registers for port F  
Pin  
AF0  
AF1  
AF2  
name  
PF0  
PF1  
PF2  
PF3  
PF6  
PF9  
PF10  
CRS_SYNC  
-
I2C1_SDA  
I2C1_SCL  
USART7_TX  
USART7_RX  
-
-
-
EVENTOUT  
EVENTOUT  
-
USART7_CK_RTS  
USART6_CK_RTS  
-
-
-
TIM15_CH1  
TIM15_CH2  
USART6_TX  
USART6_RX  
44/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Memory mapping  
5
Memory mapping  
To the difference of STM32F091xC memory map in Figure 10, the two bottom code memory  
spaces of STM32F091xB end at 0x0001 FFFF and 0x0801 FFFF, respectively.  
Figure 10. STM32F091xC memory map  
ꢋ[))))ꢆ))))  
ꢋ[ꢁꢍꢋꢋꢆꢊꢄ))  
ꢋ[ꢁꢍꢋꢋꢆꢋꢋꢋꢋ  
5HVHUYHG  
$+%ꢅ  
ꢋ[(ꢋꢊꢋꢆꢋꢋꢋꢋ  
&RUWH[ꢏ0ꢋꢆLQWHUQDOꢆ  
SHULSKHUDOV  
ꢋ[(ꢋꢋꢋꢆꢋꢋꢋꢋ  
5HVHUYHG  
5HVHUYHG  
ꢋ[&ꢋꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢁꢋꢋꢅꢆꢁꢀ))  
ꢋ[ꢁꢋꢋꢅꢆꢋꢋꢋꢋ  
$+%ꢊ  
5HVHUYHG  
5HVHUYHG  
ꢋ[$ꢋꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢁꢋꢋꢊꢆꢍꢋꢋꢋ  
ꢋ[ꢁꢋꢋꢊꢆꢋꢋꢋꢋ  
$3%  
5HVHUYHG  
ꢋ[ꢊ)))ꢆ))))  
ꢋ[ꢊ)))ꢆ)&ꢋꢋ  
5HVHUYHG  
2SWLRQꢆ%\WHV  
ꢋ[ꢊ)))ꢆ)ꢍꢋꢋ  
ꢋ[ꢍꢋꢋꢋꢆꢋꢋꢋꢋ  
5HVHUYHG  
$3%  
6\VWHPꢆPHPRU\  
ꢋ[ꢁꢋꢋꢋꢆꢍꢋꢋꢋ  
ꢋ[ꢁꢋꢋꢋꢆꢋꢋꢋꢋ  
5HVHUYHG  
5HVHUYHG  
ꢋ[ꢊ)))ꢆ'ꢍꢋꢋ  
ꢋ[ꢌꢋꢋꢋꢆꢋꢋꢋꢋ  
5HVHUYHG  
3HULSKHUDOV  
5HVHUYHG  
ꢋ[ꢁꢋꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢋꢍꢋꢁꢆꢋꢋꢋꢋ  
)ODVKꢆPHPRU\  
5HVHUYHG  
65$0  
&2'(  
ꢋ[ꢅꢋꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢋꢍꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢋꢋꢋꢁꢆꢋꢋꢋꢋ  
)ODVKꢉꢆV\VWHPꢆ  
PHPRU\ꢆRUꢆ65$0ꢉꢆ  
GHSHQGLQJꢆRQꢆ%227ꢆ  
FRQILJXUDWLRQ  
ꢋ[ꢋꢋꢋꢋꢆꢋꢋꢋꢋ  
ꢋ[ꢋꢋꢋꢋꢆꢋꢋꢋꢋ  
06Yꢀꢁꢂꢃꢂ9ꢀ  
DocID026284 Rev 4  
45/128  
48  
 
 
 
 
Memory mapping  
STM32F091xB STM32F091xC  
Table 20. STM32F091xB/xC peripheral register boundary addresses  
Bus  
Boundary address  
Size  
Peripheral  
0x4800 1800 - 0x5FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
~384 MB  
1 KB  
Reserved  
GPIOF  
1 KB  
GPIOE  
1 KB  
GPIOD  
AHB2  
1 KB  
GPIOC  
1 KB  
GPIOB  
1 KB  
GPIOA  
~128 MB  
1 KB  
Reserved  
TSC  
3 KB  
Reserved  
CRC  
1 KB  
3 KB  
Reserved  
Flash memory interface  
Reserved  
RCC  
AHB1  
1 KB  
3 KB  
1 KB  
3 KB  
Reserved  
DMA  
1 KB  
32 KB  
Reserved  
46/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Memory mapping  
Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
Peripheral  
0x4001 5C00 - 0x4001 7FFF  
0x4001 5800 - 0x4001 5BFF  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 – 0x4001 1FFF  
0x4001 1800 – 0x4001 1BFF  
0x4001 1400 – 0x4001 17FF  
0x4001 0800 - 0x4001 13FF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 8000 - 0x4000 FFFF  
9 KB  
1 KB  
3 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
3 KB  
1 KB  
1 KB  
32 KB  
Reserved  
DBGMCU  
Reserved  
TIM17  
TIM16  
TIM15  
Reserved  
USART1  
Reserved  
SPI1/I2S1  
TIM1  
APB  
Reserved  
ADC  
Reserved  
USART8  
USART7  
USART6  
Reserved  
EXTI  
SYSCFG + COMP  
Reserved  
DocID026284 Rev 4  
47/128  
48  
Memory mapping  
STM32F091xB STM32F091xC  
Table 20. STM32F091xB/xC peripheral register boundary addresses (continued)  
Bus  
Boundary address  
Size  
Peripheral  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6100 - 0x4000 63FF  
0x4000 6000 - 0x4000 60FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 3C00 - 0x4000 43FF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1800 - 0x4000 1FFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0800 - 0x4000 0FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
768 B  
256 B  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
Reserved  
CEC  
DAC  
PWR  
CRS  
Reserved  
BxCAN  
Reserved  
CAN RAM  
Reserved  
I2C2  
I2C1  
USART5  
USART4  
USART3  
USART2  
Reserved  
SPI2  
APB  
Reserved  
IWDG  
WWDG  
RTC  
Reserved  
TIM14  
Reserved  
TIM7  
TIM6  
Reserved  
TIM3  
TIM2  
48/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3.3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 11.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 12.  
Figure 11. Pin loading conditions  
Figure 12. Pin input voltage  
0&8ꢆSLQ  
0&8ꢆSLQ  
&ꢆ ꢆꢃꢋꢆS)  
9,1  
06ꢊꢂꢅꢊꢋ9ꢊ  
06ꢊꢂꢅꢊꢊ9ꢊ  
DocID026284 Rev 4  
49/128  
99  
 
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
6.1.6  
Power supply scheme  
Figure 13. Power supply scheme  
9%$7  
%DFNXSꢆFLUFXLWU\  
ꢐ/6(ꢉꢆ57&ꢉ  
%DFNXSꢆUHJLVWHUVꢑ  
ꢊꢈꢌꢃꢆ±ꢆꢀꢈꢌꢆ9  
3RZHUꢆVZLWFK  
9''  
9&25(  
ꢀꢆ[ꢆ9''  
5HJXODWRU  
9'',2ꢊ  
287  
.HUQHOꢆORJLF  
,2  
ORJLF  
ꢀꢆ[ꢆꢊꢋꢋꢆQ)  
ꢓꢊꢆ[ꢆꢁꢈꢄꢆ—)  
ꢐ&38ꢉꢆ'LJLWDO  
*3,2V  
ꢀꢆ[ꢆ966  
ꢒꢆ0HPRULHVꢑ  
,1  
9'',2ꢅ  
9'',2ꢅ  
9'',2ꢅ  
287  
ꢊꢋꢋꢆQ)  
ꢓꢁꢈꢄꢆ—)ꢆ  
,2  
ORJLF  
*3,2V  
966  
,1  
9''$  
9''$  
$QDORJꢇ  
ꢐ5&Vꢉꢆ3//ꢉꢆ«ꢑ  
ꢊꢋꢆQ)  
ꢓꢊꢆ—)  
$'&ꢎ  
'$&  
95()ꢓ  
95()ꢏ  
966$  
06Yꢀꢅꢊꢂꢋ9ꢊ  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
50/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
6.1.7  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
,
''B9%$7  
9
%$7  
,
,
''  
9
''  
9
'',2ꢅ  
''$  
9
''$  
06ꢀꢊꢂꢂꢂ9ꢅ  
DocID026284 Rev 4  
51/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 21: Voltage characteristics,  
Table 22: Current characteristics and Table 23: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 21. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
V
DD–VSS External main supply voltage  
- 0.3  
- 0.3  
4.0  
V
V
VDDIO2–VSS External I/O supply voltage  
VDDA–VSS External analog supply voltage  
4.0  
- 0.3  
4.0  
V
VDD–VDDA Allowed voltage difference for VDD > VDDA  
-
0.4  
V
VBAT–VSS External backup supply voltage  
- 0.3  
4.0  
V
Input voltage on FT and FTf pins  
VSS - 0.3  
VSS - 0.3  
VSS - 0.3  
-
VDDIOx + 4.0 (3)  
V
(2)  
VIN  
Input voltage on TTa pins  
4.0  
4.0  
50  
V
Input voltage on any other pin  
V
|VDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|VSSx - VSS  
|
-
50  
mV  
-
Electrostatic discharge voltage  
(human body model)  
see Section 6.3.12: Electrical  
sensitivity characteristics  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to for the maximum allowed injected current values.  
3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is  
enabled, the maximum limit is 4 V.  
52/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Symbol  
Electrical characteristics  
Table 22. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
ΣIVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
120  
-120  
100  
-100  
25  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
Output current source by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os supplied by VDDIO2  
Injected current on FT and FTf pins  
-25  
80  
ΣIIO(PIN)  
-80  
mA  
-40  
-5/+0(4)  
(3)  
IINJ(PIN)  
Injected current on TC and RST pin  
± 5  
Injected current on TTa pins(5)  
± 5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 21: Voltage characteristics for the maximum allowed input voltage values.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the  
device. See note (2) below Table 59: ADC accuracy.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 23. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
DocID026284 Rev 4  
53/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 24. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK  
VDD  
Internal AHB clock frequency  
Internal APB clock frequency  
Standard operating voltage  
-
-
-
0
0
48  
48  
MHz  
2.0  
3.6  
V
V
Must not be supplied if VDD  
is not present  
VDDIO2  
I/O supply voltage  
1.65  
VDD  
2.4  
3.6  
3.6  
3.6  
Analog operating voltage  
(ADC and DAC not used)  
Must have a potential equal  
to or higher than VDD  
VDDA  
V
Analog operating voltage  
(ADC and DAC used)  
VBAT  
Backup operating voltage  
-
TC and RST I/O  
TTa I/O  
1.65  
-0.3  
-0.3  
-0.3  
-
3.6  
V
V
VDDIOx+0.3  
VIN  
I/O input voltage  
V
DDA+0.3(1)  
5.5(1)  
364  
FT and FTf I/O  
UFBGA100  
LQFP100  
-
476  
LQFP64  
-
455  
Power dissipation at TA = 85 °C  
PD  
for suffix 6 or TA = 105 °C for WLCSP64  
-
377  
mW  
suffix 7(2)  
UFBGA64  
-
308  
LQFP48  
-
370  
UFQFPN48  
-
625  
Maximum power dissipation  
–40  
–40  
–40  
–40  
–40  
–40  
85  
Ambient temperature for the  
suffix 6 version  
°C  
°C  
°C  
Low power dissipation(3)  
Maximum power dissipation  
Low power dissipation(3)  
Suffix 6 version  
105  
TA  
TJ  
105  
Ambient temperature for the  
suffix 7 version  
125  
105  
Junction temperature range  
Suffix 7 version  
125  
1. For operation with a voltage higher than VDDIOx + 0.3 V, the internal pull-up resistor must be disabled.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. See Section 7.8: Thermal characteristics  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:  
Thermal characteristics).  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 25 are derived from tests performed under the ambient  
temperature condition summarized in Table 24.  
54/128  
DocID026284 Rev 4  
 
