STM32F103TBT6XXX [STMICROELECTRONICS]

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces; 中密度高性能线的基于ARM的32位MCU,具有64或128 KB的闪存, USB , CAN ,7个定时器, 2的ADC ,9个通信接口
STM32F103TBT6XXX
型号: STM32F103TBT6XXX
厂家: ST    ST
描述:

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
中密度高性能线的基于ARM的32位MCU,具有64或128 KB的闪存, USB , CAN ,7个定时器, 2的ADC ,9个通信接口

闪存 通信
文件: 总92页 (文件大小:1212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F103x8  
STM32F103xB  
Medium-density performance line ARM-based 32-bit MCU with 64 or  
128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces  
Features  
Core: ARM 32-bit Cortex™-M3 CPU  
– 72 MHz maximum frequency,  
VFQFPN36  
LQFP100 14 × 14 m  
1.25 DMIPS/MHz (Dhrystone 2.1)  
performance at 0 wait state memory  
6 × 6 mm  
LQFP64 10 × 10 m  
LQFP48 7 × 7 m  
access  
– Single-cycle multiplication and hardware  
BGA100 10 × 10 mm  
BGA64 5 × 5 mm  
division  
Memories  
Debug mode  
– 64 or 128 Kbytes of Flash memory  
– Serial wire debug (SWD) & JTAG interfaces  
– 20 Kbytes of SRAM  
7 timers  
Clock, reset and supply management  
– Three 16-bit timers, each with up to 4  
– 2.0 to 3.6 V application supply and I/Os  
IC/OC/PWM or pulse counter and  
– POR, PDR, and programmable voltage  
detector (PVD)  
quadrature (incremental) encoder input  
– 16-bit, motor control PWM timer with dead-  
time generation and emergency stop  
– 4-to-16 MHz crystal oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC  
– 2 watchdog timers (Independent and  
Window)  
– SysTick timer: a 24-bit downcounter  
– PLL for CPU clock  
– 32 kHz oscillator for RTC with calibration  
Up to 9 communication interfaces  
2
– Up to 2 x I C interfaces (SMBus/PMBus)  
Low power  
– Up to 3 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Sleep, Stop and Standby modes  
– V  
supply for RTC and backup registers  
BAT  
– Up to 2 SPIs (18 Mbit/s)  
– CAN interface (2.0B Active)  
– USB 2.0 full-speed interface  
2 x 12-bit, 1 µs A/D converters (up to 16  
channels)  
– Conversion range: 0 to 3.6 V  
– Dual-sample and hold capability  
Temperature sensor  
CRC calculation unit, 96-bit unique ID  
®
Packages are ECOPACK  
DMA  
Table 1.  
Reference  
Device summary  
Part number  
– 7-channel DMA controller  
– Peripherals supported: timers, ADC, SPIs,  
2
I Cs and USARTs  
STM32F103C8, STM32F103R8  
STM32F103V8, STM32F103T8  
STM32F103x8  
STM32F103xB  
Up to 80 fast I/O ports  
STM32F103RB STM32F103VB,  
STM32F103CB  
– 26/37/51/80 I/Os, all mappable on 16  
external interrupt vectors and almost all  
5 V-tolerant  
September 2009  
Doc ID 13587 Rev 11  
1/92  
www.st.com  
1
Contents  
STM32F103x8, STM32F103xB  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
ARM Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 12  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 12  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 12  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 13  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.3.10 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.3.11 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.3.12 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.3.13 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.3.14 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 15  
2.3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
2.3.16 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.17 Universal synchronous/asynchronous receiver transmitter (USART) . . 17  
2.3.18 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.19 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.20 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.21 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.22 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.23 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.24 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Contents  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 36  
Embedded reset and power control block characteristics . . . . . . . . . . . 36  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 56  
5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
5.3.16 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
5.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 83  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Doc ID 13587 Rev 11  
3/92  
Contents  
STM32F103x8, STM32F103xB  
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
4/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F103xx medium-density device features and peripheral counts . . . . . . . . . . . . . . . 10  
STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Medium-density STM32F103xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Maximum current consumption in Run mode, code with data processing  
Table 14.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 41  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 42  
Typical current consumption in Run mode, code with data processing  
Table 15.  
Table 16.  
Table 17.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Typical current consumption in Sleep mode, code running from Flash or  
Table 18.  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
HSE 4-16 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
SCL frequency (f  
= 36 MHz.,V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Doc ID 13587 Rev 11  
5/92  
List of tables  
STM32F103x8, STM32F103xB  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
max for f = 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
R
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . 74  
LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . . . 77  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data . . . . . . . . . . 78  
TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . 79  
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 81  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
6/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F103xx performance line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STM32F103xx performance line LFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32F103xx performance line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM32F103xx performance line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
STM32F103xx performance line TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
STM32F103xx performance line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM32F103xx Performance Line VFQFPN36 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 40  
Figure 15. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 40  
Figure 16. Typical current consumption on V  
with RTC on versus temperature at different  
BAT  
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
BAT  
Figure 17. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DD  
Figure 18. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
DD  
Figure 19. Typical current consumption in Standby mode versus temperature at  
V
= 3.3 V and 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DD  
Figure 20. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 21. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 22. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 23. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
2
Figure 26. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 27. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
(1)  
Figure 28. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
(1)  
Figure 29. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 30. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 31. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 33. Power supply and reference decoupling (V  
Figure 34. Power supply and reference decoupling (V  
Figure 35. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package outline  
not connected to V  
). . . . . . . . . . . . . . 71  
). . . . . . . . . . . . . . . . . 72  
REF+  
DDA  
connected to V  
REF+  
DDA  
(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
(1)(2)(3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Figure 36. Recommended footprint (dimensions in mm)  
Figure 37. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 38. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 39. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 77  
(1)  
Figure 40. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 41. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 78  
Doc ID 13587 Rev 11  
7/92  
List of figures  
STM32F103x8, STM32F103xB  
(1)  
Figure 42. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 43. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . 79  
Figure 44. Recommended PCB design rules for pads (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 80  
Figure 45. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 81  
(1)  
Figure 46. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 47. LQFP100 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
D
A
8/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F103x8 and STM32F103xB medium-density performance line microcontrollers.  
For more details on the whole STMicroelectronics STM32F103xx family, please refer to  
Section 2.2: Full compatibility throughout the family.  
The medium-density STM32F103xx datasheet should be read in conjunction with the low-,  
medium- and high-density STM32F10xxx reference manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
2
Description  
The STM32F103x8 and STM32F103xB performance line family incorporates the high-  
performance ARM Cortex™-M3 32-bit RISC core operating at a 72 MHz frequency, high-  
speed embedded memories (Flash memory up to 128 Kbytes and SRAM up to 20 Kbytes),  
and an extensive range of enhanced I/Os and peripherals connected to two APB buses. All  
devices offer two 12-bit ADCs, three general purpose 16-bit timers plus one PWM timer, as  
2
well as standard and advanced communication interfaces: up to two I Cs and SPIs, three  
USARTs, an USB and a CAN.  
The STM32F103xx medium-density performance line family operates from a 2.0 to 3.6 V  
power supply. It is available in both the –40 to +85 °C temperature range and the –40 to  
+105 °C extended temperature range. A comprehensive set of power-saving mode allows  
the design of low-power applications.  
The STM32F103xx medium-density performance line family includes devices in six different  
package types: from 36 pins to 100 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F103xx medium-density performance line microcontroller  
family suitable for a wide range of applications:  
Motor drive and application control  
Medical and handheld equipment  
PC peripherals gaming and GPS platforms  
Industrial applications: PLC, inverters, printers, and scanners  
Alarm systems, Video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
Doc ID 13587 Rev 11  
9/92  
Description  
STM32F103x8, STM32F103xB  
2.1  
Device overview  
Table 2.  
STM32F103xx medium-density device features and peripheral counts  
STM32F103Tx STM32F103Cx STM32F103Rx  
Peripheral  
STM32F103Vx  
64 128  
Flash - Kbytes  
SRAM - Kbytes  
64  
20  
3
64  
20  
3
128  
20  
3
64  
128  
20  
3
20  
3
General-purpose  
Advanced-control  
1
1
1
1
SPI  
1
2
2
3
1
1
2
2
3
1
1
2
2
I2C  
1
2
2
USART  
USB  
CAN  
2
3
3
1
1
1
1
1
1
GPIOs  
26  
37  
2
51  
80  
12-bit synchronized ADC  
Number of channels  
2
2
2
10 channels  
10 channels  
16 channels  
16 channels  
CPU frequency  
72 MHz  
2.0 to 3.6 V  
Operating voltage  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 9)  
