STM32F100R4 [STMICROELECTRONICS]

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU;
STM32F100R4
型号: STM32F100R4
厂家: ST    ST
描述:

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU

文件: 总84页 (文件大小:1153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F100x4 STM32F100x6  
STM32F100x8 STM32F100xB  
Low & medium-density value line, advanced ARM-based 32-bit MCU  
with 16 to 128 KB Flash, 12 timers, ADC, DAC & 8 comm interfaces  
Preliminary data  
Features  
FBGA  
Core: ARM 32-bit Cortex™-M3 CPU  
– 24 MHz maximum frequency,  
LQFP100 14 × 14 mm  
LQFP64 10 × 10 mm  
LQFP48 7 × 7 mm  
1.25 DMIPS/MHz (Dhrystone 2.1)  
performance  
TFBGA64 (5 × 5 mm)  
– Single-cycle multiplication and hardware  
division  
Up to 12 timers  
– Up to three 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter  
– 16-bit, 6-channel advanced-control timer:  
up to 6 channels for PWM output, dead  
time generation and emergency stop  
Memories  
– 16 to 128 Kbytes of Flash memory  
– 4 to 8 Kbytes of SRAM  
Clock, reset and supply management  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR and programmable voltage  
detector (PVD)  
– One 16-bit timer, with 2 IC/OC, 1  
OCN/PWM, dead-time generation and  
emergency stop  
– 4-to-24 MHz crystal oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC  
Two 16-bit timers, each with  
IC/OC/OCN/PWM, dead-time generation  
and emergency stop  
– 2 watchdog timers (Independent and  
Window)  
– PLL for CPU clock  
– 32 kHz oscillator for RTC with calibration  
– SysTick timer: 24-bit downcounter  
Two 16-bit basic timers to drive the DAC  
Low power  
– Sleep, Stop and Standby modes  
Up to 8 communication interfaces  
– V  
supply for RTC and backup registers  
BAT  
2
– Up to two I C interfaces (SMBus/PMBus)  
Debug mode  
– Up to 3 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Serial wire debug (SWD) and JTAG  
interfaces  
– Up to 2 SPIs (12 Mbit/s)  
– Consumer electronics control (CEC)  
interface  
DMA  
– 7-channel DMA controller  
– Peripherals supported: timers, ADC, SPIs,  
CRC calculation unit, 96-bit unique ID  
2
I Cs, USARTs and DACs  
®
ECOPACK packages  
1 × 12-bit, 1.2 µs A/D converter (up to 16  
channels)  
Table 1.  
Device summary  
– Conversion range: 0 to 3.6 V  
Temperature sensor  
Reference  
Part number  
STM32F100x4  
STM32F100x6  
STM32F100C4, STM32F100R4  
STM32F100C6, STM32F100R6  
2 × 12-bit D/A converters  
Up to 80 fast I/O ports  
STM32F100C8, STM32F100R8,  
STM32F100V8  
STM32F100x8  
STM32F100xB  
– 37/51/80 I/Os, all mappable on 16 external  
interrupt vectors and almost all 5 V-tolerant  
STM32F100CB, STM32F100RB,  
STM32F100VB  
February 2010  
Doc ID 16455 Rev 2  
1/84  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.2.1  
ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 14  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 14  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 15  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.10 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.11 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.12 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.13 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.14 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.15 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . . 17  
2.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.16.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.16.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16 & TIM17) . 18  
2.16.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.16.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.16.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.16.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
²
2.17 I C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.18 Universal synchronous/asynchronous receiver transmitter (USART) . . . 20  
2.19 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.20 HDMI (high-definition multimedia interface) consumer  
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.21 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Contents  
2.22 Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.23 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.24 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.25 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.26 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3
4
5
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 35  
Embedded reset and power control block characteristics . . . . . . . . . . . 35  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 53  
5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5.3.14 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Doc ID 16455 Rev 2  
3/84  
Contents  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
5.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 80  
7
8
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F100xx features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
STM32F100xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Maximum current consumption in Run mode, code with data processing  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
STM32F100xxB maximum current consumption in Sleep mode, code  
Table 13.  
Table 14.  
running from Flash or RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 40  
Typical current consumption in Run mode, code with data processing  
Table 15.  
Table 16.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 43  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
HSE 4-24 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SCL frequency (f  
= 24 MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
R
max for f  
= 12 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Doc ID 16455 Rev 2  
5/84  
List of tables  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 74  
LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 75  
TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . 76  
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 78  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F100xx value line block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F100xx value line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM32F100xx value line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM32F100xx value line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM32F100xx value line TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12. Maximum current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 39  
Figure 13. Maximum current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 39  
Figure 14. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
DD  
Figure 15. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DD  
Figure 16. Typical current consumption in Standby mode versus temperature at V = 3.3 V and  
DD  
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 18. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 21. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 22. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 23. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 24. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 25. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 26. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
2
(1)  
Figure 27. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 28. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
(1)  
Figure 29. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 30. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
(1)  
Figure 31. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 33. Power supply and reference decoupling (V  
Figure 34. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 69  
). . . . . . . . . . . . . . . . . 69  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 35. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 36. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 74  
(1)  
Figure 37. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 38. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75  
(1)  
Figure 39. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 40. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . 76  
Figure 41. Recommended PCB design rules for pads (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 77  
Figure 42. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Doc ID 16455 Rev 2  
7/84  
List of figures  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
(1)  
Figure 43. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 44. LQFP100 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
D
A
8/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F100x4, STM32F100x6, STM32F100x8 and STM32F100xB value line  
microcontrollers. In the rest of the document, the STM32F100x4 and STM32F100x6 are  
referred to as low-density devices while the STM32F100x8 and STM32F100xB are  
identified as medium-density devices.  
The STM32F100xx datasheet should be read in conjunction with the low- and medium-  
density STM32F100xx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F100xx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
Doc ID 16455 Rev 2  
9/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
2
Description  
The STM32F100xx value line family incorporates the high-performance ARM Cortex™-M3  
32-bit RISC core operating at a 24 MHz frequency, high-speed embedded memories (Flash  
memory up to 128 Kbytes and SRAM up to 8 Kbytes), and an extensive range of enhanced  
peripherals and I/Os connected to two APB buses. All devices offer standard communication  
2
interfaces (up to two I Cs, two SPIs, one HDMI CEC, and up to three USARTs), one 12-bit  
ADC, two 12-bit DACs, up to six general-purpose 16-bit timers and an advanced-control  
PWM timer.  
The STM32F100xx low- and medium-density value line family operates in the –40 to +85 °C  
and –40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive  
set of power-saving mode allows the design of low-power applications.  
The STM32F100xx value line family includes devices in three different packages ranging  
