STM32F101T4U6 [STMICROELECTRONICS]

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,LLCC,36PIN,PLASTIC;
STM32F101T4U6
型号: STM32F101T4U6
厂家: ST    ST
描述:

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,LLCC,36PIN,PLASTIC

文件: 总79页 (文件大小:1110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F101x4  
STM32F101x6  
Low-density access line, ARM-based 32-bit MCU with  
16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces  
Features  
Core: ARM 32-bit Cortex™-M3 CPU  
– 36 MHz maximum frequency,  
1.25 DMIPS/MHz (Dhrystone 2.1)  
LQFP64  
10 x 10 mm  
LQFP48  
7 x 7 mm  
VFQFPN48  
7 × 7 mm  
VFQFPN36  
6 × 6 mm  
performance at 0 wait state memory  
access  
– Single-cycle multiplication and hardware  
division  
Up to 5 timers  
Up to two16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter  
Memories  
– 2 watchdog timers (Independent and  
Window)  
– 16 to 32 Kbytes of Flash memory  
– 4 to 6 Kbytes of SRAM  
– SysTick timer: 24-bit downcounter  
Clock, reset and supply management  
Up to 4 communication interfaces  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR and programmable voltage  
detector (PVD)  
– 4-to-16 MHz crystal oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC  
2
– 1 x I C interface (SMBus/PMBus)  
– Up to 2 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– 1 × SPI (18 Mbit/s)  
CRC calculation unit, 96-bit unique ID  
– PLL for CPU clock  
– 32 kHz oscillator for RTC with calibration  
®
ECOPACK packages  
Table 1.  
Device summary  
Part number  
STM32F101C4,  
Low power  
– Sleep, Stop and Standby modes  
Reference  
– V  
supply for RTC and backup registers  
BAT  
STM32F101x4  
STM32F101R4,  
STM32F101T4  
Debug mode  
– Serial wire debug (SWD) and JTAG  
interfaces  
STM32F101C6,  
STM32F101R6,  
STM32F101T6  
STM32F101x6  
DMA  
– 7-channel DMA controller  
– Peripherals supported: timers, ADC, SPIs,  
2
I Cs and USARTs  
1 × 12-bit, 1 µs A/D converter (up to 16  
channels)  
– Conversion range: 0 to 3.6 V  
Temperature sensor  
Up to 51 fast I/O ports  
– 26/37/51 I/Os, all mappable on 16 external  
interrupt vectors and almost all 5 V-tolerant  
April 2011  
Doc ID 15058 Rev 5  
1/79  
www.st.com  
1
 
 
Contents  
STM32F101x4, STM32F101x6  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
ARM Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 15  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.15 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.16 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.17 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.18 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
²
2.3.19 I C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.20 Universal synchronous/asynchronous receiver transmitter (USART) . . 19  
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.23 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.24 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.3.25 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Contents  
4
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 31  
Embedded reset and power control block characteristics . . . . . . . . . . . 31  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 50  
5.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Evaluating the maximum junction temperature for an application . . . . . 75  
Doc ID 15058 Rev 5  
3/79  
Contents  
STM32F101x4, STM32F101x6  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
7
8
4/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Low-density STM32F101xx device features and peripheral counts . . . . . . . . . . . . . . . . . . 11  
STM32F101xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Low-density STM32F101xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Maximum current consumption in Run mode, code with data processing  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Maximum current consumption in Sleep mode, code running from Flash  
Table 13.  
Table 14.  
or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 36  
Typical current consumption in Run mode, code with data processing  
Table 15.  
Table 16.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 40  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SCL frequency (f  
= MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Doc ID 15058 Rev 5  
5/79  
List of tables  
STM32F101x4, STM32F101x6  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 70  
VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 71  
LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . 72  
LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 73  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F101xx Low-density access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F101xx Low-density access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32F101xx Low-density access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32F101xx Low-density access line VFQPFN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM32F101xx Low-density access line VFQPFN36 pinout . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 35  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 35  
Figure 14. Typical current consumption on V  
with RTC on versus temperature at different  
BAT  
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
BAT  
Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
DD  
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DD  
Figure 17. Typical current consumption in Standby mode versus temperature at V = 3.3 V and  
DD  
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 19. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 22. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 23. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 24. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 25. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 26. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
2
(1)  
Figure 28. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
(1)  
Figure 30. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 31. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
(1)  
Figure 32. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 34. Power supply and reference decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Figure 35. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline  
Figure 36. Recommended footprint (dimensions in mm)  
Figure 37. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline  
Figure 38. Recommended footprint (dimensions in mm)  
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
(1)(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 72  
(1)  
Figure 40. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 41. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Doc ID 15058 Rev 5  
7/79  
List of figures  
STM32F101x4, STM32F101x6  
(1)  
Figure 42. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 43. LQFP64 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
D
A
8/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F101x4 and STM32F101x6 low-density access line microcontrollers. For more  
details on the whole STMicroelectronics STM32F101xx family, please refer to Section 2.2:  
Full compatibility throughout the family.  
The Low-density STM32F101xx datasheet should be read in conjunction with the low-,  
medium- and high-density STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
Doc ID 15058 Rev 5  
9/79  
Description  
STM32F101x4, STM32F101x6  
2
Description  
The STM32F101x4 and STM32F101x6 Low-density access line family incorporates the  
high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency,  
high-speed embedded memories (Flash memory of 16 to 32 Kbytes and SRAM of 4 to 6  
Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB  
2
buses. All devices offer standard communication interfaces (one I C, one SPI, and two  
USARTs), one 12-bit ADC and up to two general-purpose 16-bit timers.  
The STM32F101xx Low-density access line family operates in the –40 to +85 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F101xx Low-density access line family includes devices in three different  
packages ranging from 36 pins to 64 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F101xx Low-density access line microcontroller family  
suitable for a wide range of applications such as application control and user interface,  
medical and handheld equipment, PC peripherals, gaming and GPS platforms, industrial  
applications, PLCs, inverters, printers, scanners, alarm systems, Video intercoms, and  
HVACs.  
10/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Description  
2.1  
Device overview  
Figure 1 shows the general block diagram of the device family.  
Table 2.  
Low-density STM32F101xx device features and peripheral counts  
STM32F101Tx STM32F101Cx STM32F101Rx  
Peripheral  
Flash - Kbytes  
SRAM - Kbytes  
16  
4
32  
6
16  
4
32  
6
16  
4
32  
6
General-purpose  
2
2
2
2
2
2
SPI  
I2C  
1
1
1
1
1
1
1
1
1
1
1
1
USART  
2
2
2
2
2
2
12-bit synchronized ADC  
number of channels  
1
1
1
10 channels  
10 channels  
16 channels  
GPIOs  
26  
37  
51  
CPU frequency  
Operating voltage  
36 MHz  
2.0 to 3.6 V  
Ambient temperature: –40 to +85 °C (see Table 8)  
Junction temperature: –40 to +105 °C (see Table 8)  
Operating temperatures  
Packages  
LQFP48,  
VFQFPN36  
LQFP64  
VFQFPN48  
Doc ID 15058 Rev 5  
11/79  
 
