STM32F103RFT7 [STMICROELECTRONICS]

Mainstream Performance line, Arm Cortex-M3 MCU with 768 Kbytes of Flash memory, 72 MHz CPU, motor control, USB and CAN;
STM32F103RFT7
型号: STM32F103RFT7
厂家: ST    ST
描述:

Mainstream Performance line, Arm Cortex-M3 MCU with 768 Kbytes of Flash memory, 72 MHz CPU, motor control, USB and CAN

文件: 总120页 (文件大小:2547K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F103xF  
STM32F103xG  
XL-density performance line ARM-based 32-bit MCU with 768 KB to  
1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 communication interfaces  
Target specification  
Features  
FBGA  
Core: ARM 32-bit Cortex™-M3 CPU with MPU  
LQFP64 10 × 10 mm,  
LQFP100 14 × 14 mm,  
– 72 MHz maximum frequency,  
LFBGA144 10 × 10 mm  
1.25 DMIPS/MHz (Dhrystone 2.1)  
performance at 0 wait state memory  
access  
LQFP144 20 × 20 mm  
Up to 112 fast I/O ports  
– 51/80/112 I/Os, all mappable on 16  
external interrupt vectors and almost all  
5 V-tolerant  
– Single-cycle multiplication and hardware  
division  
Memories  
Up to 17 timers  
– 768 Kbytes to 1 Mbyte of Flash memory  
– 96 Kbytes of SRAM  
– Flexible static memory controller with 4  
Chip Select. Supports Compact Flash,  
SRAM, PSRAM, NOR and NAND memories  
– Up to ten 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input  
– 2 × 16-bit motor control PWM timers with  
dead-time generation and emergency stop  
– LCD parallel interface, 8080/6800 modes  
– 2 × watchdog timers (Independent and  
Window)  
Clock, reset and supply management  
– SysTick timer: a 24-bit downcounter  
– 2 × 16-bit basic timers to drive the DAC  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR, and programmable voltage  
detector (PVD)  
Up to 13 communication interfaces  
2
– 4-to-16 MHz crystal oscillator  
– Up to 2 × I C interfaces (SMBus/PMBus)  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC with calibration  
– 32 kHz oscillator for RTC with calibration  
– Up to 5 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Up to 3 SPIs (18 Mbit/s), 2 with I S  
interface multiplexed  
– CAN interface (2.0B Active)  
– USB 2.0 full speed interface  
– SDIO interface  
2
Low power  
– Sleep, Stop and Standby modes  
– V  
supply for RTC and backup registers  
BAT  
3 × 12-bit, 1 µs A/D converters (up to 21  
CRC calculation unit, 96-bit unique ID  
channels)  
®
ECOPACK packages  
– Conversion range: 0 to 3.6 V  
Triple-sample and hold capability  
Temperature sensor  
Table 1.  
Device summary  
Part number  
Reference  
2 × 12-bit D/A converters  
STM32F103RF STM32F103VF  
STM32F103ZF  
DMA: 12-channel DMA controller  
STM32F103xF  
STM32F103xG  
– Supported peripherals: timers, ADCs, DAC,  
2
2
SDIO, I Ss, SPIs, I Cs and USARTs  
STM32F103RG STM32F103VG  
STM32F103ZG  
Debug mode  
– Serial wire debug (SWD) & JTAG interfaces  
– Cortex-M3 Embedded Trace Macrocell™  
January 2012  
Doc ID 16554 Rev 3  
1/120  
This is preliminary information on a new product foreseen to be developed. Details are subject to change without notice.  
www.st.com  
1
 
Contents  
STM32F103xF, STM32F103xG  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
ARM Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 16  
LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.11 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.12 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.13 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.14 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.15 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.16 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.17 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.18 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.19 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.20 Universal synchronous/asynchronous receiver transmitters (USARTs) 21  
2.3.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
2.3.22 Inter-integrated sound (I S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.23 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.24 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.25 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.26 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.27 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.3.28 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Contents  
2.3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3
4
5
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 42  
Embedded reset and power control block characteristics . . . . . . . . . . . 42  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 82  
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.3.16 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
5.3.18 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . 100  
Doc ID 16554 Rev 3  
3/120  
Contents  
STM32F103xF, STM32F103xG  
5.3.19 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
5.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 115  
7
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
4/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F103xF and STM32F103xG features and peripheral counts . . . . . . . . . . . . . . . . . 11  
STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
STM32F103xF and STM32F103xG timer feature comparison. . . . . . . . . . . . . . . . . . . . . . 19  
STM32F103xF and STM32F103xG pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Maximum current consumption in Run mode, code with data processing  
Table 15.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 46  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 47  
Typical current consumption in Run mode, code with data processing  
Table 16.  
Table 17.  
Table 18.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Typical current consumption in Sleep mode, code running from Flash or  
Table 19.  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 63  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 64  
Asynchronous read muxed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Switching characteristics for PC Card/CF read and write cycles in  
attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . . 78  
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 41.  
Table 42.  
Table 43.  
Doc ID 16554 Rev 3  
5/120  
List of tables  
STM32F103xF, STM32F103xG  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
SCL frequency (f  
= 36 MHz.,V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 111  
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 112  
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 113  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
STM32F103xF and STM32F103xG ordering information scheme . . . . . . . . . . . . . . . . . . 117  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
6/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
STM32F103xF and STM32F103xG performance line block diagram. . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout . . . . . . 25  
STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout. . . . . . 26  
STM32F103xF and STM32F103xG XL-density performance line LQFP100 pinout. . . . . . 27  
STM32F103xF and STM32F103xG XL-density performance line  
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled . . . . . . . . . . . . . . . . . 45  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)-  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . 45  
Figure 14. Typical current consumption on V  
with RTC on vs. temperature at different V  
BAT  
BAT  
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 15. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DD  
Figure 16. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DD  
Figure 17. Typical current consumption in Standby mode versus temperature at  
different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DD  
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 19. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 20. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 62  
Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 63  
Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 26. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 27. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 29. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 30. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 73  
Figure 31. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . . 74  
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 76  
Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 77  
Figure 36. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 37. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 38. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 79  
Figure 39. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 80  
Doc ID 16554 Rev 3  
7/120  
List of figures  
STM32F103xF, STM32F103xG  
Figure 40. Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 41. Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 42. 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 43. 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 44. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 45. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
2
Figure 46. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 47. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
(1)  
Figure 48. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
(1)  
Figure 49. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
(1)  
Figure 50. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
2
(1)  
Figure 51. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 52. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 53. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 54. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 55. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 56. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 57. Power supply and reference decoupling (V  
Figure 58. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 104  
). . . . . . . . . . . . . . . . 105  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 59. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 60. Recommended PCB design rules (0.80/0.75 mm pitch BGA . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 61. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 62. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
(1)  
Figure 63. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 64. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 112  
(1)  
Figure 65. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 66. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 113  
(1)  
Figure 67. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 68. LQFP100 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
D
A
8/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F103xF and STM32F103xG XL-density performance line microcontrollers. For  
more details on the whole STMicroelectronics STM32F103xx family, please refer to  
Section 2.2: Full compatibility throughout the family.  
The XL-density STM32F103xx datasheet should be read in conjunction with the  
STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
Doc ID 16554 Rev 3  
9/120  
 
Description  
STM32F103xF, STM32F103xG  
2
Description  
The STM32F103xF and STM32F103xG performance line family incorporates the high-  
®
performance ARM Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-  
speed embedded memories (Flash memory up to 1 Mbyte and SRAM up to 96 Kbytes), and  
an extensive range of enhanced I/Os and peripherals connected to two APB buses. All  
devices offer three 12-bit ADCs, ten general-purpose 16-bit timers plus two PWM timers, as  
2
well as standard and advanced communication interfaces: up to two I Cs, three SPIs, two  
2
I Ss, one SDIO, five USARTs, an USB and a CAN.  
The STM32F103xx XL-density performance line family operates in the –40 to +105 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
These features make the STM32F103xx high-density performance line microcontroller  
family suitable for a wide range of applications such as motor drives, application control,  
medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial  
applications, PLCs, inverters, printers, scanners, alarm systems and video intercom.  
10/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Description  
2.1  
Device overview  
The STM32F103xx XL-density performance line family offers devices in four different  
package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
Figure 1 shows the general block diagram of the device family.  
Table 2.  
STM32F103xF and STM32F103xG features and peripheral counts  
STM32F103Rx STM32F103Vx STM32F103Zx  
768 KB 1 MB 768 KB 1 MB 768 KB 1 MB  
Peripherals  
Flash memory  
SRAM in Kbytes  
FSMC  
96  
96  
Yes(1)  
10  
2
96  
No  
Yes  
General-purpose  
Timers Advanced-control  
Basic  
2
SPI(I2S)(2)  
I2C  
3(2)  
2
USART  
Comm  
5
USB  
1
CAN  
SDIO  
1
1
GPIOs  
51  
80  
112  
12-bit ADC  
3
3
3
Number of channels  
16  
16  
21  
12-bit DAC  
Number of channels  
2
2
CPU frequency  
72 MHz  
Operating voltage  
2.0 to 3.6 V  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10)  
Junction temperature: –40 to + 125 °C (see Table 10)  
Operating temperatures  
Package  
LQFP64  
LQFP100  
LQFP144, BGA144  
1. For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a  
multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND  
Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available  
in this package.  
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the  
I2S audio mode.  
Doc ID 16554 Rev 3  
11/120  
 
 
Description  
Figure 1.  
STM32F103xF, STM32F103xG  
STM32F103xF and STM32F103xG performance line block diagram  
TRACECLK  
TRACED[0:3]  
as AF  
TPIU  
V
POWER  
ETM  
Trace/Trig  
DD  
Flash1 512 KB  
64 bit  
V
=2 to 3.6V  
DD  
VOLT. REG.  
3.3V TO 1.8V  
SWJTAG  
V
NJTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDAT  
Ib u s  
SS  
MPU  
@V  
DD  
Flash2 512 KB  
64 bit  
JTDO  
as AF  
Dbus  
POR  
Reset  
Cortex-M3 CPU  
SUPPLY  
SUPERVISION  
NRST  
F
: 48/72 MHz  
max  
Int  
V
V
POR / PDR  
DDA  
SSA  
System  
NVIC  
@V  
PVD  
DDA  
RC HS  
@V  
SRAM  
96 Kbyte  
DDA  
@V  
DD  
OSC_IN  
OSC_OUT  
RC LS  
XTAL OSC  
4-16 MHz  
PLL  
GP DMA1  
IWDG  
7 channels  
Standby  
interface  
GP DMA2  
V
=1.8V to 3.6V  
A[25:0]  
D[15:0]  
CLK  
NOE  
NWE  
PCLK1  
BAT  
5 channels  
Reset &  
clock  
controller  
PCLK2  
PCLK3  
HCLK  
FCLK  
@VSW  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
Backup  
NE[3:0]  
NBL[1:0]  
NWAIT  
NL  
RTC  
AWU  
TAMPER-RTC  
(ALARM OUT)  
reg  
FSMC  
SDIO  
Backup interface  
as AF  
4 Ch, ETR as AF  
4 Ch, ETR as AF  
TIM2  
AHB2  
APB2  
D[7:0], CMD  
CK as AF  
APB3  
APB1  
TIM3  
TIM4  
TIM5  
4 Ch, ETR as AF  
4 Ch, ETR as AF  
EXT.IT  
WKUP  
112 AF  
GPIO port A  
PA[15:0]  
PB[15:0]  
PC[15:0]  
2 channels as AF  
1 channel as AF  
TIM12  
GPIO port B  
GPIO port C  
TIM13  
GPIO port D  
GPIO port E  
GPIO port F  
GPIO port G  
PD[15:0]  
PE[15:0]  
1 channel as AF  
TIM14  
RX,TX, CTS, RTS,  
CK as AF  
USART2  
USART3  
PF[15:0]  
PG[15:0]  
RX,TX, CTS, RTS,  
CK as AF  
4 channels  
RX,TX as AF  
UART4  
UART5  
4 compl. channels  
TIM1  
BKIN, ETR input as AF  
RX,TX as AF  
4 channels  
4 compl. channels  
BKIN, ETR input as AF  
TIM8  
MOSI/SD,MISO,  
SCK/CK,NSS/WS,  
MCLK as AF  
MOSI/SD,MISO,  
SCK/CK,NSS/WS,  
MCLK as AF  
SPI2/I2S2  
SPI3/I2S3  
2 channels as AF  
1 channel as AF  
TIM9  
TIM10  
TIM11  
1 channel as AF  
I2C1  
I2C2  
SCL,SDA,SMBA  
as AF  
MOSI,MISO,  
SCK,NSS as AF  
WWDG  
SCL,SDA,SMBA  
as AF  
SPI1  
RX,TX, CTS, RTS,  
CK as AF  
USART1  
bxCAN device  
SRAM 512B  
Temp sensor  
12bit ADC1  
USBDP/CAN_TX  
USBDM/CAN_RX  
8 ADINs common  
to the 3 ADCs  
USB 2.0 FS device  
IF  
IF  
IF  
8 ADINs common  
to the ADC1 & 2  
12bit DAC1  
12bit DAC2  
IF  
TIM6  
TIM7  
DAC1_OUT as AF  
DAC2_OUT as AF  
12bit ADC2  
5 ADINs on ADC3  
12bit ADC3  
VREF–  
VREF+  
@VDDA  
@V  
DDA  
ai17352  
1. TA = –40 °C to +85 °C (suffix 6, see Table 73) or –40 °C to +105 °C (suffix 7, see Table 73), junction temperature up to  
105 °C or 125 °C, respectively.  
2. AF = alternate function on I/O port pin.  
12/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Description  
Figure 2.  
Clock tree  
FLITFCLK  
to Flash programming interface  
USBCLK  
48 MHz  
USB  
Prescaler  
/1, 1.5  
to USB interface  
I2S3CLK  
I2S2CLK  
to I2S3  
to I2S2  
Peripheral clock  
enable  
Peripheral clock  
enable  
SDIOCLK  
FSMCCLK  
to SDIO  
8 MHz  
Peripheral clock  
HSI  
HSI RC  
enable  
to FSMC  
Peripheral clock  
enable  
/2  
HCLK  
to AHB bus, core,  
memory and DMA  
72 MHz max  
Clock  
Enable  
/8  
to Cortex System timer  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
APB1  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
Prescaler  
Prescaler  
PLLCLK  
72 MHz  
to APB1  
/1, 2..512  
/1, 2, 4, 8, 16  
max  
peripherals  
Peripheral Clock  
Enable  
HSE  
to TIM2/3/4/5/12/13/14  
and TIM6/7  
TIMxCLK  
TIM2,3,4,5,12,13,14,6,7  
If (APB1 prescaler =1) x1  
else x2  
CSS  
Peripheral Clock  
Enable  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
72 MHz max  
PCLK2  
OSC_OUT  
OSC_IN  
peripherals to APB2  
4-16 MHz  
Peripheral Clock  
Enable  
HSE OSC  
to TIM1/8  
and TIM9/10/11  
TIMxCLK  
TIM1, 8, 9, 10, 11  
If (APB2 prescaler =1) x1  
else x2  
Peripheral Clock  
Enable  
/128  
LSE  
ADC  
Prescaler  
/2, 4, 6, 8  
to ADC1, 2 or 3  
OSC32_IN  
to RTC  
LSE OSC  
ADCCLK  
RTCCLK  
32.768 kHz  
OSC32_OUT  
HCLK/2  
To SDIO AHB interface  
/2  
RTCSEL[1:0]  
Peripheral clock  
enable  
to Independent Watchdog (IWDG)  
LSI  
LSI RC  
40 kHz  
IWDGCLK  
Legend:  
Main  
Clock Output  
/2  
PLLCLK  
HSE = High-speed external clock signal  
HSI = High-speed internal clock signal  
MCO  
HSI  
HSE  
LSI = Low-speed internal clock signal  
LSE = Low-speed external clock signal  
SYSCLK  
MCO  
ai17354  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
64 MHz.  
2. For the USB function to be available, both HSE and PLL must be enabled, with the USBCLK at 48 MHz.  
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.  
Doc ID 16554 Rev 3  
13/120  
 