from 48 pins to 100 pins. Depending on the device chosen, different sets of peripherals are  
included, the description below gives an overview of the complete range of peripherals  
proposed in this family.  
These features make the STM32F100xx value line microcontroller family suitable for a wide  
range of applications:  
Application control and user interface  
Medical and handheld equipment  
PC peripherals, gaming and GPS platforms  
Industrial applications: PLC, inverters, printers, and scanners  
Alarm systems, Video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
10/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
STM32F100Vx  
2.1  
Device overview  
Table 2.  
STM32F100xx features and peripheral counts  
Peripheral  
STM32F100Cx  
STM32F100Rx  
Flash - Kbytes  
SRAM - Kbytes  
16  
4
32  
4
64  
8
128  
8
16  
4
32  
4
64  
8
128  
8
64  
8
128  
8
Advanced-control  
1
1
6
2
2
3
1
1
6
2
2
3
1
6
2
2
3
Timers  
General-purpose  
5(1)  
1(2)  
1(3)  
2(4)  
5(1)  
1(2)  
1(3)  
2(4)  
SPI  
I2C  
Communication  
interfaces  
USART  
CEC  
1
12-bit synchronized ADC  
number of channels  
1
1
1
10 channels  
37  
16 channels  
51  
16 channels  
80  
GPIOs  
12-bit DAC  
2
2
Number of channels  
CPU frequency  
24 MHz  
Operating voltage  
2.0 to 3.6 V  
Ambient operating temperature: –40 to +85 °C /–40 to +105 °C (see Table 8)  
Junction temperature: –40 to +125 °C (see Table 8)  
Operating temperatures  
Packages  
LQFP48  
LQFP64, TFBGA64  
LQFP100  
1. TIM4 not present.  
2. SPI2 is not present.  
3. I2C2 is not present.  
4. USART3 is not present.  
Doc ID 16455 Rev 2  
11/84  
Description  
Figure 1.  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
STM32F100xx value line block diagram  
42!#%#,+  
42!#%$;ꢃꢂꢌ=  
AS !&  
4RACE  
CONTROLLER  
PBUS  
*4!'  37  
0OWER  
6
$$ꢀꢍ  
6
6
 ꢅꢄꢃ 6 TO ꢌꢄꢇ 6  
$$  
6OLTAGE REGꢄ  
ꢌꢄꢌ 6 TO ꢀꢄꢍ 6  
.*4234  
*4$)  
*4#+ꢊ37#,+  
*4-3ꢊ37$)/  
33  
)BUS  
&LASH ꢀꢅꢍ +"  
ꢌꢅ BIT  
#ORTEXꢆ-ꢌ #05  
 6$$ꢌꢌ  
*4$/  
AS !&  
$BUS  
3UPPLY  
&
 ꢅꢎ -(Z  
.6)#  
0/2  
MAX  
.234  
6$$!  
633!  
SUPERVISION  
32!-  
 +"  
2ESET  
0/2  0$2  
06$  
 6$$!  
)NT  
3YSTEM  
2# (3  
2# ,3  
 6$$!  
'0 $-!  
 6$$  
/3#?).  
/3#?/54  
 CHANNELS  
84!, /3#  
ꢎꢆꢅꢎ -(Z  
0,,  
)7$'  
0#,+ꢀ  
2ESET   
CLOCK  
CONTROL  
0#,+ꢅ  
(#,+  
&#,+  
3TANDBY  
INTERFACE  
6
 ꢀꢄꢍ6 TO ꢌꢄꢇ6  
"!4  
%84)4  
7+50  
 6  
ꢍꢃ !&  
"!4  
/3#ꢌꢅ?).  
/3#ꢌꢅ?/54  
84!, ꢌꢅ K(Z  
'0)/ PORT !  
'0)/ PORT "  
0!;ꢀꢁꢂꢃ=  
0";ꢀꢁꢂꢃ=  
0#;ꢀꢁꢂꢃ=  
0$;ꢀꢁꢂꢃ=  
0%;ꢀꢁꢂꢃ=  
"ACKUP  
REGISTER  
24#  
!75  
4!- 0%2ꢆ24#  
ꢈ!,!2- /54ꢉ  
"ACKUP INTERFACE  
'0)/ PORT #  
 CHANNELS  
AS !&  
 CHANNELS  
AS !&  
4)-ꢅ  
!("ꢅ  
!0"  
!("ꢅ  
!0"ꢀ  
'0)/ PORT $  
'0)/ PORT %  
4)-ꢌ  
ꢈꢀꢉ  
 CHANNELS  
AS !&  
4)-ꢎ  
 CHANNELSꢑ  COMPLꢄ  
CHANNEL AND "+).  
AS !&  
4)-ꢀꢁ  
4)-ꢀꢇ  
4)-ꢀꢐ  
28ꢑ48ꢑ #43ꢑ 243ꢑ  
#+ AS !&  
53!24ꢅ  
 CHANNELꢑ  COMPLꢄ  
CHANNEL AND "+).  
AS !&  
ꢈꢀꢉ  
28ꢑ48ꢑ #43ꢑ 243ꢑ  
#+ AS !&  
53!24ꢌ  
-/3)ꢑ -)3/ꢑ  
3#+ꢑ .33 AS !&  
ꢈꢀꢉ  
 CHANNELꢑ  COMPLꢄ  
CHANNEL AND "+).  
AS !&  
30)ꢅ  
($-) #%#  
)ꢅ#ꢀ  
($-) #%# AS !&  
 CHANNELSꢑ  COMPLꢄ  
CHANNELSꢑ %42 AND  
"+). AS !&  
4)-ꢀ  
3#,ꢑ 3$!ꢑ 3-"! AS !&  
3#,ꢑ 3$!ꢑ 3-"! AS !&  
-/3)ꢑ -)3/ꢑ  
3#+ꢑ .33 AS !&  
30)ꢀ  
ꢈꢀꢉ  
)ꢅ#ꢅ  
77$'  
28ꢑ48ꢑ #43ꢑ 243ꢑ  
#+ AS !&  
53!24ꢀ  
4EMP SENSOR  
ꢀꢅꢆBIT $!#ꢀ  
ꢀꢅꢆBIT $!#ꢅ  
)&  
4)-ꢇ  
4)-ꢐ  
$!#ꢀ?/54 AS !&  
$!#?/54 AS !&  
ꢀꢇ !$# CHANNELS  
ꢈ!$#?).Xꢉ  
ꢀꢅꢆBIT !$#ꢀ )&  
6
2%&ꢏ  
 6$$!  
6
2%&n  
 6$$!  
AIꢀꢁꢓꢃꢀB  
1. Peripherals not present in low-density value line devices.  
2. AF = alternate function on I/O port pin.  
3. TA = –40 °C to +85 °C (junction temperature up to 105 °C) or TA = –40 °C to +105 °C (junction temperature up to 125 °C).  
12/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
Figure 2.  
Clock tree  
 -(Z  
(3) 2#  
(3)  
ꢊꢅ  
(#,+  
ꢅꢎ -(Z MAX  
TO !(" BUSꢑ COREꢑ  
MEMORY AND $-!  
#LOCK  
%NABLE  
TO #ORTEX 3YSTEM TIMER  
ꢊꢍ  
37  
0,,32#  
&#,+ #ORTEX  
FREE RUNNING CLOCK  
ꢅꢎ -(Z MAX  
0,,-5,  
(3)  
!("  
0RESCALER  
ꢊꢀꢑ ꢅꢄꢄꢁꢀꢅ  
!0"ꢀ  
0RESCALER  
ꢊꢀꢑ ꢅꢑ ꢎꢑ ꢍꢑ ꢀꢇ  
393#,+  
ꢄꢄꢄꢑ Xꢀꢇ  
Xꢅꢑ Xꢌꢑ Xꢎ  
0,,  
0#,+ꢀ  
0,,#,+  
(3%  
ꢅꢎ -(Z  
MAX  
TO !0"ꢀ  
PERIPHERALS  
0ERIPHERAL #LOCK  
%NABLE  
4)-ꢅꢑꢌꢑꢎꢑꢇꢑꢐ  
)F ꢈ!0"ꢀ PRESCALER ꢋꢀꢉ Xꢀ  
ELSE Xꢅ  
TO 4)-ꢅꢑꢌꢑꢎꢑꢇ AND   
4)-X#,+  
#33  
0ERIPHERAL #LOCK  
%NABLE  
02%$)6ꢀ  
!0"ꢅ  
0RESCALER  
ꢊꢀꢑ ꢅꢑ ꢎꢑ ꢍꢑ ꢀꢇ  
ꢅꢎ -(Z MAX  
0#,+ꢅ  
ꢊꢀꢊꢅꢊꢌꢄꢄꢄꢊ  
ꢄꢄꢄꢊꢀꢁꢊꢀꢇ  
/3#?/54  
/3#?).  
PERIPHERALS TO !0"ꢅ  
ꢎꢆꢅꢎ -(Z  
(3% /3#  
0ERIPHERAL #LOCK  
%NABLE  
TO 4)-ꢀꢑ 4)-ꢀꢁꢑ  
4)-ꢀꢇ AND 4)-ꢀꢐ  
4)-ꢀꢊꢀꢁꢊꢀꢇꢊꢀꢐ TIMERS  
)F ꢈ!0"ꢅ PRESCALER ꢋꢀꢉ Xꢀ  
ELSE Xꢅ  
4)-X#,+  
0ERIPHERAL #LOCK  
%NABLE  
ꢊꢀꢅꢍ  
,3%  
!$#  
0RESCALER  
ꢊꢅꢑ ꢎꢑ ꢇꢑ   
TO !$#ꢀ  
/3#ꢌꢅ?).  
TO 24#  
,3% /3#  
!$##,+ ꢀꢅ -(Z MAX  
24##,+  
ꢌꢅꢄꢐꢇꢍ K(Z  
/3#ꢌꢅ?/54  
24#3%,;ꢀꢂꢃ=  
TO INDEPENDENT WATCHDOG ꢈ)7$'ꢉ  
)7$'#,+  
,3)  
,3) 2#  
ꢎꢃ K(Z  
,EGENDꢀ  
-AIN  
CLOC K OUT PUT  
ꢊꢅ  
0,,#,+  
(3%  (IGHꢆSPEED EXTERNAL CLOCK SIGNAL  
(3)  (IGHꢆSPEED INTERNAL CLOCK SIGNAL  
,3)  ,OWꢆSPEED INTERNAL CLOCK SIGNAL  
,3%  ,OWꢆSPEED EXTERNAL CLOCK SIGNAL  
-#/  
(3)  
(3%  
393#,+  
-#/  
AIꢀꢐꢌꢀꢀ  
4. To have an ADC conversion time of 1.2 µs, APB2 must be at 24 MHz.  
Doc ID 16455 Rev 2  
13/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
2.2  
Overview  
®
2.2.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F100xx value line family having an embedded ARM core, is therefore  
compatible with all ARM tools and software.  
2.3  
2.4  
Embedded Flash memory  
Up to 128 Kbytes of embedded Flash memory is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
2.5  
Embedded SRAM  
Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
14/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
2.6  
Nested vectored interrupt controller (NVIC)  
The STM32F100xx value line embeds a nested vectored interrupt controller able to handle  
up to 41 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3)  
and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
2.7  
2.8  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 18 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-24 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 24 MHz.  
2.9  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1. For further details please refer to AN2606.  
Doc ID 16455 Rev 2  
15/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
2.10  
Power supply schemes  
V
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
2.11  
Power supply supervisor  
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
2.12  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop mode  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode, providing high  
impedance output.  
2.13  
Low-power modes  
The STM32F100xx value line supports three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low power mode.  
16/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output or the RTC alarm.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
2.14  
DMA  
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, DAC, I C, USART, all timers and  
ADC.  
2.15  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the VBAT pin. The backup registers are ten 16-bit  
DD  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural crystal deviation. The RTC  
features a 32-bit programmable counter for long term measurement using the Compare  
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by  
default configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.16  
Timers and watchdogs  
The STM32F100xx devices include an advanced-control timer, six general-purpose timers,  
two basic timers and two watchdog timers.  
Table 3 compares the features of the advanced-control, general-purpose and basic timers.  
Doc ID 16455 Rev 2  
17/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 3.  
Timer  
Timer feature comparison  
Counter  
Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
Up,  
down,  
Any integer  
between 1  
TIM1  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
4
Yes  
up/down and 65536  
TIM2,  
TIM3,  
TIM4  
Up,  
down,  
Any integer  
between 1  
Yes  
Yes  
Yes  
Yes  
4
2
1
0
No  
Yes  
Yes  
No  
up/down and 65536  
Any integer  
TIM15  
Up  
Up  
Up  
between 1  
and 65536  
Any integer  
between 1  
and 65536  
TIM16,  
TIM17  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
2.16.1  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6  
channels. It has complementary PWM outputs with programmable inserted dead times. It  
can also be seen as a complete general-purpose timer. The 4 independent channels can be  
used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard TIM timers which have the same  
architecture. The advanced control timer can therefore work together with the TIM timers via  
the Timer Link feature for synchronization or event chaining.  
2.16.2  
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16 & TIM17)  
There are six synchronizable general-purpose timers embedded in the STM32F100xx  
devices (see Table 3 for differences). Each general-purpose timers can be used to generate  
PWM outputs, or as simple time base.  
TIM2, TIM3, TIM4  
STM32F100xx devices feature three synchronizable 4-channels general-purpose timers.  
These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler.  
They feature 4 independent channels each for input capture/output compare, PWM or one-  
18/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
pulse mode output. This gives up to 12 input captures/output compares/PWMs on the  
largest packages.  
The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM1  
advanced-control timer via the Timer Link feature for synchronization or event chaining.  
TIM2, TIM3, TIM4 all have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Their counters can be frozen in debug mode.  
TIM15, TIM16 and TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single  
channel for input capture/output compare, PWM or one-pulse mode output.  
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with  
TIM1 via the Timer Link feature for synchronization or event chaining.  
TIM15 can be synchronized with TIM16 and TIM17.  
TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and  
independent DMA request generation  