Junction temperature: –40 to + 125 °C (see Table 9)  
Operating temperatures  
Packages  
LQFP64,  
LQFP100,  
LFBGA100  
VFQFPN36  
LQFP48  
TFBGA64  
10/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Description  
2.2  
Full compatibility throughout the family  
The STM32F103xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are  
identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as  
medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are  
referred to as high-density devices.  
Low- and high-density devices are an extension of the STM32F103x8/B devices, they are  
specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-  
density devices feature lower Flash memory and RAM capacities, less timers and  
peripherals. High-density devices have higher Flash memory and RAM capacities, and  
2
additional peripherals like SDIO, FSMC, I S and DAC, while remaining fully compatible with  
the other members of the STM32F103xx family.  
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE  
are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user  
to try different memory densities and providing a greater degree of freedom during the  
development cycle.  
Moreover, the STM32F103xx performance line family is fully compatible with all existing  
STM32F101xx access line and STM32F102xx USB access line devices.  
Table 3.  
STM32F103xx family  
Low-density devices Medium-density devices  
High-density devices  
16 KB  
Flash  
32 KB  
64 KB  
Flash  
128 KB  
Flash  
256 KB  
Flash  
384 KB  
Flash  
512 KB  
Flash  
Pinout  
Flash(1)  
6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM  
144  
100  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Ss, 2 × I2Cs  
3 × USARTs  
USB, CAN, 2 × PWM timers  
3 × ADCs, 2 × DACs, 1 × SDIO  
FSMC (100 and 144 pins)  
3 × 16-bit timers  
2 × USARTs  
64  
2 × SPIs, 2 × I2Cs, USB,  
CAN, 1 × PWM timer  
2 × ADCs  
2 × 16-bit timers  
1 × SPI, 1 × I2C, USB,  
CAN, 1 × PWM timer  
2 × ADCs  
48  
36  
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),  
the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density  
devices.  
Doc ID 13587 Rev 11  
11/92  
Description  
STM32F103x8, STM32F103xB  
2.3  
Overview  
®
2.3.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F103xx performance line family having an embedded ARM core, is therefore  
compatible with all ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
2.3.2  
2.3.3  
Embedded Flash memory  
64 or 128 Kbytes of embedded Flash is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
2.3.4  
2.3.5  
Embedded SRAM  
Twenty Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
Nested vectored interrupt controller (NVIC)  
The STM32F103xx performance line embeds a nested vectored interrupt controller able to  
handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of  
Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
12/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Description  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
2.3.6  
2.3.7  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example on  
failure of an indirectly used external crystal, resonator or oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and  
the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed  
APB domain is 36 MHz. See Figure 2 for details on the clock tree.  
2.3.8  
2.3.9  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1. For further details please refer to AN2606.  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 12: Power supply scheme.  
2.3.10  
Power supply supervisor  
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
Doc ID 13587 Rev 11  
13/92  
Description  
STM32F103x8, STM32F103xB  
, without the need for an  
POR/PDR  
in reset mode when V is below a specified threshold, V  
DD  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
Refer to Table 11: Embedded reset and power control block characteristics for the values of  
and V  
V
.
PVD  
POR/PDR  
2.3.11  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop mode  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode, providing high  
impedance output.  
2.3.12  
Low-power modes  
The STM32F103xx performance line supports three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB  
wakeup.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
14/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Description  
2.3.13  
DMA  
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose and  
advanced-control timers TIMx and ADC.  
2.3.14  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the V  
pin. The backup registers are ten 16-bit  
DD  
BAT  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low-power RC oscillator or the high-speed external clock divided by 128. The  
internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural crystal deviation. The RTC features  
a 32-bit programmable counter for long-term measurement using the Compare register to  
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default  
configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.3.15  
Timers and watchdogs  
The medium-density STM32F103xx performance line devices include an advanced-control  
timer, three general-purpose timers, two watchdog timers and a SysTick timer.  
Table 4 compares the features of the advanced-control and general-purpose timers.  
Table 4.  
Timer  
Timer feature comparison  
Counter Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
Up,  
down,  
Any integer  
between 1  
TIM1  
16-bit  
Yes  
4
Yes  
up/down and 65536  
TIM2,  
TIM3,  
TIM4  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
16-bit  
Yes  
4
No  
Advanced-control timer (TIM1)  
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6  
channels. It has complementary PWM outputs with programmable inserted dead-times. It  
Doc ID 13587 Rev 11  
15/92  
Description  
STM32F103x8, STM32F103xB  
can also be seen as a complete general-purpose timer. The 4 independent channels can be  
used for  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switch driven by these outputs.  
Many features are shared with those of the general-purpose TIM timers which have the  
same architecture. The advanced-control timer can therefore work together with the TIM  
timers via the Timer Link feature for synchronization or event chaining.  
General-purpose timers (TIMx)  
There are up to three synchronizable general-purpose timers embedded in the  
STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload  
up/down counter, a 16-bit prescaler and feature 4 independent channels each for input  
capture/output compare, PWM or one-pulse mode output. This gives up to 12 input  
captures/output compares/PWMs on the largest packages.  
The general-purpose timers can work together with the advanced-control timer via the Timer  
Link feature for synchronization or event chaining. Their counter can be frozen in debug  
mode. Any of the general-purpose timers can be used to generate PWM outputs. They all  
have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently of the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
16/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
SysTick timer  
Description  
This timer is dedicated for OS, but could also be used as a standard downcounter. It  
features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source  
2.3.16  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
2.3.17  
2.3.18  
Universal synchronous/asynchronous receiver transmitter (USART)  
One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The  
other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware  
management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816  
compliant and have LIN Master/Slave capability.  
All USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
Both SPIs can be served by the DMA controller.  
2.3.19  
2.3.20  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Universal serial bus (USB)  
The STM32F103xx performance line embeds a USB device peripheral compatible with the  
USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function  
interface. It has software-configurable endpoint setting and suspend/resume support. The  
dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use  
a HSE crystal oscillator).  
Doc ID 13587 Rev 11  
17/92  
Description  
STM32F103x8, STM32F103xB  
2.3.21  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
I/Os on APB2 with up to 18 MHz toggling speed  
2.3.22  
ADC (analog-to-digital converter)  
Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line  
devices and each ADC shares up to 16 external channels, performing conversions in single-  
shot or scan modes. In scan mode, automatic conversion is performed on a selected group  
of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single shunt  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) and the advanced-control timer  
(TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA  
trigger respectively, to allow the application to synchronize A/D conversion and timers.  
2.3.23  
2.3.24  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V  
connected to the ADC12_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
< 3.6 V. The temperature sensor is internally  
DDA  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
18/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Figure 1. STM32F103xx performance line block diagram  
Description  
TRACECLK  
TRACED[0:3]  
as AS  
Trace  
Controlle r  
TPIU  
pbu s  
POWER  
Trace/trig  
SW/JTAG  
V
= 2 to 3.6V  
NJTRST  
JTDI  
JTCK/SWCLK  
DD  
VOLT. REG.  
3.3V TO 1.8V  
VSS  
Ibus  
Cortex-M3 CPU  
Flash 128 KB  
64 bit  
JTMS/SWDIO  
@VDD  
JTDO  
as AF  
Fmax: 7 2M Hz  
Dbus  
SRAM  
20 KB  
Syst em  
NVIC  
@VDD  
OSC_IN  
OSC_OUT  
PCLK1  
PCLK2  
HCLK  
FCLK  
PLL &  
XTAL OSC  
4-16 MHz  
GP DMA  
CLOCK  
7 channels  
MANAGT  
RC 8 MHz  
RC 40 kHz  
@VDDA  
IWDG  
@VDDA  
Stand by  
interface  
SUPPLY  
SUPERVISION  
VBAT  
NRST  
@VBAT  
VDDA  
VSSA  
Rst  
POR / PDR  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
Backup  
AHB2  
APB2  
AHB2  
APB1  
Int  
PVD  
RTC  
AWU  
TAMPER-RTC  
reg  
EXTI  
WAKEUP  
80AF  
Backu p interface  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
PE[15:0]  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
4 Channels  
4 Channels  
TIM2  
TIM3  
TIM 4  
4 Channels  
RX,TX, CTS, RTS,  
CK, SmartCard as AF  
USART2  
USART3  
RX,TX, CTS, RTS,  
CK, SmartCard as AF  
MOSI,MISO,SCK,NSS  
as AF  
SPI2  
4 Channels  
3 compl. Channels  
ETR and BKIN  
TIM1  
SPI1  
I2C1  
I2C2  
SCL,SDA,SMBA  
as AF  
MOSI,MISO,  
SCK,NSS as AF  
SCL,SDA  
as AF  
RX,TX, CTS, RTS,  
Smart Card as AF  
USART1  
bxCAN  
USBDP/CAN_TX  
USBDM/CAN_RX  
@VDDA  
USB 2.0 FS  
16AF  
12bit ADC1  
12bit ADC2  
IF  
IF  
VREF+  
SRAM 512B  
VREF-  
W W D G  
Temp sensor  
ai14390d  
1. TA = –40 °C to +105 °C (junction temperature up to 125 °C).  
2. AF = alternate function on I/O port pin.  
Doc ID 13587 Rev 11  
19/92  
Description  
STM32F103x8, STM32F103xB  
Figure 2.  
Clock tree  
8 MHz  
HSI RC  
HSI  
USBCLK  
48 MHz  
USB  
Prescaler  
/1, 1.5  
to USB interface  
/2  
HCLK  
72 MHz max  
to AHB bus, core,  
memory and DMA  
Clock  
Enable (3 bits)  
to Cortex System timer  
/8  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
Prescaler  
/1, 2..512  
APB1  
Prescaler  
/1, 2, 4, 8, 16  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
PLLCLK  
HSE  
72 MHz  
max  
to APB1  
peripherals  
Peripheral Clock  
Enable (13 bits)  
to TIM2, 3  
and 4  