 
 
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Table 25. Operating conditions at power-up / power-down  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
-
20  
0
µs/V  
tVDDA  
-
20  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 26 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 26. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Falling edge(2)  
1.96(3)  
2.00  
-
1.80  
1.84(3)  
-
1.88  
1.92  
40  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
Rising edge  
VPDRhyst  
PDR hysteresis  
-
-
mV  
ms  
(4)  
tRSTTEMPO  
Reset temporization  
1.50  
2.50  
4.50  
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector  
monitors only VDD  
.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
3. Data based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
Table 27. Programmable voltage detector characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.1  
2
2.18  
2.08  
2.28  
2.18  
2.38  
2.28  
2.48  
2.38  
2.58  
2.48  
2.68  
2.58  
2.26  
2.16  
2.37  
2.27  
2.48  
2.38  
2.58  
2.48  
2.69  
2.59  
2.79  
2.69  
V
V
V
V
V
V
V
V
V
V
V
V
VPVD0  
PVD threshold 0  
2.19  
2.09  
2.28  
2.18  
2.38  
2.28  
2.47  
2.37  
2.57  
2.47  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
DocID026284 Rev 4  
55/128  
99  
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 27. Programmable voltage detector characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
-
2.66  
2.56  
2.76  
2.66  
-
2.78  
2.68  
2.88  
2.78  
100  
2.9  
2.8  
3
V
V
VPVD6  
PVD threshold 6  
V
VPVD7  
PVD threshold 7  
2.9  
V
(1)  
VPVDhyst  
IDD(PVD)  
PVD hysteresis  
-
mV  
µA  
PVD current consumption  
-
-
0.15 0.26(1)  
1. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 28 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 28. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Internal reference voltage –40 °C < TA < +105 °C  
1.2  
1.23 1.25  
V
V
REFINT  
ADC_IN17 buffer startup  
time  
tSTART  
-
-
-
-
10(1)  
µs  
µs  
ADC sampling time when  
reading the internal  
reference voltage  
4(1)  
tS_vrefint  
-
-
Internal reference voltage  
spread over the  
temperature range  
10(1)  
VREFINT  
VDDA = 3 V  
-
-
-
mV  
- 100(1)  
100(1)  
TCoeff  
Temperature coefficient  
-
ppm/°C  
1. Guaranteed by design, not tested in production.  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
56/128  
DocID026284 Rev 4  
 
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled f  
PCLK  
HCLK  
The parameters given in Table 29 to Table 32 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 24: General  
operating conditions.  
DocID026284 Rev 4  
57/128  
99  
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 29. Typical and maximum current consumption from V supply at V = 3.6 V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Max @ TA  
Max @ TA  
Conditions  
fHCLK  
Unit  
Typ  
Typ  
25 °C  
85 °C 105 °C  
25 °C 85 °C 105 °C  
HSI48  
48 MHz 26.9  
48 MHz 26.7  
32 MHz 18.0  
24 MHz 14.0  
29.5  
29.2  
20.4  
15.7  
5.3  
30.3  
30.1  
20.8  
16.1  
5.5  
30.6  
30.3  
21.0  
16.2  
5.9  
14.7 16.1  
14.6 16.0  
10.1 10.8  
16.3  
16.2  
10.9  
9.2  
16.4  
16.2  
11.0  
9.4  
HSEbypass,  
PLL on  
8.5  
3.0  
1.0  
9.0  
3.2  
1.1  
8 MHz  
1 MHz  
4.8  
1.3  
3.3  
3.5  
HSEbypass,  
PLL off  
1.5  
1.6  
1.9  
1.2  
1.4  
48 MHz 26.8  
32 MHz 18.1  
24 MHz 14.1  
29.4  
20.5  
15.9  
30.2  
20.9  
16.2  
30.5  
21.2  
16.4  
14.7 16.1  
10.2 10.9  
16.3  
11.0  
9.2  
16.3  
11.1  
9.5  
HSI clock,  
PLL on  
8.6  
3.1  
9.1  
3.2  
HSI clock,  
PLL off  
8 MHz  
4.9  
5.4  
5.6  
5.9  
3.4  
3.5  
mA  
HSI48  
48 MHz 26.3  
48 MHz 26.0  
32 MHz 17.4  
24 MHz 13.3  
28.7  
28.4  
19.5  
15.1  
4.9  
29.5  
29.2  
19.9  
15.5  
5.1  
29.7  
29.4  
20.1  
15.6  
5.3  
14.0 15.3  
13.9 15.2  
15.5  
15.4  
10.4  
8.4  
15.7  
15.6  
10.5  
8.5  
HSEbypass,  
PLL on  
9.6  
7.6  
2.4  
0.5  
10.3  
8.2  
8 MHz  
1 MHz  
4.4  
0.9  
2.6  
0.6  
2.8  
2.9  
HSEbypass,  
PLL off  
IDD  
0.9  
1.0  
1.2  
0.7  
0.8  
48 MHz 26.1  
32 MHz 17.5  
24 MHz 13.3  
28.5  
19.6  
15.3  
29.3  
20.0  
15.7  
29.5  
20.3  
15.8  
13.9 15.3  
15.5  
10.5  
8.5  
15.6  
10.6  
8.6  
HSI clock,  
PLL on  
9.7  
7.7  
10.4  
8.2  
HSI clock,  
PLL off  
8 MHz  
4.6  
5.0  
5.2  
5.4  
2.5  
2.7  
2.9  
3.0  
HSI48  
48 MHz 17.0  
48 MHz 16.9  
32 MHz 11.3  
18.7  
18.5  
12.6  
9.8  
19.1  
19.0  
12.8  
10.0  
3.4  
19.4  
19.3  
13.1  
10.1  
3.7  
3.2  
3.1  
2.2  
1.7  
0.8  
0.3  
3.1  
2.3  
1.8  
3.5  
3.5  
2.4  
1.9  
0.9  
0.4  
3.5  
2.5  
2.0  
3.6  
3.5  
2.5  
2.0  
0.9  
0.4  
3.6  
2.6  
2.1  
3.7  
3.6  
2.6  
2.0  
1.0  
0.5  
3.7  
2.7  
2.2  
HSEbypass,  
PLL on  
24 MHz  
8 MHz  
1 MHz  
8.6  
2.9  
0.4  
3.2  
HSEbypass,  
PLL off  
mA  
0.6  
0.6  
0.7  
48 MHz 17.0  
32 MHz 11.4  
18.6  
12.7  
9.9  
19.0  
13.0  
10.1  
19.4  
13.2  
10.2  
HSI clock,  
PLL on  
24 MHz  
8 MHz  
8.7  
3.0  
HSI clock,  
PLL off  
3.3  
3.5  
3.8  
0.8  
0.9  
1.0  
1.1  
58/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
1. Data based on characterization results, not tested in production unless otherwise specified.  
Table 30. Typical and maximum current consumption from the V  
supply  
= 3.6 V  
DDA  
DDA  
V
= 2.4 V  
V
DDA  
(2)  
(2)  
Conditions  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
Symbol  
fHCLK  
Unit  
(1)  
Typ  
Typ  
HSI48  
48 MHz 312  
48 MHz 147  
32 MHz 101  
24 MHz 80  
333  
168  
119  
96  
338  
178  
125  
98  
347  
181  
127  
100  
3.9  
316  
160  
109  
87  
334  
181  
127  
101  
4.3  
341  
192  
135  
106  
4.6  
350  
197  
138  
109  
4.7  
HSE  
bypass,  
PLL on  
Supply  
current in  
Run or  
Sleep  
HSE  
bypass,  
PLL off  
8 MHz  
1 MHz  
2.8  
2.7  
3.5  
3.7  
3.7  
mode,  
IDDA  
code  
µA  
3.2  
3.5  
3.8  
3.3  
3.9  
4.4  
4.7  
executing  
from  
Flash  
memory  
or RAM  
48 MHz 214  
32 MHz 166  
24 MHz 144  
243  
193  
171  
254  
203  
177  
259  
204  
178  
235  
185  
161  
262  
207  
180  
275  
216  
187  
281  
220  
190  
HSI clock,  
PLL on  
HSI clock,  
PLL off  
8 MHz  
65  
83  
85  
86  
77  
90  
92  
93  
1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being  
in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, IDDA is independent from  
the frequency.  
2. Data based on characterization results, not tested in production unless otherwise specified.  
DocID026284 Rev 4  
59/128  
99  
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 31. Typical and maximum consumption in Stop and Standby modes  
Typ @VDD (VDD = VDDA  
)
Max(1)  
Sym-  
bol  
Para-  
meter  
Conditions  
Unit  
TA =  
TA =  
TA =  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
25 °C 85 °C 105 °C  
Regulator in run  
mode, all  
oscillators OFF  
14.6 14.8 14.9 15.1 15.4 15.8  
18  
11  
51  
53  
97  
Supply  
current in  
Stop  
Regulator in low-  
power mode, all  
oscillators OFF  
mode  
3.3  
3.4  
3.6  
3.8  
4.1  
4.4  
106  
IDD  
LSI ON and IWDG  
ON  
Supply  
current in  
Standby  
mode  
0.9  
0.6  
1.0  
0.7  
1.1  
0.8  
1.2  
0.9  
1.3  
1.0  
1.4  
1.1  
2.3  
1.9  
2.7  
2.3  
3.6  
3.0  
LSI OFF and IWDG  
OFF  
Regulator in  
run mode, all  
oscillators  
OFF  
1.9  
1.9  
2.0  
2.0  
2.2  
2.2  
2.3  
2.3  
2.4  
2.4  
2.6  
2.6  
3.8  
3.8  
4.2  
4.2  
4.6  
4.6  
Supply  
current in  
Stop  
Regulator in  
low-power  
mode, all  
oscillators  
OFF  
mode  
µA  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
2.3  
1.8  
2.5  
1.9  
2.7  
2.0  
2.8  
2.2  
3.0  
2.3  
3.3  
2.5  
3.8  
3.6  
4.2  
3.9  
4.8  
4.2  
LSI OFF and  
IWDG OFF  
IDDA  
Regulator in  
run mode, all  
oscillators  
OFF  
1.2  
1.2  
1.2  
1.2  
1.3  
1.3  
1.3  
1.3  
1.4  
1.4  
1.4  
1.4  
-
-
-
-
-
-
Supply  
current in  
Stop  
Regulator in  
low-power  
mode, all  
oscillators  
OFF  
mode  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
1.6  
1.1  
1.7  
1.1  
1.8  
1.1  
1.9  
1.2  
2.0  
1.3  
2.1  
1.3  
-
-
-
-
-
-
LSI OFF and  
IWDG OFF  
1. Data based on characterization results, not tested in production unless otherwise specified.  
60/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Table 32. Typical and maximum current consumption from the V  
supply  
Max(1)  
BAT  
Typ @ VBAT  
Symbol Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C 85 °C 105 °C  
LSE & RTC ON; “Xtal  
mode”: lower driving  
capability;  
0.5 0.5 0.6 0.7 0.9 1.0  
1.0  
1.4  
1.3  
1.7  
1.8  
2.2  
RTC  
domain  
supply  
current  
LSEDRV[1:0] = '00'  
IDD VBAT  
_
µA  
LSE & RTC ON; “Xtal  
mode” higher driving  
capability;  
0.8 0.8 0.9 1.0 1.2 1.3  
LSEDRV[1:0] = '11'  
1. Data based on characterization results, not tested in production.  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 3.3 V  
DDA  
DD  
All I/O pins are in analog input configuration  
The Flash memory access time is adjusted to f  
frequency:  
HCLK  
0 wait state and Prefetch OFF from 0 to 24 MHz  
1 wait state and Prefetch ON above 24 MHz  
= f  
When the peripherals are enabled, f  
PCLK  
HCLK  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and  
500 kHz respectively  
DocID026284 Rev 4  
61/128  
99  
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 33. Typical current consumption, code executing from Flash memory,  
running from HSE 8 MHz crystal  
Typical consumption in  
Run mode  
Typical consumption in  
Sleep mode  
Symbol Parameter  
fHCLK  
Unit  
Peripherals Peripherals Peripherals Peripherals  
enabled  
disabled  
enabled  
disabled  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
26.7  
20.4  
18.5  
14.6  
10.2  
5.1  
15.1  
11.8  
11.0  
8.7  
16.4  
12.7  
11.4  
9.0  
3.8  
3.3  
3.0  
2.3  
1.8  
1.2  
1.1  
1.1  
1.1  
1.0  
Current  
consumption  
from VDD  
supply  
6.1  
6.4  
IDD  
mA  
3.3  
3.2  
4 MHz  
3.3  
2.2  
2.3  
2 MHz  
2.2  
1.7  
1.7  
1 MHz  
1.6  
1.4  
1.4  
500 kHz  
48 MHz  
36 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.4  
1.2  
1.2  
172  
131  
119  
93  
Current  
consumption  
from VDDA  
supply  
67  
IDDA  
μA  
2.7  
2.7  
2.7  
2.7  
2.7  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 53: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
62/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 35: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C  
+ C  
+ C  
EXT S  
INT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID026284 Rev 4  
63/128  
99  
Electrical characteristics  
Symbol  
STM32F091xB STM32F091xC  
Table 34. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Parameter  
Conditions(1)  
Typ  
Unit  
)
4 MHz  
0.07  
8 MHz  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
0.15  
0.31  
0.53  
0.92  
0.18  
0.37  
0.76  
1.39  
2.188  
0.32  
0.64  
1.25  
2.23  
4.442  
0.49  
0.94  
2.38  
3.99  
0.64  
1.25  
3.24  
5.02  
0.81  
1.7  
VDDIOx = 3.3 V  
C =CINT  
8 MHz  
VDDIOx = 3.3 V  
CEXT = 0 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
8 MHz  
VDDIOx = 3.3 V  
CEXT = 10 pF  
16 MHz  
24 MHz  
48 MHz  
4 MHz  
C = CINT + CEXT+ CS  
I/O current  
consumption  
ISW  
mA  
VDDIOx = 3.3 V  
8 MHz  
CEXT = 22 pF  
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDDIOx = 3.3 V  
CEXT = 33 pF  
8 MHz  
16 MHz  
24 MHz  
4 MHz  
C = CINT + CEXT+ CS  
VDDIOx = 3.3 V  
CEXT = 47 pF  
8 MHz  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
3.67  
4 MHz  
8 MHz  
0.66  
1.43  
2.45  
4.97  
VDDIOx = 2.4 V  
CEXT = 47 pF  
C = CINT + CEXT+ CS  
C = Cint  
16 MHz  
24 MHz  
1. CS = 7 pF (estimated value).  
64/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 35. The MCU is placed  
under the following conditions:  
All I/O pins are in analog mode  
All peripherals are disabled unless otherwise mentioned  
The given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
Ambient operating temperature and supply voltage conditions summarized in Table 21:  
Voltage characteristics  
Table 35. Peripheral current consumption  
Peripheral  
BusMatrix(1)  
Typical consumption at 25 °C  
Unit  
3.1  
2.0  
5.5  
5.1  
15.4  
5.5  
5.4  
3.2  
3.1  
4.0  
2.5  
0.8  
5.5  
61.0  
CRC  
DMA1  
DMA2  
Flash memory interface  
GPIOA  
GPIOB  
AHB  
µA/MHz  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
SRAM  
TSC  
All AHB peripherals  
DocID026284 Rev 4  
65/128  
99  
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 35. Peripheral current consumption (continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
APB-Bridge(2)  
ADC(3)  
3.6  
4.3  
CAN  
12.4  
0.4  
CEC  
CRS  
0.0  
DAC(3)  
4.2  
DBG (MCU Debug Support)  
I2C1  
0.2  
2.9  
I2C2  
2.4  
PWR  
0.6  
SPI1  
8.8  
SPI2  
7.8  
SYSCFG and COMP  
TIM1  
1.9  
15.2  
2.6  
TIM14  
TIM15  
8.7  
APB  
µA/MHz  
TIM16  
5.8  
TIM17  
7.0  
TIM2  
16.2  
11.9  
11.8  
2.5  
TIM3  
TIM6  
TIM7  
USART1  
USART2  
USART3  
USART4  
USART5  
USART6  
USART7  
USART8  
WWDG  
All APB peripherals  
17.6  
16.3  
16.2  
4.7  
4.4  
5.5  
5.2  
5.1  
1.1  
207.2  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.  
3. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, comparators, is not  
included. Refer to the tables of characteristics in the subsequent sections.  
66/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Electrical characteristics  
6.3.6  
Wakeup time from low-power mode  
The wakeup times given in Table 36 are the latency between the event and the execution of  
the first user instruction. The device goes in low-power mode after the WFE (Wait For  
Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles  
must be added to the following timings due to the interrupt latency in the Cortex M0  
architecture.  
The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode.  
During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.  
The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode.  
The wakeup source from Standby mode is the WKUP1 pin (PA0).  
All timings are derived from tests performed under the ambient temperature and supply  
voltage conditions summarized in Table 24: General operating conditions.  
Table 36. Low-power mode wakeup timings  
Typ @VDD = VDDA  
Symbol  
Parameter  
Conditions  
Max Unit  
= 2.0 V = 2.4 V = 2.7 V = 3 V = 3.3 V  
Regulator in run  
mode  
3.2  
7.0  
3.1  
5.8  
2.9  
5.2  
2.9  
4.9  
52  
2.8  
4.6  
51  
5
Wakeup from Stop  
mode  
tWUSTOP  
Regulator in low  
power mode  
9
µs  
Wakeup from  
Standby mode  
tWUSTANDBY  
-
-
60.4  
55.6  
53.5  
-
Wakeup from Sleep  
mode  
tWUSLEEP  
4 SYSCLK cycles  
-
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 15: High-speed external clock  
source AC timing diagram.  
Table 37. High-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fHSE_ext User external clock source frequency  
VHSEH OSC_IN input pin high level voltage  
-
8
-
32  
MHz  
0.7 VDDIOx  
VSS  
VDDIOx  
V
VHSEL  
OSC_IN input pin low level voltage  
OSC_IN high or low time  
-
0.3 VDDIOx  
tw(HSEH)  
tw(HSEL)  
15  
-
-
-
-
ns  
tr(HSE)  
tf(HSE)  
OSC_IN rise or fall time  
20  
DocID026284 Rev 4  
67/128  
99  
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
1. Guaranteed by design, not tested in production.  
Figure 15. High-speed external clock source AC timing diagram  
W
Zꢐ+6(+ꢑ  
9
+6(+  
 