Description  
STM32F103xF, STM32F103xG  
2.2  
Full compatibility throughout the family  
The STM32F103xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are  
identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as  
medium-density devices, the STM32F103xC, STM32F103xD and STM32F103xE are  
referred to as high-density devices and the STM32F103xF and STM32F103xG are called  
XL-density devices.  
Low-density, high-density and XL-density devices are an extension of the STM32F103x8/B  
medium-density devices, they are specified in the STM32F103x4/6, STM32F103xC/D/E and  
STM32F103xF/G datasheets, respectively. Low-density devices feature lower Flash  
memory and RAM capacities, less timers and peripherals. High-density devices have higher  
2
Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I S and  
DAC. XL-density devices bring even more Flash and RAM memory, and extra features,  
namely an MPU, a greater number of timers and a dual bank Flash structure while  
remaining fully compatible with the other members of the family.  
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD, STM32F103xE,  
STM32F103xF and STM32F103xG are a drop-in replacement for the STM32F103x8/B  
devices, allowing the user to try different memory densities and providing a greater degree  
of freedom during the development cycle.  
Moreover, the STM32F103xx performance line family is fully compatible with all existing  
STM32F101xx access line and STM32F102xx USB access line devices.  
Table 3.  
STM32F103xx family  
Low-density  
devices  
Medium-density  
devices  
High-density devices  
XL-density devices  
16 KB  
Pinout Flash  
32 KB  
64 KB  
Flash  
128 KB  
Flash  
256 KB 384 KB 512 KB  
768 KB Flash 1 MB Flash  
Flash(1)  
Flash  
Flash  
Flash  
48 or  
64 KB(2)  
RAM  
6 KB  
RAM  
10 KB  
RAM  
20 KB  
RAM  
20 KB  
RAM  
64 KB  
RAM  
64 KB  
RAM  
96 KB RAM  
96 KB RAM  
144  
100  
5 × USARTs  
10 × 16-bit timers,  
2 × basic timers  
5 × USARTs  
4 × 16-bit timers,  
2 × basic timers  
3 × SPIs, 2 × I2Ss, 2 × I2Cs  
USB, CAN, 2 × PWM timers  
3 × ADCs, 2 × DACs, 1 × SDIO,  
Cortex-M3 with MPU  
3 × SPIs, 2 × I2Ss, 2 × I2Cs  
USB, CAN, 2 × PWM timers  
3 × ADCs, 2 × DACs,  
1 × SDIO  
3 × USARTs  
3 × 16-bit timers  
2 × SPIs, 2 × I2Cs,  
USB, CAN,  
1 × PWM timer  
2 × ADCs  
2 × USARTs  
64  
2 × 16-bit timers  
1 × SPI, 1 × I2C,  
USB, CAN,  
FSMC (100- and 144-pin  
packages(4)), dual bank Flash  
memory  
FSMC (100- and 144-pin  
packages(3)  
)
1 × PWM timer  
2 × ADCs  
48  
36  
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7), the reference  
datasheet for electrical characteristics is that of the STM32F103x8/B medium-density devices.  
2. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.  
3. Ports F and G are not available in devices delivered in 100-pin packages.  
4. Ports F and G are not available in devices delivered in 100-pin packages.  
14/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Description  
2.3  
Overview  
®
2.3.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
With its embedded ARM core, STM32F103xF and STM32F103xG performance line family  
is compatible with all ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
2.3.2  
Memory protection unit  
The memory protection unit (MPU) is used to separate the processing of tasks from the data  
protection. The MPU can manage up to 8 protection areas that can all be further divided up  
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes  
of addressable memory.  
The memory protection unit is especially helpful for applications where some critical or  
certified code has to be protected against the misbehavior of other tasks. It is usually  
managed by an RTOS (real-time operating system). If a program accesses a memory  
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS  
environment, the kernel can dynamically update the MPU area setting, based on the  
process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
2.3.3  
2.3.4  
Embedded Flash memory  
768 Kbytes to 1 Mbyte of embedded Flash are available for storing programs and data. The  
Flash memory is organized as two banks. The first bank has a size of 512 Kbytes. The  
second bank is either 256 or 512 Kbytes depending on the device. This gives the device the  
capability of writing to one bank while executing code from the other bank (read-while-write  
capability).  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
Doc ID 16554 Rev 3  
15/120  
 
 
 
 
 
Description  
STM32F103xF, STM32F103xG  
2.3.5  
Embedded SRAM  
96 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.  
2.3.6  
FSMC (flexible static memory controller)  
The FSMC is embedded in the STM32F103xF and STM32F103xG performance line family.  
It has four Chip Select outputs supporting the following modes: PC Card/Compact Flash,  
SRAM, PSRAM, NOR and NAND.  
Functionality overview:  
The three FSMC interrupt lines are ORed in order to be connected to the NVIC  
Write FIFO  
Code execution from external memory except for NAND Flash and PC Card  
The targeted frequency, f  
, is HCLK/2, so external access is at 36 MHz when HCLK  
CLK  
is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz  
2.3.7  
2.3.8  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high-  
performance solutions using external controllers with dedicated acceleration.  
Nested vectored interrupt controller (NVIC)  
The STM32F103xF and STM32F103xG performance line embeds a nested vectored  
interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16  
interrupt lines of Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
2.3.9  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected  
to the 16 external interrupt lines.  
16/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
STM32F103xF, STM32F103xG  
Description  
2.3.10  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example with  
failure of an indirectly used external oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high speed APB  
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and  
the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed  
APB domain is 36 MHz. See Figure 2 for details on the clock tree.  
2.3.11  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from user Flash: you have an option to boot from any of two memory banks. By  
default, boot from Flash memory bank 1 is selected. You can choose to boot from Flash  
memory bank 2 by setting a bit in the option bytes.  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using USART1.  
2.3.12  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,  
SSA DDA  
RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC  
is used). V and V must be connected to V and V , respectively.  
DDA  
SSA  
DD  
SS  
V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.  
2.3.13  
Power supply supervisor  
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to  
Table 12: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
Doc ID 16554 Rev 3  
17/120  
 
 
 
 
Description  
STM32F103xF, STM32F103xG  
2.3.14  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop modes.  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode.  
2.3.15  
Low-power modes  
The STM32F103xF and STM32F103xG performance line supports three low-power modes  
to achieve the best compromise between low power consumption, short startup time and  
available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB  
wakeup.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
2.3.16  
DMA  
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for  
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-  
peripheral transfers. The two DMA controllers support circular buffer management,  
removing the need for user code intervention when the controller reaches the end of the  
buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
18/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Description  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose, basic  
2
and advanced-control timers TIMx, DAC, I S, SDIO and ADC.  
2.3.17  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the V  
pin. The backup registers are forty-two 16-bit  
DD  
BAT  
registers used to store 84 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, and they are not reset when the device  
wakes up from the Standby mode.  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features  
a 32-bit programmable counter for long term measurement using the Compare register to  
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default  
configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.3.18  
Timers and watchdogs  
The XL-density STM32F103xx performance line devices include up to two advanced-control  
timers, up to ten general-purpose timers, two basic timers, two watchdog timers and a  
SysTick timer.  
Table 4 compares the features of the advanced-control, general-purpose and basic timers.  
Table 4.  
STM32F103xF and STM32F103xG timer feature comparison  
Counter Counter  
DMArequest Capture/compare Complementary  
Timer  
Prescaler factor  
resolution  
type  
generation  
channels  
outputs  
Up,  
down,  
up/down  
Any integer between  
1 and 65536  
TIM1, TIM8  
16-bit  
Yes  
4
Yes  
Up,  
down,  
up/down  
TIM2, TIM3,  
TIM4, TIM5  
Any integer between  
1 and 65536  
16-bit  
Yes  
4
No  
Any integer between  
1 and 65536  
TIM9, TIM12  
16-bit  
16-bit  
16-bit  
Up  
Up  
Up  
No  
No  
2
1
0
No  
No  
No  
TIM10, TIM11  
TIM13, TIM14  
Any integer between  
1 and 65536  
Any integer between  
1 and 65536  
TIM6, TIM7  
Yes  
Doc ID 16554 Rev 3  
19/120  
 
 
 
Description  
STM32F103xF, STM32F103xG  
Advanced-control timers (TIM1 and TIM8)  
The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase  
PWM multiplexed on 6 channels. They have complementary PWM outputs with  
programmable inserted dead-times. They can also be seen as a complete general-purpose  
timer. The 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switch driven by these outputs.  
Many features are shared with those of the general-purpose TIM timers which have the  
same architecture. The advanced-control timer can therefore work together with the TIM  
timers via the Timer Link feature for synchronization or event chaining.  
General-purpose timers (TIMx)  
There are10 synchronizable general-purpose timers embedded in the STM32F103xF and  
STM32F103xG performance line devices (see Table 4 for differences).  
TIM2, TIM3, TIM4, TIM5  
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5)  
embedded in the STM32F103xF and STM32F103xG access line devices.  
These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler  
and feature 4 independent channels each for input capture/output compare, PWM or  
one-pulse mode output. This gives up to 16 input captures / output compares / PWMs  
on the largest packages.  
Their counter can be frozen in debug mode. Any of the general-purpose timers can be  
used to generate PWM outputs. They all have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
TIM10, TIM11 and TIM9  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured  
general-purpose timers. They can also be used as simple time bases.  
TIM13, TIM14 and TIM12  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM13 and TIM14 feature one independent channel, whereas TIM12 has two  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured  
general-purpose timers. They can also be used as simple time bases.  
20/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Description  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
2.3.19  
2.3.20  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A  
hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
Universal synchronous/asynchronous receiver transmitters (USARTs)  
The STM32F103xF and STM32F103xG performance line embeds three universal  
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and  
two universal asynchronous receiver transmitters (UART4 and UART5).  
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability.  
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other  
available interfaces communicate at up to 2.25 Mbit/s.  
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS  
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All  
interfaces can be served by the DMA controller except for UART5.  
Doc ID 16554 Rev 3  
21/120  
 
 
Description  
STM32F103xF, STM32F103xG  
2.3.21  
Serial peripheral interface (SPI)  
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in  
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
All SPIs can be served by the DMA controller.  
2
2.3.22  
2.3.23  
Inter-integrated sound (I S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available, that can be  
operated in master or slave mode. These interfaces can be configured to operate with 16/32  
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to  
48 kHz are supported. When either or both of the I S interfaces is/are configured in master  
mode, the master clock can be output to the external DAC/CODEC at 256 times the  
sampling frequency.  
2
SDIO  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD  
Memory Card Specifications Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital  
protocol Rev1.1.  
2.3.24  
2.3.25  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Universal serial bus (USB)  
The STM32F103xF and STM32F103xG performance line embed a USB device peripheral  
compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12  
Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume  
support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock  
source must use a HSE crystal oscillator).  
2.3.26  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable.  
22/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
 
STM32F103xF, STM32F103xG  
Description  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
2.3.27  
ADC (analog to digital converter)  
Three 12-bit analog-to-digital converters are embedded into STM32F103xF and  
STM32F103xG performance line devices and each ADC shares up to 21 external channels,  
performing conversions in single-shot or scan modes. In scan mode, automatic conversion  
is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single shunt  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) and the advanced-control  
timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection  
trigger, respectively, to allow the application to synchronize A/D conversion and timers.  
2.3.28  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in inverting configuration.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the STM32F103xF and STM32F103xG performance  
line family. The DAC channels are triggered through the timer update outputs that are also  
connected to different DMA channels.  
Doc ID 16554 Rev 3  
23/120  
 
 
Description  
STM32F103xF, STM32F103xG  
2.3.29  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V < 3.6 V. The temperature sensor is internally  
DDA  
connected to the ADC1_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
2.3.30  
2.3.31  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
®
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F10xxx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer running debugger software. TPA  
hardware is commercially available from common development tool vendors. It operates  
with third party debugger software tools.  
24/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Pinouts and pin descriptions  
3
Pinouts and pin descriptions  
Figure 3.  
STM32F103xF and STM32F103xG XL-density performance line BGA144 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PB4  
JTRST  
PC13-  
TAMPER-RTC  
PB3  
JTDO  
PA15  
JTDI  
PA14  
JTCK  
PA13  
JTMS  
PE3  
PE2  
PE1  
PE0  
PD6  
PD7  
A
B
C
D
E
F
PC14-  
OSC32_IN  
PE4  
PE5  
PF0  
PE6  
PF1  
PF2  
PF5  
PB9  
PB8  
PB5  
PB6  
PB7  
PG15  
PG14  
PG13  
PG12  
PG11  
PG10  
PG9  
PD5  
PD4  
PD3  
PD2  
PC11  
PC12  
PD1  
PC10  
NC  
PA12  
PA11  
PA9  
PA8  
PC7  
PC6  
PG5  
PC15-  
OSC32_OUT  
V
BAT  
OSC_IN  
V
V
BOOT0  
PA10  
PC9  
PC8  
PG8  
PG6  
SS_5  
DD_5  
PF4  
OSC_OUT  
V
V
V
SS_10  
PF3  
PD0  
SS_3  
SS_11  
V
V
V
V
V
DD_8  
NRST  
PF10  
PC0  
PF7  
PF9  
PF6  
PF8  
PC2  
PA4  
PA5  
PA6  
PA7  
V
V
DD_9  
DD_4  
DD_3  
DD_11  
DD_10  
DD_2  
G
H
J
V
V
V
V
SS_8  
V
V
V
SS_9  
DD_6  
DD_7  
DD_1  
SS_4  
SS_2  
V
V
V
PE11  
PD11  
PG7  
PC1  
PC3  
SS_6  
SS_7  
PG1  
SS_1  
PE10  
PE9  
PB2/  
BOOT1  
V
PA0-WKUP  
PA1  
PC4  
PC5  
PB0  
PB1  
PE12  
PE13  
PE14  
PE15  
PD10  
PD9  
PG4  
PD13  
PD12  
PB11  
PG3  
PD14  
PB14  
PB12  
PG2  
PD15  
PB15  
PB13  
SSA  
K
L
V
V
PF13  
PF12  
PF11  
PG0  
REF–  
PA2  
PF15  
PF14  
PE8  
PD8  
REF+  
V
PA3  
PE7  
M
PB10  
DDA  
AI14798b  
Doc ID 16554 Rev 3  
25/120  
 
 
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Figure 4. STM32F103xF and STM32F103xG XL-density performance line LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
V
V
NC  
DD_2  
SS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
9
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
V
DD_9  
SS_9  
V
V
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
SS_5  
LQFP144  
DD_5  
PF6  
PF7  
PF8  
PF9  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
V
V
DD_8  
SS_8  
PC1  
PC2  
PC3  
PD13  
PD12  
PD11  
PD10  
PD9  
V
V
V
V
SSA  
REF-  
PD8  
REF+  
PB15  
PB14  
PB13  
PB12  
DDA  
PA0-WKUP  
PA1  
PA2  
ai14667  
26/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Figure 5.  
Pinouts and pin descriptions  
STM32F103xF and STM32F103xG XL-density performance line LQFP100  
pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14391  
Doc ID 16554 Rev 3  
27/120  
 
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Figure 6. STM32F103xF and STM32F103xG XL-density performance line  
LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14392  
28/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
FT  
FT  
FT  
FT  
FT  
A3  
A2  
B2  
B3  
B4  
C2  
-
1
1
2
3
4
5
6
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECK / FSMC_A23  
TRACED0 / FSMC_A19  
TRACED1/ FSMC_A20  
TRACED2/ FSMC_A21  
TRACED3 / FSMC_A22  
-
-
2
3
4
5
6
-
TIM9_CH1  
TIM9_CH2  
-
1
PC13-TAMPER-  
RTC(5)  
A1  
B1  
C1  
2
3
4
7
8
9
7
I/O  
PC13(6)  
PC14(6)  
PC15(6)  
TAMPER-RTC  
OSC32_IN  
8 PC14-OSC32_IN(5) I/O  
PC15-  
9
I/O  
OSC32_OUT  
OSC32_OUT(5)  
PF0  
C3  
C4  
D4  
E2  
E3  
E4  
D2  
D3  
F3  
F2  
G3  
G2  
G1  
D1  
E1  
F1  
H1  
H2  
-
-
-
-
-
-
-
-
10  
11  
12  
13  
14  
15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PF0  
PF1  
FSMC_A0  
FSMC_A1  
FSMC_A2  
FSMC_A3  
FSMC_A4  
FSMC_A5  
PF1  
-
PF2  
PF2  
-
PF3  
PF3  
-
PF4  
PF4  
-
PF5  
PF5  
-
10 16  
11 17  
VSS_5  
VDD_5  
PF6  
VSS_5  
VDD_5  
PF6  
-
S
-
-
-
-
-
-
18  
19  
20  
21  
22  
I/O  
ADC3_IN4 / FSMC_NIORD  
ADC3_IN5 / FSMC_NREG  
ADC3_IN6 / FSMC_NIOWR  
ADC3_IN7 / FSMC_CD  
TIM10_CH1  
TIM11_CH1  
TIM13_CH1  
TIM14_CH1  
-
PF7  
I/O  
PF7  
-
PF8  
I/O  
PF8  
-
PF9  
I/O  
PF9  
-
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
I/O  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
ADC3_IN8 / FSMC_INTR  
5
6
7
8
9
12 23  
13 24  
14 25  
15 26  
16 27  
I
PD0(7)  
PD1(7)  
O
I/O  
I/O  
ADC123_IN10  
ADC123_IN11  
ADC123_IN12  
ADC123_IN13  
PC1  
I/O  
PC1  
H3 10 17 28  
H4 11 18 29  
J1 12 19 30  
PC2  
I/O  
PC2  
PC3  
I/O  
PC3  
VSSA  
VREF-  
S
VSSA  
VREF-  
K1  
-
20 31  
S
Doc ID 16554 Rev 3  
29/120  
 