Their counters can be frozen in debug mode.  
2.16.3  
2.16.4  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to  
reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
2.16.5  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
Doc ID 16455 Rev 2  
19/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
2.16.6  
SysTick timer  
This timer is dedicated for OS, but could also be used as a standard down counter. It  
features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
²
2.17  
2.18  
I C bus  
The I²C bus interface can operate in multimaster and slave modes. It can support standard  
and fast modes.  
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode.  
A hardware CRC generation/verification is embedded.  
The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The STM32F100xx value line embeds three universal synchronous/asynchronous receiver  
transmitters (USART1, USART2 and USART3).  
The available USART interfaces communicate at up to 3 Mbit/s. They provide hardware  
management of the CTS and RTS signals, they support IrDA SIR ENDEC, the  
multiprocessor communication mode, the single-wire half-duplex communication mode and  
have LIN Master/Slave capability.  
The USART interfaces can be served by the DMA controller.  
2.19  
2.20  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate up to 12 Mbit/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits.  
Both SPIs can be served by the DMA controller.  
HDMI (high-definition multimedia interface) consumer  
electronics control (CEC)  
The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware  
support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI  
standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead.  
20/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Description  
2.21  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
2.22  
Remap capability  
This feature allows the use of a maximum number of peripherals in a given application.  
Indeed, alternate functions are available not only on the default pins but also on other  
specific pins onto which they are remappable. This has the advantage of making board  
design and port usage much more flexible.  
For details refer to Table 4: STM32F100xx pin definitions; it shows the list of remappable  
alternate functions and the pins onto which they can be remapped. See the STM32F10xxx  
reference manual for software considerations.  
2.23  
2.24  
ADC (analog-to-digital converter)  
The 12-bit analog to digital converter has up to 16 external channels and performs  
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed  
on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in noninverting configuration.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
up to 10-bit output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channels’ independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Doc ID 16455 Rev 2  
21/84  
Description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Eight DAC trigger inputs are used in the STM32F100xx. The DAC channels are triggered  
through the timer update outputs that are also connected to different DMA channels.  
2.25  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V  
< 3.6 V. The temperature sensor is internally  
DDA  
connected to the ADC1_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
2.26  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
22/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Pinouts and pin description  
3
Pinouts and pin description  
Figure 3.  
STM32F100xx value line LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
VDD_5 11  
LQFP100  
OSC_IN  
OSC_OUT  
NRST  
PC0  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PA0-WKUP  
PA1  
PD8  
PB15  
PB14  
PB13  
PB12  
PA2  
ai14386b  
Doc ID 16455 Rev 2  
23/84  
Pinouts and pin description  
Figure 4.  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
STM32F100xx value line LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14387b  
Figure 5.  
STM32F100xx value line LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
1
2
3
4
5
6
7
8
9
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai14378d  
24/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Pinouts and pin description  
Figure 6.  
STM32F100xx value line TFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
OSC32_IN  
PC13-  
TAMPER-RTC  
A
B
PB9  
PB8  
PB7  
PB6  
PB4  
BOOT0  
PB5  
PB3  
PD2  
PA15  
PC11  
PA10  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
PC15-  
OSC32_OUT  
V
BAT  
C
D
E
F
OSC_IN  
V
PC12  
SS_4  
OSC_OUT  
NRST  
V
V
V
V
PA8  
DD_4  
SS_3  
SS_2  
SS_1  
PC1  
PC2  
PC0  
PA2  
V
V
V
PC7  
PC8  
DD_3  
DD_2  
DD_1  
V
PA5  
PB0  
PC6  
PB15  
PB14  
SSA  
V
REF+  
G
H
PA0-WKUP  
PA1  
PA3  
PA4  
PA6  
PA7  
PB1  
PC4  
PB2  
PC5  
PB10  
PB11  
PB13  
PB12  
V
DDA  
AI15494  
Table 4.  
Pins  
STM32F100xx pin definitions  
Pin name  
Alternate functions(3)(4)  
Default  
Main  
function(3)  
Remap  
(after reset)  
1
2
3
4
5
6
-
-
-
-
-
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECLK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
-
-
-
-
-
-
-
-
-
-
1
B2  
1
PC13-TAMPER-  
RTC(5)  
7
2
A2  
2
I/O  
PC13(6)  
TAMPER-RTC  
Doc ID 16455 Rev 2  
25/84  
Pinouts and pin description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 4.  
Pins  
STM32F100xx pin definitions (continued)  
Alternate functions(3)(4)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
PC14-  
8
9
3
A1  
B1  
3
4
I/O  
I/O  
PC14(6)  
PC15(6)  
OSC32_IN  
OSC32_IN(5)  
PC15-  
4
OSC32_OUT  
OSC32_OUT(5)  
10  
11  
12  
13  
14  
15  
16  
-
-
-
-
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
S
S
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
-
-
5
6
7
8
9
C1  
D1  
E1  
E3  
E2  
5
6
7
-
I
O
I/O  
I/O  
I/O  
I/O  
I/O  
S
ADC1_IN10  
ADC1_IN11  
ADC1_IN12  
ADC1_IN13  
-
PC1  
PC1  
17 10 F2  
-
PC2  
PC2  
(7)  
18 11  
-
-
PC3  
PC3  
19 12 F1  
8
-
VSSA  
VSSA  
20  
21  
-
-
-
VREF-  
VREF+  
VDDA  
S
VREF-  
VREF+  
VDDA  
G1  
-
S
22 13 H1  
9
S
WKUP / USART2_CTS(12)  
/
23 14 G2 10  
24 15 H2 11  
25 16 F3 12  
26 17 G3 13  
PA0-WKUP  
PA1  
I/O  
I/O  
I/O  
I/O  
PA0  
PA1  
PA2  
PA3  
ADC1_IN0 / TIM2_CH1_ETR(12)  
USART2_RTS(12)/ ADC1_IN1 /  
TIM2_CH2(12)  
USART2_TX(12)/ ADC1_IN2 /  
TIM2_CH3(12)/ TIM15_CH1(12)  
PA2  
USART2_RX(12)/ ADC1_IN3 /  
TIM2_CH4(12) / TIM15_CH2(12)  
PA3  
27 18 C2  
28 19 D2  
-
-
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS(12)/ADC1_IN4  
29 20 H3 14  
30 21 F4 15  
31 22 G4 16  
32 23 H4 17  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
USART2_CK(12) / DAC1_OUT  
SPI1_SCK(12)/ADC1_IN5 /  
DAC2_OUT  
SPI1_MISO(12)/ADC1_IN6 /  
TIM3_CH1(12)  
TIM1_BKIN /  
TIM16_CH1  
SPI1_MOSI(12)/ADC1_IN7 /  
TIM3_CH2(12)  
TIM1_CH1N /  
TIM17_CH1  
PA7  
PC4  
I/O  
I/O  
PA7  
PC4  
33 24 H5  
-
ADC1_IN14  
26/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Pinouts and pin description  
Alternate functions(3)(4)  
Table 4.  
Pins  
STM32F100xx pin definitions (continued)  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
34 25 H6  
-
PC5  
PB0  
I/O  
I/O  
I/O  
PC5  
PB0  
PB1  
ADC1_IN15  
35 26 F5 18  
36 27 G5 19  
37 28 G6 20  
ADC1_IN8/TIM3_CH3(12)  
ADC1_IN9/TIM3_CH4(12)  
TIM1_CH2N  
TIM1_CH3N  
PB1  
PB2  
I/O FT PB2/BOOT1  
38  
39  
40  
41  
42  
43  
44  
45  
46  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE7  
PE8  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
PE8  
PE9  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH3 /  
CEC  
(12)  
47 29 G7 21  
PB10  
I/O FT  
PB10  
I2C2_SCL(8)/USART3_TX  
48 30 H7 22  
49 31 D6 23  
50 32 E6 24  
PB11  
VSS_1  
VDD_1  
I/O FT  
PB11  
VSS_1  
VDD_1  
I2C2_SDA(8)/USART3_RX(12)  
TIM2_CH4  
S
S
SPI2_NSS(9)/ I2C2_SMBA(8)  
/
51 33 H8 25  
52 34 G8 26  
53 35 F8 27  
54 36 F7 28  
PB12  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PB12  
PB13  
PB14  
PB15  
TIM1_BKIN(12)/USART3_CK(12)  
SPI2_SCK(9) /TIM1_CH1N(12)  
USART3_CTS(12)  
SPI2_MISO(9)/ TIM1_CH2N(12)  
USART3_RTS(12)  
/
TIM15_CH1  
TIM15_CH2  
SPI2_MOSI(9) / TIM1_CH3N /  
TIM15_CH1N(12)  
55  
56  
57  
58  
-
-
-
-
-
-
-
-
-
-
-
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
PD10  
PD11  
PD10  
PD11  
TIM4_CH1(10)  
USART3_RTS  
/
59  
-
-
-
PD12  
I/O FT  
PD12  
60  
61  
-
-
-
-
-
-
PD13  
PD14  
I/O FT  
I/O FT  
PD13  
PD14  
TIM4_CH2(10)  
TIM4_CH3(10)  
Doc ID 16455 Rev 2  
27/84  
Pinouts and pin description  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 4.  
Pins  
STM32F100xx pin definitions (continued)  
Alternate functions(3)(4)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
62  
-
-
-
-
PD15  
PC6  
PC7  
PC8  
PC9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD15  
PC6  
PC7  
PC8  
PC9  
TIM4_CH4(10)  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
63 37 F6  
64 38 E7  
65 39 E8  
66 40 D8  
-
USART1_CK / MCO /  
TIM1_CH1  
67 41 D7 29  
PA8  
I/O FT  
PA8  
68 42 C7 30  
69 43 C6 31  
70 44 C8 32  
71 45 B8 33  
PA9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PA9  
USART1_TX(12) / TIM1_CH2  
USART1_RX(12) / TIM1_CH3  
USART1_CTS / TIM1_CH4  
USART1_RTS / TIM1_ETR  
TIM15_BKIN  
TIM17_BKIN  
PA10  
PA11  
PA12  
PA10  
PA11  
PA12  
JTMS-  
SWDIO  
72 46 A8 34  
PA13  
I/O FT  
PA13  
73  
-
-
-
Not connected  
VSS_2  
74 47 D5 35  
75 48 E5 36  
VSS_2  
VDD_2  
S
S
VDD_2  
JTCK/SWCL  
K
76 49 A7 37  
77 50 A6 38  
PA14  
PA15  
I/O FT  
I/O FT  
PA14  
TIM2_CH1_ETR  
/ PA15/  
JTDI  
SPI1_NSS  
78 51 B7  
79 52 B6  
80 53 C5  
-
-
PC10  
PC11  
PC12  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
USART3_TX  
USART3_RX  
USART3_CK  
-
81  
82  
5
6
C1  
D1  
5
6
I/O FT OSC_IN(11)  
I/O FT OSC_OUT(11)  
83 54 B5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
TIM3_ETR  
84  
85  
86  
87  
88  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
TIM2_CH2 / PB3  
TRACESWO  
SPI1_SCK  
89 55 A5 39  
PB3  
I/O FT  
JTDO  
28/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Pinouts and pin description  
Alternate functions(3)(4)  
Table 4.  
Pins  
STM32F100xx pin definitions (continued)  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
