STM32F101RC [STMICROELECTRONICS]

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces; 基于ARM的高密度接入线路的32位MCU,具有256至512 KB的闪存,9个定时器,1个ADC和10个通信接口
STM32F101RC
型号: STM32F101RC
厂家: ST    ST
描述:

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
基于ARM的高密度接入线路的32位MCU,具有256至512 KB的闪存,9个定时器,1个ADC和10个通信接口

闪存 通信
文件: 总106页 (文件大小:1388K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F101xC STM32F101xD  
STM32F101xE  
High-density access line, ARM-based 32-bit MCU with 256 to  
512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces  
Features  
Core: ARM 32-bit Cortex™-M3 CPU  
– 36 MHz maximum frequency,  
1.25 DMIPS/MHz (Dhrystone 2.1)  
performance  
– Single-cycle multiplication and hardware  
division  
LQFP144  
20 × 20 mm  
LQFP100  
14 × 14 mm  
LQFP64  
10 × 10 mm  
– 51/80/112 I/Os, all mappable on 16  
external interrupt vectors and almost all  
5 V-tolerant  
Memories  
– 256 to 512 Kbytes of Flash memory  
– up to 48 Kbytes of SRAM  
– Flexible static memory controller with 4  
Chip Select. Supports Compact Flash,  
SRAM, PSRAM, NOR and NAND  
memories  
Debug mode  
– Serial wire debug (SWD) & JTAG interfaces  
– Cortex-M3 Embedded Trace Macrocell™  
Up to 9 timers  
– LCD parallel interface, 8080/6800 modes  
– Up to four 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counters  
Clock, reset and supply management  
– 2 × watchdog timers (Independent and  
Window)  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR, and programmable voltage  
detector (PVD)  
– SysTick timer: a 24-bit downcounter  
– 2 × 16-bit basic timers to drive the DAC  
– 4-to-16 MHz crystal oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC with calibration  
capability  
Up to 10 communication interfaces  
2
– Up to 2 x I C interfaces (SMBus/PMBus)  
– Up to 5 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– 32 kHz oscillator for RTC with calibration  
– Up to 3 SPIs (18 Mbit/s)  
Low power  
– Sleep, Stop and Standby modes  
CRC calculation unit, 96-bit unique ID  
– V  
supply for RTC and backup registers  
®
BAT  
ECOPACK packages  
1 x 12-bit, 1 µs A/D converters (up to 16  
channels)  
– Conversion range: 0 to 3.6 V  
Temperature sensor  
Table 1.  
Device summary  
Part number  
Reference  
STM32F101RC STM32F101VC  
STM32F101ZC  
STM32F101xC  
STM32F101xD  
STM32F101xE  
2 × 12-bit D/A converters  
DMA  
STM32F101RD STM32F101VD  
STM32F101ZD  
– 12-channel DMA controller  
– Peripherals supported: timers, ADC, DAC,  
STM32F101RE STM32F101ZE  
STM32F101VE  
2
SPIs, I Cs and USARTs  
Up to 112 fast I/O ports  
September 2009  
Doc ID 14610 Rev 7  
1/106  
www.st.com  
1
Contents  
STM32F101xC, STM32F101xD, STM32F101xE  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
ARM Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 14  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 15  
LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.10 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.11 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.12 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.14 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.15 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.16 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.18 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs) 20  
2.3.20 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.3.21 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.3.22 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.23 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.26 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Contents  
4
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38  
Embedded reset and power control block characteristics . . . . . . . . . . . 38  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 76  
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
5.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
5.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6.2.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Doc ID 14610 Rev 7  
3/106  
Contents  
STM32F101xC, STM32F101xD, STM32F101xE  
6.2.2  
Evaluating the maximum junction temperature for an application . . . . 100  
7
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
4/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts . . . . 11  
STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maximum current consumption in Run mode, code with data processing  
Table 15.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 43  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 43  
Typical current consumption in Run mode, code with data processing  
Table 16.  
Table 17.  
Table 18.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 47  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 57  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 58  
Asynchronous multiplexed NOR/PSRAM read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Asynchronous multiplexed NOR/PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 71  
Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 74  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Doc ID 14610 Rev 7  
5/106  
List of tables  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SCL frequency (f  
= 36 MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data . . . . . . . . . . . . . 96  
LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 97  
LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data . . . . . . . . . 98  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
6/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F101xC, STM32F101xD and STM32F101xE access line block diagram . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F101xC, STM32F101xD and STM32F101xE access line LQFP144 pinout . . . . . . 23  
STM32F101xC, STM32F101xD and STM32F101xE LQFP100 pinout . . . . . . . . . . . . . . . 24  
STM32F101xC, STM32F101xD and STM32F101xE LQFP64 pinout . . . . . . . . . . . . . . . . 25  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 10. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 42  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 42  
Figure 13. Typical current consumption on V  
with RTC on vs. temperature at  
BAT  
different V  
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
BAT  
Figure 14. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DD  
Figure 15. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DD  
Figure 16. Typical current consumption in Standby mode versus temperature at  
different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DD  
Figure 17. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 18. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 19. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 56  
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 57  
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 25. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 26. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 28. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 29. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 67  
Figure 30. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . . 68  
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 70  
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 71  
Figure 35. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 36. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 37. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 73  
Figure 38. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 74  
Figure 39. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 40. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Doc ID 14610 Rev 7  
7/106  
List of figures  
STM32F101xC, STM32F101xD, STM32F101xE  
2
(1)  
Figure 41. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 42. SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
(1)  
Figure 43. SPI timing diagram - slave mode and CPHA=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 44. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
(1)  
Figure 45. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 46. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 47. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 90  
REF+  
DDA  
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 91  
Figure 49. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 50. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 51. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 52. LQFP144, 20 x 20 mm, 144-pin thin quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
(1)  
Figure 53. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 54. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 97  
(1)  
Figure 55. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 56. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 98  
(1)  
Figure 57. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 58. LQFP64 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
D
A
8/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F101xC, STM32F101xD and STM32F101xE high-density access line  
microcontrollers. For more details on the whole STMicroelectronics STM32F101xx family,  
please refer to Section 2.2: Full compatibility throughout the family.  
The high-density STM32F101xx datasheet should be read in conjunction with the  
STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
Doc ID 14610 Rev 7  
9/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
2
Description  
The STM32F101xC, STM32F101xD and STM32F101xE access line family incorporates the  
®
high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency,  
high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 48  
Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB  
buses. All devices offer one 12-bit ADC, four general-purpose 16-bit timers, as well as  
2
standard and advanced communication interfaces: up to two I Cs, three SPIs and five  
USARTs.  
The STM32F101xx high-density access line family operates in the –40 to +85 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F101xx high-density access line family offers devices in 3 different package  
types: from 64 pins to 144 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F101xx high-density access line microcontroller family  
suitable for a wide range of applications:  
Medical and handheld equipment  
PC peripherals gaming and GPS platforms  
Industrial applications, PLC, printers, and scanners  
Alarm systems and video intercom  
Figure 1 shows the general block diagram of the device family.  
10/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
2.1  
Device overview  
Table 2.  
STM32F101xC, STM32F101xD and STM32F101xE features and peripheral  
counts  
Peripherals  
STM32F101Rx  
STM32F101Vx  
STM32F101Zx  
Flash memory in Kbytes  
SRAM in Kbytes  
FSMC  
256  
32  
384  
No  
512  
256  
32  
384  
512  
256  
32  
384  
Yes  
512  
48  
48  
48  
Yes(1)  
4
General-  
purpose  
Timers  
Basic  
SPI  
2
3
Comm  
I2C  
2
USART  
5
GPIOs  
51  
80  
112  
12-bit ADC  
1
1
1
Number of channels  
16  
16  
16  
12-bit DAC  
1
2
Number of channels  
CPU frequency  
36 MHz  
Operating voltage  
2.0 to 3.6 V  
Ambient temperature: –40 to +85 °C (see Table 10)  
Junction temperature: –40 to +105 °C (see Table 10)  
Operating temperatures  
Package  
LQFP64  
LQFP100  
LQFP144  
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a  
multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit  
NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not  
available in this package.  
Doc ID 14610 Rev 7  
11/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 1.  
STM32F101xC, STM32F101xD and STM32F101xE access line block  
diagram  
TRACECLK  
TRACED[0:3]  
as AS  
TPIU  
@V  
DD  
Power  
Trace/trig  
Trace  
controller  
Pbus  
Ibus  
V
SW/JTAG  
DD  
NJTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Volt. reg.  
3.3 V to 1.8 V  
V
SS  
Flash 512 Kbytes  
64 bit  
Cortex-M3 CPU  
@V  
DDA  
Dbus  
System  
Supply  
as AF  
F
: 36 MHz  
max  
NRST  
supervision  
SRAM  
48 KB  
POR  
Reset  
V
V
POR /PDR  
DDA  
SSA  
@VDDA  
RC 8 MHz  
RC 40 kHz  
PLL  
NVIC  
PVD  
Int  
GP DMA1  
@V  
DD  
XTAL OSC  
4-16 MHz  
OSC_IN  
OSC_OUT  
7 channels  
GP DMA2  
A[25:0]  
D[15:0]  
CLK  
NOE  
NWE  
NE[4:1]  
NBL[1:0]  
NWAIT  
NL  
IWDG  
5 channels  
PCLK1  
PCLK2  
HCLK  
FCLK  
Reset &  
Clock  
control  
Standby  
interface  
V
=1.8 V to 3.6 V  
BAT  
V
@
BAT  
FSMC  
OSC32_IN  
OSC32_OUT  
XTAL32kHz  
Backup  
TAMPER-RTC/  
ALARM/SECOND OUT  
RTC  
AWU  
reg  
as AF  
Backup interface  
AHB2  
APB2  
AHB2  
APB1  
4 channels as AF  
4 channels as AF  
4 channels as AF  
4 channels as AF  
TIM2  
EXT.IT  
WKUP  
112AF  
PA[15:0]  
PB[15:0]  
TIM3  
GPIO port A  
GPIO port B  
GPIO port C  
GPIO port D  
GPIO port E  
GPIO port F  
GPIO port G  
TIM4  
TIM5  
RX, TX, CTS, RT,S  
CK, as AF  
PC[15:0]  
PD[15:0]  
USART2  
USART3  
UART4  
UART5  
RX, TX, CTS, R T S,  
CK, as AF  
PE[15:0]  
PF[15:0]  
PG[15:0]  
RX,TXasAF  
RX,TX asAF  
MOSI, MISO  
SCK, NSS as AF  
SPI2  
SPI3  
MOSI, MISO, SCK,  
NSS as AF  
MOSI, MISO  