Description  
STM32F101x4, STM32F101x6  
Figure 1.  
STM32F101xx Low-density access line block diagram  
TRACECLK  
TRACED[0:3]  
as AS  
TPIU  
Trace  
controller  
Trace/trig  
pbus  
POWER  
SW/JTAG  
NJTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
V
= 2 to 3.6 V  
DD  
VSS  
VOLT. REG.  
3.3V TO 1.8V  
Ibus  
Cortex M3 CPU  
Flash 32 KB  
64 bit  
JTDO  
as AF  
@VDD  
Fmax: 3 6M Hz  
Dbus  
NVIC  
SRAM  
6 KB  
NVIC  
System  
@VDD  
OSC_IN  
OSC_OUT  
PCLK1  
PCLK2  
HCLK  
FCLK  
PLL &  
XTAL OSC  
4-16 MHz  
GP DMA  
CLOCK  
MANAGT  
7 channels  
RC 8 MHz  
RC 42 kHz  
@VDDA  
IWDG  
@VDDA  
Stand by  
interface  
SUPPLY  
SUPERVISION  
VBAT  
NRST  
VDDA  
VSSA  
@VBAT  
Rst  
POR / PDR  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
Backup  
Int  
PVD  
RTC  
AWU  
AHB2  
APB2  
AHB2  
APB1  
TAMPER-RTC  
reg  
Backu p interface  
EXTI  
80AF  
WAKEUP  
4 Channels  
4 Channels  
TIM2  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[3:0]  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
TIM3  
RX,TX, CTS, RTS,  
CK, SmartCard as AF  
USART2  
I2C  
SCL,SDA,SMBA  
as AF  
W W D G  
MOSI,MISO,  
SCK,NSS as AF  
SPI  
RX,TX, CTS, RTS,  
Smartcard as AF  
USART1  
@VDDA  
12bit ADC  
IF  
16AF  
Temp sensor  
ai15173c  
1. AF = alternate function on I/O port pin.  
2. TA = –40 °C to +85 °C (junction temperature up to 105 °C).  
12/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Figure 2. Clock tree  
Description  
8 MHz  
HSI RC  
HSI  
/2  
HCLK  
36 MHz max  
Clock  
to AHB bus, core,  
memory and DMA  
Enable (3 bits)  
to Cortex System timer  
/8  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
Prescaler  
/1, 2..512  
APB1  
Prescaler  
/1, 2, 4, 8, 16  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
PLLCLK  
HSE  
36 MHz  
max  
to APB1  
peripherals  
Peripheral Clock  
Enable (13 bits)  
to TIM2, TIM3  
TIMXCLK  
Peripheral Clock  
Enable (3 bits)  
TIM2, TIM3  
If (APB1 prescaler =1) x1  
else x2  
CSS  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
36 MHz max  
PCLK2  
to APB2  
OSC_OUT  
peripherals  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (11 bits)  
OSC_IN  
ADC  
to ADC  
Prescaler  
/2, 4, 6, 8  
ADCCLK  
/128  
LSE  
OSC32_IN  
to RTC  
LSE OSC  
RTCCLK  
32.768 kHz  
OSC32_OUT  
RTCSEL[1:0]  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
HSE = high-speed external clock signal  
HSI = high-speed internal clock signal  
LSI = low-speed internal clock signal  
LSE = low-speed external clock signal  
Main  
Clock Output  
/2  
PLLCLK  
MCO  
HSI  
HSE  
SYSCLK  
MCO  
ai15174  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
36 MHz.  
2. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz or 28 MHz.  
Doc ID 15058 Rev 5  
13/79  
 
Description  
STM32F101x4, STM32F101x6  
2.2  
Full compatibility throughout the family  
The STM32F101xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are  
referred to as low-density devices, the STM32F101x8 and STM32F101xB are referred to as  
medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are  
referred to as high-density devices.  
Low- and high-density devices are an extension of the STM32F101x8/B devices, they are  
specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively. Low-  
density devices feature lower Flash memory and RAM capacities and a timer less. High-  
density devices have higher Flash memory and RAM capacities, and additional peripherals  
like FSMC and DAC, while remaining fully compatible with the other members of the  
STM32F101xx family.  
The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE  
are a drop-in replacement for the STM32F101x8/B medium-density devices, allowing the  
user to try different memory densities and providing a greater degree of freedom during the  
development cycle.  
Moreover, the STM32F101xx performance line family is fully compatible with all existing  
STM32F101xx access line and STM32F102xx USB access line devices.  
Table 3.  
Pinout  
STM32F101xx family  
Memory size  
Low-density devices Medium-density devices  
High-density devices  
16 KB  
Flash  
32 KB  
64 KB  
Flash  
128 KB  
Flash  
256 KB  
384 KB  
Flash  
512 KB  
Flash(1)  
Flash  
Flash  
32 KB  
RAM  
48 KB  
RAM  
48 KB  
RAM  
4 KB RAM 6 KB RAM 10 KB RAM 16 KB RAM  
144  
100  
64  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Cs, 1 × ADC,  
3 × USARTs  
2 × DACs, FSMC (100 and 144 pins)  
2 × USARTs  
2 × 16-bit timers  
1 × SPI, 1 × I2C  
1 × ADC  
3 × 16-bit timers  
2 × SPIs, 2 × I2Cs,  
1 × ADC  
48  
36  
1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the  
reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.  
14/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Description  
2.3  
Overview  
®
2.3.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F101xx Low-density access line family having an embedded ARM core, is  
therefore compatible with all ARM tools and software.  
2.3.2  
2.3.3  
Embedded Flash memory  
16 or 32 Kbytes of embedded Flash is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
2.3.4  
2.3.5  
Embedded SRAM  
Up to 6 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
Nested vectored interrupt controller (NVIC)  
The STM32F101xx Low-density access line embeds a nested vectored interrupt controller  
able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of  
Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
Doc ID 15058 Rev 5  
15/79  
Description  
STM32F101x4, STM32F101x6  
2.3.6  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected  
to the 16 external interrupt lines.  
2.3.7  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 36 MHz. See Figure 2 for details on the clock tree.  
2.3.8  
2.3.9  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1. For further details please refer to AN2606.  
Power supply schemes  
V
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.  
2.3.10  
Power supply supervisor  
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
16/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Description  
than the V threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
Refer to Table 10: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
2.3.11  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop mode  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode, providing high  
impedance output.  
2.3.12  
Low-power modes  
The STM32F101xx Low-density access line supports three low-power modes to achieve the  
best compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output or the RTC alarm.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
2.3.13  
DMA  
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Doc ID 15058 Rev 5  
17/79  
Description  
STM32F101x4, STM32F101x6  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general purpose timers  
TIMx and ADC.  
2.3.14  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the VBAT pin. The backup registers are ten 16-bit  
DD  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural crystal deviation. The RTC  
features a 32-bit programmable counter for long term measurement using the Compare  
register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by  
default configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.3.15  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to  
reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
2.3.16  
2.3.17  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated for OS, but could also be used as a standard down counter. It  
features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
2.3.18  
General-purpose timers (TIMx)  
There areup to two synchronizable general-purpose timers embedded in the STM32F101xx  
Low-density access line devices. These timers are based on a 16-bit auto-reload up/down  
counter, a 16-bit prescaler and feature 4 independent channels each for input capture,  
18/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Description  
output compare, PWM or one pulse mode output. This gives up to 12 input captures / output  
compares / PWMs on the largest packages.  
The general-purpose timers can work together via the Timer Link feature for synchronization  
or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose  
timers can be used to generate PWM outputs. They all have independent DMA request  
generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
²
2.3.19  
I C bus  
The I²C bus interface can operate in multimaster and slave modes. It can support standard  
and fast modes.  
It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode.  
A hardware CRC generation/verification is embedded.  
The interface can be served by DMA and it supports SM Bus 2.0/PM Bus.  
2.3.20  
2.3.21  
Universal synchronous/asynchronous receiver transmitter (USART)  
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware  
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816  
compliant and have LIN Master/Slave capability.  
The USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
The SPI interface is able to communicate up to 18 Mbit/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
The SPI interface can be served by the DMA controller.  
2.3.22  
2.3.23  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
ADC (analog to digital converter)  
The 12-bit analog to digital converter has up to 16 external channels and performs  
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed  
on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
Doc ID 15058 Rev 5  
19/79  
Description  
2.3.24  
STM32F101x4, STM32F101x6  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V  
< 3.6 V. The temperature sensor is internally  
DDA  
connected to the ADC_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
2.3.25  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
20/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Pinouts and pin description  
3
Pinouts and pin description  
Figure 3.  
STM32F101xx Low-density access line LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
1
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14387b  
Figure 4.  
STM32F101xx Low-density access line LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
9
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai14378d  
Doc ID 15058 Rev 5  
21/79  
Pinouts and pin description  
Figure 5.  
STM32F101x4, STM32F101x6  
STM32F101xx Low-density access line VFQPFN48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
1
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
4
5
6
VFQFPN48  
7
8
PA8  
VSSA  
VDDA  
PA0-WKUP  
PA1  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA2  
13 14 15 16 17 18 19 20 21 22 23 24  
ai18300  
Figure 6.  
STM32F101xx Low-density access line VFQPFN36 pinout  
36 35 34  
33 32 31 30 29 28  
27  
V
V
V
1
DD_3  
DD_2  
SS_2  
OSC_IN/PD0  
OSC_OUT/PD1  
NRST  
2
3
4
5
6
7
8
9
26  
PA13  
PA12  
PA11  
PA10  
PA9  
25  
24  
QFN36  
V
23  
22  
SSA  
V
DDA  
PA0-WKUP  
PA1  
21  
20  
PA8  
PA2  
V
19  
DD_1  
10 11 12 13  
14 15 16 17  
18  
ai14654  
22/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Pinouts and pin description  
Alternate functions(3)(4)  
Table 4.  
Pins  
Low-density STM32F101xx pin definitions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
1
2
3
4
5
6
7
-
1
2
-
-
VBAT  
S
VBAT  
PC13(6)  
PC14(6)  
PC15(6)  
OSC_IN  
OSC_OUT  
NRST  
PC0  
PC13-TAMPER-RTC(5) I/O  
PC14-OSC32_IN(5)  
I/O  
PC15-OSC32_OUT(5) I/O  
TAMPER-RTC  
OSC32_IN  
3
-
4
-
OSC32_OUT  
5
2
3
4
-
OSC_IN  
OSC_OUT  
NRST  
PC0  
I
6
O
7
I/O  
I/O  
I/O  
I/O  
I/O  
S
8
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
-
9
-
PC1  
PC1  
-
10  
11  
12  
13  
-
PC2  
PC2  
-
-
PC3  
PC3  
8
9
5
6
VSSA  
VSSA  
VDDA  
S
VDDA  
WKUP/USART2_CTS/  
ADC_IN0/  
10 14  
7
PA0-WKUP  
I/O  
PA0  
TIM2_CH1_ETR(7)  
USART2_RTS/  
11 15  
12 16  
8
9
PA1  
PA2  
PA3  
I/O  
I/O  
I/O  
PA1  
PA2  
PA3  
ADC_IN1/TIM2_CH2(7)  
USART2_TX/  
ADC_IN2/TIM2_CH3(7)  
USART2_RX/  
13 17 10  
ADC_IN3/TIM2_CH4(7)  
-
-
18  
19  
-
-
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI_NSS(7)/ADC_IN4  
USART2_CK  
14 20 11  
15 21 12  
16 22 13  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
SPI_SCK(7)/ADC_IN5  
SPI_MISO(7)/ADC_IN6/  
TIM3_CH1(7)  
SPI_MOSI(7)/ADC_IN7/  
TIM3_CH2(7)  
17 23 14  
PA7  
I/O  
PA7  
-
-
24  
25  
PC4  
PC5  
PB0  
PB1  
I/O  
I/O  
I/O  
I/O  
PC4  
PC5  
PB0  
PB1  
ADC_IN14  
ADC_IN15  
18 26 15  
19 27 16  
ADC_IN8/TIM3_CH3(7)  
ADC_IN9/TIM3_CH4(7)  
Doc ID 15058 Rev 5  
23/79  
 