PB4 / TIM3_CH1  
SPI1_MISO  
90 56 A4 40  
91 57 C4 41  
92 58 D3 42  
PB4  
PB5  
PB6  
I/O FT  
I/O  
NJTRST  
PB5  
TIM3_CH2 /  
SPI1_MOSI  
I2C1_SMBA / TIM16_BKIN  
I2C1_SCL(12)/ TIM4_CH1(10)(12)  
TIM16_CH1N  
I/O FT  
PB6  
USART1_TX  
USART1_RX  
I2C1_SDA(12)/ TIM17_CH1N  
TIM4_CH2(10)(12)  
93 59 C3 43  
94 60 B4 44  
95 61 B3 45  
PB7  
BOOT0  
PB8  
I/O FT  
I
PB7  
BOOT0  
PB8  
TIM4_CH3(10)(12)  
TIM16_CH1(12) / CEC(12)  
/
I/O FT  
I2C1_SCL  
I2C1_SDA  
TIM4_CH4(10)(12)  
TIM17_CH1(12)  
/
96 62 A3 46  
PB9  
I/O FT  
PB9  
97  
98  
-
-
-
-
-
-
PE0  
PE1  
I/O FT  
PE0  
PE1  
TIM4_ETR(10)  
I/O FT  
99 63 D4 47  
100 64 E4 48  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply, HiZ= high impedance.  
2. FT= 5 V tolerant.  
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be  
called SPI1, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch and since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is restricted: the speed should not exceed 2 MHz with a maximum  
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The VREF+ functionality is provided instead.  
8. I2C2 is not present on low-density value line devices.  
9. SPI2 is not present on low-density value line devices.  
10. TIM4 is not present on low-density value line devices.  
11. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages and C1 and C2 in the  
TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be  
remapped by software on these pins. For more details, refer to the Alternate function I/O and debug configuration section in  
the STM32F10xxx reference manual.  
12. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
Doc ID 16455 Rev 2  
29/84  
Memory mapping  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
4
Memory mapping  
The memory map is shown in Figure 7.  
Figure 7.  
Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
0x4002 3400  
CRC  
0x4002 3000  
reserved  
0x4002 2400  
Flash interface  
0xFFFF FFFF  
0x4002 2000  
reserved  
0x4002 1400  
RCC  
0x4002 1000  
7
reserved  
0x4002 0400  
0xE010 0000  
0xE000 0000  
DMA  
0x4002 0000  
Cortex-M3 internal  
peripherals  
reserved  
0x4001 4C00  
TIM17  
0x4001 4800  
TIM16  
0x4001 4400  
6
TIM15  
0x4001 4000  
reserved  
0x4001 3C00  
0xC000 0000  
USART1  
0x4001 3800  
reserved  
0x4001 3400  
SPI1  
0x4001 3000  
5
TIM1  
0x4001 2C00  
reserved  
0xA000 0000  
0x4001 2800  
ADC1  
0x4001 2400  
reserved  
0x4001 1C00  
Port E  
0x4001 1800  
4
0x1FFF FFFF  
reserved  
Port D  
Port C  
Port B  
Port A  
EXTI  
0x4001 1400  
0x4001 1000  
0x4001 0C00  
0x4001 0800  
0x4001 0400  
0x4001 0000  
0x4000 7C00  
0x4000 7800  
0x1FFF F80F  
0x8000 0000  
Option Bytes  
0x1FFF F800  
System memory  
3
AFIO  
0x1FFF F000  
reserved  
CEC  
0x6000 0000  
DAC  
0x4000 7400  
0x4000 7000  
0x4000 6C00  
0x4000 5C00  
0x4000 5800  
0x4000 5400  
2
PWR  
BKP  
reserved  
Peripherals  
I2C2  
0x4000 0000  
reserved  
I2C1  
1
reserved  
USART3  
USART2  
0x4000 4C00  
0x4000 4800  
0x4000 4400  
SRAM  
0x2000 0000  
0x0801 FFFF  
reserved  
SPI2  
0x4000 3C00  
0x4000 3800  
0x4000 3400  
0x4000 3000  
0x4000 2C00  
0x4000 2800  
Flash memory  
0
reserved  
IWDG  
0x0800 0000  
0x0000 0000  
Aliased to Flash or  
system memory  
depending on  
BOOT pins  
WWDG  
RTC  
0x0000 0000  
reserved  
Reserved  
0x4000 1800  
0x4000 1400  
0x4000 1000  
0x4000 0C00  
0x4000 0800  
0x4000 0400  
0x4000 0000  
TIM7  
TIM6  
reserved  
TIM4  
TIM3  
TIM2  
ai17156  
30/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Doc ID 16455 Rev 2  
31/84  
Electrical characteristics  
Figure 8.  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Pin loading conditions  
Figure 9.  
Pin input voltage  
STM32F10xxx pin  
STM32F10xxx pin  
C= 50 pF  
V
IN  
ai14124b  
ai14123b  
5.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wake-up logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 4.7 µF  
V
SS  
1/2/3/4/5  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai14125d  
Caution:  
In Figure 10, the 4.7 µF capacitor must be connected to V  
.
DD3  
32/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,  
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 5.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including  
VDD VSS  
–0.3  
4.0  
(1)  
VDDA and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
+5.5  
VDD+0.3  
50  
VIN  
|VDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|VSSX VSS  
|
50  
see Section 5.3.11:Absolute  
maximum ratings (electrical  
sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 6: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is  
induced by VIN<VSS  
.
Doc ID 16455 Rev 2  
33/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 6.  
Symbol  
Current characteristics  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
IIO  
25  
5
mA  
Injected current on High-speed external OSC_IN and Low-  
speed external OSC_IN pins  
5
(2)(3)  
IINJ(PIN)  
Injected current on the PA5 and PA6 pins(4)  
Injected current on any other pin(4)  
+5 / –0  
5
Total injected current (sum of all I/O and control pins)(4)  
25  
(2)  
IINJ(PIN)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 7.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 8.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
24  
24  
24  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
Analog operating voltage  
(ADC used)  
2.4  
34/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
Table 8.  
Symbol  
General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
VBAT  
Backup operating voltage  
1.8  
3.6  
434  
444  
308  
363  
85  
V
LQFP100  
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(2)  
LQFP64  
TFBGA64  
LQFP48  
PD  
mW  
Maximum power dissipation –40  
Low power dissipation(3)  
–40  
Maximum power dissipation –40  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Low power dissipation(3)  
–40  
–40  
–40  
6 suffix version  
Junction temperature range  
7 suffix version  
1. When the ADC is used, refer to Table 41: ADC characteristics.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 79).  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 79).  
5.3.2  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 9.  
Symbol  
Operating conditions at power-up / power-down  
Parameter  
VDD rise time rate  
DD fall time rate  
Min  
Max  
Unit  
0
tVDD  
µs/V  
V
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 10 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Doc ID 16455 Rev 2  
35/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
.
Table 10. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1  
2
2.18 2.26  
2.08 2.16  
V
V
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92 2.0  
40  
V
(2)  
VPDRhyst  
PDR hysteresis  
mV  
ms  
(2)  
tRSTTEMPO  
Reset temporization  
1.5  
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
36/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
5.3.4  
Embedded reference voltage  
The parameters given in Table 11 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 11. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
–40 °C < TA < +105 °C 1.16 1.20  
1.26  
1.24  
V
V
VREFINT Internal reference voltage  
–40 °C < TA < +85 °C  
1.16 1.20  
5.1  
ADC sampling time when  
reading the internal  
reference voltage  
(1)  
17.1(2)  
10  
TS_vrefint  
µs  
Internal reference voltage  
spread over the temperature  
range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
mV  
(2)  
TCoeff  
Temperature coefficient  
100 ppm/°C  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
, f  
= f  
PCLK1  
HCLK PCLK2 HCLK  
The parameters given in Table 12 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Doc ID 16455 Rev 2  
37/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 12. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
24 MHz  
16 MHz  
8 MHz  
15.4  
11  
15.7  
11.5  
6.9  
External clock (2), all  
peripherals enabled  
Supply  
current in  
Run mode  
6.7  
10.3  
7.8  
5.1  
IDD  
mA  
24 MHz  
16 MHz  
8 MHz  
10.5  
8.1  
External clock(2), all  
peripherals disabled  
5.3  
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 13. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
24 MHz  
16 MHz  
8 MHz  
14.5  
10  
15  
10.5  
6.3  
9.7  
7.2  
4.7  
External clock (2), all  
peripherals enabled  
6
Supply current  
in Run mode  
IDD  
mA  
24MHz  
16 MHz  
8 MHz  
9.3  
6.8  
4.4  
External clock(2) all  
peripherals disabled  
1. Based on characterization, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
38/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
Figure 12. Maximum current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
ꢀꢇ  
ꢀꢎ  
ꢀꢅ  
ꢀꢃ  
ꢅꢎ -(Z  
ꢀꢇ -(Z  
 -(Z  
nꢎꢃ  
#
ꢅꢁ  
#
ꢍꢁ  
#
ꢀꢃꢁ #  
4EMPERATURE  #ꢉ  
AIꢀꢐꢐꢇꢁ  
Figure 13. Maximum current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
ꢀꢃ  
ꢅꢎ -(Z  
ꢀꢇ -(Z  
 -(Z  
nꢎꢃ  
#
ꢅꢁ  
#
ꢍꢁ  
#
ꢀꢃꢁ #  
4EMPERATURE  #ꢉ  
AIꢀꢐꢐꢇꢇ  
Table 14. STM32F100xxB maximum current consumption in Sleep mode, code  
running from Flash or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
TA = 105 °C  
24 MHz  
16 MHz  
8 MHz  
9.6  
7.1  
4.5  
3.8  
3.3  
2.7  
10  
7.5  
4.8  
4
External clock(2) all  
peripherals enabled  
Supply current  
in Sleep mode  
IDD  
mA  
24 MHz  
16 MHz  
8 MHz  
External clock(2), all  
peripherals disabled  
3.5  
3
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 16455 Rev 2  
39/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
(1)  
Table 15. Typical and maximum current consumptions in Stop and Standby modes  
Typ(2)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
VDD/VBAT VDD/ VBAT VDD/VBAT TA =  
TA =  
= 2.0 V  
= 2.4 V  
= 3.3 V 85 °C 105 °C  
Regulator in Run mode,  
Low-speed and high-speed  
internal RC oscillators and high-  
speed oscillator OFF (no  
independent watchdog)  
23.5  
24  
14  
190  
170  
350  
330  
Supply current  
in Stop mode  
Regulator in Low-Power mode,  
Low-speed and high-speed  
internal RC oscillators and high-  
speed oscillator OFF (no  
13.5  
independent watchdog)  
IDD  
Low-speed internal RC oscillator  