 
9
+6(/  
W
W
W
W
Uꢐ+6(ꢑ  
Iꢐ+6(ꢑ  
Zꢐ+6(/ꢑ  
7
+6(  
06ꢊꢂꢅꢊꢁ9ꢅ  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 16.  
Table 38. Low-speed external user clock characteristics  
Symbol  
Parameter(1)  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
450  
-
-
-
-
ns  
tr(LSE)  
OSC32_IN rise or fall time  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 16. Low-speed external clock source AC timing diagram  
W
Zꢐ/6(+ꢑ  
9
/6(+  
 
 
9
/6(/  
W
W
W
Uꢐ/6(ꢑ  
Iꢐ/6(ꢑ  
W
Zꢐ/6(/ꢑ  
7
/6(  
06ꢊꢂꢅꢊꢃ9ꢅ  
68/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 39. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 39. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
-
4
-
8
200  
-
32  
-
MHz  
RF  
Feedback resistor  
-
kΩ  
During startup(3)  
-
8.5  
VDD = 3.3 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
VDD = 3.3 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 3.3 V,  
IDD  
HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@32 MHz  
VDD = 3.3 V,  
Rm = 30 ,  
CL = 10 pF@32 MHz  
VDD = 3.3 V,  
Rm = 30 ,  
1.5  
CL = 20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 17). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
DocID026284 Rev 4  
69/128  
99  
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Figure 17. Typical application with an 8 MHz crystal  
5HVRQDWRUꢆZLWKꢆLQWHJUDWHGꢆ  
FDSDFLWRUV  
&
/ꢊ  
26&B,1  
I+6(  
%LDVꢆ  
FRQWUROOHGꢆ  
JDLQ  
ꢍꢆ0+]ꢆ  
UHVRQDWRU  
5)  
ꢐꢊꢑ  
26&B287  
5(;7  
&
/ꢅ  
06ꢊꢂꢍꢄꢌ9ꢊ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 40. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
low drive capability  
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
-
0.5  
0.9  
-
-
1
IDD  
LSE current consumption  
µA  
-
1.3  
-
-
1.6  
low drive capability  
5
8
15  
25  
-
-
-
-
-
-
-
medium-low drive capability  
medium-high drive capability  
high drive capability  
-
Oscillator  
transconductance  
gm  
µA/V  
s
-
-
(3)  
tSU(LSE)  
Startup time  
VDDIOx is stabilized  
2
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
70/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 18. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢆZLWKꢆLQWHJUDWHGꢆ  
FDSDFLWRUV  
&
/ꢊ  
26&ꢀꢅB,1  
I/6(  
'ULYHꢆ  
ꢀꢅꢈꢄꢌꢍꢆN+]ꢆ  
UHVRQDWRU  
SURJUDPPDEOHꢆ  
DPSOLILHU  
26&ꢀꢅB287  
&
/ꢅ  
06ꢀꢋꢅꢃꢀ9ꢅ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 41 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions. The provided curves are characterization results, not tested in production.  
DocID026284 Rev 4  
71/128  
99  
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
High-speed internal (HSI) RC oscillator  
(1)  
Table 41. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
-
8
-
-
-
-
-
-
-
-
-
-
MHz  
%
TRIM  
-
1(2)  
55(2)  
3.8(3)  
2.3(3)  
2(3)  
2(3)  
2(3)  
1
DuCy(HSI) Duty cycle  
-
45(2)  
-2.8(3)  
-1.9(3)  
-1.9(3)  
-1.3(3)  
-1(3)  
-1  
%
TA = -40 to 105°C  
TA = -10 to 85°C  
TA = 0 to 85°C  
TA = 0 to 70°C  
TA = 0 to 55°C  
TA = 25°C(4)  
-
Accuracy of the HSI  
oscillator  
ACCHSI  
%
tsu(HSI)  
HSI oscillator startup time  
1(2)  
2(2)  
µs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
-
80  
100(2)  
µA  
1. VDDA = 3.3 V, TA = -40 to 105°C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
4. Factory calibrated, parts not soldered.  
Figure 19. HSI oscillator accuracy characterization results for soldered parts  
ꢂꢈ  
."9  
.*/  
ꢉꢈ  
ꢄꢈ  
ꢇꢈ  
ꢃꢈ  
5ꢀꢀ<$>  
"ꢀꢀ  
ꢁꢂꢃ  
ꢁꢄꢃ  
ꢄꢃ  
ꢂꢃ  
ꢅꢃ  
ꢆꢃ  
ꢇꢃꢃ  
ꢇꢄꢃ  
ꢁꢇꢈ  
ꢁꢄꢈ  
ꢁꢉꢈ  
ꢁꢂꢈ  
06ꢀꢋꢂꢍꢃ9ꢁ  
72/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)  
(1)  
Table 42. HSI14 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI14  
TRIM  
Frequency  
-
-
-
-
-
14  
-
-
MHz  
%
HSI14 user-trimming step  
1(2)  
DuCy(HSI14) Duty cycle  
45(2)  
-
55(2)  
5.1(3)  
3.1(3)  
2.3(3)  
1
%
TA = –40 to 105 °C –4.2(3)  
TA = –10 to 85 °C –3.2(3)  
-
%
-
%
Accuracy of the HSI14  
oscillator (factory calibrated)  
ACCHSI14  
TA = 0 to 70 °C  
–2.5(3)  
-
%
TA = 25 °C  
-
–1  
-
%
tsu(HSI14) HSI14 oscillator startup time  
1(2)  
-
2(2)  
µs  
HSI14 oscillator power  
IDDA(HSI14)  
-
-
100 150(2)  
µA  
consumption  
1.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
Figure 20. HSI14 oscillator accuracy characterization results  
ꢃꢔ  
0$;  
0,1  
ꢁꢔ  
ꢀꢔ  
ꢅꢔ  
ꢊꢔ  
ꢋꢔ  
7ꢆꢆ>ƒ&@  
$
ꢏꢁꢋ  
ꢏꢅꢋ  
ꢅꢋ  
ꢁꢋ  
ꢌꢋ  
ꢍꢋ  
ꢊꢋꢋ  
ꢊꢅꢋ  
ꢊꢔ  
ꢅꢔ  
ꢀꢔ  
ꢏꢁꢔ  
ꢏꢃꢔ  
06ꢀꢋꢂꢍꢌ9ꢅ  
DocID026284 Rev 4  
73/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 43. HSI48 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI48 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
-
-
-
-
48  
-
MHz  
%
0.09(2)  
45(2)  
0.14  
0.2(2)  
55(2)  
4.7(3)  
3.7(3)  
3.4(3)  
2.9  
DuCy(HSI48) Duty cycle  
-
-
-
-
-
-
%
TA = –40 to 105 °C -4.9(3)  
%
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
-
-4.1(3)  
-3.8(3)  
-2.8  
-
%
Accuracy of the HSI48  
oscillator (factory calibrated)  
ACCHSI48  
%
%
tsu(HSI48) HSI48 oscillator startup time  
6(2)  
µs  
HSI48 oscillator power  
IDDA(HSI48)  
-
-
312  
350(2)  
µA  
consumption  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 21. HSI48 oscillator accuracy characterization results  
ꢃꢔ  
0$;  
0,1  
ꢁꢔ  
ꢀꢔ  
ꢅꢔ  
ꢊꢔ  
ꢋꢔ  
7ꢆꢆ>ƒ&@  
$
ꢏꢁꢋ  
ꢏꢅꢋ  
ꢅꢋ  
ꢁꢋ  
ꢌꢋ  
ꢍꢋ  
ꢊꢋꢋ  
ꢊꢅꢋ  
ꢊꢔ  
ꢅꢔ  
ꢀꢔ  
ꢏꢁꢔ  
ꢏꢃꢔ  
06ꢀꢁꢅꢋꢌ9ꢊ  
74/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 44. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
LSI oscillator power consumption  
(2)  
IDDA(LSI)  
-
0.75  
1.2  
µA  
1.  
VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.9  
PLL characteristics  
The parameters given in Table 45 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 45. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
8.0  
24(2)  
60(2)  
48  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
JitterPLL  
Cycle-to-cycle jitter  
-
ps  
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the  
range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
6.3.10  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 46. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = - 40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
µs  
ms  
ms  
mA  
mA  
tERASE Page (2 KB) erase time TA = - 40 to +105 °C  
-
-
-
-
tME  
Mass erase time  
TA = - 40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
1. Guaranteed by design, not tested in production.  
DocID026284 Rev 4  
75/128  
99  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F091xB STM32F091xC  
Table 47. Flash memory endurance and data retention  
Parameter  
Conditions  
Min(1)  
Unit  
NEND  
Endurance  
TA = –40 to +105 °C  
kcycle  
10  
30  
10  
20  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycle(2) at TA = 55 °C  
tRET  
Data retention  
Year  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 48. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 48. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 48 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
4B  
Fast transient voltage burst limits to be  
VDD = 3.3 V, LQFP100, TA = +25°C,  
VEFTB applied through 100 pF on VDD and VSS fHCLK = 48 MHz,  
pins to induce a functional disturbance  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
76/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (for example control registers)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 49. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/48 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
3
23  
15  
4
VDD = 3.6 V, TA = 25 °C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
DocID026284 Rev 4  
77/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Maximum  
Table 50. ESD absolute maximum ratings  
Conditions  
Symbol  
Ratings  
Packages Class  
Unit  
value(1)  
Electrostatic discharge voltage TA = +25 °C, conforming  
All  
VESD(HBM)  
2
2000  
V
(human body model)  
to JESD22-A114  
WLCSP64,  
LQFP100  
C3  
C4  
250  
500  
Electrostatic discharge voltage TA = +25 °C, conforming  
VESD(CDM)  
V
(charge device model)  
to ANSI/ESD STM5.3.1  
All others  
1. Data based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 51. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 52.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
78/128  
DocID026284 Rev 4  
 