TIMXCLK  
TIM2,3, 4  
If (APB1 prescaler =1) x1  
else x2  
CSS  
Peripheral Clock  
Enable (3 bits)  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
72 MHz max  
PCLK2  
to APB2  
OSC_OUT  
peripherals  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (11 bits)  
OSC_IN  
TIM1 timer  
If (APB2 prescaler =1) x1  
else x2  
to TIM1  
TIM1CLK  
Peripheral Clock  
Enable (1 bit)  
to ADC  
/128  
LSE  
ADC  
Prescaler  
/2, 4, 6, 8  
OSC32_IN  
to RTC  
LSE OSC  
ADCCLK  
RTCCLK  
32.768 kHz  
OSC32_OUT  
RTCSEL[1:0]  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
HSE = high-speed external clock signal  
HSI = high-speed internal clock signal  
LSI = low-speed internal clock signal  
LSE = low-speed external clock signal  
Main  
Clock Output  
/2  
PLLCLK  
MCO  
HSI  
HSE  
SYSCLK  
MCO  
ai14903  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
64 MHz.  
2. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either  
48 MHz or 72 MHz.  
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.  
20/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Pinouts and pin description  
3
Pinouts and pin description  
Figure 3.  
STM32F103xx performance line LFBGA100 ballout  
1
2
3
4
5
6
7
8
9
10  
PC14-  
OSC32_IN  
PC13-  
TAMPER-RTC  
A
B
C
D
E
F
PE2  
PE3  
PE4  
PE5  
PE6  
PC3  
PA4  
PA5  
PA6  
PA7  
PB9  
PB8  
PE1  
PE0  
PB7  
PB4  
PD5  
PD6  
PD7  
PB3  
PD2  
PD3  
PD4  
PA15  
PC11  
PC12  
PD0  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PA10  
PC7  
PC15-  
OSC32_OUT  
V
PB6  
BAT  
OSC_IN  
OSC_OUT  
NRST  
V
V
PB5  
SS_5  
BOOT0  
PA8  
DD_5  
V
V
V
V
PD1  
PC2  
PC9  
PC8  
PD11  
PD10  
PD9  
PD8  
SS_4  
SS_3  
SS_2  
SS_1  
V
V
V
V
NC  
PC0  
PC1  
PA0-WKUP  
PA1  
PC6  
DD_4  
DD_3  
DD_2  
DD_1  
G
H
J
V
PB2  
PE7  
PE8  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
PB15  
PB14  
PC4  
PD15  
PD14  
PD13  
PD12  
SSA  
V
PC5  
PB0  
PB1  
REF–  
V
PA2  
PB13  
PB12  
REF+  
K
V
PA3  
DDA  
AI16001c  
Doc ID 13587 Rev 11  
21/92  
Pinouts and pin description  
STM32F103x8, STM32F103xB  
Figure 4. STM32F103xx performance line LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14391  
22/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Pinouts and pin description  
Figure 5. STM32F103xx performance line LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14392  
Doc ID 13587 Rev 11  
23/92  
Pinouts and pin description  
STM32F103x8, STM32F103xB  
Figure 6.  
STM32F103xx performance line TFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
OSC32_IN  
PC13-  
TAMPER-RTC  
A
B
PB9  
PB8  
PB7  
PB6  
PB4  
BOOT0  
PB5  
PB3  
PD2  
PA15  
PC11  
PA10  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
PC15-  
OSC32_OUT  
V
BAT  
C
D
E
F
OSC_IN  
V
PC12  
SS_4  
OSC_OUT  
NRST  
V
V
V
V
PA8  
DD_4  
SS_3  
SS_2  
SS_1  
PC1  
PC2  
PC0  
PA2  
V
V
V
PC7  
PC8  
DD_3  
DD_2  
DD_1  
PC6  
V
PA5  
PB0  
PB15  
PB14  
SSA  
V
REF+  
G
H
PA0-WKUP  
PA1  
PA3  
PA4  
PA6  
PA7  
PB1  
PC4  
PB2  
PC5  
PB10  
PB11  
PB13  
PB12  
V
DDA  
AI15494  
24/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Pinouts and pin description  
Figure 7. STM32F103xx performance line LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
1
2
3
4
5
6
7
8
9
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0-OSC_IN  
PD1-OSC_OUT  
NRST  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai14393b  
Figure 8.  
STM32F103xx Performance Line VFQFPN36 pinout  
36 35 34  
33 32 31 30 29 28  
27  
VDD_3  
OSC_IN/PD0  
OSC_OUT/PD1  
NRST  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
1
2
3
4
5
6
7
8
9
26  
25  
24  
QFN36  
VSSA  
23  
22  
VDDA  
PA0-WKUP  
PA1  
21  
20  
PA8  
PA2  
VDD_1  
19  
10 11 12 13  
14 15 16 17  
18  
ai14654  
Doc ID 13587 Rev 11  
25/92  
Pinouts and pin description  
STM32F103x8, STM32F103xB  
Alternate functions(4)  
Table 5.  
Medium-density STM32F103xx pin definitions  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
A3  
B3  
C3  
D3  
E3  
B2  
-
-
-
-
1
2
3
4
5
6
-
-
-
-
-
-
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
-
-
-
-
-
-
1
B2  
1
PC13-TAMPER-  
RTC(5)  
A2  
A1  
B1  
2
3
4
A2  
A1  
B1  
2
3
4
7
8
9
-
-
-
I/O  
PC13(6)  
PC14(6)  
PC15(6)  
TAMPER-RTC  
OSC32_IN  
PC14-OSC32_IN(5) I/O  
PC15-  
I/O  
OSC32_OUT  
OSC32_OUT(5)  
C2  
D2  
C1  
D1  
E1  
F1  
F2  
E2  
F3  
G1  
H1  
J1  
-
-
-
-
10  
11  
12  
13  
14  
15  
16  
-
-
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
S
S
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
-
-
5
6
7
-
C1  
D1  
E1  
E3  
E2  
5
6
7
8
9
2
3
4
-
I
O
I/O  
I/O  
I/O  
I/O  
I/O  
S
ADC12_IN10  
ADC12_IN11  
ADC12_IN12  
ADC12_IN13  
-
-
PC1  
PC1  
-
F2 10 17  
-
PC2  
PC2  
(7)  
-
-
11 18  
-
PC3  
PC3  
8
-
F1 12 19  
5
-
VSSA  
VSSA  
-
-
-
20  
21  
VREF-  
VREF+  
VDDA  
S
VREF-  
VREF+  
VDDA  
-
G1(7)  
-
S
K1  
9
H1 13 22  
6
S
WKUP/  
USART2_CTS(8)  
ADC12_IN0/  
/
G2 10 G2 14 23  
7
PA0-WKUP  
I/O  
PA0  
TIM2_CH1_ETR(8)  
USART2_RTS(8)  
ADC12_IN1/  
/
H2 11 H2 15 24  
J2 12 F3 16 25  
8
9
PA1  
PA2  
I/O  
I/O  
PA1  
PA2  
TIM2_CH2(8)  
USART2_TX(8)  
ADC12_IN2/  
TIM2_CH3(8)  
/
26/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Pinouts and pin description  
Alternate functions(4)  
Table 5.  
Medium-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
USART2_RX(8)  
ADC12_IN3/  
TIM2_CH4(8)  
/
/
K2 13 G3 17 26 10  
PA3  
I/O  
PA3  
E4  
F4  
-
-
C2 18 27  
D2 19 28  
-
-
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS(8)  
/
G3 14 H3 20 29 11  
H3 15 F4 21 30 12  
J3 16 G4 22 31 13  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
USART2_CK(8)  
ADC12_IN4  
SPI1_SCK(8)  
ADC12_IN5  
/
SPI1_MISO(8)  
ADC12_IN6/  
TIM3_CH1(8)  
/
/
TIM1_BKIN  
TIM1_CH1N  
SPI1_MOSI(8)  
ADC12_IN7/  
TIM3_CH2(8)  
K3 17 H4 23 32 14  
PA7  
I/O  
PA7  
G4  
H4  
-
-
H5 24 33  
H6 25 34  
PC4  
PC5  
I/O  
I/O  
PC4  
PC5  
ADC12_IN14  
ADC12_IN15  
ADC12_IN8/  
TIM3_CH3(8)  
J4 18 F5 26 35 15  
PB0  
PB1  
I/O  
I/O  
PB0  
PB1  
TIM1_CH2N  
TIM1_CH3N  
ADC12_IN9/  
TIM3_CH4(8)  
K4 19 G5 27 36 16  
G5 20 G6 28 37 17  
PB2  
PE7  
I/O FT PB2/BOOT1  
H5  
J5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
38  
39  
40  
41  
42  
43  
44  
45  
46  
-
-
-
-
-
-
-
-
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE7  
PE8  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
PE8  
K5  
G6  
H6  
J6  
PE9  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
K6  
G7  
H7  
I2C2_SCL/  
J7 21 G7 29 47  
K7 22 H7 30 48  
-
-
PB10  
I/O FT  
PB10  
TIM2_CH3  
TIM2_CH4  
USART3_TX(8)  
I2C2_SDA/  
PB11  
VSS_1  
I/O FT  
S
PB11  
VSS_1  
USART3_RX(8)  
E7 23 D6 31 49 18  
Doc ID 13587 Rev 11  
27/92  
Pinouts and pin description  
STM32F103x8, STM32F103xB  
Alternate functions(4)  
Table 5.  
Medium-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
F7 24 E6 32 50 19  
VDD_1  
PB12  
S
VDD_1  
PB12  
SPI2_NSS/  
I2C2_SMBAl/  
USART3_CK(8)  
TIM1_BKIN(8)  
K8 25 H8 33 51  
-
-
I/O FT  
/
SPI2_SCK/  
J8 26 G8 34 52  
PB13  
I/O FT  
PB13  
USART3_CTS(8)  
TIM1_CH1N (8)  
/
SPI2_MISO/  
H8 27 F8 35 53  
G8 28 F7 36 54  
-
-
PB14  
PB15  
I/O FT  
I/O FT  
PB14  
PB15  
USART3_RTS(8)  
TIM1_CH2N (8)  
SPI2_MOSI/  
TIM1_CH3N(8)  
K9  
J9  
-
-
-
-
-
-
-
-
-
-
-
-
55  
56  
57  
58  
-
-
-
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
H9  
G9  
PD10  
PD11  
PD10  
PD11  
TIM4_CH1 /  
USART3_RTS  
K10  
-
-
-
59  
-
PD12  
I/O FT  
PD12  
J10  
H10  
G10  
F10  
E10  
F9  
-
-
-
-
-
-
-
-
-
-
60  
61  
62  
-
-
-
-
-
-
-
PD13  
PD14  
PD15  
PC6  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD13  
PD14  
PD15  
PC6  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
F6 37 63  
E7 38 64  
E8 39 65  
D8 40 66  
PC7  
PC7  
PC8  
PC8  
E9  
-
PC9  
PC9  
USART1_CK/  
D9 29 D7 41 67 20  
C9 30 C7 42 68 21  
D10 31 C6 43 69 22  
PA8  
PA9  
I/O FT  
I/O FT  
I/O FT  
PA8  
PA9  
TIM1_CH1(8)/MCO  
USART1_TX(8)  
TIM1_CH2(8)  
/
USART1_RX(8)  
TIM1_CH3(8)  
/
PA10  
PA10  
USART1_CTS/  
CANRX(8)/ USBDM  
TIM1_CH4(8)  
C10 32 C8 44 70 23  
B10 33 B8 45 71 24  
PA11  
PA12  
I/O FT  
I/O FT  
PA11  
PA12  
USART1_RTS/  
CANTX(8) //USBDP  
TIM1_ETR(8)  
28/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Pinouts and pin description  
Alternate functions(4)  
Table 5.  
Medium-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
A10 34 A8 46 72 25  
F8 73  
PA13  
I/O FT JTMS/SWDIO  
Not connected  
PA13  
-
-
-
-
E6 35 D5 47 74 26  
F6 36 E5 48 75 27  
A9 37 A7 49 76 28  
VSS_2  
VDD_2  
PA14  
S
S
VSS_2  
VDD_2  
I/O FT JTCK/SWCLK  
PA14  
TIM2_CH1_ETR/  
PA15 /SPI1_NSS  
A8 38 A6 50 77 29  
PA15  
I/O FT  
JTDI  
B9  
B8  
C8  
D8  
E8  
B7  
C7  
D7  
B6  
C6  
D6  
-
-
B7 51 78  
B6 52 79  
C5 53 80  
PC10  
PC11  
PC12  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
USART3_TX  
USART3_RX  
USART3_CK  
CANRX  
-
5
6
C1  
D1  
5
6
81  
82  
2
3
-
I/O FT OSC_IN(9)  
I/O FT OSC_OUT(9)  
CANTX  
B5 54 83  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
TIM3_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
84  
85  
86  
87  
88  
-
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
-
-
-
-
TIM2_CH2 / PB3  
TRACESWO  
SPI1_SCK  
A7 39 A5 55 89 30  
A6 40 A4 56 90 31  
PB3  
PB4  
I/O FT  
I/O FT  
JTDO  
TIM3_CH1/ PB4/  
SPI1_MISO  
JNTRST  
TIM3_CH2 /  
SPI1_MOSI  
C5 41 C4 57 91 32  
B5 42 D3 58 92 33  
PB5  
PB6  
I/O  
PB5  
PB6  
I2C1_SMBAl  
I2C1_SCL(8)  
TIM4_CH1(8)  
/
I/O FT  
USART1_TX  
USART1_RX  
I2C1_SDA(8)  
TIM4_CH2(8)  
/
A5 43 C3 59 93 34  
D5 44 B4 60 94 35  
PB7  
BOOT0  
PB8  
I/O FT  
I
PB7  
BOOT0  
PB8  
I2C1_SCL /  
CANRX  
B4 45 B3 61 95  
A4 46 A3 62 96  
-
-
I/O FT  
TIM4_CH3(8)  
TIM4_CH4(8)  
I2C1_SDA/  
CANTX  
PB9  
I/O FT  
PB9  
Doc ID 13587 Rev 11  
29/92  
Pinouts and pin description  
STM32F103x8, STM32F103xB  
Alternate functions(4)  
Table 5.  
Medium-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
D4  
C4  
-
-
-
-
-
97  
98  
-
-
PE0  
PE1  
I/O FT  
I/O FT  
S
PE0  
PE1  
TIM4_ETR  
-
E5 47 D4 63 99 36  
F5 48 E4 64 100  
VSS_3  
VDD_3  
VSS_3  
VDD_3  
1
S
1. I = input, O = output, S = supply.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1  
and USART1 & USART2, respectively. Refer to Table 2 on page 10.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum  
load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The VREF+ functionality is provided instead.  
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
9. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48 and LQFP64 packages, and C1 and C2 in the  
TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be  
remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no  
need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the  
STM32F10xxx reference manual.  
The use of PD0 and PD1 in output mode is limited as they can only be used at 50 MHz in output mode.  
30/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Memory mapping  
4
Memory mapping  
The memory map is shown in Figure 9.  
Figure 9.  
Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
0xE010 0000  
0x6000 0000  
0xFFFF FFFF  
reserved  
reserved  
CRC  
0x4002 3400  
0x4002 3000  
7
reserved  
0x4002 2400  
0x4002 2000  
0x4002 1400  
0x4002 1000  
0xE010 0000  
Cortex-M3 Internal  
Peripherals  
Flash Interface  
reserved  
0xE000 0000  
RCC  
reserved  
6
0x4002 0400  
0x4002 0000  
DMA  
reserved  
0xC000 0000  
0x4001 3C00  
0x4001 3800  
0x4001 3400  
USART1  
reserved  
SPI1  
5
0x4001 3000  
0x4001 2C00  
0x4001 2800  
0x4001 2400  
TIM1  
0xA000 0000  
ADC2  
ADC1  
reserved  
Port E  
0x4001 1C00  