and independent watchdog ON  
µA  
2.6  
2.4  
3.4  
3.2  
-
-
-
-
Low-speed internal RC oscillator  
ON, independent watchdog OFF  
Supply current  
in Standby  
mode  
Low-speed internal RC oscillator  
and independent watchdog OFF,  
low-speed oscillator and RTC  
OFF  
1.7  
1.1  
2
4
5
Backup  
IDD_VBAT domain supply  
current  
Low-speed oscillator and RTC  
ON  
0.9  
1.4  
2.0  
2.3  
1. TBD stands for to be determined.  
2. Typical values are measured at TA = 25 °C.  
Figure 14. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
ꢀꢇꢃ  
ꢀꢎꢃ  
ꢀꢅꢃ  
ꢀꢃꢃ  
ꢍꢃ  
ꢌꢄꢌ 6  
ꢌꢄꢇ 6  
ꢇꢃ  
ꢎꢃ  
ꢅꢃ  
nꢎꢁ  
#
ꢅꢁ  
#
ꢍꢁ  
#
ꢀꢃꢁ #  
AIꢀꢐꢅꢍꢀ  
4EMPERATURE  #ꢉ  
40/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
Figure 15. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
ꢀꢇꢃ  
ꢀꢎꢃ  
ꢀꢅꢃ  
ꢀꢃꢃ  
ꢍꢃ  
ꢌꢄꢌ 6  
ꢌꢄꢇ 6  
ꢇꢃ  
ꢎꢃ  
ꢅꢃ  
nꢎꢁ  
#
ꢅꢁ  
#
ꢍꢁ  
#
ꢀꢃꢁ #  
AIꢀꢐꢅꢍꢅ  
4EMPERATURE  #ꢉ  
Figure 16. Typical current consumption in Standby mode versus temperature at V = 3.3 V and  
DD  
3.6 V  
ꢌꢄꢁ  
ꢅꢄꢁ  
ꢌꢄꢌ 6  
ꢌꢄꢇ 6  
ꢀꢄꢁ  
ꢃꢄꢁ  
nꢎꢁ  
#
ꢅꢁ  
#
ꢍꢁ  
#
ꢀꢃꢁ #  
4EMPERATURE  #ꢉ  
AIꢀꢐꢅꢍꢌ  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
When the peripherals are enabled f = f , f = f  
, f  
= f  
PCLK2  
/2  
PCLK1  
HCLK PCLK2  
HCLK ADCCLK  
The parameters given in Table 16 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Doc ID 16455 Rev 2  
41/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 16. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typical values(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals All peripherals  
enabled(2)  
disabled  
24 MHz  
16 MHz  
8 MHz  
15.4  
11.2  
6.2  
9
6.50  
3.9  
2.5  
1.8  
1.35  
1.2  
1
Running on high-speed  
external clock with an  
8 MHz crystal(3)  
4 MHz  
3.75  
2.3  
2 MHz  
1 MHz  
1.65  
1.3  
500 kHz  
125 kHz  
24 MHz  
16 MHz  
8 MHz  
Supply  
1.1  
IDD  
current in  
mA  
15  
8.4  
6.1  
3.4  
1.9  
1.15  
0.8  
0.6  
0.43  
Run mode  
10.3  
5.5  
4 MHz  
3.1  
Running on high-speed  
internal RC (HSI)  
2 MHz  
1.7  
1 MHz  
1
500 kHz  
125 kHz  
0.75  
0.5  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In  
applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. AHB prescaler used to reduce the frequency (when fHCLK > 8 MHz).  
42/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
Table 17. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typical values(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
24 MHz  
16 MHz  
8 MHz  
9.8  
7
2.6  
2
3.8  
2.5  
1.7  
1.35  
1.1  
1
1.3  
1.2  
1.1  
1
Running on high-speed  
external clock with an  
8 MHz crystal(3)  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
24 MHz  
16 MHz  
8 MHz  
1
Supply  
0.95  
2
current in  
Sleep  
IDD  
mA  
9.6  
6.8  
3.2  
1.9  
1.1  
0.75  
0.56  
0.43  
mode  
1.4  
0.7  
0.55  
0.46  
0.41  
0.39  
0.37  
4 MHz  
Running on high-speed  
internal RC (HSI)  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In  
applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. AHB prescaler used to reduce the frequency (when fHCLK > 8 MHz).  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 5.  
Doc ID 16455 Rev 2  
43/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 18. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C(1)  
Unit  
TIM2  
0.52  
0.46  
0.5  
TIM3  
TIM4  
TIM6  
0.125  
0.19  
0.5(2)  
0.13  
0.2  
TIM7  
DAC  
APB1  
WWDG  
SPI2  
USART2  
USART3  
I2C1  
0.38  
0.32  
0.27  
0.28  
0.16  
0.25  
0.12  
0.18  
0.15  
0.15  
0.15  
0.12  
0.27  
0.63  
0.33  
0.26  
0.25  
I2C2  
HDMI CEC  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
ADC1(3)  
SPI1  
mA  
APB2  
USART1  
TIM1  
TIM15  
TIM16  
TIM17  
1. fHCLK = fAPB1 = fAPB2 = 24 MHz, default prescaler value for each peripheral.  
2. Specific conditions for DAC: EN1 bit in DAC_CR register set to 1.  
3. Specific conditions for ADC: fHCLK = 24 MHz, fAPB1 = fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit in the  
ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 19 result from tests performed using an high-speed  
external clock source, and under the ambient temperature and supply voltage conditions  
summarized in Table 8.  
44/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 19. High-speed external user clock characteristics  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
24  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
45  
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
5
pF  
%
DuCy(HSE) Duty cycle  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
The characteristics given in Table 20 result from tests performed using an low-speed  
external clock source, and under the ambient temperature and supply voltage conditions  
summarized in Table 8.  
Table 20. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
tw(LSE)  
tw(LSE)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
ns  
tr(LSE)  
tf(LSE)  
50  
Cin(LSE) OSC32_IN input capacitance(1)  
5
pF  
%
DuCy(LSE) Duty cycle  
30  
70  
1
IL  
OSC32_IN Input leakage current VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
Doc ID 16455 Rev 2  
45/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 17. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
clock source  
I
L
OSC _IN  
STM32F10xxx  
ai14127b  
Figure 18. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
clock source  
I
L
OSC32_IN  
STM32F10xxx  
ai14140c  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 21. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
46/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 21. HSE 4-24 MHz oscillator characteristics  
Electrical characteristics  
(1)(2)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
4
8
24  
MHz  
RF  
Feedback resistor  
200  
k  
Recommended load capacitance  
versus equivalent serial  
CL1  
RS = 30  
DD = 3.3 V  
30  
pF  
(3)  
CL2  
resistance of the crystal (RS)(4)  
V
i2  
HSE driving current  
VIN = VSS with 30 pF  
load  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
tSU(HSE)  
VDD is stabilized  
2
(5)  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization, not tested in production.  
3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.),  
designed for high-frequency applications, and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  
L1 and CL2  
C
.
4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
Figure 19. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F10xxx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14128b  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 22. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Doc ID 16455 Rev 2  
47/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Note:  
For C and C it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1  
L2  
15 pF range selected to match the requirements of the crystal or resonator. C and C are  
L1  
L2,  
usually the same size. The crystal manufacturer typically specifies a load capacitance which  
is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
L
stray  
then C = C = 8 pF.  
L1  
L2  
(1)  
Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
M  
Recommended load capacitance  
versus equivalent serial  
CL1  
RS = 30 K  
15  
pF  
µA  
(2)  
CL2  
resistance of the crystal (RS)(3)  
VDD = 3.3 V  
VIN = VSS  
I2  
LSE driving current  
1.4  
gm  
Oscillator transconductance  
Startup time  
5
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
3
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs above the table.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Figure 20. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 KHz  
resonator  
R
F
STM32F10xxx  
OSC32_OUT  
C
L2  
ai14129b  
48/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 23 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
High-speed internal (HSI) RC oscillator  
(1)(2)  
Table 23. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
Frequency  
8
MHz  
%
TA = –40 to 105 °C  
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
–2.7  
–2  
3
2.5  
2.5  
1
%
ACCHSI Accuracy of HSI oscillator  
–2  
%
–0.7  
1
%
tsu(HSI) HSI oscillator startup time  
2
µs  
µA  
IDD(HSI) HSI oscillator power consumption  
1. Guaranteed by design, not tested in production.  
80  
100  
2. VDD = 3.3 V, TA = –40 to 105 °C °C unless otherwise specified.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 24. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
40  
60  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDD(LSI)  
LSI oscillator power consumption  
0.65  
1.2  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 25 are measured on a wakeup phase with an 8-MHz HSI  
RC oscillator. The clock source used to wake up the device depends from the current  
operating mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under the ambient temperature and V supply  
DD  
voltage conditions summarized in Table 8.  
Table 25. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Typ  
Unit  
(1)  
1.8  
µs  
tWUSLEEP  
Doc ID 16455 Rev 2  
49/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 25. Low-power mode wakeup timings (continued)  
Symbol  
Parameter  
Typ  
Unit  
Wakeup from Stop mode (regulator in run mode)  
Wakeup from Stop mode (regulator in low-power mode)  
Wakeup from Standby mode  
3.6  
5.4  
50  
(1)  
µs  
µs  
tWUSTOP  
(1)  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point at which the user application code  
reads the first instruction.  
5.3.8  
PLL characteristics  
The parameters given in Table 26 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 26. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min(1)  
Typ  
Max(1)  
PLL input clock(2)  
1
8.0  
24  
60  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
fPLL_OUT  
tLOCK  
24  
MHz  
µs  
200  
300  
Jitter  
Cycle-to-cycle jitter  
ps  
1. Based on device characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
50/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 27. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
tprog  
tERASE  
tME  
16-bit programming time  
Page (1 KB) erase time  
Mass erase time  
TA–40 to +105 °C  
TA –40 to +105 °C  
TA –40 to +105 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