Pinouts and pin description  
STM32F101x4, STM32F101x6  
Alternate functions(3)(4)  
Table 4.  
Pins  
Low-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
20 28 17  
PB2  
PB10  
PB11  
VSS_1  
VDD_1  
PB12  
PB13  
PB14  
PB15  
PC6  
I/O  
I/O  
I/O  
S
FT  
FT  
FT  
PB2/BOOT1  
PB10  
PB11  
VSS_1  
VDD_1  
PB12  
PB13  
PB14  
PB15  
PC6  
21 29  
22 30  
-
-
TIM2_CH3  
TIM2_CH4  
23 31 18  
24 32 19  
S
25 33  
26 34  
27 35  
28 36  
-
-
-
-
-
-
-
-
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
S
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
-
37  
38  
39  
40  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
PC7  
PC7  
PC8  
PC8  
-
PC9  
PC9  
29 41 20  
30 42 21  
31 43 22  
32 44 23  
33 45 24  
34 46 25  
35 47 26  
36 48 27  
37 49 28  
PA8  
PA8  
USART1_CK/MCO  
USART1_TX(7)  
USART1_RX(7)  
USART1_CTS  
USART1_RTS  
PA9  
PA9  
PA10  
PA11  
PA12  
PA13  
VSS_2  
VDD_2  
PA14  
PA10  
PA11  
PA12  
FT JTMS-SWDIO  
VSS_2  
PA13  
PA14  
S
VDD_2  
I/O  
FT JTCK/SWCLK  
TIM2_CH1_ETR/  
PA15 / SPI_NSS  
38 50 29  
PA15  
I/O  
FT  
JTDI  
-
-
51  
52  
53  
5
PC10  
PC11  
PC12  
PD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
PC10  
PC11  
-
PC12  
5
6
2
3
-
OSC_IN(8)  
OSC_OUT(8)  
PD2  
6
PD1  
54  
PD2  
TIM3_ETR  
TIM2_CH2 / PB3  
TRACESWO  
SPI_SCK  
39 55 30  
PB3  
I/O  
FT  
JTDO  
24/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Pinouts and pin description  
Alternate functions(3)(4)  
Table 4.  
Pins  
Low-density STM32F101xx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
TIM3_CH1 / PB4  
SPI_MISO  
40 56 31  
41 57 32  
PB4  
PB5  
I/O  
I/O  
FT  
NJTRST  
PB5  
TIM3_CH2 /  
SPI_MOSI  
I2C_SMBA  
42 58 33  
43 59 34  
44 60 35  
PB6  
PB7  
I/O  
I/O  
I
FT  
FT  
PB6  
PB7  
I2C_SCL(7)  
I2C_SDA(7)  
USART1_TX  
USART1_RX  
BOOT0  
PB8  
BOOT0  
PB8  
45 61  
46 62  
-
-
I/O  
I/O  
S
FT  
FT  
I2C_SCL  
I2C_SDA  
PB9  
PB9  
47 63 36  
48 64  
VSS_3  
VDD_3  
VSS_3  
VDD_3  
1
S
1. I = input, O = output, S = supply.  
2. FT= 5 V tolerant.  
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripherals that is included. For example, if a device has only one SPI, two USARTs and two timers, they will be  
called SPI, USART1 & USART2 and TIM2 & TIM 3, respectively. Refer to Table 2 on page 11.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum  
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
8. The pins number 2 and 3 in the VFQFPN36 package, and 5 and 6 in the LQFP48 and LQFP64 packages are configured as  
OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For  
more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.  
Doc ID 15058 Rev 5  
25/79  
Memory mapping  
STM32F101x4, STM32F101x6  
4
Memory mapping  
The memory map is shown in Figure 7.  
Figure 7.  
Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xFFFF FFFF  
reserved  
0x6000 0000  
reserved  
0x4002 3400  
CRC  
0x4002 3000  
7
reserved  
0x4002 2400  
0xE010 0000  
Cortex-M3 internal  
peripherals  
Flash interface  
0x4002 2000  
0xE000 0000  
reserved  
0x4002 1400  
RCC  
0x4002 1000  
reserved  
6
0x4002 0400  
DMA  
0x4002 0000  
reserved  
0xC000 0000  
0x4001 3C00  
USART1  
0x4001 3800  
reserved  
0x4001 3400  
5
SPI  
0x4001 3000  
reserved  
0x4001 2C00  
0xA000 0000  
reserved  
0x4001 2800  
ADC  
0x4001 2400  
reserved  
0x4001 1800  
4
0x1FFF FFFF  
0x1FFF F80F  
reserved  
Port D  
0x4001 1400  
Port C  
0x4001 1000  
0x8000 0000  
Option Bytes  
Port B  
0x1FFF F800  
0x4001 0C00  
Port A  
0x4001 0800  
System memory  
EXTI  
3
0x4001 0400  
AFIO  
0x4001 0000  
0x1FFF F000  
reserved  
0x4000 7400  
0x6000 0000  
PWR  
0x4000 7000  
BKP  
0x4000 6C00  
2
reserved  
0x4000 6800  
reserved  
reserved  
0x4000 6400  
Peripherals  
reserved  
0x4000 0000  
0x4000 6000  
reserved  
0x4000 5800  
I2C  
0x4000 5400  
1
reserved  
USART2  
0x4000 4800  
0x4000 4400  
0x4000 3400  
0x4000 3000  
0x4000 2C00  
SRAM  
reserved  
0x2000 0000  
0x0801 FFFF  
IWDG  
WWDG  
RTC  
Flash memory  
0
0x4000 2800  
0x4000 0800  
reserved  
TIM3  
0x0800 0000  
0x0000 0000  
0x0000 0000  
0x4000 0400  
0x4000 0000  
Aliased to Flash or  
system memory  
depending on  
BOOT pins  
TIM2  
Reserved  
ai15175b  
26/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Doc ID 15058 Rev 5  
27/79  
Electrical characteristics  
Figure 8.  
STM32F101x4, STM32F101x6  
Pin input voltage  
Pin loading conditions  
Figure 9.  
STM32F10xxx pin  
STM32F10xxx pin  
C= 50 pF  
V
IN  
ai14124b  
ai14123b  
5.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wakeup logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 4.7 µF  
V
SS  
1/2/3/4/5  
V
DD  
V
DDA  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
ADC  
REF-  
V
V
SSA  
ai15496  
Caution:  
In Figure 10, the 4.7 µF capacitor must be connected to V  
.
DD3  
28/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics,  
Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 5.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including  
VDD VSS  
–0.3  
4.0  
(1)  
VDDA and VDD  
)
V
Input voltage on five volt tolerant pin  
Input voltage on any other pin  
VSS 0.3  
VSS 0.3  
VDD + 4.0  
4.0  
(2)  
VIN  
|ΔVDDx  
|
Variations between different VDD power pins  
50  
mV  
Variations between all the different ground  
pins  
|VSSX VSS  
|
50  
seeSection 5.3.11:Absolute  
maximum ratings (electrical  
sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum  
allowed injected current values.  
Doc ID 15058 Rev 5  
29/79  
 
