STM32F103VD [STMICROELECTRONICS]

Performance line, ARM-based 32-bit MCU with up to 512 KB Flash, USB, CAN, 11 timers, 3 ADCs and 13 communication interfaces; 基于ARM的高性能线的32位MCU,具有高达512 KB的闪存, USB , CAN ,11个定时器,3个ADC和13通信接口
STM32F103VD
型号: STM32F103VD
厂家: ST    ST
描述:

Performance line, ARM-based 32-bit MCU with up to 512 KB Flash, USB, CAN, 11 timers, 3 ADCs and 13 communication interfaces
基于ARM的高性能线的32位MCU,具有高达512 KB的闪存, USB , CAN ,11个定时器,3个ADC和13通信接口

闪存 通信
文件: 总118页 (文件大小:1231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F103xC STM32F103xD  
STM32F103xE  
Performance line, ARM-based 32-bit MCU with up to 512 KB Flash,  
USB, CAN, 11 timers, 3 ADCs and 13 communication interfaces  
Preliminary Data  
Features  
FBGA  
Core: ARM 32-bit Cortex™-M3 CPU  
LQFP64 10 × 10 mm,  
LQFP100 14 × 14 mm,  
LQFP144 20 × 20 mm  
– 72 MHz maximum frequency,  
LFBGA100 10 × 10 mm  
LFBGA144 10 × 10 mm  
1.25 DMIPS/MHz (Dhrystone 2.1)  
performance at 0 wait state memory  
access  
Up to 112 fast I/O ports  
– Single-cycle multiplication and hardware  
division  
– 51/80/112 I/Os, all mappable on 16  
external interrupt vectors, all 5 V-tolerant  
except for analog inputs  
Memories  
– 256-to-512 Kbytes of Flash memory  
– up to 64 Kbytes of SRAM  
– Flexible static memory controller with 4  
Chip Select. Supports Compact Flash,  
SRAM, PSRAM, NOR and NAND memories  
Up to 11 timers  
– Up to four 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter  
– 2 × 16-bit, 6-channel timers with PWM  
output and dead-time generation  
– 2 × watchdog timers (Independent and  
Window)  
– SysTick timer: a 24-bit downcounter  
– 2 × 16-bit basic timers to drive the DAC  
– LCD parallel interface, 8080/6800 modes  
Clock, reset and supply management  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR, and programmable voltage  
detector (PVD)  
Up to 13 communication interfaces  
2
– Up to 2 × I C interfaces (SMBus/PMBus)  
– 4-to-16 MHz crystal oscillator  
– Up to 5 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC with calibration  
– 32 kHz oscillator for RTC with calibration  
2
– Up to 3 SPIs (18 Mbit/s), 2 with I S  
interface multiplexed  
– CAN interface (2.0B Active)  
– USB 2.0 full speed interface  
– SDIO interface  
Low power  
– Sleep, Stop and Standby modes  
– V  
supply for RTC and backup registers  
BAT  
3 × 12-bit, 1 µs A/D converters (up to 21  
CRC calculation unit, 96-bit unique ID  
channels)  
®
ECOPACK packages  
– Conversion range: 0 to 3.6 V  
Triple-sample and hold capability  
Temperature sensor  
Table 1.  
Device summary  
Part number  
Reference  
2-channel 12-bit D/A converter  
STM32F103RC STM32F103VC  
STM32F103ZC  
STM32F103xC  
STM32F103xD  
STM32F103xE  
DMA: 12-channel DMA controller  
– Supported peripherals: timers, ADCs, DAC,  
STM32F103RD STM32F103VD  
STM32F103ZD  
2
2
SDIO, I Ss, SPIs, I Cs and USARTs  
Debug mode  
STM32F103RE STM32F103ZE  
STM32F103VE  
– Serial wire debug (SWD) & JTAG interfaces  
– Cortex-M3 Embedded Trace Macrocell™  
May 2008  
Rev 2  
1/118  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
STM32F103xC, STM32F103xD, STM32F103xE  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
5
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.1  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38  
Embedded reset and power control block characteristics . . . . . . . . . . . 39  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 83  
2/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Contents  
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
5.3.17 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
6
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 114  
7
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
3/118  
List of tables  
STM32F103xC, STM32F103xD, STM32F103xE  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F103xC, STM32F103xD and STM32F103xE features and peripheral counts . . . . . 9  
STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maximum current consumption in Run mode, code with data processing  
Table 14.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 43  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 44  
Typical current consumption in Run mode, code with data processing  
Table 15.  
Table 16.  
Table 17.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical current consumption in Sleep mode, code with data processing  
Table 18.  
code running from Flash or RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
High-speed external (HSE) user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Asynchronous non-multiplexed SRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Asynchronous non-multiplexed SRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Asynchronous multiplexed SRAM/NOR write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Asynchronous multiplexed SRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Switching characteristics for CF read and write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 81  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4/118  
STM32F103xC, STM32F103xD, STM32F103xE  
List of tables  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
SCL frequency (f  
= 36 MHz.,V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
2
I S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 107  
LFBGA100 - low profile fine pitch ball grid array package mechanical data. . . . . . . . . . . 108  
LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . 110  
LQFP64 – 64 pin low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . . . . 111  
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 68.  
Table 69.  
5/118  
List of figures  
STM32F103xC, STM32F103xD, STM32F103xE  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram  
. 19  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STM32F103xC, STM32F103xD and STM32F103xE performance line LQFP144 pinout. . 21  
STM32F103xC, STM32F103xD and STM32F103xE performance line LQFP100 pinout. . 22  
STM32F103xC, STM32F103xD and STM32F103xE performance line LQFP64 pinout. . . 23  
STM32F103xC, STM32F103xD and STM32F103xE performance line BGA100 ballout . . 24  
STM32F103xC, STM32F103xD and STM32F103xE performance line BGA144 ballout . . 25  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 42  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 42  
Figure 15. Current consumption in Stop mode with regulator in main mode versus  
temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DD  
Figure 16. Current consumption in Stop mode with regulator in low-power mode  
versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
DD  
Figure 17. Current consumption in Standby mode versus temperature at different  
V
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
DD  
Figure 18. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 19. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 20. Typical application with a 8-MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 21. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 22. Asynchronous non-multiplexed SRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 23. Asynchronous non-multiplexed SRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 24. Asynchronous multiplexed SRAM/NOR write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 25. Asynchronous multiplexed SRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 26. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 27. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 29. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 30. PC-card controller timing for common memory read access . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 31. PC-card controller timing for common memory write access . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 32. PC-card controller timing for attribute memory read access. . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 33. PC-card controller timing for attribute memory write access . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 34. PC-card controller timing for I/O space read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 35. PC-card controller timing for I/O space write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 36. NAND controller timing for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 37. NAND controller timing for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 38. NAND controller timing for common memory read access. . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 39. NAND controller timing for common memory write access. . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 40. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 41. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
2
Figure 42. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 43. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6/118  
STM32F103xC, STM32F103xD, STM32F103xE  
List of figures  
(1)  
Figure 44. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
(1)  
Figure 45. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
2
(1)  
Figure 46. I S slave timing diagram  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
(1)  
Figure 47. I S master timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 48. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 49. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 50. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 51. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 52. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 53. Power supply and reference decoupling (V  
Figure 54. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 102  
). . . . . . . . . . . . . . . . 103  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 55. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
(1)  
Figure 56. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 57. LFBGA100 - low profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . 108  
Figure 58. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . 109  
Figure 59. LQFP100, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . 110  
(1)  
Figure 60. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 61. LQFP64 – 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
(1)  
Figure 62. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 63. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 64. LQFP100 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
D
A
7/118  
Introduction  
STM32F103xC, STM32F103xD, STM32F103xE  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F103xC, STM32F103xD and STM32F103xE High-density performance line  
microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family,  
please refer to Section 2.2: Full compatibility throughout the family.  
The High-density STM32F103xx datasheet should be read in conjunction with the Medium-  
and High-density STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
2
Description  
The STM32F103xC, STM32F103xD and STM32F103xE performance line family  
®
incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a  
72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and  
SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses. All devices offer three 12-bit ADCs, four general purpose 16-  
bit timers plus two PWM timer, as well as standard and advanced communication interfaces:  
2
up to two I Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a CAN.  
The STM32F103xx High-density performance line family operates in the 40 to +105 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F103xx High-density performance line family offers devices in 5 different  
package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F103xx High-density performance line microcontroller  
family suitable for a wide range of applications:  
Motor drive and application control  
Medical and handheld equipment  
PC peripherals gaming and GPS platforms  
Industrial applications: PLC, inverters, printers, and scanners  
Alarm systems, Video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
8/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
2.1  
Device overview  
Table 2.  
STM32F103xC, STM32F103xD and STM32F103xE features and peripheral  
counts  
Peripherals  
STM32F103Rx  
STM32F103Vx  
STM32F103Zx  
Flash memory in Kbytes  
SRAM in Kbytes  
FSMC  
256  
48  
384  
No  
512  
256  
48  
384  
512  
256  
48  
384  
Yes  
512  
64  
64  
64  
Yes  
4
General-  
purpose  
Timers  
Advanced-  
control  
2
Basic  
SPI(I2S)(1)  
I2C  
2
3(2)  
2
USART  
USB  
5
Comm  
1
CAN  
1
SDIO  
1
GPIOs  
51  
80  
112  
12-bit ADC  
3
3
3
Number of channels  
16  
16  
21  
12-bit DAC  
1
2
Number of channels  
CPU frequency  
72 MHz  
Operating voltage  
2.0 to 3.6 V  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 9)  
Junction temperature: –40 to + 125 °C (see Table 9)  
Operating temperatures  
Package  
LQFP64  
LQFP100(2), BGA100  
LQFP144, BGA144  
1. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the  
I2S audio mode.  
2. For the LQFP100 and BGA100 packages, only FSMC Bank1 and Bank2 are available. Bank1 can only  
support a multiplexed NOR Flash memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-  
bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not  
available in this package.  
9/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2.2  
Full compatibility throughout the family  
The STM32F103xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F103x6, STM32F103x8 and  
STM32F103xB are referred to as Medium-density devices, while the STM32F103xC,  
STM32F103xD and STM32F103xE are referred to as High-density devices. High-density  
devices are an extension of the Medium-density STM32F103x6/8/B/C devices specified in  
the STM32F103xx datasheet.  
High-density STM32F103xx devices feature higher Flash memory and RAM capacities, and  
2
additional peripherals like SDIO, FSMC, I S and DAC, while remaining fully compatible with  
the other members of the family.  
The STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for the  
STM32F103x6/8/A/B/C devices, allowing the user to try different memory densities and  
providing a greater degree of freedom during the development cycle.  
Table 3.  
STM32F103xx family  
Memory size  
Medium-density STM32F103xx devices  
High-density STM32F103xx devices  
Pinout  
128 KB  
32 KB Flash 64 KB Flash  
Flash  
256 KB  
Flash  
384 KB  
Flash  
512 KB  
Flash  
10 KB RAM  
20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM  
144  
100  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Ss, 2 × I2Cs  
3 × USARTs  
USB, CAN, 2 × PWM timers  
3 × 16-bit timers  
2 × SPIs, 2 × I2Cs, USB,  
CAN, 1 × PWM timer  
1 × ADC  
2 × USARTs  
2 × 16-bit timers  
1 × SPI, 1 × I2C,  
USB, CAN,  
3 × ADCs, 1 × DAC, 1 × SDIO  
64  
FSMC (100- and 144-pin packages(1)  
)
48  
36  
1 × PWM timer  
1 × ADC  
1. Ports F and G are not available in devices delivered in 100-pin packages.  
2.3  
Overview  
ARM® CortexTM-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
With its embedded ARM core, STM32F103xC, STM32F103xD and STM32F103xE  
performance line family is compatible with all ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
10/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Embedded Flash memory  
Description  
Up to 512 Kbytes of embedded Flash is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
Embedded SRAM  
Up to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
FSMC (flexible static memory controller)  
The FSMC is embedded in the STM32F103xC, STM32F103xD and STM32F103xE  
performance line family. It has four Chip Select outputs supporting the following modes:  
RAM, PSRAM, NOR and NAND.  
Functionality overview:  
The three FSMC interrupt lines are ORed in order to be connected to the NVIC  
Write FIFO  
Code execution from external memory except for  
The targeted frequency is SYSCLK/2, so external access is at 36 MHz when the  
system is at 72 MHz and external access is at 24 MHz when the system is at 48 MHz  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high-  
performance solutions using external controllers with dedicated acceleration.  
11/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
Nested vectored interrupt controller (NVIC)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds a nested  
vectored interrupt controller able to handle up to 60 maskable interrupt channels (not  
including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example with  
failure of an indirectly used external oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high speed APB  
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and  
the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed  
APB domain is 36 MHz. See Figure 2 for details on the clock tree.  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1.  
12/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Power supply schemes  
Description  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used). V  
DDA  
DDA  
and V  
must be connected to V and V , respectively.  
SSA  
DD SS  
V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 11: Power supply scheme.  
Power supply supervisor  
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
and/or when V is higher than the V  
threshold. The  
DD  
PVD  
DD  
PVD  
interrupt service routine can then generate a warning message and/or put the MCU into a  
safe state. The PVD is enabled by software. Refer to Table 11: Embedded reset and power  
control block characteristics for the values of V  
and V  
.
POR/PDR  
PVD  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop modes.  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode.  
Low-power modes  
The STM32F103xC, STM32F103xD and STM32F103xE performance line supports three  
low-power modes to achieve the best compromise between low power consumption, short  
startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB  
wakeup.  
13/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
DMA  
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for  
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-  
peripheral transfers. The two DMA controllers support circular buffer management,  
removing the need for user code intervention when the controller reaches the end of the  
buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose, basic  
2
and advanced control timers TIMx, DAC, I S, SDIO and ADC.  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the V  
pin. The backup registers are forty-two 16-bit  
DD  
BAT  
registers used to store 84 bytes of user application data. They are not reset by a system or  
power reset, and they are not reset when the device wakes up from the Standby mode.  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features  
a 32-bit programmable counter for long term measurement using the Compare register to  
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default  
configured to generate a time base of 1 second from a clock at 32.768 kHz.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
14/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Window watchdog  
Description  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
General-purpose timers (TIMx)  
There are up to 4 synchronizable standard timers (TIM2, TIM3, TIM4 and TIM5) embedded  
in the STM32F103xC, STM32F103xD and STM32F103xE performance line devices. These  
timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4  
independent channels each for input capture/output compare, PWM or one pulse mode  
output. This gives up to 16 input captures / output compares / PWMs on the largest  
packages. They can work together with the Advanced Control timer via the Timer Link  
feature for synchronization or event chaining.  
The counter can be frozen in debug mode.  
Any of the standard timers can be used to generate PWM outputs. Each of the timers has  
independent DMA request generations.  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Advanced control timers (TIM1 and TIM8)  
The two advanced control timers (TIM1 and TIM8) can each be seen as a three-phase PWM  
multiplexed on 6 channels. They can also be seen as a complete general-purpose timer.  