Read mode  
fHCLK = 24 MHz, VDD = 3.3 V  
20  
5
mA  
mA  
Write / Erase modes  
fHCLK = 24 MHz, VDD = 3.3 V  
IDD  
Supply current  
Power-down mode / Halt,  
VDD = 3.0 to 3.6 V  
50  
µA  
V
Vprog  
Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
Table 28. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1) Typ Max  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
1 kcycle(2) at TA = 85 °C  
NEND  
Endurance  
kcycles  
Years  
10  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
1. Based on characterization not tested in production.  
2. Cycling performed over the whole temperature range.  
Doc ID 16455 Rev 2  
51/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
5.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (Electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 29. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 29. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD 3.3 V, TA +25 °C,  
Voltage limits to be applied on any I/O pin to fHCLK 24 MHz, LQFP100  
VFESD  
2B  
induce a functional disturbance  
package, conforms to  
IEC 61000-4-2  
VDD3.3 V, TA +25 °C,  
fHCLK 24 MHz, LQFP100  
package, conforms to  
IEC 61000-4-4  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS pins  
to induce a functional disturbance  
VEFTB  
4A  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and pre  
qualification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second. To complete these trials, ESD stress can be applied directly on the device, over the  
range of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
52/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electromagnetic Interference (EMI)  
Electrical characteristics  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 30. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
8/24 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
9
17  
16  
4
VDD 3.3 V, TA 25°C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
5.3.11  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 31. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) conforming to JESD22-A114  
TA +25 °C  
VESD(HBM)  
2
II  
TBD  
V
Electrostatic discharge TA +25 °C  
voltage (charge device model) conforming to JESD22-C101  
VESD(CDM)  
TBD  
1. Based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD78 IC latch-up standard.  
Table 32. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA +105 °C conforming to JESD78  
TBD  
Doc ID 16455 Rev 2  
53/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
5.3.12  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 33 are derived from tests  
performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL  
compliant.  
Table 33. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.28 (VDD–2)  
+0.8  
Standard I/O input low level voltage  
–0.5  
VIL  
0.32 (VDD–2)  
+0.75  
I/O FT(1) input low level voltage  
Standard I/O input high level voltage  
I/O FT(1) input high level voltage  
–0.5  
V
0.41 (VDD–2)  
+1.3  
VDD+0.5  
VIH  
Vhys  
Ilkg  
0.42 (VDD–2)  
+1  
5.5  
Standard I/O Schmitt trigger voltage  
hysteresis(2)  
200  
mV  
mV  
I/O FT Schmitt trigger voltage  
hysteresis(2)  
(3)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1  
Input leakage current(4)  
µA  
VIN = 5 V  
I/O FT  
3
RPU  
RPD  
CIO  
Weak pull-up equivalent resistor(5)  
VIN VSS  
VIN VDD  
30  
30  
40  
40  
5
50  
50  
k  
k  
pF  
Weak pull-down equivalent  
resistor(5)  
I/O pin capacitance  
1. FT = 5V tolerant. To sustain a voltage higher than VDD+0.5 the internal pull-up/pull-down resistors must be disabled.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 21 and Figure 22 for standard I/Os, and  
in Figure 23 and Figure 24 for 5 V tolerant I/Os.  
54/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 21. Standard I/O input characteristics - CMOS port  
Electrical characteristics  
6
ꢊ6 ꢈ6ꢉ  
)( ),  
ꢀꢁꢄꢅ  
ꢀꢁꢆꢀ  
ꢀꢁꢇꢈ  
ꢀꢁꢆꢀ  
ꢀꢁꢇꢈ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢁꢃꢄ  
ꢀꢁꢂꢃ  
7)(MIN  
ꢀꢄꢌ  
7),MAX  
ꢃꢄꢍ  
ꢃꢄꢐ  
6
ꢈ6ꢉ  
$$  
ꢅꢄꢐ  
ꢌꢄꢌ  
ꢌꢄꢇ  
AIꢀꢐꢅꢐꢐ  
Figure 22. Standard I/O input characteristics - TTL port  
6
ꢊ6 ꢈ6ꢉ  
)( ),  
44, REQUIREMENTS  
6
ꢋꢅ6  
)(  
7)(MIN  
ꢅꢄꢃ  
ꢀꢄꢓꢇ  
ꢀꢄꢅꢁ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢄꢌ  
ꢃꢄꢍ  
7),MAX  
44, REQUIREMENTS  
6
ꢋꢃꢄꢍ6  
),  
6
ꢈ6ꢉ  
$$  
ꢅꢄꢀꢇ  
ꢌꢄꢇ  
AIꢀꢐꢅꢐꢍ  
Doc ID 16455 Rev 2  
55/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 23. 5 V tolerant I/O input characteristics - CMOS port  
6
ꢊ6 ꢈ6ꢉ  
)( ),  
ꢀꢄꢇꢐ  
ꢀꢄꢁꢁ  
ꢀꢄꢀꢇ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢄꢎꢅ  
ꢀꢄꢃꢐ  
ꢀꢄꢌ  
ꢃꢄꢐ  
ꢀꢄꢅꢓꢁ  
ꢃꢄꢓꢐꢁ  
ꢃꢄꢐꢁ  
6
ꢈ6ꢉ  
$$  
ꢅꢄꢐ  
ꢌꢄꢌ  
ꢌꢄꢇ  
6$$  
AIꢀꢐꢅꢐꢍ  
Figure 24. 5 V tolerant I/O input characteristics - TTL port  
6
ꢊ6 ꢈ6ꢉ  
)( ),  
44, REQUIREMENT 6 ꢋꢅ6  
)(  
ꢅꢄꢃ  
ꢀꢄꢇꢐ  
.OT GUARANTEED  
INPUT RANGE  
7)(MIN  
7),MAX  
ꢃꢄꢍ  
ꢃꢄꢐꢁ  
44, REQUIREMENTS 6 ꢋꢃꢄꢍ6  
),  
6
ꢈ6ꢉ  
$$  
ꢅꢄꢀꢇ  
ꢌꢄꢇ  
AIꢀꢐꢅꢍꢃ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 6).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 6).  
VSS  
56/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Output voltage levels  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 34 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8. All I/Os are CMOS and TTL compliant.  
Table 34. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output Low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
TTL port,  
IIO = +8 mA,  
2.7 V < VDD < 3.6 V  
Output High level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
CMOS port  
IIO = +8 mA  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
2.7 V < VDD < 3.6 V  
2.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
1.3  
V
VOL  
I
IO = +20 mA(3)  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–1.3  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
IIO = +6 mA(3)  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
Doc ID 16455 Rev 2  
57/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 25 and  
Table 35, respectively.  
Unless otherwise specified, the parameters given in Table 35 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8.  
(1)  
Table 35. I/O AC characteristics  
MODEx  
[1:0] bit Symbol  
Parameter  
Conditions  
Max Unit  
value(1)  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
125(3)  
10  
01  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high level rise  
tr(IO)out  
time  
125(3)  
10  
fmax(IO)out Maximum frequency(2)  
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
25(3)  
Output low to high level rise  
tr(IO)out  
time  
25(3)  
24  
Fmax(IO)out Maximum frequency(2)  
MHz  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output high to low level fall  
tf(IO)out  
time  
11  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
ns  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output low to high level rise  
tr(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 25.  
3. Guaranteed by design, not tested in production.  
58/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 25. I/O AC characteristics definition  
Electrical characteristics  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.13  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 33).  
PU  
Unless otherwise specified, the parameters given in Table 36 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8.  
Table 36. NRST pin characteristics  
Symbol  
Parameter  
Conditions Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
200  
40  
mV  
Weak pull-up equivalent resistor(2) VIN VSS  
30  
50  
k  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
100  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
Figure 26. Recommended NRST pin protection  
6
$$  
%XTERNAL  
RESET CIRCUITꢈꢀꢉ  
2
05  
ꢈꢅꢉ  
)NTERNAL RESET  
.234  
&ILTER  
ꢃꢄꢀ —&  
34-ꢁꢂ&ꢃꢄX  
AIꢀꢎꢀꢌꢅD  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 36. Otherwise the reset will not be taken into account by the device.  
Doc ID 16455 Rev 2  
59/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
5.3.14  
TIMx characteristics  
The parameters given in Table 37 are guaranteed by design.  
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 37. TIMx characteristics  
Conditions(1)  
fTIMxCLK = 24 MHz  
fTIMxCLK = 24 MHz  
Symbol  
Parameter  
Min  
Max  
Unit  
1
41.7  
0
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK/2  
12  
MHz  
MHz  
bit  
Timer external clock  
frequency on CHx(2)  
fEXT  
0
ResTIM  
Timer resolution  
16  
16-bit counter clock period  
when the internal clock is  
selected  
1
65536  
tTIMxCLK  
tCOUNTER  
fTIMxCLK = 24 MHz  
fTIMxCLK = 24 MHz  
2730  
µs  
65536 × 65536 tTIMxCLK  
178  
tMAX_COUNT  
Maximum possible count  
s
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM15, TIM16 and TIM17 timers.  
2. CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3 and TIM4, to the CH1 to CH2  
for TIM15, and to CH1 for TIM16 and TIM17.  
5.3.15  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 38 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLK1  
DD  
conditions summarized in Table 8.  
2
2
The STM32F100xx value line I C interface meets the requirements of the standard I C  
communication protocol with the following restrictions: t  
he I/O pins SDA and SCL are  
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 38. Refer also to  
Section 5.3.12: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
60/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
2
Table 38. I C characteristics  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
100  
0(4)  
µs  
250  
0(3)  
th(SDA)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition setup  
time  
tsu(STA)  
tsu(STO) Stop condition setup time  
µs  
µs  
pF  
Stop to Start condition time (bus  
tw(STO:STA)  
free)  
Cb  
Capacitive load for each bus line  
400  
400  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than  
4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz  
maximum I2C fast mode clock.  
The maximum hold time of the Start condition only has to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
4.  
Doc ID 16455 Rev 2  
61/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