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Table 6.  
Symbol  
Current characteristics  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on five volt tolerant pins(3)  
Injected current on any other pin(4)  
150  
150  
25  
IIO  
25  
-5/+0  
5
mA  
(2)  
IINJ(PIN)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC  
characteristics.  
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage  
values.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 7.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 8.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
36  
36  
36  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
V
(2)  
Analog operating voltage  
(ADC used)  
2.4  
1.8  
3.6  
3.6  
VBAT  
Backup operating voltage  
30/79  
Doc ID 15058 Rev 5  
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Table 8.  
Symbol  
General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
LQFP64  
LQFP48  
444  
363  
1000  
85  
Power dissipation at TA =  
85 °C(3)  
PD  
mW  
VFQFPN36  
Maximum power dissipation –40  
°C  
°C  
°C  
TA  
TJ  
Ambient temperature  
Low power dissipation(4)  
–40  
–40  
105  
105  
Junction temperature range  
1. When the ADC is used, refer to Table 42: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 74).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 74).  
5.3.2  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 9.  
Symbol  
Operating conditions at power-up / power-down  
Parameter  
VDD rise time rate  
VDD fall time rate  
Conditions  
Min  
0
Max  
Unit  
tVDD  
µs/V  
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 10 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Doc ID 15058 Rev 5  
31/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
.
Table 10. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1  
2
2.18 2.26  
2.08 2.16  
V
V
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92 2.0  
40  
V
(2)  
VPDRhyst  
PDR hysteresis  
mV  
ms  
(2)  
tRSTTEMPO  
Reset temporization  
1.5  
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
32/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
5.3.4  
Embedded reference voltage  
The parameters given in Table 11 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 11. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VREFINT Internal reference voltage  
–40 °C < TA < +85 °C 1.16 1.20  
5.1  
1.24  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
17.1(2)  
10  
TS_vrefint  
µs  
Internal reference voltage spread  
over the temperature range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
mV  
ppm/  
°C  
(2)  
TCoeff  
Temperature coefficient  
100  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f  
PCLK1  
HCLK/2 PCLK2  
HCLK  
The parameters given in Table 12 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Doc ID 15058 Rev 5  
33/79  
 
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Table 12. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
26  
18  
13  
7
External clock (2), all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
Supply current  
in Run mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
19  
13  
10  
6
External clock (2), all  
peripherals Disabled  
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 13. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
20  
14  
10  
6
External clock (2), all  
peripherals enabled  
24 MHz  
16 MHz  
8 MHz  
Supply current in  
Run mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
15  
10  
7
External clock(2) all  
peripherals disabled  
5
1. Based on characterization, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
34/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
25  
20  
15  
36 MHz  
16 MHz  
8 MHz  
10  
5
0
– 45°C  
25 °C  
70 °C  
85 °C  
Temperature (°C)  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
16  
14  
12  
10  
36 MHz  
8
6
4
2
0
16 MHz  
8 MHz  
– 45°C  
25 °C  
70 °C  
85 °C  
Temperature (°C)  
Doc ID 15058 Rev 5  
35/79  
Electrical characteristics  
STM32F101x4, STM32F101x6  
Table 14. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
14  
10  
7
External clock(2) all  
peripherals enabled  
4
Supplycurrentin  
Sleep mode  
IDD  
mA  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
5
External clock(2), all  
peripherals disabled  
4.5  
4
3
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 15. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
V
DD/VBAT  
V
DD/ VBAT  
= 2.4 V  
V
DD/VBAT TA =  
= 2.0 V  
= 3.3 V 85 °C(2)  
Regulator in Run mode,  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator OFF  
(no independent watchdog)  
-
21.3  
11.3  
21.7  
11.7  
160  
145  
Supply current  
in Stop mode  
Regulator in Low Power mode,  
Low-speed and high-speed internal RC  
oscillators and high-speed oscillator OFF  
(no independent watchdog)  
-
IDD  
Low-speed internal RC oscillator and  
independent watchdog ON  
µA  
-
-
2.6  
2.4  
3.4  
3.2  
-
-
Supply current Low-speed internal RC oscillator ON,  
in Standby  
mode  
independent watchdog OFF  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-speed  
oscillator and RTC OFF  
-
1.7  
1.1  
2
3.2  
1.9  
Backup domain  
I
Low-speed oscillator and RTC ON  
0.9  
1.4  
DD_VBAT supply current  
1. Typical values are measured at TA = 25 °C.  
2. Based on characterization, not rested in production.  
36/79  
Doc ID 15058 Rev 5  
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Figure 14. Typical current consumption on V  
with RTC on versus temperature at different  
BAT  
V
values  
BAT  
2.5  
2
1.5  
1
2 V  
2.4 V  
3 V  
0.5  
0
3.6 V  
–40 °C  
25 °C  
70 °C  
85 °C  
105 °C  
Temperature (°C)  
ai17351  
Figure 15. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.3 V  
3.6 V  
0
–45 °C  
25 °C  
85 °C  
Temperature (°C)  
Doc ID 15058 Rev 5  
37/79  
Electrical characteristics  
STM32F101x4, STM32F101x6  
Figure 16. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
30  
25  
20  
15  
10  
5
3.3 V  
3.6 V  
0
–45 °C  
25 °C  
85 °C  
Temperature (°C)  
Figure 17. Typical current consumption in Standby mode versus temperature at V = 3.3 V and  
DD  
3.6 V  
3.5  
3
2.5  
2
3.3 V  
3.6 V  
1.5  
1
0.5  
0
–45 °C  
25 °C  
85 °C  
Temperature (°C)  
38/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Electrical characteristics  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f = f , f = f , f  
=
HCLK/2 ADCCLK  
PCLK1  
HCLK/4 PCLK2  
f
/4  
PCLK2  
The parameters given in Table 16 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 16. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals  
enabled(2)  
All peripherals  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
17.2  
11.2  
8.1  
5
13.8  
8.9  
6.6  
4.2  
2.6  
1.8  
1.4  
1.2  
1
External  
clock(3)  
4 MHz  
3
2 MHz  
2
1 MHz  
1.5  
1.2  
1.05  
16.5  
10.5  
7.4  
4.3  
2.4  
1.5  
1
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
Supply  
IDD  
current in  
mA  
13.1  
8.2  
5.9  
3.6  
2
Run mode  
Running on  
high speed  
internal RC  
(HSI), AHB  
prescaler  
used to  
reduce the  
frequency  
4 MHz  
2 MHz  
1.3  
0.9  
0.65  
0.45  
1 MHz  
500 kHz  
125 kHz  
0.7  
0.5  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 15058 Rev 5  
39/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Table 17. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typ(1)  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
6.7  
4.8  
3.4  
2
3.1  
2.3  
1.8  
1.2  
External clock(3)  
4 MHz  
1.5  
1.25  
1.1  
1.05  
1
1.1  
2 MHz  
1
1 MHz  
0.98  
0.96  
0.95  
2.5  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
Supply  
IDD  
current in  
mA  
6.1  
4.2  
2.8  
1.4  
0.9  
0.7  
0.55  
0.48  
0.4  
Sleep mode  
1.7  
1.2  
Running on High  
Speed Internal RC  
(HSI), AHB  
prescaler used to  
reduce the  
0.55  
0.5  
4 MHz  
2 MHz  
0.45  
0.42  
0.4  
frequency  
1 MHz  
500 kHz  
125 kHz  
0.38  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
40/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 5.  
Table 18. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C  
Unit  
TIM2  
0.6  
0.6  
TIM3  
APB1  
USART2  
0.21  
0.18  
0.21  
0.21  
0.21  
0.21  
1.4  
I2C  
GPIO A  
GPIO B  
GPIO C  
mA  
APB2  
GPIO D  
ADC(1)  
SPI  
0.24  
0.35  
USART1  
1. Specific conditions for ADC: fHCLK = 28 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit  
in the ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 19 result from tests performed using an high-speed  
external clock source, and under the ambient temperature and supply voltage conditions  
summarized in Table 8.  
Doc ID 15058 Rev 5  
41/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Table 19. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
25  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
5
pF  
%
DuCy(HSE) Duty cycle  
45  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
The characteristics given in Table 20 result from tests performed using an low-speed  
external clock source, and under the ambient temperature and supply voltage conditions  
summarized in Table 8.  
Table 20. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
tw(LSE)  
tw(LSE)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
ns  
tr(LSE)  
tf(LSE)  
50  
Cin(LSE) OSC32_IN input capacitance(1)  
5
pF  
%
DuCy(LSE) Duty cycle  
30  
70  
1
IL  
OSC32_IN Input leakage current VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
42/79  
Doc ID 15058 Rev 5  
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Figure 18. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
clock source  
I
L
OSC _IN  
STM32F10xxx  
ai14127b  
Figure 19. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
clock source  
I
L
OSC32_IN  
STM32F10xxx  
ai14140c  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 21. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Doc ID 15058 Rev 5  
43/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
(1)(2)  
Table 21. HSE 4-16 MHz oscillator characteristics  
Symbol Parameter Conditions  
fOSC_IN Oscillator frequency  
Min  
Typ  
Max Unit  
4
8
16  
MHz  
RF  
Feedback resistor  
200  
kΩ  
Recommended load capacitance  
versus equivalent serial  
C
RS = 30 Ω  
30  
pF  
resistance of the crystal (RS)(3)  
VDD = 3.3 V, VIN = VSS  
with 30 pF load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 20). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
C
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Figure 20. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F10xxx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14128b  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 22. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
44/79  
Doc ID 15058 Rev 5  
 