SCK, NSS as AF  
SPI1  
RX, TX, CTS, RTS  
as AF  
I2C1  
I2C2  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
USART1  
WWDG  
Temp. sensor  
ADC_IN[0:15]  
TIM6  
TIM7  
12bit DAC1  
12bit DAC 2  
IF  
DAC_OUT1 as AF  
DAC_OUT2 as AF  
12-bit ADC IF  
VREF–  
VREF+  
@ V  
DDA  
@V  
DDA  
ai14693d  
1. TA = –40 °C to +85 °C (junction temperature up to 105 °C).  
2. AF = alternate function on I/O port pin.  
12/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
Figure 2.  
Clock tree  
8 MHz  
HSI RC  
HSI  
FSMCCLK  
to FSMC  
Peripheral clock  
enable  
/2  
HCLK  
36 MHz max  
to AHB bus, core,  
memory and DMA  
Clock  
Enable (7 bits)  
/8  
to Cortex System timer  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
Prescaler  
/1, 2..512  
APB1  
Prescaler  
/1, 2, 4, 8, 16  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
PLLCLK  
HSE  
36 MHz  
max  
to APB1  
peripherals  
Peripheral Clock  
Enable (18 bits)  
TIM2,3,4,5,6,7  
If (APB1 prescaler =1) x1  
else x2  
to TIM2,3,4,5,6 and 7  
TIMXCLK  
CSS  
Peripheral Clock  
Enable (6 bits)  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
36 MHz max  
PCLK2  
OSC_OUT  
OSC_IN  
peripherals to APB2  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (11 bits)  
ADC  
to ADC  
Prescaler  
/2, 4, 6, 8  
ADCCLK  
/128  
LSE  
OSC32_IN  
to RTC  
LSE OSC  
RTCCLK  
32.768 kHz  
OSC32_OUT  
RTCSEL[1:0]  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
Main  
Clock Output  
/2  
PLLCLK  
HSE = High Speed External clock signal  
HSI = High Speed Internal clock signal  
LSI = Low Speed Internal clock signal  
LSE = Low Speed External clock signal  
MCO  
HSI  
HSE  
SYSCLK  
MCO  
ai15100  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
36 MHz.  
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.  
Doc ID 14610 Rev 7  
13/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
2.2  
Full compatibility throughout the family  
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are  
identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as  
medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are  
referred to as high-density devices.  
Low- and high-density devices are an extension of the STM32F101x8/B medium-density  
devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets,  
respectively.  
Low-density devices feature lower Flash memory and RAM capacities, less timers and  
peripherals. High-density devices have higher Flash memory and RAM densities, and  
additional peripherals like FSMC and DACwhile remaining fully compatible with the other  
members of the family.  
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE  
are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different  
memory densities and providing a greater degree of freedom during the development cycle.  
Moreover, the STM32F101xx access line family is fully compatible with all existing  
STM32F103xx performance line and STM32F102xx USB access line devices.  
Table 3.  
STM32F101xx family  
Memory size  
Low-density devices Medium-density devices  
High-density devices  
16 KB  
Flash  
32 KB  
64 KB  
Flash  
128 KB  
Flash  
256 KB  
Flash  
384 KB  
Flash  
512 KB  
Flash  
Pinout  
Flash(1)  
32 KB  
RAM  
48 KB  
RAM  
48 KB  
RAM  
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM  
144  
100  
64  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Cs, 1 × ADC, 2 × DACs  
FSMC (100 and 144 pins)  
3 × USARTs  
3 × 16-bit timers  
2 × USARTs  
2 × SPIs, 2 × I2Cs,  
2 × 16-bit timers  
1 × ADC  
48  
1 × SPI, 1 × I2C  
1 × ADC  
36  
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the  
reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.  
2.3  
Overview  
®
2.3.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
14/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F101xC, STM32F101xD and STM32F101xE access line family having an  
embedded ARM core, is therefore compatible with all ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
2.3.2  
2.3.3  
Embedded Flash memory  
256 to 512 Kbytes of embedded Flash are available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
2.3.4  
2.3.5  
Embedded SRAM  
Up to 48 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
FSMC (flexible static memory controller)  
The FSMC is embedded in the STM32F101xC, STM32F101xD and STM32F101xE access  
line family. It has four Chip Select outputs supporting the following modes: PC  
Card/Compact Flash, SRAM, PSRAM, NOR and NAND.  
Functionality overview:  
The three FSMC interrupt lines are ORed in order to be connected to the NVIC  
No read FIFO  
Code execution from external memory except for NAND Flash and PC Card  
No boot capability  
The targeted frequency is HCLK/2, so external access is at 18 MHz when HCLK is at  
36 MHz  
2.3.6  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high-  
performance solutions using external controllers with dedicated acceleration.  
Doc ID 14610 Rev 7  
15/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
2.3.7  
Nested vectored interrupt controller (NVIC)  
The STM32F101xC, STM32F101xD and STM32F101xE access line embeds a nested  
vectored interrupt controller able to handle up to 60 maskable interrupt channels (not  
including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
2.3.8  
2.3.9  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock is available when necessary (for example with failure  
of an indirectly used external oscillator).  
Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2)  
domain and the low-speed APB (APB1) domain. The maximum frequency of the AHB and  
APB domains is 36 MHz. See Figure 2 for details on the clock tree.  
2.3.10  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1.  
16/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
2.3.11  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used). V  
DDA  
DDA  
and V  
must be connected to V and V , respectively.  
SSA  
DD SS  
V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 9: Power supply scheme.  
2.3.12  
Power supply supervisor  
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to  
Table 12: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
2.3.13  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop modes.  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode.  
2.3.14  
Low-power modes  
The STM32F101xC, STM32F101xD and STM32F101xE access line supports three low-  
power modes to achieve the best compromise between low power consumption, short  
startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low power mode.  
Doc ID 14610 Rev 7  
17/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output or the RTC alarm.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
2.3.15  
DMA  
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for  
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-  
peripheral transfers.  
The two DMA controllers support circular buffer management, removing the need for user  
code intervention when the controller reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
DMA can be used with the main peripherals: SPI, I C, USART, general-purpose and basic  
timers TIMx, DAC and ADC.  
2.3.16  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the V  
pin. The backup registers are forty-two 16-bit  
DD  
BAT  
registers used to store 84 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, and they are not reset when the device  
wakes up from the Standby mode.  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high speed external clock divided by 128. The  
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features  
a 32-bit programmable counter for long term measurement using the Compare register to  
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default  
configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.3.17  
Timers and watchdogs  
The high-density STM32F101xx access line devices include up to four general-purpose  
timers, two basic timers, two watchdog timers and a SysTick timer.  
Table 4 compares the features of the general-purpose and basic timers.  
18/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
Table 4.  
Timer  
Timer feature comparison  
Counter  
Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
TIM2,  
TIM3,  
TIM4,  
TIM5  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
16-bit  
16-bit  
Yes  
4
No  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
Up  
Yes  
0
No  
General-purpose timers (TIMx)  
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5)  
embedded in the STM32F101xC, STM32F101xD and STM32F101xE access line devices.  
These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and  
feature 4 independent channels each for input capture/output compare, PWM or one-pulse  
mode output. This gives up to 16 input captures / output compares / PWMs on the largest  
packages.  
The general-purpose timers can work together with the advanced-control timer via the Timer  
Link feature for synchronization or event chaining. Their counter can be frozen in debug  
mode. Any of the general-purpose timers can be used to generate PWM outputs. They all  
have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
Doc ID 14610 Rev 7  
19/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
2.3.18  
2.3.19  
I²C bus  
Up to two I²C bus interfaces can operate in multi-master and slave modes. They support  
standard and fast modes.  
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A  
hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
Universal synchronous/asynchronous receiver transmitters (USARTs)  
The STM32F101xC, STM32F101xD and STM32F101xE access line embeds three  
universal synchronous/asynchronous receiver transmitters (USART1, USART2 and  
USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).  
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of  
up to 2.25 Mbit/s.  
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS  
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All  
interfaces can be served by the DMA controller except for UART5.  
2.3.20  
2.3.21  
Serial peripheral interface (SPI)  
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in  
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
All SPIs can be served by the DMA controller.  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
20/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Description  
2.3.22  
ADC (analog to digital converter)  
A 12-bit analog-to-digital converter is embedded into STM32F101xC, STM32F101xD and  
STM32F101xE access line devices. It has up to 16 external channels, performing  
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed  
on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start trigger and injection trigger, respectively, to allow the application to  
synchronize A/D conversion and timers.  
2.3.23  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in inverting configuration.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Seven DAC trigger inputs are used in the STM32F101xC, STM32F101xD and  
STM32F101xE access line family. The DAC channels are triggered through the timer update  
outputs that are also connected to different DMA channels.  
2.3.24  
2.3.25  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V  
connected to the ADC_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
< 3.6 V. The temperature sensor is internally  
DDA  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Doc ID 14610 Rev 7  
21/106  
Description  
STM32F101xC, STM32F101xD, STM32F101xE  
2.3.26  
Embedded Trace Macrocell™  
®
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F10xxx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any  
other high-speed channel. Real-time instruction and data flow activity can be recorded and  
then formatted for display on the host computer running debugger software. TPA hardware  
is commercially available from common development tool vendors. It operates with third  
party debugger software tools.  
22/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Pinouts and pin descriptions  
3
Pinouts and pin descriptions  
Figure 3.  
STM32F101xC, STM32F101xD and STM32F101xE access line LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
V
V
NC  
DD_2  
SS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
9
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
V
DD_9  
SS_9  
V
V
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
SS_5  
LQFP144  
DD_5  
PF6  
PF7  
PF8  
PF9  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
V
V
DD_8  
SS_8  
PC1  
PC2  
PC3  
PD13  
PD12  
PD11  
PD10  
PD9  
V
V
V
V
SSA  
REF-  
PD8  
REF+  
PB15  
PB14  
PB13  
PB12  
DDA  
PA0-WKUP  
PA1  
PA2  
ai14667  
Doc ID 14610 Rev 7  
23/106  
Pinouts and pin descriptions  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 4. STM32F101xC, STM32F101xD and STM32F101xE LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14391  
24/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Pinouts and pin descriptions  
Figure 5.  
STM32F101xC, STM32F101xD and STM32F101xE LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