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
L1  
-
21 32  
VREF+  
VDDA  
S
S
VREF+  
VDDA  
M1 13 22 33  
WKUP/USART2_CTS(8)  
/
J2 14 23 34  
PA0-WKUP  
PA1  
I/O  
I/O  
I/O  
PA0  
PA1  
PA2  
ADC123_IN0 / TIM2_CH1_ETR /  
TIM5_CH1 / TIM8_ETR  
USART2_RTS(7) / ADC123_IN1 /  
TIM5_CH2 / TIM2_CH2(7)  
K2 15 24 35  
L2 16 25 36  
USART2_TX(7) / TIM5_CH3 /  
ADC123_IN2 / TIM9_CH1 /  
TIM2_CH3 (7)  
PA2  
USART2_RX(7) / TIM5_CH4 /  
M2 17 26 37  
PA3  
I/O  
PA3  
ADC123_IN3 / TIM2_CH4(7)  
TIM9_CH2  
/
G4 18 27 38  
F4 19 28 39  
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS(7) / USART2_CK(7)  
DAC_OUT1 / ADC12_IN4  
/
J3 20 29 40  
K3 21 30 41  
PA4  
PA5  
I/O  
I/O  
PA4  
PA5  
SPI1_SCK(7) / DAC_OUT2 /  
ADC12_IN5  
SPI1_MISO(7) / TIM8_BKIN /  
L3 22 31 42  
M3 23 32 43  
PA6  
PA7  
I/O  
I/O  
PA6  
PA7  
ADC12_IN6 / TIM3_CH1(7)  
TIM13_CH1  
/
TIM1_BKIN  
TIM1_CH1N  
SPI1_MOSI(7)/ TIM8_CH1N /  
ADC12_IN7 / TIM3_CH2(7)  
TIM14_CH1  
/
J4 24 33 44  
K4 25 34 45  
PC4  
PC5  
I/O  
I/O  
PC4  
PC5  
ADC12_IN14  
ADC12_IN15  
ADC12_IN8 / TIM3_CH3 /  
TIM8_CH2N  
L4 26 35 46  
PB0  
PB1  
I/O  
I/O  
PB0  
PB1  
TIM1_CH2N  
TIM1_CH3N  
ADC12_IN9 / TIM3_CH4(7)  
TIM8_CH3N  
/
M4 27 36 47  
J5 28 37 48  
PB2  
PF11  
PF12  
VSS_6  
VDD_6  
PF13  
I/O FT PB2/BOOT1  
M5  
L5  
-
-
-
-
-
-
-
-
-
-
49  
50  
51  
52  
53  
I/O FT  
I/O FT  
S
PF11  
PF12  
VSS_6  
VDD_6  
PF13  
FSMC_NIOS16  
FSMC_A6  
H5  
G5  
K5  
S
I/O FT  
FSMC_A7  
30/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
M6  
L6  
K6  
J6  
-
-
54  
55  
56  
57  
PF14  
PF15  
PG0  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PF14  
PF15  
PG0  
FSMC_A8  
FSMC_A9  
FSMC_A10  
FSMC_A11  
FSMC_D4  
FSMC_D5  
FSMC_D6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PG1  
PG1  
M7  
L7  
K7  
H6  
G6  
J7  
38 58  
39 59  
40 60  
PE7  
PE7  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
PE8  
PE8  
PE9  
PE9  
-
-
61  
62  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
S
41 63  
42 64  
43 65  
44 66  
45 67  
46 68  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D7  
FSMC_D8  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
TIM2_CH3  
TIM2_CH4  
H8  
J8  
FSMC_D9  
K8  
L8  
M8  
FSMC_D10  
FSMC_D11  
FSMC_D12  
M9 29 47 69  
M10 30 48 70  
H7 31 49 71  
G7 32 50 72  
I2C2_SCL / USART3_TX(7)  
I2C2_SDA / USART3_RX(7)  
S
SPI2_NSS / I2S2_WS /  
I2C2_SMBA / USART3_CK(7)  
TIM1_BKIN(7)  
M11 33 51 73  
PB12  
I/O FT  
PB12  
/
SPI2_SCK / I2S2_CK /  
M12 34 52 74  
L11 35 53 75  
L12 36 54 76  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
PB13  
PB14  
PB15  
USART3_CTS(7) / TIM1_CH1N  
SPI2_MISO / TIM1_CH2N /  
USART3_RTS(7)/ TIM12_CH1  
SPI2_MOSI / I2S2_SD /  
TIM1_CH3N(7) / TIM12_CH2  
L9  
K9  
J9  
-
-
-
-
55 77  
56 78  
57 79  
58 80  
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
FSMC_D13  
FSMC_D14  
FSMC_D15  
FSMC_A16  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
PD10  
PD11  
PD10  
PD11  
H9  
TIM4_CH1 /  
USART3_RTS  
L10  
-
59 81  
PD12  
I/O FT  
PD12  
FSMC_A17  
Doc ID 16554 Rev 3  
31/120  
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
K10  
G8  
-
60 82  
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
I/O FT  
S
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
FSMC_A18  
TIM4_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
84  
F8  
S
K11  
K12  
J12  
J11  
J10  
H12  
H11  
H10  
G11  
G10  
F10  
61 85  
62 86  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D0  
FSMC_D1  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
-
-
87  
88  
89  
90  
91  
92  
93  
94  
95  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
FSMC_INT2  
FSMC_INT3  
PG3  
PG3  
PG4  
PG4  
PG5  
PG5  
PG6  
PG6  
PG7  
PG7  
PG8  
PG8  
VSS_9  
VDD_9  
VSS_9  
VDD_9  
S
I2S2_MCK / TIM8_CH1 /  
SDIO_D6  
G12 37 63 96  
F12 38 64 97  
PC6  
PC7  
I/O FT  
I/O FT  
PC6  
PC7  
TIM3_CH1  
TIM3_CH2  
I2S3_MCK / TIM8_CH2 /  
SDIO_D7  
F11 39 65 98  
E11 40 66 99  
PC8  
PC9  
I/O FT  
I/O FT  
PC8  
PC9  
TIM8_CH3 / SDIO_D0  
TIM8_CH4 / SDIO_D1  
TIM3_CH3  
TIM3_CH4  
USART1_CK / TIM1_CH1(7)  
MCO  
/
E12 41 67 100  
PA8  
I/O FT  
PA8  
D12 42 68 101  
D11 43 69 102  
PA9  
I/O FT  
I/O FT  
PA9  
USART1_TX(7) / TIM1_CH2(7)  
USART1_RX(7) / TIM1_CH3(7)  
PA10  
PA10  
USART1_CTS / USBDM /  
CAN_RX(7) / TIM1_CH4(7)  
C12 44 70 103  
B12 45 71 104  
A12 46 72 105  
PA11  
PA12  
PA13  
I/O FT  
I/O FT  
I/O FT  
PA11  
PA12  
USART1_RTS / USBDP /  
CAN_TX(7) / TIM1_ETR(7)  
JTMS-  
SWDIO  
PA13  
PA14  
C11  
-
73 106  
Not connected  
G9 47 74 107  
F9 48 75 108  
V
S
S
V
SS_2  
SS_2  
DD_2  
V
V
DD_2  
JTCK-  
SWCLK  
A11 49 76 109  
PA14  
I/O FT  
32/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
TIM2_CH1_ETR  
PA15 / SPI1_NSS  
A10 50 77 110  
PA15  
I/O FT  
JTDI  
SPI3_NSS / I2S3_WS  
B11 51 78 111  
B10 52 79 112  
C10 53 80 113  
PC10  
PC11  
PC12  
PD0  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
PD0  
UART4_TX / SDIO_D2  
UART4_RX / SDIO_D3  
UART5_TX / SDIO_CK  
USART3_TX  
USART3_RX  
USART3_CK  
CAN_RX  
(9)  
E10  
D10  
-
-
81 114  
82 115  
FSMC_D2  
(9)  
PD1  
PD1  
FSMC_D3  
CAN_TX  
TIM3_ETR / UART5_RX /  
SDIO_CMD  
E9 54 83 116  
PD2  
I/O FT  
PD2  
D9  
C9  
B9  
E7  
F7  
A8  
A9  
E8  
D8  
C8  
B8  
D7  
C7  
E6  
F6  
B7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
84 117  
85 118  
86 119  
PD3  
PD4  
PD5  
I/O FT  
I/O FT  
I/O FT  
S
PD3  
PD4  
PD5  
FSMC_CLK  
FSMC_NOE  
FSMC_NWE  
USART2_CTS  
USART2_RTS  
USART2_TX  
-
-
120  
121  
V
V
SS_10  
DD_10  
SS_10  
DD_10  
V
S
V
87 122  
88 123  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PD6  
PD7  
FSMC_NWAIT  
FSMC_NE1 / FSMC_NCE2  
FSMC_NE2 / FSMC_NCE3  
FSMC_NCE4_1 / FSMC_NE3  
FSMC_NCE4_2  
USART2_RX  
USART2_CK  
-
-
-
-
-
-
-
-
-
124  
125  
126  
127  
128  
129  
130  
131  
132  
PG9  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
VSS_11  
VDD_11  
PG15  
PG10  
PG11  
PG12  
PG13  
PG14  
VSS_11  
VDD_11  
PG15  
FSMC_NE4  
FSMC_A24  
FSMC_A25  
S
I/O FT  
PB3/TRACESWO  
TIM2_CH2 /  
A7 55 89 133  
A6 56 90 134  
PB3/  
PB4  
I/O FT  
I/O FT  
JTDO  
SPI3_SCK / I2S3_CK/  
SPI3_MISO  
SPI1_SCK  
PB4 / TIM3_CH1  
SPI1_MISO  
NJTRST  
I2C1_SMBA / SPI3_MOSI /  
I2S3_SD  
TIM3_CH2 /  
SPI1_MOSI  
B6 57 91 135  
C6 58 92 136  
D6 59 93 137  
PB5  
PB6  
PB7  
I/O  
PB5  
PB6  
PB7  
I/O FT  
I/O FT  
I2C1_SCL(8)/ TIM4_CH1(8)  
USART1_TX  
USART1_RX  
I2C1_SDA(8) / FSMC_NADV /  
TIM4_CH2(8)  
Doc ID 16554 Rev 3  
33/120  
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Alternate functions(4)  
Table 5.  
Pins  
STM32F103xF and STM32F103xG pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
D5 60 94 138  
C5 61 95 139  
BOOT0  
PB8  
I
BOOT0  
PB8  
TIM4_CH3(8) / SDIO_D4 /  
TIM10_CH1  
I2C1_SCL/  
CAN_RX  
I/O FT  
TIM4_CH4(8) / SDIO_D5 /  
TIM11_CH1  
I2C1_SDA /  
CAN_TX  
B5 62 96 140  
PB9  
I/O FT  
PB9  
A5  
A4  
-
-
97 141  
98 142  
PE0  
PE1  
I/O FT  
PE0  
PE1  
TIM4_ETR / FSMC_NBL0  
FSMC_NBL1  
I/O FT  
E5 63 99 143  
F5 64 100 144  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3  
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load  
of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the  
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144/BGA144  
packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate  
function I/O and debug configuration section in the STM32F10xxx reference manual.  
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,  
available from the STMicroelectronics website: www.st.com.  
9. For devices delivered in LQFP64 packages, the FSMC function is not available.  
34/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Pinouts and pin descriptions  
Table 6.  
Pins  
FSMC pin definition  
FSMC  
LQFP100(1)  
NOR/PSRAM/  
CF  
CF/IDE  
NOR/PSRAM Mux NAND 16 bit  
SRAM  
PE2  
PE3  
A23  
A19  
A20  
A21  
A22  
A0  
A23  
A19  
A20  
A21  
A22  
Yes  
Yes  
PE4  
Yes  
PE5  
Yes  
PE6  
Yes  
PF0  
A0  
A1  
A0  
A1  
A2  
-
PF1  
A1  
-
PF2  
A2  
A2  
-
PF3  
A3  
A3  
-
PF4  
A4  
A4  
-
PF5  
A5  
A5  
-
PF6  
NIORD  
NREG  
NIOWR  
CD  
NIORD  
NREG  
NIOWR  
CD  
-
PF7  
-
-
PF8  
PF9  
-
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
INTR  
NIOS16  
A6  
INTR  
-
NIOS16  
-
A6  
A7  
-
A7  
-
A8  
A8  
-
A9  
A9  
-
A10  
A10  
A11  
D4  
-
-
D4  
D5  
D4  
D5  
DA4  
DA5  
D4  
D5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE8  
D5  
PE9  
D6  
D6  
D6  
DA6  
D6  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
D7  
D7  
D7  
DA7  
D7  
D8  
D8  
D8  
DA8  
D8  
D9  
D9  
D9  
DA9  
D9  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
DA10  
DA11  
DA12  
DA13  
D10  
D11  
D12  
D13  
Doc ID 16554 Rev 3  
35/120  
 