0x4001 1800  
0x4001 1400  
0x4001 1000  
0x1FFF FFFF  
0x1FFF F80F  
4
reserved  
Port D  
Port C  
0x8000 0000  
Option Bytes  
0x1FFF F800  
Port B  
Port A  
EXTI  
0x4001 0C00  
0x4001 0800  
3
System memory  
0x4001 0400  
0x4001 0000  
0x1FFF F000  
AFIO  
0x6000 0000  
reserved  
0x4000 7400  
0x4000 7000  
0x4000 6C00  
PWR  
BKP  
2
reserved  
bxCAN  
reserved  
0x4000 6800  
0x4000 6400  
Peripherals  
0x4000 0000  
shared 512 byte  
USB/CAN SRAM  
0x4000 6000  
0x4000 5C00  
0x4000 5800  
USB Registers  
1
I2C2  
I2C1  
0x4000 5400  
0x4000 4C00  
SRAM  
0x2000 0000  
reserved  
USART3  
0x0801 FFFF  
0x4000 4800  
0x4000 4400  
0x4000 3C00  
USART2  
0
Flash memory  
reserved  
SPI2  
0x4000 3800  
0x0800 0000  
0x0000 0000  
0x0000 0000  
reserved  
IWDG  
Aliased to Flash or system  
memory depending on  
BOOT pins  
0x4000 3400  
0x4000 3000  
0x4000 2C00  
0x4000 2800  
0x4000 0C00  
0x4000 0800  
WWDG  
RTC  
reserved  
TIM4  
Reserved  
TIM3  
TIM2  
0x4000 0400  
0x4000 0000  
ai14394f  
Doc ID 13587 Rev 11  
31/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
32/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
STM32F103xx pin  
STM32F103xx pin  
C = 50 pF  
V
IN  
ai14141  
ai14142  
5.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wake-up logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 4.7 µF  
V
SS  
1/2/3/4/5  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai14125d  
Caution:  
In Figure 12, the 4.7 µF capacitor must be connected to V  
.
DD3  
Doc ID 13587 Rev 11  
33/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.1.7  
Current consumption measurement  
Figure 13. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,  
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 6.  
Symbol  
Voltage characteristics  
Ratings  
External main supply voltage (including VDDA  
Min  
Max  
Unit  
VDD–VSS  
–0.3  
4.0  
(1)  
and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
+5.5  
VDD+0.3  
50  
VIN  
|VDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
mV  
|VSSX VSS  
|
50  
see Section 5.3.11:  
Absolute maximum ratings  
(electrical sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 7: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN> VINmax while a negative injection is  
induced by VIN < VSS  
.
34/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 7.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
25  
5
IIO  
mA  
(2)(3)  
IINJ(PIN)  
Injected current on HSE OSC_IN and LSE OSC_IN pins  
Injected current on any other pin(4)  
5
5
(2)  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.17: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 8.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 9.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
72  
36  
72  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
V
(2)  
Analog operating voltage  
(ADC used)  
2.4  
1.8  
3.6  
3.6  
VBAT  
Backup operating voltage  
Doc ID 13587 Rev 11  
35/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Table 9.  
Symbol  
General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
LFBGA100  
454  
434  
308  
444  
363  
1110  
85  
LQFP100  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(3)  
TFBGA64  
PD  
mW  
LQFP64  
LQFP48  
VFQFPN36  
Maximum power dissipation  
Low power dissipation(4)  
Maximum power dissipation  
Low power dissipation(4)  
6 suffix version  
7 suffix version  
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Junction temperature range  
1. When the ADC is used, refer to Table 45: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 82).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 82).  
5.3.2  
5.3.3  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 10. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
VDD fall time rate  
0
tVDD  
µs/V  
20  
Embedded reset and power control block characteristics  
The parameters given in Table 11 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
36/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 11. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1  
2
2.18 2.26  
2.08 2.16  
V
V
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
2.66 2.78  
2.56 2.68  
2.76 2.88  
2.66 2.78  
100  
2.9  
2.8  
3
V
V
V
2.9  
V
(2)  
VPVDhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92  
40  
2.0  
V
(2)  
VPDRhyst  
PDR hysteresis  
mV  
ms  
(2)  
TRSTTEMPO  
Reset temporization  
1
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
Doc ID 13587 Rev 11  
37/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.3.4  
Embedded reference voltage  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Table 12. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
–40 °C < TA < +105 °C 1.16 1.20  
1.26  
1.24  
V
V
VREFINT Internal reference voltage  
–40 °C < TA < +85 °C  
1.16 1.20  
5.1  
ADC sampling time when  
reading the internal reference  
voltage  
(1)  
17.1(2)  
10  
TS_vrefint  
µs  
Internal reference voltage  
spread over the temperature  
range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
mV  
(2)  
TCoeff  
Temperature coefficient  
100 ppm/°C  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 13: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/2, f  
= f  
PCLK1  
HCLK  
PCLK2 HCLK  
The parameters given in Table 13, Table 14 and Table 15 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 9.  
DD  
38/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 13. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
50  
50.3  
36.2  
28.7  
20.1  
14.9  
8.9  
36.1  
28.6  
19.9  
14.7  
8.6  
External clock(2), all  
peripherals enabled  
Supplycurrent in  
Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
32.8  
24.4  
19.8  
13.9  
10.7  
6.8  
32.9  
24.5  
19.9  
14.2  
11  
External clock(2), all  
peripherals disabled  
7.1  
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 14. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
TA = 105 °C  
72 MHz  
48  
31.5  
24  
50  
32  
25.5  
18  
13  
8
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
External clock(2), all  
peripherals enabled  
17.5  
12.5  
7.5  
Supply  
IDD  
current in  
Run mode  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
29  
29.5  
21  
16.5  
12  
9
20.5  
16  
External clock(2), all  
peripherals disabled  
11.5  
8.5  
5.5  
6
1. Based on characterization, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 13587 Rev 11  
39/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
45  
40  
35  
30  
72 MHz  
25  
36 MHz  
16 MHz  
8 MHz  
20  
15  
10  
5
0
-40  
0
25  
70  
85  
105  
Temperature (°C)  
Figure 15. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
30  
25  
20  
72 MHz  
36 MHz  
15  
16 MHz  
8 MHz  
10  
5
0
-40  
0
25  
70  
85  
105  
Temperature (°C)  
40/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 15. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
30  
20  
15.5  
11.5  
8.5  
5.5  
7.5  
6
32  
20.5  
16  
12  
9
External clock(2), all  
peripherals enabled  
6
Supply current in  
Sleep mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
8
6.5  
5.5  
5
External clock(2), all  
peripherals disabled  
5
4.5  
4
4.5  
4
3
1. based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 13587 Rev 11  
41/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Table 16. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol Parameter  
Conditions  
Unit  
VDD/VBAT VDD/VBAT VDD/VBAT TA = TA =  
= 2.0 V  
= 2.4 V  
= 3.3 V 85 °C 105 °C  
Regulator in Run mode, low-speed  
and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
-
23.5  
24  
14  
200  
180  
370  
340  
Supplycurrent  
in Stop mode  
Regulator in Low Power mode, low-  
speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
-
13.5  
IDD  
Low-speed internal RC oscillator and  
independent watchdog ON  
-
-
2.6  
2.4  
3.4  
3.2  
-
-
-
-
µA  
Supplycurrent Low-speed internal RC oscillator  
in Standby  
mode  
ON, independent watchdog OFF  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-  
speed oscillator and RTC OFF  
-
1.7  
1.1  
2
4
5
Backup  
IDD_VBAT domainsupply Low-speed oscillator and RTC ON  
current  
0.9  
1.4  
1.9(2)  
2.2  
1. Typical values are measured at TA = 25 °C.  
2. Based on characterization, not tested in production.  
Figure 16. Typical current consumption on V  
with RTC on versus temperature at different  
BAT  
V
values  
BAT  
2.5  
2
2 V  
1.5  
1
2.4 V  
3 V  
0.5  
0
3.6 V  
–40 °C  
25 °C  
70 °C  
85 °C  
105 °C  
Temperature (°C)  
ai17351  
42/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Figure 17. Typical current consumption in Stop mode with regulator in Run mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
300  
250  
200  
150  
100  
50  
3.3 V  
3.6 V  
0
-45  
25  
70  
90  
110  
Temperature (°C)  
Figure 18. Typical current consumption in Stop mode with regulator in Low-power mode versus  
temperature at V = 3.3 V and 3.6 V  
DD  
300  
250  
200  
150  
100  
50  
3.3 V  
3.6 V  
0
-40  
0
25  
70  
85  
105  
Temperature (°C)  
Doc ID 13587 Rev 11  
43/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Figure 19. Typical current consumption in Standby mode versus temperature at  
V
= 3.3 V and 3.6 V  
DD  
4.5  
4
3.5  
3
2.5  
2
3.3 V  
3.6 V  
1.5  
1
0.5  
0
–45 °C  
25 °C  
85 °C  
105 °C  
Temperature (°C)  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash access time is adjusted to f frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
wait state from 24 to 48 MHz and 2 wait states above).  
Ambient temperature and V supply voltage conditions summarized in Table 9.  
DD  
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/4, f  
2 = f  
/2, f  
=
PCLK1  
HCLK  
PCLK  
HCLK  
ADCCLK  
f
/4  
PCLK2  
44/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 17. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
36  
24.2  
19  
27  
18.6  
14.8  
10.1  
7.4  
12.9  
9.3  
External clock(3)  
5.5  
4.6  
mA  
4 MHz  
3.3  
2.8  
2 MHz  
2.2  
1.9  
1 MHz  
1.6  
1.45  
1.25  
1.06  
23.9  
17.9  
14.1  
9.5  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.3  
Supply  
1.08  
31.4  
23.5  
18.3  
12.2  
8.5  
IDD  
current in  
Run mode  
Running on high  
speed internal RC  
(HSI), AHB  
prescaler used to  
reduce the  
6.8  
4.9  
4
mA  
4 MHz  
2.7  
2.2  
frequency  
2 MHz  
1.6  
1.4  
1 MHz  
1.02  
0.73  
0.5  
0.9  
500 kHz  
125 kHz  
0.67  
0.48  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 13587 Rev 11  
45/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Table 18. Typical current consumption in Sleep mode, code running from Flash or  
RAM  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
14.4  
9.9  
5.5  
3.9  
7.6  
3.1  
5.3  
2.3  
3.8  
1.8  
External clock(3)  
2.1  
1.2  
4 MHz  
1.6  
1.1  
2 MHz  
1.3  
1
1 MHz  
1.11  
1.04  
0.98  
12.3  
9.3  
0.98  
0.96  
0.95  
4.4  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
Supply  
IDD  
current in  
mA  
Sleep mode  
3.3  
7
2.5  
4.8  
1.8  
Running on high  
speed internal RC  
3.2  
1.2  
(HSI), AHB prescaler 8 MHz  
1.6  
0.6  
used to reduce the  
frequency  
4 MHz  
1
0.5  
2 MHz  
0.72  
0.56  
0.49  
0.43  
0.47  
0.44  
0.42  
0.41  
1 MHz  
500 kHz  
125 kHz  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
46/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 6  
(1)  
Table 19. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C  
Unit  
TIM2  
TIM3  
TIM4  
SPI2  
1.2  
1.2  
0.9  
0.2  
USART2  
0.35  
0.35  
0.39  
0.39  
0.65  
0.72  
0.47  
0.47  
0.47  
0.47  
0.47  
1.81  
1.78  
1.6  