2
(1)  
Figure 27. I C bus AC waveforms and measurement circuit  
6
6
$$  
$$  
34-ꢁꢂ&ꢃꢄX  
3$!  
KΩ  
KΩ  
 Ω  
 Ω  
)£# BUS  
3#,  
3TART REPEATED  
3TART  
3TART  
T
SUꢈ34!  
3$!  
T
T
T
SUꢈ3$!ꢉ  
Fꢈ3$!ꢉ  
Rꢈ3$!ꢉ  
T
SUꢈ34/ꢂ34!  
3TOP  
T
T
T
Hꢈ3$!ꢉ  
Hꢈ34!  
Wꢈ3#,,ꢉ  
3#,  
T
T
T
T
Fꢈ3#,ꢉ  
SUꢈ34/ꢉ  
Wꢈ3#,(ꢉ  
Rꢈ3#,ꢉ  
AIꢀꢎꢀꢌꢌD  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)(2)  
Table 39. SCL frequency (f  
fSCL (kHz)  
= 24 MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 k  
400  
300  
200  
100  
50  
0x8011  
0x8016  
0x8021  
0x0064  
0x00C8  
0x01F4  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 400 kHz, the tolerance on the achieved speed is of 2%. For other speed ranges, the  
tolerance on the achieved speed 1%. These variations depend on the accuracy of the external  
components used to design the application.  
62/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
SPI interface characteristics  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 40 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 8.  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 40. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
12  
12  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
ns  
%
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
30  
70  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 24 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
50  
60  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
5
4
0
2
tsu(MI)  
tsu(SI)  
(2)  
(2)  
th(MI)  
Data input hold time  
(2)  
th(SI)  
ns  
(2)(3)  
ta(SO)  
Data output access time Slave mode, fPCLK = 24 MHz  
Data output disable time Slave mode  
3tPCLK  
10  
(2)(4)  
tdis(SO)  
(2)(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
25  
Master mode (after enable  
edge)  
(2)(1)  
tv(MO)  
5
(2)  
th(SO)  
Slave mode (after enable edge)  
15  
2
Data output hold time  
Master mode (after enable  
edge)  
(2)  
th(MO)  
1. Remapped SPI1 characteristics to be determined.  
2. Based on characterization, not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
Doc ID 16455 Rev 2  
63/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 28. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
w(SCKH)  
CPHA=0  
CPOL=1  
t
w(SCKL)  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 29. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
t
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
64/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
(1)  
Figure 30. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
w(SCKH)  
r(SCK)  
f(SCK)  
t
su(MI)  
t
w(SCKL)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
HDMI consumer electronics control (CEC)  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
5.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 41 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 8.  
Note:  
It is recommended to perform a calibration after each power-up.  
Doc ID 16455 Rev 2  
65/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 41. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
2.4  
2.4  
3.6  
V
V
VREF+ Positive reference voltage  
VDDA  
Current on the VREF input  
pin  
IVREF  
160(1) 220(1)  
µA  
fADC  
ADC clock frequency  
Sampling rate  
0.6  
10  
1
MHz  
MHz  
(2)  
0.05  
fS  
fADC = 12 MHz  
823  
17  
kHz  
(2)  
External trigger frequency  
Conversion voltage range  
fTRIG  
1/fADC  
0 (VSSA tied to  
ground)  
(3)  
VREF+  
V
VAIN  
See Equation 1 and  
Table 42 for details  
(2)  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
50  
1
k  
k  
pF  
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
f
ADC = 12 MHz  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
fADC = 12 MHz  
fADC = 12 MHz  
0.214  
3(4)  
Injection trigger conversion  
latency  
(2)  
tlat  
1/fADC  
µs  
0.143  
2(4)  
Regular trigger conversion  
latency  
(2)  
tlatr  
1/fADC  
µs  
0.125  
1.5  
17.1  
239.5  
1
(2)  
Sampling time  
Power-up time  
fADC = 12 MHz  
tS  
1/fADC  
µs  
(2)  
tSTAB  
0
0
fADC = 12 MHz  
1.17  
21  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. In devices delivered in LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
Devices that come in the TFBGA64 package have a VREF+ pin but no VREF- pin (VREF- is internally connected to VSSA),  
see Table 4: STM32F100xx pin definitions and Figure 6.  
.
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 41.  
Equation 1: R  
max formula:  
AIN  
TS  
RAIN ------------------------------------------------------------- – RADC  
fADC CADC ln2N + 2  
66/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Electrical characteristics  
The above formula (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 42.  
R
max for f  
= 12 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)  
1.5  
0.125  
0.625  
1.125  
2.375  
3.45  
0.4  
7.5  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
4.625  
5.96  
NA  
20  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)  
Table 43. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
1.3  
1
2
fPCLK2 = 24 MHz,  
fADC = 12 MHz, RAIN < 10 k,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
1.5  
1.5  
1
Gain error  
0.5  
0.7  
0.8  
LSB  
Differential linearity error  
Integral linearity error  
Measurements made after  
ADC calibration  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. Based on characterization, not tested in production.  
(1) (2)  
Table 44. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
f
PCLK2 = 24 MHz,  
1.5  
1.5  
1
fADC = 12 MHz, RAIN < 10 k,  
VDDA = 2.4 V to 3.6 V  
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. Based on characterization, not tested in production.  
Note:  
ADC accuracy vs. negative injection current: Injecting a negative current on any of the  
standard (non-robust) analog input pins should be avoided as this significantly reduces the  
accuracy of the conversion being performed on another analog input. It is recommended to  
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
Doc ID 16455 Rev 2  
67/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
negative currents.  
Any positive injection current within the limits specified for I  
and I  
in  
INJ(PIN)  
INJ(PIN)  
Section 5.3.12 does not affect the ADC accuracy.  
Figure 31. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
Figure 32. Typical connection diagram using the ADC  
STM32F10xxx  
V
DD  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
C
(1)  
R
R
AIN  
ADC  
AINx  
12-bit  
converter  
V
T
V
AIN  
0.6 V  
C
(1)  
ADC  
parasitic  
I
1 µA  
L
ai14139d  
1. Refer to Table 41 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 33 or Figure 34,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
68/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 33. Power supply and reference decoupling (V  
Electrical characteristics  
not connected to V  
)
DDA  
REF+  
STM32F10xxx  
V
REF+  
DDA  
1 µF // 10 nF  
V
V
1 µF // 10 nF  
/V  
SSA REF-  
ai14380b  
1. VREF+ is available on 100-pin packages and on TFBGA64 packages. VREF- is available on 100-pin  
packages only.  
Figure 34. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F10xxx  
V
/V  
REF+ DDA  
1 µF // 10 nF  
V
/V  
REF– SSA  
ai14381b  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
Doc ID 16455 Rev 2  
69/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
5.3.17  
DAC electrical specifications  
Table 45. DAC characteristics  
Symbol  
Parameter  
Min Typ Max(1) Unit  
Comments  
VDDA  
Analog supply voltage  
2.4  
2.4  
3.6  
V
V
VREF+ must always be below  
VDDA  
VREF+  
Reference supply voltage  
3.6  
0
VSSA  
Ground  
0
5
V
(2)  
RLOAD  
Resistive load with buffer ON  
k  
When the buffer is OFF, the  
Minimum resistive load between  
DAC_OUT and VSS to have a  
1% accuracy is 1.5 M  
(1)  
RO  
Impedance output with buffer OFF  
Capacitive load  
15  
50  
k  
Maximum capacitive load at  
DAC_OUT pin (when the buffer  
is ON).  
(1)  
CLOAD  
pF  
V
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Lower DAC_OUT voltage with buffer  
min(1)  
ON  
0.2  
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
VREF+ = 3.6 V and (0x155) and  
(0xEAB) at VREF+ = 2.4 V  
DAC_OUT Higher DAC_OUT voltage with buffer  
max(1)  
ON  
VDDA  
0.2  
V
DAC_OUT Lower DAC_OUT voltage with buffer  
min(1)  
OFF  
0.5  
mV  
V
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage with buffer  
VREF+  
– 1LSB  
max(1)  
OFF  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on the  
inputs  
DAC DC current consumption in  
quiescent mode (Standby mode)  
IDDVREF+  
220  
380  
480  
µA  
µA  
µA  
With no load, middle code  
(0x800) on the inputs  
DAC DC current consumption in  
quiescent mode (Standby mode)  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on the  
inputs  
IDDA  
Given for the DAC in 10-bit  
configuration  
0.5  
LSB  
Differential non linearity Difference  
between two consecutive code-1LSB)  
DNL(3)  
Given for the DAC in 12-bit  
configuration  
2
1
LSB  
LSB  
Integral non linearity (difference  
between measured value at Code i  
and the value at Code i on a line  
drawn between Code 0 and last Code  
1023)  
Given for the DAC in 10-bit  
configuration  
INL(3)  
Given for the DAC in 12-bit  
configuration  
4
LSB  
70/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 45. DAC characteristics (continued)  
Electrical characteristics  
Comments  
Symbol  
Parameter  
Min Typ Max(1) Unit  
Given for the DAC in 12-bit  
configuration  
10  
3
mV  
LSB  
LSB  
%
Offset error  
Given for the DAC in 10-bit at  
VREF+ = 3.6 V  
(difference between measured value  
at Code (0x800) and the ideal value =  
VREF+/2)  
Offset(3)  
Given for the DAC in 12-bit at  
12  
0.5  
VREF+ = 3.6 V  
Gain  
Given for the DAC in 12bit  
configuration  
Gain error  
error(3)  
Settling time (full scale: for a 10-bit  
input code transition between the  
lowest and the highest input codes  
when DAC_OUT reaches final value  
1LSB  
(
tSETTLING  
3
4
1
µs  
CLOAD 50 pF, RLOAD 5 k  
3)  
Max frequency for a correct  
DAC_OUT change when small  
variation in the input code (from code i  