1
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
VSSA  
VDDA  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14392  
Table 5.  
Pins  
High-density STM32F101xx pin definitions  
Main  
Alternate functions(4)  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
FT  
FT  
FT  
FT  
FT  
1
2
-
-
1
2
3
4
5
6
7
8
9
-
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
TRACECLK/ FSMC_A23  
TRACED0/FSMC_A19  
TRACED1/FSMC_A20  
TRACED2/FSMC_A21  
TRACED3/FSMC_A22  
3
-
PE4  
4
-
PE5  
5
-
PE6  
6
1
2
3
4
-
VBAT  
PC13(6)  
PC14(6)  
PC15(6)  
PF0  
7
PC13-TAMPER-RTC(5) I/O  
PC14-OSC32_IN(5)  
I/O  
PC15-OSC32_OUT(5) I/O  
TAMPER-RTC  
OSC32_IN  
OSC32_OUT  
FSMC_A0  
FSMC_A1  
FSMC_A2  
FSMC_A3  
FSMC_A4  
FSMC_A5  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
PF0  
PF1  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
-
-
PF1  
-
-
PF2  
PF2  
-
-
PF3  
PF3  
-
-
PF4  
PF4  
-
-
PF5  
PF5  
-
10  
11  
VSS_5  
VDD_5  
VSS_5  
VDD_5  
-
S
Doc ID 14610 Rev 7  
25/106  
Pinouts and pin descriptions  
STM32F101xC, STM32F101xD, STM32F101xE  
Alternate functions(4)  
Table 5.  
Pins  
High-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
-
-
-
PF6  
PF7  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PF6  
PF7  
FSMC_NIORD  
FSMC_NREG  
FSMC_NIOWR  
FSMC_CD  
-
-
-
PF8  
PF8  
-
-
PF9  
PF9  
-
-
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
FSMC_INTR  
5
6
7
8
9
12  
13  
14  
15  
16  
O
I/O  
I/O  
I/O  
I/O  
I/O  
S
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
PC1  
PC1  
28 10 17  
29 11 18  
30 12 19  
PC2  
PC2  
PC3  
PC3  
VSSA  
VSSA  
31  
32  
-
-
20  
21  
VREF-  
VREF+  
VDDA  
S
VREF-  
VREF+  
VDDA  
S
33 13 22  
S
WKUP/ USART2_CTS(7)  
ADC_IN0/TIM5_CH1/  
TIM2_CH1_ETR(7)  
/
34 14 23  
PA0-WKUP  
PA1  
I/O  
I/O  
I/O  
I/O  
PA0  
PA1  
PA2  
PA3  
USART2_RTS(7)  
/
35 15 24  
36 16 25  
37 17 26  
ADC_IN1/TIM5_CH2  
TIM2_CH2(7)  
USART2_TX(7)  
/
PA2  
TIM5_CH3/ADC_IN2/  
TIM2_CH3(7)  
USART2_RX(7)  
/
PA3  
TIM5_CH4 / ADC_IN3/  
TIM2_CH4(7)  
38 18 27  
39 19 28  
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS/ DAC_OUT1  
40 20 29  
41 21 30  
42 22 31  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
ADC_IN4 / USART2_CK(7)  
SPI1_SCK/  
DAC_OUT2/ADC_IN5  
SPI1_MISO / ADC_IN6 /  
TIM3_CH1(7)  
26/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
Pins  
High-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
SPI1_MOSI / ADC_IN7/  
TIM3_CH2(7)  
43 23 32  
PA7  
I/O  
PA7  
44 24 33  
45 25 34  
46 26 35  
47 27 36  
48 28 37  
PC4  
PC5  
I/O  
I/O  
I/O  
I/O  
PC4  
PC5  
PB0  
PB1  
ADC_IN14  
ADC_IN15  
PB0  
ADC_IN8 / TIM3_CH3(7)  
ADC_IN9/TIM3_CH4(7)  
PB1  
PB2  
I/O FT PB2/BOOT1  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF11  
PF12  
VSS_6  
VDD_6  
PF13  
PF14  
PF15  
PG0  
I/O FT  
I/O FT  
S
PF11  
PF12  
VSS_6  
VDD_6  
PF13  
PF14  
PF15  
PG0  
FSMC_NIOS16  
FSMC_A6  
-
-
S
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_A7  
FSMC_A8  
FSMC_A9  
FSMC_A10  
FSMC_A11  
FSMC_D4  
FSMC_D5  
FSMC_D6  
-
-
-
-
PG1  
PG1  
38  
39  
40  
-
PE7  
PE7  
PE8  
PE8  
PE9  
PE9  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
-
S
41  
42  
43  
44  
45  
46  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D7  
FSMC_D8  
FSMC_D9  
FSMC_D10  
FSMC_D11  
FSMC_D12  
69 29 47  
70 30 48  
71 31 49  
72 32 50  
I2C2_SCL/ USART3_TX(7)  
I2C2_SDA/ USART3_RX(7)  
TIM2_CH3  
TIM2_CH4  
S
SPI2_NSS(7)/ I2C2_SMBA  
USART3_CK(7)  
73 33 51  
PB12  
I/O FT  
PB12  
Doc ID 14610 Rev 7  
27/106  
Pinouts and pin descriptions  
STM32F101xC, STM32F101xD, STM32F101xE  
Alternate functions(4)  
Table 5.  
Pins  
High-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
SPI2_SCK(7)  
/
74 34 52  
PB13  
PB14  
I/O FT  
I/O FT  
PB13  
PB14  
USART3_CTS(7)  
SPI2_MISO(7)  
/
75 35 53  
76 36 54  
USART3_RTS(7)  
SPI2_MOSI(7)  
FSMC_D13  
PB15  
PD8  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PB15  
PD8  
77  
78  
79  
80  
-
-
-
-
55  
56  
57  
58  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
PD9  
PD9  
FSMC_D14  
PD10  
PD11  
PD10  
PD11  
FSMC_D15  
FSMC_A16  
TIM4_CH1 /  
USART3_RTS  
81  
-
59  
PD12  
I/O FT  
PD12  
FSMC_A17  
FSMC_A18  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
60  
-
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
VSS_9  
VDD_9  
PC6  
I/O FT  
S
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
VSS_9  
VDD_9  
PC6  
TIM4_CH2  
-
S
61  
62  
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D0  
FSMC_D1  
TIM4_CH3  
TIM4_CH4  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
FSMC_INT2  
FSMC_INT3  
-
-
-
-
-
-
-
-
S
96 37 63  
97 38 64  
98 39 65  
99 40 66  
100 41 67  
101 42 68  
102 43 69  
103 44 70  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
PC7  
PC7  
PC8  
PC8  
PC9  
PC9  
PA8  
PA8  
USART1_CK/ MCO  
USART1_TX(7)  
USART1_RX(7)  
USART1_CTS  
PA9  
PA9  
PA10  
PA11  
PA10  
PA11  
28/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
Pins  
High-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
104 45 71  
105 46 72  
PA12  
PA13  
I/O FT  
PA12  
USART1_RTS  
I/O FT JTMS-SWDIO  
Not connected  
PA13  
106  
-
73  
107 47 74  
108 48 75  
109 49 76  
V
S
S
V
SS_2  
SS_2  
DD_2  
V
V
DD_2  
PA14  
PA15  
I/O FT JTCK-SWCLK  
PA14  
TIM2_CH1_ETR/  
PA15 /SPI1_NSS  
110 50 77  
I/O FT  
JTDI  
SPI3_NSS  
111 51 78  
112 52 79  
113 53 80  
PC10  
PC11  
PC12  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
UART4_TX  
UART4_RX  
UART5_TX  
USART3_TX  
USART3_RX  
USART3_CK  
PC12  
(8)  
(9)  
114  
115  
5
6
81  
82  
OSC_IN  
FSMC_D2  
(8)  
(9)  
I/O FT OSC_OUT  
FSMC_D3  
116 54 83  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PD2  
PD3  
PD4  
PD5  
TIM3_ETR/UART5_RX  
FSMC_CLK  
117  
118  
119  
120  
121  
122  
-
-
-
-
-
-
84  
85  
86  
-
USART2_CTS  
USART2_RTS  
USART2_TX  
FSMC_NOE  
FSMC_NWE  
V
V
SS_10  
DD_10  
SS_10  
DD_10  
-
V
S
V
87  
PD6  
PD7  
I/O FT  
PD6  
PD7  
FSMC_NWAIT  
USART2_RX  
USART2_CK  
FSMC_NE1/  
FSMC_NCE2  
123  
124  
125  
-
-
-
88  
-
I/O FT  
I/O FT  
I/O FT  
FSMC_NE2/  
FSMC_NCE3  
PG9  
PG9  
FSMC_NE3/  
FSMC_NCE4_1  
-
PG10  
PG10  
126  
127  
128  
129  
130  
131  
132  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PG11  
PG12  
PG13  
PG14  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PG11  
PG12  
PG13  
PG14  
FSMC_NCE4_2  
FSMC_NE4  
FSMC_A24  
FSMC_A25  
V
V
SS_11  
DD_11  
SS_11  
DD_11  
V
S
V
PG15  
I/O FT  
PG15  
Doc ID 14610 Rev 7  
29/106  
Pinouts and pin descriptions  
STM32F101xC, STM32F101xD, STM32F101xE  
Alternate functions(4)  
Table 5.  
Pins  
High-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
TIM2_CH2 /PB3  
TRACESWO  
SPI1_SCK  
133 55 89  
134 56 90  
PB3  
PB4  
I/O FT  
I/O FT  
JTDO  
SPI3_SCK  
PB4 / TIM3_CH1  
SPI1_MISO  
NJTRST  
SPI3_MISO  
TIM3_CH2 /  
SPI1_MOSI  
135 57 91  
136 58 92  
137 59 93  
PB5  
PB6  
PB7  
I/O  
PB5  
PB6  
PB7  
I2C1_SMBA/ SPI3_MOSI  
I2C1_SCL/ TIM4_CH1(7)  
I/O FT  
I/O FT  
USART1_TX  
USART1_RX  
I2C1_SDA/FSMC_NADV  
TIM4_CH2(7)  
138 60 94  
139 61 95  
140 62 96  
BOOT0  
PB8  
I
BOOT0  
PB8  
I/O FT  
I/O FT  
TIM4_CH3 (7)  
TIM4_CH4 (7)  
I2C1_SCL  
I2C1_SDA  
PB9  
PB9  
TIM4_ETR(7)  
FSMC_NBL0  
/
141  
142  
-
-
97  
98  
PE0  
I/O FT  
PE0  
PE1  
I/O FT  
PE1  
FSMC_NBL1  
143 63 99  
144 64 100  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum  
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
8. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the  
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0  
and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and  
debug configuration section in the STM32F10xxx reference manual  
9. For devices delivered in LQFP64 packages, the FSMC function is not available.  
30/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Pinouts and pin descriptions  
Table 6.  
Pins  
FSMC pin definition  
FSMC  
NOR/PSRAM/ NOR/PSRAM  
LQFP100  
BGA100(1)  
CF  
CF/IDE  
NAND 16 bit  
SRAM  
Mux  
PE2  
PE3  
A23  
A19  
A20  
A21  
A22  
A0  
A23  
A19  
A20  
A21  
A22  
Yes  
Yes  
PE4  
Yes  
PE5  
Yes  
PE6  
Yes  
PF0  
A0  
A1  
A0  
A1  
A2  
-
PF1  
A1  
-
PF2  
A2  
A2  
-
PF3  
A3  
A3  
-
PF4  
A4  
A4  
-
PF5  
A5  
A5  
-
PF6  
NIORD  
NREG  
NIOWR  
CD  
NIORD  
NREG  
NIOWR  
CD  
-
PF7  
-
-
PF8  
PF9  
-
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
INTR  
NIOS16  
A6  
INTR  
-
NIOS16  
-
A6  
A7  
-
A7  
-
A8  
A8  
-
A9  
A9  
-
A10  
A10  
A11  
D4  
-
-
D4  
D5  
D4  
D5  
DA4  
DA5  
D4  
D5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE8  
D5  
PE9  
D6  
D6  
D6  
DA6  
D6  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
D7  
D7  
D7  
DA7  
D7  
D8  
D8  
D8  
DA8  
D8  
D9  
D9  
D9  
DA9  
D9  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
DA10  
DA11  
DA12  
DA13  
D10  
D11  
D12  
D13  
Doc ID 14610 Rev 7  
31/106  
Pinouts and pin descriptions  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 6.  
Pins  
FSMC pin definition (continued)  
FSMC  
LQFP100  
BGA100(1)  
NOR/PSRAM/ NOR/PSRAM  
CF  
CF/IDE  
NAND 16 bit  
SRAM  
Mux  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PD0  
D14  
D15  
D14  
D15  
D14  
D15  
A16  
A17  
A18  
D0  
DA14  
DA15  
A16  
D14  
D15  
CLE  
ALE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
A17  
A18  
D0  
D1  
D0  
D1  
DA0  
DA1  
D0  
D1  
D1  
A12  
A13  
A14  
A15  
-
-
-
INT2  
INT3  
D2  
-
-
D2  
D3  
D2  
D3  
D2  
D3  
DA2  
DA3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PD1  
D3  
PD3  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
CLK  
PD4  
NOE  
NWE  
NOE  
NWE  
NOE  
NWE  
NWAIT  
NE1  
NOE  
NWE  
PD5  
PD6  
NWAIT  
NWAIT  
NWAIT  
NCE2  
NCE3  
PD7  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PB7  
NE2  
NCE4_1  
NCE4_2  
NCE4_1  
NCE4_2  
NE3  
-
-
NE4  
A24  
NE4  
A24  
-
-
A25  
A25  
-
NADV  
NBL0  
NBL1  
NADV  
NBL0  
NBL1  
Yes  
Yes  
Yes  
PE0  
PE1  
1. Ports F and G are not available in devices delivered in 100-pin packages.  
32/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Memory mapping  
4
Memory mapping  
The memory map is shown in Figure 6.  
Figure 6.  
Memory map  
Reserved  
FSMC register  
0xA000 1000 - 0xBFFF FFFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6C00 0000 - 0x6FFF FFFF  
0x6800 0000 - 0x6BFF FFFF  
0x6400 0000 - 0x67FF FFFF  
0x6000 0000 - 0x63FF FFFF  
0x4002 3400 - 0x5FFF FFFF  
0x4002 3000 - 0x4002 33FF  
FSMC bank 4 PCCARD  
FSMC bank 3 NAND (NAND2)  
FSMC bank 2 NAND (NAND1)  
FSMC bank 1 NOR/PSRAM 4  
FSMC bank 1 NOR/PSRAM 3  
FSMC bank 1 NOR/PSRAM 2  
FSMC bank 1 NOR/PSRAM 1  
Reserved  
CRC  
Reserved  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
Flash interface  
Reserved  
RCC  
Reserved  
DMA2  
DMA1  
Reserved  
Reserved  
0x4002 0000 - 0x4002 03FF  
0x4001 8400 - 0x4001 FFFF  
0x4001 8000 - 0x4001 83FF  
0xFFFF FFFF  
Reserved  
0x4001 3C00 - 0x4001 7FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
512-Mbyte  
block 7  
Cortex-M3's  
internal  
USART1  
Reserved  
SPI1  
Reserved  
0x4001 2800 - 0x4001 2FFF  
0x4001 2400 - 0x4001 27FF  
0xE000 0000  
0xDFFF FFFF  
peripherals  
ADC1  
Port G  
Port F  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 1800 - 0x4001 1BFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0C00 - 0x4001 0FFF  
0x4001 0800 - 0x4001 0BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7800 - 0x4000 FFFF  
512-Mbyte  
block 6  
Not used  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
0xC000 0000  
0xBFFF FFFF  
512-Mbyte  
block 5  
FSMC register  
AFIO  
Reserved  
0xA000 0000  
0x9FFF FFFF  
DAC  
PWR  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
512-Mbyte  
block 4  
FSMC bank3  
& bank4  
BKP  
0x4000 6C00 - 0x4000 6FFF  
0x4000 5C00 - 0x4000 6BFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1800 - 0x4000 27FF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
I2C2  
I2C1  
0x8000 0000  
0x7FFF FFFF  
UART5  
UART4  
512-Mbyte  
block 3  
FSMC bank1  
& bank2  
USART3  
USART2  
0x6000 0000  
0x5FFF FFFF  
Reserved  
SPI3  
512-Mbyte  
block 2  
Peripherals  
SPI2  
Reserved  
IWDG  
0x4000 0000  
0x3FFF FFFF  
WWDG  
RTC  
512-Mbyte  
block 1  
SRAM  
Reserved  
TIM7  
TIM6  
0x2000 0000  
0x1FFF FFFF  
TIM5  
512-Mbyte  
block 0  
Code  
TIM4  
TIM3  
TIM2  
0x0000 0000  
0x3FFF FFFF  
Reserved  
0x2000 C000  
0x2000 BFFF  
SRAM (48 KB aliased  
by bit-banding)  
0x2000 0000  
Option Bytes  
0x1FFF F800 - 0x1FFF F80F  
0x1FFF F000- 0x1FFF F7FF  
0x1FFF EFFF  
0x0808 0000  
0x0807 FFFF  
0x0800 0000  
0x07FF FFFF  
0x0008 0000  
System memory  
Reserved  
Flash  
Reserved  
Aliased to Flash or system 0x0007 FFFF  
memory depending on  
0x0000 0000  
BOOT pins  
ai14811c  
Doc ID 14610 Rev 7  
33/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3).  
5.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2).  
5.1.3  
5.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 7.  
34/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
5.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 8.  
Figure 7.  
Pin loading conditions  