APB1  
mA  
USART3  
I2C1  
I2C2  
USB  
CAN  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
APB2  
mA  
ADC1(2)  
ADC2  
TIM1  
SPI1  
0.43  
0.85  
USART1  
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit  
in the ADC_CR2 register is set to 1.  
Doc ID 13587 Rev 11  
47/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 20 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 9.  
Table 20. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
25  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
45  
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
5
pF  
%
DuCy(HSE) Duty cycle  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
The characteristics given in Table 21 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 9.  
Table 21. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
tw(LSE)  
tw(LSE)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
ns  
tr(LSE)  
tf(LSE)  
50  
Cin(LSE) OSC32_IN input capacitance(1)  
5
pF  
%
DuCy(LSE) Duty cycle  
30  
70  
1
OSC32_IN Input leakage  
current  
IL  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
48/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Figure 20. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC _IN  
STM32F103xx  
ai14143  
Figure 21. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC32_IN  
STM32F103xx  
ai14144b  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 22. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Doc ID 13587 Rev 11  
49/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
(1) (2)  
Table 22. HSE 4-16 MHz oscillator characteristics  
Symbol Parameter Conditions  
fOSC_IN Oscillator frequency  
Min  
Typ  
Max Unit  
4
8
16  
MHz  
RF  
Feedback resistor  
200  
k  
Recommended load capacitance  
versus equivalent serial  
C
RS = 30  
30  
pF  
resistance of the crystal (RS)(3)  
VDD = 3.3 V, VIN = VSS  
with 30 pF load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
startup time  
Startup  
25  
mA/V  
ms  
(4)  
tSU(HSE  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 22). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Figure 22. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F103xx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14145  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
50/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
(1)  
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
M  
Recommended load capacitance  
versus equivalent serial  
C(2)  
RS = 30 k  
15  
pF  
resistance of the crystal (RS)(3)  
I2  
LSE driving current  
Oscillator Transconductance  
startup time  
VDD = 3.3 V, VIN = VSS  
1.4  
µA  
µA/V  
s
gm  
5
(4)  
tSU(LSE)  
VDD is stabilized  
3
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768  
kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Note:  
For C and C it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator. C and C are  
L1  
L2,  
usually the same size. The crystal manufacturer typically specifies a load capacitance which  
is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
L
stray  
then C = C = 8 pF.  
L1  
L2  
Figure 23. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32F103xx  
OSC32_OUT  
C
L2  
ai14146  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 24 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Doc ID 13587 Rev 11  
51/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
High-speed internal (HSI) RC oscillator  
(1)  
Table 24. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
8
MHz  
User-trimmed with the RCC_CR  
register(2)  
1(3)  
%
TA = –40 to 105 °C  
–2  
2.5  
2.2  
2
%
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
TA = –10 to 85 °C  
Factory-  
–1.5  
–1.3  
–1.1  
calibrated(4)  
TA = 0 to 70 °C  
TA = 25 °C  
1.8  
HSI oscillator  
startup time  
(4)  
tsu(HSI)  
1
2
µs  
HSI oscillator power  
consumption  
(4)  
IDD(HSI)  
80  
100  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from  
the ST website www.st.com.  
3. Guaranteed by design, not tested in production.  
4. Based on characterization, not tested in production.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 25. LSI oscillator characteristics  
Symbol  
Parameter  
Typ  
Max  
Unit  
Min  
(2)  
fLSI  
Frequency  
30  
40  
60  
85  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
0.65  
1.2  
µA  
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 9.  
52/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 26. Low-power mode wakeup timings  
Symbol Parameter  
Typ  
Unit  
(1)  
Wakeup from Sleep mode  
1.8  
3.6  
µs  
tWUSLEEP  
Wakeup from Stop mode (regulator in run mode)  
(1)  
µs  
µs  
tWUSTOP  
Wakeup from Stop mode (regulator in low power  
mode)  
5.4  
50  
(1)  
Wakeup from Standby mode  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point in which the user application code  
reads the first instruction.  
5.3.8  
PLL characteristics  
The parameters given in Table 27 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Table 27. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min(1)  
Typ  
Max(1)  
PLL input clock(2)  
1
8.0  
25  
60  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
fPLL_OUT  
tLOCK  
72  
MHz  
µs  
200  
300  
Jitter  
Cycle-to-cycle jitter  
ps  
1. Based on characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 105 °C unless otherwise specified.  
A
Table 28. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA–40 to +105 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
tERASE Page (1 KB) erase time TA –40 to +105 °C  
tME  
Mass erase time  
TA –40 to +105 °C  
Doc ID 13587 Rev 11  
53/92  
Electrical characteristics  
Table 28. Flash memory characteristics (continued)  
STM32F103x8, STM32F103xB  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Read mode  
fHCLK = 72 MHz with 2 wait  
states, VDD = 3.3 V  
20  
5
mA  
mA  
IDD  
Supply current  
Write / Erase modes  
fHCLK = 72 MHz, VDD = 3.3 V  
Power-down mode / Halt,  
VDD = 3.0 to 3.6 V  
50  
µA  
V
Vprog Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
Table 29. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1) Typ  
Max  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
Years  
10 kcycles(2) at TA = 55 °C  
1. Based on characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 30. They are based on the EMS levels and classes  
defined in application note AN1709.  
54/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Level/  
Table 30. EMS characteristics  
Symbol  
Parameter  
Conditions  
Class  
VDD 3.3 V, TA +25 °C,  
fHCLK 72 MHz  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD3.3 V, TA +25 °C,  
fHCLK 72 MHz  
conforms to IEC 61000-4-4  
VEFTB  
4A  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 31. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz 8/72 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
12  
22  
23  
4
12  
19  
29  
4
VDD 3.3 V, TA 25 °C,  
LQFP100 package  
compliant with  
dBµV  
-
SEMI  
Peak level  
IEC 61967-2  
Doc ID 13587 Rev 11  
55/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.3.11  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 32. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
TA +25 °C  
conforming to  
JESD22-A114  
Electrostatic discharge  
voltage (human body model)  
VESD(HBM)  
2
2000  
500  
V
Electrostatic discharge  
TA +25 °C  
conforming to  
JESD22-C101  
VESD(CDM) voltage (charge device  
model)  
II  
1. Based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 33. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA +105 °C conforming to JESD78A  
56/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
5.3.12  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 34 are derived from tests  
performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL  
compliant.  
Table 34. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage  
–0.5  
0.8  
V
Standard IO input high level  
voltage  
TTL ports  
2
VDD+0.5  
VIH  
IO FT(1) input high level voltage  
2
5.5V  
VIL  
Input low level voltage  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
VIH  
Input high level voltage  
0.65 VDD  
Standard IO Schmitt trigger  
voltage hysteresis(2)  
200  
mV  
mV  
Vhys  
IO FT Schmitt trigger voltage  
hysteresis(2)  
(3)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1  
3
Ilkg  
Input leakage current (4)  
µA  
VIN= 5 V  
I/O FT  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN VSS  
VIN VDD  
30  
30  
40  
50  
50  
k  
Weak pull-down equivalent  
resistor(5)  
RPD  
CIO  
40  
5
k  
I/O pin capacitance  
pF  
1. FT = Five-volt tolerant.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in  
production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable  
PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required), their  
characteristics consider the most strict CMOS-technology or TTL parameters:  
For V :  
IH  
if V is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included  
DD  
if V is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included  
DD  
For V :  
IL  
if V is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included  
DD  
if V is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included  
DD  
Doc ID 13587 Rev 11  
57/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 7).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 7).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 35 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 9. All I/Os are CMOS and TTL compliant.  
Table 35. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
TTL port  
IIO = +8 mA  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
1.3  
0.4  
CMOS port  
IIO =+ 8mA  
V
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
VDD–1.3  
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
58/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 24 and  
Table 36, respectively.  
Unless otherwise specified, the parameters given in Table 36 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 9.  
(1)  
Table 36. I/O AC characteristics  
MODEx[1:0]  
Symbol  
Parameter  
Conditions  
Min Max Unit  
bit value(1)  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low  
tf(IO)out  
125(3)  
10  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
125(3)  
10  
level rise time  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
MHz  
ns  
Output high to low  
tf(IO)out  
25(3)  
01  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
25(3)  
level rise time  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
MHz  
MHz  
MHz  
20  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Output high to low  
level fall time  
5(3)  
8(3)  
12(3)  
5(3)  
8(3)  
12(3)  
11  
tf(IO)out  
tr(IO)out  
tEXTIpw  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
ns  
Output low to high  
level rise time  
Pulse width of  
external signals  
detected by the EXTI  
controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 24.  
3. Guaranteed by design, not tested in production.  
Doc ID 13587 Rev 11  
59/92  
Electrical characteristics  
Figure 24. I/O AC characteristics definition  
STM32F103x8, STM32F103xB  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.13  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 34).  
PU  
Unless otherwise specified, the parameters given in Table 37 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 9.  
Table 37. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
200  
40  
mV  
Weak pull-up equivalent resistor(2)  
VIN VSS  
30  
50  
k  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