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1) (2)  
Table 22. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
MΩ  
Recommended load capacitance  
versus equivalent serial  
C
RS = 30 KΩ  
15  
pF  
resistance of the crystal (RS)  
V
DD = 3.3 V  
I2  
LSE driving current  
1.4  
µA  
VIN = VSS  
gm  
Oscillator transconductance  
5
µA/V  
TA = 50 °C  
TA = 25 °C  
TA = 10 °C  
TA = 0 °C  
1.5  
2.5  
4
6
VDD is  
stabilized  
(3)  
tSU(LSE)  
Startup time  
s
TA = -10 °C  
TA = -20 °C  
TA = -30 °C  
TA = -40 °C  
10  
17  
32  
60  
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
Note:  
For C and C it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator. C and C are  
L1  
L2,  
usually the same size. The crystal manufacturer typically specifies a load capacitance which  
is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
L
stray  
then C = C = 8 pF.  
L1  
L2  
Doc ID 15058 Rev 5  
45/79  
 
Electrical characteristics  
Figure 21. Typical application with a 32.768 kHz crystal  
STM32F101x4, STM32F101x6  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 KHz  
resonator  
R
F
STM32F10xxx  
OSC32_OUT  
C
L2  
ai14129b  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 23 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 23. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
8
MHz  
DuCy(HSI) Duty cycle  
45  
55  
%
%
User-trimmed with the RCC_CR  
register(2)  
1(3)  
TA = –40 to 105 °C  
–2  
2.5  
2.2  
2
%
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
TA = –10 to 85 °C  
Factory-  
–1.5  
–1.3  
–1.1  
calibrated(4)  
TA = 0 to 70 °C  
TA = 25 °C  
1.8  
HSI oscillator  
startup time  
(4)  
tsu(HSI)  
1
2
µs  
HSI oscillator power  
consumption  
(4)  
IDD(HSI)  
80  
100  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from  
the ST website www.st.com.  
3. Guaranteed by design, not tested in production.  
4. Based on characterization, not tested in production.  
46/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 24. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
30  
40  
60  
85  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
0.65  
1.2  
µA  
1. VDD = 3 V, TA = –40 to 85 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 25 are measured on a wakeup phase with an 8-MHz HSI  
RC oscillator. The clock source used to wake up the device depends from the current  
operating mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under the ambient temperature and V supply  
DD  
voltage conditions summarized in Table 8.  
Table 25. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Typ  
Unit  
(1)  
1.8  
µs  
tWUSLEEP  
Wakeup from Stop mode (regulator in run mode)  
Wakeup from Stop mode (regulator in low-power mode)  
Wakeup from Standby mode  
3.6  
5.4  
50  
(1)  
µs  
µs  
tWUSTOP  
(1)  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point at which the user application code  
reads the first instruction.  
5.3.8  
PLL characteristics  
The parameters given in Table 26 are derived from tests performed under the ambient  
temperature and V supply voltage conditions summarized in Table 8.  
DD  
Table 26. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min(1)  
Typ  
Max(1)  
PLL input clock(2)  
1
8.0  
25  
60  
36  
MHz  
%
fPLL_IN  
fPLL_OUT  
PLL input clock duty cycle  
PLL multiplier output clock  
40  
16  
MHz  
Doc ID 15058 Rev 5  
47/79  
 
 
 
Electrical characteristics  
Table 26. PLL characteristics  
Symbol Parameter  
STM32F101x4, STM32F101x6  
Value  
Unit  
Min(1)  
Typ  
Max(1)  
tLOCK  
Jitter  
1. Based on device characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
PLL lock time  
200  
µs  
Cycle-to-cycle jitter  
300  
ps  
the range defined by fPLL_OUT  
.
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 85 °C unless otherwise specified.  
A
Table 27. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
tprog  
tERASE  
tME  
16-bit programming time  
Page (1 KB) erase time  
Mass erase time  
TA = –40 to +85 °C  
TA = –40 to +85 °C  
TA = –40 to +85 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
Read mode  
fHCLK = 36 MHz with 1 wait  
state, VDD = 3.3 V  
20  
5
mA  
mA  
IDD  
Supply current  
Write / Erase modes  
fHCLK = 36 MHz, VDD = 3.3 V  
Power-down mode / Halt,  
VDD = 3.0 to 3.6 V  
50  
µA  
V
Vprog  
Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
Table 28. Flash memory endurance and data retention  
Value  
Typ  
Symbol  
NEND Endurance  
tRET Data retention  
Parameter  
Conditions  
Unit  
Min(1)  
Max  
TA = –40 °C to 85 °C  
TA = 85 °C, 1 kcycle(2)  
TA = 55 °C, 10 kcycle(2)  
kcycles  
Years  
10  
30  
20  
1. Based on characterization not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
48/79  
Doc ID 15058 Rev 5  
 
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
Functional EMS (Electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 29. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 29. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD = 3.3 V, TA = +25 °C,  
fHCLK= 36 MHz  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
VDD = 3.3 V, TA = +25 °C,  
VEFTB  
applied through 100 pF on VDD and VSS pins fHCLK = 36 MHz  
to induce a functional disturbance conforms to IEC 61000-4-4  
4A  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and pre  
qualification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second. To complete these trials, ESD stress can be applied directly on the device, over the  
range of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
Doc ID 15058 Rev 5  
49/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC61967-2 standard which specifies the test board and the pin loading.  
Table 30. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/36 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
7
8
VDD = 3.3 V, TA = 25 °C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
13  
3.5  
IEC 61967-2  
5.3.11  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 31. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) conforming to JESD22-A114  
TA = +25 °C  
VESD(HBM)  
2
II  
2000  
V
Electrostatic discharge TA = +25 °C  
voltage (charge device model) conforming to JESD22-C101  
VESD(CDM)  
500  
1. Based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78 IC latch-up standard.  
Table 32. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +85 °C conforming to JESD78A  
50/79  
Doc ID 15058 Rev 5  
 