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Table 52. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on BOOT0  
-0  
-0  
-0  
NA  
NA  
+5  
Injected current on PF1 pin (FTf pin)  
Injected current on PC0 pin (TTA pin)  
IINJ  
mA  
Injected current on PA4, PA5 pins with induced leakage  
current on adjacent pins less than -20 μA  
-5  
NA  
Injected current on other FT and FTf pins  
-5  
-5  
NA  
+5  
Injected current on all other TC, TTa and RST pins  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under the conditions summarized in Table 24: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 53. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
All I/Os  
-
-
0.3 VDDIOx+0.07(1)  
Low level input  
voltage  
VIL  
-
-
0.475 VDDIOx–0.2(1)  
V
-
-
0.3 VDDIOx  
TC and TTa I/O  
FT and FTf I/O  
All I/Os  
0.445 VDDIOx+0.398(1)  
-
-
-
-
-
-
High level input  
voltage  
VIH  
0.5 VDDIOx+0.2(1)  
-
V
0.7 VDDIOx  
-
TC and TTa I/O  
FT and FTf I/O  
-
-
200(1)  
100(1)  
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT and FTf I/O  
TTa in digital mode  
VSS VIN VDDIOx  
-
-
± 0.1  
TTa in digital mode  
VDDIOx VIN VDDA  
-
-
-
-
-
-
1
Input leakage  
current(2)  
Ilkg  
µA  
TTa in analog mode  
VSS VIN VDDA  
± 0.2  
10  
FT and FTf I/O  
VDDIOx VIN 5 V  
DocID026284 Rev 4  
79/128  
99  
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 53. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-up  
RPU  
equivalent resistor VIN = VSS  
25  
40  
55  
kΩ  
(3)  
Weak pull-down  
RPD  
CIO  
equivalent  
VIN = - VDDIOx  
25  
-
40  
5
55  
-
kΩ  
resistor(3)  
I/O pin capacitance  
-
pF  
1. Data based on design simulation only. Not tested in production.  
2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 52:  
I/O current injection susceptibility.  
3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 22 for standard I/Os, and in Figure 23 for  
5 V-tolerant I/Os. The following curves are design simulation results, not tested in  
production.  
80/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Electrical characteristics  
Figure 22. TC and TTa I/O input characteristics  
ꢅꢈꢃ  
7(67('ꢀ5$1*(  
77/ꢆVWDQGDUGꢆUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢊꢈꢃ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢆVWDQGDUGꢆUHTXLUHPHQW  
ꢋꢈꢃ  
7(67('ꢀ5$1*(  
ꢊꢈꢌ  
ꢊꢈꢍ  
ꢅꢈꢋ  
ꢅꢈꢅ  
ꢅꢈꢁ  
ꢅꢈꢌ  
ꢅꢈꢍ  
ꢀꢈꢋ  
ꢀꢈꢅ  
ꢀꢈꢁ  
ꢀꢈꢌ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢅꢊꢀꢋ9ꢁ  
Figure 23. Five volt tolerant (FT and FTf) I/O input characteristics  
ꢅꢈꢃ  
7(67('ꢀ5$1*(  
77/ꢆVWDQGDUGꢆUHTXLUHPHQW  
9,1ꢀꢄ9ꢅ  
ꢊꢈꢃ  
81'(),1('ꢀ,1387ꢀ5$1*(  
77/ꢆVWDQGDUGꢆUHTXLUHPHQW  
ꢋꢈꢃ  
7(67('ꢀ5$1*(  
ꢊꢈꢌ  
ꢊꢈꢍ  
ꢅꢈꢋ  
ꢅꢈꢅ  
ꢅꢈꢁ  
ꢅꢈꢌ  
ꢅꢈꢍ  
ꢀꢈꢋ  
ꢀꢈꢅ  
ꢀꢈꢁ  
ꢀꢈꢌ  
9'',2[ꢀꢄ9ꢅ  
06Yꢀꢅꢊꢀꢊ9ꢁ  
DocID026284 Rev 4  
81/128  
99  
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
, plus the maximum  
DDIOx  
consumption of the MCU sourced on V , cannot exceed the absolute maximum rating  
DD  
ΣI  
(see Table 21: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 21: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or  
TC unless otherwise specified).  
(1)  
Table 54. Output voltage characteristics  
Symbol  
VOL  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
|IIO| = 8 mA  
VDDIOx 2.7 V  
-
0.4  
V
VOH  
VDDIOx–0.4  
-
VOL  
TTL port(2)  
|IIO| = 8 mA  
VDDIOx 2.7 V  
-
0.4  
V
VOH  
2.4  
-
(3)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
V
|IIO| = 20 mA  
VDDIOx 2.7 V  
(3)  
VOH  
VDDIOx–1.3  
-
(3)  
VOL  
-
0.4  
V
-
|IIO| = 6 mA  
(3)  
VDDIOx 2 V  
VOH  
VDDIOx–0.4  
-
(4)  
VOL  
0.4  
-
V
V
|IIO| = 4 mA  
(4)  
VOH  
VDDIOx–0.4  
|IIO| = 20 mA  
VDDIOx 2.7 V  
-
-
0.4  
0.4  
V
V
Output low level voltage for an FTf I/O pin in  
Fm+ mode  
(3)  
VOLFm+  
|IIO| = 10 mA  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣI  
.
IO  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Data based on characterization results. Not tested in production.  
4. Data based on characterization results. Not tested in production.  
82/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 24 and  
Table 55, respectively. Unless otherwise specified, the parameters given are derived from  
tests performed under the ambient temperature and supply voltage conditions summarized  
in Table 24: General operating conditions.  
(1)(2)  
Table 55. I/O AC characteristics  
OSPEEDRy  
[1:0] value(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
125  
125  
1
CL = 50 pF, VDDIOx 2 V  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
x0  
MHz  
ns  
CL = 50 pF, VDDIOx < 2 V  
CL = 50 pF, VDDIOx 2 V  
CL = 50 pF, VDDIOx < 2 V  
125  
125  
10  
25  
25  
4
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
MHz  
ns  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
01  
MHz  
ns  
62.5  
62.5  
50  
30  
20  
10  
5
tr(IO)out Output rise time  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
fmax(IO)out Maximum frequency(3)  
MHz  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
8
11  
tf(IO)out Output fall time  
12  
25  
5
ns  
CL = 30 pF, VDDIOx 2.7 V  
CL = 50 pF, VDDIOx 2.7 V  
CL = 50 pF, 2 V VDDIOx < 2.7 V  
CL = 50 pF, VDDIOx < 2 V  
8
tr(IO)out Output rise time  
12  
25  
DocID026284 Rev 4  
83/128  
99  
 