The 4 independent channels can be used for  
Input Capture  
Output Compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
Complementary PWM outputs with programmable inserted dead-times.  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
The counter can be frozen in debug mode.  
Many features are shared with those of the standard TIM timers which have the same  
architecture. The advanced control timer can therefore work together with the TIM timers via  
the Timer Link feature for synchronization or event chaining.  
15/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A  
hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
Universal synchronous/asynchronous receiver transmitters (USARTs)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three  
universal synchronous/asynchronous receiver transmitters (USART1, USART2 and  
USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).  
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability.  
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other  
available interfaces communicate at up to 2.25 Mbit/s.  
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS  
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All  
interfaces can be served by the DMA controller except for UART5.  
Serial peripheral interface (SPI)  
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in  
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
All SPIs can be served by the DMA controller.  
Inter-integrated sound (I2S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available, that can be  
operated in master or slave mode. These interfaces can be configured to operate with 16/32  
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to  
2
48 kHz are supported. When either or both of the I S interfaces is/are configured in master  
mode, the master clock can be output to the external DAC/CODEC at 256 times the  
sampling frequency.  
SDIO  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD  
Memory Card Specifications Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital  
protocol Rev1.1.  
16/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Controller area network (CAN)  
Description  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Universal serial bus (USB)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embed a USB  
device peripheral compatible with the USB full-speed 12 Mbs. The USB interface  
implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint  
setting and suspend/resume support. The dedicated 48 MHz clock is generated from the  
internal main PLL (the clock source must use a HSE crystal oscillator).  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
I/Os on APB2 with up to 18 MHz toggling speed  
ADC (analog to digital converter)  
Three 12-bit analog-to-digital converters are embedded into STM32F103xC, STM32F103xD  
and STM32F103xE performance line devices and each ADC shares up to 21 external  
channels, performing conversions in single-shot or scan modes. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single shunt  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the standard timers (TIMx) and the advanced-control timers (TIM1  
and TIM8) can be internally connected to the ADC start trigger and injection trigger,  
respectively, to allow the application to synchronize A/D conversion and timers.  
17/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in inverting configuration.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the STM32F103xC, STM32F103xD and  
STM32F103xE performance line family. The DAC channels are triggered through the timer  
update outputs that are also connected to different DMA channels.  
Temperature sensor  
The temperature sensor has to generate a linear voltage with any variation in temperature.  
The conversion range is between 2 V < V  
< 3.6 V. The temperature sensor is internally  
DDA  
connected to the ADC1_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
®
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F10xxx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer running debugger software. TPA  
hardware is commercially available from common development tool vendors. It operates  
with third party debugger software tools.  
18/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
Figure 1. STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram  
TRACECLK  
TRACED[0:3]  
as AS  
@V  
DD  
TPIU  
Trace/trig  
Trace  
controller  
Power  
Pbus  
Ibus  
V
SW/JTAG  
DD  
JNTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Volt. reg.  
3.3 V to 1.8 V  
V
SS  
Flash 512 Kbytes  
64 bit  
Cortex-M3 CPU  
@V  
Supply  
DDA  
Dbus  
System  
as AF  
F
: 48/72 MHz  
NVIC  
max  
NRST  
supervision  
POR  
Reset  
V
V
POR /PDR  
DDA  
SSA  
SRAM  
64 KB  
@V  
DDA  
PVD  
Int  
RC 8 MHz  
RC 40 kHz  
PLL  
GP DMA1  
@V  
DD  
XTAL OSC  
4-16 MHz  
A[25:0]  
D[15:0]  
CLK  
NOE  
NWE  
OSC_IN  
OSC_OUT  
7 channels  
GP DMA2  
IWDG  
5 channels  
PCLK1  
PCLK2  
HCLK  
FCLK  
Reset &  
Clock  
control  
Standby  
interface  
NE[4:1]  
NBL[1:0]  
NWAIT  
NL (or NADV)  
as AF  
V
=1.8 V to 3.6 V  
BAT  
V
@
FSMC  
SDIO  
BAT  
OSC32_IN  
OSC32_OUT  
XTAL32kHz  
Backup  
TAMPER-RTC/  
ALARM/SECOND OUT  
RTC  
AWU  
reg  
D[7:0]  
CMD  
CK as AF  
Backup interface  
AHB2  
APB2  
AHB2  
APB1  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels as AF  
TIM2  
EXT.IT  
WKUP  
112AF  
PA[15:0]  
PB[15:0]  
TIM3  
TIM4  
GPIO port A  
GPIO port B  
GPIO port C  
TIM5  
RX, TX, CTS, RTS,  
CK as AF  
PC[15:0]  
PD[15:0]  
USART2  
USART3  
UART4  
UART5  
RX, TX, CTS,RTS,  
CK as AF  
GPIO port D  
GPIO port E  
PE[15:0]  
PF[15:0]  
PG[15:0]  
RX,TXasAF  
GPIO port F  
GPIO port G  
RX,TX asAF  
MOSI/SD, MISO  
SCK/CK, MCK, NSS/WS as AF  
SPI2/ I2S2  
2
4 channels  
4 compl. channels  
BKIN as AF  
4 channels  
4 compl. channels  
BKIN as AF  
TIM1  
TIM8  
MOSI/SD, MISO  
SCK/CK, MCK, NSS/WS as AF  
SPI3 / I2S3  
2
I2C1  
I2C2  
SCL, SDA, SMBAL as AF  
SCL, SDA, SMBAL as AF  
MOSI, MISO,  
SCK, NSS as AF  
SPI1  
SRAM 512 B  
bxCAN device  
RX, TX, CTS,  
RTS, CK as AF  
USART1  
WWDG  
USBDP/CANTX  
USBDM/CANRX  
USB 2.0 FS  
device  
Temp. sensor  
DAC_OUT1 as AF  
DAC_OUT2 as AF  
VREF+  
12bit DAC  
IF  
TIM6  
TIM7  
8 ADC123_INs  
12-bit ADC1 IF  
12-bit ADC2 IF  
12-bit ADC3 IF  
common to the 3 ADCs  
@V  
DDA  
8 ADC12_INs common  
to ADC1 & ADC2  
5 ADC3_INs on ADC3  
VREF–  
VREF+  
@ V  
DDA  
ai14666  
1. TA = –40 °C to +85 °C (suffix 6, see Table 69) or –40 °C to +105 °C (suffix 7, see Table 69), junction temperature up to  
105 °C or 125 °C, respectively.  
2. AF = alternate function on I/O port pin.  
19/118  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 2.  
Clock tree  
USBCLK  
to USB interface  
USB  
Prescaler  
/1, 1.5  
48 MHz  
I2S3CLK  
to I2S3  
Peripheral clock  
enable  
I2S2CLK  
to I2S2  
Peripheral clock  
enable  
SDIOCLK  
to SDIO  
to FSMC  
8 MHz  
Peripheral clock  
HSI  
HSI RC  
enable  
FSMCCLK  
Peripheral clock  
enable  
/2  
HCLK  
to AHB bus, core,  
memory and DMA  
72 MHz max  
Clock  
Enable (4 bits)  
/8  
to Cortex System timer  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
APB1  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
Prescaler  
Prescaler  
PLLCLK  
HSE  
72 MHz  
max  
to APB1  
/1, 2..512  
/1, 2, 4, 8, 16  
peripherals  
Peripheral Clock  
Enable (20 bits)  
TIM2,3,4,5,6,7  
If (APB1 prescaler =1) x1  
else x2  
to TIM2,3,4,5,6 and 7  
TIMXCLK  
CSS  
Peripheral Clock  
Enable (6 bits)  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
72 MHz max  
PCLK2  
OSC_OUT  
OSC_IN  
peripherals to APB2  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (15 bits)  
TIM1 & 8 timers  
If (APB2 prescaler =1) x1  
else x2  
to TIM1 and TIM8  
TIMxCLK  
Peripheral Clock  
Enable (2 bit)  
to ADC1, 2 or 3  
/128  
LSE  
ADC  
Prescaler  
/2, 4, 6, 8  
OSC32_IN  
to RTC  
LSE OSC  
ADCCLK  
RTCCLK  
32.768 kHz  
OSC32_OUT  
HCLK/2  
/2  
RTCSEL[1:0]  
To SDIO AHB interface  
Peripheral clock  
enable  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
Main  
Clock Output  
/2  
PLLCLK  
HSE = High Speed External clock signal  
HSI = High Speed Internal clock signal  
MCO  
HSI  
HSE  
LSI = Low Speed Internal clock signal  
LSE = Low Speed External clock signal  
SYSCLK  
MCO  
ai14752b  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
64 MHz.  
2. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either  
48 MHz or 72 MHz.  
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.  
20/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
3
Pin descriptions  
Figure 3.  
STM32F103xC, STM32F103xD and STM32F103xE performance line LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
V
V
NC  
DD_2  
SS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
9
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
V
DD_9  
SS_9  
V
V
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
SS_5  
LQFP144  
DD_5  
PF6  
PF7  
PF8  
PF9  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
V
V
DD_8  
SS_8  
PC1  
PC2  
PC3  
PD13  
PD12  
PD11  
PD10  
PD9  
V
V
V
V
SSA  
REF-  
PD8  
REF+  
PB15  
PB14  
PB13  
PB12  
DDA  
PA0-WKUP  
PA1  
PA2  
ai14667  
21/118  
Pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 4.  
STM32F103xC, STM32F103xD and STM32F103xE performance line  
LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14391  
22/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Figure 5. STM32F103xC, STM32F103xD and STM32F103xE performance line  
LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
1
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
VSSA  
VDDA  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14392  
23/118  
Pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 6. STM32F103xC, STM32F103xD and STM32F103xE performance line BGA100 ballout  
1
2
3
4
5
6
7
8
9
10  
PC14-  
OSC32_IN  
PC13-  
TAMPER-RTC  
A
B
C
D
E
F
PE2  
PE3  
PE4  
PE5  
PE6  
PC3  
PA4  
PA5  
PA6  
PA7  
PB9  
PB8  
PE1  
PE0  
PB7  
PB4  
PD5  
PD6  
PD7  
PB3  
PD2  
PD3  
PD4  
PA15  
PC11  
PC12  
PD0  
PA14  
PC10  
PA9  
APA13  
PA12  
PA11  
PA10  
PC7  
PC15-  
OSC32_OUT  
V
PB6  
BAT  
OSC_IN  
OSC_OUT  
NRST  
V
V
PB5  
SS_5  
BOOT0  
PA8  
DD_5  
V
V
V
V
PD1  
PCD  
PC9  
PC8  
PD11  
PD10  
PD9  
PD8  
SS_4  
SS_3  
SS_2  
SS_1  
V
V
V
V
NC  
PC0  
PC1  
PA0-WKUP  
PA1  
PC6  
DD_4  
DD_3  
DD_2  
DD_1  
G
H
J
V
PB2  
PE7  
PE8  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
PB15  
PB14  
PC4  
PD15  
PD14  
PD13  
PD12  
SSA  
V
PC5  
PB0  
PB1  
REF–  
V
PA2  
PB13  
PB12  
REF+  
K
V
PA3  
DDA  
AI16001  
24/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Figure 7. STM32F103xC, STM32F103xD and STM32F103xE performance line BGA144 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PB4  
JTRST  
PC13-  
TAMPER-RTC  
PB3  
JTDO  
PA15  
JTDI  
PA14  
JTCK  
PA13  
JTMS  
PE3  
PE2  
PE1  
PE0  
PD6  
PD7  
A
B
C
D
E
F
PC14-  
OSC32_IN  
PE4  
PE5  
PF0  
PE6  
PF1  
PF2  
PF5  
PB9  
PB8  
PB5  
PB6  
PB7  
PG15  
PG14  
PG13  
PG12  
PG11  
PG10  
PG9  
PD5  
PD4  
PD3  
PD2  
PC11  
PC12  
PD1  
PC10  
NC  
PA12  
PA11  
PA9  
PA8  
PC7  
PC6  
PG5  
PC15-  
OSC32_OUT  
V
BAT  
OSC_IN  
V
V
BOOT0  
PA10  
PC9  
PC8  
PG8  
PG6  
SS_5  
DD_5  
PF4  
OSC_OUT  
V
V
V
PF3  
PD0  
SS_3  
SS_11  
SS_10  
V
V
V
V
V
DD_8  
NRST  
PF10  
PC0  
PF7  
PF9  
PF6  
PF8  
PC2  
PA4  
PA5  
PA6  
PA7  
V
V
DD_9  
DD_4  
DD_3  
DD_11  
DD_10  
DD_2  
G
H
J
V
V
V
V
V
V
V
DD_6  
DD_7  
DD_1  
SS_8  
SS_4  
SS_2  
SS_9  
V
V
V
PE11  
PD11  
PG7  
PC1  
PC3  
SS_6  
SS_7  
PG1  
SS_1  
PE10  
PE9  
PB2/  
BOOT1  
V
PA0-WKUP  
PA1  
PC4  
PC5  
PB0  
PB1  
PE12  
PE13  
PE14  
PE15  
PD10  
PD9  
PG4  
PD13  
PD12  
PB11  
PG3  
PD14  
PB14  
PB12  
PG2  
PD15  
PB15  
PB13  
SSA  
K
L
V
V
PF13  
PF12  
PF11  
PG0  
REF–  
PA2  
PF15  
PF14  
PE8  
PD8  
REF+  
V
PA3  
PE7  
M
PB10  
DDA  
AI14789b  
25/118  
Pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 4.  
Pin definitions  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
FT  
FT  
FT  
FT  
FT  
A3 A3  
A2 B3  
B2 C3  
B3 D3  
B4 E3  
C2 B2  
-
-
1
2
3
4
5
6
1
2
3
4
5
6
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECK/ FSMC_A23  
TRACED0/FSMC_A19  
TRACED1/FSMC_A20  
TRACED2/FSMC_A21  
TRACED3/FSMC_A22  
-
-
-
1
PC13-TAMPER-  
RTC(4)  
A1 A2  
B1 A1  
C1 B1  
2
3
4
7
8
9
7
8
9
I/O  
PC13(5)  
PC14(5)  
PC15(5)  
TAMPER-RTC  
OSC32_IN  
PC14-OSC32_IN(4) I/O  
PC15-  
I/O  
OSC32_OUT  
OSC32_OUT(4)  
C3  
C4  
D4  
E2  
E3  
E4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
11  
12  
13  
14  
15  
PF0  
PF1  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PF0  
PF1  
FSMC_A0  
FSMC_A1  
FSMC_A2  
FSMC_A3  
FSMC_A4  
FSMC_A5  
PF2  
PF2  
PF3  
PF3  
PF4  
PF4  
PF5  
PF5  
D2 C2  
D3 D2  
10 16  
11 17  
VSS_5  
VDD_5  
VSS_5  
VDD_5  
S
ADC3_IN4/  
FSMC_NIORD  
F3  
F2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18  
19  
20  
21  
22  
PF6  
PF7  
PF8  
PF9  
PF10  
I/O  
I/O  
I/O  
I/O  
I/O  
PF6  
PF7  
PF8  
PF9  
PF10  
ADC3_IN5/  
FSMC_NREG  
ADC3_IN6/  
FSMC_NIOWR  
G3  
G2  
G1  
ADC3_IN7/  
FSMC_CD  
ADC3_IN8/  
FSMC_INTR  
D1 C1  
E1 D1  
F1 E1  
H1 F1  
H2 F2  
5
6
7
8
9
12 23  
13 24  
14 25  
15 26  
16 27  
OSC_IN  
OSC_OUT  
NRST  
PC0  
I
OSC_IN  
OSC_OUT  
NRST  
PC0  
O
I/O  
I/O  
I/O  
I/O  
ADC123_IN10  
ADC123_IN11  
ADC123_IN12  
PC1  
PC1  
H3 E2 10 17 28  
PC2  
PC2  
26/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Table 4.  