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
5.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for  
example reset, oscillator frequency deviation).  
The test results are given in Table 33  
Table 33. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on OSC_IN32,  
OSC_OUT32, PA4, PA5, PC13  
-0  
+0  
IINJ  
mA  
Injected current on all FT pins  
Injected current on any other pin  
-5  
-5  
+0  
+5  
Doc ID 15058 Rev 5  
51/79  
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
5.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 34 are derived from tests  
performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL  
compliant.  
Table 34. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Standard IO input low  
level voltage  
–0.3  
0.28*(VDD-2 V)+0.8 V  
V
VIL  
IO FT(1) input low level  
voltage  
–0.3  
0.32*(VDD-2V)+0.75 V  
VDD+0.3  
V
V
Standard IO input high  
level voltage  
0.41*(VDD-2 V)+1.3 V  
VIH  
IO FT(1) input high level  
voltage  
VDD > 2 V  
5.5  
5.2  
0.42*(VDD-2 V)+1 V  
200  
V
VDD 2 V  
Standard IO Schmitt  
trigger voltage  
hysteresis(2)  
mV  
mV  
Vhys  
IO FT Schmitt trigger  
voltage hysteresis(2)  
(3)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
±1  
3
Ilkg  
Input leakage current (4)  
µA  
VIN = 5 V  
I/O FT  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN = VSS  
VIN = VDD  
30  
30  
40  
50  
50  
kΩ  
Weak pull-down  
RPD  
CIO  
40  
5
kΩ  
equivalent resistor(5)  
I/O pin capacitance  
pF  
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be  
disabled.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
52/79  
Doc ID 15058 Rev 5  
 
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 22 and Figure 23 for standard I/Os, and  
in Figure 24 and Figure 25 for 5 V tolerant I/Os.  
Figure 22. Standard I/O input characteristics - CMOS port  
V
/V (V)  
IH IL  
1.96  
1.25  
1.71  
1.08  
1.71  
1.08  
Input range  
not guaranteed  
1.59  
VIHmin  
1.3  
1
VILmax  
0.8  
0.7  
V
(V)  
DD  
2
2.7  
3
3.3  
3.6  
ai17277b  
Figure 23. Standard I/O input characteristics - TTL port  
6
ꢇ6 ꢈ6ꢉ  
)( ),  
44, REQUIREMENTS  
6
ꢍꢂ6  
)(  
7)(MIN  
ꢂꢅꢊ  
ꢀꢅꢋꢆ  
ꢀꢅꢂꢌ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢅꢄ  
ꢊꢅꢃ  
7),MAX  
44, REQUIREMENTS  
6
ꢍꢊꢅꢃ6  
),  
6
ꢈ6ꢉ  
$$  
ꢂꢅꢀꢆ  
ꢄꢅꢆ  
AIꢀꢁꢂꢁꢃ  
Doc ID 15058 Rev 5  
53/79  
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Figure 24. 5 V tolerant I/O input characteristics - CMOS port  
6
ꢇ6 ꢈ6ꢉ  
)( ),  
ꢀꢅꢆꢁ  
ꢀꢅꢌꢌ  
ꢀꢅꢀꢆ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢅꢎꢂ  
ꢀꢅꢊꢁ  
ꢀꢅꢄ  
ꢊꢅꢁ  
ꢀꢅꢂꢋꢌ  
ꢊꢅꢋꢁꢌ  
ꢊꢅꢁꢌ  
6
ꢈ6ꢉ  
$$  
ꢂꢅꢁ  
ꢄꢅꢄ  
ꢄꢅꢆ  
6$$  
AIꢀꢁꢂꢁꢋB  
Figure 25. 5 V tolerant I/O input characteristics - TTL port  
6
ꢇ6 ꢈ6ꢉ  
)( ),  
44, REQUIREMENT 6 ꢍꢂ6  
)(  
ꢂꢅꢊ  
ꢀꢅꢆꢁ  
)NPUT RANGE  
NOT GUARANTEED  
7)(MIN  
7),MAX  
ꢊꢅꢃ  
ꢊꢅꢁꢌ  
44, REQUIREMENTS 6 ꢍꢊꢅꢃ6  
),  
6
ꢈ6ꢉ  
$$  
ꢂꢅꢀꢆ  
ꢄꢅꢆ  
AIꢀꢁꢂꢃꢊ  
54/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Electrical characteristics  
Output driving current  
The GPIOs (general-purpose inputs/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 6).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 6).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 35 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8. All I/Os are CMOS and TTL compliant.  
Table 35. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output Low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
CMOS port(2),,  
IIO = +8 mA,  
2.7 V < VDD < 3.6 V  
0.4  
V
VOL  
Output High level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(3)  
VDD–0.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
TTL port(2)  
IIO = +8 mA  
0.4  
V
VOL  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(3)  
2.7 V < VDD < 3.6 V  
2.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
1.3  
V
VOL  
IIO = +20 mA(4)  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(3)  
VDD–1.3  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at the same time  
(1)  
0.4  
V
VOL  
IIO = +6 mA(4)  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at the same time  
(3)  
VDD–0.4  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 6  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data, not tested in production.  
Doc ID 15058 Rev 5  
55/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 26 and  
Table 36, respectively.  
Unless otherwise specified, the parameters given in Table 36 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8.  
(1)  
Table 36. I/O AC characteristics  
MODEx  
[1:0] bit Symbol  
Parameter  
Conditions  
Max Unit  
value(1)  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
125(3)  
10  
01  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
Output low to high level rise  
tr(IO)out  
time  
125(3)  
10  
fmax(IO)out Maximum frequency(2)  
MHz  
ns  
Output high to low level fall  
tf(IO)out  
time  
25(3)  
Output low to high level rise  
tr(IO)out  
time  
25(3)  
CL= 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
20  
MHz  
MHz  
MHz  
Fmax(IO)out Maximum Frequency(2)  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output high to low level fall  
11  
tf(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
ns  
CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3)  
CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3)  
Output low to high level rise  
tr(IO)out  
time  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
Pulse width of external  
tEXTIpw signals detected by the  
EXTI controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 26.  
3. Guaranteed by design, not tested in production.  
56/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Figure 26. I/O AC characteristics definition  
Electrical characteristics  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 34).  
PU  
Unless otherwise specified, the parameters given in Table 37 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 8.  
Table 37. NRST pin characteristics  
Symbol  
Parameter  
Conditions Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
200  
40  
mV  
Weak pull-up equivalent resistor(2) VIN = VSS  
30  
50  
kΩ  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
100  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
Figure 27. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal reset  
STM32F10x  
NRST  
Filter  
0.1 µF  
ai14132d  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 37. Otherwise the reset will not be taken into account by the device.  
Doc ID 15058 Rev 5  
57/79  
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
5.3.15  
TIM timer characteristics  
The parameters given in Table 38 are guaranteed by design.  
Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output  
alternate function characteristics (output compare, input capture, external clock, PWM  
output).  
(1)  
Table 38. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
1
Max  
Unit  
tTIMxCLK  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 36 MHz  
TIMxCLK = 36 MHz  
27.8  
0
ns  
MHz  
MHz  
bit  
f
TIMxCLK/2  
18  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
f
0
ResTIM  
Timer resolution  
16  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
1820  
tCOUNTER  
fTIMxCLK = 36 MHz  
fTIMxCLK = 36 MHz  