Electrical characteristics  
STM32F091xB STM32F091xC  
(1)(2)  
Table 55. I/O AC characteristics  
Parameter  
(continued)  
OSPEEDRy  
Symbol  
Conditions  
Min  
Max  
Unit  
MHz  
ns  
[1:0] value(1)  
fmax(IO)out Maximum frequency(3)  
-
-
-
-
-
-
2
tf(IO)out Output fall time  
tr(IO)out Output rise time  
fmax(IO)out Maximum frequency(3)  
tf(IO)out Output fall time  
tr(IO)out Output rise time  
CL = 50 pF, VDDIOx 2 V  
12  
34  
0.5  
16  
44  
Fm+  
configuration  
(4)  
MHz  
ns  
CL = 50 pF, VDDIOx < 2 V  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
-
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a  
description of GPIO Port configuration register.  
2. Guaranteed by design, not tested in production.  
3. The maximum frequency is defined in Figure 24.  
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091  
for a detailed description of Fm+ I/O configuration.  
Figure 24. I/O AC characteristics definition  
ꢊꢋꢔ  
ꢂꢋꢔ  
ꢃꢋꢔ  
ꢃꢋꢔ  
ꢊꢋꢔ  
ꢂꢋꢔ  
W
W
Uꢐ,2ꢑRXW  
Iꢐ,2ꢑRXW  
7
0D[LPXPꢆIUHTXHQF\ꢆLVꢆDFKLHYHGꢆLIꢆꢐWꢆꢆꢓꢆWꢆꢆꢑꢆ”ꢆ 7ꢆDQGꢆLIꢆWKHꢆGXW\ꢆF\FOHꢆLVꢆꢐꢁꢃꢏꢃꢃꢔꢑ  
U
I
ZKHQꢆORDGHGꢆE\ꢆ&ꢆꢆꢐVHHꢆWKHꢆWDEOHꢆ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFVꢁGHILQLWLRQ  
-
06ꢀꢅꢊꢀꢅ9ꢀ  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions.  
Table 56. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
-
-
-
-
-
0.3 VDD+0.07(1)  
-
V
0.445 VDD+0.398(1)  
84/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Table 56. NRST pin characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST Schmitt trigger voltage  
hysteresis  
Vhys(NRST)  
-
-
200  
-
mV  
Weak pull-up equivalent  
resistor(2)  
RPU  
VIN = VSS  
25  
40  
55  
kΩ  
VF(NRST) NRST input filtered pulse  
-
-
-
-
-
100(1)  
ns  
2.7 < VDD < 3.6  
2.0 < VDD < 3.6  
300(3)  
500(3)  
-
-
VNF(NRST) NRST input not filtered pulse  
ns  
1. Data based on design simulation only. Not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
3. Data based on design simulation only. Not tested in production.  
Figure 25. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢆFLUFXLWꢐꢊꢑ  
9''  
538  
1567ꢐꢅꢑ  
,QWHUQDOꢆUHVHW  
)LOWHU  
ꢋꢈꢊꢆ—)  
06ꢊꢂꢍꢄꢍ9ꢀ  
1. The external capacitor protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 56: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
6.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under the conditions summarized in Table 24: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 57. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage for  
ADC ON  
VDDA  
-
2.4  
-
3.6  
V
Current consumption of  
the ADC(1)  
IDDA (ADC)  
fADC  
VDDA = 3.3 V  
-
0.9  
-
mA  
ADC clock frequency  
Sampling rate  
-
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
fS  
12-bit resolution  
0.043  
DocID026284 Rev 4  
85/128  
99  
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 57. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fADC = 14 MHz,  
12-bit resolution  
-
-
823  
kHz  
(2)  
External trigger frequency  
fTRIG  
12-bit resolution  
-
-
-
-
17  
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
0
VDDA  
See Equation 1 and  
Table 58 for details  
(2)  
RAIN  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
Sampling switch  
resistance  
(2)  
-
-
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
f
ADC = 14 MHz  
5.9  
83  
µs  
(2)(3)  
Calibration time  
tCAL  
-
1/fADC  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
fPCLK cycles  
ADC clock = HSI14  
-
-
ADC_DR register ready  
latency  
(2)(4)  
WLATENCY  
fPCLK  
cycle  
ADC clock = PCLK/2  
ADC clock = PCLK/4  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
fADC = fPCLK/2 = 14 MHz  
fADC = fPCLK/2  
0.196  
5.5  
µs  
1/fPCLK  
µs  
(2)  
Trigger conversion latency fADC = fPCLK/4 = 12 MHz  
fADC = fPCLK/4  
0.219  
10.5  
-
tlatr  
1/fPCLK  
µs  
fADC = fHSI14 = 14 MHz  
0.179  
-
0.250  
-
ADC jitter on trigger  
fADC = fHSI14  
JitterADC  
1
1/fHSI14  
conversion  
f
ADC = 14 MHz  
0.107  
1.5  
-
-
17.1  
µs  
(2)  
Sampling time  
tS  
-
-
239.5  
1/fADC  
1/fADC  
(2)  
tSTAB  
Stabilization time  
14  
f
ADC = 14 MHz,  
1
-
18  
µs  
12-bit resolution  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
12-bit resolution  
1/fADC  
1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 µA on IDDA and 60 µA  
on IDD should be taken into account.  
2. Guaranteed by design, not tested in production.  
3. Specified value includes only ADC timing. It does not include the latency of the register access.  
4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.  
86/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Equation 1: R  
max formula  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
Table 58. R  
max for f  
tS (µs)  
= 14 MHz  
ADC  
AIN  
Ts (cycles)  
RAIN max (k)(1)  
1.5  
7.5  
0.11  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
0.4  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)(3)  
Table 59. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±1.3  
±1  
±2  
±1.5  
±1.5  
±1  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
±0.5  
±0.7  
±0.8  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
±3.3  
±1.9  
±2.8  
±0.7  
±1.2  
LSB  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.5  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
LSB  
LSB  
VDDA = 2.7 V to 3.6 V  
TA = - 40 to 105 °C  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
±1.3  
±1.7  
±4  
ET  
EO  
EG  
ED  
EL  
fPCLK = 48 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ  
±2.8  
±3  
Gain error  
VDDA = 2.4 V to 3.6 V  
TA = 25 °C  
Differential linearity error  
Integral linearity error  
±1.3  
±1.7  
1. ADC DC accuracy values are measured after internal calibration.  
DocID026284 Rev 4  
87/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input  
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog  
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
Figure 26. ADC accuracy characteristics  
966$  
(*  
ꢐꢊꢑꢆ([DPSOHꢆRIꢆDQꢆDFWXDOꢆWUDQVIHUꢆFXUYH  
ꢁꢋꢂꢃ  
ꢐꢅꢑꢆ7KHꢆLGHDOꢆWUDQVIHUꢆFXUYH  
ꢁꢋꢂꢁ  
ꢁꢋꢂꢀ  
ꢐꢀꢑꢆ(QGꢆSRLQWꢆFRUUHODWLRQꢆOLQH  
(
7
ꢆ ꢆ7RWDOꢆ8QDMXVWHGꢆ(UURUꢇꢆPD[LPXPꢆGHYLDWLRQꢆ  
ꢐꢅꢑ  
EHWZHHQꢆWKHꢆDFWXDOꢆDQGꢆLGHDOꢆWUDQVIHUꢆFXUYHVꢈ  
(7  
(2ꢆ ꢆ2IIVHWꢆ(UURUꢇꢆPD[LPXPꢆGHYLDWLRQꢆ  
EHWZHHQꢆWKHꢆILUVWꢆDFWXDOꢆWUDQVLWLRQꢆDQGꢆWKHꢆILUVW  
LGHDOꢆRQHꢈ  
ꢐꢀꢑ  
ꢐꢊꢑ  
(
*
ꢆ ꢆ*DLQꢆ(UURUꢇꢆGHYLDWLRQꢆEHWZHHQꢆWKHꢆODVWꢆ  
LGHDOꢆWUDQVLWLRQꢆDQGꢆWKHꢆODVWꢆDFWXDOꢆRQHꢈ  
ꢆ ꢆ'LIIHUHQWLDOꢆ/LQHDULW\ꢆ(UURUꢇꢆPD[LPXPꢆ  
GHYLDWLRQꢆEHWZHHQꢆDFWXDOꢆVWHSVꢆDQGꢆWKHꢆLGHDOꢆRQHVꢈ  
(2  
(/  
(
'
('  
(/ꢆ ꢆ,QWHJUDOꢆ/LQHDULW\ꢆ(UURUꢇꢆPD[LPXPꢆGHYLDWLRQꢆ  
EHWZHHQꢆDQ\ꢆDFWXDOꢆWUDQVLWLRQꢆDQGꢆWKHꢆHQGꢆSRLQWꢆ  
FRUUHODWLRQꢆOLQHꢈ  
ꢊꢆ/6%ꢆ,'($/  
9''$  
ꢁꢋꢂꢌ  
ꢁꢋꢂꢁ ꢁꢋꢂꢃ  
ꢁꢋꢂꢀ  
06ꢊꢂꢍꢍꢋ9ꢅ  
Figure 27. Typical connection diagram using the ADC  
9
''$  
6DPSOHꢆDQGꢆKROGꢆ$'&  
FRQYHUWHU  
9
7
ꢐꢊꢑ  
5
$,1  
5
$'&  
$,1[  
ꢊꢅꢏELW  
FRQYHUWHU  
,/  
“ꢊ —$  
ꢐꢅꢑ  
SDUDVLWLF  
9
7
&
9$,1  
&
$'&  
06ꢀꢀꢂꢋꢋ9ꢅ  
1. Refer to Table 57: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 13: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
88/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
6.3.17  
DAC electrical specifications  
Table 60. DAC characteristics  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Analog supply voltage for  
DAC ON  
2.4  
-
3.6  
V
-
5
-
-
-
-
kLoad connected to VSSA  
kLoad connected to VDDA  
When the buffer is OFF, the  
Resistive load with buffer  
ON  
(1)  
RLOAD  
25  
Impedance output with  
buffer OFF  
Minimum resistive load between  
DAC_OUT and VSS to have a  
(1)  
RO  
-
-
15  
kꢀ  
1% accuracy is 1.5 Mꢀ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer  
is ON).  
(1)  
CLOAD  
Capacitive load  
-
-
-
50  
-
It gives the maximum output  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
excursion of the DAC.  
0.2  
V
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
DAC_OUT Higher DAC_OUT voltage  
max(1)  
with buffer ON  
VDDA = 3.6 V and (0x155) and  
(0xEAB) at VDDA = 2.4 V  
-
-
-
-
-
-
VDDA – 0.2  
V
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer OFF  
0.5  
-
VDDA – 1LSB  
600  
mV  
It gives the maximum output  
excursion of the DAC.  
V
DAC_OUT Higher DAC_OUT voltage  
-
-
-
max(1)  
with buffer OFF  
With no load, middle code  
(0x800) on the input  
µA  
DAC DC current  
consumption in quiescent  
mode(2)  
(1)  
IDDA  
With no load, worst code  
µA  
700  
(0xF1C) on the input  
Given for the DAC in 10-bit  
configuration  
-
-
±0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(3)  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
±2  
±1  
LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration  
LSB  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(3)  
Given for the DAC in 12-bit  
configuration  
-
-
±4  
LSB  
-
-
-
-
±10  
±3  
mV  
-
Offset error  
Given for the DAC in 10-bit at  
(difference between  
measured value at Code  
(0x800) and the ideal value  
= VDDA/2)  
LSB  
Offset(3)  
VDDA = 3.6 V  
Given for the DAC in 12-bit at  
VDDA = 3.6 V  
-
-
±12  
LSB  
DocID026284 Rev 4  
89/128  
99  
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Comments  
Table 60. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Given for the DAC in 12-bit  
configuration  
Gain error(3) Gain error  
-
-
±0.5  
%
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value ±1LSB  
(3)  
tSETTLING  
-
-
3
-
4
1
µs CLOAD 50 pF, RLOAD 5 kꢀ  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(3)  
MS/s CLOAD 50 pF, RLOAD 5 kꢀ  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
CLOAD 50 pF, RLOAD 5 kꢀ  
µs input code between lowest and  
highest possible ones.  
(3)  
tWAKEUP  
-
-
6.5  
10  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. The DAC is in “quiescent mode” when it keeps the value steady on the output so no dynamic consumption is involved.  
3. Data based on characterization results, not tested in production.  
90/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Electrical characteristics  
6.3.18  
Comparator characteristics  
Table 61. Comparator characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min(1) Typ Max(1) Unit  
Analog supply voltage  
-
-
VDD  
0
-
-
3.6  
V
-
Comparator input  
voltage range  
VIN  
VDDA  
VREFINT scaler offset  
voltage  
VSC  
tS_SC  
tSTART  
-
-
-
-
-
±5  
-
±10  
0.2  
60  
mV  
ms  
µs  
VREFINT scaler startup  
time from power down  
Comparator startup  
time  
Startup time to reach propagation delay  
specification  
-
Ultra-low power mode  
Low power mode  
-
-
-
-
-
-
-
-
-
-
-
2
4.5  
1.5  
0.6  
100  
240  
7
0.7  
0.3  
50  
µs  
ns  
µs  
ns  
Propagation delay for  
200 mV step with  
100 mV overdrive  
Medium power mode  
V
DDA 2.7 V  
High speed mode  
VDDA < 2.7 V  
100  
2
tD  
Ultra-low power mode  
Low power mode  
0.7  
0.3  
90  
2.1  
1.2  
180  
300  
±10  
Propagation delay for  
full range step with  
100 mV overdrive  
Medium power mode  
VDDA 2.7 V  
High speed mode  
VDDA < 2.7 V  
110  
±4  
Voffset  
Comparator offset error  
-
mV  
Offset error  
temperature coefficient  
dVoffset/dT  
-
-
18  
-
µV/°C  
Ultra-low power mode  
-
-
-
-
1.2  
3
1.5  
5
Low power mode  
Medium power mode  
High speed mode  
COMP current  
consumption  
IDD(COMP)  
µA  
10  
75  
15  
100  
DocID026284 Rev 4  
91/128  
99  
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Table 61. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
No hysteresis  
(COMPxHYST[1:0]=00)  
-
-
3
0
8
-
High speed mode  
13  
10  
26  
19  
49  
40  
Low hysteresis  
(COMPxHYST[1:0]=01)  
All other power  
modes  
5
Vhys  
Comparator hysteresis  
High speed mode  
7
mV  
Medium hysteresis  
(COMPxHYST[1:0]=10)  
15  
31  
All other power  
modes  
9
High speed mode  
18  
19  
High hysteresis  
(COMPxHYST[1:0]=11)  
All other power  
modes  
1. Data based on characterization results, not tested in production.  
92/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Electrical characteristics  
6.3.19  
Temperature sensor characteristics  
Table 62. TS characteristics  
Symbol  
Parameter  
VSENSE linearity with temperature  
Avg_Slope(1) Average slope  
Min  
Typ  
Max  
Unit  
(1)  
TL  
-
4.0  
1.34  
-
± 1  
4.3  
1.43  
-
± 2  
4.6  
°C  
mV/°C  
V
V30  
Voltage at 30 °C (± 5 °C)(2)  
1.52  
10  
(1)  
(1)  
tSTART  
ADC_IN16 buffer startup time  
µs  
ADC sampling time when reading the  
temperature  
tS_temp  
4
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3:  
Temperature sensor calibration values.  
6.3.20  
V
monitoring characteristics  
BAT  
Table 63. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
2 x 50  
-
-
kꢀ  
-
Ratio on VBAT measurement  
Error on Q  
2
-
Er(1)  
–1  
4
+1  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. Guaranteed by design, not tested in production.  
6.3.21  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 64. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTIMxCLK  
ns  
-
-
-
-
1
-
-
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 48 MHz  
-
20.8  
Timer external clock  
frequency on CH1 to  
CH4  
fTIMxCLK/2  
MHz  
fEXT  
fTIMxCLK = 48 MHz  
-
24  
-
MHz  
216  
tTIMxCLK  
-
-
-
-
-
-
-
-
-
16-bit timer maximum  
period  
fTIMxCLK = 48 MHz  
-
1365  
µs  
tMAX_COUNT  
232  
tTIMxCLK  
32-bit counter  
maximum period  
fTIMxCLK = 48 MHz  
89.48  
s
DocID026284 Rev 4  
93/128  
99  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
(1)  
Table 65. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
1
/16  
/32  
/64  
/128  
/256  
2
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
3
4
ms  
5
6 or 7  
1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
Table 66. WWDG min/max timeout value at 48 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0853  
0.1706  
0.3413  
0.6826  
5.4613  
10.9226  
21.8453  
43.6906  
ms  
6.3.22  
Communication interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
The I C timings requirements are guaranteed by design when the I2Cx peripheral is  
properly configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FTf I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O  
2
port characteristics for the I C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
94/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Symbol  
Electrical characteristics  
2
(1)  
Table 67. I C analog filter characteristics  
Parameter  
Min  
Max  
Unit  
Maximum width of spikes that are  
suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI/I2S characteristics  
2
Unless otherwise specified, the parameters given in Table 68 for SPI or in Table 69 for I S  
are derived from tests performed under the ambient temperature, f frequency and  
PCLKx  
supply voltage conditions summarized in Table 24: General operating conditions.  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1)  
Table 68. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 15 pF  
-
6
ns  
ns  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4Tpclk  
-
-
2Tpclk + 10  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
Tpclk/2 -2  
Tpclk/2 + 1  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
5
-
tsu(MI)  
tsu(SI)  
-
th(MI)  
th(SI)  
4
-
Data input hold time  
5
-
(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
0
3Tpclk  
(3)  
tdis(SO)  
0
18  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
22.5  
-
6
-
11.5  
2
Data output hold time  
-
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
25  
75  
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
DocID026284 Rev 4  
95/128  
99  
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
Figure 28. SPI timing diagram - slave mode and CPHA = 0  
166ꢆLQSXW  
WFꢐ6&.ꢑ  
WKꢐ166ꢑ  
WVXꢐ166ꢑ  
WZꢐ6&.+ꢑ  
WUꢐ6&.ꢑ  
&3+$ ꢋ  
&32/ ꢋ  
&3+$ ꢋ  
&32/ ꢊ  
WDꢐ62ꢑ  
WZꢐ6&./ꢑ  
WYꢐ62ꢑ  
WKꢐ62ꢑ  
WIꢐ6&.ꢑ  
/DVWꢆELWꢆ287  
WGLVꢐ62ꢑ  
0,62ꢆRXWSXW  
026,ꢆLQSXW  
)LUVWꢆELWꢆ287  
WKꢐ6,ꢑ  
1H[WꢆELWVꢆ287  
WVXꢐ6,ꢑ  
)LUVWꢆELWꢆ,1  
1H[WꢆELWVꢆ,1  
/DVWꢆELWꢆ,1  
06Yꢁꢊꢌꢃꢍ9ꢊ  
Figure 29. SPI timing diagram - slave mode and CPHA = 1  
166ꢆLQSXW  
WFꢐ6&.ꢑ  
WVXꢐ166ꢑ  
WZꢐ6&.+ꢑ  
WIꢐ6&.ꢑ  
WKꢐ166ꢑ  
&3+$ ꢊ  
&32/ ꢋ  
&3+$ ꢊ  
&32/ ꢊ  
WDꢐ62ꢑ  
WZꢐ6&./ꢑ  
WYꢐ62ꢑ  
)LUVWꢆELWꢆ287  
WVXꢐ6,ꢑ WKꢐ6,ꢑ  
)LUVWꢆELWꢆ,1  
WKꢐ62ꢑ  
1H[WꢆELWVꢆ287  
WUꢐ6&.ꢑ  
WGLVꢐ62ꢑ  
0,62ꢆRXWSXW  
026,ꢆLQSXW  
/DVWꢆELWꢆ287  
1H[WꢆELWVꢆ,1  
/DVWꢆELWꢆ,1  
06Yꢁꢊꢌꢃꢂ9ꢊ  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
96/128  
DocID026284 Rev 4  
 