Pinouts and pin descriptions  
STM32F103xF, STM32F103xG  
Table 6.  
Pins  
FSMC pin definition (continued)  
FSMC  
LQFP100(1)  
NOR/PSRAM/  
CF  
CF/IDE  
NOR/PSRAM Mux NAND 16 bit  
SRAM  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PD0  
D14  
D15  
D14  
D15  
D14  
D15  
A16  
A17  
A18  
D0  
DA14  
DA15  
A16  
D14  
D15  
CLE  
ALE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
A17  
A18  
D0  
D1  
D0  
D1  
DA0  
DA1  
D0  
D1  
D1  
A12  
A13  
A14  
A15  
-
-
-
INT2  
INT3  
D2  
-
-
D2  
D3  
D2  
D3  
D2  
D3  
DA2  
DA3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PD1  
D3  
PD3  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
CLK  
PD4  
NOE  
NWE  
NOE  
NWE  
NOE  
NWE  
NWAIT  
NE1  
NOE  
NWE  
PD5  
PD6  
NWAIT  
NWAIT  
NWAIT  
NCE2  
NCE3  
PD7  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PB7  
NE2  
NCE4_1 NCE4_1  
NCE4_2 NCE4_2  
NE3  
-
-
NE4  
A24  
NE4  
A24  
-
-
A25  
A25  
-
NADV  
NBL0  
NBL1  
NADV  
NBL0  
NBL1  
Yes  
Yes  
Yes  
PE0  
PE1  
1. Ports F and G are not available in devices delivered in 100-pin packages.  
36/120  
Doc ID 16554 Rev 3  
STM32F103xF, STM32F103xG  
Memory mapping  
4
Memory mapping  
The memory map is shown in Figure 7.  
Figure 7. Memory map  
Reserved  
0xA000 1000 - 0xBFFF FFFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
FSMC register  
FSMC bank4 PCCARD  
FSMC bank3 NAND (NAND2)  
0x8000 0000 - 0x8FFF FFFF  
FSMC bank2 NAND (NAND1) 0x7000 0000 - 0x7FFF FFFF  
FSMC bank1 NOR/PSRAM 4 0x6C00 0000 - 0x6FFF FFFF  
FSMC bank1 NOR/PSRAM 3  
0x6800 0000 - 0x6BFF FFFF  
0x6400 0000 - 0x67FF FFFF  
FSMC bank1 NOR/PSRAM 2  
0x6000 0000 - 0x63FF FFFF  
0x4002 4400 - 0x5FFF FFFF  
0x4002 3000 - 0x4002 33FF  
FSMC bank1 NOR/PSRAM 1  
Reserved  
CRC  
Reserved  
Flash interfaces 1 & 2  
Reserved  
RCC  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
DMA2  
DMA1  
0x4001 8400 - 0x4001 FFFF  
0x4001 8000 - 0x4001 83FF  
0x4001 5800 - 0x4001 7FFF  
0x4001 5400 - 0x4001 57FF  
Reserved  
SDIO  
Reserved  
TIM11  
TIM10  
TIM9  
0x4001 5000 - 0x4001 53FF  
0x4001 4C00 - 0x4001 4FFF  
Reserved  
ADC3  
USART1  
TIM8  
SPI1  
TIM1  
ADC2  
ADC1  
Port G  
Port F  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
0x4001 4000 - 0x4001 4BFF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2800 - 0x4001 2BFF  
0x4001 2400 - 0x4001 27FF  
0xFFFF FFFF  
512-Mbyte  
block 7  
Cortex-M3's  
internal  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 1800 - 0x4001 1BFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0xE000 0000  
0xDFFF FFFF  
peripherals  
512-Mbyte  
block 6  
Not used  
0x4001 0C00 - 0x4001 0FFF  
0x4001 0800 - 0x4001 0BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7800 - 0x4000 FFFF  
0xC000 0000  
0xBFFF FFFF  
AFIO  
Reserved  
DAC  
PWR  
BKP  
512-Mbyte  
block 5  
FSMC register  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
Reserved  
BxCAN  
0xA000 0000  
0x9FFF FFFF  
0x4000 6400 - 0x4000 67FF  
512-Mbyte  
block 4  
FSMC bank 3  
& bank4  
Shared USB/CAN SRAM 512  
0x4000 6000 - 0x4000 63FF  
bytes  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
USB registers  
I2C2  
0x8000 0000  
I2C1  
0x7FFF FFFF  
UART5  
512-Mbyte  
block 3  
FSMC bank1  
& bank2  
UART4  
USART3  
USART2  
Reserved  
0x6000 0000  
0x5FFF FFFF  
SPI3/I2S3  
512-Mbyte  
block 2  
Peripherals  
SPI2/I2S2  
Reserved  
IWDG  
WWDG  
RTC  
0x4000 0000  
0x3FFF FFFF  
512-Mbyte  
block 1  
SRAM  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
0x2000 0000  
0x1FFF FFFF  
512-Mbyte  
block 0  
Code  
TIM6  
TIM5  
0x3FFF FFFF  
Reserved  
TIM4  
0x2001 8000  
0x2001 7FFF  
0x0000 0000  
TIM3  
SRAM (96 KB aliased  
by bit-banding)  
TIM2  
0x2000 0000  
Option bytes  
System memory  
Reserved  
Flash memory bank 2  
(256 KB or 512 KB)  
0x1FFF F800 - 0x1FFF F80F  
0x1FFF E000- 0x1FFF F7FF  
0x0810 0000 - 0x1FFF DFFF  
0x080F FFFF  
0x0808 0000  
0x0807 FFFF  
Flash memory bank 1  
(512 KB)  
0x0800 0000  
Reserved  
0x0010 0000 - 0x07FF FFFF  
Aliased to Flash or system 0x000F FFFF  
memory depending on  
BOOT pins  
0x0000 0000  
ai17353  
Doc ID 16554 Rev 3  
37/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Figure 8.  
Pin loading conditions  
Figure 9.  
Pin input voltage  
STM32F103xx pin  
STM32F103xx pin  
C = 50 pF  
V
IN  
ai14141  
ai14142  
38/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
5.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
6
"!4  
"ACKUP CIRCUITRY  
ꢉ/3#ꢌꢅ+ꢈ24#ꢈ  
7AKEꢍUP LOGIC  
0O WER SWITCH  
ꢀꢆꢐꢍꢌꢆꢑ6  
"ACKUP REGISTERSꢋ  
/54  
).  
)/  
,OGIC  
'0 )ꢄ/S  
+ERNEL LOGIC  
ꢉ#05ꢈ  
$IGITAL  
ꢊ -EMORIESꢋ  
6
$$  
6
$$ꢀꢄꢅꢄꢆꢆꢆꢄꢀꢀ  
2EGULATOR  
ꢀꢀ § ꢀꢃꢃ N&  
ꢎ ꢀ § ꢂꢆꢏ —&  
6
33ꢀꢄꢅꢄꢆꢆꢆꢄꢀꢀ  
6
$$  
6
$$!  
6
2%&  
6
2%&ꢎ  
!$#ꢄ  
$!#  
!NALOGꢇ  
2#Sꢈ 0,,ꢈ  
ꢆꢆꢆ  
ꢀꢃ N&  
ꢎ ꢀ —&  
ꢀꢃ N&  
ꢎ ꢀ —&  
6
2%&ꢍ  
6
33!  
AIꢀꢁꢂꢃꢀ  
Caution:  
In Figure 10, the 4.7 µF capacitor must be connected to V  
.
DD3  
5.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
Doc ID 16554 Rev 3  
39/120  
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics,  
Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 7.  
Symbol  
Voltage characteristics  
Ratings  
External main supply voltage (including VDDA  
Min  
Max  
Unit  
VDD–VSS  
–0.3  
4.0  
(1)  
and VDD  
)
V
Input voltage on five volt tolerant pin  
Input voltage on any other pin  
VSS 0.3  
VDD + 4.0  
(2)  
VIN  
VSS 0.3  
4.0  
50  
50  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
mV  
|VSSX VSS  
|
see Section 5.3.12:  
Absolute maximum ratings  
(electrical sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 8: Current characteristics for the maximum  
allowed injected current values.  
Table 8.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on five volt tolerant pins(3)  
Injected current on any other pin(4)  
150  
150  
25  
IIO  
25  
-5/+0  
5
mA  
(2)  
IINJ(PIN)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Negative injection disturbs the analog performance of the device. See note 3 below Table 65 on page 103.  
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 7: Voltage characteristics for the maximum allowed input voltage  
values.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 7: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
40/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Table 9.  
Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 10. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
72  
36  
72  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
V
(2)  
Analog operating voltage  
(ADC used)  
2.4  
VBAT  
Backup operating voltage  
1.8  
3.6  
666  
434  
444  
500  
LQFP144  
LQFP100  
LQFP64  
-
-
-
-
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(3)  
PD  
mW  
LFBGA144  
WLCSP64  
-
400  
Maximum power dissipation –40  
Low power dissipation(4)  
–40  
Maximum power dissipation –40  
85  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Low power dissipation(4)  
–40  
–40  
–40  
6 suffix version  
Junction temperature range  
7 suffix version  
1. When the ADC is used, refer to Table 62: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 114).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 114).  
Doc ID 16554 Rev 3  
41/120  
 
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 11 are derived from tests performed under the ambient  
temperature condition summarized in Table 10.  
Table 11. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
0
tVDD  
µs/V  
V
DD fall time rate  
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 12. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1 2.18 2.26  
2.08 2.16  
V
V
2
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
V
(2)  
VPVDhyst  
PVD hysteresis  
-
100  
-
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92 2.0  
V
(2)  
VPDRhyst  
PDR hysteresis  
-
40  
-
mV  
mS  
(2)  
TRSTTEMPO  
Reset temporization  
1
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
42/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
5.3.4  
Embedded reference voltage  
The parameters given in Table 13 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 13. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
–40 °C < TA < +105 °C 1.16 1.20 1.26  
–40 °C < TA < +85 °C 1.16 1.20 1.24  
V
V
VREFINT Internal reference voltage  
ADC sampling time when  
reading the internal reference  
voltage  
(1)  
TS_vrefint  
-
5.1  
17.1(2)  
µs  
Internal reference voltage  
spread over the temperature  
range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
-
-
-
10  
mV  
(2)  
TCoeff  
Temperature coefficient  
-
100 ppm/°C  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/2, f  
= f  
PCLK1  
HCLK  
PCLK2 HCLK  
The parameters given in Table 14, Table 15 and Table 16 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 10.  
DD  
Doc ID 16554 Rev 3  
43/120  
 