0.0278  
µs  
tTIMxCLK  
s
65536 × 65536  
119.2  
tMAX_COUNT  
Maximum possible count  
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.  
5.3.16  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 39 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLK1  
DD  
conditions summarized in Table 8.  
2
The STM32F101xx Low-density access line I C interface meets the requirements of the  
2
standard I C communication protocol with the following restrictions: t  
he I/O pins SDA and  
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 39. Refer also to  
Section 5.3.12: I/O current  
for more details on the input/output alternate function characteristics  
injection characteristics  
(SDA and SCL)  
.
58/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
2
Table 39. I C characteristics  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
100  
0(4)  
µs  
250  
0(3)  
th(SDA)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20+0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition setup  
time  
tsu(STA)  
tsu(STO) Stop condition setup time  
µs  
µs  
pF  
Stop to Start condition time (bus  
tw(STO:STA)  
free)  
Cb  
Capacitive load for each bus line  
400  
400  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve standard mode I2C frequencies. It must be higher than  
4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz  
maximum I2C fast mode clock.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
4.  
Doc ID 15058 Rev 5  
59/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
2
(1)  
Figure 28. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F10x  
SDA  
4.7kΩ  
4.7kΩ  
100 Ω  
100 Ω  
I²C bus  
SCL  
Start repeated  
Start  
Start  
t
su(STA)  
SDA  
t
t
t
su(SDA)  
f(SDA)  
r(SDA)  
t
su(STO:STA)  
Stop  
t
t
t
h(SDA)  
h(STA)  
w(SCLL)  
SCL  
t
t
t
t
f(SCL)  
su(STO)  
w(SCLH)  
r(SCL)  
ai14133d  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)(2)  
Table 40. SCL frequency (f  
fSCL (kHz)  
= MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the  
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external  
components used to design the application.  
60/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 41 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 8.  
Refer to Section 5.3.12: I/O current injection characteristics for more details on the  
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
Table 41. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
0
0
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 tPCLK  
73  
(1)  
th(NSS)  
(1)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
50  
1
60  
(1)  
Data input setup time  
Master mode  
(1)  
tsu(MI)  
tsu(SI)  
th(MI)  
SPI  
SPI  
Data input setup time  
Slave mode  
(1)  
1
Data input hold time  
Master mode  
(1)  
1
Data input hold time  
Slave mode  
(1)  
th(SI)  
3
Slave mode, fPCLK = 36 MHz,  
presc = 4  
ns  
0
55  
(1)(2)  
ta(SO)  
Data output access time  
Slave mode, fPCLK = 24 MHz  
0
4 tPCLK  
(1)(3)  
tdis(SO)  
Data output disable time Slave mode  
10  
(1)  
(1)  
(1)  
(1)  
tv(SO)  
tv(MO)  
th(SO)  
th(MO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
25  
3
Master mode (after enable  
edge)  
Slave mode (after enable edge)  
25  
4
Data output hold time  
Master mode (after enable  
edge)  
1. Based on characterization, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
Doc ID 15058 Rev 5  
61/79  
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
Figure 29. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 30. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
62/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Electrical characteristics  
(1)  
Figure 31. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 15058 Rev 5  
63/79  
Electrical characteristics  
STM32F101x4, STM32F101x6  
5.3.17  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 42 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 8.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 42. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
fADC  
2.4  
0.6  
3.6  
14  
V
ADC clock frequency  
Sampling rate  
MHz  
(1)  
0.05  
1
MHz  
fS  
fADC = 14 MHz  
823  
17  
kHz  
(1)  
External trigger frequency  
Conversion voltage range(2)  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
V
See Equation 1 and  
Table 43 for details  
(1)  
RAIN  
External input impedance  
Sampling switch resistance  
50  
1
kΩ  
kΩ  
pF  
(1)  
RADC  
Internal sample and hold  
capacitor  
(1)  
8
CADC  
fADC = 14 MHz  
fADC = MHz  
5.9  
83  
µs  
1/fADC  
µs  
(1)  
Calibration time  
tCAL  
0.214  
3(3)  
Injection trigger conversion  
latency  
(1)  
tlat  
1/fADC  
µs  
fADC = 14 MHz  
0.143  
2(3)  
Regular trigger conversion  
latency  
(1)  
tlatr  
1/fADC  
µs  
0.107  
1.5  
0
17.1  
239.5  
1
(1)  
Sampling time  
Power-up time  
fADC = 14 MHz  
fADC = 14 MHz  
tS  
1/fADC  
µs  
(1)  
tSTAB  
0
1
18  
µs  
Total conversion time  
(including sampling time)  
(1)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Guaranteed by design, not tested in production.  
2. VREF+ is internally connected to VDDA and VREF- is be internally connected to VSSA  
3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 42.  
.
64/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Equation 1: R  
Electrical characteristics  
max formula:  
AIN  
TS  
RAIN < ------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 43.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (kΩ)  
1.5  
0.11  
0.4  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1) (2)  
Table 44. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
1.3  
1
2
fPCLK2 = 28 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
1.5  
1.5  
1
Gain error  
0.5  
0.7  
0.8  
LSB  
Differential linearity error  
Integral linearity error  
Measurements made after  
ADC calibration  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
3. Based on characterization, not tested in production.  
Doc ID 15058 Rev 5  
65/79  
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
(1) (2) (3)  
Table 45. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
fPCLK2 = 28 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
4. Based on characterization, not tested in production.  
Figure 32. ADC accuracy characteristics  
VDDA  
[1LSBIDEAL  
=
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total u nadjusted error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential linearity error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
ai15497  
VSSA  
66/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Figure 33. Typical connection diagram using the ADC  
Electrical characteristics  
STM32F10xxx  
V
DD  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
C
(1)  
R
R
AIN  
ADC  
AINx  
12-bit  
converter  
V
T
V
AIN  
0.6 V  
C
(1)  
ADC  
parasitic  
I
1 µA  
L
ai14139d  
1. Refer to Table 42 for the values of RAIN, RADC and CADC  
2.  
.
C
parasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 34. The 10 nF capacitors  
should be ceramic (good quality). They should be placed them as close as possible to the  
chip.  
Figure 34. Power supply and reference decoupling  
STM32F10xx4/6  
V
DDA  
1 µF // 10 nF  
V
SSA  
ai15498  
Doc ID 15058 Rev 5  
67/79  
 