 
 
 
STM32F091xB STM32F091xC  
Electrical characteristics  
Figure 30. SPI timing diagram - master mode  
+LJK  
166ꢆLQSXW  
W
Fꢐ6&.ꢑ  
&3+$   
&32/ ꢋ  
&3+$   
&32/ ꢊ  
&3+$   
&32/ ꢋ  
&3+$   
&32/ ꢊ  
W
W
W
W
Zꢐ6&.+ꢑ  
Zꢐ6&./ꢑ  
Uꢐ6&.ꢑ  
W
VXꢐ0,ꢑ  
Iꢐ6&.ꢑ  
0,62  
,1387  
%,7ꢌꢆ,1  
/6%ꢆ,1  
06%ꢆ,1  
W
Kꢐ0,ꢑ  
026,  
287387  
%,7ꢊꢆ287  
/6%ꢆ287  
06%ꢆ287  
W
W
Kꢐ02ꢑ  
Yꢐ02ꢑ  
DLꢊꢁꢊꢀꢌF  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
2
(1)  
Table 69. I S characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
Master mode (data: 16 bits, Audio  
frequency = 48 kHz)  
1.597  
1.601  
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
Slave mode  
0
-
6.5  
tr(CK)  
tf(CK)  
I2S clock rise time  
I2S clock fall time  
I2S clock high time  
I2S clock low time  
WS valid time  
10  
12  
-
Capacitive load CL = 15 pF  
-
tw(CKH)  
tw(CKL)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
306  
312  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
-
ns  
%
Master mode  
Master mode  
Slave mode  
Slave mode  
-
WS hold time  
2
-
WS setup time  
7
-
WS hold time  
0
-
I2S slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
25  
75  
DocID026284 Rev 4  
97/128  
99  
 
 
 
Electrical characteristics  
STM32F091xB STM32F091xC  
2
(1)  
Table 69. I S characteristics (continued)  
Conditions  
Symbol  
Parameter  
Data input setup time  
Min  
Max  
Unit  
tsu(SD_MR)  
tsu(SD_SR)  
Master receiver  
6
2
-
-
Slave receiver  
(2)  
th(SD_MR)  
Master receiver  
Slave receiver  
4
-
Data input hold time  
Data output valid time  
Data output hold time  
(2)  
th(SD_SR)  
0.5  
-
-
ns  
(2)  
tv(SD_MT)  
Master transmitter  
Slave transmitter  
Master transmitter  
Slave transmitter  
4
20  
-
(2)  
tv(SD_ST)  
th(SD_MT)  
th(SD_ST)  
-
0
13  
-
1. Data based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK = 8 MHz, then TPCLK = 1/fPLCLK = 125 ns.  
2
Figure 31. I S slave timing diagram (Philips protocol)  
WFꢐ&.ꢑ  
&32/ꢆ ꢆꢋ  
&32/ꢆ ꢆꢊ  
:6ꢆLQSXW  
WKꢐ:6ꢑ  
WZꢐ&.+ꢑ  
WZꢐ&./ꢑ  
WYꢐ6'B67ꢑ  
WKꢐ6'B67ꢑ  
WVXꢐ:6ꢑ  
/6%ꢆWUDQVPLWꢐꢅꢑ  
WVXꢐ6'B65ꢑ  
06%ꢆWUDQVPLW  
06%ꢆUHFHLYH  
%LWQꢆWUDQVPLW  
WKꢐ6'B65ꢑ  
6'WUDQVPLW  
6'UHFHLYH  
/6%ꢆUHFHLYHꢐꢅꢑ  
%LWQꢆUHFHLYH  
/6%ꢆUHFHLYH  
06Yꢀꢂꢄꢅꢊ9ꢊ  
1. Measurement points are done at CMOS levels: 0.3 × VDDIOx and 0.7 × VDDIOx  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
98/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Electrical characteristics  
2
Figure 32. I S master timing diagram (Philips protocol)  
ꢂꢋꢔ  
ꢊꢋꢔ  
WIꢐ&.ꢑ  
WUꢐ&.ꢑ  
WFꢐ&.ꢑ  
&32/ꢆ ꢆꢋ  
&32/ꢆ ꢆꢊ  
:6ꢆRXWSXW  
6'WUDQVPLW  
WZꢐ&.+ꢑ  
WYꢐ:6ꢑ  
WKꢐ:6ꢑ  
WZꢐ&./ꢑ  
WYꢐ6'B07ꢑ  
WKꢐ6'B07ꢑ  
/6%ꢆWUDQVPLWꢐꢅꢑ  
WVXꢐ6'B05ꢑ  
06%ꢆWUDQVPLW  
06%ꢆUHFHLYH  
%LWQꢆWUDQVPLW  
WKꢐ6'B05ꢑ  
/6%ꢆWUDQVPLW  
6'UHFHLYH  
/6%ꢆUHFHLYHꢐꢅꢑ  
%LWQꢆUHFHLYH  
/6%ꢆUHFHLYH  
06Yꢀꢂꢄꢅꢋ9ꢊ  
1. Data based on characterization results, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
CAN (controller area network) interface  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
DocID026284 Rev 4  
99/128  
99  
 