Pin definitions (continued)  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
H4 F3 11 18 29  
J1 G1 12 19 30  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
I/O  
S
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
ADC123_IN13  
K1 H1  
L1 J1  
-
-
20 31  
21 32  
S
S
M1 K1 13 22 33  
S
WKUP/USART2_CTS(6)  
ADC123_IN0  
J2 G2 14 23 34  
PA0-WKUP  
I/O  
PA0  
TIM2_CH1_ETR  
TIM5_CH1/TIM8_ETR  
USART2_RTS(6)  
ADC123_IN1/TIM5_CH2  
TIM2_CH2(6)  
K2 H2 15 24 35  
L2 J2 16 25 36  
M2 K2 17 26 37  
PA1  
PA2  
PA3  
I/O  
I/O  
I/O  
PA1  
PA2  
PA3  
USART2_TX(6)  
/
TIM5_CH3/ADC123_IN2/  
TIM2_CH3 (6)  
USART2_RX(6)  
/
TIM5_CH4/ADC123_IN3  
TIM2_CH4(6)  
G4 E4 18 27 38  
F4 F4 19 28 39  
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS(6)/DAC_OUT1  
USART2_CK(6)  
J3 G3 20 29 40  
K3 H3 21 30 41  
L3 J3 22 31 42  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
ADC12_IN4  
SPI1_SCK(6)  
DAC_OUT2 ADC12_IN5  
SPI1_MISO(6)  
TIM8_BKIN/ADC12_IN6  
TIM3_CH1(6)  
TIM1_BKIN  
TIM1_CH1N  
SPI1_MOSI(6)  
TIM8_CH1N/ADC12_IN7  
TIM3_CH2(6)  
M3 K3 23 32 43  
PA7  
I/O  
PA7  
J4 G4 24 33 44  
K4 H4 25 34 45  
PC4  
PC5  
I/O  
I/O  
PC4  
PC5  
ADC12_IN14  
ADC12_IN15  
ADC12_IN8/TIM3_CH3  
TIM8_CH2N  
L4 J4 26 35 46  
PB0  
I/O  
I/O  
PB0  
PB1  
TIM1_CH2N  
TIM1_CH3N  
ADC12_IN9  
TIM3_CH4(6)  
TIM8_CH3N  
M4 K4 27 36 47  
J5 G5 28 37 48  
PB1  
PB2/BOOT1  
I/O FT PB2/BOOT1  
27/118  
Pin descriptions  
Table 4. Pin definitions (continued)  
STM32F103xC, STM32F103xD, STM32F103xE  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
Default  
Remap  
(after reset)  
M5  
L5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
49  
50  
51  
52  
53  
54  
55  
56  
57  
PF11  
PF12  
VSS_6  
VDD_6  
PF13  
PF14  
PF15  
PG0  
I/O  
FSMC_NIOS16  
FSMC_A6  
I/O  
H5  
G5  
K5  
M6  
L6  
S
S
I/O  
FSMC_A7  
FSMC_A8  
FSMC_A9  
FSMC_A10  
FSMC_A11  
FSMC_D4  
FSMC_D5  
FSMC_D6  
I/O  
I/O  
K6  
J6  
I/O  
PG1  
I/O  
M7 H5  
L7 J5  
K7 K5  
38 58  
39 59  
40 60  
PE7  
I/O FT  
I/O FT  
I/O FT  
S
PE7  
PE8  
PE9  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
PE8  
PE9  
H6  
G6  
-
-
-
-
61  
62  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
S
J7 G6  
H8 H6  
J8 J6  
K8 K6  
L8 G7  
M8 H7  
41 63  
42 64  
43 65  
44 66  
45 67  
46 68  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
FSMC_D7  
FSMC_D8  
FSMC_D9  
FSMC_D10  
FSMC_D11  
FSMC_D12  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
I2C2_SCL  
M9 J7 29 47 69  
M10 K7 30 48 70  
PB10  
PB11  
I/O FT  
I/O FT  
PB10  
PB11  
TIM2_CH3  
TIM2_CH4  
USART3_TX(6)  
I2C2_SDA  
USART3_RX(6)  
H7 E7 31 49 71  
G7 F7 32 50 72  
VSS_1  
VDD_1  
S
S
VSS_1  
VDD_1  
SPI2_NSS/I2S2_WS/  
I2C2_SMBAl/  
M11 K8 33 51 73  
PB12  
I/O FT  
PB12  
USART3_CK(6)  
TIM1_BKIN(6)  
/
SPI2_SCK/I2S2_CK  
M12 J8 34 52 74  
L11 H8 35 53 75  
PB13  
PB14  
I/O FT  
I/O FT  
PB13  
PB14  
USART3_CTS(6)  
TIM1_CH1N  
/
SPI2_MISO/TIM1_CH2N  
USART3_RTS(6)  
28/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Table 4.  
Pin definitions (continued)  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
SPI2_MOSI/I2S2_SD  
TIM1_CH3N(6)  
L12 G8 36 54 76  
PB15  
I/O FT  
PB15  
L9 K9  
K9 J9  
J9 H9  
H9 G9  
-
-
-
-
55 77  
56 78  
57 79  
58 80  
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
FSMC_D13  
FSMC_D14  
FSMC_D15  
FSMC_A16  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
PD10  
PD11  
PD10  
PD11  
TIM4_CH1 /  
USART3_RTS  
L10 K10  
K10 J10  
-
59 81  
60 82  
PD12  
I/O FT  
PD12  
PD13  
FSMC_A17  
FSMC_A18  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
I/O FT  
S
TIM4_CH2  
G8  
F8  
-
-
-
-
83  
84  
S
K11 H10  
K12 G10  
61 85  
62 86  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PD14  
PD15  
FSMC_D0  
FSMC_D1  
TIM4_CH3  
TIM4_CH4  
J12  
J11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
88  
89  
90  
91  
92  
93  
94  
95  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
FSMC_INT2  
FSMC_INT3  
PG3  
J10  
PG4  
H12  
H11  
H10  
G11  
G10  
F10  
PG5  
PG6  
PG7  
PG8  
VSS_9  
VDD_9  
S
I2S2_MCK/  
TIM8_CH1/SDIO_D6  
G12 F10 37 63 96  
F12 E10 38 64 97  
PC6  
PC7  
I/O FT  
I/O FT  
PC6  
PC7  
TIM3_CH1  
TIM3_CH2  
I2S3_MCK/  
TIM8_CH2/SDIO_D7  
F11 F9 39 65 98  
E11 E9 40 66 99  
PC8  
PC9  
I/O FT  
I/O FT  
PC8  
PC9  
TIM8_CH3/SDIO_D0  
TIM8_CH4/SDIO_D1  
TIM3_CH3  
TIM3_CH4  
USART1_CK/  
E12 D9 41 67 100  
D12 C9 42 68 101  
D11 D10 43 69 102  
PA8  
PA9  
I/O FT  
I/O FT  
I/O FT  
PA8  
PA9  
TIM1_CH1(6)/MCO  
USART1_TX(6)  
TIM1_CH2(6)  
/
USART1_RX(6)  
TIM1_CH3(6)  
/
PA10  
PA10  
29/118  
Pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 4.  
Pin definitions (continued)  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
USART1_CTS/CANRX  
TIM1_CH4(6)/USBDM  
C12 C10 44 70 103  
B12 B10 45 71 104  
PA11  
PA12  
I/O FT  
I/O FT  
PA11  
PA12  
USART1_RTS/USBDP/  
CANTX(6)/TIM1_ETR(6)  
A12 A10 46 72 105 PA13/JTMS-SWDIO I/O FT JTMS-SWDIO  
C11 F8 73 106 Not connected  
PA13  
-
G9 E6 47 74 107  
F9 F6 48 75 108  
V
S
S
V
SS_2  
DD_2  
SS_2  
DD_2  
V
V
A11 A9 49 76 109 PA14/JTCK-SWCLK I/O FT JTCK-SWCLK  
PA14  
PA15/SPI3_NSS/  
I2S3_WS  
TIM2_CH1_ETR  
SPI1_NSS  
A10 A8 50 77 110  
PA15/JTDI  
I/O FT  
JTDI  
B11 B9 51 78 111  
B10 B8 52 79 112  
C10 C8 53 80 113  
PC10  
PC11  
PC12  
PD0  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
UART4_TX/SDIO_D2  
UART4_RX/SDIO_D3  
UART5_TX/SDIO_CK  
FSMC_D2  
USART3_TX  
USART3_RX  
USART3_CK  
CANRX  
(7)  
E10 D8  
D10 E8  
5
6
81 114  
82 115  
I/O FT OSC_IN  
(7)  
PD1  
I/O FT OSC_OUT  
FSMC_D3  
CANTX  
TIM3_ETR/UART5_RX  
SDIO_CMD  
E9 B7 54 83 116  
PD2  
I/O FT  
PD2  
D9 C7  
C9 D7  
B9 B6  
-
-
-
-
-
-
84 117  
85 118  
86 119  
PD3  
PD4  
PD5  
I/O FT  
I/O FT  
I/O FT  
S
PD3  
PD4  
PD5  
FSMC_CLK  
FSMC_NOE  
FSMC_NWE  
USART2_CTS  
USART2_RTS  
USART2_TX  
E7  
F7  
-
-
-
-
120  
121  
V
SS_10  
DD_10  
V
S
A8 C6  
A9 D6  
87 122  
88 123  
PD6  
PD7  
I/O FT  
PD6  
PD7  
FSMC_NWAIT  
USART2_RX  
USART2_CK  
FSMC_NE1/  
FSMC_NCE2  
-
-
-
I/O FT  
I/O FT  
I/O FT  
FSMC_NE2/  
FSMC_NCE3  
E8  
D8  
-
-
-
-
124  
125  
PG9  
FSMC_NCE4_1/  
FSMC_NE3  
PG10  
C8  
B8  
D7  
C7  
E6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
126  
127  
128  
129  
130  
PG11  
PG12  
PG13  
PG14  
VSS_11  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_NCE4_2  
FSMC_NE4  
FSMC_A24  
FSMC_A25  
30/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Table 4.  
Pin definitions (continued)  
Pins  
Alternate functions  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
F6  
B7  
-
-
-
-
-
-
131  
132  
VDD_11  
PG15  
S
I/O  
PB3/TRACESWO  
JTDO  
SPI3_SCK/I2S3_CK/  
TIM2_CH2 /  
SPI1_SCK  
A7 A7 55 89 133  
PB3/JTDO  
I/O FT  
JTDO  
TIM3_CH1 /  
SPI1_MISO  
A6 A6 56 90 134  
B6 C5 57 91 135  
C6 B5 58 92 136  
PB4/JNTRST  
PB5  
I/O FT  
I/O  
JNTRST  
PB5  
PB4/SPI3_MISO  
I2C1_SMBAl/  
SPI3_MOSI/I2S3_SD  
TIM3_CH2 /  
SPI1_MOSI  
I2C1_SCL(6)  
TIM4_CH1(6)  
/
PB6  
I/O FT  
PB6  
USART1_TX  
USART1_RX  
I2C1_SDA(6)  
/
D6 A5 59 93 137  
PB7  
I/O FT  
PB7  
FSMC_NADV/  
TIM4_CH2(6)  
D5 D5 60 94 138  
C5 B4 61 95 139  
BOOT0  
PB8  
I
BOOT0  
PB8  
I2C1_SCL/  
CANRX  
I/O FT  
TIM4_CH3(6)/SDIO_D4  
TIM4_CH4(6)/SDIO_D5  
I2C1_SDA /  
CANTX  
B5 A4 62 96 140  
PB9  
PE0  
I/O FT  
I/O FT  
PB9  
PE0  
TIM4_ETR  
FSMC_NBL0  
A5 D4  
A4 C4  
-
-
97 141  
98 142  
PE1  
I/O FT  
PE1  
FSMC_NBL1  
E5 E5 63 99 143  
F5 F5 64 100 144  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply, HiZ = high impedance.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device.  
4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in output mode is limited: they can be used  
only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.  
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
6. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, available  
from the STMicroelectronics website: www.st.com.  
7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the  
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100/BGA100 and  
LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details,  
refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.  
31/118  
Pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 5.  
FSMC pin definition  
FSMC  
LQFP100  
Pins  
BGA100(1)  
CF  
CF/IDE  
NOR/PSRAM NOR/SRAM Mux NAND 16 bit  
PE2  
PE3  
PE4  
PE5  
PE6  
PF0  
A23  
A19  
A20  
A21  
A22  
A0  
A23  
A19  
A20  
A21  
A22  
Yes  
Yes  
Yes  
Yes  
Yes  
A0  
A1  
A0  
A1  
A2  
-
PF1  
A1  
-
PF2  
A2  
A2  
-
PF3  
A3  
A3  
-
PF4  
A4  
A4  
-
PF5  
A5  
A5  
-
PF6  
NIORD  
NREG  
NIOWR  
CD  
NIORD  
NREG  
NIOWR  
CD  
-
PF7  
-
-
PF8  
PF9  
-
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
INTR  
NIOS16  
A6  
INTR  
-
NIOS16  
-
A6  
A7  
-
A7  
-
A8  
A8  
-
A9  
A9  
-
A10  
A10  
A11  
D4  
-
-
D4  
D5  
D4  
D5  
DA4  
DA5  
D4  
D5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE8  
D5  
PE9  
D6  
D6  
D6  
DA6  
D6  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
D7  
D7  
D7  
DA7  
D7  
D8  
D8  
D8  
DA8  
D8  
D9  
D9  
D9  
DA9  
D9  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
DA10  
DA11  
DA12  
DA13  
D10  
D11  
D12  
D13  
32/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Pin descriptions  
Table 5.  