Figure 8.  
Pin input voltage  
STM32F101 PIN  
STM32F101 PIN  
C=50pF  
V
IN  
ai14123  
ai14124  
5.1.6  
Power supply scheme  
Figure 9.  
Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wake-up logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD1/2/.../11  
Regulator  
11 × 100 nF  
+ 1 × 4.7 µF  
V
SS1/2/.../11  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai15401  
Caution:  
In Figure 9, the 4.7 µF capacitor must be connected to V  
.
DD3  
Doc ID 14610 Rev 7  
35/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
5.1.7  
Current consumption measurement  
Figure 10. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics,  
Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 7.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including  
VDD VSS  
–0.3  
4.0  
(1)  
VDDA and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
+5.5  
VDD+0.3  
50  
VIN  
|VDDx  
|
Variations between different VDD power pins  
mV  
Variations between all the different ground  
pins  
|VSSX VSS  
|
50  
seeSection 5.3.12:Absolute  
maximum ratings (electrical  
sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 8: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is  
induced by VIN<VSS  
.
36/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Table 8.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
IIO  
25  
5
mA  
Injected current on High-speed external OSC_IN and Low-  
speed external OSC_IN pins  
(2)(3)  
IINJ(PIN)  
5
Injected current on any other pin(4)  
5
(2)  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 9.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
°C  
°C  
Maximum junction temperature  
150  
Doc ID 14610 Rev 7  
37/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 10. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
36  
36  
36  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
(2)  
Analog operating voltage  
(ADC used)  
2.4  
1.8  
VBAT  
Backup operating voltage  
3.6  
666  
434  
444  
85  
V
LQFP144  
Power dissipation at TA =  
85 °C(3)  
PD  
LQFP100  
mW  
LQFP64  
Maximum power dissipation  
Low power dissipation(4)  
–40  
–40  
–40  
°C  
°C  
°C  
TA  
TJ  
Ambient temperature  
105  
105  
Junction temperature range  
1. When the ADC is used, refer to Table 53: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 99).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 99).  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 11 are derived from tests performed under the ambient  
temperature condition summarized in Table 10.  
Table 11. Operating conditions at power-up / power-down  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
µs/V  
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
38/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
.
Table 12. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1  
2
2.18 2.26  
2.08 2.16  
V
V
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92 2.0  
40  
V
(2)  
VPDRhyst  
PDR hysteresis  
mV  
ms  
(2)  
tRSTTEMPO  
Reset temporization  
1.5  
2.5  
3.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
Doc ID 14610 Rev 7  
39/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
5.3.4  
Embedded reference voltage  
The parameters given in Table 13 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 13. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VREFINT Internal reference voltage  
–40 °C < TA < +85 °C 1.16 1.20  
5.1  
1.24  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
17.1(2)  
10  
TS_vrefint  
µs  
Internal reference voltage spread  
over the temperature range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
mV  
ppm/  
°C  
(2)  
TCoeff  
Temperature coefficient  
100  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 10: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f  
PCLK1  
HCLK/2 PCLK2  
HCLK  
The parameters given in Table 14 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
40/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Table 14. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
39  
27  
External clock (2), all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
20  
11  
Supply current  
in Run mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
22  
External clock (2), all  
peripherals Disabled  
16.5  
12.5  
8
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 15. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
34  
24  
17  
10  
18  
13  
10  
6
External clock (2), all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
Supply current in  
Run mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
External clock(2) all  
peripherals disabled  
1. Based on characterization, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 14610 Rev 7  
41/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
35  
30  
8 MHz  
16 MHz  
25  
20  
15  
10  
5
24 MHz  
36 MHz  
0
-45  
25  
70  
85  
Temperature (°C)  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
18  
16  
8 MHz  
16 MHz  
24 MHz  
36 MHz  
14  
12  
10  
8
6
4
2
0
-45  
25  
70  
85  
Temperature (°C)  
42/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Table 16. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
24  
17  
12.5  
8
External clock(2) all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
Supply current in  
Sleep mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
6
External clock(2), all  
peripherals disabled  
5
4.5  
4
1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 17. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
VDD/VBAT  
VDD/VBAT  
VDD/VBAT TA =  
= 2.0 V  
= 2.4 V  
= 3.3 V 85 °C  
Regulator in Run mode,  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
34.5  
24.5  
35  
25  
379  
365  
Supply current  
in Stop mode  
Regulator in Low-power mode,  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
IDD  
Low-speed internal RC oscillator and  
independent watchdog ON  
µA  
3
3.8  
3.6  
-
-
Supply current Low-speed internal RC oscillator ON,  
2.8  
in Standby  
mode  
independent watchdog OFF  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-speed  
oscillator and RTC OFF  
1.9  
1.1  
2.1  
1.4  
5(2)  
Backup domain  
supply current  
IDD_VBAT  
Low-speed oscillator and RTC ON  
1.05  
2(2)  
1. Typical values are measured at TA = 25 °C.  
2. Based on characterization, not tested in production.  
Doc ID 14610 Rev 7  
43/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 13. Typical current consumption on V  
with RTC on vs. temperature at  
BAT  
different V  
values  
BAT  
2.5  
2
1.8 V  
1.5  
1
2 V  
2.4 V  
3.3 V  
3.6 V  
0.5  
0
–45  
25  
85  
105  
Temperature (°C)  
ai17337  
Figure 14. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values  
DD  
300  
250  
200  
150  
100  
50  
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
0
-45  
25  
70  
85  
Temperature (°C)  
44/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Figure 15. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values  
DD  
300  
250  
200  
150  
100  
50  
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
0
-45  
25  
70  
85  
Temperature (°C)  
Figure 16. Typical current consumption in Standby mode versus temperature at  
different V values  
DD  
3.5  
3
2.5  
2
1.5  
1
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
0.5  
0
-45  
25  
70  
85  
Temperature (°C)  
Doc ID 14610 Rev 7  
45/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f , f  
=
HCLK/2 ADCCLK  
PCLK1  
HCLK/4 PCLK2  
f
/4  
PCLK2  
The parameters given in Table 18 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 18. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals  
enabled(2)  
All peripherals  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
26.6  
18.5  
12.8  
7.2  
4.2  
2.7  
2
16.2  
11.4  
8.2  
5
External  
clock(3)  
4 MHz  
3.1  
2.1  
1.7  
1.4  
1.2  
15.6  
10.8  
7.6  
4.4  
2.5  
1.5  
1.1  
0.8  
0.6  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.6  
1.3  
26  
Supply  
IDD  
current in  
mA  
Run mode  
17.9  
12.2  
6.6  
3.6  
2.1  
1.4  
1
Running on  
high speed  
internal RC  
(HSI), AHB  
prescaler  
used to  
reduce the  
frequency  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
0.7  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
46/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Table 19. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typ(1)  
Typ(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
15.1  
10.4  
7.2  
3.9  
2.6  
1.85  
1.5  
1.3  
1.2  
14.5  
9.8  
6.6  
3.3  
2
3.6  
2.6  
2
1.3  
1.2  
1.15  
1.1  
1.05  
1.05  
3
External clock(3)  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
Supply  
IDD  
current in  
Sleep mode  
mA  
2
1.4  
0.7  
0.6  
0.55  
0.5  
0.45  
0.45  
Running on High  
Speed Internal  
RC (HSI), AHB  
prescaler used to  
reduce the  
4 MHz  
2 MHz  
1.25  
0.9  
0.7  
0.6  
frequency  
1 MHz  
500 kHz  
125 kHz  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 7.  
Doc ID 14610 Rev 7  
47/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 20. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C(1)  
Unit  
TIM2  
0.6  
0.6  
TIM3  
TIM4  
0.6  
TIM5  
0.6  
TIM6  
0.2  
TIM7  
0.2  
SPI2  
0.15  
0.15  
0.25  
0.25  
0.3  
APB1  
SPI3  
USART2  
USART3  
UART4  
UART5  
I2C1  
0.3  
0.22  
0.22  
0.72  
0.3  
mA  
I2C2  
DAC  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
ADC(2)  
SPI1  
0.4  
0.4  
0.3  
0.5  
APB2  
0.4  
0.5  
1.4  
0.3  
USART1  
0.6  
1. fHCLK = 36 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit  
in the ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 21 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
48/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Table 21. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
25  
MHz  
OSC_IN input pin high level  
voltage  
VHSEH  
VHSEL  
0.7VDD  
VSS  
VDD  
V
OSC_IN input pin low level  
voltage  
0.3VDD  
tw(HSE)  
tw(HSE)  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
5
pF  
%
DuCy(HSE) Duty cycle  
45  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production  
Low-speed external user clock generated from an external source  
The characteristics given in Table 22 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
Table 22. Low-speed user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high  
level voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
tw(LSE)  
tw(LSE)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
ns  
tr(LSE)  
tf(LSE)  
50  
OSC32_IN input  
capacitance(1)  
Cin(LSE)  
5
pF  
%
DuCy(LSE) Duty cycle  
OSC32_IN Input leakage  
30  
70  
1
IL  
VSS VIN VDD  
µA  
current  
1. Guaranteed by design, not tested in production.  
Doc ID 14610 Rev 7  
49/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 17. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
clock source  
I
L
OSC _IN  
STM32F10xxx  
ai14127b  
Figure 18. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
clock source  
I
L
OSC32_IN  
STM32F10xxx  
ai14140c  
50/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)(2)  
Table 23. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
4
8
16  
MHz  
RF  
C
Feedback resistor  
200  
k  
Recommended load capacitance  
versus equivalent serial  
RS = 30  
30  
pF  
resistance of the crystal (RS)(3)  
VDD = 3.3 V  
VIN = VSS with 30 pF  
load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization results, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 19). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Doc ID 14610 Rev 7  
51/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 19. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F10xxx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14128b  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 24. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
M  
Recommended load capacitance  
versus equivalent serial  
C(2)  
RS = 30 K  
15  
pF  
µA  
resistance of the crystal (RS)(3)  
VDD = 3.3 V  
I2  
LSE driving current  
1.4  
VIN = VSS  
gm  
Oscillator transconductance  
Startup time  
5
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
3
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Note:  
For C and C , it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator. C and C are  
L1  
L2,  
usually the same size. The crystal manufacturer typically specifies a load capacitance which  
is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
52/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
L
stray  
then C = C = 8 pF.  
L1  
L2  
Figure 20. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 KHz  
resonator  
R
F
STM32F10xxx  
OSC32_OUT  
C
L2  
ai14129b  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 25 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 25. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
8
MHz  
User-trimmed with the RCC_CR  
register(2)  
1(3)  
%
TA = –40 to 105 °C  
–2  
2.5  
2.2  
2
%
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
TA = –10 to 85 °C  
Factory-  
–1.5  
–1.3  
–1.1  
calibrated(4)  
TA = 0 to 70 °C  
TA = 25 °C  
1.8  
HSI oscillator startup  
time  
(4)  