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Table 14. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
68  
51  
69  
51  
External clock(2), all  
peripherals enabled  
41  
41  
29  
30  
22  
22.5  
14  
12.5  
39  
Supplycurrent in  
Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
39  
29.5  
24  
30  
External clock(3), all  
peripherals disabled  
24.5  
19  
17.5  
14  
15  
8.5  
10.5  
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 15. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
65  
46.5  
37  
65.5  
47  
37  
27  
20  
13  
36  
26  
21  
16  
13  
9
External clock(2), all  
peripherals enabled  
26.5  
19  
11.5  
34.5  
25  
Supply current  
in Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
External clock(3), all  
peripherals disabled  
20.5  
15  
11  
7.5  
1. Data based on characterization results, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
44/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
ꢏꢃ  
ꢑꢃ  
ꢁꢃ  
ꢏꢅ-(Z  
ꢂꢃ  
ꢂꢐ-(Z  
ꢌꢑ-(Z  
ꢌꢃ  
ꢅꢂ-(Z  
ꢀꢑ-(Z  
ꢅꢃ  
ꢀꢃ  
ꢐ-(Z  
ꢍꢂꢁ  
ꢅꢁ  
ꢏꢃ  
ꢐꢁ  
ꢀꢃꢁ  
4EMPERATURE ꢀ #ꢁ  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V)-  
code with data processing running from RAM, peripherals disabled  
ꢂꢃ  
ꢌꢁ  
ꢌꢃ  
ꢏꢅ-(Z  
ꢂꢐ-(Z  
ꢌꢑ-(Z  
ꢅꢂ-(Z  
ꢀꢑ-(Z  
ꢐ-(Z  
ꢅꢁ  
ꢅꢃ  
ꢀꢁ  
ꢀꢃ  
ꢍꢂꢁ  
ꢅꢁ  
ꢏꢃ  
ꢐꢁ  
ꢀꢃꢁ  
4EMPERATURE ꢉ #ꢋ  
AIꢀꢐꢁꢅꢃ  
Doc ID 16554 Rev 3  
45/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Table 16. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
47.5  
34  
48.5  
35  
External clock(2), all  
peripherals enabled  
27.5  
20  
27.5  
20.5  
16  
15  
9
11  
Supply current  
in Sleep mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
9.5  
7.7  
6.9  
5.9  
5.4  
4.7  
11.2  
9.5  
8.5  
7.8  
7.2  
6.4  
External clock(3), all  
peripherals disabled  
1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
46/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Table 17. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
VDD/VBAT VDD/VBAT VDD/VBAT TA =  
TA =  
= 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C  
Regulator in run mode, low-speed  
and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog),  
fCK=8 MHz  
44.8  
37.4  
45.3  
37.8  
46.4  
38.7  
810  
790  
1680  
1660  
Supply current in  
Stop mode  
Regulator in low-power mode, low-  
speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
IDD  
µA  
Low-speed internal RC oscillator  
and independent watchdog OFF,  
low-speed oscillator and RTC OFF  
Supply current in  
Standby mode  
1.8  
2.0  
1.1  
2.5  
1.4  
5(2)  
8(2)  
Backup domain  
I
Low-speed oscillator and RTC ON  
1.05  
2(2)  
2.3(2)  
DD_VBAT supply current  
1. Typical values are measured at TA = 25 °C.  
2. Based on characterization, not tested in production.  
Figure 14. Typical current consumption on V  
values  
with RTC on vs. temperature at different V  
BAT  
BAT  
2.5  
2
1.8 V  
2 V  
1.5  
1
2.4 V  
3.3 V  
3.6 V  
0.5  
0
–45  
25  
85  
105  
Temperature (°C)  
ai17337  
Doc ID 16554 Rev 3  
47/120  
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 15. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values  
DD  
ꢑꢃꢃ  
ꢁꢃꢃ  
ꢂꢃꢃ  
ꢌꢃꢃ  
ꢅꢃꢃ  
ꢀꢃꢃ  
ꢅꢆꢂ6  
ꢅꢆꢏ6  
ꢌꢆꢃ6  
ꢌꢆꢌ6  
ꢌꢆꢑ6  
ꢍꢂꢁ#  
ꢅꢁ#  
ꢐꢁ#  
ꢀꢃꢁ#  
4EMPERATURE ꢉ #ꢋ  
AIꢀꢐꢁꢅꢀ  
48/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 16. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values  
DD  
ꢑꢃꢃ  
ꢁꢃꢃ  
ꢂꢃꢃ  
ꢌꢃꢃ  
ꢅꢃꢃ  
ꢀꢃꢃ  
ꢅꢆꢂ6  
ꢅꢆꢏ6  
ꢌꢆꢃ6  
ꢌꢆꢌ6  
ꢌꢆꢑ6  
ꢍꢂꢁ#  
ꢅꢁ#  
ꢐꢁ#  
ꢀꢃꢁ#  
4EMPERATURE ꢉ #ꢋ  
AIꢀꢐꢁꢅꢅ  
Figure 17. Typical current consumption in Standby mode versus temperature at  
different V values  
DD  
ꢂꢆꢁ  
ꢌꢆꢁ  
ꢅꢆꢂ6  
ꢅꢆꢏ6  
ꢌꢆꢃ6  
ꢌꢆꢌ6  
ꢌꢆꢑ6  
ꢅꢆꢁ  
ꢀꢆꢁ  
ꢃꢆꢁ  
ꢍꢂꢁ#  
ꢅꢁ#  
ꢏꢃ#  
ꢐꢁ#  
AIꢀꢐꢁꢅꢌ  
4EMPERATURE ꢉ #ꢋ  
Doc ID 16554 Rev 3  
49/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash access time is adjusted to f frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
wait state from 24 to 48 MHZ and 2 wait states above).  
Ambient temperature and V supply voltage conditions summarized in Table 10.  
DD  
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/4, f  
2 = f  
/2, f  
= f  
/4  
PCLK1  
HCLK  
PCLK  
HCLK  
ADCCLK  
PCLK2  
Table 18. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
52.5  
36.6  
28.5  
24.1  
14  
33.5  
23.8  
18.7  
12.8  
9.2  
External clock(3)  
7.7  
5.4  
mA  
4 MHz  
4.6  
3.4  
2 MHz  
3
2.3  
1 MHz  
2.2  
1.8  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.7  
1.5  
Supply  
current in  
Run mode  
1.4  
1.3  
IDD  
45.5  
35.1  
27.5  
18.9  
12.2  
7.2  
28.6  
22.4  
17.5  
11.6  
8.2  
Running on high  
speed internal RC  
(HSI), AHB  
prescaler used to  
reduce the  
4.8  
mA  
4 MHz  
4
2.7  
frequency  
2 MHz  
2.3  
1.7  
1 MHz  
1.5  
1.2  
500 kHz  
125 kHz  
1.1  
0.9  
0.75  
0.7  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
50/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Table 19. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
32.5  
23  
7
5
17.7  
12.2  
8.4  
4.6  
3
4
3.1  
2.3  
1.5  
1.3  
1.25  
1.2  
1.15  
1.15  
5.7  
4.4  
3.35  
2.3  
1.6  
0.8  
0.7  
0.6  
0.5  
0.5  
0.5  
External clock(3)  
4 MHz  
2 MHz  
2.15  
1.7  
1.5  
1.35  
28.7  
22  
1 MHz  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
Supply  
IDD  
current in  
mA  
Sleep mode  
17  
11.6  
7.7  
3.9  
2.3  
1.5  
1.1  
0.9  
0.7  
Running on high  
speed internal RC  
(HSI), AHB prescaler 8 MHz  
used to reduce the  
frequency  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 16554 Rev 3  
51/120  
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 7  
(1)  
Table 20. Peripheral current consumption  
Peripheral  
Unit  
Typical consumption at 25 °C  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
1.6  
1.5  
1.5  
1.5  
0.6  
0.6  
0.95  
0.7  
0.75  
0.6  
SPI2  
APB1  
SPI3  
mA  
0.6  
USART2  
USART3  
USART4  
USART5  
I2C1  
0.7  
0.7  
0.7  
0.7  
0.65  
0.65  
0.9  
I2C2  
USB  
CAN  
0.9  
DAC(2)  
1.35  
52/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Table 20. Peripheral current consumption  
Electrical characteristics  
(1)  
(continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
TIM1  
0.55  
0.55  
0.55  
0.6  
0.6  
0.55  
0.55  
1.95  
1.9  
APB2  
TIM8  
mA  
TIM9  
1
TIM10  
TIM11  
ADC1(3)  
ADC2(3)  
ADC3(3)  
SPI1  
0.8  
0.8  
1.85  
1.8  
1.8  
0.45  
0.8  
USART1  
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for DAC: EN1, EN2 bits in the DAC_CR register are set to 1 and the converted value  
set to 0x800.  
3. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit  
in the ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 21 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
Doc ID 16554 Rev 3  
53/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Table 21. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
25  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
The characteristics given in Table 22 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
Table 22. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
450  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
tw(LSE)  
tw(LSE)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
ns  
tr(LSE)  
tf(LSE)  
50  
Cin(LSE) OSC32_IN input capacitance(1)  
-
30  
-
5
-
-
70  
1
pF  
%
DuCy(LSE) Duty cycle  
IL  
OSC32_IN Input leakage current VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
54/120  
Doc ID 16554 Rev 3  
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 18. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC _IN  
STM32F103xx  
ai14143  
Figure 19. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC32_IN  
STM32F103xx  
ai14144b  
Doc ID 16554 Rev 3  
55/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)(2)  
Table 23. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
fOSC_IN Oscillator frequency  
4
-
8
16  
-
MHz  
RF  
C
Feedback resistor  
200  
kΩ  
Recommended load capacitance  
versus equivalent serial  
RS = 30 Ω  
-
-
30  
-
-
pF  
resistance of the crystal (RS)(3)  
V
DD= 3.3 V, VIN = VSS  
with 30 pF load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization results, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 20). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Figure 20. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F103xx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14145  
1. REXT value depends on the crystal characteristics.  
56/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 24. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)(2)  
Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ Max Unit  
RF  
-
5
-
MΩ  
Recommended load capacitance  
versus equivalent serial  
resistance of the crystal (RS)  
C(2)  
RS = 30 kΩ  
-
-
15  
pF  
I2  
LSE driving current  
VDD = 3.3 V, VIN = VSS  
-
5
-
-
1.4  
µA  
gm  
Oscillator transconductance  
-
-
-
-
-
-
-
-
-
-
µA/V  
TA = 50 °C  
TA = 25 °C  
TA = 10 °C  
TA = 0 °C  
1.5  
2.5  
4
-
-
-
6
VDD is  
stabilized  
(3)  
tSU(LSE)  
Startup time  
s
TA = -10 °C  
TA = -20 °C  
TA = -30 °C  
TA = -40 °C  
-
10  
17  
32  
60  
-
-
-
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer, PCB  
layout and humidity  
Note:  
For C and C , it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator (see Figure 21).  
and C are usually the same size. The crystal manufacturer typically specifies a load  
C
L1  
L2,  
capacitance which is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
57/120  
L
stray  
then C = C = 8 pF.  
L1  
L2  
Doc ID 16554 Rev 3  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 21. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32F103xx  
OSC32_OUT  
C
L2  
ai14146  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 25 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 25. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ Max Unit  
fHSI  
-
8
-
MHz  
%
DuCy(HSI) Duty cycle  
45  
55  
User-trimmed with the RCC_CR  
register(2)  
-
-
1(3)  
%
TA = –40 to 105 °C  
–2  
-
-
-
-
2.5  
2.2  
2
%
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
TA = –10 to 85 °C  
Factory-  
–1.5  
–1.3  
–1.1  
calibrated(4)  
TA = 0 to 70 °C  
TA = 25 °C  
1.8  
HSI oscillator  
startup time  
(4)  
tsu(HSI)  
1
-
-
2
µs  
HSI oscillator power  
consumption  
(4)  
IDD(HSI)  
80  
100  
µA  
1.  
VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from  
the ST website www.st.com.  
3. Guaranteed by design, not tested in production.  
4. Based on characterization, not tested in production.  
58/120  
Doc ID 16554 Rev 3  
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 26. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
30  
-
40  
-
60  
85  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.65  
1.2  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 27 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 10.  
Table 27. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Typ  
Unit  
(1)  
1.8  
µs  
tWUSLEEP  
Wakeup from Stop mode (regulator in run mode)  
3.6  
5.4  
(1)  
µs  
µs  
tWUSTOP  
Wakeup from Stop mode (regulator in low power mode)  
(1)  
Wakeup from Standby mode  
50  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point in which the user application code  
reads the first instruction.  
Doc ID 16554 Rev 3  
59/120  
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.8  
PLL characteristics  
The parameters given in Table 28 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 28. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
1
40  
16  
-
8.0  
25  
60  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
-
-
-
-
fPLL_OUT  
tLOCK  
72  
MHz  
µs  
200  
300  
Jitter  
Cycle-to-cycle jitter  
-
ps  
1. Based on characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 29. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = –40 to +105 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
tERASE Page (2 KB) erase time TA = –40 to +105 °C  
-
-
tME  
Mass erase time  
Supply current  
TA = –40 to +105 °C  
Read mode  
fHCLK = 72 MHz with 2 wait  
states, VDD = 3.3 V  
-
-
28  
mA  
Write mode  
fHCLK = 72 MHz, VDD = 3.3 V  
-
-
-
-
7
5
mA  
mA  
IDD  
Erase mode  
fHCLK = 72 MHz, VDD = 3.3 V  
Power-down mode / Halt,  
-
-
-
50  
µA  
V
VDD = 3.0 to 3.6 V  
Vprog Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
60/120  
Doc ID 16554 Rev 3  
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Table 30. Flash memory endurance and data retention  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND  
Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
30  
10  
20  
tRET  
Data retention  
1. Based on characterization not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.10  
FSMC characteristics  
Asynchronous waveforms and timings  
Figure 22 through Figure 25 represent asynchronous waveforms and Table 31 through  
Table 35 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 0  
AddressHoldTime = 1  
DataSetupTime = 1  
Note:  
On all tables, the t  
is the HCLK clock period.  
HCLK  
Doc ID 16554 Rev 3  
61/120  
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
T
Wꢉ.%ꢋ  
&3-#?.%  
T
Vꢉ./%?.%ꢋ  
T
T
Hꢉ.%?./%ꢋ  
Wꢉ./%ꢋ  
&3-#?./%  
&3-#?.7%  
TVꢉ!?.%ꢋ  
T
Hꢉ!?./%ꢋ  
&3-#?!;ꢅꢁꢇꢃ=  
!DDRESS  
TVꢉ",?.%ꢋ  
T
Hꢉ",?./%ꢋ  
&3-#?.",;ꢀꢇꢃ=  
T
Hꢉ$ATA?.%ꢋ  
T
T
SUꢉ$ATA?./%ꢋ  
Hꢉ$ATA?./%ꢋ  
T
SUꢉ$ATA?.%ꢋ  
$ATA  
&3-#?$;ꢀꢁꢇꢃ=  
T
Vꢉ.!$6?.%ꢋ  
T
Wꢉ.!$6ꢋ  
ꢉꢀꢋ  
&3-#?.!$6  
-3ꢀꢐꢁꢐꢑ6ꢀ  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
Note:  
FSMC_BusTurnAroundDuration = 0.  
62/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
(1)  
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
ns  
5tHCLK + 0.5  
5tHCLK + 2  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
0.5  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5tHCLK – 1  
5tHCLK + 1  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NOE high  
0
-
-
3
th(A_NOE)  
tv(BL_NE)  
th(BL_NOE)  
0
-
-
0
0.5  
-
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOEx high setup time  
th(Data_NOE) Data hold time after FSMC_NOE high  
2tHCLK - 1  
-
2tHCLK - 1  
-
0
0
-
-
th(Data_NE)  
Data hold time after FSMC_NEx high  
-
0
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
tw(NADV)  
FSMC_NADV low time  
-
tHCLK + 2  
1. CL = 15 pF.  
Figure 23. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
FSMC_NWE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[3:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FSMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FSMC_NADV  
ai14990  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
Doc ID 16554 Rev 3  
63/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
(1)  
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol Parameter Min Max  
tw(NE) FSMC_NE low time 3tHCLK + 0.5 3tHCLK + 1.5 ns  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Unit  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
tHCLK + 0.5  
tHCLK + 1.5 ns  
tHCLK – 0.5  
tHCLK + 1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to Data valid  
tHCLK – 0.5  
-
-
0
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
tHCLK  
-
-
1.5  
tHCLK – 1.5  
-
-
tHCLK  
th(Data_NWE) Data hold time after FSMC_NWE high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
tHCLK  
-
-
-
0
tw(NADV)  
FSMC_NADV low time  
tHCLK + 1.5 ns  
1. CL = 15 pF.  
Table 33. Asynchronous read muxed  
Symbol Parameter  
tw(NE) FSMC_NE low time  
tv(NOE_NE)  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Min  
Max  
Unit  
7tHCLK + 0.5 7tHCLK + 2  
3tHCLK + 0.5 3tHCLK + 1.5  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
4tHCLK – 1  
4tHCLK + 1  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
0.5  
-
-
0
1
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
0
tw(NADV)  
FSMC_NADV low time  
tHCLK + 0.5  
tHCLK + 2  
FSMC_AD (address) valid hold time after  
FSMC NADV high  
th(AD_NADV)  
tHCLK  
-
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
tHCLK – 2  
-
-
0.5  
-
0
-
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
4tHCLK – 0.5  
4tHCLK – 1  
-
th(Data_NE)  
Data hold time after FSMC_NEx high  
0
0
-
th(Data_NOE) Data hold time after FSMC_NOE high  
-
64/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 24. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
h(NE_NOE)  
v(NOE_NE)  
FSMC_NOE  
t
w(NOE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NOE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
NBL  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
su(Data_NOE)  
Address  
Data  
FSMC_AD[15:0]  
FSMC_NADV  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
ai14892b  
(1)  
Table 34. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
ns  
7tHCLK + 0.5  
7tHCLK + 2  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
3tHCLK + 0.5 3tHCLK + 1.5 ns  
4tHCLK – 1  
4tHCLK + 1  
ns  
ns  
ns  
ns  
ns  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
0.5  
-
-
0
1
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
0
tw(NADV)  
FSMC_NADV low time  
tHCLK + 0.5  
tHCLK + 2  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
tHCLK  
-
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
tHCLK -2  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5  
-
0
-
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
4tHCLK - 0.5  
4tHCLK - 1  
-
th(Data_NE)  
Data hold time after FSMC_NEx high  
0
0
-
th(Data_NOE) Data hold time after FSMC_NOE high  
1. CL = 15 pF.  
-
Doc ID 16554 Rev 3  
65/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 25. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
FSMC_AD[15:0]  
NBL  
t
t
t
v(A_NE)  
v(Data_NADV)  
h(Data_NWE)  
Address  
Data  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV  
ai14891B  
(1)  
Table 35. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol Parameter Min  
tw(NE) FSMC_NE low time  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Max  
Unit  
5tHCLK + 0.5 5tHCLK + 2 ns  
tHCLK + 1 tHCLK + 1.5 ns  
3tHCLK + 0.5 3tHCLK + 1 ns  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
tHCLK – 0.5  
-
3.5  
1
ns  
ns  
ns  
-
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
0
tw(NADV)  
FSMC_NADV low time  
tHCLK + 0.5  
tHCLK + 1.5 ns  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
t
HCLK – 0.5  
-
ns  
th(A_NWE)  
tv(BL_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
4tHCLK – 2  
-
ns  
ns  
ns  
ns  
ns  
-
0.5  
th(BL_NWE)  
FSMC_BL hold time after FSMC_NWE high  
tHCLK – 1.5  
-
-
tv(Data_NADV) FSMC_NADV high to Data valid  
th(Data_NWE) Data hold time after FSMC_NWE high  
1. CL = 15 pF.  
tHCLK + 6  
-
tHCLK – 0.5  
66/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Synchronous waveforms and timings  
Figure 26 through Figure 29 represent synchronous waveforms and Table 37 through  
Table 39 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
Figure 26. Synchronous multiplexed NOR/PSRAM read timings  
"53452. ꢓ ꢃ  
Dꢉ#,+,ꢍ.%X(ꢋ  
T
T
Wꢉ#,+ꢋ  
Wꢉ#,+ꢋ  
&3-#?#,+  
$ATA LATENCY ꢓ ꢃ  
Dꢉ#,+,ꢍ.%X,ꢋ  
T
T
T
&3-#?.%X  
T
T
Dꢉ#,+,ꢍ.!$6,ꢋ  
Dꢉ#,+,ꢍ.!$6(ꢋ  
&3-#?.!$6  
T
Dꢉ#,+,ꢍ!)6ꢋ  
Dꢉ#,+,ꢍ!6ꢋ  
&3-#?!;ꢅꢁꢇꢀꢑ=  
T
T
Dꢉ#,+,ꢍ./%(ꢋ  
Dꢉ#,+,ꢍ./%,ꢋ  
&3-#?./%  
T
T
T
Hꢉ#,+(ꢍ!$6ꢋ  
Dꢉ#,+,ꢍ!$)6ꢋ  
T
T
T
SUꢉ!$6ꢍ#,+(ꢋ  
SUꢉ!$6ꢍ#,+(ꢋ  
Dꢉ#,+,ꢍ!$6ꢋ  
Hꢉ#,+(ꢍ!$6ꢋ  
$ꢌ  
&3-#?!$;ꢀꢁꢇꢃ=  
!$;ꢀꢁꢇꢃ=  
T
$ꢀ  
$ꢅ  
T
SUꢉ.7!)46ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ.7!)46ꢋ  
&3-#?.7!)4  
ꢉ7!)4#&' ꢓ ꢀBꢈ 7!)40/, ꢎ ꢃBꢋ  
T
T
SUꢉ.7!)46ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ.7!)46ꢋ  
&3-#?.7!)4  
ꢉ7!)4#&' ꢓ ꢃBꢈ 7!)40/, ꢎ ꢃBꢋ  
T
T
Hꢉ#,+(ꢍ.7!)46ꢋ  
SUꢉ.7!)46ꢍ#,+(ꢋ  
AIꢀꢂꢐꢒꢌH  
Doc ID 16554 Rev 3  
67/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
(1)  
Table 36. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
27.6  
-
0.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKL-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK low to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
-
1
-
1
FSMC_CLK low to FSMC_NADV high  
0.5  
-
-
FSMC_CLK low to FSMC_Ax valid (x = 0...25)  
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NOE low  
0
td(CLKL-AIV)  
1.5  
-
-
td(CLKL-NOEL)  
td(CLKL-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
14  
-
FSMC_CLK low to FSMC_NOE high  
1
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
-
11  
-
0.5  
FSMC_A/D[15:0] valid data before FSMC_CLK  
high  
tsu(ADV-CLKH)  
2
0
-
-
ns  
ns  
th(CLKH-ADV)  
FSMC_A/D[15:0] valid data after FSMC_CLK high  
1. CL = 15 pF.  
68/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Figure 27. Synchronous multiplexed PSRAM write timings  
Electrical characteristics  
"53452. ꢓ ꢃ  
T
T
Wꢉ#,+ꢋ  
Wꢉ#,+ꢋ  
&3-#?#,+  
$ATA LATENCY ꢓ ꢃ  
Dꢉ#,+,ꢍ.%X,ꢋ  
T
T
Dꢉ#,+,ꢍ.%X(ꢋ  
&3-#?.%X  
T
T
Dꢉ#,+,ꢍ.!$6,ꢋ  
Dꢉ#,+,ꢍ.!$6(ꢋ  
&3-#?.!$6  
T
T
T
Dꢉ#,+,ꢍ!6ꢋ  
Dꢉ#,+,ꢍ!)6ꢋ  
&3-#?!;ꢅꢁꢇꢀꢑ=  
&3-#?.7%  
T
Dꢉ#,+,ꢍ.7%,ꢋ  
Dꢉ#,+,ꢍ.7%(ꢋ  
T
T
Dꢉ#,+,ꢍ!$)6ꢋ  
T
Dꢉ#,+,ꢍ$ATAꢋ  
$ꢀ  
T
Dꢉ#,+,ꢍ$ATAꢋ  
Dꢉ#,+,ꢍ!$6ꢋ  
&3-#?!$;ꢀꢁꢇꢃ=  
!$;ꢀꢁꢇꢃ=  
$ꢅ  
&3-#?.7!)4  
ꢉ7!)4#&' ꢓ ꢃBꢈ 7!)40/, ꢎ ꢃBꢋ  
&3-#?.",  
T
T
SUꢉ.7!)46ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ.7!)46ꢋ  
T
Dꢉ#,+,ꢍ.",(ꢋ  
AIꢀꢂꢒꢒꢅG  
Doc ID 16554 Rev 3  
69/120  
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
(1)  
Table 37. Synchronous multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
Max  
Unit  
FSMC_CLK period  
27.5  
-
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKL-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_Nex low (x = 0...2)  
FSMC_CLK low to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
-
1
-
1
-
FSMC_CLK low to FSMC_NADV high  
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
1
-
0
-
td(CLKL-AIV)  
1
-
td(CLKL-NWEL)  
td(CLKL-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
td(CLKL-Data)  
td(CLKL-NBLH)  
1. CL = 15 pF.  
1
-
FSMC_CLK low to FSMC_NWE high  
1.5  
-
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid after FSMC_CLK low  
FSMC_CLK low to FSMC_NBL high  
10  
-
1
-
6
-
1
70/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings  
"53452. ꢓ ꢃ  
T
Dꢉ#,+,ꢍ.%X(ꢋ  
T
T
Wꢉ#,+ꢋ  
Wꢉ#,+ꢋ  
&3-#?#,+  
T
Dꢉ#,+,ꢍ.%X,ꢋ  
$ATA LATENCY ꢓ ꢃ  
Dꢉ#,+,ꢍ.!$6(ꢋ  
&3-#?.%X  
T
T
Dꢉ#,+,ꢍ.!$6,ꢋ  
&3-#?.!$6  
T
T
Dꢉ#,+,ꢍ!)6ꢋ  
Dꢉ#,+,ꢍ!6ꢋ  
&3-#?!;ꢅꢁꢇꢃ=  
T
T
Dꢉ#,+,ꢍ./%,ꢋ  
Dꢉ#,+,ꢍ./%(ꢋ  
&3-#?./%  
T
T
SUꢉ$6ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ$6ꢋ  
T
T
SUꢉ$6ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ$6ꢋ  
$ꢌ  
&3-#?$;ꢀꢁꢇꢃ=  
&3-#?.7!)4  
$ꢀ  
$ꢅ  
T
T
SUꢉ.7!)46ꢍ#,+(ꢋ  
T
Hꢉ#,+(ꢍ.7!)46ꢋ  
ꢉ7!)4#&' ꢓ ꢀBꢈ 7!)40/, ꢎ ꢃBꢋ  
T
SUꢉ.7!)46ꢍ#,+(ꢋ  
Hꢉ#,+(ꢍ.7!)46ꢋ  
&3-#?.7!)4  
ꢉ7!)4#&' ꢓ ꢃBꢈ 7!)40/, ꢎ ꢃBꢋ  
T
T
Hꢉ#,+(ꢍ.7!)46ꢋ  
SUꢉ.7!)46ꢍ#,+(ꢋ  
AIꢀꢂꢐꢒꢂG  
(1)  
Table 38. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
27.6  
-
1.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKL-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK low to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
-
2
-
0.5  
-
FSMC_CLK low to FSMC_NADV high  
1
FSMC_CLK low to FSMC_Ax valid (x = 0...25)  
FSMC_CLK low to FSMC_Ax invalid (x = 0...25)  
FSMC_CLK low to FSMC_NOE low  
-
0
td(CLKL-AIV)  
2
-
td(CLKL-NOEL)  
td(CLKL-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
-
tHCLK + 1 ns  
FSMC_CLK low to FSMC_NOE high  
1.5  
3.5  
0
-
-
-
ns  
ns  
ns  
FSMC_D[15:0] valid data before FSMC_CLK high  
FSMC_D[15:0] valid data after FSMC_CLK high  
1. CL = 15 pF.  
Doc ID 16554 Rev 3  
71/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 29. Synchronous non-multiplexed PSRAM write timings  
"53452. ꢓ ꢃ  
Dꢉ#,+,ꢍ.%X(ꢋ  
T
T
Wꢉ#,+ꢋ  
Wꢉ#,+ꢋ  
&3-#?#,+  
T
T
Dꢉ#,+,ꢍ.%X,ꢋ  
$ATA LATENCY ꢓ ꢃ  
Dꢉ#,+,ꢍ.!$6(ꢋ  
&3-#?.%X  
T
T
Dꢉ#,+,ꢍ.!$6,ꢋ  
&3-#?.!$6  
&3-#?!;ꢅꢁꢇꢃ=  
&3-#?.7%  
T
T
T
Dꢉ#,+,ꢍ!6ꢋ  
Dꢉ#,+,ꢍ!)6ꢋ  
T
Dꢉ#,+,ꢍ.7%,ꢋ  
T
Dꢉ#,+,ꢍ.7%(ꢋ  
T
Dꢉ#,+,ꢍ$ATAꢋ  
Dꢉ#,+,ꢍ$ATAꢋ  
&3-#?$;ꢀꢁꢇꢃ=  
$ꢀ  
$ꢅ  
&3-#?.7!)4  
ꢉ7!)4#&' ꢓ ꢃBꢈ 7!)40/, ꢎ ꢃBꢋ  
&3-#?.",  
T
T
Dꢉ#,+,ꢍ.",(ꢋ  
SUꢉ.7!)46ꢍ#,+(ꢋ  
T
Hꢉ#,+(ꢍ.7!)46ꢋ  
AIꢀꢂꢒꢒꢌH  
(1)  
Table 39. Synchronous non-multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
Max Unit  
FSMC_CLK period  
27.6  
-
-
0.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKL-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK low to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
1.5  
-
1
FSMC_CLK low to FSMC_NADV high  
0.5  
-
-
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK low to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
0
td(CLKL-AIV)  
1.5  
-
-
td(CLKL-NWEL)  
td(CLKL-NWEH)  
td(CLKL-Data)  
td(CLKL-NBLH)  
1. CL = 15 pF.  
1
FSMC_CLK low to FSMC_NWE high  
1.5  
-
-
FSMC_D[15:0] valid data after FSMC_CLK low  
FSMC_CLK low to FSMC_NBL high  
2.5  
-
0.5  
72/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
PC Card/CompactFlash controller waveforms and timings  
Figure 30 through Figure 35 represent synchronous waveforms and Table 42 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x04;  
COM.FSMC_WaitSetupTime = 0x07;  
COM.FSMC_HoldSetupTime = 0x04;  
COM.FSMC_HiZSetupTime = 0x00;  
ATT.FSMC_SetupTime = 0x04;  
ATT.FSMC_WaitSetupTime = 0x07;  
ATT.FSMC_HoldSetupTime = 0x04;  
ATT.FSMC_HiZSetupTime = 0x00;  
IO.FSMC_SetupTime = 0x04;  
IO.FSMC_WaitSetupTime = 0x07;  
IO.FSMC_HoldSetupTime = 0x04;  
IO.FSMC_HiZSetupTime = 0x00;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
Figure 30. PC Card/CompactFlash controller waveforms for common memory read  
access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
h(NCEx-AI)  
t
v(NCEx-A)  
FSMC_A[10:0]  
t
t
t
h(NCEx-NREG)  
h(NCEx-NIORD)  
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
h(NCEx-NIOWR  
)
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
FSMC_NWE  
t
t
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
h(NOE-D)  
su(D-NOE)  
FSMC_D[15:0]  
ai14895b  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
Doc ID 16554 Rev 3  
73/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 31. PC Card/CompactFlash controller waveforms for common memory write  
access  
FSMC_NCE4_1  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
t
t
t
h(NCE4_1-NREG)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
t
t
d(NREG-NCE4_1)  
d(NIORD-NCE4_1)  
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
t
t
t
d(NCE4_1-NWE)  
w(NWE)  
d(NWE-NCE4_1)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
ai14896b  
74/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 32. PC Card/CompactFlash controller waveforms for attribute memory read  
access  
FSMC_NCE4_1  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
FSMC_NIOWR  
FSMC_NIORD  
t
t
h(NCE4_1-NREG)  
d(NREG-NCE4_1)  
FSMC_NREG  
FSMC_NWE  
t
t
t
d(NOE-NCE4_1)  
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0](1)  
ai14897b  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
Doc ID 16554 Rev 3  
75/120  
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 33. PC Card/CompactFlash controller waveforms for attribute memory write  
access  
FSMC_NCE4_1  
High  
FSMC_NCE4_2  
FSMC_A[10:0]  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
t
t
d(NCE4_1-NWE)  
w(NWE)  
FSMC_NWE  
t
d(NWE-NCE4_1)  
FSMC_NOE  
t
v(NWE-D)  
FSMC_D[7:0](1)  
ai14898b  
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).  
Figure 34. PC Card/CompactFlash controller waveforms for I/O space read access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIOWR  
t
t
w(NIORD)  
t
d(NIORD-NCE4_1)  
FSMC_NIORD  
t
su(D-NIORD)  
d(NIORD-D)  
FSMC_D[15:0]  
ai14899B  
76/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 35. PC Card/CompactFlash controller waveforms for I/O space write access  
&3-#?.#%ꢂ?ꢀ  
&3-#?.#%ꢂ?ꢅ  
T
T
Hꢉ.#%ꢂ?ꢀꢍ!)ꢋ  
Vꢉ.#%Xꢍ!ꢋ  
&3-#?!;ꢀꢃꢇꢃ=  
&3-#?.2%'  
&3-#?.7%  
&3-#?./%  
&3-#?.)/2$  
T
T
Dꢉ.#%ꢂ?ꢀꢍ.)/72ꢋ  
Wꢉ.)/72ꢋ  
&3-#?.)/72  
!44X(): ꢓꢀ  
T
Hꢉ.)/72ꢍ$ꢋ  
T
Vꢉ.)/72ꢍ$ꢋ  
&3-#?$;ꢀꢁꢇꢃ=  
AIꢀꢂꢒꢃꢃB  
Table 40. Switching characteristics for PC Card/CF read and write cycles in  
attribute/common space  
Symbol  
tv(NCEx-A)  
Parameter  
Min  
Max  
Unit  
FSMC_NCEx low to FSMC_Ay valid  
FSMC_NCEx high to FSMC_Ax invalid  
FSMC_NCEx low to FSMC_NREG valid  
FSMC_NCEx high to FSMC_NREG invalid  
FSMC_NCEx low to FSMC_NWE low  
FSMC_NCEx low to FSMC_NOE low  
FSMC_NOE low width  
-
0
th(NCEx-AI)  
td(NREG-NCEx)  
th(NCEx-NREG)  
td(NCEx_NWE)  
td(NCEx_NOE)  
tw(NOE)  
0
-
-
2
tHCLK + 4  
-
-
5tHCLK + 1  
-
8tHCLK - 0.5  
5tHCLK - 0.5  
32  
5tHCLK + 1  
8tHCLK + 1  
td(NOE-NCEx  
tsu(D-NOE)  
FSMC_NOE high to FSMC_NCEx high  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_NOE high to FSMC_D[15:0] invalid  
FSMC_NWE low width  
-
ns  
-
th(NOE-D)  
tHCLK  
-
tw(NWE)  
8tHCLK – 1  
5tHCLK + 1.5  
-
8tHCLK + 4  
td(NWE_NCEx)  
td(NCEx-NWE)  
tv(NWE-D)  
FSMC_NWE high to FSMC_NCEx high  
FSMC_NCEx low to FSMC_NWE low  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_D[15:0] valid before FSMC_NWE high  
-
5tHCLK + 1  
-
0
-
th(NWE-D)  
11tHCLK  
13tHCLK + 2.5  
td(D-NWE)  
-
Doc ID 16554 Rev 3  
77/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Table 41. Switching characteristics for PC Card/CF read and write cycles in I/O space  
Symbol  
Parameter  
FSMC_NIOWR low width  
Min  
Max  
Unit  
tw(NIOWR)  
8 THCLK  
-
ns  
5 THCLK -  
4
tv(NIOWR-D)  
th(NIOWR-D)  
FSMC_NIOWR low to FSMC_D[15:0] valid  
FSMC_NIOWR high to FSMC_D[15:0] invalid  
FSMC_NCE4_1 low to FSMC_NIOWR valid  
FSMC_NCEx high to FSMC_NIOWR invalid  
FSMC_NCEx low to FSMC_NIORD valid  
FSMC_NCEx high to FSMC_NIORD) valid  
-
ns  
ns  
ns  
ns  
ns  
ns  
11THCLK-  
7
-
5THCLK +  
1
td(NCE4_1-NIOWR)  
th(NCEx-NIOWR)  
td(NIORD-NCEx)  
th(NCEx-NIORD)  
-
5THCLK -  
2.5  
-
5THCLK -  
0.5  
-
5 THCLK -  
0.5  
-
-
tw(NIORD)  
tsu(D-NIORD)  
td(NIORD-D)  
FSMC_NIORD low width  
8THCLK  
ns  
ns  
ns  
FSMC_D[15:0] valid before FSMC_NIORD high  
FSMC_D[15:0] valid after FSMC_NIORD high  
28  
3
NAND controller waveforms and timings  
Figure 36 through Figure 39 represent synchronous waveforms and Table 43 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x00;  
COM.FSMC_WaitSetupTime = 0x02;  
COM.FSMC_HoldSetupTime = 0x01;  
COM.FSMC_HiZSetupTime = 0x00;  
ATT.FSMC_SetupTime = 0x00;  
ATT.FSMC_WaitSetupTime = 0x02;  
ATT.FSMC_HoldSetupTime = 0x01;  
ATT.FSMC_HiZSetupTime = 0x00;  
Bank = FSMC_Bank_NAND;  
MemoryDataWidth = FSMC_MemoryDataWidth_16b;  
ECC = FSMC_ECC_Enable;  
ECCPageSize = FSMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
78/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Figure 36. NAND controller waveforms for read access  
Electrical characteristics  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
t
t
su(D-NOE)  
h(NOE-D)  
ai14901b  
Figure 37. NAND controller waveforms for write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NWE)  
th(NWE-ALE)  
FSMC_NWE  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
tv(NWE-D)  
th(NWE-D)  
ai14902b  
Figure 38. NAND controller waveforms for common memory read access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
tw(NOE)  
tsu(D-NOE)  
th(NOE-D)  
FSMC_D[15:0]  
ai14912b  
Doc ID 16554 Rev 3  
79/120  
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 39. NAND controller waveforms for common memory write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
tw(NWE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FSMC_D[15:0]  
ai14913b  
(1)  
Table 42. Switching characteristics for NAND Flash read cycles  
Symbol  
tw(NOE)  
Parameter  
FSMC_NOE low width  
Min  
Max  
Unit  
3tHCLK – 1  
3tHCLK + 1  
ns  
FSMC_D[15:0] valid data before FSMC_NOE  
high  
tsu(D-NOE)  
13  
-
ns  
th(NOE-D)  
FSMC_D[15:0] valid data after FSMC_NOE high  
FSMC_ALE valid before FSMC_NOE low  
FSMC_NWE high to FSMC_ALE invalid  
0
-
-
ns  
ns  
ns  
td(ALE-NOE)  
th(NOE-ALE)  
1. CL = 15 pF.  
2tHCLK  
-
2tHCLK  
(1)  
Table 43. Switching characteristics for NAND Flash write cycles  
Symbol  
tw(NWE)  
Parameter  
FSMC_NWE low width  
Min  
Max  
Unit  
3tHCLK  
3tHCLK  
ns  
ns  
ns  
tv(NWE-D)  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_ALE valid before FSMC_NWE low  
FSMC_NWE high to FSMC_ALE invalid  
FSMC_ALE valid before FSMC_NOE low  
FSMC_NWE high to FSMC_ALE invalid  
-
0
-
th(NWE-D)  
2tHCLK + 2  
td(ALE-NWE)  
th(NWE-ALE)  
td(ALE-NOE)  
th(NOE-ALE)  
1. CL = 15 pF.  
-
3tHCLK + 8  
-
3tHCLK + 1.5 ns  
-
ns  
ns  
ns  
2tHCLK  
-
2tHCLK  
80/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
5.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 44. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 44. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP144, TA = +25 °C,  
fHCLK = 72 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
conforms to IEC 61000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP144, TA = +25 °C,  
fHCLK = 72 MHz  
conforms to IEC 61000-4-4  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Doc ID 16554 Rev 3  
81/120  
 