to i+1LSB)  
Update  
rate(3)  
MS/s CLOAD 50 pF, RLOAD 5 k  
CLOAD 50 pF, RLOAD 5 k  
Wakeup time from off state (Setting  
the ENx bit in the DAC Control  
register)  
(3)  
tWAKEUP  
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio (to VDDA  
(static DC measurement  
)
PSRR+ (1)  
–67  
–40  
dB  
No RLOAD, CLOAD = 50 pF  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Guaranteed by characterization, not tested in production.  
Figure 35. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
C
LOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
LOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
5.3.18  
Temperature sensor characteristics  
Doc ID 16455 Rev 2  
71/84  
Electrical characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Table 46. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
Average slope  
1  
4.3  
2  
4.6  
°C  
mV/°C  
V
Avg_Slope(1)  
4.0  
1.32  
4
(1)  
V25  
Voltage at 25°C  
1.41  
1.50  
10  
(2)  
tSTART  
Startup time  
µs  
(3)(2)  
TS_temp  
ADC sampling time when reading the temperature  
17.1  
µs  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
72/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 16455 Rev 2  
73/84  
Package characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
(1)(2)  
Figure 36. LQFP100, 14 x 14 mm, 100-pin low-profile Figure 37. Recommended footprint  
(1)  
quad flat package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
75  
51  
k
D
L
76  
50  
D1  
0.5  
L1  
D3  
51  
75  
C
0.3  
76  
50  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
1
25  
100  
26  
12.3  
16.7  
Pin 1  
1
25  
ccc  
C
identification  
e
A1  
ai14906  
A2  
A
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 47. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.2  
0.063  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
1.40  
0.22  
0.0551  
0.0087  
0.17  
c
0.09  
D
15.80  
13.80  
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
16.2  
14.2  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.2  
14.2  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0.0°  
0.0295  
7.0°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
74/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Package characteristics  
Figure 38. LQFP64 – 10 x 10 mm, 64 pin low-profile quad Figure 39. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
D
48  
33  
ccc  
C
D1  
0.3  
A
A2  
D3  
49  
32  
0.5  
33  
48  
32  
49  
12.7  
10.3  
b
L1  
10.3  
E3 E1  
E
64  
17  
1.2  
L
A1  
K
1
16  
64  
7.8  
17  
Pin 1  
identification  
12.7  
1
16  
c
5W_ME  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 48. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
N
64  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 16455 Rev 2  
75/84  
Package characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 40. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline  
B
D
D1  
A
A
e
F
A1  
H
G
F
F
E
D
C
B
A
E1  
E
e
1
2
3
4
5
6
7
8
Øb (64 balls)  
A1 ball pad corner  
A3  
A4  
A2  
Seating  
plane  
C
Bottom view  
ME_R8  
1. Drawing is not to scale.  
Table 49. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
1.200  
0.0472  
A1  
A2  
A3  
A4  
b
0.150  
0.0059  
0.785  
0.200  
0.0309  
0.0079  
0.600  
0.350  
5.150  
0.0236  
0.0138  
0.2028  
0.250  
4.850  
0.300  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.080  
0.150  
0.050  
0.0098  
0.1909  
0.0118  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0031  
0.0059  
0.0020  
D
D1  
E
4.850  
5.150  
0.1909  
0.2028  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
76/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Package characteristics  
Figure 41. Recommended PCB design rules for pads (0.5 mm pitch BGA)  
0.5 mm  
Pitch  
D pad  
0.27 mm  
0.35 mm typ (depends on  
the soldermask registration  
tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter  
Dpad  
Dsm  
ai15495  
1. Non solder mask defined (NSMD) pads are recommended  
2. 4 to 6 mils solder paste screen printing process  
Doc ID 16455 Rev 2  
77/84  
Package characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Figure 42. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat Figure 43. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
Seating plane  
C
A
A2  
0.50  
A1  
c
b
1.20  
0.25 mm  
ccc  
C
Gage plane  
0.30  
36  
25  
D
37  
24  
D1  
D3  
k
0.20  
7.30  
A1  
L
9.70 5.80  
25  
36  
L1  
7.30  
24  
48  
13  
12  
37  
1
1.20  
5.80  
E3  
E1  
E
9.70  
ai14911b  
48  
13  
Pin 1  
identification  
1
12  
5B_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 50. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
78/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Package characteristics  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 8: General operating conditions on page 34.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in C,  
A
is the package junction-to-ambient thermal resistance, in C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = (V × I ) + ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 51. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 100 - 14 × 14 mm / 0.5 mm pitch  
46  
Thermal resistance junction-ambient  
LQFP 64 - 10 × 10 mm / 0.5 mm pitch  
45  
65  
55  
JA  
°C/W  
Thermal resistance junction-ambient  
TFBGA64 - 5 × 5 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP 48 - 7 × 7 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
Doc ID 16455 Rev 2  
79/84  
Package characteristics  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
6.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 52: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F10xxx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example: high-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
mode at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 51 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 52: Ordering information scheme).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
80/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Package characteristics  
Using the values obtained in Table 51 T is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Table 52: Ordering information scheme).  
Figure 44. LQFP100 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
Doc ID 16455 Rev 2  
81/84  
Ordering information scheme  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
7
Ordering information scheme  
Table 52. Ordering information scheme  
Example:  
STM32 F 100 C  
6
T
6
B xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = General-purpose  
Device subfamily  
100 = value line  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
4 = 16 Kbytes of Flash memory  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
T = LQFP  
H = BGA  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
7 = Industrial temperature range, –40 to 105 °C  
Internal code  
B
Options  
xxx = programmed parts  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
82/84  
Doc ID 16455 Rev 2  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Revision history  
8
Revision history  
Table 53. Document revision history  
Date  
Revision  
Changes  
12-Oct-2009  
1
Initial release.  
TFBGA64 package added (see Table 49 and Table 40).  
Note 5 modified in Table 4: STM32F100xx pin definitions.  
IINJ(PIN) modified in Table 6: Current characteristics. Conditions  
removed from Table 25: Low-power mode wakeup timings.  
Notes modified in Table 33: I/O static characteristics.  
Figure 26: Recommended NRST pin protection modified.  
19-Jan-2010  
2
Note modified in Table 38: I2C characteristics. Figure 27: I2C bus AC  
waveforms and measurement circuit(1) modified.  
Table 45: DAC characteristics modified. Figure 35: 12-bit buffered  
/non-buffered DAC added.  
TIM2, TIM3, TIM4 and TIM15, TIM16 and TIM17 updated.  
HDMI-CEC electrical characteristics added.  
Values added to:  
Table 12: Maximum current consumption in Run mode, code with  
data processing running from Flash  
Table 13: Maximum current consumption in Run mode, code with  
data processing running from RAM  
Table 14: STM32F100xxB maximum current consumption in Sleep  
mode, code running from Flash or RAM  
Table 15: Typical and maximum current consumptions in Stop and  
Standby modes  
Table 18: Peripheral current consumption  
Table 29: EMS characteristics  
Table 30: EMI characteristics  
Table 46: TS characteristics  
26-Feb-2010  
3
Section 5.3.12: I/O port characteristics modified.  
Added figures:  
Figure 12: Maximum current consumption in Run mode versus  
frequency (at 3.6 V) - code with data processing running from RAM,  
peripherals enabled  
Figure 13: Maximum current consumption in Run mode versus  
frequency (at 3.6 V) - code with data processing running from RAM,  
peripherals disabled  
Figure 14: Typical current consumption in Stop mode with regulator  
in Run mode versus temperature at VDD = 3.3 V and 3.6 V  
Figure 15: Typical current consumption in Stop mode with regulator  
in Low-power mode versus temperature at VDD = 3.3 V and 3.6 V  
Figure 16: Typical current consumption in Standby mode versus  
temperature at VDD = 3.3 V and 3.6 V  
Doc ID 16455 Rev 2  
83/84  
STM32F100x4, STM32F100x6, STM32F100x8, STM32F100xB  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
84/84  
Doc ID 16455 Rev 2  

相关型号:

STM32F100R4H6B

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4H6BTR

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4H7B

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4H7BTR

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4T6B

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4T6BTR

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4T6BXXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

STM32F100R4T7B

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R4T7BTR

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R6

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R6H6B

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR

STM32F100R6H6BTR

Low & medium-density value line, advanced ARM-based 32-bit MCU Low & medium-density value line, advanced ARM-based 32-bit MCU
STMICROELECTR