Pins  
FSMC pin definition (continued)  
FSMC  
LQFP100  
BGA100(1)  
CF  
CF/IDE  
NOR/PSRAM NOR/SRAM Mux NAND 16 bit  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PD0  
D14  
D15  
D14  
D15  
D14  
D15  
A16  
A17  
A18  
D0  
DA14  
DA15  
A16  
D14  
D15  
CLE  
ALE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
A17  
A18  
D0  
D1  
D0  
D1  
DA0  
DA1  
D0  
D1  
D1  
A12  
A13  
A14  
A15  
-
-
-
INT2  
INT3  
D2  
-
-
D2  
D3  
D2  
D3  
D2  
D3  
DA2  
DA3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PD1  
D3  
PD3  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
CLK  
PD4  
NOE  
NWE  
NOE  
NWE  
NOE  
NWE  
NWAIT  
NE1  
NOE  
NWE  
PD5  
PD6  
NWAIT  
NWAIT  
NWAIT  
NCE2  
NCE3  
PD7  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PB7  
NE2  
NCE4_1  
NCE4_2  
NCE4_1  
NCE4_2  
NE3  
-
-
NE4  
A24  
NE4  
A24  
-
-
A25  
A25  
Yes  
Yes  
Yes  
Yes  
NADV  
NBL0  
NBL1  
NADV  
NBL0  
NBL1  
PE0  
PE1  
1. Ports F and G are not available in devices delivered in 100-pin packages.  
33/118  
Memory mapping  
STM32F103xC, STM32F103xD, STM32F103xE  
4
Memory mapping  
The memory map is shown in Figure 8.  
Figure 8. Memory map  
Reserved  
FSMC register  
0xA000 1000 - 0xBFFF FFFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6C00 0000 - 0x6FFF FFFF  
0x6800 0000 - 0x6BFF FFFF  
0x6400 0000 - 0x67FF FFFF  
0x6000 0000 - 0x63FF FFFF  
0x4002 4400 - 0x5FFF FFFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
FSMC bank4 PCCARD  
FSMC bank3 NAND (NAND2)  
FSMC bank2 NAND (NAND1)  
FSMC bank1 NOR/PSRAM 4  
FSMC bank1 NOR/PSRAM 3  
FSMC bank1 NOR/PSRAM 2  
FSMC bank1 NOR/PSRAM 1  
Reserved  
CRC  
Reserved  
Flash interface  
Reserved  
RCC  
Reserved  
DMA2  
DMA1  
Reserved  
SDIO  
0x4002 0000 - 0x4002 03FF  
0x4001 8400 - 0x4001 FFFF  
0x4001 8000 - 0x4001 83FF  
Reserved  
ADC3  
USART1  
TIM8  
SPI1  
TIM1  
0x4001 400 - 0x4001 7FFF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0xFFFF FFFF  
512-Mbyte  
block 7  
ADC2  
0x4001 2800 - 0x4001 2BFF  
Cortex-M3's  
internal  
peripherals  
ADC1  
Port G  
Port F  
0x4001 2400 - 0x4001 27FF  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 1800 - 0x4001 1BFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0C00 - 0x4001 0FFF  
0x4001 0800 - 0x4001 0BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7800 - 0x4000 FFFF  
0xE000 0000  
0xDFFF FFFF  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
AFIO  
Reserved  
DAC  
PWR  
512-Mbyte  
block 6  
Not used  
0xC000 0000  
0xBFFF FFFF  
512-Mbyte  
block 5  
FSMC register  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
BKP  
Reserved  
BxCAN  
0xA000 0000  
0x9FFF FFFF  
512-Mbyte  
block 4  
FSMC bank 3  
& bank4  
Shared USB/CAN SRAM 512  
0x4000 6000 - 0x4000 63FF  
bytes  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
USB registers  
I2C2  
0x8000 0000  
0x7FFF FFFF  
I2C1  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1800 - 0x4000 27FF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
UART5  
UART4  
512-Mbyte  
block 3  
FSMC bank1  
& bank2  
USART3  
USART2  
0x6000 0000  
0x5FFF FFFF  
Reserved  
SPI3/I2S3  
SPI2/I2S2  
512-Mbyte  
block 2  
Peripherals  
Reserved  
IWDG  
0x4000 0000  
0x3FFF FFFF  
WWDG  
RTC  
512-Mbyte  
block 1  
SRAM  
Reserved  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
0x2000 0000  
0x1FFF FFFF  
512-Mbyte  
block 0  
Code  
0x0000 0000  
0x3FFF FFFF  
Reserved  
0x2001 0000  
0x2000 FFFF  
SRAM (64 KB aliased  
by bit-banding)  
0x2000 0000  
Option Bytes  
0x1FFF F800 - 0x1FFF F80F  
0x1FFF F000- 0x1FFF F7FF  
0x1FFF EFFF  
0x0808 0000  
0x0807 FFFF  
0x0800 0000  
0x07FF FFFF  
0x0008 0000  
0x0007 FFFF  
System memory  
Reserved  
Flash  
Reserved  
Aliased to Flash, system  
memory or SRAM  
depending on BOOT pins  
ai14753c  
0x0000 0000  
34/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Test conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 9.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 10.  
Figure 9.  
Pin loading conditions  
Figure 10. Pin input voltage  
STM32F103xx pin  
STM32F103xx pin  
C = 50 pF  
V
IN  
ai14141  
ai14142  
35/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.1.6  
Power supply scheme  
Figure 11. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Power switch  
1.8-3.6V  
Wake-up logic  
Backup registers)  
OUT  
IO  
Logic  
GP I/Os  
IN  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 10 µF  
V
SS  
1/2/3/4/5  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai14125c  
5.1.7  
Current consumption measurement  
Figure 12. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
36/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics,  
Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 6.  
Symbol  
Voltage characteristics  
Ratings  
External main supply voltage (including VDDA  
Min  
Max  
Unit  
VDD–VSS  
–0.3  
4.0  
(1)  
and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
50  
+5.5  
VDD+0.3  
50  
VIN  
|ΔVDDx  
|
Variations between different power pins  
Variations between all the different ground pins  
mV  
|VSSX VSS  
|
50  
50  
see Section 5.3.12:  
Absolute maximum ratings  
(electrical sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 7: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is  
induced by VIN < VSS  
.
Table 7.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
25  
5
IIO  
mA  
(2)(3)  
IINJ(PIN)  
Injected current on HSE OSC_IN and LSE OSC_IN pins  
Injected current on any other pin(4)  
5
5
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
37/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 8.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 9.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
Backup operating voltage  
0
0
72  
36  
MHz  
0
72  
2
3.6  
V
V
VBAT  
1.8  
3.6  
LQFP144  
TBD(2)  
434  
444  
487  
TBD(2)  
85  
LQFP100  
LQFP64  
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(1)  
PD  
mW  
LFBGA100  
LFBGA144  
Maximum power dissipation –40  
Low power dissipation(3)  
–40  
Maximum power dissipation –40  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Low power dissipation(3)  
–40  
–40  
–40  
6 suffix version  
Junction temperature range  
7 suffix version  
1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 113).  
2. TBD = to be determined.  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 113).  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 10 are derived from tests performed under the ambient  
temperature condition summarized in Table 9.  
38/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 10. Operating conditions at power-up / power-down  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
VDD fall time rate  
0
tVDD  
µs/V  
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 11 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Table 11. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1 2.18 2.26  
2.08 2.16  
V
V
2
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
VPOR/PDR  
VPDRhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
1.84 1.92 2.0  
40  
V
PDR hysteresis  
mV  
mS  
(2)  
TRSTTEMPO  
Reset temporization  
1
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
39/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.4  
Embedded reference voltage  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Table 12. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Typ  
40 °C < TA < +105 °C  
40 °C < TA < +85 °C  
1.16 1.20 1.26  
1.16 1.20 1.24  
V
V
VREFINT Internal reference voltage  
ADC sampling time when  
reading the internal reference  
voltage  
(1)  
TS_vrefint  
5.1  
17.1  
µs  
1. Shortest sampling time can be determined in the application by multiple iterations.  
5.3.5  
Supply current characteristics  
The current consumption is measured as described in Figure 12: Current consumption  
measurement scheme.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/2, f  
= f  
PCLK1  
HCLK  
PCLK2 HCLK  
The parameters given in Table 13, Table 14 and Table 15 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 9.  
DD  
40/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 13. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
69  
50  
70  
50.5  
39.5  
28  
External clock(2), all  
peripherals enabled  
39  
27  
20  
20.5  
11.5  
37.5  
28.5  
22.5  
17  
11  
Supplycurrent in  
Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
37  
28  
External clock(2), all  
peripherals disabled  
22  
16.5  
12.5  
8
13  
8
1. Data based on characterization results, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
Table 14. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz(2)  
48 MHz(3)  
36 MHz(3)  
24 MHz(3)  
16 MHz(3)  
8 MHz(3)  
72 MHz  
66  
43.5  
33  
23  
16  
9
67  
45.5  
35  
External clock(1), all  
peripherals enabled  
24.5  
18  
10.5  
33.5  
23.5  
18.5  
13.5  
10.5  
6.5  
Supply current  
in Run mode  
IDD  
mA  
33  
23  
18  
13  
10  
6
48 MHz  
External clock(1), all  
peripherals  
36 MHz  
disabled(3)  
24 MHz  
16 MHz  
8 MHz  
1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
2. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max, and code  
executed from RAM.  
3. Based on characterization, not tested in production.  
41/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 13. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
70  
60  
8 MHz  
16 MHz  
24 MHz  
36 MHz  
48 MHz  
72 MHz  
50  
40  
30  
20  
10  
0
-45  
25  
70  
85  
105  
Temperature (°C)  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
35  
30  
8 MHz  
16 MHz  
24 MHz  
36 MHz  
25  
48 MHz  
72 MHz  
20  
15  
10  
5
0
-45  
25  
70  
85  
105  
Temperature (°C)  
42/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 15. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz(2)  
48 MHz(3)  
36 MHz(3)  
24 MHz(3)  
16 MHz(3)  
8 MHz(3)  
72 MHz  
66  
43.5  
33  
23  
16  
9
67  
45.5  
35  
External clock(1), all  
peripherals enabled  
24.5  
18  
10.5  
33.5  
23.5  
18.5  
13.5  
10.5  
6.5  
Supply current  
in Sleep mode  
IDD  
mA  
33  
23  
18  
13  
10  
6
48 MHz  
External clock(1), all  
peripherals  
36 MHz  
disabled(3)  
24 MHz  
16 MHz  
8 MHz  
1. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz; external clock is 9 MHz for fHCLK = 36 MHz.  
2. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max.  
3. Based on characterization, not tested in production.  
43/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 16. Typical and maximum current consumptions in Stop and Standby modes  
Typ(2)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
VDD/VBAT VDD/VBAT TA =  
TA =  
= 2.4 V  
= 3.3 V 85 °C 105 °C  
Regulator in main mode, low-speed  
and high-speed internal RC oscillators  
and high-speed oscillator OFF (no  
independent watchdog)  
34.5  
35  
25  
TBD(3) TBD(3)  
Supply current in  
Stop mode  
Regulator in low-power mode, low-  
speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
24.5  
TBD(3) TBD(3)  
IDD  
Low-speed internal RC oscillator and  
independent watchdog ON  
µA  
3
3.8  
3.6  
TBD  
TBD  
TBD  
TBD  
Low-speed internal RC oscillator ON,  
independent watchdog OFF  
Supply current in  
Standby mode(4)  
2.8  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-speed  
oscillator and RTC OFF  
1.9  
1.1  
2.1  
1.4  
5(5)  
6.5(5)  
Backup domain  
supply current  
IDD_VBAT  
Low-speed oscillator and RTC ON  
TBD(5) TBD(5)  
1. TBD stands for to be determined.  
2. Typical values are measured at TA = 25 °C, VDD = 3.3 V, unless otherwise specified.  
3. Data based on characterization results, tested in production at VDDmax and fHCLK max.  
4. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when  
DD is present the Backup Domain is powered by VDD supply).  
V
5. Data based on characterization results, not tested in production.  
44/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 15. Current consumption in Stop mode with regulator in main mode versus  
temperature at different V values  
DD  
700  
600  
500  
400  
300  
200  
100  
0
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
-45  
25  
70  
85  
105  
Temperature (°C)  
Figure 16. Current consumption in Stop mode with regulator in low-power mode  
versus temperature at different V values  
DD  
700  
600  
500  
400  
300  
200  
100  
0
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
-45  
25  
70  
85  
105  
Temperature (°C)  
45/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 17. Current consumption in Standby mode versus temperature at different  
values  
V
DD  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
0.5  
0
-45  
25  
70  
85  
105  
Temperature (°C)  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash access time is adjusted to f frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
wait state from 24 to 48 MHZ and 2 wait states above).  
Ambient temperature and V supply voltage conditions summarized in Table 9.  
DD  
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/4, f  
2 = f  
/2, f  
= f  
/4  
PCLK1  
HCLK  
PCLK  
HCLK  
ADCCLK  
PCLK2  
46/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 17. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
51  
34.6  
26.6  
18.5  
12.8  
7.2  
4.2  
2.7  
2
30.5  
20.7  
16.2  
11.4  
8.2  
5
External clock(3)  
mA  
4 MHz  
3.1  
2.1  
1.7  
1.4  
1.2  
27  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.6  
1.3  
45  
Supply  
IDD  
current in  
Run mode  
34  
20.1  
15.6  
10.8  
7.6  
4.4  
2.5  
1.5  
1.1  
0.8  
0.6  
26  
17.9  
12.2  
6.6  
3.6  
2.1  
1.4  
1
Running on high  
speed internal RC  
(HSI), AHB  
prescaler used to  
reduce the  
mA  
4 MHz  
frequency  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
0.7  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
47/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 18. Typical current consumption in Sleep mode, code with data processing  
code running from Flash or RAM  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
29.5  
20  
6.4  
4.6  
3.6  
2.6  
2
15.1  
10.4  
7.2  
External clock(3)  
3.9  
1.3  
1.2  
1.15  
1.1  
1.05  
1.05  
5.1  
4
4 MHz  
2.6  
2 MHz  
1.85  
1.5  
1 MHz  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
1.3  
Supply  
1.2  
IDD  
current in  
mA  
25.6  
19.4  
14.5  
9.8  
Sleep mode  
3
2
Running on high  
speed internal RC  
6.6  
1.4  
0.7  
0.6  
0.55  
0.5  
0.45  
0.45  
(HSI), AHB prescaler 8 MHz  
3.3  
used to reduce the  
frequency  
4 MHz  
2
2 MHz  
1.25  
0.9  
1 MHz  
500 kHz  
125 kHz  
0.7  
0.6  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
48/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 6  
(1)  
Table 19. Peripheral current consumption  
Peripheral  
Typical consumption at 25 °C  
Unit  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
SPI2  
SPI3  
1.2  
1.2  
1.2  
1.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.5  
0.6  
0.4  
0.4  
0.65  
0.72  
0.72  
APB1  
USART2  
USART3  
UART4  
UART5  
I2C1  
mA  
I2C2  
USB  
CAN  
DAC  
49/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 19. Peripheral current consumption  
(continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
ADC1(2)  
ADC2  
0.55  
0.72  
0.72  
0.55  
1
0.72  
1
APB2  
mA  
1.9  
1.7  
1.8  
0.4  
1.7  
0.9  
1.7  
TIM1  
SPI1  
TIM8  
USART1  
ADC3  
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit  
in the ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock  
The characteristics given in Table 20 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 9.  