 
Electrical characteristics  
Prequalification trials  
STM32F103xF, STM32F103xG  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be appFlied directly on the device, over the range  
of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 45. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz 8/72 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
8
31  
28  
4
12  
21  
33  
4
VDD = 3.3 V, TA = 25 °C,  
LQFP144 package  
compliant with IEC  
61967-2  
dBµV  
-
SEMI  
Peak level  
5.3.12  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 46. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
TA = +25 °C, conforming  
V
2
2000  
500  
ESD(HBM) voltage (human body model) to JESD22-A114  
V
Electrostatic discharge  
TA = +25 °C, conforming  
V
II  
ESD(CDM) voltage (charge device model) to JESD22-C101  
1. Based on characterization results, not tested in production.  
82/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 47. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
5.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for  
example reset, oscillator frequency deviation).  
The test results are given in Table 48  
Table 48. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on OSC_IN32,  
OSC_OUT32, PA4, PA5, PC13  
-0  
+0  
IINJ  
mA  
Injected current on all FT pins  
Injected current on any other pin  
-5  
-5  
+0  
+5  
Doc ID 16554 Rev 3  
83/120  
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 49 are derived from tests  
performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL  
compliant.  
Table 49. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Standard IO input low  
level voltage  
0.28*(VDD-2  
V)+0.8 V  
–0.3  
-
V
VIL  
IO FT(1) input low level  
voltage  
0.32*(VDD-2  
V)+0.75 V  
–0.3  
-
-
V
V
Standard IO input high  
level voltage  
0.41*(VDD-2  
V)+1.3 V  
VDD+0.3  
VIH  
IO FT(1) input high level  
voltage  
0.42*(VDD-2  
V)+1 V  
VDD > 2 V  
5.5  
5.2  
-
V
VDD 2 V  
Standard IO Schmitt  
trigger voltage  
hysteresis(2)  
200  
-
-
-
mV  
mV  
Vhys  
IO FT Schmitt trigger  
voltage hysteresis(2)  
(3)  
-
5% VDD  
VSS VIN VDD  
Standard I/Os  
-
-
-
-
1
3
Ilkg  
Input leakage current (4)  
µA  
VIN= 5 V, I/O FT  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN = VSS  
30  
40  
50  
kΩ  
Weak pull-down  
RPD  
CIO  
VIN = VDD  
30  
-
40  
5
50  
-
kΩ  
equivalent resistor(5)  
I/O pin capacitance  
pF  
1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be  
disabled.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 40 and Figure 41 for standard I/Os, and  
in Figure 42 and Figure 43 for 5 V tolerant I/Os.  
84/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 40. Standard I/O input characteristics - CMOS port  
6
ꢄ6 ꢉ6ꢋ  
)( ),  
ꢁꢂꢅꢆ  
ꢁꢂꢇꢁ  
ꢁꢂꢈꢉ  
ꢁꢂꢇꢁ  
ꢁꢂꢈꢉ  
)NPUT RANGE  
NOT GUARANTEED  
ꢁꢂꢄꢅ  
ꢁꢂꢃꢄ  
7)(MIN  
ꢀꢆꢌ  
7),MAX  
ꢃꢆꢐ  
ꢃꢆꢏ  
6
ꢉ6ꢋ  
$$  
ꢅꢆꢏ  
ꢌꢆꢌ  
ꢌꢆꢑ  
AIꢀꢏꢅꢏꢏB  
Figure 41. Standard I/O input characteristics - TTL port  
6
ꢄ6 ꢉ6ꢋ  
)( ),  
44, REQUIREMENTS  
6
ꢓꢅ6  
)(  
7)(MIN  
ꢅꢆꢃ  
ꢀꢆꢒꢑ  
ꢀꢆꢅꢁ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢆꢌ  
ꢃꢆꢐ  
7),MAX  
44, REQUIREMENTS  
6
ꢓꢃꢆꢐ6  
),  
6
ꢉ6ꢋ  
$$  
ꢅꢆꢀꢑ  
ꢌꢆꢑ  
AIꢀꢏꢅꢏꢐ  
Doc ID 16554 Rev 3  
85/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 42. 5 V tolerant I/O input characteristics - CMOS port  
6
ꢄ6 ꢉ6ꢋ  
)( ),  
ꢀꢆꢑꢏ  
ꢀꢆꢁꢁ  
ꢀꢆꢀꢑ  
)NPUT RANGE  
NOT GUARANTEED  
ꢀꢆꢂꢅ  
ꢀꢆꢃꢏ  
ꢀꢆꢌ  
ꢃꢆꢏ  
ꢀꢆꢅꢒꢁ  
ꢃꢆꢒꢏꢁ  
ꢃꢆꢏꢁ  
6
ꢉ6ꢋ  
$$  
ꢅꢆꢏ  
ꢌꢆꢌ  
ꢌꢆꢑ  
6$$  
AIꢀꢏꢅꢏꢒB  
Figure 43. 5 V tolerant I/O input characteristics - TTL port  
6
ꢄ6 ꢉ6ꢋ  
)( ),  
44, REQUIREMENT 6 ꢓꢅ6  
)(  
ꢅꢆꢃ  
ꢀꢆꢑꢏ  
)NPUT RANGE  
NOT GUARANTEED  
7)(MIN  
7),MAX  
ꢃꢆꢐ  
ꢃꢆꢏꢁ  
44, REQUIREMENTS 6 ꢓꢃꢆꢐ6  
),  
6
ꢉ6ꢋ  
$$  
ꢅꢆꢀꢑ  
ꢌꢆꢑ  
AIꢀꢏꢅꢐꢃ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxedV ) except PC13, PC14 and PC15 which can sink  
V
OL/ OH  
or source up to 3 mA. When using the GPIOs PC13 to PC15 in output mode, the speed  
should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 8).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 8).  
VSS  
86/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Output voltage levels  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10. All I/Os are CMOS and TTL compliant.  
Table 50. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
TTL port(3)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
VOL  
-
0.4  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
VOH  
VDD–0.4  
-
0.4  
-
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
CMOS port(3)  
IIO =+ 8mA  
2.7 V < VDD < 3.6 V  
VOL  
-
V
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(4)  
VOL  
-
1.3  
-
I
IO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(4)  
VOH  
VDD–1.3  
-
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(4)  
VOL  
0.4  
-
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(4)  
VOH  
VDD–0.4  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
4. Based on characterization data, not tested in production.  
Doc ID 16554 Rev 3  
87/120  
 