tsu(HSI)  
1
2
µs  
HSI oscillator power  
consumption  
(4)  
IDD(HSI)  
80  
100  
µA  
1. VDD = 3.3 V, TA = –40 to 85 °C unless otherwise specified.  
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from  
the ST website www.st.com.  
3. Guaranteed by design, not tested in production.  
4. Based on characterization, not tested in production.  
Doc ID 14610 Rev 7  
53/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 26. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
30  
40  
60  
85  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
0.65  
1.2  
µA  
1.  
VDD = 3 V, TA = –40 to 85 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 27 are measured on a wakeup phase with an 8-MHz HSI  
RC oscillator. The clock source used to wake up the device depends from the current  
operating mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 10.  
Table 27. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Typ  
Unit  
(1)  
1.8  
µs  
tWUSLEEP  
Wakeup from Stop mode (regulator in run mode)  
Wakeup from Stop mode (regulator in low-power mode)  
Wakeup from Standby mode  
3.6  
5.4  
50  
(1)  
µs  
µs  
tWUSTOP  
(1)  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point at which the user application code  
reads the first instruction.  
54/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
5.3.8  
PLL characteristics  
The parameters given in Table 28 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 28. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min(1)  
Typ  
Max(1)  
PLL input clock(2)  
1
8.0  
25  
60  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
fPLL_OUT  
tLOCK  
36  
MHz  
µs  
200  
300  
Jitter  
Cycle-to-cycle jitter  
ps  
1. Based on characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 85 °C unless otherwise specified.  
A
Table 29. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
tERASE  
tME  
16-bit programming time  
Page (2 KB) erase time  
Mass erase time  
TA–40 to +85 °C  
TA –40 to +85 °C  
TA –40 to +85 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
Read mode  
fHCLK = 36 MHz with 1  
wait state, VDD = 3.3 V  
28  
7
mA  
mA  
mA  
Write mode  
fHCLK = 36 MHz, VDD  
3.3 V  
=
IDD  
Supply current  
Erase mode  
fHCLK = 36 MHz, VDD  
3.3 V  
=
5
Power-down mode / Halt,  
VDD = 3.0 to 3.6 V  
50  
µA  
V
Vprog  
Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
Doc ID 14610 Rev 7  
55/106  
Electrical characteristics  
Symbol  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 30. Flash memory endurance and data retention  
Value  
Typ  
Parameter  
Conditions  
Unit  
Min(1)  
Max  
NEND Endurance  
tRET Data retention  
TA = –40 °C to 85 °C  
TA = 85 °C, 1 kcycle(2)  
TA = 55 °C, 10 kcycle(2)  
kcycles  
Years  
10  
30  
20  
1. Based on characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.10  
FSMC characteristics  
Asynchronous waveforms and timings  
Figure 21 through Figure 24 represent asynchronous waveforms and Table 31 through  
Table 34 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 0  
AddressHoldTime = 1  
DataSetupTime = 1  
Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FSMC_NOE  
FSMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FSMC_D[15:0]  
FSMC_NADV(1)  
t
v(NADV_NE)  
t
w(NADV)  
ai14991B  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
Doc ID 14610 Rev 7  
56/106  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
(1) (2)  
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol Parameter Min Max  
tw(NE) FSMC_NE low time 5THCLK – 1.5 5THCLK + 2  
tv(NOE_NE) 0.5 1.5  
tw(NOE) 5THCLK – 1.5 5THCLK + 1.5 ns  
th(NE_NOE)  
tv(A_NE)  
Unit  
ns  
ns  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
FSMC_NOE high to FSMC_NE high hold time –1.5  
FSMC_NEx low to FSMC_A valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
th(A_NOE)  
tv(BL_NE)  
th(BL_NOE)  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
0.1  
0
FSMC_BL hold time after FSMC_NOE high  
0
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOEx high setup time  
th(Data_NOE) Data hold time after FSMC_NOE high  
2THCLK + 25  
2THCLK + 25  
0
0
th(Data_NE)  
Data hold time after FSMC_NEx high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
5
tw(NADV)  
FSMC_NADV low time  
THCLK + 1.5  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
FSMC_NWE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FSMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FSMC_NADV  
ai14990  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
Doc ID 14610 Rev 7  
57/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
(1)(2)  
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
ns  
3THCLK – 1  
THCLK – 0.5  
THCLK – 0.5  
3THCLK + 2  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
THCLK + 1.5 ns  
THCLK + 1.5 ns  
ns  
FSMC_NWE high to FSMC_NE high hold time THCLK  
FSMC_NEx low to FSMC_A valid  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to Data valid  
THCLK  
1.5  
THCLK – 0.5  
THCLK + 7  
th(Data_NWE) Data hold time after FSMC_NWE high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
THCLK  
5.5  
tw(NADV)  
FSMC_NADV low time  
THCLK + 1.5 ns  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Figure 23. Asynchronous multiplexed NOR/PSRAM read waveforms  
t
w(NE)  
FSMC_NE  
t
t
h(NE_NOE)  
v(NOE_NE)  
FSMC_NOE  
t
w(NOE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NOE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
NBL  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
su(Data_NOE)  
Address  
Data  
FSMC_AD[15:0]  
FSMC_NADV  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
ai14892b  
58/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
(1)(2)  
Table 33. Asynchronous multiplexed NOR/PSRAM read timings  
Symbol  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
7THCLK – 2  
7THCLK + 2  
ns  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
3THCLK – 0.5 3THCLK + 1.5 ns  
4THCLK – 1  
4THCLK + 2  
ns  
ns  
ns  
ns  
ns  
FSMC_NOE high to FSMC_NE high hold time –1  
FSMC_NEx low to FSMC_A valid  
0
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
3
5
tw(NADV)  
FSMC_NADV low time  
THCLK –1.5  
THCLK + 1.5  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
THCLK  
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
THCLK  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
2THCLK + 24  
2THCLK + 25  
th(Data_NE)  
Data hold time after FSMC_NEx high  
0
0
th(Data_NOE) Data hold time after FSMC_NOE high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14610 Rev 7  
59/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
FSMC_AD[15:0]  
NBL  
t
t
h(Data_NWE)  
t
v(A_NE)  
v(Data_NADV)  
Address  
Data  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV  
ai14891B  
(1)(2)  
Table 34. Asynchronous multiplexed NOR/PSRAM write timings  
Symbol  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
5THCLK – 1  
2THCLK  
5THCLK + 2  
2THCLK + 1  
2THCLK + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
2THCLK – 1  
THCLK – 1  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
7
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
3
5
tw(NADV)  
FSMC_NADV low time  
THCLK – 1  
THCLK + 1  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
T
HCLK – 3  
ns  
th(A_NWE)  
tv(BL_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
4THCLK  
ns  
ns  
ns  
1.6  
th(BL_NWE)  
FSMC_BL hold time after FSMC_NWE high  
THCLK – 1.5  
tv(Data_NADV) FSMC_NADV high to Data valid  
THCLK + 1.5 ns  
ns  
th(Data_NWE) Data hold time after FSMC_NWE high  
THCLK – 5  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
60/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Synchronous waveforms and timings  
Electrical characteristics  
Figure 25 through Figure 28 represent synchronous waveforms and Table 36 through  
Table 38 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
Figure 25. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKL-NExL)  
t
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
d(CLKH-AIV)  
d(CLKL-AV)  
FSMC_A[25:16]  
t
t
d(CLKH-NOEH)  
d(CLKL-NOEL)  
FSMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 1b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14893e  
Doc ID 14610 Rev 7  
61/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
(1)(2)  
Table 35. Synchronous multiplexed NOR/PSRAM read timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
1.5  
THCLK + 2  
4
0
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
td(CLKH-AIV)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25) THCLK + 2  
FSMC_CLK low to FSMC_NOE low  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
THCLK +1 ns  
ns  
FSMC_CLK high to FSMC_NOE high  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
THCLK + 0.5  
12  
ns  
ns  
0
6
FSMC_A/D[15:0] valid data before FSMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
ns  
FSMC_A/D[15:0] valid data after FSMC_CLK high THCLK – 10  
ns  
ns  
ns  
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
8
2
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
62/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 26. Synchronous multiplexed PSRAM write timings  
Electrical characteristics  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKL-NExL)  
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
t
t
d(CLKL-AV)  
d(CLKH-AIV)  
FSMC_A[25:16]  
FSMC_NWE  
t
d(CLKL-NWEL)  
d(CLKH-NWEH)  
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
D1  
t
d(CLKL-Data)  
d(CLKL-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
t
d(CLKL-NBLH)  
ai14992d  
Doc ID 14610 Rev 7  
63/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
(1)(2)  
Table 36. Synchronous multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_Nex low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
2
THCLK + 2  
4
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
0
td(CLKH-AIV)  
TCK + 2  
THCLK +1  
3
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
td(CLKL-Data)  
1
FSMC_CLK high to FSMC_NWE high  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid after FSMC_CLK low  
12  
6
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
7
2
1
th(CLKH-NWAITV)  
td(CLKL-NBLH)  
FSMC_NWAIT valid after FSMC_CLK high  
FSMC_CLK low to FSMC_NBL high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
64/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 1  
d(CLKL-NADVH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
FSMC_A[25:0]  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
FSMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
t
t
h(CLKH-DV)  
su(DV-CLKH)  
FSMC_D[15:0]  
FSMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
(WAITCFG = 1b, WAITPOL + 0b)  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14894d  
(1)(2)  
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol Parameter Min  
tw(CLK) 27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
1.5  
4
THCLK + 2  
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 0...25)  
0
td(CLKH-AIV)  
FSMC_CLK high to FSMC_Ax invalid (x = 0...25) THCLK + 4  
FSMC_CLK low to FSMC_NOE low  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
THCLK + 1.5 ns  
FSMC_CLK high to FSMC_NOE high  
THCLK + 1.5  
ns  
ns  
ns  
ns  
ns  
FSMC_D[15:0] valid data before FSMC_CLK high 6.5  
FSMC_D[15:0] valid data after FSMC_CLK high  
7
7
2
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14610 Rev 7  
65/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 28. Synchronous non-multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKL-NExL)  
FSMC_NEx  
d(CLKH-NExH)  
Data latency = 1  
d(CLKL-NADVH)  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
FSMC_A[25:0]  
FSMC_NWE  
t
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
d(CLKL-NWEL)  
t
d(CLKH-NWEH)  
t
d(CLKL-Data)  
d(CLKL-Data)  
FSMC_D[15:0]  
D1  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
d(CLKL-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
ai14993e  
(1)(2)  
Table 38. Synchronous non-multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max Unit  
FSMC_CLK period  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
THCLK + 2  
4
0
1
6
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
td(CLKH-AIV)  
TCK + 2  
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-Data)  
FSMC_CLK high to FSMC_NWE high  
THCLK + 1  
FSMC_D[15:0] valid data after FSMC_CLK low  
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
7
2
1
td(CLKL-NBLH)  
1. CL = 15 pF.  
FSMC_CLK low to FSMC_NBL high  
2. Based on characterization, not tested in production.  
66/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
PC Card/CompactFlash controller waveforms and timings  
Figure 29 through Figure 34 represent synchronous waveforms and Table 39 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x04;  
COM.FSMC_WaitSetupTime = 0x07;  
COM.FSMC_HoldSetupTime = 0x04;  
COM.FSMC_HiZSetupTime = 0x00;  
ATT.FSMC_SetupTime = 0x04;  
ATT.FSMC_WaitSetupTime = 0x07;  
ATT.FSMC_HoldSetupTime = 0x04;  
ATT.FSMC_HiZSetupTime = 0x00;  
IO.FSMC_SetupTime = 0x04;  
IO.FSMC_WaitSetupTime = 0x07;  
IO.FSMC_HoldSetupTime = 0x04;  