Table 20. High-speed external (HSE) user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
8
25  
MHz  
OSC_IN input pin high level  
voltage  
VHSEH  
VHSEL  
0.7VDD  
VSS  
VDD  
V
OSC_IN input pin low level  
voltage  
0.3VDD  
tw(HSE)  
tw(HSE)  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
ns  
tr(HSE)  
tf(HSE)  
5
1
OSC_IN Input leakage  
current  
IL  
VSS VIN VDD  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
50/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Low-speed external user clock  
Electrical characteristics  
The characteristics given in Table 21 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 9.  
Table 21. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
5
1
OSC32_IN Input leakage  
current  
IL  
VSS VIN VDD  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
Figure 18. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC _IN  
STM32F103xx  
ai14143  
51/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 19. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC32_IN  
STM32F103xx  
ai14144b  
52/118  
STM32F103xC, STM32F103xD, STM32F103xE  
High-speed external clock  
Electrical characteristics  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 22. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 22. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
4
8
16  
MHz  
RF  
Feedback resistor  
200  
kΩ  
Recommended load capacitance  
versus equivalent serial  
CL1  
RS = 30 Ω  
30  
pF  
(2)  
CL2  
resistance of the crystal (RS)(3)  
VDD= 3.3 V  
VIN = VSS with 30 pF  
load  
i2  
HSE driving current  
1
mA  
(4)  
gm  
tSU(HSE)  
Oscillator transconductance  
startup time  
Startup  
25  
mA/V  
ms  
(5)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25pF range (typ.),  
designed for high-frequency applications, and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board  
capacitance).  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. Based on characterization results, not tested in production.  
5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
Figure 20. Typical application with a 8-MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F103xx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14145  
1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS.  
53/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Low-speed external clock  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
MΩ  
Recommended load capacitance  
versus equivalent serial  
CL1  
CL2  
RS = 30 kΩ  
15  
pF  
µA  
resistance of the crystal (RS)(1)  
VDD = 3.3 V  
VIN = VSS  
I2  
LSE driving current  
1.4  
gm  
Oscillator Transconductance  
startup time  
5
µA/V  
s
(2)  
tSU(LSE)  
VDD is stabilized  
3
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768  
kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Figure 21. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32F103xx  
OSC32_OUT  
C
L2  
ai14146  
54/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 24 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 24. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
8
MHz  
%
TA = –40 to 105 °C  
TA = 25°C  
3(2)  
2
ACCHSI Accuracy of HSI oscillator  
tsu(HSI) HSI oscillator start up time  
1
%
1
2
µs  
HSI oscillator power  
IDD(HSI)  
80  
100  
µA  
consumption  
1.  
VDD = 3.3 V, TA = 40 to 105 °C unless otherwise specified.  
2. Values based on device characterization, not tested in production.  
LSI low speed internal RC oscillator  
(1)  
Table 25. LSI oscillator characteristics  
Min(2)  
Symbol  
Parameter  
Frequency  
Conditions  
Typ  
Max  
Unit  
fLSI  
30  
40  
60  
85  
kHz  
µs  
tsu(LSI) LSI oscillator startup time  
LSI oscillator power  
IDD(LSI)  
0.65  
1.2  
µA  
consumption  
1. VDD = 3 V, TA = 40 to 105 °C unless otherwise specified.  
2. Value based on device characterization, not tested in production.  
55/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Wakeup time from low-power mode  
The wakeup times given in Table 26 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 9.  
Table 26. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Unit  
(1)  
Wakeup from Sleep mode  
Wakeup on HSI RC clock  
1.8  
3.6  
µs  
tWUSLEEP  
Wakeup from Stop mode  
(regulator in run mode)  
HSI RC wakeup time = 2 µs  
(1)  
µs  
tWUSTOP  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from LP mode  
time = 5 µs  
Wakeup from Stop mode  
(regulator in low power mode)  
5.4  
50  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from power down  
time = 38 µs  
(1)  
Wakeup from Standby mode  
µs  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point in which the user application code  
reads the first instruction.  
5.3.8  
PLL characteristics  
The parameters given in Table 27 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 9.  
DD  
Table 27. PLL characteristics  
Value  
Symbol  
Parameter  
Test conditions  
Unit  
Min  
Typ  
Max(1)  
PLL input clock  
8.0  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
60  
72  
fPLL_OUT  
tLOCK  
MHz  
µs  
200  
1. Data based on device characterization, not tested in production.  
56/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 105 °C unless otherwise specified.  
A
Table 28. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
Word programming time TA = 40 to +105 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
tERASE Page (2 KB) erase time TA = 40 to +105 °C  
tME  
Mass erase time  
Supply current  
TA = 40 to +105 °C  
Read mode  
fHCLK = 72 MHz with 2 wait  
28  
mA  
states, VDD = 3.3 V  
Write mode  
7
5
mA  
mA  
fHCLK = 72 MHz, VDD = 3.3 V  
IDD  
Erase mode  
fHCLK = 72 MHz, VDD = 3.3 V  
Power-down mode / Halt,  
VDD = 3.0 to 3.6 V  
50  
µA  
V
Vprog Programming voltage  
2
3.6  
1. Values based on characterization and not tested in production.  
Table 29. Flash memory endurance and data retention  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Max  
TBD(2)  
30  
NEND Endurance  
kcycles  
Years  
TA = 85 °C, 1000 cycles  
tRET  
Data retention  
TA = 105 °C, 1000  
cycles  
10  
1. Values based on characterization not tested in production.  
2. TBD = to be determined.  
57/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.10  
FSMC characteristics  
All the timing characteristics are relative to the FSMC_CLK signal for synchronous  
SRAM/NOR Flash memory accesses.  
Figure 22. Asynchronous non-multiplexed SRAM/NOR write timings  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
FSMC_NWE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[3:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FSMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FSMC_NADV  
ai14990  
1. Mode 2/B, C and D only.  
(1)  
Table 30. Asynchronous non-multiplexed SRAM/NOR write timings  
VDD_IO = V and CL = 15 pF  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
tw(  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
NE  
)
tv(  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
WEN_NE  
)
tw(  
NWE  
)
th(  
tv(  
th(  
tv(  
th(  
tv(  
th(  
tv(  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to Data valid  
NE_NWE  
)
TBD  
TBD  
TBD  
A_NE  
)
TBD  
TBD  
TBD  
tCK/ns  
ns  
A_NWE  
)
BL_NE  
)
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
BL_NWE  
)
Data_NE  
)
Data hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
Data_NWE  
)
TBD  
TBD  
NADV_NE  
)
tw(  
NADV  
)
1. TBD = to be determined.  
58/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 23. Asynchronous non-multiplexed SRAM/NOR read timings  
t
w(NE)  
FSMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FSMC_NOE  
FSMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FSMC_A[25:0]  
Address  
NBL  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[3:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FSMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV(1)  
ai14991  
1. Mode 2/B, C and D only.  
(1)  
Table 31. Asynchronous non-multiplexed SRAM/NOR read timings  
VDD_IO = V and CL = 15 pF  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
tw(  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
NE  
)
tv(  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
NOE_NE  
)
tw(  
NOE  
)
th(  
tv(  
th(  
tv(  
th(  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NOE high  
Data to FSMC_NEx high setup time  
Data to FSMC_NOEx high setup time  
Data hold time after FSMC_NOE high  
Data hold time after FSMC_NEx high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
NE_NOE  
)
TBD  
TBD  
A_NE  
)
TBD  
tCK/ns  
ns  
A_NOE  
)
BL_NE  
)
TBD  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
BL_NOE  
)
tsu(  
tsu(  
th(  
Data_NE  
)
Data_NOE  
)
Data_NOE  
)
th(  
Data_NE  
)
tv(  
TBD  
TBD  
tCK/ns  
tCK/ns  
NADV_NE  
)
tw(  
NADV  
)
1. TBD = to be determined.  
59/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 24. Asynchronous multiplexed SRAM/NOR write timings  
t
wNE  
FSMC_NEx  
FSMC_NOE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(WENL)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[3:0]  
FSMC_AD[15:0]  
NBL  
t
t
h(Data_NW)  
t
v(A_NE)  
v(Data_NL)  
Address  
Data  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV  
tdis(AD_NADV)  
ai14891  
(1)  
Table 32. Asynchronous multiplexed SRAM/NOR write timings  
FSMC - Asynchronous multiplexed SRAM/NOR write timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(  
Parameter  
Min  
Max  
Unit  
FSMC_NE low time  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
NE  
)
tv(  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
NWE_NE  
)
tw(  
NWE  
)
th(  
NE_NWE  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
)
tv(  
tv(  
TBD  
TBD  
TBD  
A_NE  
)
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
NADV_NE  
)
tw(  
NADV  
)
th(  
AD_NADV  
FSMC_AD (address) valid hold time after FSMC_NADV high TBD  
FSMC_AD (address) disable time after FSMC_NADV high  
)
tdis(  
TBD  
TBD  
AD_NADV  
)
th(  
tv(  
th(  
tv(  
th(  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NADV high to Data valid  
TBD  
A_NWE  
)
BL_NE  
)
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
BL_NWE  
)
Data_NADV  
Data_NWE  
)
Data hold time after FSMC_NWE high  
)
1. TBD = to be determined.  
60/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 25. Asynchronous multiplexed SRAM/NOR read timings  
t
w(NE)  
FSMC_NE  
t
t
h(NE_NOE)  
v(NOE_NE)  
FSMC_NOE  
t
w(NOE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NOE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[3:0]  
NBL  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
su(Data_NOE)  
Address  
Data  
FSMC_AD[15:0]  
FSMC_NADV  
t
th(AD_NADV)  
tdis(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
ai14892  
61/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 33. Asynchronous multiplexed SRAM/NOR read timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(  
Parameter  
Min  
Max  
Unit  
FSMC_NE low time  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
NE  
)
tv(  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
NOE_NE  
)
tw(  
NOE  
)
th(  
FSMC_WEN high to FSMC_NE high hold time  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
NE_WEN  
NE_NOE  
)
th(  
tv(  
tv(  
)
TBD  
TBD  
TBD  
A_NE  
)
TBD  
TBD  
tCK/ns  
tCK/ns  
NADV_NE  
)
tw(  
NADV  
)
FSMC_AD (address) valid hold time after FSMC_NADV  
high  
th(  
AD_NADV  
TBD  
tCK/ns  
)
tdis(  
FSMC_AD (address) disable time after FSMC_NADV high  
Address hold time after FSMC_NOE high  
FSMC_BL hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
TBD  
TBD  
tCK/ns  
tCK/ns  
tCK/ns  
ns  
AD_NADV  
)
th(  
th(  
tv(  
TBD  
TBD  
A_NOE  
)
BL_NOE  
)
BL_NE  
)
tsu(  
tsu(  
th(  
Data to FSMC_NEx high setup time  
TBD  
TBD  
TBD  
TBD  
tCK/ns  
tCK/ns  
ns  
Data_NE  
)
Data to FSMC_NOE high setup time  
Data_NOE  
)
Data hold time after FSMC_NEx high  
Data hold time after FSMC_NOE high  
Data_NE  
)
th(  
Data_NOE  
ns  
)
62/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 26. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKH-NExL)  
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKH-NADVL)  
d(CLKH-NADVH)  
FSMC_NADV  
t
t
t
t
d(CLKH-AV)  
d(CLKH-AIV)  
FSMC_A[24:16]  
FSMC_NWE  
d(CLKH-NWEH)  
d(CLKH-NWEL  
t
t
d(CLKH-NOEH)  
d(CLKH-NOEL)  
FSMC_NOE  
t
t
h(CLKH-ADV)  
d(CLKH-ADIV)  
t
t
t
t
h(CLKH-ADV)  
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKH-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 1b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14893  
63/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 34. Synchronous multiplexed NOR/PSRAM read timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
TBD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKH-NExL)  
td(CLKH-NExH)  
td(  
FSMC_CLK high to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK high to FSMC_NADV low  
TBD  
TBD  
-
-
TBD  
CLK NADVL  
H-  
)
td(CLKH-NADVH) FSMC_CLK high to FSMC_NADV high  
TBD  
-
-
td(CLKH-AV)  
td(CLKH-AIV)  
FSMC_CLK high to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
TBD  
TBD  
-
-
td(CLKH-NWEL) FSMC_CLK high to FSMC_NWE low  
td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high  
TBD  
TBD  
-
-
td(CLKH-NOEL)  
FSMC_CLK high to FSMC_NOE low  
TBD  
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high  
TBD  
-
-
td(CLKH-ADV)  
td(CLKH-ADIV)  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
FSMC_CLK high to FSMC_AD[15:0] valid  
TBD  
FSMC_CLK high to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid data before FSMC_CLK high  
FSMC_A/D[15:0] valid data after FSMC_CLK high  
TBD  
TBD  
TBD  
-
-
-
tsu(NWAITV-  
FSMC_NWAIT valid before FSMC_CLK high  
TBD  
TBD  
-
-
ns  
ns  
CLKH)  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
1. TBD = to be determined.  
64/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 27. Synchronous multiplexed PSRAM write timings  
Electrical characteristics  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKH-NExL)  
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKH-NADVL)  
d(CLKH-NADVH)  
FSMC_NADV  
t
t
t
d(CLKH-AV)  
d(CLKH-AIV)  
FSMC_A[24:16]  
FSMC_NWE  
t
d(CLKH-NWEH)  
d(CLKH-NWEL)  
t
t
d(CLKH-NOEL)  
d(CLKH-NOEH)  
t
FSMC_NOE  
t
t
d(CLKH-ADIV)  
t
h(CLKH-ADV)  
t
v(Data-CLK)  
d(CLKH-ADV)  
h(CLKH-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
D1  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14992  
65/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 35. Synchronous multiplexed PSRAM write timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
TBD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKH-NExL)  
td(CLKH-NExH)  
td(  
FSMC_CLK high to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK high to FSMC_NADV low  
TBD  
TBD  
-
-
TBD  
CLK NADVL  
H-  
)
td(CLKH-NADVH)  
td(CLKH-AV)  
FSMC_CLK high to FSMC_NADV high  
FSMC_CLK high to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK high to FSMC_NWE low  
TBD  
-
-
TBD  
td(CLKH-AIV)  
TBD  
-
-
td(CLKH-NWEL)  
td(CLKH-NWEH)  
td(CLKH-NOEL)  
td(CLKH-NOEH)  
td(CLKH-ADV)  
td(CLKH-ADIV)  
th(CLKH-ADV)  
tsu(NWAITV-CLKH)  
th(CLKH-NWAITV)  
tv(Data-CLK)  
TBD  
FSMC_CLK high to FSMC_NWE high  
TBD  
-
-
FSMC_CLK high to FSMC_NOE low  
TBD  
FSMC_CLK high to FSMC_NOE high  
TBD  
-
-
FSMC_CLK high to FSMC_AD[15:0] valid  
FSMC_CLK high to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid data after FSMC_CLK high  
FSMC_NWAIT valid before FSMC_CLK high  
FSMC_NWAIT valid after FSMC_CLK high  
FSMC_CLK high to FSMC_CLK valid  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