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 44 and  
Table 51, respectively.  
Unless otherwise specified, the parameters given in Table 51 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
(1)  
Table 51. I/O AC characteristics  
MODEx[1:0]  
Symbol  
Parameter  
Conditions  
Min Max Unit  
bit value(1)  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
-
-
2
MHz  
ns  
Output high to low  
tf(IO)out  
125(3)  
10  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
-
-
-
125(3)  
10  
level rise time  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
MHz  
ns  
Output high to low  
tf(IO)out  
25(3)  
01  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
-
25(3)  
level rise time  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
-
-
-
-
-
-
-
-
-
50  
30  
MHz  
MHz  
MHz  
20  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Output high to low  
5(3)  
8(3)  
12(3)  
5(3)  
8(3)  
12(3)  
11  
tf(IO)out  
tr(IO)out  
tEXTIpw  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
level fall time  
ns  
Output low to high  
level rise time  
Pulse width of  
external signals  
detected by the EXTI  
controller  
-
10  
-
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 44.  
3. Guaranteed by design, not tested in production.  
88/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Figure 44. I/O AC characteristics definition  
Electrical characteristics  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) £ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.15  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 49).  
PU  
Unless otherwise specified, the parameters given in Table 52 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
Table 52. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
-
-
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
-
200  
-
mV  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
30  
-
40  
-
50  
100  
-
kΩ  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
-
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
Figure 45. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 µF  
STM32F10xxx  
ai14132d  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 52. Otherwise the reset will not be taken into account by the device.  
Doc ID 16554 Rev 3  
89/120  
 
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.16  
TIM timer characteristics  
The parameters given in Table 53 are guaranteed by design.  
Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 53. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
-
tres(TIM)  
Timer resolution time  
fTIMxCLK = 72 MHz 13.9  
0
-
fTIMxCLK/2  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 72 MHz  
0
-
36  
16  
MHz  
ResTIM  
Timer resolution  
bit  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
tCOUNTER  
fTIMxCLK = 72 MHz 0.0139  
-
910  
µs  
tTIMxCLK  
s
65536 × 65536  
59.6  
tMAX_COUNT  
Maximum possible count  
fTIMxCLK = 72 MHz  
-
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
90/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
5.3.17  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 54 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 10.  
The STM32F103xC, STM32F103xD and STM32F103xESTM32F103xF and STM32F103xG  
2
2
I
performance line C interface meets the requirements of the standard I C communication  
protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not  
“true” open-drain. When configured as open-drain, the PMOS connected between the I/O  
pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 54. Refer also to Section 5.3.14: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 54. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
-
-
-
-
1.3  
0.6  
-
µs  
-
250  
0(3)  
100  
0(4)  
-
SDA data hold time  
900(3)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
20 + 0.1Cb  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
300  
-
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
-
-
-
-
µs  
Repeated Start condition  
setup time  
0.6  
0.6  
1.3  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to  
achieve the fast mode I2C frequencies and it must be a multiple of 10 MHz in order to reach the I2C fast  
mode maximum clock speed of 400 kHz.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
Doc ID 16554 Rev 3  
91/120  
 
 
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
2
Figure 46. I C bus AC waveforms and measurement circuit  
V
DD  
V
DD  
STM32F103xx  
SDA  
4.7k  
4.7k  
100  
100  
I2C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
w(STO:STA)  
STOP  
t
t
t
w(SCLL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCL)  
t
f(SCL)  
w(SCLH)  
1.  
ai14149c  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
(1)(2)  
Table 55. SCL frequency (f  
= 36 MHz.,VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
92/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
I2S - SPI characteristics  
2
Unless otherwise specified, the parameters given in Table 56 for SPI or in Table 57 for I S  
are derived from tests performed under ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 10.  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
Table 56. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
-
8
ns  
%
SPI slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
30  
70  
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
-
-
(1)  
th(NSS)  
(1)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
50  
60  
(1)  
(1)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
5
4
0
2
-
-
tsu(MI)  
tsu(SI)  
(1)  
-
(1)  
th(MI)  
-
Data input hold time  
ns  
(1)  
th(SI)  
-
(1)(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
3tPCLK  
(1)(3)  
tdis(SO)  
10  
25  
5
(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
(1)  
tv(MO)  
-
(1)  
th(SO)  
15  
2
-
Data output hold time  
(1)  
th(MO)  
-
1. Based on characterization, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
Doc ID 16554 Rev 3  
93/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Figure 47. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 48. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
94/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
(1)  
Figure 49. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
BIT6 IN  
LSB IN  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 16554 Rev 3  
95/120  
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
2
Table 57. I S characteristics  
Symbol  
Parameter  
I2S slave input clock duty cycle Slave mode  
Master mode (data: 16 bits,  
Conditions  
Min  
Max  
Unit  
DuCy(SCK)  
30  
70  
%
1.522  
1.525  
6.5  
8
fCK  
I2S clock frequency  
MHz  
Audio frequency = 48 kHz)  
1/tc(CK)  
Slave mode  
0
-
tr(CK)  
tf(CK)  
I2S clock rise and fall time  
WS valid time  
Capacitive load CL = 50 pF  
Master mode  
(1)  
tv(WS)  
3
2
-
-
-
-
-
-
-
-
-
-
-
-
I2S2  
I2S3  
(1)  
th(WS)  
WS hold time  
Master mode  
0
(1)  
tsu(WS)  
WS setup time  
WS hold time  
Slave mode  
Slave mode  
4
(1)  
th(WS)  
0
(1)  
tw(CKH)  
312.5  
345  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
CK high and low time  
(1)  
tw(CKL)  
I2S2  
Master receiver  
I2S3  
(1)  
tsu(SD_MR)  
Data input setup time  
Data input setup time  
Data input hold time  
ns  
6.5  
1.5  
0
(1)  
tsu(SD_SR)  
Slave receiver  
Master receiver  
Slave receiver  
(1)(2)  
(1)(2)  
th(SD_MR)  
th(SD_SR)  
0.5  
Slave transmitter (after enable  
edge)  
(1)(2)  
(1)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
-
18  
-
Slave transmitter (after enable  
edge)  
11  
-
Master transmitter (after enable  
edge)  
(1)(2)  
(1)  
3
-
Master transmitter (after enable  
edge)  
0
1. Based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.  
96/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
2
(1)  
Figure 50. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 51. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. Based on characterization, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
Doc ID 16554 Rev 3  
97/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 10.  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (D[7:0], CMD, CK).  
Figure 52. SDIO high-speed mode  
t
t
r
f
t
C
t
t
W(CKH)  
W(CKL)  
CK  
t
t
OV  
OH  
D, CMD  
(output)  
t
t
ISU  
IH  
D, CMD  
(input)  
ai14887  
Figure 53. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
98/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Table 58. SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Clock frequency in data transfer  
mode  
fPP  
CL 30 pF  
0
48  
MHz  
tW(CKL)  
Clock low time, fPP = 16 MHz  
Clock high time, fPP = 16 MHz  
Clock rise time  
CL 30 pF  
CL 30 pF  
CL 30 pF  
CL 30 pF  
32  
30  
-
-
-
tW(CKH)  
ns  
tr  
tf  
4
5
Clock fall time  
-
CMD, D inputs (referenced to CK)  
tISU  
tIH  
Input setup time  
Input hold time  
CL 30 pF  
CL 30 pF  
2
0
-
-
ns  
ns  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time  
Output hold time  
CL 30 pF  
CL 30 pF  
-
6
-
0
CMD, D outputs (referenced to CK) in SD default mode(1)  
tOVD  
tOHD  
Output valid default time  
Output hold default time  
CL 30 pF  
CL 30 pF  
-
7
-
ns  
0.5  
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.  
USB characteristics  
The USB interface is USB-IF certified (Full Speed).  
Table 59. USB startup time  
Symbol  
Parameter  
Max  
Unit  
µs  
(1)  
tSTARTUP  
USB transceiver startup time  
1
1. Guaranteed by design, not tested in production.  
Doc ID 16554 Rev 3  
99/120  
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
Table 60. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
Differential input sensitivity  
3.0(3)  
0.2  
3.6  
V
V
(4)  
VDI  
I(USBDP, USBDM)  
(4)  
VCM  
Differential common mode range Includes VDI range  
Single ended receiver threshold  
0.8  
2.5  
2.0  
(4)  
VSE  
Output levels  
1.3  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩto 3.6 V(5)  
0.3  
3.6  
V
(5)  
RL of 15 kΩto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled  
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.  
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
4. Guaranteed by characterization, not tested in production.  
RL is the load connected on the USB drivers  
5.  
Figure 54. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
data lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 61.  
Symbol  
USB: full-speed electrical characteristics  
Driver characteristics(1)  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
5.3.18  
CAN (controller area network) interface  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
100/120  
Doc ID 16554 Rev 3  
 
 
 
 
 
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
5.3.19  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 62 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 10.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 62. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
2.4  
2.4  
-
-
3.6  
V
V
VREF+  
Positive reference voltage  
VDDA  
Current on the VREF input  
pin  
IVREF  
fADC  
-
160  
220(1)  
µA  
ADC clock frequency  
Sampling rate  
0.6  
-
-
14  
1
MHz  
MHz  
(2)  
0.05  
fS  
f
ADC = 14 MHz  
-
-
-
-
823  
17  
kHz  
(2)  
External trigger frequency  
Conversion voltage range(3)  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
-
VREF+  
V
See Equation 1 and  
Table 63 for details  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
-
50  
1
kΩ  
kΩ  
pF  
(2)  
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
fADC = 14 MHz  
fADC = 14 MHz  
fADC = 14 MHz  
fADC = 14 MHz  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
-
-
-
0.214  
3(4)  
Injection trigger conversion  
latency  
(2)  
tlat  
-
1/fADC  
µs  
-
-
0.143  
2(4)  
Regular trigger conversion  
latency  
(2)  
tlatr  
-
0.107  
1.5  
0
-
1/fADC  
µs  
-
17.1  
239.5  
1
(2)  
Sampling time  
Power-up time  
tS  
-
1/fADC  
µs  
(2)  
tSTAB  
0
fADC = 14 MHz  
1
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 3: Pinouts and pin descriptions for further details.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 62.  
Doc ID 16554 Rev 3  
101/120  
 