IO.FSMC_HiZSetupTime = 0x00;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
Figure 29. PC Card/CompactFlash controller waveforms for common memory read  
access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
h(NCEx-AI)  
t
v(NCEx-A)  
FSMC_A[10:0]  
t
t
t
h(NCEx-NREG)  
h(NCEx-NIORD)  
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
h(NCEx-NIOWR  
)
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
FSMC_NWE  
t
t
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
h(NOE-D)  
su(D-NOE)  
FSMC_D[15:0]  
ai14895b  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
Doc ID 14610 Rev 7  
67/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 30. PC Card/CompactFlash controller waveforms for common memory write  
access  
FSMC_NCE4_1  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
t
t
t
h(NCE4_1-NREG)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
t
t
d(NREG-NCE4_1)  
d(NIORD-NCE4_1)  
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
t
t
t
d(NCE4_1-NWE)  
w(NWE)  
d(NWE-NCE4_1)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
ai14896b  
68/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Figure 31. PC Card/CompactFlash controller waveforms for attribute memory read  
access  
FSMC_NCE4_1  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
FSMC_NIOWR  
FSMC_NIORD  
t
t
h(NCE4_1-NREG)  
d(NREG-NCE4_1)  
FSMC_NREG  
FSMC_NWE  
t
t
t
d(NOE-NCE4_1)  
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0](1)  
ai14897b  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
Doc ID 14610 Rev 7  
69/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory write  
access  
FSMC_NCE4_1  
High  
FSMC_NCE4_2  
FSMC_A[10:0]  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
t
t
d(NCE4_1-NWE)  
w(NWE)  
FSMC_NWE  
t
d(NWE-NCE4_1)  
FSMC_NOE  
t
v(NWE-D)  
FSMC_D[7:0](1)  
ai14898b  
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).  
Figure 33. PC Card/CompactFlash controller waveforms for I/O space read access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIOWR  
t
t
w(NIORD)  
t
d(NIORD-NCE4_1)  
FSMC_NIORD  
t
su(D-NIORD)  
d(NIORD-D)  
FSMC_D[15:0]  
ai14899B  
70/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Figure 34. PC Card/CompactFlash controller waveforms for I/O space write access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIORD  
t
t
t
d(NCE4_1-NIOWR)  
w(NIOWR)  
FSMC_NIOWR  
ATTxHIZ =1  
t
v(NIOWR-D)  
h(NIOWR-D)  
FSMC_D[15:0]  
ai14900b  
(1)(2)  
Table 39. Switching characteristics for PC Card/CF read and write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y =  
tv(NCEx-A)  
tv(NCE4_1-A)  
0...10)  
0
5
ns  
FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid (y =  
0...10)  
FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x =  
0...10)  
FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax invalid (x  
= 0...10)  
th(NCEx-AI)  
th(NCE4_1-AI)  
2.5  
ns  
td(NREG-NCEx)  
FSMC_NCEx low to FSMC_NREG valid  
ns  
ns  
td(NREG-NCE4_1) FSMC_NCE4_1 low to FSMC_NREG valid  
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid  
th(NCE4_1-NREG) FSMC_NCE4_1 high to FSMC_NREG invalid  
THCLK + 3  
td(NCE4_1-NOE)  
tw(NOE)  
td(NOE-NCE4_1  
tsu(D-NOE)  
FSMC_NCE4_1 low to FSMC_NOE low  
FSMC_NOE low width  
5THCLK + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8THCLK –1.5 8THCLK + 1  
FSMC_NOE high to FSMC_NCE4_1 high  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_D[15:0] valid data after FSMC_NOE high  
FSMC_NWE low width  
5THCLK + 2  
25  
th(NOE-D)  
15  
tw(NWE)  
8THCLK – 1 8THCLK + 2  
5THCLK + 2  
td(NWE-NCE4_1)  
td(NCE4_1-NWE)  
tv(NWE-D)  
FSMC_NWE high to FSMC_NCE4_1 high  
FSMC_NCE4_1 low to FSMC_NWE low  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
5THCLK + 1.5 ns  
0
ns  
ns  
th(NWE-D)  
11THCLK  
Doc ID 14610 Rev 7  
71/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
(1)(2)  
Table 39. Switching characteristics for PC Card/CF read and write cycles  
(continued)  
Max  
Symbol  
td(D-NWE)  
Parameter  
Min  
Unit  
FSMC_D[15:0] valid before FSMC_NWE high  
FSMC_NIOWR low width  
13THCLK  
ns  
ns  
ns  
ns  
tw(NIOWR)  
8THCLK + 3  
tv(NIOWR-D)  
th(NIOWR-D)  
FSMC_NIOWR low to FSMC_D[15:0] valid  
FSMC_NIOWR high to FSMC_D[15:0] invalid  
5THCLK +1  
11THCLK  
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid  
5THCLK+3ns ns  
ns  
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid  
5THCLK – 5  
th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid  
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid  
5THCLK + 2.5 ns  
ns  
td(NIORD-NCE4_1) FSMC_NCE4_1 low to FSMC_NIORD valid  
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD invalid  
th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid  
5THCLK – 5  
tsu(D-NIORD)  
td(NIORD-D)  
tw(NIORD)  
FSMC_D[15:0] valid before FSMC_NIORD high  
FSMC_D[15:0] valid after FSMC_NIORD high  
FSMC_NIORD low width  
4.5  
ns  
ns  
ns  
9
8THCLK + 2  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
NAND controller waveforms and timings  
Figure 35 through Figure 38 represent synchronous waveforms and Table 40 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x01;  
COM.FSMC_WaitSetupTime = 0x03;  
COM.FSMC_HoldSetupTime = 0x02;  
COM.FSMC_HiZSetupTime = 0x01;  
ATT.FSMC_SetupTime = 0x01;  
ATT.FSMC_WaitSetupTime = 0x03;  
ATT.FSMC_HoldSetupTime = 0x02;  
ATT.FSMC_HiZSetupTime = 0x01;  
Bank = FSMC_Bank_NAND;  
MemoryDataWidth = FSMC_MemoryDataWidth_16b;  
ECC = FSMC_ECC_Enable;  
ECCPageSize = FSMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
72/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 35. NAND controller waveforms for read access  
Electrical characteristics  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
t
t
su(D-NOE)  
h(NOE-D)  
ai14901b  
Figure 36. NAND controller waveforms for write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NWE)  
th(NWE-ALE)  
FSMC_NWE  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
tv(NWE-D)  
th(NWE-D)  
ai14902b  
Figure 37. NAND controller waveforms for common memory read access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
tw(NOE)  
tsu(D-NOE)  
th(NOE-D)  
FSMC_D[15:0]  
ai14912b  
Doc ID 14610 Rev 7  
73/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 38. NAND controller waveforms for common memory write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
tw(NWE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FSMC_D[15:0]  
ai14913b  
(1)  
Table 40. Switching characteristics for NAND Flash read and write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
(2)  
td(D-NWE)  
FSMC_D[15:0] valid before FSMC_NWE high  
FSMC_NOE low width  
6THCLK + 12  
ns  
(2)  
tw(NOE)  
4THCLK – 1.5 4THCLK + 1.5 ns  
FSMC_D[15:0] valid data before FSMC_NOE  
high  
(2)  
(2)  
tsu(D-NOE)  
25  
ns  
th(NOE-D)  
FSMC_D[15:0] valid data after FSMC_NOE high 7  
ns  
(2)  
tw(NWE)  
FSMC_NWE low width  
4THCLK – 1  
4THCLK + 2.5 ns  
(2)  
tv(NWE-D)  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_ALE valid before FSMC_NWE low  
FSMC_NWE high to FSMC_ALE invalid  
FSMC_ALE valid before FSMC_NOE low  
FSMC_NWE high to FSMC_ALE invalid  
0
ns  
ns  
(2)  
th(NWE-D)  
td(ALE-NWE)  
th(NWE-ALE)  
10THCLK + 4  
3THCLK + 4.5  
3THCLK + 4.5  
(3)  
(3)  
3THCLK + 1.5 ns  
ns  
(3)  
td(ALE-NOE)  
th(NOE-ALE)  
3THCLK + 2  
ns  
ns  
(3)  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
74/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
5.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (Electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 41. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 41. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD 3.3 V, LQFP144,  
TA +25 °C, fHCLK36 MHz  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD3.3 V, LQFP144,  
TA +25 °C, fHCLK 36 MHz  
conforms to IEC 61000-4-4  
VEFTB  
4A  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and pre  
qualification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second. To complete these trials, ESD stress can be applied directly on the device, over the  
range of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
Doc ID 14610 Rev 7  
75/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 42. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/36 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
8
27  
26  
4
VDD 3.3 V, TA 25 °C,  
LQFP144 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
5.3.12  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 43. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
voltage (human body model) to JESD22-A114  
TA +25 °C, conforming  
VESD(HBM)  
2
2000  
500  
V
Electrostatic discharge  
voltage (charge device model) to JESD22-C101  
TA +25 °C, conforming  
VESD(CDM)  
II  
1. Based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78 IC latch-up standard.  
Table 44. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA +85 °C conforming to JESD78A  
II level A  
76/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
5.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL  
compliant.  
Table 45. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage  
–0.5  
0.8  
V
Standard IO input high level  
voltage  
TTL ports  
2
VDD+0.5  
VIH  
IO FT(1) input high level voltage  
2
5.5V  
VIL  
VIH  
Input low level voltage  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
Input high level voltage  
0.65 VDD  
Standard IO Schmitt trigger  
voltage hysteresis(2)  
200  
mV  
mV  
Vhys  
IO FT Schmitt trigger voltage  
hysteresis(2)  
(3)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1  
3
Ilkg  
Input leakage current (3)  
µA  
VIN = 5 V  
I/O FT  
Weak pull-up equivalent  
resistor(4)  
RPU  
VIN VSS  
VIN VDD  
30  
30  
40  
50  
50  
k  
Weak pull-down equivalent  
resistor(5)  
RPD  
CIO  
40  
5
k  
I/O pin capacitance  
pF  
1. FT = Five-volt tolerant.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in  
production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable  
PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required), their  
characteristics consider the most strict CMOS-technology or TTL parameters:  
For V :  
IH  
if V is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included  
DD  
if V is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included  
DD  
For V :  
IL  
if V is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included  
DD  
if V is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included  
DD  
Doc ID 14610 Rev 7  
77/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 8).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 8).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 46 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10. All I/Os are CMOS and TTL compliant.  
Table 46. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output Low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
TTL port,  
IIO = +8 mA,  
2.7 V < VDD < 3.6 V  
Output High level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
CMOS port  
IIO = +8 mA  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
2.7 V < VDD < 3.6 V  
2.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
1.3  
V
VOL  
IIO = +20 mA(3)  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–1.3  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
IIO = +6 mA(3)  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(2)  
VDD–0.4  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
78/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Input/output AC characteristics  
Electrical characteristics  
The definition and values of input/output AC characteristics are given in Figure 39 and  
Table 47, respectively.  
Unless otherwise specified, the parameters given in Table 47 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
(1)  
Table 47. I/O AC characteristics  
MODEx  
[1:0] bit Symbol  
Parameter  
Conditions  
Max Unit  
value(1)  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
125(3)  
10  
01  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
Output low to high level rise  
tr(IO)out  
time  
125(3)  
10  
fmax(IO)out Maximum frequency(2)  
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
25(3)  
Output low to high level rise  
tr(IO)out  
time  
25(3)  
CL= 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
20  
MHz  
MHz  
MHz  
Fmax(IO)out Maximum Frequency(2)  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output high to low level fall  
11  
tf(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
ns  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output low to high level rise  
tr(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 39.  
3. Guaranteed by design, not tested in production.  
Doc ID 14610 Rev 7  
79/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 39. I/O AC characteristics definition  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 45).  
PU  
Unless otherwise specified, the parameters given in Table 48 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
Table 48. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
200  
40  
mV  
Weak pull-up equivalent resistor(2)  
VIN VSS  
30  
50  