 
Electrical characteristics  
STM32F101x4, STM32F101x6  
5.3.18  
Temperature sensor characteristics  
Table 46. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
VSENSE linearity with temperature  
Average slope  
±1  
4.3  
±2  
4.6  
°C  
mV/°C  
V
T
L
Avg_Slope(1)  
4.0  
(1)  
Voltage at 25°C  
1.34  
1.43  
1.52  
V25  
(2)  
Startup time  
4
10  
µs  
µs  
tSTART  
ADC sampling time when reading the  
temperature  
(3)(2)  
17.1  
TS_temp  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
68/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 15058 Rev 5  
69/79  
 
Package characteristics  
STM32F101x4, STM32F101x6  
Figure 35. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package Figure 36. Recommended footprint  
(1)  
(1)(2)  
outline  
(dimensions in mm)  
Seating  
Plane  
C
0.75  
5.80  
37  
48  
D
36  
1
Pin no. 1 ID  
R = 0.20  
e
5.60  
37  
48  
0.20  
0.30  
1
36  
5.80  
5.60  
6.20  
6.20  
12  
25  
0.55  
13  
24  
0.50  
25  
12  
7.30  
ai15799  
24  
13  
L
b
Bottom View  
D2  
V0_ME  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.  
Table 47. VFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
0.800  
0.900  
0.020  
0.650  
0.250  
0.230  
7.000  
4.700  
7.000  
4.700  
0.500  
0.400  
0.080  
1.000  
0.050  
1.000  
0.0315  
0.0354  
0.0008  
0.0256  
0.0098  
0.0091  
0.2756  
0.1850  
0.2756  
0.1850  
0.0197  
0.0157  
0.0031  
0.0394  
0.0020  
0.0394  
A1  
A2  
A3  
b
0.180  
6.850  
2.250  
6.850  
2.250  
0.450  
0.300  
0.300  
7.150  
5.250  
7.150  
5.250  
0.550  
0.500  
0.0071  
0.2697  
0.0886  
0.2697  
0.0886  
0.0177  
0.0118  
0.0118  
0.2815  
0.2067  
0.2815  
0.2067  
0.0217  
0.0197  
D
D2  
E
E2  
e
L
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
70/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Package characteristics  
Figure 37. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package Figure 38. Recommended footprint  
(1)  
(1)(2)  
outline  
(dimensions in mm)  
Seating plane  
C
ddd  
C
A2  
A
1.00  
4.30  
27  
19  
A1  
A3  
E2  
28  
18  
b
0.50  
27  
19  
4.10  
18  
28  
4.30  
4.10  
4.80  
4.80  
e
D2  
D
36  
10  
0.75  
9
1
0.30  
36  
10  
6.30  
ai14870b  
1
9
Pin # 1 ID  
R = 0.20  
L
E
ZR_ME  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead solder joint life.  
Table 48. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
0.800  
0.900  
0.020  
0.650  
0.250  
0.230  
6.000  
3.700  
6.000  
3.700  
0.500  
0.550  
0.080  
1.000  
0.050  
1.000  
0.0315  
0.0354  
0.0008  
0.0256  
0.0098  
0.0091  
0.2362  
0.1457  
0.2362  
0.1457  
0.0197  
0.0217  
0.0031  
0.0394  
0.0020  
0.0394  
A1  
A2  
A3  
b
0.180  
5.875  
1.750  
5.875  
1.750  
0.450  
0.350  
0.300  
6.125  
4.250  
6.125  
4.250  
0.550  
0.750  
0.0071  
0.2313  
0.0689  
0.2313  
0.0689  
0.0177  
0.0138  
0.0118  
0.2411  
0.1673  
0.2411  
0.1673  
0.0217  
0.0295  
D
D2  
E
E2  
e
L
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 15058 Rev 5  
71/79  
Package characteristics  
STM32F101x4, STM32F101x6  
Figure 39. LQFP64 – 10 x 10 mm, 64 pin low-profile  
Figure 40. Recommended  
(1)  
(1)(2)  
quad flat package outline  
footprint  
A
A2  
48  
33  
A1  
0.3  
49  
32  
0.5  
b
12.7  
E
E1  
10.3  
10.3  
e
64  
17  
1.2  
1
16  
7.8  
D1  
D
c
L1  
12.7  
ai14909  
L
ai14398b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 49. LQFP64 – 10 x 10 mm, 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
N
64  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
72/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Package characteristics  
Figure 41. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat Figure 42. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
Seating plane  
C
A
A2  
0.50  
A1  
c
b
1.20  
0.25 mm  
ccc  
C
Gage plane  
0.30  
36  
25  
D
37  
24  
D1  
D3  
k
0.20  
7.30  
A1  
L
9.70 5.80  
25  
36  
L1  
7.30  
24  
48  
13  
12  
37  
1
1.20  
5.80  
E3  
E1  
E
9.70  
ai14911b  
48  
13  
Pin 1  
identification  
1
12  
5B_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 50. LQFP48 – 7 x 7mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 15058 Rev 5  
73/79  
Package characteristics  
STM32F101x4, STM32F101x6  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 8: General operating conditions on page 30.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 51. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 64 - 10 x 10 mm / 0.5 mm pitch  
45  
Thermal resistance junction-ambient  
LQFP 48 - 7 x 7 mm / 0.5 mm pitch  
55  
16  
18  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
VFQFPN 48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
VFQFPN 36 - 6 x 6 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
74/79  
Doc ID 15058 Rev 5  
 
STM32F101x4, STM32F101x6  
Package characteristics  
6.2.2  
Evaluating the maximum junction temperature for an application  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 52: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature. Here, only  
temperature range 6 is available (–40 to 85 °C).  
The following example shows how to calculate the temperature range needed for a given  
application, making it possible to check whether the required temperature range is  
compatible with the STM32F101xx junction temperature range.  
Example: high-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
mode at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 51 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C  
Jmax  
This is within the junction temperature range of the STM32F101xx (–40 < T < 105 °C).  
J
Figure 43. LQFP64 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
65  
75  
85  
95  
105  
115  
TA (°C)  
Doc ID 15058 Rev 5  
75/79  
Ordering information scheme  
STM32F101x4, STM32F101x6  
7
Ordering information scheme  
Table 52. Ordering information scheme  
Example:  
STM32 F 101 C  
4
T
6
A
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
101 = access line  
Pin count  
T = 36 pins  
C = 48 pins  
R = 64 pins  
Flash memory size  
4 = 16 Kbytes of Flash memory  
6 = 32 Kbytes of Flash memory  
Package  
T = LQFP  
U = VFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
Internal code  
“A” or blank(1)  
Options  
xxx = programmed parts  
TR = tape and real  
1. For STM32F101x6 devices with a blank internal code, please refer to the STM32F103x6/8/B datasheet  
available from the ST website: www.st.com.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
76/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Revision history  
8
Revision history  
Table 53. Document revision history  
Date  
Revision  
Changes  
23-Sep-2008  
1
Initial release.  
I/O information clarified on page 1. Figure 7: Memory map modified.  
In Table 4: Low-density STM32F101xx pin definitions: PB4, PB13, PB14,  
PB15, PB3/TRACESWO moved from Default column to Remap column.  
VREF- is not available in the offered packages: Figure 1: STM32F101xx  
Low-density access line block diagram, Figure 10: Power supply scheme  
and Figure 34: Power supply and reference decoupling updated,  
Figure 30: Power supply and reference decoupling (VREF+ not connected  
to VDDA) removed.  
07-Apr-2009  
2
Note modified in Table 12: Maximum current consumption in Run mode,  
code with data processing running from Flash and Table 14: Maximum  
current consumption in Sleep mode, code running from Flash or RAM.  
Figure 15, Figure 16 and Figure 17 show typical curves.  
ACCHSI max values modified in Table 23: HSI oscillator characteristics.  
Small text changes.  
Note 5 updated and Note 4 added in Table 4: Low-density  
STM32F101xx pin definitions.  
VRERINT and TCoeff added to Table 11: Embedded internal reference  
voltage. Typical IDD_VBATvalue added in Table 15: Typical and maximum  
current consumptions in Stop and Standby modes. Figure 14: Typical  
current consumption on VBAT with RTC on versus temperature at  
different VBAT values added.  
fHSE_ext min modified in Table 19: High-speed external user clock  
characteristics.  
CL1 and CL2 replaced by C in Table 21: HSE 4-16 MHz oscillator  
characteristics and Table 22: LSE oscillator characteristics (fLSE =  
32.768 kHz), notes modified and moved below the tables.  
24-Sep-2009  
3
Note 1 modified below Figure 20: Typical application with an 8 MHz  
crystal.  
Table 23: HSI oscillator characteristics modified. Conditions removed  
from Table 25: Low-power mode wakeup timings.  
Figure 27: Recommended NRST pin protection modified.  
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to  
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 48.  
Jitter added to Table 26: PLL characteristics.  
CADC and RAIN parameters modified in Table 42: ADC characteristics.  
RAIN max values modified in Table 43: RAIN max for fADC = 14 MHz.  
Small text changes.  
Doc ID 15058 Rev 5  
77/79  
Revision history  
Table 53. Document revision history (continued)  
STM32F101x4, STM32F101x6  
Date  
Revision  
Changes  
Added VFQFPN48 package.  
Updated note 2 below Table 39: I2C characteristics  
20-May-2010  
19-Apr-2011  
4
Updated Figure 28: I2C bus AC waveforms and measurement circuit(1)  
Updated Figure 27: Recommended NRST pin protection  
Updated Section 5.3.12: I/O current injection characteristics  
Updated footnotes below Table 5: Voltage characteristics on page 29  
and Table 6: Current characteristics on page 30  
Updated tw min in Table 19: High-speed external user clock  
characteristics on page 42  
5
Updated startup time in Table 22: LSE oscillator characteristics (fLSE =  
32.768 kHz) on page 45  
Added Section 5.3.12: I/O current injection characteristics  
Updated Section 5.3.13: I/O port characteristics  
78/79  
Doc ID 15058 Rev 5  
STM32F101x4, STM32F101x6  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 15058 Rev 5  
79/79  

相关型号:

STM32F101T4U6ATR

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T4U6AXXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T4U6AXXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,LLCC,36PIN,PLASTIC
STMICROELECTR

STM32F101T4U6TR

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T4U6XXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T4U6XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,LLCC,36PIN,PLASTIC
STMICROELECTR

STM32F101T6

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6T6ATR

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6T6AXXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6T6TR

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6T6XXX

Low-density access line, ARM-based 32-bit MCU with 16 or 32 KB Flash, 5 timers, ADC and 4 communication interfaces
STMICROELECTR

STM32F101T6U6

Mainstream Access line, ARM Cortex-M3 MCU with 32 Kbytes Flash, 36 MHz CPU
STMICROELECTR