 
 
 
 
Electrical characteristics  
Equation 1: R  
STM32F103xF, STM32F103xG  
max formula  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 63.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (kΩ)  
1.5  
0.11  
0.4  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)  
Table 64. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
Total unadjusted error  
Offset error  
fPCLK2 = 56 MHz,  
1.3  
1
2
1.5  
1.5  
1
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
0.5  
0.7  
LSB  
Measurements made after  
ADC calibration  
VREF+ = VDDA  
Differential linearity error  
EL  
Integral linearity error  
0.8  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not  
affect the ADC accuracy.  
3. Based on characterisation, not tested in production.  
102/120  
Doc ID 16554 Rev 3  
 
 
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
(1) (2)(3)  
Table 65. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.14 does not  
affect the ADC accuracy.  
4. Preliminary values.  
Figure 55. ADC accuracy characteristics  
VREF+  
VDDA  
4096  
[1LSBIDEAL  
=
(or  
depending on package)]  
4096  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E =Offset Error: deviation between the first actual  
O
(1)  
transition and the first ideal one.  
E =Gain Error: deviation between the last ideal  
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
V
V
DDA  
SSA  
ai14395b  
Doc ID 16554 Rev 3  
103/120  
 
 
Electrical characteristics  
Figure 56. Typical connection diagram using the ADC  
STM32F103xF, STM32F103xG  
V
DD  
STM32F103xx  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
(1)  
AIN  
R
R
ADC  
AINx  
12-bit  
converter  
I
1 µA  
L
C
V
T
parasitic  
V
AIN  
0.6 V  
(1)  
C
ADC  
ai14150c  
1. Refer to Table 62 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 57 or Figure 58,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 57. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F103xx  
V
REF+  
(see note 1)  
1 µF // 10 nF  
V
DDA  
SSA  
1 µF // 10 nF  
V
/V  
REF–  
(see note 1)  
ai14388b  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
104/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Figure 58. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F103xx  
V
/V  
REF+ DDA  
(See note 1)  
1 µF // 10 nF  
V
/V  
REF– SSA  
(See note 1)  
ai14389  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Doc ID 16554 Rev 3  
105/120  
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.20  
DAC electrical specifications  
Table 66. DAC characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
2.4  
-
3.6  
V
VREF+  
VSSA  
Reference supply voltage  
Ground  
2.4  
0
-
-
3.6  
0
V
V
VREF+ must always be below VDDA  
Resistive load vs. VSSA with  
buffer ON  
5
-
-
-
-
kΩ  
kΩ  
(1)  
RLOAD  
Resistive load vs. VDDA with  
buffer ON  
15  
When the buffer is OFF, the Minimum  
resistive load between DAC_OUT  
and VSS to have a 1% accuracy is  
1.5 MΩ  
Impedance output with buffer  
OFF  
(1)  
RO  
-
-
15  
50  
kΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer is  
ON).  
(1)  
CLOAD  
Capacitive load  
-
-
-
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
0.2  
-
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+ = 3.6 V  
DAC_OUT Higher DAC_OUT voltage  
max(1)  
with buffer ON  
and (0x155) and (0xEAB) at VREF+  
2.4 V  
=
-
-
-
-
VDDA – 0.2  
V
mV  
V
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer OFF  
0.5  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
VREF+ –  
10 mV  
max(1)  
with buffer OFF  
DAC DC current  
With no load, worst code (0x0E4) at  
IDDVREF+  
consumption in quiescent  
mode (Standby mode)  
-
-
-
380  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
With no load, middle code (0x800) on  
the inputs  
380  
480  
µA  
DAC DC current  
consumption in quiescent  
mode (Standby mode)  
IDDA  
With no load, worst code (0xF1C) at  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
Given for the DAC in 10-bit  
configuration  
-
-
0.5  
3
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(2)  
Given for the DAC in 12-bit  
configuration  
LSB  
106/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Electrical characteristics  
Comments  
Table 66. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration  
-
-
1
LSB  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(2)  
Given for the DAC in 12-bit  
configuration  
-
-
4
LSB  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
-
-
-
-
10  
3
mV  
LSB  
LSB  
%
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
Given for the DAC in 10-bit at VREF+  
= 3.6 V  
Offset(2)  
Given for the DAC in 12-bit at VREF+  
= 3.6 V  
12  
0.5  
Gain  
Given for the DAC in 12bit  
configuration  
Gain error  
error(2)  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value 1LSB  
(2)  
tSETTLING  
-
-
3
-
4
1
µs  
CLOAD 50 pF, RLOAD 5 kΩ  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(2)  
MS/s CLOAD 50 pF, RLOAD 5 kΩ  
CLOAD 50 pF, RLOAD 5 kΩ  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(2)  
tWAKEUP  
-
-
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. Preliminary values.  
Figure 59. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
LOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
C
LOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
Doc ID 16554 Rev 3  
107/120  
 
 
 
Electrical characteristics  
STM32F103xF, STM32F103xG  
5.3.21  
Temperature sensor characteristics  
Table 67. TS characteristics  
Symbol Parameter  
VSENSE linearity with temperature  
Min  
Typ  
Max  
Unit  
(1)  
TL  
-
4.0  
1.34  
4
1
4.3  
1.43  
-
2
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
(1)  
V25  
Voltage at 25 °C  
Startup time  
(2)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(3)(2)  
TS_temp  
-
-
17.1  
µs  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
108/120  
Doc ID 16554 Rev 3  
 
 
 
 
STM32F103xF, STM32F103xG  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 60. Recommended PCB design rules (0.80/0.75 mm pitch BGA  
Dpad  
0.37 mm  
0.52 mm typ. (depends on solder mask  
registration tolerance  
Dsm  
Solder paste  
0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
ai15469  
Doc ID 16554 Rev 3  
109/120  
 
 
 
Package characteristics  
STM32F103xF, STM32F103xG  
Figure 61. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline  
Seating plane  
C
A2  
A4  
ddd  
C
A
A3  
A1  
B
D
D1  
A
e
F
M
F
E1  
E
e
Øb (144 balls)  
Ball A1  
C
A
B
M
Øeee  
Ø fff  
M
C
X3_ME  
1. Drawing is not to scale.  
Table 68. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
1.70  
0.0669  
0.21  
0.0083  
1.07  
0.27  
0.0421  
0.0106  
0.85  
0.45  
0.0335  
0.0177  
0.3996  
0.35  
9.85  
0.40  
10.00  
8.80  
10.00  
8.80  
0.80  
0.60  
0.10  
0.15  
0.08  
0.0138  
0.3878  
0.0157  
0.3937  
0.3465  
0.3937  
0.3465  
0.0315  
0.0236  
0.0039  
0.0059  
0.0031  
D
10.15  
D1  
E
9.85  
10.15  
0.3878  
0.3996  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
110/120  
Doc ID 16554 Rev 3  
 
 
STM32F103xF, STM32F103xG  
Package characteristics  
Figure 62. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
Figure 63. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
Seating plane  
C
A
A2 A1  
c
b
1.35  
73  
0.25 mm  
108  
gage plane  
ccc  
C
109  
72  
0.35  
D
k
D1  
0.5  
A1  
D3  
L
108  
73  
17.85  
22.6  
L1  
19.9  
72  
109  
144  
37  
E1  
E
1
36  
19.9  
22.6  
E3  
ai149  
144  
37  
Pin 1  
identification  
1
36  
e
ME_1A  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 69. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
0.063  
A
A1  
A2  
b
1.60  
0.15  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
21.80  
19.80  
22.00  
20.00  
17.50  
22.00  
20.00  
17.50  
0.50  
22.20  
20.20  
0.8661  
0.7874  
0.689  
D1  
D3  
E
0.7953  
21.80  
19.80  
22.20  
20.20  
0.8583  
0.7795  
0.8661  
0.7874  
0.689  
0.874  
E1  
E3  
e
0.7953  
0.0197  
0.0236  
0.0394  
3.5°  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 16554 Rev 3  
111/120  
 
 
 
 
Package characteristics  
STM32F103xF, STM32F103xG  
(1)(2)  
Figure 64. LQFP100, 14 x 14 mm 100-pin low-profile  
Figure 65. Recommended footprint  
(1)  
quad flat package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
k
75  
51  
D
L
D1  
76  
50  
L1  
D3  
0.5  
51  
75  
C
76  
50  
0.3  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
100  
26  
1
25  
Pin 1  
identification  
1
25  
ccc  
C
12.3  
16.7  
e
A1  
A2  
A
ai14906b  
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 70. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
15.80  
13.80  
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
16.20  
14.20  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.20  
14.20  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
112/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Package characteristics  
(1)(2)  
Figure 66. LQFP64 – 10 x 10 mm 64 pin low-profile  
Figure 67. Recommended footprint  
(1)  
quad flat package outline  
48  
33  
D
0.3  
ccc  
C
D1  
D3  
49  
32  
0.5  
A
A2  
33  
48  
32  
49  
12.7  
10.3  
b
L1  
E3 E1  
E
10.3  
64  
17  
L
A1  
K
1.2  
64  
1
16  
17  
Pin 1  
identification  
7.8  
1
16  
c
5W_ME  
12.7  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 71. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
12.200  
10.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.4803  
0.4016  
0.050  
1.350  
0.170  
0.090  
11.800  
9.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.4646  
0.3858  
1.400  
0.220  
0.0551  
0.0087  
c
D
12.000  
10.000  
7.500  
12.000  
10.00  
0.500  
3.5°  
0.4724  
0.3937  
D1  
D.  
E
11.800  
9.800  
12.200  
10.200  
0.4646  
0.3858  
0.4724  
0.3937  
0.0197  
3.5°  
0.4803  
0.4016  
E1  
e
k
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.080  
0.75  
0.0177  
0.0236  
0.0394  
0.0031  
0.0295  
L1  
ccc  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 16554 Rev 3  
113/120  
 
 
 
Package characteristics  
STM32F103xF, STM32F103xG  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 10: General operating conditions on page 41.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 72. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LFBGA144 - 10 × 10 mm / 0.8 mm pitch  
40  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
30  
46  
45  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
114/120  
Doc ID 16554 Rev 3  
 
 
 
STM32F103xF, STM32F103xG  
Package characteristics  
6.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 73: STM32F103xF and STM32F103xG ordering  
information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F103xF and STM32F103xG at maximum  
dissipation, it is useful to calculate the exact power consumption and junction temperature to  
determine which temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 72 T  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 73: STM32F103xF and STM32F103xG ordering information scheme).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Doc ID 16554 Rev 3  
115/120  
 
Package characteristics  
Using the values obtained in Table 72 T  
STM32F103xF, STM32F103xG  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Table 73: STM32F103xF and STM32F103xG ordering information scheme).  
Figure 68. LQFP100 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
116/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Part numbering  
7
Part numbering  
Table 73. STM32F103xF and STM32F103xG ordering information scheme  
Example:  
STM32 F103 RF T  
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
103 = performance line  
Pin count  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
F = 768 Kbytes of Flash memory  
G = 1 Mbyte of Flash memory  
Package  
H = BGA  
T = LQFP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 16554 Rev 3  
117/120  
 
 
Revision history  
STM32F103xF, STM32F103xG  
8
Revision history  
Table 74. Document revision history  
Date  
Revision  
Changes  
27-Oct-2009  
1
Initial release.  
LQFP64 package mechanical data updated: see Figure 66: LQFP64 –  
10 x 10 mm 64 pin low-profile quad flat package outline and Table 71:  
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical  
data.  
Internal code removed from Table 73: STM32F103xF and  
STM32F103xG ordering information scheme.  
Updated note 2 below Table 54: I2C characteristics  
Updated Figure 46: I2C bus AC waveforms and measurement circuit  
Updated Figure 45: Recommended NRST pin protection  
Updated note 1 below Table 49: I/O static characteristics  
Updated Table 20: Peripheral current consumption  
Updated Table 14: Maximum current consumption in Run mode, code  
with data processing running from Flash  
15-Nov-2010  
2
Updated Table 15: Maximum current consumption in Run mode, code  
with data processing running from RAM  
Updated Table 16: Maximum current consumption in Sleep mode, code  
running from Flash or RAM  
Updated Table 17: Typical and maximum current consumptions in Stop  
and Standby modes  
Updated Table 18: Typical current consumption in Run mode, code with  
data processing running from Flash  
Updated Table 19: Typical current consumption in Sleep mode, code  
running from Flash or RAM  
Updated Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz)  
Updated Figure 22: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR read waveforms on page 62  
Added Section 5.3.13: I/O current injection characteristics on page 83  
Section 2.3.26: GPIOs (general-purpose inputs/outputs): modified text  
of last sentence.  
Table 5: STM32F103xF and STM32F103xG pin definitions: updated  
pins PD0, PD1, OSC_IN, OSC_OUT, PB8, PB9, and PF8.  
Table 7: Voltage characteristics: Removed the previous footnotes 2 and  
3 and added current footnote 2.  
18-Jan-2012  
3
Table 8: Current characteristics: updated footnotes 3, 4, and 5.  
Table 21: High-speed external user clock characteristics: replaced the  
tw(HSE) min value by 5 (instead of 16).  
Table 24: LSE oscillator characteristics (fLSE = 32.768 kHz): updated  
symbols and footnotes.  
118/120  
Doc ID 16554 Rev 3  
 
STM32F103xF, STM32F103xG  
Table 74. Document revision history  
Revision history  
Date  
Revision  
Changes  
Asynchronous waveforms and timings: added notes about tHCLK clock  
period and FSMC_BusTurnAroundDuration; updated conditions,  
modified Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR  
read timings, Table 32: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR write timings, Table 34: Asynchronous multiplexed  
PSRAM/NOR read timings, and Table 35: Asynchronous multiplexed  
PSRAM/NOR write timings; added Table 33: Asynchronous read  
muxed.  
Synchronous waveforms and timings: updated Figure 27: Synchronous  
multiplexed PSRAM write timings; updated Table 36: Synchronous  
multiplexed NOR/PSRAM read timings, Table 37: Synchronous  
multiplexed PSRAM write timings, Table 38: Synchronous non-  
multiplexed NOR/PSRAM read timings, and Table 39: Synchronous  
non-multiplexed PSRAM write timings.  
PC Card/CompactFlash controller waveforms and timings: updated  
Figure 35: PC Card/CompactFlash controller waveforms for I/O space  
write access; split switching characteristics into Table 40: Switching  
characteristics for PC Card/CF read and write cycles in  
18-Jan-2012  
3
attribute/common space and Table 41: Switching characteristics for PC  
Card/CF read and write cycles in I/O space, modified values, and  
removed footnote concerning preliminary values.  
NAND controller waveforms and timings: updated conditions, split  
switching characteristics into Table 42: Switching characteristics for  
NAND Flash read cycles and Table 43: Switching characteristics for  
NAND Flash write cycles, and values modified.  
Section 5.3.14: I/O port characteristics: updated footnote1 of Table 49:  
I/O static characteristics; updated Output driving current.  
Table 50: Output voltage characteristics: swapped “TTL and “CMOS”  
ports in the conditions column.  
Table 54: I2C characteristics: updated footnote 2.  
Updated Table 58: SD / MMC characteristics.  
Table 62: ADC characteristics: updated footnote 1.  
Table 64: ADC accuracy - limited test conditions: updated footnote 3.  
Table 67: TS characteristics: updated footnote 1.  
Doc ID 16554 Rev 3  
119/120  
STM32F103xF, STM32F103xG  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
120/120  
Doc ID 16554 Rev 3  

相关型号:

STM32F103RG

XL-density performance line ARM-based 32-bit MCU with 768 KB to 1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103RGT6

XL-density performance line ARM-based 32-bit MCU with 768 KB to 1 MB Flash, USB, CAN, 17 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103T4

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H6ATR

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H6AXXX

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H6TR

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H6XXX

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H7ATR

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H7AXXX

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H7TR

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4H7XXX

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR

STM32F103T4T6ATR

Low-density performance line, ARM-based 32-bit MCU with 16 or 32 KB Flash, USB, CAN, 6 timers, 2 ADCs, 6 communication interfaces
STMICROELECTR