k  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
100  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
Figure 40. Recommended NRST pin protection  
V
DD  
External  
reset circuit(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 µF  
STM32F10xxx  
ai14132c  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 48. Otherwise the reset will not be taken into account by the device.  
80/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
5.3.15  
TIM timer characteristics  
The parameters given in Table 49 are guaranteed by design.  
Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 49. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
1
Max  
Unit  
tTIMxCLK  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 36 MHz  
TIMxCLK = 36 MHz  
27.8  
0
ns  
MHz  
MHz  
bit  
f
TIMxCLK/2  
18  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
f
0
ResTIM  
Timer resolution  
16  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
1820  
tCOUNTER  
fTIMxCLK = 36 MHz  
fTIMxCLK = 36 MHz  
0.0278  
µs  
tTIMxCLK  
s
65536 × 65536  
119.2  
tMAX_COUNT  
Maximum possible count  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
5.3.16  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 10.  
2
The STM32F101xC, STM32F101xD and STM32F101xE access line I C interface meets the  
2
requirements of the standard I C communication protocol with the following restrictions: t  
he  
I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-  
drain, the PMOS connected between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 50. Refer also to  
Section 5.3.13: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
Doc ID 14610 Rev 7  
81/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
2
Table 50. I C characteristics  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Unit  
Symbol Parameter  
Min  
Max  
Min  
Max  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
100  
0(4)  
µs  
ns  
250  
0(3)  
th(SDA)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
1000  
300  
20+0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition setup  
time  
tsu(STA)  
tsu(STO) Stop condition setup time  
µs  
µs  
pF  
Stop to Start condition time (bus  
tw(STO:STA)  
free)  
Cb  
Capacitive load for each bus line  
400  
400  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
82/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
2
(1)  
Figure 41. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F10xxx  
4.7kΩ  
4.7kΩ  
100 Ω  
100 Ω  
SDA  
SCL  
I²C bus  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14127c  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)(2)  
Table 51. SCL frequency (f  
= 36 MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
fSCL  
(kHz)  
RP = 4.7 k  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
Doc ID 14610 Rev 7  
83/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 52 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 10.  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 52. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
ns  
%
SPI slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
30  
70  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
50  
60  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
5
4
0
2
tsu(MI)  
tsu(SI)  
(2)  
(2)  
th(MI)  
Data input hold time  
ns  
(2)  
th(SI)  
(2)(3)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
3tPCLK  
10  
(2)(4)  
tdis(SO)  
(2)(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
25  
(2)(1)  
tv(MO)  
5
(2)  
th(SO)  
15  
2
Data output hold time  
(2)  
th(MO)  
1. Remapped SPI1 characteristics to be determined.  
2. Based on characterization, not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
84/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 42. SPI timing diagram - slave mode and CPHA=0  
NSS input  
Electrical characteristics  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 43. SPI timing diagram - slave mode and CPHA=1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 14610 Rev 7  
85/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
(1)  
Figure 44. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
5.3.17  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 10.  
Note:  
It is recommended to perform a calibration after each power-up.  
86/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 53. ADC characteristics  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA Power supply  
2.4  
2.4  
3.6  
V
V
VREF+ Positive reference voltage  
VDDA  
Current on the VREF input  
IVREF  
pin  
160(1) 220(1)  
µA  
fADC  
ADC clock frequency  
Sampling rate  
0.6  
14  
1
MHz  
MHz  
(2)  
0.05  
fS  
f
ADC = 14 MHz  
823  
17  
kHz  
(2)  
External trigger frequency  
Conversion voltage range(3)  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
V
See Equation  
1 andTable 54  
for details  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
50  
k  
(2)  
(2)  
1
8
k  
RADC  
Internal sample and hold  
capacitor  
pF  
CADC  
f
ADC = 14 MHz  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
fADC = 14 MHz  
fADC = 14 MHz  
0.214  
3(4)  
Injection trigger conversion  
latency  
(2)  
tlat  
1/fADC  
µs  
0.143  
2(4)  
Regular trigger conversion  
latency  
(2)  
tlatr  
1/fADC  
µs  
f
f
ADC = 14 MHz  
ADC = 14 MHz  
0.107  
1.5  
0
17.1  
(2)  
Sampling time  
Power-up time  
tS  
239.5 1/fADC  
(2)  
tSTAB  
0
1
µs  
µs  
1
18  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on  
the package. Refer to Section 3: Pinouts and pin descriptions for further details.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 53.  
Equation 1: R  
max formula:  
AIN  
TS  
RAIN ------------------------------------------------------------- – RADC  
fADC CADC ln2N + 2  
Doc ID 14610 Rev 7  
87/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 54.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)  
1.5  
0.11  
0.4  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)  
Table 55. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
1.3  
1
2
fPCLK2 = 28 MHz,  
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 3 V to 3.6 V, TA = 25 °C  
1.5  
1.5  
1
Gain error  
0.5  
0.7  
0.8  
LSB  
Measurements made after  
ADC calibration  
VREF+ = VDDA  
Differential linearity error  
Integral linearity error  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
3. Based on characterization, not tested in production.  
88/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
(1) (2)(3)  
Table 56. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
fPCLK2 = 28 MHz,  
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust)  
analog input pins should be avoided as this significantly reduces the accuracy of the conversion being  
performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard  
analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
4. Based on characterization, not tested in production.  
Figure 45. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
Doc ID 14610 Rev 7  
89/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 46. Typical connection diagram using the ADC  
STM32F10xxx  
V
DD  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
C
(1)  
R
R
AIN  
ADC  
AINx  
12-bit  
converter  
V
T
V
AIN  
0.6 V  
C
(1)  
ADC  
parasitic  
I
1 µA  
L
ai14139d  
1. Refer to Table 53 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 47 or Figure 48,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 47. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F10xxx  
V
REF+  
DDA  
1 µF // 10 nF  
V
V
1 µF // 10 nF  
/V  
SSA REF-  
ai14380b  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
90/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Electrical characteristics  
Figure 48. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F10xxx  
VREF+/VDDA  
1 µF // 10 nF  
VREF–/VSSA  
ai14381b  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
5.3.18  
DAC electrical specifications  
Table 57. DAC characteristics  
Symbol  
Parameter  
Min  
2.4  
Typ  
Max(1)  
Unit  
Comments  
VDDA  
Analog supply voltage  
3.6  
V
VREF+ must always be below  
VDDA  
VREF+  
Reference supply voltage  
2.4  
3.6  
0
V
VSSA  
Ground  
0
5
V
(2)  
RLOAD  
Resistive load with buffer ON  
k  
When the buffer is OFF, the  
minimum resistive load  
between DAC_OUT and VSS to  
have a 1% accuracy is 1.5 M  
Impedance output with buffer  
OFF  
(2)  
RO  
15  
50  
k  
Maximum capacitive load at  
DAC_OUT pin (when the buffer  
is ON).  
(2)  
CLOAD  
Capacitive load  
pF  
V
It gives the maximum output  
excursion of the DAC.  
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
VREF+ = 3.6 V and (0x155) and  
(0xEAB) at VREF+ = 2.4 V.  
DAC_OUT  
min(2)  
Lower DAC_OUT voltage with  
buffer ON  
0.2  
DAC_OUT  
max(2)  
Higher DAC_OUT voltage with  
buffer ON  
VDDA – 0.2  
V
DAC_OUT  
min(2)  
Lower DAC_OUT voltage with  
buffer OFF  
0.5  
mV  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT  
max(2)  
Higher DAC_OUT voltage with  
buffer OFF  
VREF+ – 1LSB V  
Doc ID 14610 Rev 7  
91/106  
Electrical characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 57. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
Comments  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs.  
DAC DC current consumption  
in quiescent mode (Standby  
mode)  
IDDVREF+  
220  
380  
480  
µA  
With no load, middle code  
(0x800) on the inputs.  
µA  
µA  
DAC DC current consumption  
in quiescent mode (Standby  
mode)  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs.  
IDDA  
Given for the DAC in 10-bit  
configuration.  
0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(3)  
Given for the DAC in 12-bit  
configuration.  
2
1
LSB  
LSB  
Integral non linearity (difference  
between measured value at  
Code i and the value at Code i  
on a line drawn between Code  
0 and last Code 1023)  
Given for the DAC in 10-bit  
configuration.  
INL(3)  
Given for the DAC in 12-bit  
configuration.  
4
LSB  
Given for the DAC in 12-bit  
configuration.  
10  
3
mV  
LSB  
LSB  
%
Offset error  
Given for the DAC in 10-bit at  
VREF+ = 3.6 V.  
(difference between measured  
value at Code (0x800) and the  
ideal value = VREF+/2)  
Offset(3)  
Given for the DAC in 12-bit at  
12  
0.5  
VREF+ = 3.6 V.  
Given for the DAC in 12bit  
configuration.  
Gain error(3) Gain error  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final value  
1LSB  
(3)  
tSETTLING  
3
4
1
µs  
CLOAD 50 pF, RLOAD 5 k  
Max frequency for a correct  
DAC_OUT change when small  
variation in the input code (from  
code i to i+1LSB)  
Update rate(3)  
MS/s CLOAD 50 pF, RLOAD 5 k  
CLOAD 50 pF, RLOAD 5 k  
Wakeup time from off state  
(Setting the ENx bit in the DAC  
Control register)  
(3)  
tWAKEUP  
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio (to  
VDDA) (static DC measurement  
PSRR+ (2)  
–67  
–40  
dB  
No RLOAD, CLOAD = 50 pF  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Guaranteed by characterization, not tested in production.  
92/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 49. 12-bit buffered /non-buffered DAC  
Electrical characteristics  
Buffered/Non-buffered DAC  
Buffer(1)  
R
LOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
C
LOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
5.3.19  
Temperature sensor characteristics  
Table 58. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
1  
4.3  
2  
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
(1)  
V25  
Voltage at 25°C  
Startup time  
1.43  
(2)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(3)(2)  
TS_temp  
17.1  
µs  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
Doc ID 14610 Rev 7  
93/106  
Package characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 50. Recommended PCB design rules (0.80/0.75 mm pitch BGA)  
Dpad  
0.37 mm  
0.52 mm typ. (depends on solder mask  
registration tolerance  
Dsm  
Solder paste  
0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
ai15469  
94/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Package characteristics  
Figure 51. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline  
Seating plane  
C
A2  
A4  
ddd  
C
A
A3  
A1  
B
D
D1  
A
e
F
M
F
E1  
E
e
Øb (144 balls)  
Ball A1  
C
A
B
M
Øeee  
Ø fff  
M
C
X3_ME  
1. Drawing is not to scale.  
Table 59. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
1.70  
0.0669  
0.21  
0.0083  
1.07  
0.27  
0.0421  
0.0106  
0.85  
0.45  
0.0335  
0.0177  
0.3996  
0.35  
9.85  
0.40  
10.00  
8.80  
10.00  
8.80  
0.80  
0.60  
0.10  
0.15  
0.08  
0.0138  
0.3878  
0.0157  
0.3937  
0.3465  
0.3937  
0.3465  
0.0315  
0.0236  
0.0039  
0.0059  
0.0031  
D
10.15  
D1  
E
9.85  
10.15  
0.3878  
0.3996  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 14610 Rev 7  
95/106  
Package characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 52. LQFP144, 20 x 20 mm, 144-pin thin quad flat  
Figure 53. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
Seating plane  
C
A
A2 A1  
c
b
0.25 mm  
gage plane  
1.35  
73  
108  
ccc  
C
D
109  
72  
0.35  
k
D1  
A1  
0.5  
D3  
L
108  
73  
L1  
17.85  
22.6  
19.9  
72  
109  