100  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
60/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Figure 25. Recommended NRST pin protection  
Electrical characteristics  
V
DD  
External  
reset circuit(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 µF  
STM32F10xxx  
ai14132c  
2. The reset network protects the device against parasitic resets.  
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 37. Otherwise the reset will not be taken into account by the device.  
5.3.14  
TIM timer characteristics  
The parameters given in Table 38 are guaranteed by design.  
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 38. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
1
Max  
Unit  
tTIMxCLK  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 72 MHz  
TIMxCLK = 72 MHz  
13.9  
0
ns  
MHz  
MHz  
bit  
fTIMxCLK/2  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
f
0
36  
16  
ResTIM  
Timer resolution  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
910  
tCOUNTER  
fTIMxCLK = 72 MHz  
fTIMxCLK = 72 MHz  
0.0139  
µs  
tTIMxCLK  
s
65536 × 65536  
59.6  
tMAX_COUNT  
Maximum possible count  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
Doc ID 13587 Rev 11  
61/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.3.15  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 39 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLK1  
DD  
conditions summarized in Table 9.  
2
I
The STM32F103xx performance line C interface meets the requirements of the standard  
2
I C communication protocol with the following restrictions: the I/O pins SDA and SCL are  
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 39. Refer also to Section 5.3.12: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 39. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
1.3  
0.6  
µs  
250  
0(3)  
100  
0(4)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20 + 0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
s  
s  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
400  
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
62/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
2
Figure 26. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F103xx  
SDA  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
2
I C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14149b  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
(1)(2)  
Table 40. SCL frequency (f  
= 36 MHz.,VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
fSCL (kHz)  
RP = 4.7 k  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
Doc ID 13587 Rev 11  
63/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 41 are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 9.  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 41. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
ns  
%
SPI slave input clock  
duty cycle  
DuCy(SCK)  
Slave mode  
30  
70  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
50  
60  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
5
4
tsu(MI)  
tsu(SI)  
(2)  
(2)  
th(MI)  
Data input hold time  
(2)  
th(SI)  
ns  
Data output access  
time  
(2)(3)  
ta(SO)  
Slave mode, fPCLK = 20 MHz  
Slave mode  
0
2
3tPCLK  
10  
Data output disable  
time  
(2)(4)  
tdis(SO)  
(2)(1)  
tv(SO)  
Data output valid time Slave mode (after enable edge)  
Data output valid time Master mode (after enable edge)  
25  
5
(2)(1)  
tv(MO)  
(2)  
th(SO)  
Slave mode (after enable edge)  
Data output hold time  
15  
2
(2)  
th(MO)  
Master mode (after enable edge)  
1. Remapped SPI1 characteristics to be determined.  
2. Based on characterization, not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
64/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Figure 27. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 28. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 13587 Rev 11  
65/92  
Electrical characteristics  
Figure 29. SPI timing diagram - master mode  
STM32F103x8, STM32F103xB  
(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
USB characteristics  
The USB interface is USB-IF certified (Full Speed).  
Table 42. USB startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB transceiver startup time  
1
µs  
1. Guaranteed by design, not tested in production.  
66/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Electrical characteristics  
Table 43. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
3.0(3)  
0.2  
3.6  
V
V
(4)  
VDI  
Differential input sensitivity  
Differential common mode range  
Single ended receiver threshold  
I(USBDP, USBDM)  
Includes VDI range  
(4)  
VCM  
0.8  
2.5  
2.0  
(4)  
VSE  
Output levels  
1.3  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kto 3.6 V(5)  
0.3  
3.6  
V
(5)  
RL of 15 kto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled  
up with a 1.5 kresistor to a 3.0-to-3.6 V voltage range.  
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
4. Guaranteed by design, not tested in production.  
RL is the load connected on the USB drivers  
5.  
Figure 30. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
data lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 44.  
Symbol  
USB: Full-speed electrical characteristics(1)  
Parameter  
Conditions  
Min  
Max  
Unit  
Driver characteristics  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
5.3.16  
CAN (controller area network) interface  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
Doc ID 13587 Rev 11  
67/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
5.3.17  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 9.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 45. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
VREF+  
IVREF  
fADC  
2.4  
2.4  
3.6  
VDDA  
220(1)  
14  
V
V
Positive reference voltage  
Current on the VREF input pin  
ADC clock frequency  
160(1)  
µA  
MHz  
0.6  
(2)  
Sampling rate  
0.05  
1
MHz  
fS  
f
ADC = 14 MHz  
823  
17  
kHz  
(2)  
External trigger frequency  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
(3)  
Conversion voltage range  
VREF+  
V
VAIN  
See Equation 1 and  
Table 46 for details  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
50  
1
k  
k  
pF  
(2)  
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
f
ADC = 14 MHz  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
fADC = 14 MHz  
fADC = 14 MHz  
0.214  
3(4)  
Injection trigger conversion  
latency  
(2)  
tlat  
1/fADC  
µs  
0.143  
2(4)  
Regular trigger conversion  
latency  
(2)  
tlatr  
1/fADC  
µs  
f
f
ADC = 14 MHz  
ADC = 14 MHz  
0.107  
1.5  
0
17.1  
239.5  
1
(2)  
Sampling time  
Power-up time  
tS  
1/fADC  
µs  
(2)  
tSTAB  
0
1
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. In devices delivered in VFQFPN and LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally  
connected to VSSA. Devices that come in the TFBGA64 package have a VREF+ pin but no VREF- pin (VREF- is internally  
connected to VSSA), see Table 5 and Figure 6.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 45.  
68/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Equation 1: R  
Electrical characteristics  
max formula:  
AIN  
TS  
RAIN ------------------------------------------------------------- – RADC  
fADC CADC ln2N + 2  
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 46.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)  
1.5  
0.11  
0.4  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Based on characterization, not tested in production.  
(1) (2)  
Table 47. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
1.3  
1
2
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
1.5  
1.5  
1
Gain error  
0.5  
0.7  
0.8  
LSB  
Differential linearity error  
Integral linearity error  
Measurements made after  
ADC calibration  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
3. Based on characterization, not tested in production.  
Doc ID 13587 Rev 11  
69/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
(1) (2) (3)  
Table 48. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
4. Based on characterization, not tested in production.  
Figure 31. ADC accuracy characteristics  
VREF+  
VDDA  
4096  
[1LSBIDEAL  
=
(or  
depending on package)]  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
70/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Figure 32. Typical connection diagram using the ADC  
Electrical characteristics  
V
DD  
STM32F103xx  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
(1)  
AIN  
R
R
ADC  
AINx  
12-bit  
converter  
I
1 µA  
L
C
V
T
parasitic  
V
AIN  
0.6 V  
(1)  
C
ADC  
ai14150c  
1. Refer to Table 45 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 33 or Figure 34,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 33. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F103xx  
V
REF+  
(see note 1)  
1 µF // 10 nF  
V
DDA  
SSA  
1 µF // 10 nF  
V
/V  
REF–  
(see note 1)  
ai14388b  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Doc ID 13587 Rev 11  
71/92  
Electrical characteristics  
STM32F103x8, STM32F103xB  
Figure 34. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F103xx  
V
/V  
REF+ DDA  
(See note 1)  
1 µF // 10 nF  
V
/V  
REF– SSA  
(See note 1)  
ai14389  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Temperature sensor characteristics  
Table 49. TS characteristics  
5.3.18  
Symbol  
Parameter  
VSENSE linearity with temperature  
Average slope  
Min  
Typ  
Max  
Unit  
(1)  
°C  
mV/°C  
V
1  
4.3  
2  
4.6  
TL  
Avg_Slope(1)  
4.0  
(1)  
Voltage at 25 °C  
1.34  
1.43  
1.52  
V25  
(2)  
Startup time  
4
10  
µs  
µs  
tSTART  
ADC sampling time when reading the  
temperature  
(3)(2)  
17.1  
TS_temp  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
72/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 13587 Rev 11  
73/92  
Package characteristics  
STM32F103x8, STM32F103xB  
Figure 35. VFQFPN36 6 x 6 mm, 0.5 mm pitch,  
Figure 36. Recommended footprint  
(1)  
(1)(2)(3)  
package outline  
(dimensions in mm)  
Seating plane  
C
ddd  
C
1.00  
4.30  
A2  
A
27  
19  
A1  
A3  
28  
E2  
18  
b
0.50  
4.10  
27  
19  
18  
4.30  
28  
4.10  
4.80  
4.80  
e
D2  
D
36  
10  
0.75  
9
1
0.30  
36  
10  
6.30  
ai14870b  
1
9
Pin # 1 ID  
R = 0.20  
L
E
ZR_ME  
1. Drawing is not to scale.  
2. The back-side pad is not internally connected to the VSS or VDD power pads.  
3. There is an exposed die pad on the underside of the VFQFPN package. It should be soldered to the PCB. All leads should  
also be soldered to the PCB. It is recommended to connect it to VSS  
.
Table 50. VFQFPN36 6 x 6 mm, 0.5 mm pitch, package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
0.800  
0.900  
0.020  
0.650  
0.250  
0.230  
6.000  
3.700  
6.000  
3.700  
0.500  
0.550  
0.080  
1.000  
0.050  
1.000  
0.0315  
0.0354  
0.0008  
0.0256  
0.0098  
0.0091  
0.2362  
0.1457  
0.2362  
0.1457  
0.0197  
0.0217  
0.0031  
0.0394  
0.0020  
0.0394  
A1  
A2  
A3  
b
0.180  
5.875  
1.750  
5.875  
1.750  
0.450  
0.350  
0.300  
6.125  
4.250  
6.125  
4.250  
0.550  
0.750  
0.0071  
0.2313  
0.0689  
0.2313  
0.0689  
0.0177  
0.0138  
0.0118  
0.2411  
0.1673  
0.2411  
0.1673  
0.0217  
0.0295  
D
D2  
E
E2  
e
L
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
74/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
Figure 37. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
outline  
1. Drawing is not to scale.  
Table 51. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
1.700  
0.0669  
A1  
A2  
A3  
A4  
b
0.270  
0.0106  
1.085  
0.30  
0.0427  
0.0118  