 
Package information  
STM32F091xB STM32F091xC  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
UFBGA100 package information  
UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array  
package.  
Figure 33. UFBGA100 package outline  
6HDWLQJꢆSODQH  
=
GGG =  
$ꢁ  
$ꢅ  
$
$ꢀ  
$ꢊ  
$
(ꢊ  
;
$ꢊꢆEDOOꢆꢆꢆꢆ $ꢊꢆEDOOꢆꢆꢆꢆ  
LGHQWLILHU LQGH[ꢆDUHD  
(
=
H
=
'ꢊ  
'
H
<
0
ꢊꢅ  
‘EꢆꢐꢊꢋꢋꢆEDOOVꢑ  
%27720ꢆ9,(:  
723ꢆ9,(:  
HHH 0  
‘
= < ;  
0
‘III  
=
$ꢋ&ꢅB0(B9ꢃ  
1. Drawing is not to scale.  
Table 70. UFBGA100 package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
-
-
-
-
-
-
0.600  
-
-
-
-
-
-
0.0236  
A1  
A2  
A3  
A4  
-
0.110  
-
0.0043  
0.450  
0.130  
0.320  
-
-
-
0.0177  
0.0051  
0.0126  
-
0.0094  
-
100/128  
DocID026284 Rev 4  
 
 
 
 
 
 
 
STM32F091xB STM32F091xC  
Package information  
Table 70. UFBGA100 package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
b
D
0.240  
0.290  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
-
0.340  
0.0094  
0.0114  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
-
0.0134  
6.850  
7.150  
0.2697  
0.2815  
D1  
E
-
-
7.150  
-
-
-
6.850  
0.2697  
0.2815  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Z
-
-
ddd  
eee  
fff  
0.080  
0.150  
0.050  
0.0031  
0.0059  
0.0020  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 34. Recommended footprint for UFBGA100 package  
'SDG  
'VP  
$ꢋ&ꢅB)3B9ꢊ  
Table 71. UFBGA100 recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the solder mask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
DocID026284 Rev 4  
101/128  
124  
 
 
 
 
Package information  
STM32F091xB STM32F091xC  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 35. UFBGA100 package marking example  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
670ꢀꢁ)  
ꢂꢃꢄ9&+ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
5
D^ϯϱϱϱϰsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
102/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Package information  
7.2  
LQFP100 package information  
LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.  
Figure 36. LQFP100 package outline  
6($7,1*ꢆ3/$1(  
&
ꢋꢈꢅꢃꢆPP  
*$8*(ꢆ3/$1(  
FFF  
ꢄꢃ  
&
'
'ꢊ  
'ꢀ  
/
/ꢊ  
ꢃꢊ  
ꢃꢋ  
ꢄꢌ  
ꢊꢋꢋ  
ꢅꢌ  
3,1ꢆꢊ  
,'(17,),&$7,21  
ꢅꢃ  
H
ꢊ/B0(B9ꢃ  
1. Drawing is not to scale.  
Table 72. LQPF100 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
DocID026284 Rev 4  
103/128  
124  
 
 
 
Package information  
STM32F091xB STM32F091xC  
Table 72. LQPF100 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
-
-
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
0.080  
7.0°  
0.0031  
ccc  
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 37. Recommended footprint for LQFP100 package  
ꢄꢃ  
ꢃꢊ  
ꢄꢌ  
ꢃꢋ  
ꢋꢈꢃ  
ꢋꢈꢀ  
ꢊꢌꢈꢄ ꢊꢁꢈꢀ  
ꢊꢋꢋ  
ꢅꢌ  
ꢊꢈꢅ  
ꢅꢃ  
ꢊꢅꢈꢀ  
ꢊꢌꢈꢄ  
DLꢊꢁꢂꢋꢌF  
1. Dimensions are expressed in millimeters.  
104/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 38. LQFP100 package marking example  
KƉƚŝŽŶĂůꢀŐĂƚĞꢀŵĂƌŬ  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
670ꢀꢁ)ꢂꢃꢄ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
9&7ꢅ  
5
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
D^ϯϱϱϱϱsϮ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID026284 Rev 4  
105/128  
124  
 
 
Package information  
STM32F091xB STM32F091xC  
7.3  
UFBGA64 package information  
UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array  
package.  
Figure 39. UFBGA64 package outline  
= 6HDWLQJꢆSODQH  
GGG =  
$ꢁ  
$ꢀ $ꢅ  
$ꢊ  
$
(ꢊ  
;
$ꢊꢆEDOOꢆ  
$ꢊꢆEDOOꢆ  
(
LGHQWLILHU LQGH[ꢆDUHD  
H
)
$
+
)
'ꢊ  
'
H
<
‘EꢆꢐꢌꢁꢆEDOOVꢑ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢆ9,(:  
723ꢆ9,(:  
$ꢋꢊꢂB0(B9ꢊ  
1. Drawing is not to scale.  
Table 73. UFBGA64 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
0.080  
0.270  
0.170  
4.850  
3.450  
4.850  
3.450  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.600  
0.110  
0.500  
0.180  
0.370  
0.330  
5.150  
3.550  
5.150  
3.550  
-
0.0181  
0.0020  
0.0157  
0.0031  
0.0106  
0.0067  
0.1909  
0.1358  
0.1909  
0.1358  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
0.0071  
0.0146  
0.0130  
0.2028  
0.1398  
0.2028  
0.1398  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
106/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Package information  
Table 73. UFBGA64 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.460  
0.530  
0.600  
0.080  
0.150  
0.050  
0.0181  
0.0209  
0.0236  
0.0031  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 40. Recommended footprint for UFBGA64 package  
'SDG  
'VP  
$ꢋꢊꢂB)3B9ꢅ  
Table 74. UFBGA64 recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
DocID026284 Rev 4  
107/128  
124  
 
 
 
Package information  
STM32F091xB STM32F091xC  
Device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 41. UFBGA64 package marking example  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
)ꢂꢃꢄ5&+ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
<
::  
^ƚĂŶĚĂƌĚꢀ^dꢀůŽŐŽ  
ꢂĂůůꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
5
D^ϯϵϬϭϴsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
108/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Package information  
7.4  
WLCSP64 package information  
WLCSP64 is a 64-ball, 3.347 x 3.585 mm, 0.4 mm pitch wafer-level chip-scale package.  
Figure 42. WLCSP64 package outline  
Hꢊ  
EEE  
=
)
*
$
'HWDLOꢆ$  
Hꢅ  
*
H
+
$
$ꢅ  
H
)
$ꢀ  
%XPSꢆVLGH  
6LGHꢆYLHZ  
'
%XPS  
$ꢊ  
HHH  
=
(
$ꢊ 2ULHQWDWLRQ  
UHIHUHQFH  
E
6HDWLQJꢆSODQH  
ꢐꢁ[ꢑ  
:DIHUꢆEDFNꢆVLGH  
'HWDLOꢆ$  
ꢐURWDWHGꢆꢂꢋꢆƒꢑ  
$ꢋꢅꢁB0(B9ꢊ  
1. Drawing is not to scale.  
Table 75. WLCSP64 package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
0.525  
0.555  
0.175  
0.380  
0.025  
0.585  
0.0207  
0.0219  
0.0069  
0.0150  
0.0010  
0.0230  
A1  
A2  
A3  
-
-
-
-
-
-
-
-
-
-
-
-
DocID026284 Rev 4  
109/128  
124  
 
 
 
Package information  
Symbol  
STM32F091xB STM32F091xC  
Table 75. WLCSP64 package mechanical data (continued)  
millimeters  
inches(1)  
Min  
Typ  
0.250  
3.347  
3.585  
0.400  
2.800  
2.800  
0.2735  
0.3925  
-
Max  
0.280  
3.382  
3.620  
-
Min  
Typ  
0.0098  
0.1318  
0.1411  
0.0157  
0.1102  
0.1102  
0.0108  
0.0155  
-
Max  
0.0110  
0.1331  
0.1425  
-
b(2)  
D
0.220  
0.0087  
3.312  
0.1304  
E
3.550  
0.1398  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
-
-
-
-
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 43. Recommended footprint for WLCSP64 package  
'SDG  
'VP  
06ꢊꢍꢂꢌꢃ9ꢅ  
Table 76. WLCSP64 recommended PCB design rules  
Dimension  
Recommended values  
0.4  
Pitch  
260 µm max. (circular)  
220 µm recommended  
300 µm min. (for 260 µm diameter pad)  
Dpad  
Dsm  
PCB pad design  
Non-solder mask defined via underbump allowed.  
110/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Device marking  
Package information  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 44. WLCSP64 package marking example  
ꢁŽƚ  
670ꢀꢁ)  
WƌŽĚƵĐƚ  
ŝĚĞŶƚŝĨŝĐĂƚŝŽŶ ;ϭͿ  
ꢂꢃꢄ5&<ꢅ  
ꢁĂƚĞꢀĐŽĚĞ  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
<
::  
5
D^ϯϱϱϲϰsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID026284 Rev 4  
111/128  
124  
 
Package information  
STM32F091xB STM32F091xC  
7.5  
LQFP64 package information  
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 45. LQFP64 package outline  
6($7,1*ꢆ3/$1(  
&
ꢋꢈꢅꢃꢆPP  
*$8*(ꢆ3/$1(  
FFF  
&
'
'ꢊ  
'ꢀ  
/
/ꢊ  
ꢀꢀ  
ꢁꢍ  
ꢀꢅ  
ꢁꢂ  
ꢌꢁ  
E
ꢊꢄ  
ꢊꢌ  
3,1ꢆꢊ  
H
,'(17,),&$7,21  
ꢃ:B0(B9ꢀ  
1. Drawing is not to scale.  
Table 77. LQFP64 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
112/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Package information  
Table 77. LQFP64 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 46. Recommended footprint for LQFP64 package  
ꢁꢍ  
ꢀꢀ  
ꢋꢈꢀ  
ꢋꢈꢃ  
ꢁꢂ  
ꢀꢅ  
ꢊꢅꢈꢄ  
ꢊꢋꢈꢀ  
ꢊꢋꢈꢀ  
ꢄꢈꢍ  
ꢊꢄ  
ꢌꢁ  
ꢊꢈꢅ  
ꢊꢌ  
ꢊꢅꢈꢄ  
DLꢊꢁꢂꢋꢂF  
1. Dimensions are expressed in millimeters.  
DocID026284 Rev 4  
113/128  
124  
 
Package information  
STM32F091xB STM32F091xC  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 47. LQFP64 package marking example  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
5
670ꢀꢁ)ꢂꢃꢄ  
5&7ꢅ8  
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
D^ϯϱϱϱϲsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
114/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Package information  
7.6  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.  
Figure 48. LQFP48 package outline  
6($7,1*  
3/$1(  
&
ꢋꢈꢅꢃꢆPP  
*$8*(ꢆ3/$1(  
FFF  
&
'
/
'ꢊ  
'ꢀ  
/ꢊ  
ꢀꢌ  
ꢅꢃ  
ꢀꢄ  
ꢅꢁ  
E
ꢁꢍ  
ꢊꢀ  
3,1ꢆꢊ  
,'(17,),&$7,21  
ꢊꢅ  
H
ꢃ%B0(B9ꢅ  
1. Drawing is not to scale.  
DocID026284 Rev 4  
115/128  
124  
 