1. TBD = to be determined.  
66/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 28. Synchronous non-multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKH-NExL)  
d(CLKH-NExH  
Data latency = 1  
d(CLKH-NADVH)  
FSMC_NEx  
t
t
d(CLKH-NADVL)  
FSMC_NADV  
FSMC_A[24:0]  
FSMC_NWE  
t
t
t
t
d(CLKH-AV)  
d(CLKH-AIV)  
d(CLKH-NWEH)  
d(CLKH-NWEL  
t
t
d(CLKH-NOEH)  
d(CLKH-NOEL)  
FSMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
t
t
h(CLKH-DV)  
su(DV-CLKH)  
FSMC_D[15:0]  
FSMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
(WAITCFG = 1b, WAITPOL + 0b)  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14893  
67/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 36. Synchronous non-multiplexed NOR/PSRAM read timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
TBD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKH-NExL)  
td(CLKH-NExH)  
td(  
FSMC_CLK high to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK high to FSMC_NADV low  
TBD  
TBD  
-
-
TBD  
CLK NADVL  
H-  
)
td(CLKH-NADVH)  
td(CLKH-AV)  
FSMC_CLK high to FSMC_NADV high  
TBD  
-
-
FSMC_CLK high to FSMC_Ax valid (x = 0...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 0...25)  
FSMC_CLK high to FSMC_NWE low  
TBD  
td(CLKH-AIV)  
TBD  
-
-
td(CLKH-NWEL)  
td(CLKH-NWEH)  
td(CLKH-NOEL)  
td(CLKH-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
TBD  
FSMC_CLK high to FSMC_NWE high  
TBD  
-
-
FSMC_CLK high to FSMC_NOE low  
TBD  
FSMC_CLK high to FSMC_NOE high  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
FSMC_D[15:0] valid data before FSMC_CLK high  
FSMC_D[15:0] valid data after FSMC_CLK high  
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
1. TBD = to be determined.  
68/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 29. Synchronous non-multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKH-NExL)  
d(CLKH-NExH)  
Data latency = 1  
d(CLKH-NADVH)  
FSMC_NEx  
t
t
d(CLKH-NADVL)  
FSMC_NADV  
FSMC_A[24:0]  
FSMC_NWE  
t
t
t
d(CLKH-AIV)  
d(CLKH-AV)  
t
d(CLKH-NWEH)  
d(CLKH-NWEL)  
t
t
d(CLKH-NOEH)  
d(CLKH-NOEL)  
t
FSMC_NOE  
t
t
h(CLKH-DV)  
v(Data-CLK)  
h(CLKH-DV)  
D1  
FSMC_D[15:0]  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
ai14993  
69/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 37. Synchronous non-multiplexed PSRAM write timings  
VDD_IO = V and CL = 15 pF  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
TBD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKH-NExL)  
td(CLKH-NExH)  
td(  
FSMC_CLK high to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK high to FSMC_NADV low  
TBD  
x
-
-
TBD  
CLK NADVL  
H-  
)
td(CLKH-NADVH) FSMC_CLK high to FSMC_NADV high  
TBD  
-
-
td(CLKH-AV)  
FSMC_CLK high to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK high to FSMC_NWE low  
TBD  
td(CLKH-AIV)  
td(CLKH-NWEL)  
td(CLKH-NWEH)  
td(CLKH-NOEL)  
td(CLKH-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
TBD  
-
-
TBD  
FSMC_CLK high to FSMC_NWE high  
TBD  
-
-
FSMC_CLK high to FSMC_NOE low  
TBD  
FSMC_CLK high to FSMC_NOE high  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
FSMC_D[15:0] valid data before FSMC_CLK high  
FSMC_D[15:0] valid data after FSMC_CLK high  
FSMC_CLK high to FSMC_CLK valid  
tv(Data-CLK)  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
1. TBD = to be determined.  
70/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 30. PC-card controller timing for common memory read access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
h(NCEx-AI)  
t
v(NCEx-A)  
FSMC_A[10:0]  
t
t
t
t
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
d(NIOWR-NCEx)  
h(NCEx-NREG)  
h(NCEx-NIORD)  
h(NCEx-NIOWR  
)
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
FSMC_NWE  
FSMC_NOE  
t
t
w(NOE)  
su(D-NIORD)  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0]  
t
d(NOE-NWAITH)  
t
t
d(NWAIT-NOE)  
d(NOE-NWAITL)  
FSMC_NWAIT  
(PWAITEN = 1b)  
ai14895  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
71/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 31. PC-card controller timing for common memory write access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
t
v(NCEx-A)  
h(NCEx-AI)  
FSMC_A[10:0]  
t
t
t
t
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
d(NIOWR-NCEx)  
h(NCEx-NREG)  
h(NCEx-NIORD)  
h(NCEx-NIOWR)  
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
t
t
t
d(NCEx-NWE)  
w(NWE)  
d(NWE-NCEx)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
t
t
d(NWE-NWAITH)  
d(NWAIT-NWE)  
t
d(NWE-NWAITL)  
FSMC_NWAIT  
(PWAITEN = 1b)  
ai14896  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
72/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 32. PC-card controller timing for attribute memory read access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
High  
FSMC_A[10:0]  
t
t
t
t
d(NIORD-NCE4_1)  
d(NIOWR-NCE4_1)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
FSMC_NWE  
t
t
t
d(NOE-NCE4_1)  
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0](1)  
FSMC_NWAIT  
t
d(NOE-NWAITH)  
t
t
d(NOE-NWAITL)  
d(NWAIT-NOE)  
(PWAITEN = 1b)  
ai14897  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
73/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 33. PC-card controller timing for attribute memory write access  
FSMC_NCE4_1  
FSMC_NCE4_2  
High  
t
t
v(NCE4_1-A)  
h(NCE4_1-AI)  
FSMC_A[10:0]  
t
t
t
t
d(NIORD-NCE4_1)  
d(NIOWR-NCE4_1)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
t
t
d(NCE4_1-NWE)  
w(NWE)  
FSMC_NWE  
t
d(NWE-NCE4_1)  
FSMC_NOE  
t
t
v(NWE-D)  
h(NCE4_1-D)  
FSMC_D[7:0](1)  
t
d(NWE-NWAITH)  
t
t
d(NWE-NWAITl)  
d(NWAIT-NWE)  
FSMC_NWAIT  
(PWAITEN = 1b)  
ai14898  
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).  
74/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 34. PC-card controller timing for I/O space read access  
FSMC_NCE4_1  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NCE4_2  
(1)  
assumes same level as FSMC_NIOS16  
t
ELIWL  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIOWR  
t
t
w(NIORD)  
t
d(NCE4_1-NIORD)  
FSMC_NIORD  
t
su(D-NIORD)  
h(NIORD-D)  
(2)  
FSMC_D[15:0]  
t
d(NCE4_1-NIOIS16)  
(3)  
t
AVISL/H  
FSMC_NIOIS16  
ai14899  
1. FSMC_NCE4_2 is high independently of FSMC_NIOIS16 if the AHB transfer is for one byte.  
2. Only data bits 0...7 are read (bits 8...15 are disregarded) if FSMC_NIOIS16 is high.  
3. The CF card asserts FSMC_NIOIS16 after tAVISL/H  
.
4. FSMC_NWAIT not shown but behaves as in the previous figures.  
75/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 35. PC-card controller timing for I/O space write access  
FSMC_NCE4_1  
FSMC_A[10:0]  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
(1)  
assumes same level as FSMC_NIOS16  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIORD  
t
t
d(NCE4_1-NIOWR)  
w(NIOWR)  
FSMC_NIOWR  
ATTxHIZ =1  
t
t
h(NIOWR-D)  
v(NIOWR-D)  
(2)  
FSMC_D[15:0]  
(3)  
t
AVISL/H  
t
d(NCE4_1-NIOIS16)  
FSMC_NIOIS16  
ai14900  
1. FSMC_NCE4_2 is high independently of FSMC_NIOIS16 if the AHB transfer is for one byte.  
2. Only data bits 0...7 are driven (bits 8...15 remains HiZ) if FSMC_NIOIS16 is high.  
3. The CF card asserts FSMC_NIOIS16 after tAVISL/H  
.
4. FSMC_NWAIT not shown but behaves as in the previous figures.  
76/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1)  
Table 38. Switching characteristics for CF read and write cycles  
Timing  
Symbol  
Parameter  
Unit  
Min  
Max  
FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y  
= 0...10)  
tv(NCEx-A)  
-
TBD  
ns  
tv(NCE4_1-A)  
FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid  
(y = 0...10)  
FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid  
(x = 0...10)  
th(NCEx-AI)  
TBD  
-
ns  
th(NCE4_1-AI)  
FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax  
invalid (x = 0...10)  
td(NREG-NCEx)  
FSMC_NCEx low to FSMC_NREG valid  
-
TBD  
ns  
ns  
ns  
ns  
td(NREG-NCE4_1) FSMC_NCE4_1 low to FSMC_NREG valid  
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid  
th(NCE4_1-NREG) FSMC_NCE4_1 high to FSMC_NREG invalid  
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid  
td(NIORD-NCE4_1) FSMC_NCE4_1 low to FSMC_NIORD valid  
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD invalid  
th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid  
td(NIOWR-NCEx) FSMC_NIOWR valid to FSMC_NCEx low  
td(NIOWR-NCE4_1) FSMC_NIOWR valid to FSMC_NCE4_1 low  
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid  
th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid  
TBD  
-
-
TBD  
-
TBD  
tsu(D-NIORD)  
td(NIORD-D)  
td(D-NWE)  
FSMC_D[15:0] valid before FSMC_NIORD high  
FSMC_D[15:0] valid after FSMC_NIORD high  
FSMC_D[15:0] valid before FSMC_NWE high  
TBD  
TBD  
TBD  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid  
TBD  
-
tw(NIOWR)  
FSMC_NIOWR low width  
TBD  
-
tv(NIOWR-D)  
th(NIOWR-D)  
FSMC_NIOWR low to FSMC_D[15:0] valid  
FSMC_NIOWR high to FSMC_D[15:0] invalid  
TBD  
-
TBD  
-
td(NCE4_1-NIOIS16) FSMC_NIOS16 valid after FSMC_NCE4_1 low  
TBD  
TBD  
td(NCE4_1-NOE)  
tw(NOE)  
FSMC_NCE4_1 low to FSMC_NOE low  
FSMC_NOE low width  
-
TBD  
TBD cycles/ns  
td(NOE-NCEx)  
FSMC_NOE high to FSMC_NCEx high  
FSMC_NOE high to FSMC_NCE4_1 high  
TBD  
td(NOE-NCE4_1  
td(NOE-NWAITL)  
td(NOE-NWAITH)  
td(NWAIT-NOE)  
tsu(D-NOE)  
FSMC_NWAIT low after FSMC_NOE low(2)  
FSMC_NWAIT high after FSMC_NOE low(2)  
FSMC_NOE high after FSMC_NWAIT high  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_D[15:0] valid data after FSMC_NOE high  
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
ns  
ns  
ns  
th(NOE-D)  
77/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 38. Switching characteristics for CF read and write cycles (continued)  
Timing  
Symbol  
Parameter  
Unit  
Min  
Max  
td(NCEx-NWE)  
tw(NWE)  
FSMC_NCEx low to FSMC_NWE low  
FSMC_NWE low width  
-
TBD  
ns  
TBD  
TBD cycles/ns  
td(NWE-NCEx)  
FSMC_NWE high to FSMC_NCEx high  
FSMC_NWE high to FSMC_NCE4_1 high  
TBD  
ns  
ns  
td(NWE-NCE4_1)  
td(NCE4_1-NWE)  
td(NWE-NWAITL)  
td(NWE-NWAITH)  
td(NWAIT-NWE)  
tv(NWE-D)  
FSMC_NCE4_1 low to FSMC_NWE low  
FSMC_NWAIT low after FSMC_NWE low(2)  
FSMC_NWAIT high after FSMC_NWE low(2)  
FSMC_NWE high after FSMC_NWAIT high  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_NCE4_1 high to FSMC_D[15:0] invalid  
FSMC_NIORD low width  
TBD  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TBD  
TBD  
-
-
TBD  
-
th(NWE-D)  
TBD  
th(NCE4_1-D)  
tw(NIORD)  
tELIWL  
FSMC_NCEx setup before FSMC_NWE low  
Address valid to FSMC_NIOIS16 valid  
tAVISL/H  
35  
1. TBD = to be determined.  
2. When one or more wait states are inserted. If no wait state needs inserted, NWAIT should be kept high or  
the wait feature should be disabled (WAITEN=0) in the control register.  
78/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 36. NAND controller timing for read access  
Electrical characteristics  
FSMC_NCEx  
t
t
v(NCEx-A)  
h(NCEx-AI)  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
t
d(NCEx-NOE)  
t
FSMC_NOE (NRE)  
FSMC_D[15:0]  
t
su(D-NOE)  
h(NOE-D)  
t
d(NOE-NWAITL)  
t
t
d(NOE-NWAITH)  
d(NWAIT-NOE)  
FSMC_NWAIT  
(PWAITEN = 1b)  
ai14901  
Figure 37. NAND controller timing for write access  
FSMC_NCEx  
t
t
h(NCEx-AI)  
v(NCEx-A)  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
t
d(NCEx-NWE)  
FSMC_NWE  
t
d(NWE-NCEx)  
FSMC_NOE (NRE)  
MEMxHIZ =1  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
t
d(NWE-NWAITH)  
t
t
d(NWE-NWAITL)  
d(NWAIT-NWE)  
FSMC_NWAITW  
(PWAITEN = 1b)  
ai14902  
79/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 38. NAND controller timing for common memory read access  
FSMC_NCEx  
t
t
iv(NCEx-AI)  
v(NCEx-A)  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
t
t
w(NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0]  
FSMC_NWAIT  
t
d(NOE-NWAITH)  
t
t
d(NWAIT-NOE)  
d(NOE-NWAITL)  
(PWAITEN = 1b)  
ai14912  
Figure 39. NAND controller timing for common memory write access  
FSMC_NCEx  
t
t
h(NCEx-AI)  
v(NCEx-A)  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
t
t
w(NWE)  
d(NWE-NCEx)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
d(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
t
t
d(NWE-NWAITH)  
d(NWAIT-NWE)  
t
d(NWE-NWAITL)  
FSMC_NWAIT  
(PWAITEN = 1b)  
ai14913  
80/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1)  
Table 39. Switching characteristics for NAND Flash read and write cycles  
Timing  
Symbol  
Parameter  
Unit  
Min  
Max  
tv(NCEx-A)  
th(NCEx-AI)  
FSMC_NCEx low (x = 2/3) to FSMC_Ay valid (y = 16/17)  
-
TBD  
ns  
ns  
FSMC_NCEx high (x = 2/3) to FSMC_Ax invalid (x =  
16/17)  
TBD  
-
td(D-NWE)  
td(NWE-D)  
td(NCEx-NOE)  
tw(NOE)  
FSMC_D[15:0] valid before FSMC_NWE high  
FSMC_D[15:0] valid after FSMC_NWE high  
FSMC_NCEx low to FSMC_NOE low  
FSMC_NOE low width  
TBD  
TBD  
-
-
-
ns  
ns  
ns  
TBD  
TBD  
TBD cycles/ns  
th(NWE-D)  
FSMC_NWE high to FSMC_D[15:0] invalid  
ns  
td(NOE-NWAITL) FSMC_NWAIT low after FSMC_NOE low(2)  
td(NOE-NWAITH) FSMC_NWAIT high after FSMC_NOE low(2)  
TBD  
TBD  
TBD  
TBD  
TBD  
-
td(NWAIT-NOE)  
tsu(D-NOE)  
FSMC_NOE high after FSMC_NWAIT high  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_D[15:0] valid data after FSMC_NOE high  
FSMC_NCEx low to FSMC_NWE low  
FSMC_NWE low width  
-
ns  
ns  
ns  
ns  
-
-
th(NOE-D)  
td(NCEx-NWE)  
tw(NWE)  
TBD  
TBD  
TBD  
TBD cycles/ns  
ns  
td(NWE-NCEx)  
FSMC_NWE high to FSMC_NCEx high  
td(NWE-NWAITL) FSMC_NWAIT low after FSMC_NWE low(2)  
td(NWE-NWAITH) FSMC_NWAIT high after FSMC_NWE low(2)  
td(NWAIT-NWE) FSMC_NWE high after FSMC_NWAIT high  
TBD  
ns  
ns  
ns  
ns  
ns  
TBD  
TBD  
-
-
TBD  
-
tv(NWE-D)  
th(NWE-D)  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
TBD  
1. TBD = to be determined.  
2. When one or more wait states are inserted. If no wait state needs inserted, NWAIT should be kept high or  
the wait feature should be disabled (WAITEN=0) in the control register.  
81/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 40. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 40. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK=48 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
conforms to IEC 1000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 48 MHz  
conforms to IEC 1000-4-4  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
82/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electromagnetic Interference (EMI)  
Electrical characteristics  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J  
1752/3 standard which specifies the test board and the pin loading.  
(1)  
Table 41. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz 8/72 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
VDD = 3.3 V, TA = 25 °C,  
LQFP100 package  
compliant with SAE J  
1752/3  
dBµV  
-
SEMI  
Peak level  
1. TBD = to be determined.  
5.3.12  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 42. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
TA = +25 °C  
conforming to  
JESD22-A114  
Electrostatic discharge  
voltage (human body model)  
VESD(HBM)  
2
2000  
500  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C  
conforming to  
JESD22-C101  
II  
1. Values based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
83/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 43. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
5.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 44 are derived from tests  
performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL  
compliant.  
Table 44. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage(1)  
–0.5  
0.8  
V
Standard IO input high level  
voltage(1)  
2
2
VDD+0.5  
5.5V  
TTL ports  
VIH  
IO FT(2) input high level  
voltage(1)  
VIL  
Input low level voltage(1)  
Input high level voltage(1)  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
VIH  
0.65 VDD  
Standard IO Schmitt trigger  
voltage hysteresis(3)  
200  
mV  
mV  
Vhys  
IO FT Schmitt trigger voltage  
hysteresis(3)  
(4)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1
3
Ilkg  
Input leakage current (5)  
µA  
VIN= 5 V  
I/O FT  
Weak pull-up equivalent  
resistor(6)  
RPU  
VIN = VSS  
VIN = VDD  
30  
30  
40  
50  
50  
kΩ  
Weak pull-down equivalent  
resistor(6)  
RPD  
CIO  
40  
5
kΩ  
I/O pin capacitance  
pF  
1. Values based on characterization results, and not tested in production.  
2. FT = Five-volt tolerant.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. With a minimum of 100 mV.  
5. Leakage could be higher than max. if negative current is injected on adjacent pins.  
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable  
PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).  
84/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Output driving current  
Electrical characteristics  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 7).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 7).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 9. All I/Os are CMOS and TTL compliant.  
Table 45. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
TTL port  
IIO = +8 mA  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
1.3  
0.4  
CMOS port  
IIO =+ 8mA  
V
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
VDD–1.3  
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
85/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 40 and  
Table 46, respectively.  
Unless otherwise specified, the parameters given in Table 46 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 9.  
(1)  
Table 46. I/O AC characteristics  
MODEx[1:0]  
Symbol  
Parameter  
Conditions  
Min Max Unit  
bit value(1)  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low  
tf(IO)out  
125(3)  
10  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
125(3)  
10  
level rise time  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
MHz  
ns  
Output high to low  
tf(IO)out  
25(3)  
01  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
25(3)  
level rise time  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
MHz  
MHz  
MHz  
20  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Output high to low  
level fall time  
5(3)  
8(3)  
12(3)  
5(3)  
8(3)  
12(3)  
11  
tf(IO)out  
tr(IO)out  
tEXTIpw  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
ns  
Output low to high  
level rise time  
Pulse width of  
external signals  
detected by the EXTI  
controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 40.  
3. Values based on design simulation and validated on silicon, not tested in production.  
86/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 40. I/O AC characteristics definition  
Electrical characteristics  
90%  
50%  
10 %  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) £ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 44).  
PU  
Unless otherwise specified, the parameters given in Table 47 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 9.  
Table 47. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST Input low level voltage  
VIH(NRST) NRST Input high level voltage  
–0.5  
2
0.8  
V
VDD+0.5  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
200  
40  
RPU  
Weak pull-up equivalent resistor(1)  
VIN = VSS  
30  
50  
kΩ  
ns  
ns  
VF(NRST) NRST Input filtered pulse(2)  
100  
VNF(NRST) NRST Input not filtered pulse(2)  
300  
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
2. Values guaranteed by design, not tested in production.  
87/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 41. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
R
PU  
Internal Reset  
NRST  
FILTER  
0.1 µF  
STM32F101xx  
ai14132b  
5. The reset network protects the device against parasitic resets.  
6. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 47. Otherwise the reset will not be taken into account by the device.  
5.3.15  
TIM timer characteristics  
The parameters given in Table 48 are guaranteed by fabrication.  
Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 48. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
tres(TIM)  
Timer resolution time  
fTIMxCLK = 72 MHz 13.9  
0
fTIMxCLK/2  
36  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 72 MHz  
0
MHz  
ResTIM  
Timer resolution  
16  
bit  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
tCOUNTER  
fTIMxCLK = 72 MHz 0.0139  
910  
µs  
tTIMxCLK  
s
65536 × 65536  
59.6  
tMAX_COUNT  
Maximum possible count  
fTIMxCLK = 72 MHz  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
88/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.16  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 49 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 9.  
2
I
The STM32F103xC performance line C interface meets the requirements of the standard  
2
I C communication protocol with the following restrictions: the I/O pins SDA and SCL are  
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 49. Refer also to Section 5.3.13: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 49. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
1.3  
0.6  
µs  
250  
0(3)  
100  
0(4)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20 + 0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
20 + 0.1Cb  
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
400  
400  
pF  
Values based on standard I2C protocol requirement, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
89/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
2
Figure 42. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F103xx  
SDA  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
2
I C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14149b  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
(1)(2)(3)  
Table 50. SCL frequency (f  
fSCL (kHz)  
= 36 MHz.,VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 kΩ  
400  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
300  
200  
100  
50  
20  
1. TBD = to be determined.  
2. RP = External pull-up resistance, fSCL = I2C speed,  
3. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
90/118  
STM32F103xC, STM32F103xD, STM32F103xE  
I2S - SPI characteristics  
Electrical characteristics  
2
Unless otherwise specified, the parameters given in Table 51 for SPI or in Table 52 for I S  
are derived from tests performed under ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 9.  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1) (2)  
Table 51. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode  
Slave mode  
0
0
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
(3)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
tC(SCK)  
(3)  
th(NSS)  
0.5tC(SCK)  
(3)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4  
50  
60  
(3)  
(3)  
Master mode  
Data input setup time  
10  
tsu(MI)  
tsu(SI)  
(3)  
Slave mode  
5
Master mode, fPCLK = 36 MHz, presc = 4  
15  
(3)  
Slave mode, fPCLK = 36 MHz, presc = 4  
Data input hold time  
5
th(MI)  
th(SI)  
(3)  
Master mode, fPCLK = TBD  
TBD(4)  
Slave mode, fPCLK = TBD  
TBD(4)  
ns  
Slave mode, fPCLK = 36 MHz, presc = 4  
Data output access time  
0
0
5
60  
(3)(5)  
(3)(6)  
ta(SO)  
Slave mode, fPCLK = TBD  
TBD  
TBD  
tdis(SO)  
Data output disable time Slave mode  
Slave mode (after enable edge),  
fPCLK = 36 MHz, presc = 4  
Data output valid time  
30  
TBD  
10  
(3)(1)  
tv(SO)  
fPCLK = TBD  
Master mode (after enable edge),  
fPCLK = 36 MHz, presc = 4  
(3)(1)  
(3)  
tv(MO)  
Data output valid time  
fPCLK = TBD  
TBD  
30  
TBD  
th(SO)  
Slave mode (after enable edge)  
Data output hold time  
(3)  
th(MO)  
Master mode (after enable edge)  
10  
1. TBD = to be determined.  
2. Remapped SPI1 characteristics to be determined.  
3. Values based on design simulation and/or characterization results, and not tested in production.  
4. Depends on fPCLK. For example, if fPCLK= 8MHz, then tPCLK = 1/fPLCLK =125 ns and tv(MO) = 255 ns.  
5. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
6. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z  
91/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 43. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
c(SCK)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
(1)  
Figure 44. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
92/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 45. SPI timing diagram - master mode  
Electrical characteristics  
(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTPUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
93/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
2
(1)  
Table 52. I S characteristics  
Symbol  
Parameter  
Conditions  
Master  
Min  
Max  
Unit  
TBD  
0
TBD  
TBD  
fCK  
I2S clock frequency  
MHz  
1/tc(CK)  
Slave  
tr(CK)  
tf(CK)  
capacitive load  
CL = 50 pF  
I2S clock rise and fall time  
TBD  
(2)  
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master  
Master  
Slave  
TBD  
TBD  
TBD  
TBD  
(2)  
th(WS)  
(2)  
tsu(WS)  
(2)  
th(WS)  
Slave  
(2)  
(2)  
tw(CKH)  
tw(CKL)  
Master fPCLK= TBD,  
presc = TBD  
CK high and low time  
Data input setup time  
Data input hold time  
Data input hold time  
TBD  
(2)  
(2)  
tsu(SD_MR)  
tsu(SD_SR)  
Master receiver  
Slave receiver  
TBD  
TBD  
(2)(3)  
(2)(3)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
TBD  
TBD  
ns  
(2)  
(2)  
th(SD_MR)  
th(SD_SR)  
Master fPCLK = TBD  
Slave fPCLK = TBD  
TBD  
TBD  
Slave transmitter  
(after enable edge)  
TBD  
TBD  
(2)(3)  
(2)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
fPCLK = TBD  
Slave transmitter  
(after enable edge)  
TBD  
Master transmitter  
(after enable edge)  
TBD  
TBD  
(2)(3)  
(2)  
fPCLK = TBD  
TBD  
TBD  
Master transmitter  
(after enable edge)  
1. TBD = to be determined.  
2. Data based on design simulation and/or characterization results, not tested in production.  
3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.  
94/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
2
(1)  
Figure 46. I S slave timing diagram  
t
c(CK)  
CPOL = 0  
CPOL = 1  
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
WS input  
t
t
t
h(SD_ST)  
t
v(SD_ST)  
su(WS)  
SD  
transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
Bit1 receive  
LSB receive  
SD  
receive  
ai14881  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD  
.
2
(1)  
Figure 47. I S master timing diagram  
t
t
f(CK)  
r(CK)  
t
c(CK)  
CPOL = 0  
t
w(CKH)  
CPOL = 1  
t
t
t
v(WS)  
h(WS)  
w(CKL)  
WS output  
t
t
h(SD_MT)  
t
v(SD_MT)  
su(SD_MR)  
SD  
receive  
MSB receive  
Bitn receive  
LSB receive  
t
h(SD_MR)  
Bitn transmit  
MSB transmit  
LSB transmit  
SD  
transmit  
ai14884  
1. Data based on design simulation and/or characterization results, not tested in production.  
95/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 9.  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
function characteristics (D[7:0], CMD, CK).  
Figure 48. SDIO high-speed mode  
t
t
r
f
t
C
t
t
W(CKH)  
W(CKL)  
CK  
t
t
OV  
OH  
D, CMD  
(output)  
t
t
ISU  
IH  
D, CMD  
(input)  
ai14887  
Figure 49. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
96/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 53. SD / MMC characteristics  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Clock frequency in data transfer  
mode  
fPP  
CL 30 pF  
0
TBD  
MHz  
tW(CKL)  
Clock low time  
Clock high time  
Clock rise time  
Clock fall time  
CL 30 pF  
CL 30 pF  
CL 30 pF  
CL 30 pF  
TBD  
TBD  
tW(CKH)  
ns  
tr  
tf  
TBD  
TBD  
tC  
CMD, D inputs (referenced to CK)  
tISU  
tIH  
Input setup time  
Input hold time  
CL 30 pF  
CL 30 pF  
TBD  
TBD  
ns  
ns  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time  
Output hold time  
CL 30 pF  
CL 30 pF  
TBD  
TBD  
TBD  
CMD, D outputs (referenced to CK) in SD default mode(1)  
tOVD  
tOHD  
Output valid default time  
Output hold default time  
CL 30 pF  
CL 30 pF  
ns  
TBD  
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.  
USB characteristics  
The USB interface is USB-IF certified (Full Speed).  
Table 54. USB startup time  
Symbol  
tSTARTUP  
Parameter  
Max  
Unit  
µs  
USB transceiver startup time  
1
97/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 55. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VUSB  
USB voltage(2)  
Within VDD voltage range  
I(USBDP, USBDM)  
3.0(3)  
0.2  
3.6  
V
V
(4)  
VDI  
Differential input sensitivity  
(4)  
VCM  
Differential common mode range Includes VDI range  
Single ended receiver threshold  
0.8  
2.5  
2.0  
(4)  
VSE  
1.3  
Output levels  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩto 3.6 V(5)  
0.3  
3.6  
V
(5)  
RL of 15 kΩto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled  
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.  
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
4. Guaranteed by characterization, not tested in production.  
RL is the load connected on the USB drivers  
5.  
Figure 50. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 56.  
Symbol  
USB: full-speed electrical characteristics  
Driver characteristics(1)  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by characterization, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
5.3.17  
CAN (controller area network) interface  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANTX and CANRX).  