0.80  
0.55  
0.0315  
0.0217  
0.3996  
0.45  
9.85  
0.50  
10.00  
7.20  
0.0177  
0.3878  
0.0197  
0.3937  
0.2835  
0.3937  
0.2835  
0.0315  
0.0551  
D
10.15  
D1  
E
9.85  
10.00  
7.20  
10.15  
0.3878  
0.3996  
E1  
e
0.80  
F
1.40  
ddd  
eee  
fff  
0.12  
0.15  
0.08  
0.0047  
0.0059  
0.0031  
N (number of balls)  
100  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 13587 Rev 11  
75/92  
Package characteristics  
STM32F103x8, STM32F103xB  
Figure 38. Recommended PCB design rules (0.80/0.75 mm pitch BGA)  
Dpad  
Dsm  
0.37 mm  
0.52 mm typ. (depends on solder  
mask registration tolerance  
Solder paste 0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
76/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
(1)(2)  
Figure 39. LQFP100, 14 x 14 mm 100-pin low-profile  
Figure 40. Recommended footprint  
(1)  
quad flat package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
75  
51  
k
D
L
76  
50  
D1  
0.5  
L1  
D3  
51  
75  
C
0.3  
76  
50  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
1
25  
100  
26  
12.3  
16.7  
Pin 1  
1
25  
ccc  
C
identification  
e
A1  
ai14906  
A2  
A
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 52. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
0.063  
A
A1  
A2  
b
1.6  
0.15  
1.45  
0.27  
0.2  
0.05  
1.35  
0.17  
0.09  
15.8  
13.8  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
1.4  
0.0551  
0.0087  
0.22  
c
D
16  
14  
16.2  
14.2  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
12  
15.8  
13.8  
16  
16.2  
14.2  
0.622  
0.6378  
0.5591  
E1  
E3  
e
14  
0.5433  
12  
0.5  
0.6  
1
L
0.45  
0.0°  
0.75  
7.0°  
0.0177  
0.0°  
0.0295  
7.0°  
L1  
k
3.5°  
0.08  
ccc  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 13587 Rev 11  
77/92  
Package characteristics  
STM32F103x8, STM32F103xB  
Figure 42. Recommended  
Figure 41. LQFP64, 10 x 10 mm, 64-pin low-profile quad  
(1)  
(1)(2)  
flat package outline  
footprint  
A
A2  
48  
33  
A1  
0.3  
49  
32  
0.5  
b
E
E1  
12.7  
10.3  
10.3  
e
64  
17  
1.2  
1
16  
7.8  
D1  
D
c
12.7  
L1  
ai14909  
L
ai14398b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 53. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
78/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
Figure 43. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package outline  
B
D
D1  
A
A
e
F
A1  
H
G
F
F
E
D
C
B
A
E1  
E
e
1
2
3
4
5
6
7
8
Øb (64 balls)  
A1 ball pad corner  
A3  
A4  
A2  
Seating  
plane  
C
Bottom view  
ME_R8  
1. Drawing is not to scale.  
Table 54. TFBGA64 - 8 x 8 active ball array, 5 x 5 mm, 0.5 mm pitch, package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
1.200  
0.0472  
A1  
A2  
A3  
A4  
b
0.150  
0.0059  
0.785  
0.200  
0.0309  
0.0079  
0.600  
0.350  
5.150  
0.0236  
0.0138  
0.2028  
0.250  
4.850  
0.300  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.080  
0.150  
0.050  
0.0098  
0.1909  
0.0118  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0031  
0.0059  
0.0020  
D
D1  
E
4.850  
5.150  
0.1909  
0.2028  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 13587 Rev 11  
79/92  
Package characteristics  
STM32F103x8, STM32F103xB  
Figure 44. Recommended PCB design rules for pads (0.5 mm pitch BGA)  
0.5 mm  
Pitch  
D pad  
0.27 mm  
0.35 mm typ (depends on  
the soldermask registration  
tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter  
Dpad  
Dsm  
ai15495  
1. Non solder mask defined (NSMD) pads are recommended  
2. 4 to 6 mils solder paste screen printing process  
80/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
Figure 45. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat  
Figure 46. Recommended  
(1)  
(1)(2)  
package outline  
footprint  
Seating plane  
C
A
A2  
A1  
c
b
0.50  
1.20  
0.25 mm  
Gage plane  
ccc  
C
D
0.30  
36  
25  
37  
24  
D1  
D3  
k
0.20  
A1  
L
7.30  
9.70 5.80  
25  
36  
L1  
7.30  
24  
48  
13  
12  
37  
1
1.20  
5.80  
E3  
E1  
E
9.70  
ai14911b  
48  
13  
Pin 1  
identification  
1
12  
5B_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 55. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 13587 Rev 11  
81/92  
Package characteristics  
STM32F103x8, STM32F103xB  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 9: General operating conditions on page 35.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in C,  
A
is the package junction-to-ambient thermal resistance, in C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = (V × I ) + ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 56. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LFBGA100 - 10 × 10 mm / 0.8 mm pitch  
44  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
46  
45  
65  
55  
18  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
JA  
°C/W  
Thermal resistance junction-ambient  
TFBGA64 - 5 × 5 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
82/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Package characteristics  
6.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 57: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 56 T  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 57: Ordering information scheme).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Doc ID 13587 Rev 11  
83/92  
Package characteristics  
Using the values obtained in Table 56 T  
STM32F103x8, STM32F103xB  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Table 57: Ordering information scheme).  
Figure 47. LQFP100 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
84/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Ordering information scheme  
7
Ordering information scheme  
Table 57. Ordering information scheme  
Example:  
STM32 F 103 C  
8
T
7 xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
103 = performance line  
Pin count  
T = 36 pins  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size(1)  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
U = VFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and real  
1. Although STM32F103x6 devices are not described in this datasheet, orderable part numbers that do not  
show the A internal code after temperature range code 6 or 7 should be referred to this datasheet for the  
electrical characteristics. The low-density datasheet only covers STM32F103x6 devices that feature the  
A code.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 13587 Rev 11  
85/92  
Revision history  
STM32F103x8, STM32F103xB  
8
Revision history  
Table 58. Document revision history  
Date  
Revision  
Changes  
01-jun-2007  
1
Initial release.  
Flash memory size modified in Note 8, Note 5, Note 7, Note 9 and  
BGA100 pins added to Table 5: Medium-density STM32F103xx pin  
definitions. Figure 3: STM32F103xx performance line LFBGA100  
ballout added.  
THSE changed to TLSE in Figure 21: Low-speed external clock source  
AC timing diagram. VBAT ranged modified in Power supply schemes.  
tSU(LSE) changed to tSU(HSE) in Table 22: HSE 4-16 MHz oscillator  
characteristics. IDD(HSI) max value added to Table 24: HSI oscillator  
characteristics.  
Sample size modified and machine model removed in Electrostatic  
discharge (ESD).  
Number of parts modified and standard reference updated in Static  
latch-up. 25 °C and 85 °C conditions removed and class name modified  
in Table 33: Electrical sensitivities. RPU and RPD min and max values  
added to Table 34: I/O static characteristics. RPU min and max values  
added to Table 37: NRST pin characteristics.  
20-Jul-2007  
2
Figure 26: I2C bus AC waveforms and measurement circuit and  
Figure 25: Recommended NRST pin protection corrected.  
Notes removed below Table 9, Table 37, Table 43.  
IDD typical values changed in Table 11: Maximum current consumption  
in Run and Sleep modes. Table 38: TIMx characteristics modified.  
tSTAB, VREF+ value, tlat and fTRIG added to Table 45: ADC  
characteristics.  
In Table 29: Flash memory endurance and data retention, typical  
endurance and data retention for TA = 85 °C added, data retention for  
TA = 25 °C removed.  
VBG changed to VREFINT in Table 12: Embedded internal reference  
voltage. Document title changed. Controller area network (CAN)  
section modified.  
Figure 12: Power supply scheme modified.  
Features on page 1 list optimized. Small text changes.  
86/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Table 58. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
STM32F103CBT6, STM32F103T6 and STM32F103T8 root part  
numbers added (see Table 2: STM32F103xx medium-density device  
features and peripheral counts)  
VFQFPN36 package added (see Section 6: Package characteristics).  
All packages are ECOPACK® compliant. Package mechanical data  
inch values are calculated from mm and rounded to 4 decimal digits  
(see Section 6: Package characteristics).  
Table 5: Medium-density STM32F103xx pin definitions updated and  
clarified.  
Table 26: Low-power mode wakeup timings updated.  
TA min corrected in Table 12: Embedded internal reference voltage.  
Note 2 added below Table 22: HSE 4-16 MHz oscillator characteristics.  
VESD(CDM) value added to Table 32: ESD absolute maximum ratings.  
Note 3 added and VOH parameter description modified in Table 35:  
Output voltage characteristics.  
Note 1 modified under Table 36: I/O AC characteristics.  
Equation 1 and Table 46: RAIN max for fADC = 14 MHz added to  
Section 5.3.17: 12-bit ADC characteristics.  
VAIN, tS max, tCONV, VREF+ min and tlat max modified, notes modified  
and tlatr added in Table 45: ADC characteristics.  
Figure 31: ADC accuracy characteristics updated. Note 1 modified  
below Figure 32: Typical connection diagram using the ADC.  
Electrostatic discharge (ESD) on page 56 modified.  
Number of TIM4 channels modified in Figure 1: STM32F103xx  
performance line block diagram.  
Maximum current consumption Table 13, Table 14 and Table 15  
updated. Vhysmodified in Table 34: I/O static characteristics.  
Table 48: ADC accuracy updated. tVDD modified in Table 10: Operating  
conditions at power-up / power-down. VFESD value added in Table 30:  
EMS characteristics.  
18-Oct-2007  
3
Values corrected, note 2 modified and note 3 removed in Table 26:  
Low-power mode wakeup timings.  
Table 16: Typical and maximum current consumptions in Stop and  
Standby modes: Typical values added for VDD/VBAT = 2.4 V, Note 2  
modified, Note 2 added.  
Table 21: Typical current consumption in Standby mode added. On-chip  
peripheral current consumption on page 47 added.  
ACCHSI values updated in Table 24: HSI oscillator characteristics.  
Vprog added to Table 28: Flash memory characteristics.  
Upper option byte address modified in Figure 9: Memory map.  
Typical fLSI value added in Table 25: LSI oscillator characteristics and  
internal RC value corrected from 32 to 40 kHz in entire document.  
TS_temp added to Table 49: TS characteristics. NEND modified in  
Table 29: Flash memory endurance and data retention.  
TS_vrefint added to Table 12: Embedded internal reference voltage.  
Handling of unused pins specified in General input/output  
characteristics on page 57. All I/Os are CMOS and TTL compliant.  
Figure 33: Power supply and reference decoupling (VREF+ not  
connected to VDDA) modified.  
tJITTER and fVCO removed from Table 27: PLL characteristics.  
Appendix A: Important notes on page 81 added.  
Added Figure 14, Figure 15, Figure 17 and Figure 19.  
Doc ID 13587 Rev 11  
87/92  
Revision history  
Table 58. Document revision history (continued)  
STM32F103x8, STM32F103xB  
Date  
Revision  
Changes  