144  
37  
E1  
E
1
36  
E3  
19.9  
22.6  
ai149  
144  
37  
Pin 1  
identification  
1
36  
e
ME_1A  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 60. LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
21.80  
19.80  
22.00  
20.00  
17.50  
22.00  
20.00  
17.50  
0.50  
22.20  
20.20  
0.8661  
0.7874  
0.689  
D1  
D3  
E
0.7953  
21.80  
19.80  
22.20  
20.20  
0.8583  
0.7795  
0.8661  
0.7874  
0.689  
0.874  
E1  
E3  
e
0.7953  
0.0197  
0.0236  
0.0394  
3.5°  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
96/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Package characteristics  
(1)(2)  
Figure 54. LQFP100 – 14 x 14 mm, 100-pin low-profile Figure 55. Recommended footprint  
(1)  
quad flat package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
k
75  
51  
D
L
D1  
76  
50  
0.5  
L1  
D3  
51  
75  
C
0.3  
76  
50  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
1
25  
100  
26  
12.3  
16.7  
Pin 1  
1
25  
ccc  
C
identification  
ai14906b  
e
A1  
A2  
A
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 61. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
15.80  
13.80  
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
16.20  
14.20  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.20  
14.20  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 14610 Rev 7  
97/106  
Package characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
Figure 56. LQFP64 – 10 x 10 mm, 64 pin low-profile quad Figure 57. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
A
A2  
48  
33  
A1  
0.3  
49  
32  
0.5  
b
e
E
E1  
12.7  
10.3  
10.3  
64  
17  
1.2  
1
16  
7.8  
D1  
D
c
12.7  
L1  
ai14909  
L
ai14398b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 62. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
98/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Package characteristics  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 10: General operating conditions on page 38.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = (V × I ) + ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 63. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm / 0.5 mm pitch  
30  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm / 0.5 mm pitch  
JA  
46  
45  
°C/W  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
Doc ID 14610 Rev 7  
99/106  
Package characteristics  
STM32F101xC, STM32F101xD, STM32F101xE  
6.2.2  
Evaluating the maximum junction temperature for an application  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 64: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature. Here, only  
temperature range 6 is available (–40 to 85 °C).  
The following example shows how to calculate the temperature range needed for a given  
application, making it possible to check whether the required temperature range is  
compatible with the STM32F10xxx junction temperature range.  
Example: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
mode at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 64 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C  
Jmax  
This is within the junction temperature range of the STM32F10xxx (–40 < T < 105 °C).  
J
Figure 58. LQFP64 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
65  
75  
85  
95  
105  
115  
TA (°C)  
100/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Part numbering  
7
Part numbering  
Table 64. Ordering information scheme  
Example:  
STM32 F 101 R  
C
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
101 = access line  
Pin count  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
C = 256 Kbytes of Flash memory  
D = 384 Kbytes of Flash memory  
E = 512 Kbytes of Flash memory  
Package  
T = LQFP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
Options  
xxx = programmed parts  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 14610 Rev 7  
101/106  
Revision history  
STM32F101xC, STM32F101xD, STM32F101xE  
8
Revision history  
Table 65. Document revision history  
Date  
Revision  
Changes  
07-Apr-2008  
1
Initial release.  
Document status promoted from Target Specification to Preliminary  
Data.  
Section 1: Introduction and Section 2.2: Full compatibility throughout  
the family modified. Small text changes.  
Note 1 added in Table 2: STM32F101xC, STM32F101xD and  
STM32F101xE features and peripheral counts on page 11.  
LQPF100/BGA100 column added to Table 6: FSMC pin definition on  
page 31.  
22-May-2008  
2
Values added to Maximum current consumption on page 40 (see  
Table 14, Table 15, Table 16 and Table 17).  
Values added to Typical current consumption on page 46 (see Table 18,  
Table 19 and Table 20 and see Figure 11, Figure 12, Figure 14,  
Figure 15 and Figure 16). Table 19: Typical current consumption in  
Standby mode removed.  
Figure 53: Recommended footprint(1) on page 96 corrected.  
Equation 1 corrected. Section 6.2.2: Evaluating the maximum junction  
temperature for an application on page 100 added.  
Document status promoted from Preliminary Data to full datasheet.  
FSMC (flexible static memory controller) on page 15 modified.  
Power supply supervisor on page 17 modified and VDDA added to  
Table 10: General operating conditions on page 38.  
Table notes revised in Section 5: Electrical characteristics.  
Capacitance modified in Figure 9: Power supply scheme on page 35.  
Table 51: SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V) updated.  
Table 52: SPI characteristics modified, th(NSS) modified in Figure 42:  
SPI timing diagram - slave mode and CPHA=0 on page 85.  
Minimum SDA and SCL fall time value for Fast mode removed from  
Table 50: I2C characteristics on page 82, note 1 modified.  
IDD_VBAT values added to Table 17: Typical and maximum current  
consumptions in Stop and Standby modes on page 43.  
21-Jul-2008  
3
Table 30: Flash memory endurance and data retention on page 56  
updated.  
fHCLK corrected in Table 41: EMS characteristics.  
tsu(NSS) modified in Table 52: SPI characteristics.  
EO corrected in Table 56: ADC accuracy on page 89. fPCLK2 corrected  
in Table 55: ADC accuracy - limited test conditions and Table 56: ADC  
accuracy.  
Figure 46: Typical connection diagram using the ADC on page 90 and  
note below corrected.  
Typical TS_temp value removed from Table 58: TS characteristics on  
page 93.  
Section 6.1: Package mechanical data on page 94 updated.  
Small text changes.  
102/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 65. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
General-purpose timers (TIMx) on page 19 updated. Table 3:  
STM32F101xx family updated to show the low-density family.  
Table 4: Timer feature comparison added  
Figure 1: STM32F101xC, STM32F101xD and STM32F101xE access  
line block diagram updated.  
Note 9 added, main function after reset and Note 5 updated in Table 5:  
High-density STM32F101xx pin definitions.  
Note 2 modified below Table 7: Voltage characteristics on page 36,  
|VDDx| min and |VDDx| min removed.  
Measurement conditions specified in Section 5.3.5: Supply current  
characteristics on page 40.  
12-Dec-2008  
4
General input/output characteristics on page 77 modified.  
Max values at TA = 85 °C updated in Table 17: Typical and maximum  
current consumptions in Stop and Standby modes on page 43.  
Section 5.3.10: FSMC characteristics on page 56 revised.  
Values added to Table 42: EMI characteristics on page 76.  
IVREF added to Table 53: ADC characteristics on page 87.  
Table 63: Package thermal characteristics on page 99 updated.  
Small text changes.  
Doc ID 14610 Rev 7  
103/106  
Revision history  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 65. Document revision history (continued)  
Date  
Revision  
Changes  
I/O information clarified on page 1. Number of ADC peripherals  
corrected in Table 2: STM32F101xC, STM32F101xD and  
STM32F101xE features and peripheral counts.  
In Table 5: High-density STM32F101xx pin definitions:  
– I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15  
updated  
– PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default  
column to Remap column.  
PG14 pin description modified in Table 6: FSMC pin definition.  
Figure 6: Memory map on page 33 modified.  
Note modified in Table 14: Maximum current consumption in Run mode,  
code with data processing running from Flash and Table 16: Maximum  
current consumption in Sleep mode, code running from Flash or RAM.  
Figure 14, Figure 15 and Figure 16 show typical curves (titles  
changed).  
Table 21: High-speed external user clock characteristics and Table 22:  
Low-speed user external clock characteristics modified.  
ACCHSI max values modified in Table 25: HSI oscillator characteristics  
30-Mar-2009  
5
FSMC configuration modified for Asynchronous waveforms and timings.  
Notes modified below Figure 21: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR read waveforms and Figure 22: Asynchronous  
non-multiplexed SRAM/PSRAM/NOR write waveforms.  
tw(NADV) values modified in Table 31: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR read timings and Table 34: Asynchronous  
multiplexed NOR/PSRAM write timings. th(Data_NWE) modified in  
Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write  
timings.  
In Table 36: Synchronous multiplexed PSRAM write timings and  
Table 38: Synchronous non-multiplexed PSRAM write timings:  
– tv(Data-CLK) renamed as td(CLKL-Data)  
– td(CLKL-Data) min value removed and max value added  
– th(CLKL-DV) / th(CLKL-ADV) removed  
Figure 25: Synchronous multiplexed NOR/PSRAM read timings,  
Figure 26: Synchronous multiplexed PSRAM write timings and  
Figure 28: Synchronous non-multiplexed PSRAM write timings  
modified. Small text changes.  
104/106  
Doc ID 14610 Rev 7  
STM32F101xC, STM32F101xD, STM32F101xE  
Table 65. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Figure 1: STM32F101xC, STM32F101xD and STM32F101xE access  
line block diagram modified.  
Note 5 updated and Note 4 added in Table 5: High-density  
STM32F101xx pin definitions.  
VRERINT and TCoeff added to Table 13: Embedded internal reference  
voltage.  
fHSE_ext min modified in Table 21: High-speed external user clock  
characteristics.  
Table 23: HSE 4-16 MHz oscillator characteristics modified. Note 1  
modified below Figure 19: Typical application with an 8 MHz crystal.  
Figure 40: Recommended NRST pin protection modified. CL1 and CL2  
replaced by C in Table 23: HSE 4-16 MHz oscillator characteristics and  
Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz), notes  
modified and moved below the tables.  
Table 25: HSI oscillator characteristics modified. Conditions removed  
from Table 27: Low-power mode wakeup timings.  
Jitter added to Table 28: PLL characteristics.  
21-Jul-2009  
6
In Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read  
timings: th(BL_NOE) and th(A_NOE) modified.  
In Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write  
timings: th(A_NWE) and th(Data_NWE) modified.  
In Table 33: Asynchronous multiplexed NOR/PSRAM read timings:  
th(AD_NADV) and th(A_NOE) modified.  
In Table 34: Asynchronous multiplexed NOR/PSRAM write timings:  
th(A_NWE) modified.  
In Table 35: Synchronous multiplexed NOR/PSRAM read timings:  
th(CLKH-NWAITV) modified.  
In Table 40: Switching characteristics for NAND Flash read and write  
cycles: th(NOE-D) modified.  
Table 52: SPI characteristics modified.  
CADC and RAIN parameters modified in Table 53: ADC characteristics.  
RAIN max values modified in Table 54: RAIN max for fADC = 14 MHz.  
Table 57: DAC characteristics modified. Figure 49: 12-bit buffered /non-  
buffered DAC added.  
Number of DACs corrected in Table 3: STM32F101xx family.  
IDD_VBAT updated in Table 17: Typical and maximum current  
consumptions in Stop and Standby modes.  
Figure 13: Typical current consumption on VBAT with RTC on vs.  
temperature at different VBAT values added.  
24-Sep-2009  
7
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to  
IEC 61967-2 in Section 5.3.11: EMC characteristics on page 75.  
Table 57: DAC characteristics modified.  
Small text changes.  
Doc ID 14610 Rev 7  
105/106  
STM32F101xC, STM32F101xD, STM32F101xE  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
106/106  
Doc ID 14610 Rev 7  

相关型号:

STM32F101RCT6TR

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RCT6XXX

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR
STMICROELECTR

STM32F101RD

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RDT6TR

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RDT6XXX

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RE

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RET6TR

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RET6XXX

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RET6XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,QFP,64PIN,PLASTIC
STMICROELECTR

STM32F101RF

XL-density access line, ARM-based 32-bit MCU with 768 KB to 1 MB Flash, 15 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RFT6XXX

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 0.50 MM PITCH, ROHS COMPLIANT, LQFP-64
STMICROELECTR