98/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.18  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 9.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 57. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
VREF+  
fADC  
ADC power supply  
2.4  
2.4  
0.6  
3.6  
VDDA  
14  
V
V
Positive reference voltage  
ADC clock frequency  
MHz  
(1)  
Sampling rate  
0.05  
1
MHz  
fS  
823  
17  
kHz  
(1)  
External trigger frequency  
fADC = 14 MHz  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
Conversion voltage range(2)  
VREF+  
V
VAIN  
(1)  
RAIN  
External input impedance  
Sampling switch resistance  
See Equation 1 and Table 58  
kΩ  
kΩ  
(1)  
1
RADC  
Internal sample and hold  
capacitor  
(1)  
5
pF  
CADC  
5.9  
83  
µs  
1/fADC  
µs  
(1)  
Calibration time  
fADC = 14 MHz  
fADC = 14 MHz  
tCAL  
0.214  
Injection trigger conversion  
latency  
(1)  
tlat  
3(3)  
0.143  
2(3)  
1/fADC  
µs  
Regular trigger conversion  
latency  
(1)  
f
ADC = 14 MHz  
tlatr  
1/fADC  
µs  
0.107  
1.5  
0
17.1  
239.5  
1
(1)  
Sampling time  
Power-up time  
fADC = 14 MHz  
tS  
1/fADC  
µs  
(1)  
tSTAB  
0
1
18  
µs  
Total conversion time  
(including sampling time)  
(1)  
fADC = 14 MHz  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Guaranteed by design, not tested in production.  
2. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 3: Pin descriptions for further details.  
3. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 57.  
99/118  
Electrical characteristics  
Equation 1: R  
STM32F103xC, STM32F103xD, STM32F103xE  
max formula:  
AIN  
TS  
RAIN < --------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 58.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (kΩ)  
1.5  
0.11  
1.2  
10  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
19  
41  
60  
80  
104  
350  
1. Data guaranteed by design, not tested in production.  
(1)  
Table 59. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
Total unadjusted error(3)  
Offset error(3)  
fPCLK2 = 56 MHz,  
1.3  
1
2
1.5  
1.5  
1
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error(3)  
0.5  
0.7  
LSB  
Differential linearity error(3)  
Measurements made after  
ADC calibration  
VREF+ = VDDA  
EL  
Integral linearity error(3)  
0.8  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. Data based on characterization, not tested in production.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
100/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1) (2)  
Table 60. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error(4)  
Offset error(3)  
2
5
25  
3
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 kΩ,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error(3)  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error(3)  
Integral linearity error(3)  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. Data based on characterization, not tested in production.  
4. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
Figure 51. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
101/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 52. Typical connection diagram using the ADC  
V
DD  
STM32F103xx  
V
0.6 V  
T
(1)  
AIN  
(1)  
ADC  
R
R
I
AINx  
12-bit A/D  
conversion  
(1)  
C
ADC  
V
T
1 µA  
V
C
L
AIN  
0.6 V  
AIN  
ai14150b  
1. Refer to Table 57 for the values of CAIN, RAIN, RADC and CADC  
.
2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and  
PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion  
accuracy. To remedy this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 53 or Figure 54,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 53. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F103xx  
V
REF+  
(see note 1)  
1 µF // 10 nF  
V
DDA  
SSA  
1 µF // 10 nF  
V
/V  
REF–  
(see note 1)  
ai14388b  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
102/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 54. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F103xx  
V
/V  
REF+ DDA  
(See note 1)  
1 µF // 10 nF  
V
/V  
REF– SSA  
(See note 1)  
ai14389  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
103/118  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.19  
DAC electrical specifications  
Table 61. DAC characteristics  
Symbol  
Parameter  
Min Typ  
Max(1)  
Unit  
Comments  
VDD33A  
VDD18D  
Analog supply voltage  
Digital supply voltage  
2.4  
3.6  
2
V
V
1.6  
2.4  
0
1.8  
VREF+ must always be below  
VDD33A  
VREF+  
VSSA  
RL  
Reference supply voltage  
Ground  
3.6  
0
V
V
Minimum resistive load between  
DAC_OUT and VSSA  
Resistive load with buffer ON  
5
kΩ  
Maximum capacitive load at  
DAC_OUT pin.  
CL  
Capacitive load  
50  
pF  
V
DAC_OUT Lower DAC_OUT voltage with  
min buffer ON  
It gives the maximum output  
excursion of the DAC  
0.2  
it corresponds to 12-bit input  
code (0E0)h to (F1C)h @ VREF+  
= 3.6 V and (155)h and (EAB)h  
@ VREF+ = 2.4 V  
DAC_OUT Higher DAC_OUT voltage with  
VREF+– 0.2 V  
V
max  
buffer ON  
With no load, middle code  
(800)H on the inputs  
425  
500  
600  
µA  
DAC DC current consumption  
in quiescent mode (Standby  
With no load, worst code  
(F1C)H @ VREF+ = 3.6 V in  
terms of DC consumption on the  
inputs  
IDD  
mode) (in VDD18D+VDD33A  
VREF+  
+
700  
µA  
)
DAC DC current consumption  
in Power Down mode (in  
5
350  
200  
VDD18D+VDD33A+VREF+  
)
IDDQ  
nA With no load.  
DAC DC current consumption  
in Power Down mode (in  
5
VDD33A+VREF+  
)
Differential non linearity  
(Difference between two  
consecutive code-1LSB)  
Given for the DAC in 10-bit  
configuration (B1=B0=0 always)  
DNL  
INL  
0.5  
LSB  
LSB  
Integral non linearity (difference  
between measured value at  
Code i and the value at Code i  
on a line drawn between Code  
0 and last Code 1023)  
Given for the DAC in 10-bit  
configuration (B1=B0=0 always)  
1
Given for the DAC in 10-bit  
configuration (B1=B0=0 always)  
Offset error  
10  
3
mV  
LSB  
%
(difference between measured  
value at Code (800)H and the  
ideal value = VREF+/2  
Offset  
Given for the DAC in 10-bit @  
VREF+ = 3.6 V  
Given for the DAC in 10-bit  
configuration (B1=B0=0 always)  
Gain error Gain error  
0.5  
104/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 61. DAC characteristics (continued)  
Electrical characteristics  
Comments  
Symbol  
Parameter  
Min Typ  
Max(1)  
Unit  
Amplifier  
gain  
Gain of the amplifier in open  
loop  
80  
85  
dB with a 5 kΩ load (worst case)  
Settling time (full scale: for an  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final value  
1LSB  
CLOAD 50 pF,  
µs  
tSETTLING  
3
4
1
RLOAD 5 kΩ  
Max frequency for a correct  
DAC_OUT change when small  
variation in the input code (from  
code i to i+1LSB)  
Update  
rate  
CLOAD 50 pF,  
MS/s  
RLOAD 5 kΩ  
CLOAD 50 pF,  
RLOAD 5 kΩ  
input code between lowest and  
Wakeup time from off state  
(PDV18 from 1 to 0)  
tWAKEUP  
6.5  
10  
µs  
highest possible ones.  
Power supply rejection ratio (to  
VDD33A) (static DC  
PSRR+  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
measurement  
1. Guaranteed by characterization, not tested in production.  
5.3.20  
Temperature sensor characteristics  
Table 62. TS characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
°C  
1
4.3  
2
4.6  
1.52  
10  
Avg_Slope(1)  
Average slope  
Voltage at 25 °C  
Startup time  
4.0  
1.34  
4
mV/°C  
V
(1)  
V25  
1.43  
(2)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(3)(2)  
TS_temp  
2.2  
17.1  
µs  
1. Guaranteed by characterization, not tested in production.  
2. Data guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
105/118  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
6
Package characteristics  
6.1  
Package mechanical data  
®
In order to meet environmental requirements, ST offers these devices in ECOPACK  
packages. These packages have a Lead-free second-level interconnect. The category of  
second-level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97.  
The maximum ratings related to soldering conditions are also marked on the inner box label.  
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.  
106/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
Figure 55. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
Figure 56. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
Seating plane  
C
A
A2 A1  
c
b
0.25 mm  
gage plane  
ccc  
C
D
k
0.5  
0.35  
D1  
A1  
D3  
L
108  
73  
22.6  
19.9  
L1  
72  
109  
19.9  
1.35  
17.85  
22.6  
E1  
E
E3  
ai14905b  
144  
37  
Pin 1  
identification  
1
36  
e
ME_1A  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 63. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
22.00  
20.00  
17.50  
22.00  
20.00  
17.50  
0.50  
21.80  
19.80  
22.20  
20.20  
0.8661  
0.7874  
0.689  
D1  
D3  
E
0.7953  
21.80  
19.80  
22.20  
20.20  
0.8661  
0.7874  
0.689  
0.8583  
0.7795  
0.874  
E1  
E3  
e
0.7953  
0.0197  
0.0236  
0.0394  
3.5°  
L
0.60  
0.45  
0.75  
7°  
0.0177  
0.0295  
7°  
L1  
k
1.00  
3.5°  
0°  
0°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
107/118  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 57. LFBGA100 - low profile fine pitch ball grid array package outline  
Seating plane  
C
ddd  
C
A2 A4 A3  
A1  
A
D
B
D1  
F
e
A
K
J
F
H
G
F
E
E1  
E
D
C
B
A
e
1
2
3
4
5
6
7 8 9 10  
A1 corner index area  
(see note 5)  
b(100 balls)  
eee  
C
C
A
B
M
M
fff  
Bottom view  
ai14396  
Table 64. LFBGA100 - low profile fine pitch ball grid array package mechanical data  
mm  
inches(1)  
Dim.  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
1.700  
0.0026  
A1  
A2  
A3  
A4  
b
0.270  
0.0004  
1.085  
0.30  
0.0017  
0.0005  
0.80  
0.55  
0.0012  
0.0009  
0.0157  
0.45  
9.85  
0.50  
10.00  
7.20  
10.00  
7.20  
0.80  
1.40  
0.12  
0.15  
0.08  
0.0007  
0.0153  
0.0008  
0.0155  
0.0111  
0.0155  
0.0111  
0.0012  
0.0022  
0.0002  
0.0002  
0.0001  
D
10.15  
D1  
E
9.85  
10.15  
0.0153  
0.0157  
E1  
e
F
ddd  
eee  
fff  
N (number of balls)  
100  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
108/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
Figure 58. Recommended PCB design rules (0.80/0.75 mm pitch BGA)  
Dpad  
Dsm  
0.37 mm  
0.52 mm typ. (depends on solder  
mask registration tolerance  
Solder paste 0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
109/118  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)(2)  
Figure 59. LQFP100, 100-pin low-profile quad flat  
Figure 60. Recommended footprint  
(1)  
package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
75  
51  
k
76  
50  
D
0.5  
L
D1  
L1  
D3  
51  
75  
C
0.3  
76  
50  
.3  
b
E3 E1  
E
100  
26  
1.2  
1
25  
100  
26  
Pin 1  
1
25  
ccc  
C
identification  
12.3  
16.7  
e
A1  
A2  
A
ai14906  
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 65. LQPF100 – 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
15.80  
13.80  
16.20  
14.20  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.20  
14.20  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.60  
0.45  
0.75  
7°  
0.0177  
0.0295  
7°  
L1  
k
1.00  
3.5°  
0°  
0°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
110/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 61. LQFP64 – 64 pin low-profile quad flat  
Package characteristics  
(1)(2)  
Figure 62. Recommended footprint  
(1)  
package outline  
D
A
48  
33  
D1  
A2  
0.3  
A1  
49  
32  
0.5  
b
12.7  
10.3  
E1  
E
e
10.3  
64  
17  
1.2  
1
16  
c
7.8  
L1  
12.7  
L
ai14398  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 66. LQFP64 – 64 pin low-profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
111/118  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 63. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline  
Seating plane  
C
A2  
A4  
ddd  
C
A
A3  
A1  
B
D
D1  
A
e
F
M
F
E1  
E
e
12  
Øb (144 balls)  
C
A
B
M
Øeee  
Ø fff  
M
C
X3_ME  
1. Drawing is not to scale.  
Table 67. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data  
millimeters  
inches(1)  
Symbol  
Typ  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
1.70  
0.0669  
0.21  
0.0083  
1.07  
0.27  
0.0421  
0.0106  
0.85  
0.45  
0.0335  
0.0177  
0.3996  
0.35  
9.85  
0.40  
10.00  
8.80  
10.00  
8.80  
0.80  
0.60  
0.10  
0.15  
0.08  
0.0138  
0.3878  
0.0157  
0.3937  
0.3465  
0.3937  
0.3465  
0.0315  
0.0236  
0.0039  
0.0059  
0.0031  
D
10.15  
D1  
E
9.85  
10.15  
0.3878  
0.3996  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
112/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 9: General operating conditions on page 38.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 68. Thermal characteristics  
Symbol  
Parameter  
Thermal resistance junction-ambient  
Value  
Unit  
TBD  
LFBGA144 - 10 × 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
TBD  
41  
Thermal resistance junction-ambient  
LFBGA100 - 10 × 10 mm / 0.5 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
46  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
45  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
113/118  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
6.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 69: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F103xC at maximum dissipation, it is  
useful to calculate the exact power consumption and junction temperature to determine  
which temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 464 mW  
Dmax  
Using the values obtained in Table 68 T  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 69: Ordering information scheme).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
114/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
is calculated as follows:  
Using the values obtained in Table 68 T  
Jmax  
T
For LQFP100, 46 °C/W  
= 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Table 69: Ordering information scheme).  
Figure 64. LQFP100 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
115/118  
Part numbering  
STM32F103xC, STM32F103xD, STM32F103xE  
7
Part numbering  
Table 69. Ordering information scheme  
Example:  
STM32  
F 103 R  
C
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
103 = performance line  
Pin count  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
C = 256 Kbytes of Flash memory  
D = 384 Kbytes of Flash memory  
E = 512 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
116/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Revision history  
8
Revision history  
Table 70. Document revision history  
Date  
Revision  
Changes  
07-Apr-2008  
1
Initial release.  
Document status promoted from Target Specification to Preliminary  
Data.  
Section 1: Introduction and Section 2.2: Full compatibility throughout  
the family modified. Small text changes.  
Note 2 added in Table 2: STM32F103xC, STM32F103xD and  
STM32F103xE features and peripheral counts on page 9.  
LQPF100/BGA100 column added to Table 5: FSMC pin definition on  
page 32.  
Values and Figures added to Maximum current consumption on  
page 40 (see Table 13, Table 14, Table 15 and Table 16 and see  
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17).  
Values added to Typical current consumption on page 46 (see Table 17,  
Table 18 and Table 19). Table 19: Typical current consumption in  
Standby mode removed.  
22-May-2008  
2
Note 4 and Note 1 added to Table 55: USB DC electrical characteristics  
and Table 56: USB: full-speed electrical characteristics on page 98,  
respectively.  
VUSB added to Table 55: USB DC electrical characteristics on page 98.  
Figure 56: Recommended footprint(1) on page 107 corrected.  
Equation 1 corrected. Figure 64: LQFP100 PD max vs. TA on page 115  
modified.  
Tolerance values corrected in Table 67: LFBGA144 – 144-ball low  
profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package  
data on page 112.  
117/118  
STM32F103xC, STM32F103xD, STM32F103xE  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
118/118  

相关型号:

STM32F103VDH6TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDH6XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDH7TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDH7XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDH7XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,BGA,100PIN,PLASTIC
STMICROELECTR

STM32F103VDT6

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDT6TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDT6XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDT7TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR

STM32F103VDT7XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR
STMICROELECTR

STM32F103VDY6TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
STMICROELECTR