Document status promoted from preliminary data to datasheet.  
The STM32F103xx is USB certified. Small text changes.  
Power supply schemes on page 13 modified. Number of  
communication peripherals corrected for STM32F103Tx and number of  
GPIOs corrected for LQFP package in Table 2: STM32F103xx medium-  
density device features and peripheral counts.  
Main function and default alternate function modified for PC14 and  
PC15 in, Note 6 added and Remap column added in Table 5: Medium-  
density STM32F103xx pin definitions.  
VDD–VSS ratings and Note 1 modified in Table 6: Voltage  
characteristics, Note 1 modified in Table 7: Current characteristics.  
Note 1 and Note 2 added in Table 11: Embedded reset and power  
control block characteristics.  
IDD value at 72 MHz with peripherals enabled modified in Table 14:  
Maximum current consumption in Run mode, code with data  
processing running from RAM.  
IDD value at 72 MHz with peripherals enabled modified in Table 15:  
Maximum current consumption in Sleep mode, code running from  
Flash or RAM on page 41.  
IDD_VBAT typical value at 2.4 V modified and IDD_VBAT maximum values  
added in Table 16: Typical and maximum current consumptions in Stop  
and Standby modes. Note added in Table 17 on page 45 and Table 18  
on page 46. ADC1 and ADC2 consumption and notes modified in  
Table 19: Peripheral current consumption.  
tSU(HSE) and tSU(LSE) conditions modified in Table 22 and Table 23,  
respectively.  
22-Nov-2007  
4
Maximum values removed from Table 26: Low-power mode wakeup  
timings. tRET conditions modified in Table 29: Flash memory endurance  
and data retention. Figure 12: Power supply scheme corrected.  
Figure 18: Typical current consumption in Stop mode with regulator in  
Low-power mode versus temperature at VDD = 3.3 V and 3.6 V added.  
Note removed below Figure 27: SPI timing diagram - slave mode and  
CPHA = 0. Note added below Figure 28: SPI timing diagram - slave  
mode and CPHA = 1(1).  
Details on unused pins removed from General input/output  
characteristics on page 57.  
Table 41: SPI characteristics updated. Table 42: USB startup time  
added. VAIN, tlat and latr modified, note added and Ilkg removed in  
t
Table 45: ADC characteristics. Test conditions modified and note added  
in Table 48: ADC accuracy. Note added below Table 46 and Table 49.  
Inch values corrected in Table 52: LQPF100, 14 x 14 mm 100-pin low-  
profile quad flat package mechanical data, Table 53: LQFP64, 10 x 10  
mm, 64-pin low-profile quad flat package mechanical data and  
Table 55: LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package  
mechanical data.  
JAvalue for VFQFPN36 package added in Table 56: Package thermal  
characteristics  
Order codes replaced by Section 7: Ordering information scheme.  
MCU ‘s operating conditions modified in Typical current consumption  
on page 44. Avg_Slope and V25 modified in Table 49: TS  
characteristics. I2C interface characteristics on page 62 modified.  
Impedance size specified in A.4: Voltage glitch on ADC input 0 on  
page 81.  
88/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Table 58. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
Figure 2: Clock tree on page 20 added.  
Maximum TJ value given in Table 8: Thermal characteristics on  
page 35.  
CRC feature added (see CRC (cyclic redundancy check) calculation  
unit on page 9 and Figure 9: Memory map on page 31 for address).  
IDD modified in Table 16: Typical and maximum current consumptions in  
Stop and Standby modes.  
ACCHSI modified in Table 24: HSI oscillator characteristics on page 52,  
note 2 removed.  
PD, TA and TJ added, tprog values modified and tprog description clarified  
in Table 28: Flash memory characteristics on page 53.  
tRET modified in Table 29: Flash memory endurance and data retention.  
14-Mar-2008  
5
VNF(NRST) unit corrected in Table 37: NRST pin characteristics on  
page 60.  
Table 41: SPI characteristics on page 64 modified.  
IVREF added to Table 45: ADC characteristics on page 68.  
Table 47: ADC accuracy - limited test conditions added. Table 48: ADC  
accuracy modified.  
LQFP100 package specifications updated (see Section 6: Package  
characteristics on page 73).  
Recommended LQFP100, LQFP 64, LQFP48 and VFQFPN36  
footprints added (see Figure 40, Figure 42, Figure 46 and Figure 36).  
Section 6.2: Thermal characteristics on page 82 modified,  
Section 6.2.1 and Section 6.2.2 added.  
Appendix A: Important notes on page 81 removed.  
Small text changes. Figure 9: Memory map clarified.  
In Table 29: Flash memory endurance and data retention:  
– NEND tested over the whole temperature range  
– cycling conditions specified for tRET  
21-Mar-2008  
6
– tRET min modified at TA = 55 °C  
V25, Avg_Slope and TL modified in Table 49: TS characteristics.  
CRC feature removed.  
CRC feature added back. Small text changes. Section 1: Introduction  
modified. Section 2.2: Full compatibility throughout the family added.  
IDD at TA max = 105 °C added to Table 16: Typical and maximum  
current consumptions in Stop and Standby modes on page 42.  
IDD_VBAT removed from Table 21: Typical current consumption in  
Standby mode on page 47.  
Values added to Table 40: SCL frequency (fPCLK1= 36 MHz.,VDD =  
3.3 V) on page 63.  
22-May-2008  
7
Figure 27: SPI timing diagram - slave mode and CPHA = 0 on page 65  
modified. Equation 1 corrected.  
tRET at TA = 105 °C modified in Table 29: Flash memory endurance and  
data retention on page 54.  
VUSB added to Table 43: USB DC electrical characteristics on page 67.  
Figure 47: LQFP100 PD max vs. TA on page 84 modified.  
Axx option added to Table 57: Ordering information scheme on  
page 85.  
Doc ID 13587 Rev 11  
89/92  
Revision history  
Table 58. Document revision history (continued)  
STM32F103x8, STM32F103xB  
Date  
Revision  
Changes  
Power supply supervisor updated and VDDA added to Table 9: General  
operating conditions.  
Capacitance modified in Figure 12: Power supply scheme on page 33.  
Table notes revised in Section 5: Electrical characteristics.  
Table 16: Typical and maximum current consumptions in Stop and  
Standby modes modified.  
Data added to Table 16: Typical and maximum current consumptions in  
Stop and Standby modes and Table 21: Typical current consumption in  
Standby mode removed.  
fHSE_ext modified in Table 20: High-speed external user clock  
characteristics on page 48. fPLL_IN modified in Table 27: PLL  
characteristics on page 53.  
21-Jul-2008  
8
Minimum SDA and SCL fall time value for Fast mode removed from  
Table 39: I2C characteristics on page 62, note 1 modified.  
th(NSS) modified in Table 41: SPI characteristics on page 64 and  
Figure 27: SPI timing diagram - slave mode and CPHA = 0 on page 65.  
CADC modified in Table 45: ADC characteristics on page 68 and  
Figure 32: Typical connection diagram using the ADC modified.  
Typical TS_temp value removed from Table 49: TS characteristics on  
page 72.  
LQFP48 package specifications updated (see Table 55 and Table 46),  
Section 6: Package characteristics revised.  
Axx option removed from Table 57: Ordering information scheme on  
page 85.  
Small text changes.  
STM32F103x6 part numbers removed (see Table 57: Ordering  
information scheme). Small text changes.  
General-purpose timers (TIMx) and Advanced-control timer (TIM1) on  
page 15 updated.  
Notes updated in Table 5: Medium-density STM32F103xx pin  
definitions on page 26.  
Note 2 modified below Table 6: Voltage characteristics on page 34,  
|VDDx| min and |VDDx| min removed.  
22-Sep-2008  
9
Measurement conditions specified in Section 5.3.5: Supply current  
characteristics on page 38.  
IDD in standby mode at 85 °C modified in Table 16: Typical and  
maximum current consumptions in Stop and Standby modes on  
page 42.  
General input/output characteristics on page 57 modified.  
fHCLK conditions modified in Table 30: EMS characteristics on page 55.  
JA and pitch value modified for LFBGA100 package in Table 56:  
Package thermal characteristics. Small text changes.  
90/92  
Doc ID 13587 Rev 11  
STM32F103x8, STM32F103xB  
Table 58. Document revision history (continued)  
Revision history  
Date  
Revision  
Changes  
I/O information clarified on page 1.  
Figure 3: STM32F103xx performance line LFBGA100 ballout modified.  
Figure 9: Memory map modified. Table 4: Timer feature comparison  
added.  
PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default  
column to Remap column in Table 5: Medium-density STM32F103xx  
pin definitions.  
PD for LFBGA100 corrected in Table 9: General operating conditions.  
Note modified in Table 13: Maximum current consumption in Run  
mode, code with data processing running from Flash and Table 15:  
Maximum current consumption in Sleep mode, code running from  
Flash or RAM.  
23-Apr-2009  
10  
Table 20: High-speed external user clock characteristics and Table 21:  
Low-speed external user clock characteristics modified.  
Figure 18 shows a typical curve (title modified). ACCHSI max values  
modified in Table 24: HSI oscillator characteristics.  
TFBGA64 package added (see Table 54 and Table 43). Small text  
changes.  
Note 5 updated and Note 4 added in Table 5: Medium-density  
STM32F103xx pin definitions.  
VRERINT and TCoeff added to Table 12: Embedded internal reference  
voltage. IDD_VBAT value added to Table 16: Typical and maximum  
current consumptions in Stop and Standby modes. Figure 16: Typical  
current consumption on VBAT with RTC on versus temperature at  
different VBAT values added.  
fHSE_ext min modified in Table 20: High-speed external user clock  
characteristics.  
CL1 and CL2 replaced by C in Table 22: HSE 4-16 MHz oscillator  
characteristics and Table 23: LSE oscillator characteristics (fLSE =  
32.768 kHz), notes modified and moved below the tables. Table 24: HSI  
oscillator characteristics modified. Conditions removed from Table 26:  
Low-power mode wakeup timings.  
22-Sep-2009  
11  
Note 1 modified below Figure 22: Typical application with an 8 MHz  
crystal.  
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to  
IEC 61967-2 in Section 5.3.10: EMC characteristics on page 54.  
Jitter added to Table 27: PLL characteristics.  
Table 41: SPI characteristics modified.  
CADC and RAIN parameters modified in Table 45: ADC characteristics.  
RAIN max values modified in Table 46: RAIN max for fADC = 14 MHz.  
Figure 37: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array  
package outline updated.  
Doc ID 13587 Rev 11  
91/92  
STM32F103x8, STM32F103xB  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
92/92  
Doc ID 13587 Rev 11  

相关型号:

STM32F103TBT7TR

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103TBT7XXX

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103TBU6

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. interfaces
STMICROELECTR

STM32F103TBU6TR

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103TBU6XXX

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103TBU7TR

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103TBU7XXX

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103V8

Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces
STMICROELECTR

STM32F103V8H6

Performance line, ARM-based 32-bit MCU with Flash, USB, CAN, seven 16-bit timers, two ADCs and nine communication interfaces
STMICROELECTR

STM32F103V8H6TR

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103V8H6XXX

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR

STM32F103V8H7TR

Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
STMICROELECTR