 
Package information  
STM32F091xB STM32F091xC  
Table 78. LQFP48 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 49. Recommended footprint for LQFP48 package  
ꢋꢈꢃꢋ  
ꢊꢈꢅꢋ  
ꢋꢈꢀꢋ  
ꢀꢌ  
ꢅꢃ  
ꢀꢄ  
ꢅꢁ  
ꢋꢈꢅꢋ  
ꢄꢈꢀꢋ  
ꢂꢈꢄꢋ ꢃꢈꢍꢋ  
ꢄꢈꢀꢋ  
ꢁꢍ  
ꢊꢀ  
ꢊꢅ  
ꢊꢈꢅꢋ  
ꢃꢈꢍꢋ  
ꢂꢈꢄꢋ  
DLꢊꢁꢂꢊꢊG  
1. Dimensions are expressed in millimeters.  
116/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 50. LQFP48 package marking example  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
670ꢀꢁ)  
ꢂꢃꢄ&&7ꢅ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
5
D^ϯϱϱϱϳsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID026284 Rev 4  
117/128  
124  
 
Package information  
STM32F091xB STM32F091xC  
7.7  
UFQFPN48 package information  
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.  
Figure 51. UFQFPN48 package outline  
3LQꢆꢊꢆLGHQWLILHU  
ODVHUꢆPDUNLQJꢆDUHD  
'
$
(
<
(
6HDWLQJꢆ  
SODQH  
7
GGG  
$ꢊ  
E
H
'HWDLOꢆ<  
'
([SRVHGꢆSDGꢆ  
DUHD  
'ꢅ  
/
ꢁꢍ  
&ꢆꢋꢈꢃꢋꢋ[ꢁꢃƒ  
SLQꢊꢆFRUQHU  
5ꢆꢋꢈꢊꢅꢃꢆW\Sꢈ  
'HWDLOꢆ=  
(ꢅ  
ꢁꢍ  
=
$ꢋ%ꢂB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
118/128  
DocID026284 Rev 4  
 
 
STM32F091xB STM32F091xC  
Package information  
Table 79. UFQFPN48 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 52. Recommended footprint for UFQFPN48 package  
ꢄꢈꢀꢋ  
ꢌꢈꢅꢋ  
ꢁꢍ  
ꢀꢄ  
ꢀꢌ  
ꢃꢈꢌꢋ  
ꢋꢈꢅꢋ  
ꢄꢈꢀꢋ  
ꢃꢈꢍꢋ  
ꢌꢈꢅꢋ  
ꢃꢈꢌꢋ  
ꢋꢈꢀꢋ  
ꢊꢅ  
ꢅꢃ  
ꢊꢀ  
ꢅꢁ  
ꢋꢈꢄꢃ  
ꢋꢈꢃꢋ  
ꢋꢈꢃꢃ  
ꢃꢈꢍꢋ  
$ꢋ%ꢂB)3B9ꢅ  
1. Dimensions are expressed in millimeters.  
DocID026284 Rev 4  
119/128  
124  
 
 
Package information  
STM32F091xB STM32F091xC  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 53. UFQFPN48 package marking example  
;ϭͿ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
670ꢀꢁ)  
ꢂꢃꢄ&&8ꢅ  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
ꢁĂƚĞꢀĐŽĚĞ  
< ::  
ZĞǀŝƐŝŽŶꢀĐŽĚĞ  
5
D^ϯϱϱϱϴsϭ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
120/128  
DocID026284 Rev 4  
 
STM32F091xB STM32F091xC  
Package information  
7.8  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 24: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
DDIOx OH OH  
I/O  
OL  
OL  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 80. Package thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
UFBGA100 - 7 × 7 mm  
55  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm  
42  
65  
44  
53  
54  
32  
Thermal resistance junction-ambient  
UFBGA64 - 5 × 5 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
WLCSP64 - 0.4 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm  
Thermal resistance junction-ambient  
UFQFPN48 - 7 × 7 mm  
7.8.1  
7.8.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Ordering information.  
DocID026284 Rev 4  
121/128  
124  
 
 
 
 
 
Package information  
STM32F091xB STM32F091xC  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F091xB/xC at maximum dissipation, it is  
useful to calculate the exact power consumption and junction temperature to determine  
which temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum temperature T  
= 82 °C (measured according to JESD51-2), I  
= 50  
Amax  
DDmax  
mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I  
DD  
OL  
= 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output at low level  
OL  
with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Using the values obtained in Table 80 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8: Ordering information).  
Note:  
With this given P  
we can find the T  
allowed for a given device temperature range  
Dmax  
Amax  
(order code suffix 6 or 7).  
Suffix 6: T  
Suffix 7: T  
= T  
= T  
- (45°C/W × 447 mW) = 105-20.115 = 84.885 °C  
- (45°C/W × 447 mW) = 125-20.115 = 104.885 °C  
Amax  
Amax  
Jmax  
Jmax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high temperatures  
with a low dissipation, as long as junction temperature T remains within the specified  
J
range.  
Assuming the following application conditions:  
Maximum temperature T  
= 100 °C (measured according to JESD51-2), I  
=
Amax  
DDmax  
20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low level with  
DD  
I
= 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
122/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Package information  
Using the values obtained in Table 80 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8: Ordering information) unless we reduce the power dissipation in order to be able  
to use suffix 6 parts.  
Refer to the figure below to select the required temperature range (suffix 6 or 7) according to  
your temperature or power requirements.  
Figure 54. LQFP64 P max versus T  
D
A
ꢄꢋꢋ  
ꢌꢋꢋ  
ꢃꢋꢋ  
ꢁꢋꢋ  
ꢀꢋꢋ  
ꢅꢋꢋ  
ꢊꢋꢋ  
6XIIL[ꢆꢌ  
6XIIL[ꢆꢄ  
ꢌꢃ  
ꢄꢃ  
ꢍꢃ  
ꢂꢃ ꢊꢋꢃ ꢊꢊꢃ ꢊꢅꢃ ꢊꢀꢃ  
7$ꢆꢐƒ&ꢑ  
06Yꢀꢅꢊꢁꢀ9ꢊ  
DocID026284 Rev 4  
123/128  
124  
 
Ordering information  
STM32F091xB STM32F091xC  
8
Ordering information  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, please contact your nearest ST sales office.  
Table 81. Ordering information scheme  
Example:  
STM32  
F
091  
R
C
T
6
x
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Sub-family  
091= STM32F091xx  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
User code memory size  
B = 128 Kbyte  
C = 256 Kbyte  
Package  
H = UFBGA  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = –40 to 85 °C  
7 = –40 to 105 °C  
Options  
xxx = code ID of programmed parts (includes packing type)  
TR = tape and reel packing  
blank = tray packing  
124/128  
DocID026284 Rev 4  
 
 
 
STM32F091xB STM32F091xC  
Revision history  
9
Revision history  
Table 82. Document revision history  
Date  
Revision  
Changes  
30-Oct-2014  
1
Initial release.  
Updated:  
– Table: HSI oscillator characteristics,  
– Figure : HSI oscillator accuracy characterization  
results for soldered parts,  
– Figure: WLCSP64 wafer level chip size package  
mechanical drawing,  
09-Feb-2015  
2
Table: WLCSP64 - 64-pin, 3.347 x 3.585 mm, 0.4 mm  
pitch wafer level chip scale package mechanical data,.  
Added:  
– Figure: WLCSP64 - 64-pin, 3.347 x 3.585 mm,  
0.4 mm pitch wafer level chip scale recommended  
footprint.  
Section 2: Description:  
Table 2: STM32F091xB/xC family device features and  
peripheral counts- I/O and capacitive channel  
numbers corrected  
Section 3: Functional overview:  
– updated Figure 1: Block diagram (number of AF) and  
Figure 2: Clock tree  
Section 3.5.4: Low-power modes - added info. on  
comm. peripherals configurable to operate with HSI  
Section 3.13: Touch sensing controller (TSC) -  
number of channels corrected  
– added number of complementary outputs for the  
general purpose and for the advance control timers in  
Table 7: Timer feature comparison  
Table 9: STM32F091xB/xC I2C implementation -  
17-Dec-2015  
3
added 20mA value to Fast Mode Plus output drive  
Section 4: Pinouts and pin descriptions:  
– Package pinout figures updated (look and feel)  
Figure 7: WLCSP64 package pinout - now presented  
in top view  
Table 13: STM32F091xB/xC pin definitions - MCO  
moved from additional to alternate functions column  
Table 19: Alternate functions selected through  
GPIOF_AFR registers for port F- lines PF4 and PF5  
removed  
Section 5: Memory mapping:  
– added information on STM32F091xB difference  
versus STM32F091xC map in Figure 10  
DocID026284 Rev 4  
125/128  
127  
 
 
Revision history  
STM32F091xB STM32F091xC  
Table 82. Document revision history (continued)  
Date  
Revision  
Changes  
Section 6: Electrical characteristics:  
– footnote for VIN max value in Table 21: Voltage  
characteristics  
Table 28: Embedded internal reference voltage:  
added tSTART parameter and removal of -40°-to-85°  
condition for VREFINT and associated note  
Figure 18: Typical application with a 32.768 kHz  
crystal - correction of OSC_IN and OSC_OUT to  
OSC32_IN and OSC32_OUT and fHSE to fLSE  
Table 50: ESD absolute maximum ratings updated  
– VDDIOx replaced VDD in Figure 22: TC and TTa I/O  
input characteristics and Figure 23: Five volt tolerant  
(FT and FTf) I/O input characteristics  
Table 53: I/O static characteristics- note removed  
Table 57: ADC characteristics - updated some  
parameter values, test conditions and added  
footnotes (3) and (4)  
– IDDA max value (DAC DC current consumption) in  
Table 60: DAC characteristics  
Table 61: Comparator characteristics - min value  
added for VDDA  
Table 62: TS characteristics: removed the minimum  
value for tSTART symbol and updated parameter name  
3
– R parameter typical. value in Table 63: VBAT  
monitoring characteristics  
17-Dec-2015  
(continued)  
Table 64: TIMx characteristics: removed ResTM  
parameter line and all values put in new Typ column,  
tCOUNTER substituted with tMAX_COUNT, values defined  
as powers of two  
Table 69: I2S characteristics reorganized and max  
value added for tv(SD_ST)  
Figure 32: I2S master timing diagram (Philips protocol)  
added definition of edge level references  
Section 7: Package information:  
Figure 33: UFBGA100 package outline and  
associated Table 70 updated  
Figure 34 and associated Table 71 updated  
Figure 35: UFBGA100 package marking example and  
associated text updated  
Figure 38: LQFP100 package marking example and  
associated text updated  
Table 74: UFBGA64 recommended PCB design rules  
added  
Figure 41: UFBGA64 package marking example  
added  
Section 8: Part numbering:  
– added tray packing to options  
126/128  
DocID026284 Rev 4  
STM32F091xB STM32F091xC  
Date  
Revision history  
Table 82. Document revision history (continued)  
Revision  
Changes  
Section 6: Electrical characteristics:  
Table 40: LSE oscillator characteristics (fLSE = 32.768  
kHz) - information on configuring different drive  
capabilities removed. See the corresponding  
reference manual.  
Table 28: Embedded internal reference voltage -  
VREFINT values  
10-Jan-2017  
4
Table 60: DAC characteristics - min. RLOAD to VDDA  
defined  
Figure 28: SPI timing diagram - slave mode and  
CPHA = 0 and Figure 29: SPI timing diagram - slave  
mode and CPHA = 1 enhanced and corrected  
Section 8: Ordering information:  
– The name of the section changed from the previous  
“Part numbering”  
DocID026284 Rev 4  
127/128  
127  
STM32F091xB STM32F091xC  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2017 STMicroelectronics – All rights reserved  
128/128  
DocID026284 Rev 4  

相关型号:

STM32F091VBU7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VBY6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VBY7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VC

ARM-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC & comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCH6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCH7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCT6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCT7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCU6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCU7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCY6TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F091VCY7TP

ARM®-based 32-bit MCU, up to 256 KB Flash, CAN, 12 timers, ADC, DAC, and comm. interfaces, 2.0 - 3.6V

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR