STM32F103ZEH6TR [STMICROELECTRONICS]

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces; 高密度高性能线的基于ARM的32位MCU,具有256至512KB闪存, USB , CAN ,11个定时器, 3的ADC ,13个通信接口
STM32F103ZEH6TR
型号: STM32F103ZEH6TR
厂家: ST    ST
描述:

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces
高密度高性能线的基于ARM的32位MCU,具有256至512KB闪存, USB , CAN ,11个定时器, 3的ADC ,13个通信接口

闪存 通信
文件: 总123页 (文件大小:1691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F103xC STM32F103xD  
STM32F103xE  
High-density performance line ARM-based 32-bit MCU with 256 to  
512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces  
Features  
FBGA  
Core: ARM 32-bit Cortex™-M3 CPU  
WLCSP64  
LQFP64 10 × 10 mm,  
– 72 MHz maximum frequency,  
LFBGA100 10 × 10 mm  
LQFP100 14 × 14 mm,  
LFBGA144 10 × 10 mm  
1.25 DMIPS/MHz (Dhrystone 2.1)  
LQFP144 20 × 20 mm  
performance at 0 wait state memory  
access  
Up to 112 fast I/O ports  
– 51/80/112 I/Os, all mappable on 16  
external interrupt vectors and almost all  
5 V-tolerant  
– Single-cycle multiplication and hardware  
division  
Memories  
Up to 11 timers  
– 256 to 512 Kbytes of Flash memory  
– up to 64 Kbytes of SRAM  
– Flexible static memory controller with 4  
Chip Select. Supports Compact Flash,  
SRAM, PSRAM, NOR and NAND memories  
– Up to four 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input  
– 2 × 16-bit motor control PWM timers with  
dead-time generation and emergency stop  
– LCD parallel interface, 8080/6800 modes  
– 2 × watchdog timers (Independent and  
Window)  
Clock, reset and supply management  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR, and programmable voltage  
detector (PVD)  
– SysTick timer: a 24-bit downcounter  
– 2 × 16-bit basic timers to drive the DAC  
Up to 13 communication interfaces  
2
– 4-to-16 MHz crystal oscillator  
– Up to 2 × I C interfaces (SMBus/PMBus)  
– Internal 8 MHz factory-trimmed RC  
– Internal 40 kHz RC with calibration  
– 32 kHz oscillator for RTC with calibration  
– Up to 5 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– Up to 3 SPIs (18 Mbit/s), 2 with I S  
interface multiplexed  
– CAN interface (2.0B Active)  
– USB 2.0 full speed interface  
– SDIO interface  
2
Low power  
– Sleep, Stop and Standby modes  
– V  
supply for RTC and backup registers  
BAT  
3 × 12-bit, 1 µs A/D converters (up to 21  
CRC calculation unit, 96-bit unique ID  
channels)  
®
ECOPACK packages  
– Conversion range: 0 to 3.6 V  
Triple-sample and hold capability  
Temperature sensor  
Table 1.  
Device summary  
Part number  
Reference  
2 × 12-bit D/A converters  
STM32F103RC STM32F103VC  
STM32F103ZC  
DMA: 12-channel DMA controller  
STM32F103xC  
STM32F103xD  
STM32F103xE  
– Supported peripherals: timers, ADCs, DAC,  
2
2
SDIO, I Ss, SPIs, I Cs and USARTs  
STM32F103RD STM32F103VD  
STM32F103ZD  
Debug mode  
STM32F103RE STM32F103ZE  
STM32F103VE  
– Serial wire debug (SWD) & JTAG interfaces  
– Cortex-M3 Embedded Trace Macrocell™  
September 2009  
Doc ID 14611 Rev 7  
1/123  
www.st.com  
1
Contents  
STM32F103xC, STM32F103xD, STM32F103xE  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
2.3  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
®
2.3.1  
2.3.2  
2.3.3  
2.3.4  
2.3.5  
2.3.6  
2.3.7  
2.3.8  
2.3.9  
ARM Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 15  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 15  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 15  
LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16  
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.3.10 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.11 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.12 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.3.14 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.15 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.16 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 18  
2.3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2.3.18 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs) 21  
2.3.20 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
2.3.21 Inter-integrated sound (I S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.22 SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.23 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2.3.24 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.25 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.26 ADC (analog to digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.27 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2.3.28 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Contents  
2.3.29 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.3.30 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3
4
5
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 43  
Embedded reset and power control block characteristics . . . . . . . . . . . 43  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 81  
5.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
5.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
5.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
5.3.17 CAN (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . . . 97  
5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Doc ID 14611 Rev 7  
3/123  
Contents  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.2.1  
6.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 115  
7
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
4/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F103xC, STM32F103xD and STM32F103xE features and peripheral counts . . . . 11  
STM32F103xx family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
High-density timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High-density STM32F103xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Maximum current consumption in Run mode, code with data processing  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Maximum current consumption in Run mode, code with data processing  
Table 15.  
running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . 47  
Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 48  
Typical current consumption in Run mode, code with data processing  
Table 16.  
Table 17.  
Table 18.  
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Typical current consumption in Sleep mode, coderunning from Flash or  
Table 19.  
RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 62  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 63  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Switching characteristics for PC Card/CF read and write cycles . . . . . . . . . . . . . . . . . . . . 76  
Switching characteristics for NAND Flash read and write cycles . . . . . . . . . . . . . . . . . . . . 79  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Doc ID 14611 Rev 7  
5/123  
List of tables  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
SCL frequency (f  
= 36 MHz.,V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
USB: full-speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
R
max for f  
= 14 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
AIN  
ADC  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale  
Table 65.  
Table 66.  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 111  
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 112  
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 113  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
6/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F103xC and STM32F103xE performance line BGA144 ballout . . . . . . . . . . . . . . . 24  
STM32F103xC and STM32F103xE performance line BGA100 ballout . . . . . . . . . . . . . . . 25  
STM32F103xC and STM32F103xE performance line LQFP144 pinout. . . . . . . . . . . . . . . 26  
STM32F103xC and STM32F103xE performance line LQFP100 pinout. . . . . . . . . . . . . . . 27  
STM32F103xC and STM32F103xE performance line  
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32F103xC and STM32F103xE performance line  
WLCSP64 ballout, ball side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 8.  
Figure 9.  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled. . . . . . . . . . . . . . . . . . 46  
Figure 15. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled . . . . . . . . . . . . . . . . . 46  
Figure 16. Typical current consumption on V  
with RTC on vs. temperature at different V  
BAT  
BAT  
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 17. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DD  
Figure 18. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
DD  
Figure 19. Typical current consumption in Standby mode versus temperature at  
different V values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
DD  
Figure 20. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 21. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 22. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 23. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 62  
Figure 25. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 63  
Figure 26. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 28. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 29. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 31. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 32. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . . 72  
Figure 33. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . . 73  
Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . . 75  
Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . . 76  
Figure 38. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Doc ID 14611 Rev 7  
7/123  
List of figures  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 39. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 40. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . . 78  
Figure 41. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . . 79  
Figure 42. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 43. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2
Figure 44. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 45. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
(1)  
Figure 46. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
(1)  
Figure 47. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
2
(1)  
Figure 48. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
2
(1)  
Figure 49. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 50. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 51. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 52. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 53. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 54. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 55. Power supply and reference decoupling (V  
Figure 56. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 101  
). . . . . . . . . . . . . . . . 102  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 57. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 58. Recommended PCB design rules (0.80/0.75 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . 106  
Figure 59. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 60. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 61. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 62. Recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 63. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
(1)  
Figure 64. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 65. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 112  
(1)  
Figure 66. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 67. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 113  
(1)  
Figure 68. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 69. LQFP100 P max vs. T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
D
A
8/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F103xC, STM32F103xD and STM32F103xE high-density performance line  
microcontrollers. For more details on the whole STMicroelectronics STM32F103xx family,  
please refer to Section 2.2: Full compatibility throughout the family.  
The high-density STM32F103xx datasheet should be read in conjunction with the  
STM32F10xxx reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10xxx Flash programming manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.  
Doc ID 14611 Rev 7  
9/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2
Description  
The STM32F103xC, STM32F103xD and STM32F103xE performance line family  
®
incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a  
72 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and  
SRAM up to 64 Kbytes), and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses. All devices offer three 12-bit ADCs, four general-purpose 16-  
bit timers plus two PWM timers, as well as standard and advanced communication  
2
interfaces: up to two I Cs, three SPIs, two I2Ss, one SDIO, five USARTs, an USB and a  
CAN.  
The STM32F103xx high-density performance line family operates in the –40 to +105 °C  
temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F103xx high-density performance line family offers devices in six different  
package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F103xx high-density performance line microcontroller  
family suitable for a wide range of applications:  
Motor drive and application control  
Medical and handheld equipment  
PC peripherals gaming and GPS platforms  
Industrial applications, PLC, inverters, printers, and scanners  
Alarm systems, video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
10/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
2.1  
Device overview  
Table 2.  
STM32F103xC, STM32F103xD and STM32F103xE features and peripheral  
counts  
Peripherals  
STM32F103Rx  
256 384  
48  
64(1)  
STM32F103Vx  
256 384 512  
48  
STM32F103Zx  
Flash memory in Kbytes  
SRAM in Kbytes  
FSMC  
512  
256  
48  
384  
Yes  
512  
64  
64  
No  
Yes(2)  
General-purpose  
Timers Advanced-control  
Basic  
4
2
2
SPI(I2S)(3)  
3(2)  
I2C  
2
5
1
1
1
USART  
Comm  
USB  
CAN  
SDIO  
GPIOs  
51  
80  
112  
12-bit ADC  
3
3
3
Number of channels  
16  
16  
21  
12-bit DAC  
Number of channels  
2
2
CPU frequency  
72 MHz  
2.0 to 3.6 V  
Operating voltage  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C (see Table 10)  
Junction temperature: –40 to + 125 °C (see Table 10)  
Operating temperatures  
Package  
LQFP64  
WLCSP64  
LQFP100, BGA100 LQFP144, BGA144  
1. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.  
2. For the LQFP100 and BGA100 packages, only FSMC Bank1 and Bank2 are available. Bank1 can only  
support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or  
8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is  
not available in this package.  
3. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the  
I2S audio mode.  
Doc ID 14611 Rev 7  
11/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 1.  
STM32F103xC, STM32F103xD and STM32F103xE performance line block diagram  
TRACECLK  
TRACED[0:3]  
as AS  
@V  
DD  
TPIU  
Trace/trig  
Trace  
controller  
Power  
Pbus  
Ibus  
V
SW/JTAG  
DD  
NJTRST  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Volt. reg.  
3.3 V to 1.8 V  
V
SS  
Flash 512 Kbytes  
64 bit  
Cortex-M3 CPU  
@V  
Supply  
DDA  
Dbus  
System  
as AF  
F
: 48/72 MHz  
max  
NRST  
supervision  
POR  
Reset  
V
POR /PDR  
DDA  
V
SRAM  
SSA  
@V  
DDA  
NVIC  
64 KB  
PVD  
Int  
RC 8 MHz  
RC 40 kHz  
PLL  
GP DMA1  
@V  
DD  
XTAL OSC  
4-16 MHz  
A[25:0]  
D[15:0]  
CLK  
NOE  
NWE  
OSC_IN  
OSC_OUT  
7 channels  
GP DMA2  
IWDG  
5 channels  
PCLK1  
PCLK2  
HCLK  
FCLK  
Reset &  
Clock  
control  
Standby  
interface  
NE[4:1]  
NBL[1:0]  
NWAIT  
NL (or NADV)  
as AF  
V
=1.8 V to 3.6 V  
BAT  
V
@
FSMC  
SDIO  
BAT  
OSC32_IN  
OSC32_OUT  
XTAL32kHz  
Backup  
TAMPER-RTC/  
ALARM/SECOND OUT  
RTC  
AWU  
reg  
D[7:0]  
CMD  
CK as AF  
Backup interface  
AHB2  
APB2  
AHB2  
APB1  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels as AF  
TIM2  
EXT.IT  
WKUP  
112AF  
PA[15:0]  
PB[15:0]  
TIM3  
TIM4  
GPIO port A  
GPIO port B  
GPIO port C  
TIM5  
RX, TX, CTS, RTS,  
CK as AF  
PC[15:0]  
PD[15:0]  
USART2  
USART3  
UART4  
UART5  
RX, TX, CTS, R T S,  
CK as AF  
GPIO port D  
GPIO port E  
PE[15:0]  
PF[15:0]  
PG[15:0]  
RX,TXasAF  
GPIO port F  
GPIO port G  
RX,TX asAF  
MOSI/SD, MISO  
SCK/CK, MCK, NSS/WS as AF  
SPI2/ I2S2  
4 channels  
3 compl. channels  
BKIN, ETR as AF  
4 channels  
3 compl. channels  
BKIN, ETR as AF  
TIM1  
MOSI/SD, MISO  
SCK/CK, MCK, NSS/WS as AF  
SPI3 / I2S3  
TIM8  
I2C1  
I2C2  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
MOSI, MISO,  
SCK, NSS as AF  
SPI1  
SRAM 512 B  
bxCAN device  
RX, TX, CTS,  
RTS, CK as AF  
USART1  
WWDG  
USBDP/CAN_TX  
USBDM/CAN_RX  
USB 2.0 FS  
device  
Temp. sensor  
TIM6  
TIM7  
12bit DAC1  
12bit DAC 2  
IF  
DAC_OUT1 as AF  
DAC_OUT2 as AF  
8 ADC123_INs  
12-bit ADC1 IF  
12-bit ADC2 IF  
12-bit ADC3 IF  
common to the 3 ADCs  
8 ADC12_INs common  
to ADC1 & ADC2  
5 ADC3_INs on ADC3  
@V  
DDA  
VREF–  
VREF+  
@ V  
DDA  
ai14666f  
1. TA = –40 °C to +85 °C (suffix 6, see Table 71) or –40 °C to +105 °C (suffix 7, see Table 71), junction temperature up to  
105 °C or 125 °C, respectively.  
2. AF = alternate function on I/O port pin.  
12/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
Figure 2.  
Clock tree  
USBCLK  
to USB interface  
USB  
Prescaler  
/1, 1.5  
48 MHz  
I2S3CLK  
to I2S3  
Peripheral clock  
enable  
I2S2CLK  
to I2S2  
Peripheral clock  
enable  
SDIOCLK  
to SDIO  
8 MHz  
Peripheral clock  
HSI  
HSI RC  
enable  
FSMCCLK  
to FSMC  
Peripheral clock  
enable  
/2  
HCLK  
to AHB bus, core,  
memory and DMA  
72 MHz max  
Clock  
Enable (4 bits)  
/8  
to Cortex System timer  
SW  
PLLSRC  
FCLK Cortex  
free running clock  
36 MHz max  
PLLMUL  
HSI  
AHB  
APB1  
SYSCLK  
..., x16  
x2, x3, x4  
PLL  
PCLK1  
Prescaler  
Prescaler  
PLLCLK  
HSE  
72 MHz  
max  
to APB1  
/1, 2..512  
/1, 2, 4, 8, 16  
peripherals  
Peripheral Clock  
Enable (20 bits)  
TIM2,3,4,5,6,7  
If (APB1 prescaler =1) x1  
else x2  
to TIM2,3,4,5,6 and 7  
TIMXCLK  
CSS  
Peripheral Clock  
Enable (6 bits)  
APB2  
Prescaler  
/1, 2, 4, 8, 16  
PLLXTPRE  
/2  
72 MHz max  
PCLK2  
OSC_OUT  
OSC_IN  
peripherals to APB2  
4-16 MHz  
HSE OSC  
Peripheral Clock  
Enable (15 bits)  
TIM1 & 8 timers  
If (APB2 prescaler =1) x1  
else x2  
to TIM1 and TIM8  
TIMxCLK  
Peripheral Clock  
Enable (2 bit)  
to ADC1, 2 or 3  
/128  
LSE  
ADC  
Prescaler  
/2, 4, 6, 8  
OSC32_IN  
to RTC  
LSE OSC  
ADCCLK  
RTCCLK  
32.768 kHz  
OSC32_OUT  
HCLK/2  
/2  
RTCSEL[1:0]  
To SDIO AHB interface  
Peripheral clock  
enable  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
40 kHz  
Legend:  
Main  
Clock Output  
/2  
PLLCLK  
HSE = High Speed External clock signal  
HSI = High Speed Internal clock signal  
MCO  
HSI  
HSE  
LSI = Low Speed Internal clock signal  
LSE = Low Speed External clock signal  
SYSCLK  
MCO  
ai14752b  
1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is  
64 MHz.  
2. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either  
48 MHz or 72 MHz.  
3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.  
Doc ID 14611 Rev 7  
13/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2.2  
Full compatibility throughout the family  
The STM32F103xx is a complete family whose members are fully pin-to-pin, software and  
feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are  
identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as  
medium-density devices and the STM32F103xC, STM32F103xD and STM32F103xE are  
referred to as high-density devices.  
Low-density and high-density devices are an extension of the STM32F103x8/B medium-  
density devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E  
datasheets, respectively. Low-density devices feature lower Flash memory and RAM  
capacities, less timers and peripherals. High-density devices have higher Flash memory  
2
and RAM capacities, and additional peripherals like SDIO, FSMC, I S and DAC while  
remaining fully compatible with the other members of the family.  
The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE  
are a drop-in replacement for the STM32F103x8/B devices, allowing the user to try different  
memory densities and providing a greater degree of freedom during the development cycle.  
Moreover, the STM32F103xx performance line family is fully compatible with all existing  
STM32F101xx access line and STM32F102xx USB access line devices.  
Table 3.  
STM32F103xx family  
Low-density devices Medium-density devices  
High-density devices  
16 KB  
Flash  
32 KB  
64 KB  
Flash  
128 KB  
Flash  
256 KB  
Flash  
384 KB  
Flash  
512 KB  
Flash  
Flash(1)  
Pinout  
48 or  
6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 64 KB(2) 64 KB RAM 64 KB RAM  
RAM  
144  
100  
5 × USARTs  
4 × 16-bit timers, 2 × basic timers  
3 × SPIs, 2 × I2Ss, 2 × I2Cs  
3 × USARTs  
USB, CAN, 2 × PWM timers  
3 × 16-bit timers  
2 × SPIs, 2 × I2Cs, USB,  
CAN, 1 × PWM timer  
2 × ADCs  
2 × USARTs  
3 × ADCs, 2 × DACs, 1 × SDIO  
64  
2 × 16-bit timers  
1 × SPI, 1 × I2C, USB,  
CAN, 1 × PWM timer  
2 × ADCs  
FSMC (100- and 144-pin packages(3)  
)
48  
36  
1. For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),  
the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium-density  
devices.  
2. 64 KB RAM for 256 KB Flash are available on devices delivered in CSP packages only.  
3. Ports F and G are not available in devices delivered in 100-pin packages.  
14/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
2.3  
Overview  
®
2.3.1  
ARM Cortex™-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
With its embedded ARM core, STM32F103xC, STM32F103xD and STM32F103xE  
performance line family is compatible with all ARM tools and software.  
Figure 1 shows the general block diagram of the device family.  
2.3.2  
2.3.3  
Embedded Flash memory  
Up to 512 Kbytes of embedded Flash is available for storing programs and data.  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
2.3.4  
2.3.5  
Embedded SRAM  
Up to 64 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
FSMC (flexible static memory controller)  
The FSMC is embedded in the STM32F103xC, STM32F103xD and STM32F103xE  
performance line family. It has four Chip Select outputs supporting the following modes: PC  
Card/Compact Flash, SRAM, PSRAM, NOR and NAND.  
Functionality overview:  
The three FSMC interrupt lines are ORed in order to be connected to the NVIC  
Write FIFO  
Code execution from external memory except for NAND Flash and PC Card  
The targeted frequency, f  
, is HCLK/2, so external access is at 36 MHz when HCLK  
CLK  
is at 72 MHz and external access is at 24 MHz when HCLK is at 48 MHz  
Doc ID 14611 Rev 7  
15/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2.3.6  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high-  
performance solutions using external controllers with dedicated acceleration.  
2.3.7  
Nested vectored interrupt controller (NVIC)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds a nested  
vectored interrupt controller able to handle up to 60 maskable interrupt channels (not  
including the 16 interrupt lines of Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
2.3.8  
2.3.9  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example with  
failure of an indirectly used external oscillator).  
Several prescalers allow the configuration of the AHB frequency, the high speed APB  
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and  
the high speed APB domains is 72 MHz. The maximum allowed frequency of the low speed  
APB domain is 36 MHz. See Figure 2 for details on the clock tree.  
16/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
2.3.10  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from embedded SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1.  
2.3.11  
Power supply schemes  
V
= 2.0 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 2.4 V when the ADC is used). V  
DDA  
DDA  
and V  
must be connected to V and V , respectively.  
SSA  
DD SS  
V
= 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
For more details on how to connect power pins, refer to Figure 12: Power supply scheme.  
2.3.12  
Power supply supervisor  
The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
/V power supply and compares it to the V threshold. An interrupt can be  
V
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is higher  
DD DDA  
PVD  
DD DDA  
than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to  
Table 12: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
2.3.13  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop modes.  
Power down is used in Standby mode: the regulator output is in high impedance: the  
kernel circuitry is powered down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after reset. It is disabled in Standby mode.  
Doc ID 14611 Rev 7  
17/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2.3.14  
Low-power modes  
The STM32F103xC, STM32F103xD and STM32F103xE performance line supports three  
low-power modes to achieve the best compromise between low power consumption, short  
startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB  
wakeup.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
2.3.15  
DMA  
The flexible 12-channel general-purpose DMAs (7 channels for DMA1 and 5 channels for  
DMA2) are able to manage memory-to-memory, peripheral-to-memory and memory-to-  
peripheral transfers. The two DMA controllers support circular buffer management,  
removing the need for user code intervention when the controller reaches the end of the  
buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose, basic  
2
and advanced-control timers TIMx, DAC, I S, SDIO and ADC.  
2.3.16  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
V
supply when present or through the V  
pin. The backup registers are forty-two 16-bit  
DD  
BAT  
registers used to store 84 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, and they are not reset when the device  
wakes up from the Standby mode.  
The real-time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
18/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the  
internal low power RC oscillator or the high-speed external clock divided by 128. The  
internal low-speed RC has a typical frequency of 40 kHz. The RTC can be calibrated using  
an external 512 Hz output to compensate for any natural quartz deviation. The RTC features  
a 32-bit programmable counter for long term measurement using the Compare register to  
generate an alarm. A 20-bit prescaler is used for the time base clock and is by default  
configured to generate a time base of 1 second from a clock at 32.768 kHz.  
2.3.17  
Timers and watchdogs  
The high-density STM32F103xx performance line devices include up to two advanced-  
control timers, up to four general-purpose timers, two basic timers, two watchdog timers and  
a SysTick timer.  
Table 4 compares the features of the advanced-control, general-purpose and basic timers.  
Table 4.  
Timer  
High-density timer feature comparison  
Counter Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
TIM1,  
TIM8  
16-bit  
Yes  
4
Yes  
TIM2,  
TIM3,  
TIM4,  
TIM5  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
16-bit  
16-bit  
Yes  
Yes  
4
0
No  
No  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
Up  
Advanced-control timers (TIM1 and TIM8)  
The two advanced-control timers (TIM1 and TIM8) can each be seen as a three-phase  
PWM multiplexed on 6 channels. They have complementary PWM outputs with  
programmable inserted dead-times. They can also be seen as a complete general-purpose  
timer. The 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes)  
One-pulse mode output  
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If  
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switch driven by these outputs.  
Many features are shared with those of the general-purpose TIM timers which have the  
same architecture. The advanced-control timer can therefore work together with the TIM  
timers via the Timer Link feature for synchronization or event chaining.  
Doc ID 14611 Rev 7  
19/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
General-purpose timers (TIMx)  
There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5)  
embedded in the STM32F103xC, STM32F103xD and STM32F103xE performance line  
devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler  
and feature 4 independent channels each for input capture/output compare, PWM or one-  
pulse mode output. This gives up to 16 input captures / output compares / PWMs on the  
largest packages.  
The general-purpose timers can work together with the advanced-control timer via the Timer  
Link feature for synchronization or event chaining. Their counter can be frozen in debug  
mode. Any of the general-purpose timers can be used to generate PWM outputs. They all  
have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
2.3.18  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A  
hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
20/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Description  
2.3.19  
Universal synchronous/asynchronous receiver transmitters (USARTs)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embeds three  
universal synchronous/asynchronous receiver transmitters (USART1, USART2 and  
USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).  
These five interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability.  
The USART1 interface is able to communicate at speeds of up to 4.5 Mbit/s. The other  
available interfaces communicate at up to 2.25 Mbit/s.  
USART1, USART2 and USART3 also provide hardware management of the CTS and RTS  
signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All  
interfaces can be served by the DMA controller except for UART5.  
2.3.20  
2.3.21  
Serial peripheral interface (SPI)  
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in  
full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
All SPIs can be served by the DMA controller.  
2
Inter-integrated sound (I S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available, that can be  
operated in master or slave mode. These interfaces can be configured to operate with 16/32  
bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to  
2
48 kHz are supported. When either or both of the I S interfaces is/are configured in master  
mode, the master clock can be output to the external DAC/CODEC at 256 times the  
sampling frequency.  
2.3.22  
SDIO  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD  
Memory Card Specifications Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is also fully compliant with the CE-ATA digital  
protocol Rev1.1.  
2.3.23  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Doc ID 14611 Rev 7  
21/123  
Description  
STM32F103xC, STM32F103xD, STM32F103xE  
2.3.24  
Universal serial bus (USB)  
The STM32F103xC, STM32F103xD and STM32F103xE performance line embed a USB  
device peripheral compatible with the USB full-speed 12 Mbs. The USB interface  
implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint  
setting and suspend/resume support. The dedicated 48 MHz clock is generated from the  
internal main PLL (the clock source must use a HSE crystal oscillator).  
2.3.25  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
I/Os on APB2 with up to 18 MHz toggling speed  
2.3.26  
ADC (analog to digital converter)  
Three 12-bit analog-to-digital converters are embedded into STM32F103xC, STM32F103xD  
and STM32F103xE performance line devices and each ADC shares up to 21 external  
channels, performing conversions in single-shot or scan modes. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single shunt  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) and the advanced-control  
timers (TIM1 and TIM8) can be internally connected to the ADC start trigger and injection  
trigger, respectively, to allow the application to synchronize A/D conversion and timers.  
2.3.27  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in inverting configuration.  
22/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
This dual digital Interface supports the following features:  
Description  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the STM32F103xC, STM32F103xD and  
STM32F103xE performance line family. The DAC channels are triggered through the timer  
update outputs that are also connected to different DMA channels.  
2.3.28  
2.3.29  
2.3.30  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 2 V < V  
connected to the ADC1_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
< 3.6 V. The temperature sensor is internally  
DDA  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Embedded Trace Macrocell™  
®
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F10xxx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer running debugger software. TPA  
hardware is commercially available from common development tool vendors. It operates  
with third party debugger software tools.  
Doc ID 14611 Rev 7  
23/123  
Pinouts and pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
3
Pinouts and pin descriptions  
Figure 3.  
STM32F103xC and STM32F103xE performance line BGA144 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PB4  
JTRST  
PC13-  
TAMPER-RTC  
PB3  
JTDO  
PA15  
JTDI  
PA14  
JTCK  
PA13  
JTMS  
PE3  
PE2  
PE1  
PE0  
PD6  
PD7  
A
B
C
D
E
F
PC14-  
OSC32_IN  
PE4  
PE5  
PF0  
PE6  
PF1  
PF2  
PF5  
PB9  
PB8  
PB5  
PB6  
PB7  
PG15  
PG14  
PG13  
PG12  
PG11  
PG10  
PG9  
PD5  
PD4  
PD3  
PD2  
PC11  
PC12  
PD1  
PC10  
NC  
PA12  
PA11  
PA9  
PA8  
PC7  
PC6  
PG5  
PC15-  
OSC32_OUT  
V
BAT  
OSC_IN  
V
V
BOOT0  
PA10  
PC9  
PC8  
PG8  
PG6  
SS_5  
DD_5  
PF4  
OSC_OUT  
V
V
V
SS_10  
PF3  
PD0  
SS_3  
SS_11  
V
V
V
V
V
DD_8  
NRST  
PF10  
PC0  
PF7  
PF9  
PF6  
PF8  
PC2  
PA4  
PA5  
PA6  
PA7  
V
V
DD_9  
DD_4  
DD_3  
DD_11  
DD_10  
DD_2  
G
H
J
V
V
V
V
SS_8  
V
V
V
SS_9  
DD_6  
DD_7  
DD_1  
SS_4  
SS_2  
V
V
V
PE11  
PD11  
PG7  
PC1  
PC3  
SS_6  
SS_7  
PG1  
SS_1  
PE10  
PE9  
PB2/  
BOOT1  
V
PA0-WKUP  
PA1  
PC4  
PC5  
PB0  
PB1  
PE12  
PE13  
PE14  
PE15  
PD10  
PD9  
PG4  
PD13  
PD12  
PB11  
PG3  
PD14  
PB14  
PB12  
PG2  
PD15  
PB15  
PB13  
SSA  
K
L
V
V
PF13  
PF12  
PF11  
PG0  
REF–  
PA2  
PF15  
PF14  
PE8  
PD8  
REF+  
V
PA3  
PE7  
M
PB10  
DDA  
AI14798b  
24/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Figure 4. STM32F103xC and STM32F103xE performance line BGA100 ballout  
1
2
3
4
5
6
7
8
9
10  
PC14-  
OSC32_IN  
PC13-  
TAMPER-RTC  
A
B
C
D
E
F
PE2  
PE3  
PE4  
PE5  
PE6  
PC3  
PA4  
PA5  
PA6  
PA7  
PB9  
PB8  
PE1  
PE0  
PB7  
PB4  
PD5  
PD6  
PD7  
PB3  
PD2  
PD3  
PD4  
PA15  
PC11  
PC12  
PD0  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PA10  
PC7  
PC15-  
OSC32_OUT  
V
PB6  
BAT  
OSC_IN  
OSC_OUT  
NRST  
V
V
PB5  
SS_5  
BOOT0  
PA8  
DD_5  
V
V
V
V
PD1  
PC2  
PC9  
PC8  
PD11  
PD10  
PD9  
PD8  
SS_4  
SS_3  
SS_2  
SS_1  
V
V
V
V
NC  
PC0  
PC1  
PA0-WKUP  
PA1  
PC6  
DD_4  
DD_3  
DD_2  
DD_1  
G
H
J
V
PB2  
PE7  
PE8  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
PB15  
PB14  
PC4  
PD15  
PD14  
PD13  
PD12  
SSA  
V
PC5  
PB0  
PB1  
REF–  
V
PA2  
PB13  
REF+  
K
V
PA3  
PB12  
DDA  
AI14601c  
Doc ID 14611 Rev 7  
25/123  
Pinouts and pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 5. STM32F103xC and STM32F103xE performance line LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
V
V
NC  
DD_2  
SS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
9
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
V
V
DD_9  
SS_9  
V
V
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
SS_5  
LQFP144  
DD_5  
PF6  
PF7  
PF8  
PF9  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
V
V
DD_8  
SS_8  
PC1  
PC2  
PC3  
PD13  
PD12  
PD11  
PD10  
PD9  
V
V
V
V
SSA  
REF-  
PD8  
REF+  
PB15  
PB14  
PB13  
PB12  
DDA  
PA0-WKUP  
PA1  
PA2  
ai14667  
26/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Figure 6. STM32F103xC and STM32F103xE performance line LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14391  
Doc ID 14611 Rev 7  
27/123  
Pinouts and pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 7. STM32F103xC and STM32F103xE performance line  
LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13-TAMPER-RTC  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14392  
28/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Figure 8.  
STM32F103xC and STM32F103xE performance line  
WLCSP64 ballout, ball side  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
VDD_3  
VSS_3  
VDD_2  
BOOT0  
PB9  
PB5  
PB6  
PB7  
PB3  
PD2  
PC10  
PA14  
PA12  
BYPASS/  
VSS_2  
PC14  
PC13  
PC15  
NRST  
PB4  
PC11  
PA15  
VBAT  
PC12  
PA11  
OSC_IN OSC_OUT PC2  
PB8  
PA5  
PA13  
PA8  
PA10  
PC8  
PA9  
PC7  
PC9  
PC6  
PC0  
VSSA  
PA1  
PA0-  
WKUP  
VREF+  
VSS_4  
PC1  
PB1  
PA7  
PB11  
PB10  
PB14  
PB12  
VSS_1  
PB15  
PB13  
VDD_1  
VDDA  
VDD_4  
G
H
PA3  
PA4  
PA6  
PC5  
PA2  
PC4  
PB0  
PB2  
ai15460b  
Doc ID 14611 Rev 7  
29/123  
Pinouts and pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Alternate functions(4)  
Table 5.  
High-density STM32F103xx pin definitions  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
FT  
FT  
FT  
FT  
FT  
A3 A3  
A2 B3  
B2 C3  
B3 D3  
B4 E3  
-
-
-
-
-
-
-
1
2
3
4
5
6
1
2
3
4
5
6
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
TRACECK/ FSMC_A23  
TRACED0/FSMC_A19  
TRACED1/FSMC_A20  
TRACED2/FSMC_A21  
TRACED3/FSMC_A22  
-
-
-
C2 B2 C6  
A1 A2 C8  
1
PC13-TAMPER-  
RTC(5)  
2
3
4
7
8
9
7
8
9
I/O  
I/O  
I/O  
PC13(6)  
PC14(6)  
PC15(6)  
TAMPER-RTC  
OSC32_IN  
PC14-  
B1 A1 B8  
C1 B1 B7  
OSC32_IN(5)  
PC15-  
OSC32_OUT  
OSC32_OUT(5)  
C3  
C4  
D4  
E2  
E3  
E4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
11  
12  
13  
14  
15  
PF0  
PF1  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PF0  
PF1  
FSMC_A0  
FSMC_A1  
FSMC_A2  
FSMC_A3  
FSMC_A4  
FSMC_A5  
-
PF2  
PF2  
-
PF3  
PF3  
-
PF4  
PF4  
-
PF5  
PF5  
D2 C2  
D3 D2  
-
10 16  
11 17  
VSS_5  
VDD_5  
PF6  
VSS_5  
VDD_5  
PF6  
-
S
F3  
F2  
-
-
-
-
-
-
-
-
-
-
-
18  
19  
20  
21  
22  
I/O  
ADC3_IN4/FSMC_NIORD  
ADC3_IN5/FSMC_NREG  
ADC3_IN6/FSMC_NIOWR  
ADC3_IN7/FSMC_CD  
-
PF7  
I/O  
PF7  
G3  
G2  
G1  
-
PF8  
I/O  
PF8  
-
PF9  
I/O  
PF9  
-
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
I/O  
PF10  
OSC_IN  
OSC_OUT  
NRST  
PC0  
ADC3_IN8/FSMC_INTR  
D1 C1 D8  
E1 D1 D7  
F1 E1 C7  
H1 F1 E8  
H2 F2 F8  
5
6
7
8
9
12 23  
13 24  
14 25  
15 26  
16 27  
I
O
I/O  
I/O  
ADC123_IN10  
ADC123_IN11  
ADC123_IN12  
ADC123_IN13  
PC1  
I/O  
PC1  
H3 E2 D6 10 17 28  
H4 F3 11 18 29  
J1 G1 E7 12 19 30  
PC2  
I/O  
PC2  
-
PC3  
I/O  
PC3  
VSSA  
S
VSSA  
30/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
High-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
K1 H1  
L1 J1  
-
-
-
20 31  
21 32  
VREF-  
VREF+  
VDDA  
S
S
S
VREF-  
VREF+  
VDDA  
F7  
(7)  
M1 K1 G8 13 22 33  
J2 G2 F6 14 23 34  
WKUP/USART2_CTS(8)  
ADC123_IN0  
TIM2_CH1_ETR  
TIM5_CH1/TIM8_ETR  
PA0-WKUP  
PA1  
I/O  
I/O  
PA0  
PA1  
USART2_RTS(8)  
ADC123_IN1/  
K2 H2 E6 15 24 35  
TIM5_CH2/TIM2_CH2(8)  
USART2_TX(8)/TIM5_CH3  
ADC123_IN2/  
L2 J2 H8 16 25 36  
M2 K2 G7 17 26 37  
PA2  
PA3  
I/O  
I/O  
PA2  
PA3  
TIM2_CH3 (8)  
USART2_RX(8)/TIM5_CH4  
ADC123_IN3/TIM2_CH4(8)  
G4 E4 F5 18 27 38  
F4 F4 G6 19 28 39  
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS(8)  
/
J3 G3 H7 20 29 40  
K3 H3 E5 21 30 41  
L3 J3 G5 22 31 42  
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
USART2_CK(8)  
DAC_OUT1/ADC12_IN4  
SPI1_SCK(8)  
DAC_OUT2 ADC12_IN5  
SPI1_MISO(8)  
TIM8_BKIN/ADC12_IN6  
TIM3_CH1(8)  
TIM1_BKIN  
TIM1_CH1N  
SPI1_MOSI(8)  
/
M3 K3 G4 23 32 43  
PA7  
I/O  
PA7  
TIM8_CH1N/ADC12_IN7  
TIM3_CH2(8)  
J4 G4 H6 24 33 44  
K4 H4 H5 25 34 45  
PC4  
PC5  
I/O  
I/O  
PC4  
PC5  
ADC12_IN14  
ADC12_IN15  
ADC12_IN8/TIM3_CH3  
TIM8_CH2N  
L4 J4 H4 26 35 46  
PB0  
PB1  
I/O  
I/O  
PB0  
PB1  
TIM1_CH2N  
TIM1_CH3N  
ADC12_IN9/TIM3_CH4(8)  
TIM8_CH3N  
M4 K4 F4 27 36 47  
J5 G5 H3 28 37 48  
PB2  
PF11  
PF12  
I/O FT PB2/BOOT1  
M5  
L5  
-
-
-
-
-
-
-
-
49  
50  
I/O FT  
I/O FT  
PF11  
PF12  
FSMC_NIOS16  
FSMC_A6  
Doc ID 14611 Rev 7  
31/123  
Pinouts and pin descriptions  
Table 5.  
STM32F103xC, STM32F103xD, STM32F103xE  
Alternate functions(4)  
High-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
H5  
G5  
K5  
M6  
L6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
51  
52  
53  
54  
55  
56  
57  
VSS_6  
VDD_6  
PF13  
PF14  
PF15  
PG0  
S
VSS_6  
VDD_6  
PF13  
PF14  
PF15  
PG0  
S
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_A7  
FSMC_A8  
FSMC_A9  
FSMC_A10  
FSMC_A11  
FSMC_D4  
FSMC_D5  
FSMC_D6  
K6  
J6  
PG1  
PG1  
M7 H5  
L7 J5  
K7 K5  
38 58  
39 59  
40 60  
PE7  
PE7  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
PE8  
PE8  
PE9  
PE9  
H6  
G6  
-
-
-
-
61  
62  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
VSS_7  
VDD_7  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
VSS_1  
VDD_1  
S
J7 G6  
H8 H6  
J8 J6  
K8 K6  
L8 G7  
M8 H7  
41 63  
42 64  
43 65  
44 66  
45 67  
46 68  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D7  
FSMC_D8  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
TIM2_CH3  
TIM2_CH4  
FSMC_D9  
FSMC_D10  
FSMC_D11  
FSMC_D12  
M9 J7 G3 29 47 69  
M10 K7 F3 30 48 70  
H7 E7 H2 31 49 71  
G7 F7 H1 32 50 72  
I2C2_SCL/USART3_TX(8)  
I2C2_SDA/USART3_RX(8)  
S
SPI2_NSS/I2S2_WS/  
I2C2_SMBA/  
M11 K8 G2 33 51 73  
M12 J8 G1 34 52 74  
PB12  
PB13  
I/O FT  
I/O FT  
PB12  
PB13  
USART3_CK(8)  
TIM1_BKIN(8)  
/
SPI2_SCK/I2S2_CK  
USART3_CTS(8)  
TIM1_CH1N  
/
SPI2_MISO/TIM1_CH2N  
USART3_RTS(8)  
L11 H8 F2 35 53 75  
L12 G8 F1 36 54 76  
PB14  
PB15  
I/O FT  
I/O FT  
PB14  
PB15  
/
SPI2_MOSI/I2S2_SD  
TIM1_CH3N(8)  
FSMC_D13  
FSMC_D14  
/
L9 K9  
K9 J9  
-
-
-
-
55 77  
56 78  
PD8  
PD9  
I/O FT  
I/O FT  
PD8  
PD9  
USART3_TX  
USART3_RX  
32/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
High-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
J9 H9  
H9 G9  
-
-
-
-
57 79  
58 80  
PD10  
PD11  
I/O FT  
I/O FT  
PD10  
PD11  
FSMC_D15  
FSMC_A16  
USART3_CK  
USART3_CTS  
TIM4_CH1 /  
USART3_RTS  
L10 K10  
K10 J10  
-
-
59 81  
60 82  
PD12  
I/O FT  
PD12  
FSMC_A17  
FSMC_A18  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
I/O FT  
S
PD13  
VSS_8  
VDD_8  
PD14  
PD15  
PG2  
TIM4_CH2  
G8  
F8  
-
-
-
-
83  
84  
S
K11 H10  
K12 G10  
61 85  
62 86  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_D0  
FSMC_D1  
TIM4_CH3  
TIM4_CH4  
J12  
J11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87  
88  
89  
90  
91  
92  
93  
94  
95  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
FSMC_INT2  
FSMC_INT3  
PG3  
PG3  
J10  
PG4  
PG4  
H12  
H11  
H10  
G11  
G10  
F10  
PG5  
PG5  
PG6  
PG6  
PG7  
PG7  
PG8  
PG8  
VSS_9  
VDD_9  
VSS_9  
VDD_9  
S
I2S2_MCK/  
TIM8_CH1/SDIO_D6  
G12 F10 E1 37 63 96  
F12 E10 E2 38 64 97  
PC6  
PC7  
I/O FT  
I/O FT  
PC6  
PC7  
TIM3_CH1  
TIM3_CH2  
I2S3_MCK/  
TIM8_CH2/SDIO_D7  
F11 F9 E3 39 65 98  
E11 E9 D1 40 66 99  
PC8  
PC9  
I/O FT  
I/O FT  
PC8  
PC9  
TIM8_CH3/SDIO_D0  
TIM8_CH4/SDIO_D1  
TIM3_CH3  
TIM3_CH4  
USART1_CK/  
E12 D9 E4 41 67 100  
D12 C9 D2 42 68 101  
D11 D10 D3 43 69 102  
C12 C10 C1 44 70 103  
B12 B10 C2 45 71 104  
PA8  
PA9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PA8  
PA9  
TIM1_CH1(8)/MCO  
USART1_TX(8)  
TIM1_CH2(8)  
/
USART1_RX(8)  
TIM1_CH3(8)  
/
PA10  
PA11  
PA12  
PA10  
PA11  
PA12  
USART1_CTS/USBDM  
CAN_RX(8)/TIM1_CH4(8)  
USART1_RTS/USBDP/  
CAN_TX(8)/TIM1_ETR(8)  
Doc ID 14611 Rev 7  
33/123  
Pinouts and pin descriptions  
Table 5.  
STM32F103xC, STM32F103xD, STM32F103xE  
Alternate functions(4)  
High-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
JTMS-  
SWDIO  
A12 A10 D4 46 72 105  
C11 F8 73 106  
PA13  
I/O FT  
PA13  
-
-
Not connected  
G9 E6 B1 47 74 107  
F9 F6 A1 48 75 108  
V
S
S
V
SS_2  
SS_2  
DD_2  
V
V
DD_2  
JTCK-  
SWCLK  
A11 A9 B2 49 76 109  
A10 A8 C3 50 77 110  
PA14  
PA15  
I/O FT  
I/O FT  
PA14  
SPI3_NSS/  
I2S3_WS  
TIM2_CH1_ETR  
PA15 / SPI1_NSS  
JTDI  
B11 B9 A2 51 78 111  
B10 B8 B3 52 79 112  
C10 C8 C4 53 80 113  
PC10  
PC11  
PC12  
PD0  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
UART4_TX/SDIO_D2  
UART4_RX/SDIO_D3  
UART5_TX/SDIO_CK  
USART3_TX  
USART3_RX  
USART3_CK  
CAN_RX  
(9)  
(10)  
E10 D8 D8  
D10 E8 D7  
5
6
81 114  
82 115  
I/O FT OSC_IN  
FSMC_D2  
(9)  
(10)  
PD1  
I/O FT OSC_OUT  
FSMC_D3  
CAN_TX  
TIM3_ETR/UART5_RX  
SDIO_CMD  
E9 B7 A3 54 83 116  
PD2  
I/O FT  
PD2  
D9 C7  
C9 D7  
B9 B6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
84 117  
85 118  
86 119  
PD3  
PD4  
PD5  
I/O FT  
I/O FT  
I/O FT  
S
PD3  
PD4  
PD5  
FSMC_CLK  
FSMC_NOE  
FSMC_NWE  
USART2_CTS  
USART2_RTS  
USART2_TX  
E7  
F7  
-
-
-
-
120  
121  
V
V
SS_10  
DD_10  
SS_10  
DD_10  
V
S
V
A8 C6  
A9 D6  
87 122  
88 123  
PD6  
PD7  
PG9  
I/O FT  
I/O FT  
I/O FT  
PD6  
PD7  
PG9  
FSMC_NWAIT  
USART2_RX  
USART2_CK  
FSMC_NE1/FSMC_NCE2  
FSMC_NE2/FSMC_NCE3  
E8  
D8  
-
-
-
-
124  
125  
FSMC_NCE4_1/  
FSMC_NE3  
-
-
PG10  
I/O FT  
PG10  
C8  
B8  
D7  
C7  
E6  
F6  
B7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
126  
127  
128  
129  
130  
131  
132  
PG11  
PG12  
PG13  
PG14  
VSS_11  
VDD_11  
PG15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
S
PG11  
PG12  
PG13  
PG14  
VSS_11  
VDD_11  
PG15  
FSMC_NCE4_2  
FSMC_NE4  
FSMC_A24  
FSMC_A25  
S
I/O FT  
34/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Alternate functions(4)  
Table 5.  
High-density STM32F103xx pin definitions (continued)  
Pins  
Main  
Pin name  
function(3)  
(after reset)  
Default  
Remap  
PB3/TRACESWO  
TIM2_CH2 /  
A7 A7 A4 55 89 133  
A6 A6 B4 56 90 134  
PB3/  
PB4  
I/O FT  
I/O FT  
JTDO  
SPI3_SCK / I2S3_CK/  
SPI3_MISO  
SPI1_SCK  
PB4 / TIM3_CH1  
SPI1_MISO  
NJTRST  
I2C1_SMBA/ SPI3_MOSI  
I2S3_SD  
TIM3_CH2 /  
SPI1_MOSI  
B6 C5 A5 57 91 135  
C6 B5 B5 58 92 136  
PB5  
PB6  
I/O  
PB5  
PB6  
I/O FT  
I2C1_SCL(8)/ TIM4_CH1(8)  
USART1_TX  
I2C1_SDA(8)  
/
D6 A5 C5 59 93 137  
PB7  
I/O FT  
PB7  
FSMC_NADV /  
USART1_RX  
TIM4_CH2(8)  
D5 D5 A6 60 94 138  
C5 B4 D5 61 95 139  
BOOT0  
PB8  
I
BOOT0  
PB8  
I2C1_SCL/  
CAN_RX  
I/O FT  
TIM4_CH3(8)/SDIO_D4  
TIM4_CH4(8)/SDIO_D5  
I2C1_SDA /  
CAN_TX  
B5 A4 B6 62 96 140  
PB9  
I/O FT  
PB9  
A5 D4  
A4 C4  
-
-
-
-
97 141  
98 142  
PE0  
PE1  
I/O FT  
PE0  
PE1  
TIM4_ETR / FSMC_NBL0  
FSMC_NBL1  
I/O FT  
E5 E5 A7 63 99 143  
F5 F5 A8 64 100 144  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device.  
4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should  
be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).  
5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3  
mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load  
of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).  
6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even  
after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the  
Battery backup domain and BKP register description sections in the STM32F10xxx reference manual, available from the  
STMicroelectronics website: www.st.com.  
7. Unlike in the LQFP64 package, there is no PC3 in the WLCSP package. The VREF+ functionality is provided instead.  
8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,  
available from the STMicroelectronics website: www.st.com.  
9. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the  
functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100/BGA100 and  
LQFP144/BGA144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details,  
refer to Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.  
10. For devices delivered in LQFP64 packages, the FSMC function is not available.  
Doc ID 14611 Rev 7  
35/123  
Pinouts and pin descriptions  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 6.  
Pins  
FSMC pin definition  
FSMC  
LQFP100  
BGA100(1)  
NOR/PSRAM/  
CF  
CF/IDE  
NOR/PSRAM Mux NAND 16 bit  
SRAM  
PE2  
PE3  
A23  
A19  
A20  
A21  
A22  
A0  
A23  
A19  
A20  
A21  
A22  
Yes  
Yes  
PE4  
Yes  
PE5  
Yes  
PE6  
Yes  
PF0  
A0  
A1  
A0  
A1  
A2  
-
PF1  
A1  
-
PF2  
A2  
A2  
-
PF3  
A3  
A3  
-
PF4  
A4  
A4  
-
PF5  
A5  
A5  
-
PF6  
NIORD  
NREG  
NIOWR  
CD  
NIORD  
NREG  
NIOWR  
CD  
-
PF7  
-
-
PF8  
PF9  
-
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
INTR  
NIOS16  
A6  
INTR  
-
NIOS16  
-
A6  
A7  
-
A7  
-
A8  
A8  
-
A9  
A9  
-
A10  
A10  
A11  
D4  
-
-
D4  
D5  
D4  
D5  
DA4  
DA5  
D4  
D5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE8  
D5  
PE9  
D6  
D6  
D6  
DA6  
D6  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
D7  
D7  
D7  
DA7  
D7  
D8  
D8  
D8  
DA8  
D8  
D9  
D9  
D9  
DA9  
D9  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
D10  
D11  
D12  
D13  
DA10  
DA11  
DA12  
DA13  
D10  
D11  
D12  
D13  
36/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Pinouts and pin descriptions  
Table 6.  
Pins  
FSMC pin definition (continued)  
FSMC  
LQFP100  
BGA100(1)  
NOR/PSRAM/  
CF  
CF/IDE  
NOR/PSRAM Mux NAND 16 bit  
SRAM  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PD0  
D14  
D15  
D14  
D15  
D14  
D15  
A16  
A17  
A18  
D0  
DA14  
DA15  
A16  
D14  
D15  
CLE  
ALE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
A17  
A18  
D0  
D1  
D0  
D1  
DA0  
DA1  
D0  
D1  
D1  
A12  
A13  
A14  
A15  
-
-
-
INT2  
INT3  
D2  
-
-
D2  
D3  
D2  
D3  
D2  
D3  
DA2  
DA3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
PD1  
D3  
PD3  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
CLK  
PD4  
NOE  
NWE  
NOE  
NWE  
NOE  
NWE  
NWAIT  
NE1  
NOE  
NWE  
PD5  
PD6  
NWAIT  
NWAIT  
NWAIT  
NCE2  
NCE3  
PD7  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PB7  
NE2  
NCE4_1 NCE4_1  
NCE4_2 NCE4_2  
NE3  
-
-
NE4  
A24  
NE4  
A24  
-
-
A25  
A25  
-
NADV  
NBL0  
NBL1  
NADV  
NBL0  
NBL1  
Yes  
Yes  
Yes  
PE0  
PE1  
1. Ports F and G are not available in devices delivered in 100-pin packages.  
Doc ID 14611 Rev 7  
37/123  
Memory mapping  
STM32F103xC, STM32F103xD, STM32F103xE  
4
Memory mapping  
The memory map is shown in Figure 9.  
Figure 9. Memory map  
Reserved  
FSMC register  
0xA000 1000 - 0xBFFF FFFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6C00 0000 - 0x6FFF FFFF  
0x6800 0000 - 0x6BFF FFFF  
0x6400 0000 - 0x67FF FFFF  
0x6000 0000 - 0x63FF FFFF  
0x4002 4400 - 0x5FFF FFFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
FSMC bank4 PCCARD  
FSMC bank3 NAND (NAND2)  
FSMC bank2 NAND (NAND1)  
FSMC bank1 NOR/PSRAM 4  
FSMC bank1 NOR/PSRAM 3  
FSMC bank1 NOR/PSRAM 2  
FSMC bank1 NOR/PSRAM 1  
Reserved  
CRC  
Reserved  
Flash interface  
Reserved  
RCC  
Reserved  
DMA2  
DMA1  
Reserved  
SDIO  
0x4002 0000 - 0x4002 03FF  
0x4001 8400 - 0x4001 FFFF  
0x4001 8000 - 0x4001 83FF  
Reserved  
ADC3  
USART1  
TIM8  
SPI1  
TIM1  
0x4001 400 - 0x4001 7FFF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0xFFFF FFFF  
512-Mbyte  
block 7  
ADC2  
0x4001 2800 - 0x4001 2BFF  
Cortex-M3's  
internal  
peripherals  
ADC1  
Port G  
Port F  
0x4001 2400 - 0x4001 27FF  
0x4001 2000 - 0x4001 23FF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 1800 - 0x4001 1BFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0C00 - 0x4001 0FFF  
0x4001 0800 - 0x4001 0BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7800 - 0x4000 FFFF  
0xE000 0000  
0xDFFF FFFF  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
AFIO  
Reserved  
DAC  
PWR  
512-Mbyte  
block 6  
Not used  
0xC000 0000  
0xBFFF FFFF  
512-Mbyte  
block 5  
FSMC register  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
BKP  
Reserved  
BxCAN  
0xA000 0000  
0x9FFF FFFF  
512-Mbyte  
block 4  
FSMC bank 3  
& bank4  
Shared USB/CAN SRAM 512  
0x4000 6000 - 0x4000 63FF  
bytes  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
USB registers  
I2C2  
0x8000 0000  
0x7FFF FFFF  
I2C1  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1800 - 0x4000 27FF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
UART5  
UART4  
512-Mbyte  
block 3  
FSMC bank1  
& bank2  
USART3  
USART2  
0x6000 0000  
0x5FFF FFFF  
Reserved  
SPI3/I2S3  
SPI2/I2S2  
512-Mbyte  
block 2  
Peripherals  
Reserved  
IWDG  
0x4000 0000  
0x3FFF FFFF  
WWDG  
RTC  
512-Mbyte  
block 1  
SRAM  
Reserved  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
0x2000 0000  
0x1FFF FFFF  
512-Mbyte  
block 0  
Code  
0x0000 0000  
0x3FFF FFFF  
Reserved  
0x2001 0000  
0x2000 FFFF  
SRAM (64 KB aliased  
by bit-banding)  
0x2000 0000  
Option Bytes  
0x1FFF F800 - 0x1FFF F80F  
0x1FFF F000- 0x1FFF F7FF  
0x1FFF EFFF  
0x0808 0000  
0x0807 FFFF  
0x0800 0000  
0x07FF FFFF  
0x0008 0000  
System memory  
Reserved  
Flash  
Reserved  
Aliased to Flash or system 0x0007 FFFF  
memory depending on  
ai14753d  
BOOT pins  
0x0000 0000  
38/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
STM32F103xx pin  
C = 50 pF  
STM32F103xx pin  
V
IN  
ai14141  
ai14142  
Doc ID 14611 Rev 7  
39/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Power switch  
1.8-3.6V  
Wake-up logic  
Backup registers)  
OUT  
IO  
Logic  
GP I/Os  
IN  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD1/2/.../11  
Regulator  
11 × 100 nF  
+ 1 × 4.7 µF  
V
SS1/2/.../11  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai15401  
Caution:  
In Figure 12, the 4.7 µF capacitor must be connected to V  
.
DD3  
5.1.7  
Current consumption measurement  
Figure 13. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
40/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 7: Voltage characteristics,  
Table 8: Current characteristics, and Table 9: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 7.  
Symbol  
Voltage characteristics  
Ratings  
External main supply voltage (including VDDA  
Min  
Max  
Unit  
VDD–VSS  
–0.3  
4.0  
(1)  
and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
VSS 0.3  
VSS 0.3  
+5.5  
VDD+0.3  
50  
VIN  
|VDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
mV  
|VSSX VSS  
|
50  
see Section 5.3.12:  
Absolute maximum ratings  
(electrical sensitivity)  
Electrostatic discharge voltage (human body  
model)  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded (see Table 8: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN > VINmax while a negative injection is  
induced by VIN < VSS  
.
Table 8.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
25  
5
IIO  
mA  
(2)(3)  
IINJ(PIN)  
Injected current on HSE OSC_IN and LSE OSC_IN pins  
Injected current on any other pin(4)  
5
5
Total injected current (sum of all I/O and control pins)(4)  
25  
(2)  
IINJ(PIN)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.18: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with IINJ(PIN) maximum current injection on four I/O port pins of the device.  
Doc ID 14611 Rev 7  
41/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 9.  
Thermal characteristics  
Ratings  
Symbol  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 10. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
72  
36  
72  
3.6  
MHz  
V
Analog operating voltage  
(ADC not used)  
2
3.6  
3.6  
Must be the same potential  
as VDD  
(1)  
VDDA  
V
V
(2)  
Analog operating voltage  
(ADC used)  
2.4  
1.8  
VBAT  
Backup operating voltage  
3.6  
666  
434  
444  
500  
500  
85  
LQFP144  
LQFP100  
LQFP64  
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(3)  
PD  
mW  
LFBGA100  
LFBGA144  
Maximum power dissipation –40  
Low power dissipation(4)  
–40  
Maximum power dissipation –40  
Ambient temperature for 6  
suffix version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7  
suffix version  
Low power dissipation(4)  
–40  
–40  
–40  
6 suffix version  
Junction temperature range  
7 suffix version  
1. When the ADC is used, refer to Table 58: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 6.2: Thermal  
characteristics on page 114).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 6.2: Thermal characteristics on page 114).  
42/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 11 are derived from tests performed under the ambient  
temperature condition summarized in Table 10.  
Table 11. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
0
tVDD  
µs/V  
V
DD fall time rate  
20  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 12 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 12. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1 2.18 2.26  
2.08 2.16  
V
V
2
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
(2)  
VPVDhyst  
PVD hysteresis  
mV  
V
1.8(1)  
Falling edge  
Rising edge  
1.88 1.96  
Power on/power down  
reset threshold  
VPOR/PDR  
1.84 1.92 2.0  
40  
V
(2)  
VPDRhyst  
PDR hysteresis  
mV  
mS  
(2)  
TRSTTEMPO  
Reset temporization  
1
2.5  
4.5  
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
Doc ID 14611 Rev 7  
43/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.4  
Embedded reference voltage  
The parameters given in Table 13 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 13. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
–40 °C < TA < +105 °C 1.16 1.20 1.26  
–40 °C < TA < +85 °C 1.16 1.20 1.24  
V
V
VREFINT Internal reference voltage  
ADC sampling time when  
reading the internal reference  
voltage  
(1)  
TS_vrefint  
5.1  
17.1(2)  
µs  
Internal reference voltage  
spread over the temperature  
range  
(2)  
VRERINT  
VDD = 3 V 10 mV  
10  
mV  
(2)  
TCoeff  
Temperature coefficient  
100 ppm/°C  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 13: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/2, f  
= f  
PCLK1  
HCLK  
PCLK2 HCLK  
The parameters given in Table 14, Table 15 and Table 16 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 10.  
DD  
44/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 14. Maximum current consumption in Run mode, code with data processing  
running from Flash  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
69  
50  
70  
50.5  
39.5  
28  
External clock(2), all  
peripherals enabled  
39  
27  
20  
20.5  
11.5  
37.5  
28.5  
22.5  
17  
11  
Supplycurrent in  
Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
37  
28  
External clock(2), all  
peripherals disabled  
22  
16.5  
12.5  
8
13  
8
1. Based on characterization, not tested in production.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Table 15. Maximum current consumption in Run mode, code with data processing  
running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C  
TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
66  
43.5  
33  
23  
16  
9
67  
45.5  
35  
External clock(2), all  
peripherals enabled  
24.5  
18  
10.5  
33.5  
23.5  
18.5  
13.5  
10.5  
6.5  
Supply current  
in Run mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
33  
23  
18  
13  
10  
6
External clock(2), all  
peripherals disabled  
1. Data based on characterization results, tested in production at VDD max, fHCLK max.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 14611 Rev 7  
45/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 14. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals enabled  
70  
8 MHz  
16 MHz  
24 MHz  
60  
36 MHz  
48 MHz  
72 MHz  
50  
40  
30  
20  
10  
0
-45  
25  
70  
85  
105  
Temperature (°C)  
Figure 15. Typical current consumption in Run mode versus frequency (at 3.6 V) -  
code with data processing running from RAM, peripherals disabled  
35  
8 MHz  
16 MHz  
30  
24 MHz  
36 MHz  
48 MHz  
25  
72 MHz  
20  
15  
10  
5
0
-45  
25  
70  
85  
105  
Temperature (°C)  
46/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 16. Maximum current consumption in Sleep mode, code running from Flash  
or RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 85 °C TA = 105 °C  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
45  
31  
24  
17  
12.5  
8
46  
32  
25  
17.5  
13  
8
External clock(2), all  
peripherals enabled  
Supply current  
in Sleep mode  
IDD  
mA  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
8.5  
7
9
7.5  
6.5  
5.5  
5
External clock(2), all  
peripherals disabled  
6
5
4.5  
4
4
1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.  
2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 14611 Rev 7  
47/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 17. Typical and maximum current consumptions in Stop and Standby modes  
Typ(1)  
Max  
Symbol  
Parameter  
Conditions  
Unit  
VDD/VBAT VDD/VBAT VDD/VBAT TA =  
TA =  
= 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C  
Regulator in run mode, low-speed  
and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
34.5  
24.5  
35  
25  
379  
365  
1130  
1110  
Supply current in  
Stop mode  
Regulator in low-power mode, low-  
speed and high-speed internal RC  
oscillators and high-speed oscillator  
OFF (no independent watchdog)  
IDD  
Low-speed internal RC oscillator  
and independent watchdog ON  
µA  
3
3.8  
3.6  
-
-
-
-
Low-speed internal RC oscillator  
ON, independent watchdog OFF  
Supply current in  
Standby mode  
2.8  
Low-speed internal RC oscillator  
and independent watchdog OFF,  
low-speed oscillator and RTC OFF  
1.9  
1.1  
2.1  
1.4  
5(2)  
6.5(2)  
2.3(2)  
Backup domain  
I
Low-speed oscillator and RTC ON  
1.05  
2(2)  
DD_VBAT supply current  
1. Typical values are measured at TA = 25 °C.  
2. Based on characterization, not tested in production.  
Figure 16. Typical current consumption on V  
values  
with RTC on vs. temperature at different V  
BAT  
BAT  
2.5  
2
1.8 V  
2 V  
1.5  
1
2.4 V  
3.3 V  
3.6 V  
0.5  
0
–45  
25  
85  
105  
Temperature (°C)  
ai17337  
48/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 17. Typical current consumption in Stop mode with regulator in run mode  
versus temperature at different V values  
DD  
700  
600  
500  
400  
300  
200  
100  
0
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
-45  
25  
70  
85  
105  
Temperature (°C)  
Figure 18. Typical current consumption in Stop mode with regulator in low-power  
mode versus temperature at different V values  
DD  
700  
600  
500  
400  
300  
200  
100  
0
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
-45  
25  
70  
85  
105  
Temperature (°C)  
Doc ID 14611 Rev 7  
49/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 19. Typical current consumption in Standby mode versus temperature at  
different V values  
DD  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
2.4V  
2.7V  
3.0V  
3.3V  
3.6V  
0.5  
0
-45  
25  
70  
85  
105  
Temperature (°C)  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash access time is adjusted to f frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
wait state from 24 to 48 MHZ and 2 wait states above).  
Ambient temperature and V supply voltage conditions summarized in Table 10.  
DD  
Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
/4, f  
2 = f  
/2, f  
= f  
/4  
PCLK1  
HCLK  
PCLK  
HCLK  
ADCCLK  
PCLK2  
50/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 18. Typical current consumption in Run mode, code with data processing  
running from Flash  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
Allperipherals Allperipherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
51  
34.6  
26.6  
18.5  
12.8  
7.2  
4.2  
2.7  
2
30.5  
20.7  
16.2  
11.4  
8.2  
5
External clock(3)  
mA  
4 MHz  
3.1  
2.1  
1.7  
1.4  
1.2  
27  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
1.6  
1.3  
45  
Supply  
IDD  
current in  
Run mode  
34  
20.1  
15.6  
10.8  
7.6  
4.4  
2.5  
1.5  
1.1  
0.8  
0.6  
26  
17.9  
12.2  
6.6  
3.6  
2.1  
1.4  
1
Running on high  
speed internal RC  
(HSI), AHB  
prescaler used to  
reduce the  
mA  
4 MHz  
frequency  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
0.7  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
Doc ID 14611 Rev 7  
51/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 19. Typical current consumption in Sleep mode, coderunning from Flash or  
RAM  
Typ(1)  
Symbol Parameter  
Conditions  
fHCLK  
Unit  
All peripherals All peripherals  
enabled(2)  
disabled  
72 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
29.5  
20  
6.4  
4.6  
3.6  
2.6  
2
15.1  
10.4  
7.2  
External clock(3)  
3.9  
1.3  
1.2  
1.15  
1.1  
1.05  
1.05  
5.1  
4
4 MHz  
2.6  
2 MHz  
1.85  
1.5  
1 MHz  
500 kHz  
125 kHz  
64 MHz  
48 MHz  
36 MHz  
24 MHz  
16 MHz  
1.3  
Supply  
1.2  
IDD  
current in  
mA  
25.6  
19.4  
14.5  
9.8  
Sleep mode  
3
2
Running on high  
speed internal RC  
6.6  
1.4  
0.7  
0.6  
0.55  
0.5  
0.45  
0.45  
(HSI), AHB prescaler 8 MHz  
3.3  
used to reduce the  
frequency  
4 MHz  
2
2 MHz  
1.25  
0.9  
1 MHz  
500 kHz  
125 kHz  
0.7  
0.6  
1. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this  
consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).  
3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.  
52/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 20. The MCU is placed  
under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature and V supply voltage conditions summarized in  
DD  
Table 7  
(1)  
Table 20. Peripheral current consumption  
Peripheral  
Unit  
Typical consumption at 25 °C  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
SPI2  
SPI3  
1.2  
1.2  
1.2  
1.2  
0.4  
0.4  
0.2  
0.2  
0.4  
0.4  
0.5  
0.6  
0.4  
0.4  
0.65  
0.72  
0.72  
APB1  
USART2  
USART3  
UART4  
UART5  
I2C1  
mA  
I2C2  
USB  
CAN  
DAC  
Doc ID 14611 Rev 7  
53/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Table 20. Peripheral current consumption  
(continued)  
Peripheral  
Typical consumption at 25 °C  
Unit  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
ADC1(2)  
ADC2  
0.55  
0.72  
0.72  
0.55  
1
0.72  
1
APB2  
mA  
1.9  
1.7  
1.8  
0.4  
1.7  
0.9  
1.7  
TIM1  
SPI1  
TIM8  
USART1  
ADC3  
1. fHCLK = 72 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, default prescaler value for each peripheral.  
2. Specific conditions for ADC: fHCLK = 56 MHz, fAPB1 = fHCLK/2, fAPB2 = fHCLK, fADCCLK = fAPB2/4, ADON bit  
in the ADC_CR2 register is set to 1.  
5.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 21 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
Table 21. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
25  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
45  
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance(1)  
5
pF  
%
DuCy(HSE) Duty cycle  
55  
1
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production.  
54/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Low-speed external user clock generated from an external source  
The characteristics given in Table 22 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 10.  
Table 22. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
50  
Cin(LSE) OSC32_IN input capacitance(1)  
5
pF  
%
DuCy(LSE) Duty cycle  
30  
70  
1
VSS VIN VD  
IL  
OSC32_IN Input leakage current  
µA  
D
1. Guaranteed by design, not tested in production.  
Figure 20. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC _IN  
STM32F103xx  
ai14143  
Doc ID 14611 Rev 7  
55/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 21. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC32_IN  
STM32F103xx  
ai14144b  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 23. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)(2)  
Table 23. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
fOSC_IN Oscillator frequency  
4
8
16  
MHz  
RF  
C
Feedback resistor  
200  
k  
Recommended load capacitance  
versus equivalent serial  
RS = 30  
30  
pF  
resistance of the crystal (RS)(3)  
VDD= 3.3 V, VIN = VSS  
with 30 pF load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization results, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 22). C and C are usually the  
L1  
L2  
56/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Figure 22. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F103xx  
OSC_OUT  
(1)  
R
EXT  
C
ai14145  
L2  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 24. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 24. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ Max Unit  
RF  
5
M  
Recommended load capacitance  
versus equivalent serial  
C(2)  
RS = 30 k  
15  
pF  
resistance of the crystal (RS)(3)  
I2  
LSE driving current  
Oscillator transconductance  
Startup time  
VDD = 3.3 V, VIN = VSS  
1.4  
µA  
µA/V  
s
gm  
5
(4)  
tSU(LSE)  
VDD is stabilized  
3
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Note:  
For C and C , it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator (see Figure 23).  
and C are usually the same size. The crystal manufacturer typically specifies a load  
C
L1  
L2,  
capacitance which is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
Doc ID 14611 Rev 7  
57/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF, and C  
= 2 pF,  
L
stray  
then C = C = 8 pF.  
L1  
L2  
Figure 23. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32F103xx  
OSC32_OUT  
C
L2  
ai14146  
5.3.7  
Internal clock source characteristics  
The parameters given in Table 25 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 25. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
8
MHz  
User-trimmed with the RCC_CR  
register(2)  
1(3)  
%
TA = –40 to 105 °C  
–2  
2.5  
2.2  
2
%
%
%
%
Accuracy of the HSI  
oscillator  
ACCHSI  
TA = –10 to 85 °C  
Factory-  
–1.5  
–1.3  
–1.1  
calibrated(4)  
TA = 0 to 70 °C  
TA = 25 °C  
1.8  
HSI oscillator  
startup time  
(4)  
tsu(HSI)  
1
2
µs  
HSI oscillator power  
consumption  
(4)  
IDD(HSI)  
80  
100  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from  
the ST website www.st.com.  
3. Guaranteed by design, not tested in production.  
4. Based on characterization, not tested in production.  
58/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Low-speed internal (LSI) RC oscillator  
Electrical characteristics  
(1)  
Table 26. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
30  
40  
60  
85  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
0.65  
1.2  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Wakeup time from low-power mode  
The wakeup times given in Table 27 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 10.  
Table 27. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Typ  
Unit  
(1)  
1.8  
µs  
tWUSLEEP  
Wakeup from Stop mode (regulator in run mode)  
3.6  
5.4  
(1)  
µs  
µs  
tWUSTOP  
Wakeup from Stop mode (regulator in low power mode)  
(1)  
Wakeup from Standby mode  
50  
tWUSTDBY  
1. The wakeup times are measured from the wakeup event to the point in which the user application code  
reads the first instruction.  
Doc ID 14611 Rev 7  
59/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.8  
PLL characteristics  
The parameters given in Table 28 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 10.  
DD  
Table 28. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
1
8.0  
25  
60  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
fPLL_OUT  
tLOCK  
72  
MHz  
µs  
200  
300  
Jitter  
Cycle-to-cycle jitter  
ps  
1. Based on characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 29. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA–40 to +105 °C  
40  
20  
20  
52.5  
70  
40  
40  
µs  
ms  
ms  
tERASE Page (2 KB) erase time TA –40 to +105 °C  
tME  
Mass erase time  
Supply current  
TA –40 to +105 °C  
Read mode  
fHCLK = 72 MHz with 2 wait  
states, VDD = 3.3 V  
28  
mA  
Write mode  
fHCLK = 72 MHz, VDD = 3.3 V  
7
5
mA  
mA  
IDD  
Erase mode  
fHCLK = 72 MHz, VDD = 3.3 V  
Power-down mode / Halt,  
50  
µA  
V
VDD = 3.0 to 3.6 V  
Vprog Programming voltage  
2
3.6  
1. Guaranteed by design, not tested in production.  
60/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 30. Flash memory endurance and data retention  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
1. Based on characterization not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.10  
FSMC characteristics  
Asynchronous waveforms and timings  
Figure 24 through Figure 27 represent asynchronous waveforms and Table 31 through  
Table 34 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 0  
AddressHoldTime = 1  
DataSetupTime = 1  
Doc ID 14611 Rev 7  
61/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 24. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FSMC_NOE  
FSMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FSMC_D[15:0]  
FSMC_NADV(1)  
t
v(NADV_NE)  
t
w(NADV)  
ai14991B  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1) (2)  
Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol Parameter Min Max  
tw(NE) FSMC_NE low time 5THCLK – 1.5 5THCLK + 2  
tv(NOE_NE) 0.5 1.5  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Unit  
ns  
ns  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
5THCLK – 1.5 5THCLK + 1.5 ns  
FSMC_NOE high to FSMC_NE high hold time –1.5  
FSMC_NEx low to FSMC_A valid  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7
0
th(A_NOE)  
tv(BL_NE)  
th(BL_NOE)  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
0.1  
FSMC_BL hold time after FSMC_NOE high  
0
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOEx high setup time  
th(Data_NOE) Data hold time after FSMC_NOE high  
2THCLK + 25  
2THCLK + 25  
0
0
th(Data_NE)  
Data hold time after FSMC_NEx high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
5
tw(NADV)  
FSMC_NADV low time  
THCLK + 1.5  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
62/123  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 25. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
FSMC_NWE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FSMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FSMC_NADV  
ai14990  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1)(2)  
Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
ns  
3THCLK – 1  
THCLK – 0.5  
THCLK – 0.5  
3THCLK + 2  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
THCLK + 1.5 ns  
THCLK + 1.5 ns  
ns  
FSMC_NWE high to FSMC_NE high hold time THCLK  
FSMC_NEx low to FSMC_A valid  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to Data valid  
THCLK  
1.5  
THCLK – 0.5  
THCLK + 7  
th(Data_NWE) Data hold time after FSMC_NWE high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
THCLK  
5.5  
tw(NADV)  
FSMC_NADV low time  
THCLK + 1.5 ns  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
63/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 26. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
h(NE_NOE)  
v(NOE_NE)  
FSMC_NOE  
t
w(NOE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NOE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
NBL  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
su(Data_NOE)  
Address  
Data  
FSMC_AD[15:0]  
FSMC_NADV  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
ai14892b  
(1)(2)  
Table 33. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
th(NE_NOE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
7THCLK + 2  
Unit  
ns  
7THCLK – 2  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
3THCLK – 0.5 3THCLK + 1.5 ns  
4THCLK – 1  
4THCLK + 2  
ns  
ns  
ns  
ns  
ns  
FSMC_NOE high to FSMC_NE high hold time –1  
FSMC_NEx low to FSMC_A valid  
0
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
3
5
tw(NADV)  
FSMC_NADV low time  
THCLK –1.5  
THCLK + 1.5  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
THCLK  
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
THCLK  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
2THCLK + 24  
2THCLK + 25  
th(Data_NE)  
Data hold time after FSMC_NEx high  
0
0
th(Data_NOE) Data hold time after FSMC_NOE high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
64/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 27. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
FSMC_AD[15:0]  
NBL  
t
t
h(Data_NWE)  
t
v(A_NE)  
v(Data_NADV)  
Address  
Data  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV  
ai14891B  
(1)(2)  
Table 34. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
5THCLK – 1  
2THCLK  
5THCLK + 2  
2THCLK + 1  
2THCLK + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
2THCLK – 1  
THCLK – 1  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
7
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
3
5
tw(NADV)  
FSMC_NADV low time  
THCLK – 1  
THCLK + 1  
FSMC_AD (address) valid hold time after  
FSMC_NADV high  
th(AD_NADV)  
T
HCLK – 3  
ns  
th(A_NWE)  
tv(BL_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
4THCLK  
ns  
ns  
ns  
1.6  
th(BL_NWE)  
FSMC_BL hold time after FSMC_NWE high  
THCLK – 1.5  
tv(Data_NADV) FSMC_NADV high to Data valid  
THCLK + 1.5 ns  
ns  
th(Data_NWE) Data hold time after FSMC_NWE high  
THCLK – 5  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
65/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Synchronous waveforms and timings  
Figure 28 through Figure 31 represent synchronous waveforms and Table 36 through  
Table 38 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
Figure 28. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKL-NExL)  
t
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
d(CLKH-AIV)  
d(CLKL-AV)  
FSMC_A[25:16]  
t
t
d(CLKH-NOEH)  
d(CLKL-NOEL)  
FSMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 1b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14893e  
66/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1)(2)  
Table 35. Synchronous multiplexed NOR/PSRAM read timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
1.5  
THCLK + 2  
4
0
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
td(CLKH-AIV)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25) THCLK + 2  
FSMC_CLK low to FSMC_NOE low  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
THCLK +1 ns  
ns  
FSMC_CLK high to FSMC_NOE high  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
THCLK + 0.5  
12  
ns  
ns  
0
6
FSMC_A/D[15:0] valid data before FSMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
ns  
FSMC_A/D[15:0] valid data after FSMC_CLK high THCLK – 10  
ns  
ns  
ns  
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
8
2
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
67/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 29. Synchronous multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 1  
d(CLKL-NExL)  
t
t
d(CLKH-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
FSMC_A[25:16]  
FSMC_NWE  
t
d(CLKL-NWEL)  
d(CLKH-NWEH)  
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
D1  
t
d(CLKL-Data)  
d(CLKL-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
t
d(CLKL-NBLH)  
ai14992d  
68/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1)(2)  
Table 36. Synchronous multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_Nex low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
2
THCLK + 2  
4
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
0
td(CLKH-AIV)  
TCK + 2  
THCLK +1  
3
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
td(CLKL-Data)  
1
FSMC_CLK high to FSMC_NWE high  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
FSMC_A/D[15:0] valid after FSMC_CLK low  
12  
6
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
7
2
1
th(CLKH-NWAITV)  
td(CLKL-NBLH)  
FSMC_NWAIT valid after FSMC_CLK high  
FSMC_CLK low to FSMC_NBL high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
69/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 30. Synchronous non-multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKL-NExL)  
d(CLKH-NExH)  
Data latency = 1  
d(CLKL-NADVH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
FSMC_A[25:0]  
FSMC_NOE  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
t
t
h(CLKH-DV)  
su(DV-CLKH)  
FSMC_D[15:0]  
FSMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
(WAITCFG = 1b, WAITPOL + 0b)  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14894d  
(1)(2)  
Table 37. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol Parameter Min  
tw(CLK) 27.7  
Max  
Unit  
FSMC_CLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
1.5  
4
THCLK + 2  
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 0...25)  
0
td(CLKH-AIV)  
FSMC_CLK high to FSMC_Ax invalid (x = 0...25) THCLK + 4  
FSMC_CLK low to FSMC_NOE low  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
THCLK + 1.5 ns  
FSMC_CLK high to FSMC_NOE high  
THCLK + 1.5  
ns  
ns  
ns  
ns  
ns  
FSMC_D[15:0] valid data before FSMC_CLK high 6.5  
FSMC_D[15:0] valid data after FSMC_CLK high  
7
7
2
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
70/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 31. Synchronous non-multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKL-NExL)  
d(CLKH-NExH)  
Data latency = 1  
d(CLKL-NADVH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
FSMC_A[25:0]  
FSMC_NWE  
t
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
d(CLKL-NWEL)  
t
d(CLKH-NWEH)  
t
d(CLKL-Data)  
d(CLKL-Data)  
FSMC_D[15:0]  
D1  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
d(CLKL-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
ai14993e  
(1)(2)  
Table 38. Synchronous non-multiplexed PSRAM write timings  
Symbol Parameter  
tw(CLK)  
Min  
27.7  
Max Unit  
FSMC_CLK period  
ns  
td(CLKL-NExL)  
td(CLKH-NExH)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FSMC_CLK low to FSMC_NEx low (x = 0...2)  
FSMC_CLK high to FSMC_NEx high (x = 0...2)  
FSMC_CLK low to FSMC_NADV low  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
THCLK + 2  
4
0
1
6
FSMC_CLK low to FSMC_NADV high  
5
FSMC_CLK low to FSMC_Ax valid (x = 16...25)  
FSMC_CLK high to FSMC_Ax invalid (x = 16...25)  
FSMC_CLK low to FSMC_NWE low  
td(CLKH-AIV)  
TCK + 2  
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-Data)  
FSMC_CLK high to FSMC_NWE high  
THCLK + 1  
FSMC_D[15:0] valid data after FSMC_CLK low  
tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high  
7
2
1
td(CLKL-NBLH)  
1. CL = 15 pF.  
FSMC_CLK low to FSMC_NBL high  
2. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
71/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
PC Card/CompactFlash controller waveforms and timings  
Figure 32 through Figure 37 represent synchronous waveforms and Table 39 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x04;  
COM.FSMC_WaitSetupTime = 0x07;  
COM.FSMC_HoldSetupTime = 0x04;  
COM.FSMC_HiZSetupTime = 0x00;  
ATT.FSMC_SetupTime = 0x04;  
ATT.FSMC_WaitSetupTime = 0x07;  
ATT.FSMC_HoldSetupTime = 0x04;  
ATT.FSMC_HiZSetupTime = 0x00;  
IO.FSMC_SetupTime = 0x04;  
IO.FSMC_WaitSetupTime = 0x07;  
IO.FSMC_HoldSetupTime = 0x04;  
IO.FSMC_HiZSetupTime = 0x00;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
Figure 32. PC Card/CompactFlash controller waveforms for common memory read  
access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
h(NCEx-AI)  
t
v(NCEx-A)  
FSMC_A[10:0]  
t
t
t
h(NCEx-NREG)  
h(NCEx-NIORD)  
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
h(NCEx-NIOWR  
)
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
FSMC_NWE  
t
t
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
h(NOE-D)  
su(D-NOE)  
FSMC_D[15:0]  
ai14895b  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
72/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 33. PC Card/CompactFlash controller waveforms for common memory write  
access  
FSMC_NCE4_1  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
t
t
t
h(NCE4_1-NREG)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
t
t
d(NREG-NCE4_1)  
d(NIORD-NCE4_1)  
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
t
t
t
d(NCE4_1-NWE)  
w(NWE)  
d(NWE-NCE4_1)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
ai14896b  
Doc ID 14611 Rev 7  
73/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 34. PC Card/CompactFlash controller waveforms for attribute memory read  
access  
FSMC_NCE4_1  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
FSMC_NIOWR  
FSMC_NIORD  
t
t
h(NCE4_1-NREG)  
d(NREG-NCE4_1)  
FSMC_NREG  
FSMC_NWE  
t
t
t
d(NOE-NCE4_1)  
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0](1)  
ai14897b  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
74/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 35. PC Card/CompactFlash controller waveforms for attribute memory write  
access  
FSMC_NCE4_1  
High  
FSMC_NCE4_2  
FSMC_A[10:0]  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
t
t
d(NCE4_1-NWE)  
w(NWE)  
FSMC_NWE  
t
d(NWE-NCE4_1)  
FSMC_NOE  
t
v(NWE-D)  
FSMC_D[7:0](1)  
ai14898b  
1. Only data bits 0...7 are driven (bits 8...15 remains HiZ).  
Figure 36. PC Card/CompactFlash controller waveforms for I/O space read access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIOWR  
t
t
w(NIORD)  
t
d(NIORD-NCE4_1)  
FSMC_NIORD  
t
su(D-NIORD)  
d(NIORD-D)  
FSMC_D[15:0]  
ai14899B  
Doc ID 14611 Rev 7  
75/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 37. PC Card/CompactFlash controller waveforms for I/O space write access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIORD  
t
t
t
d(NCE4_1-NIOWR)  
w(NIOWR)  
FSMC_NIOWR  
ATTxHIZ =1  
t
v(NIOWR-D)  
h(NIOWR-D)  
FSMC_D[15:0]  
ai14900b  
(1)(2)  
Table 39. Switching characteristics for PC Card/CF read and write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
FSMC_NCEx low (x = 4_1/4_2) to FSMC_Ay valid (y =  
0...10) FSMC_NCE4_1 low (x = 4_1/4_2) to FSMC_Ay valid  
(y = 0...10)  
tv(NCEx-A)  
tv(NCE4_1-A)  
0
5
ns  
FSMC_NCEx high (x = 4_1/4_2) to FSMC_Ax invalid (x =  
0...10) FSMC_NCE4_1 high (x = 4_1/4_2) to FSMC_Ax  
invalid (x = 0...10)  
th(NCEx-AI)  
th(NCE4_1-AI)  
2.5  
ns  
td(NREG-NCEx)  
FSMC_NCEx low to FSMC_NREG valid FSMC_NCE4_1  
td(NREG-NCE4_1) low to FSMC_NREG valid  
ns  
ns  
th(NCEx-NREG)  
FSMC_NCEx high to FSMC_NREG invalid FSMC_NCE4_1  
th(NCE4_1-NREG) high to FSMC_NREG invalid  
THCLK + 3  
td(NCE4_1-NOE)  
tw(NOE)  
td(NOE-NCE4_1  
tsu(D-NOE)  
FSMC_NCE4_1 low to FSMC_NOE low  
5THCLK + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NOE low width  
8THCLK –1.5 8THCLK + 1  
FSMC_NOE high to FSMC_NCE4_1 high  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_D[15:0] valid data after FSMC_NOE high  
FSMC_NWE low width  
5THCLK + 2  
25  
th(NOE-D)  
15  
tw(NWE)  
8THCLK – 1 8THCLK + 2  
5THCLK + 2  
td(NWE-NCE4_1)  
td(NCE4_1-NWE)  
tv(NWE-D)  
FSMC_NWE high to FSMC_NCE4_1 high  
FSMC_NCE4_1 low to FSMC_NWE low  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_D[15:0] valid before FSMC_NWE high  
5THCLK + 1.5 ns  
0
ns  
ns  
ns  
th(NWE-D)  
11THCLK  
td(D-NWE)  
13THCLK  
76/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
(1)(2)  
Table 39. Switching characteristics for PC Card/CF read and write cycles  
(continued)  
Max  
Symbol  
tw(NIOWR)  
tv(NIOWR-D)  
th(NIOWR-D)  
Parameter  
FSMC_NIOWR low width  
Min  
Unit  
8THCLK + 3  
ns  
ns  
ns  
FSMC_NIOWR low to FSMC_D[15:0] valid  
FSMC_NIOWR high to FSMC_D[15:0] invalid  
5THCLK +1  
11THCLK  
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid  
5THCLK+3ns ns  
ns  
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid  
5THCLK – 5  
th(NCE4_1-NIOWR) FSMC_NCE4_1 high to FSMC_NIOWR invalid  
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1  
5THCLK + 2.5 ns  
ns  
td(NIORD-NCE4_1) low to FSMC_NIORD valid  
th(NCEx-NIORD)  
FSMC_NCEx high to FSMC_NIORD invalid  
5THCLK – 5  
th(NCE4_1-NIORD) FSMC_NCE4_1 high to FSMC_NIORD invalid  
tsu(D-NIORD)  
td(NIORD-D)  
tw(NIORD)  
FSMC_D[15:0] valid before FSMC_NIORD high  
FSMC_D[15:0] valid after FSMC_NIORD high  
FSMC_NIORD low width  
4.5  
ns  
ns  
ns  
9
8THCLK + 2  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
NAND controller waveforms and timings  
Figure 38 through Figure 41 represent synchronous waveforms and Table 40 provides the  
corresponding timings. The results shown in this table are obtained with the following FSMC  
configuration:  
COM.FSMC_SetupTime = 0x01;  
COM.FSMC_WaitSetupTime = 0x03;  
COM.FSMC_HoldSetupTime = 0x02;  
COM.FSMC_HiZSetupTime = 0x01;  
ATT.FSMC_SetupTime = 0x01;  
ATT.FSMC_WaitSetupTime = 0x03;  
ATT.FSMC_HoldSetupTime = 0x02;  
ATT.FSMC_HiZSetupTime = 0x01;  
Bank = FSMC_Bank_NAND;  
MemoryDataWidth = FSMC_MemoryDataWidth_16b;  
ECC = FSMC_ECC_Enable;  
ECCPageSize = FSMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0;  
Doc ID 14611 Rev 7  
77/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 38. NAND controller waveforms for read access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
t
t
h(NOE-D)  
su(D-NOE)  
ai14901b  
Figure 39. NAND controller waveforms for write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NWE)  
th(NWE-ALE)  
FSMC_NWE  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
tv(NWE-D)  
th(NWE-D)  
ai14902b  
Figure 40. NAND controller waveforms for common memory read access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
tw(NOE)  
tsu(D-NOE)  
th(NOE-D)  
FSMC_D[15:0]  
ai14912b  
78/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Figure 41. NAND controller waveforms for common memory write access  
FSMC_NCEx  
Low  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
tw(NWE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FSMC_D[15:0]  
ai14913b  
(1)  
Table 40. Switching characteristics for NAND Flash read and write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
(2)  
td(D-NWE)  
FSMC_D[15:0] valid before FSMC_NWE high  
FSMC_NOE low width  
6THCLK + 12  
ns  
(2)  
tw(NOE)  
4THCLK – 1.5 4THCLK + 1.5 ns  
FSMC_D[15:0] valid data before FSMC_NOE  
high  
(2)  
(2)  
tsu(D-NOE)  
25  
ns  
th(NOE-D)  
FSMC_D[15:0] valid data after FSMC_NOE high 7  
ns  
(2)  
tw(NWE)  
FSMC_NWE low width  
4THCLK – 1  
4THCLK + 2.5 ns  
(2)  
tv(NWE-D)  
FSMC_NWE low to FSMC_D[15:0] valid  
FSMC_NWE high to FSMC_D[15:0] invalid  
FSMC_ALE valid before FSMC_NWE low  
FSMC_NWE high to FSMC_ALE invalid  
FSMC_ALE valid before FSMC_NOE low  
FSMC_NWE high to FSMC_ALE invalid  
0
ns  
ns  
(2)  
th(NWE-D)  
td(ALE-NWE)  
th(NWE-ALE)  
10THCLK + 4  
3THCLK + 4.5  
3THCLK + 4.5  
(3)  
(3)  
3THCLK + 1.5 ns  
ns  
(3)  
td(ALE-NOE)  
th(NOE-ALE)  
3THCLK + 2  
ns  
ns  
(3)  
1. CL = 15 pF.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Doc ID 14611 Rev 7  
79/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 41. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 41. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD 3.3 V, LQFP144, TA +25 °C,  
fHCLK 72 MHz  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD3.3 V, LQFP144, TA +25 °C,  
fHCLK 72 MHz  
conforms to IEC 61000-4-4  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
80/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Prequalification trials  
Electrical characteristics  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 42. EMI characteristics  
Max vs. [fHSE/fHCLK  
]
Monitored  
Symbol Parameter  
Conditions  
Unit  
frequency band  
8/48 MHz 8/72 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
8
31  
28  
4
12  
21  
33  
4
VDD 3.3 V, TA 25 °C,  
LQFP144 package  
compliant with IEC  
61967-2  
dBµV  
-
SEMI  
Peak level  
5.3.12  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 43. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
TA +25 °C, conforming  
V
2
2000  
500  
ESD(HBM) voltage (human body model) to JESD22-A114  
V
Electrostatic discharge  
TA +25 °C, conforming  
V
II  
ESD(CDM) voltage (charge device model) to JESD22-C101  
1. Based on characterization results, not tested in production.  
Doc ID 14611 Rev 7  
81/123  
Electrical characteristics  
Static latch-up  
STM32F103xC, STM32F103xD, STM32F103xE  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 44. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA +105 °C conforming to JESD78A  
II level A  
5.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under the conditions summarized in Table 10. All I/Os are CMOS and TTL  
compliant.  
Table 45. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage  
–0.5  
0.8  
V
Standard IO input high level voltage  
IO FT(1) input high level voltage  
Input low level voltage  
TTL ports  
2
2
VDD+0.5  
5.5V  
VIH  
VIL  
VIH  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
Input high level voltage  
0.65 VDD  
Standard IO Schmitt trigger voltage  
hysteresis(2)  
200  
mV  
mV  
Vhys  
IO FT Schmitt trigger voltage  
hysteresis(2)  
(3)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
1  
Ilkg  
Input leakage current (4)  
µA  
VIN= 5 V, I/O FT  
VIN VSS  
3
RPU  
RPD  
CIO  
Weak pull-up equivalent resistor(5)  
Weak pull-down equivalent resistor(5)  
I/O pin capacitance  
30  
30  
40  
40  
5
50  
50  
k  
k  
pF  
VIN VDD  
1. FT = Five-volt tolerant.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
82/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
All I/Os are CMOS and TTL compliant (no software configuration required), their  
characteristics consider the most strict CMOS-technology or TTL parameters:  
For V :  
IH  
if V is in the [2.00 V - 3.08 V] range: CMOS characteristics but TTL included  
DD  
if V is in the [3.08 V - 3.60 V] range: TTL characteristics but CMOS included  
DD  
For V :  
IL  
if V is in the [2.00 V - 2.28 V] range: TTL characteristics but CMOS included  
DD  
if V is in the [2.28 V - 3.60 V] range: CMOS characteristics but TTL included  
DD  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 8).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 8).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 46 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10. All I/Os are CMOS and TTL compliant.  
Doc ID 14611 Rev 7  
83/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 46. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
TTL port  
IIO = +8 mA  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
0.4  
1.3  
0.4  
CMOS port  
IIO =+ 8mA  
V
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
VDD–1.3  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(3)  
VOL  
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(2)(3)  
VOH  
VDD–0.4  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 8  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 8 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
3. Based on characterization data, not tested in production.  
84/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Input/output AC characteristics  
Electrical characteristics  
The definition and values of input/output AC characteristics are given in Figure 42 and  
Table 47, respectively.  
Unless otherwise specified, the parameters given in Table 47 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
(1)  
Table 47. I/O AC characteristics  
MODEx[1:0]  
Symbol  
Parameter  
Conditions  
Min Max Unit  
bit value(1)  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low  
tf(IO)out  
125(3)  
10  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
125(3)  
10  
level rise time  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
MHz  
ns  
Output high to low  
tf(IO)out  
25(3)  
01  
level fall time  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high  
tr(IO)out  
25(3)  
level rise time  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50  
30  
MHz  
MHz  
MHz  
20  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Output high to low  
level fall time  
5(3)  
8(3)  
12(3)  
5(3)  
8(3)  
12(3)  
11  
tf(IO)out  
tr(IO)out  
tEXTIpw  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
ns  
Output low to high  
level rise time  
Pulse width of  
external signals  
detected by the EXTI  
controller  
-
10  
ns  
1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a  
description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 42.  
3. Guaranteed by design, not tested in production.  
Doc ID 14611 Rev 7  
85/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 42. I/O AC characteristics definition  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 45).  
PU  
Unless otherwise specified, the parameters given in Table 48 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 10.  
Table 48. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
NRST Input low level voltage  
NRST Input high level voltage  
–0.5  
2
0.8  
V
(1)  
VIH(NRST)  
Vhys(NRST)  
RPU  
VDD+0.5  
NRST Schmitt trigger voltage  
hysteresis  
200  
40  
mV  
Weak pull-up equivalent resistor(2)  
VIN VSS  
30  
50  
k  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
100  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
300  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
Figure 43. Recommended NRST pin protection  
V
DD  
External  
reset circuit(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 µF  
STM32F10xxx  
ai14132c  
2. The reset network protects the device against parasitic resets.  
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 48. Otherwise the reset will not be taken into account by the device.  
86/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.15  
TIM timer characteristics  
The parameters given in Table 49 are guaranteed by design.  
Refer to Section 5.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 49. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
tres(TIM)  
Timer resolution time  
fTIMxCLK = 72 MHz 13.9  
0
fTIMxCLK/2  
36  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 72 MHz  
0
MHz  
ResTIM  
Timer resolution  
16  
bit  
16-bit counter clock period  
when internal clock is  
selected  
tTIMxCLK  
1
65536  
tCOUNTER  
fTIMxCLK = 72 MHz 0.0139  
910  
µs  
tTIMxCLK  
s
65536 × 65536  
59.6  
tMAX_COUNT  
Maximum possible count  
fTIMxCLK = 72 MHz  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.  
Doc ID 14611 Rev 7  
87/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.16  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 10.  
2
I
The STM32F103xC, STM32F103xD and STM32F103xE performance line C interface  
2
meets the requirements of the standard I C communication protocol with the following  
restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When  
configured as open-drain, the PMOS connected between the I/O pin and V is disabled,  
DD  
but is still present.  
2
The I C characteristics are described in Table 50. Refer also to Section 5.3.13: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 50. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
1.3  
0.6  
µs  
250  
0(3)  
100  
0(4)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20 + 0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
s  
s  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
400  
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
88/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
2
Figure 44. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F103xx  
SDA  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
2
I C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14149b  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
(1)(2)  
Table 51. SCL frequency (f  
fSCL (kHz)  
= 36 MHz.,VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 k  
400  
300  
200  
100  
50  
0x801E  
0x8028  
0x803C  
0x00B4  
0x0168  
0x0384  
20  
1. RP = External pull-up resistance, fSCL = I2C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
Doc ID 14611 Rev 7  
89/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
I2S - SPI characteristics  
2
Unless otherwise specified, the parameters given in Table 52 for SPI or in Table 53 for I S  
are derived from tests performed under ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 10.  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
(1)  
Table 52. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
18  
18  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
8
ns  
%
SPI slave input clock duty  
cycle  
DuCy(SCK)  
Slave mode  
30  
70  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tPCLK  
2tPCLK  
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
SCK high and low time  
Data input setup time  
50  
60  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
5
4
0
2
tsu(MI)  
tsu(SI)  
(2)  
(2)  
th(MI)  
Data input hold time  
ns  
(2)  
th(SI)  
(2)(3)  
ta(SO)  
Data output access time Slave mode, fPCLK = 20 MHz  
Data output disable time Slave mode  
3tPCLK  
10  
(2)(4)  
tdis(SO)  
(2)(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
25  
(2)(1)  
tv(MO)  
5
(2)  
th(SO)  
15  
2
Data output hold time  
(2)  
th(MO)  
1. Remapped SPI1 characteristics to be determined.  
2. Based on characterization, not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
90/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 45. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
Electrical characteristics  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 46. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 14611 Rev 7  
91/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)  
Figure 47. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTPUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
92/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
2
Table 53. I S characteristics  
Symbol  
Parameter  
Conditions  
Slave mode  
Min  
Max  
Unit  
I2S slave input clock duty  
cycle  
DuCy(SCK)  
30  
70  
%
Master mode (data: 16 bits,  
Audio frequency = 48 kHz)  
1.522  
0
1.525  
6.5  
8
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
ns  
Slave mode  
tr(CK)  
tf(CK)  
I2S clock rise and fall time  
WS valid time  
Capacitive load CL = 50 pF  
Master mode  
(1)  
tv(WS)  
3
2
I2S2  
I2S3  
(1)  
th(WS)  
WS hold time  
Master mode  
0
(1)  
tsu(WS)  
WS setup time  
WS hold time  
Slave mode  
Slave mode  
4
(1)  
th(WS)  
0
(1)  
tw(CKH)  
312.5  
345  
2
Master fPCLK= 16 MHz, audio  
frequency = 48 kHz  
CK high and low time  
(1)  
tw(CKL)  
I2S2  
Master receiver  
I2S3  
(1)  
tsu(SD_MR)  
Data input setup time  
Data input setup time  
Data input hold time  
6.5  
1.5  
0
(1)  
tsu(SD_SR)  
Slave receiver  
Master receiver  
Slave receiver  
(1)(2)  
th(SD_MR)  
th(SD_SR)  
(1)(2)  
0.5  
Slave transmitter (after enable  
edge)  
(1)(2)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
18  
3
Slave transmitter (after enable  
edge)  
(1)  
11  
0
Master transmitter (after enable  
edge)  
(1)(2)  
(1)  
Master transmitter (after enable  
edge)  
1. Based on design simulation and/or characterization results, not tested in production.  
2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.  
Doc ID 14611 Rev 7  
93/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
2
(1)  
Figure 48. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 49. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. Based on characterization, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
94/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 54 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 10.  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
function characteristics (D[7:0], CMD, CK).  
Figure 50. SDIO high-speed mode  
t
t
r
f
t
C
t
t
W(CKH)  
W(CKL)  
CK  
t
t
OV  
OH  
D, CMD  
(output)  
t
t
ISU  
IH  
D, CMD  
(input)  
ai14887  
Figure 51. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
Doc ID 14611 Rev 7  
95/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 54. SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Clock frequency in data transfer  
mode  
fPP  
CL 30 pF  
0
48  
MHz  
tW(CKL)  
Clock low time, fPP = 16 MHz  
Clock high time, fPP = 16 MHz  
Clock rise time  
CL 30 pF  
CL 30 pF  
CL 30 pF  
CL 30 pF  
32  
31  
tW(CKH)  
ns  
tr  
tf  
3.5  
5
Clock fall time  
CMD, D inputs (referenced to CK)  
tISU  
tIH  
Input setup time  
Input hold time  
CL 30 pF  
CL 30 pF  
2
0
ns  
ns  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time  
Output hold time  
CL 30 pF  
CL 30 pF  
6
7
0.3  
0.5  
CMD, D outputs (referenced to CK) in SD default mode(1)  
tOVD  
tOHD  
Output valid default time  
Output hold default time  
CL 30 pF  
CL 30 pF  
ns  
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.  
USB characteristics  
The USB interface is USB-IF certified (Full Speed).  
Table 55. USB startup time  
Symbol  
Parameter  
Max  
Unit  
µs  
(1)  
tSTARTUP  
USB transceiver startup time  
1
1. Guaranteed by design, not tested in production.  
96/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Table 56. USB DC electrical characteristics  
Symbol Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
Differential input sensitivity  
3.0(3)  
0.2  
3.6  
V
V
(4)  
VDI  
I(USBDP, USBDM)  
(4)  
VCM  
Differential common mode range Includes VDI range  
Single ended receiver threshold  
0.8  
2.5  
2.0  
(4)  
VSE  
Output levels  
1.3  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kto 3.6 V(5)  
0.3  
3.6  
V
(5)  
RL of 15 kto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled  
up with a 1.5 kresistor to a 3.0-to-3.6 V voltage range.  
3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
4. Guaranteed by characterization, not tested in production.  
RL is the load connected on the USB drivers  
5.  
Figure 52. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 57.  
Symbol  
USB: full-speed electrical characteristics  
Driver characteristics(1)  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
5.3.17  
CAN (controller area network) interface  
Refer to Section 5.3.13: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
Doc ID 14611 Rev 7  
97/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
5.3.18  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 10.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 58. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
2.4  
2.4  
3.6  
V
V
VREF+  
Positive reference voltage  
VDDA  
Current on the VREF input  
pin  
IVREF  
fADC  
160(1) 220(1)  
µA  
ADC clock frequency  
Sampling rate  
0.6  
14  
1
MHz  
MHz  
(2)  
0.05  
fS  
f
ADC = 14 MHz  
823  
17  
kHz  
(2)  
External trigger frequency  
Conversion voltage range(3)  
fTRIG  
1/fADC  
0 (VSSA or VREF-  
tied to ground)  
VAIN  
VREF+  
V
See Equation 1 and  
Table 59 for details  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
50  
1
k  
k  
pF  
(2)  
RADC  
Internal sample and hold  
capacitor  
(2)  
8
CADC  
fADC = 14 MHz  
fADC = 14 MHz  
fADC = 14 MHz  
fADC = 14 MHz  
5.9  
83  
µs  
1/fADC  
µs  
(2)  
Calibration time  
tCAL  
0.214  
3(4)  
Injection trigger conversion  
latency  
(2)  
tlat  
1/fADC  
µs  
0.143  
2(4)  
Regular trigger conversion  
latency  
(2)  
tlatr  
1/fADC  
µs  
0.107  
1.5  
0
17.1  
239.5  
(2)  
Sampling time  
Power-up time  
tS  
1/fADC  
µs  
(2)  
tSTAB  
0
1
fADC = 14 MHz  
1
18  
µs  
Total conversion time  
(including sampling time)  
(2)  
tCONV  
14 to 252 (tS for sampling +12.5 for  
successive approximation)  
1/fADC  
1. Based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 3: Pinouts and pin descriptions for further details.  
4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 58.  
98/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
Equation 1: R  
max formula  
AIN  
TS  
RAIN ------------------------------------------------------------- – RADC  
fADC CADC ln2N + 2  
The formula above (Equation 1) is used to determine the maximum external impedance allowed for an  
error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 59.  
R
max for f  
= 14 MHz  
AIN  
ADC  
Ts (cycles)  
tS (µs)  
RAIN max (k)  
1.5  
0.11  
0.4  
7.5  
0.54  
0.96  
2.04  
2.96  
3.96  
5.11  
17.1  
5.9  
13.5  
28.5  
41.5  
55.5  
71.5  
239.5  
11.4  
25.2  
37.2  
50  
NA  
NA  
1. Guaranteed by design, not tested in production.  
(1)(2)  
Table 60. ADC accuracy - limited test conditions  
Symbol  
Parameter  
Test conditions  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
Total unadjusted error  
Offset error  
f
PCLK2 = 56 MHz,  
1.3  
1
2
1.5  
1.5  
1
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 3 V to 3.6 V  
TA = 25 °C  
Gain error  
0.5  
0.7  
LSB  
Measurements made after  
ADC calibration  
VREF+ = VDDA  
Differential linearity error  
EL  
Integral linearity error  
0.8  
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
3. Based on characterization, not tested in production.  
Doc ID 14611 Rev 7  
99/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1) (2)(3)  
Table 61. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Typ  
Max(4)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
2
5
2.5  
3
fPCLK2 = 56 MHz,  
fADC = 14 MHz, RAIN < 10 k,  
VDDA = 2.4 V to 3.6 V  
1.5  
1.5  
1
Gain error  
LSB  
Measurements made after  
ADC calibration  
Differential linearity error  
Integral linearity error  
2
1.5  
3
1. ADC DC accuracy values are measured after internal calibration.  
2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges.  
3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 5.3.13 does not  
affect the ADC accuracy.  
4. Based on characterization, not tested in production.  
Figure 53. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
ai14395b  
100/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 54. Typical connection diagram using the ADC  
Electrical characteristics  
V
DD  
STM32F103xx  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
(1)  
AIN  
R
R
ADC  
AINx  
12-bit  
converter  
I
1 µA  
L
C
V
T
parasitic  
V
AIN  
0.6 V  
(1)  
C
ADC  
ai14150c  
1. Refer to Table 58 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 55 or Figure 56,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 55. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32F103xx  
V
REF+  
(see note 1)  
1 µF // 10 nF  
V
DDA  
SSA  
1 µF // 10 nF  
V
/V  
REF–  
(see note 1)  
ai14388b  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Doc ID 14611 Rev 7  
101/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 56. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F103xx  
V
/V  
REF+ DDA  
(See note 1)  
1 µF // 10 nF  
V
/V  
REF– SSA  
(See note 1)  
ai14389  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
102/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.19  
DAC electrical specifications  
Table 62. DAC characteristics  
Symbol  
Parameter  
Min  
2.4  
Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
3.6  
V
VREF+  
VSSA  
Reference supply voltage  
Ground  
2.4  
0
3.6  
0
V
VREF+ must always be below VDDA  
V
(1)  
RLOAD  
Resistive load with buffer ON 5  
k  
When the buffer is OFF, the Minimum  
resistive load between DAC_OUT  
and VSS to have a 1% accuracy is  
1.5 M  
Impedance output with buffer  
OFF  
(1)  
RO  
15  
50  
k  
Maximum capacitive load at  
DAC_OUT pin (when the buffer is  
ON).  
(1)  
CLOAD  
Capacitive load  
pF  
V
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
0.2  
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+ = 3.6 V  
DAC_OUT Higher DAC_OUT voltage  
max(1)  
with buffer ON  
and (0x155) and (0xEAB) at VREF+  
2.4 V  
=
VDDA – 0.2  
V
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer OFF  
0.5  
mV  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
VREF+ – 1LSB V  
max(1)  
with buffer OFF  
DAC DC current  
With no load, worst code (0xF1C) at  
IDDVREF+  
consumption in quiescent  
mode (Standby mode)  
220  
380  
480  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
With no load, middle code (0x800) on  
the inputs  
µA  
DAC DC current  
consumption in quiescent  
mode (Standby mode)  
IDDA  
With no load, worst code (0xF1C) at  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
Given for the DAC in 10-bit  
configuration  
0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(2)  
Given for the DAC in 12-bit  
configuration  
2
1
LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration  
LSB  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(2)  
Given for the DAC in 12-bit  
configuration  
4
LSB  
Doc ID 14611 Rev 7  
103/123  
Electrical characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 62. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Given for the DAC in 12-bit  
configuration  
10  
3
mV  
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
Given for the DAC in 10-bit at VREF+  
= 3.6 V  
Offset(2)  
LSB  
LSB  
%
Given for the DAC in 12-bit at VREF+  
= 3.6 V  
12  
0.5  
Gain  
Given for the DAC in 12bit  
configuration  
Gain error  
error(2)  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value 1LSB  
(2)  
tSETTLING  
3
4
1
µs  
CLOAD 50 pF, RLOAD 5 k  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(2)  
MS/s CLOAD 50 pF, RLOAD 5 k  
CLOAD 50 pF, RLOAD 5 k  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(2)  
tWAKEUP  
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. Guaranteed by characterization, not tested in production.  
Figure 57. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
LOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
C
LOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
104/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Electrical characteristics  
5.3.20  
Temperature sensor characteristics  
Table 63. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
1  
4.3  
2  
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
(1)  
V25  
Voltage at 25 °C  
Startup time  
1.43  
(2)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(3)(2)  
TS_temp  
17.1  
µs  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
Doc ID 14611 Rev 7  
105/123  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 58. Recommended PCB design rules (0.80/0.75 mm pitch BGA)  
Dpad  
0.37 mm  
0.52 mm typ. (depends on solder mask  
registration tolerance  
Dsm  
Solder paste  
0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
ai15469  
106/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
Figure 59. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package outline  
Seating plane  
C
A2  
A4  
ddd  
C
A
A3  
A1  
B
D
D1  
A
e
F
M
F
E1  
E
e
Øb (144 balls)  
Ball A1  
C
A
B
M
Øeee  
Ø fff  
M
C
X3_ME  
1. Drawing is not to scale.  
Table 64. LFBGA144 – 144-ball low profile fine pitch ball grid array, 10 x 10 mm,  
0.8 mm pitch, package data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Typ  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
1.70  
0.0669  
0.21  
0.0083  
1.07  
0.27  
0.0421  
0.0106  
0.85  
0.45  
0.0335  
0.0177  
0.3996  
0.35  
9.85  
0.40  
10.00  
8.80  
10.00  
8.80  
0.80  
0.60  
0.10  
0.15  
0.08  
0.0138  
0.3878  
0.0157  
0.3937  
0.3465  
0.3937  
0.3465  
0.0315  
0.0236  
0.0039  
0.0059  
0.0031  
D
10.15  
D1  
E
9.85  
10.15  
0.3878  
0.3996  
E1  
e
F
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 14611 Rev 7  
107/123  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 60. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
outline  
1. Drawing is not to scale.  
Table 65. LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
1.700  
0.0669  
A1  
A2  
A3  
A4  
b
0.270  
0.0106  
1.085  
0.30  
0.0427  
0.0118  
0.80  
0.55  
0.0315  
0.0217  
0.3996  
0.45  
9.85  
0.50  
10.00  
7.20  
10.00  
7.20  
0.80  
1.40  
0.12  
0.15  
0.08  
0.0177  
0.3878  
0.0197  
0.3937  
0.2835  
0.3937  
0.2835  
0.0315  
0.0551  
D
10.15  
D1  
E
9.85  
10.15  
0.3878  
0.3996  
E1  
e
F
ddd  
eee  
fff  
0.0047  
0.0059  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
108/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
Figure 61. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale  
package outline  
e1  
A1 ball corner  
e
A1 ball corner  
e
D
A
B
C
H
Detail A  
D
E
e1  
E
F
Notch  
G
H
F
L
aaa  
Marking area  
A2  
L
G
2
8
7
6
5
4
3
1
Wafer back side  
A
Ball side  
Side view  
Ball  
eee  
A1  
b
Seating plane (see note 2)  
Detail A rotated 90 ˚  
CR_ME  
1. Drawing is not to scale.  
2. Primary datum Z and seating plane are defined by the spherical crowns of the ball.  
Table 66. WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
0.535  
Max  
0.635  
Min  
Typ  
Max  
A
0.585  
0.230  
0.355  
0.320  
0.500  
3.500  
0.447  
0.483  
4.466  
4.395  
0.250  
0.200  
0.05  
0.0211  
0.0081  
0.0130  
0.0114  
0.0230  
0.0091  
0.0140  
0.0126  
0.0197  
0.1378  
0.0176  
0.0190  
0.1758  
0.1730  
0.0098  
0.0079  
0.0020  
0.0039  
0.0250  
0.0100  
0.0150  
0.0138  
A1  
A2  
b(2)  
e
0.205  
0.330  
0.290  
0.255  
0.380  
0.350  
e1  
F
G
D
4.446  
4.375  
4.486  
4.415  
0.1750  
0.1722  
0.1766  
0.1738  
E
H
L
eee  
aaa  
0.10  
Number of balls  
64  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Dimension is measured at the maximum ball diameter parallel to primary datum Z.  
Doc ID 14611 Rev 7  
109/123  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
Figure 62. Recommended PCB design rules (0.5 mm pitch BGA)  
Dpad  
0.37 mm  
0.52 mm typ. (depends on solder mask  
registration tolerance  
Dsm  
Solder paste  
0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
ai15469  
110/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
Figure 63. LQFP144, 20 x 20 mm, 144-pin low-profile quad  
Figure 64. Recommended  
(1)  
(1)(2)  
flat package outline  
footprint  
Seating plane  
C
A
A2 A1  
c
b
1.35  
73  
0.25 mm  
108  
gage plane  
ccc  
C
109  
72  
0.35  
D
k
D1  
0.5  
A1  
D3  
L
108  
73  
17.85  
22.6  
L1  
19.9  
72  
109  
144  
37  
E1  
E
1
36  
19.9  
22.6  
E3  
ai149  
144  
37  
Pin 1  
identification  
1
36  
e
ME_1A  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 67. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
0.063  
A
A1  
A2  
b
1.60  
0.15  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
21.80  
19.80  
22.00  
20.00  
17.50  
22.00  
20.00  
17.50  
0.50  
22.20  
20.20  
0.8661  
0.7874  
0.689  
D1  
D3  
E
0.7953  
21.80  
19.80  
22.20  
20.20  
0.8583  
0.7795  
0.8661  
0.7874  
0.689  
0.874  
E1  
E3  
e
0.7953  
0.0197  
0.0236  
0.0394  
3.5°  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 14611 Rev 7  
111/123  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
(1)(2)  
Figure 65. LQFP100, 14 x 14 mm 100-pin low-profile  
Figure 66. Recommended footprint  
(1)  
quad flat package outline  
0.25 mm  
0.10 inch  
GAGE PLANE  
k
75  
51  
D
L
D1  
76  
50  
L1  
D3  
0.5  
51  
75  
C
76  
50  
0.3  
16.7 14.3  
b
E3 E1  
E
100  
26  
1.2  
100  
26  
1
25  
Pin 1  
identification  
1
25  
ccc  
C
12.3  
16.7  
e
A1  
A2  
A
ai14906b  
SEATING PLANE  
C
1L_ME  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 68. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
0.063  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
1.40  
0.22  
1.45  
0.0551  
0.0087  
0.17  
0.27  
c
0.09  
0.20  
D
15.80  
13.80  
16.00  
14.00  
12.00  
16.00  
14.00  
12.00  
0.50  
16.20  
14.20  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.5433  
15.80  
13.80  
16.20  
14.20  
0.622  
0.6378  
0.5591  
E1  
E3  
e
0.5433  
L
0.45  
0°  
0.60  
0.75  
7°  
0.0177  
0°  
0.0295  
7°  
L1  
k
1.00  
3.5°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
112/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
(1)(2)  
Figure 67. LQFP64 – 10 x 10 mm 64 pin low-profile  
Figure 68. Recommended footprint  
(1)  
quad flat package outline  
A
48  
33  
A2  
0.3  
A1  
49  
32  
0.5  
b
12.7  
E
E1  
10.3  
e
10.3  
64  
17  
1.2  
1
16  
D1  
D
c
7.8  
L1  
12.7  
L
ai14909  
ai14398b  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
Table 69. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.05  
1.35  
0.17  
0.09  
0.0020  
0.0531  
0.0067  
0.0035  
1.40  
0.22  
0.0551  
0.0087  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
1.00  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 14611 Rev 7  
113/123  
Package characteristics  
STM32F103xC, STM32F103xD, STM32F103xE  
6.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 10: General operating conditions on page 42.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
is the package junction-to-ambient thermal resistance, in C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = (V × I ) + ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 70. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LFBGA144 - 10 × 10 mm / 0.8 mm pitch  
40  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
30  
40  
46  
45  
50  
Thermal resistance junction-ambient  
LFBGA100 - 10 × 10 mm / 0.8 mm pitch  
JA  
°C/W  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
WLCSP64  
6.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
114/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Package characteristics  
6.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 71: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F103xC, STM32F103xD and  
STM32F103xE at maximum dissipation, it is useful to calculate the exact power  
consumption and junction temperature to determine which temperature range will be best  
suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 70 T  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 71: Ordering information scheme).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Doc ID 14611 Rev 7  
115/123  
Package characteristics  
Using the values obtained in Table 70 T  
STM32F103xC, STM32F103xD, STM32F103xE  
is calculated as follows:  
Jmax  
T
For LQFP100, 46 °C/W  
= 115 °C + (46 °C/W × 134 mW) = 115 °C + 6.2 °C = 121.2 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Table 71: Ordering information scheme).  
Figure 69. LQFP100 P max vs. T  
D
A
700  
600  
500  
400  
300  
200  
100  
0
Suffix 6  
Suffix 7  
65  
75  
85  
95 105 115 125 135  
TA (°C)  
116/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Part numbering  
7
Part numbering  
Table 71. Ordering information scheme  
Example:  
STM32  
F 103 R  
C
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
103 = performance line  
Pin count  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
C = 256 Kbytes of Flash memory  
D = 384 Kbytes of Flash memory  
E = 512 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
Y = WLCSP64  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and real  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
Doc ID 14611 Rev 7  
117/123  
Revision history  
STM32F103xC, STM32F103xD, STM32F103xE  
8
Revision history  
Table 72. Document revision history  
Date  
Revision  
Changes  
07-Apr-2008  
1
Initial release.  
Document status promoted from Target Specification to Preliminary  
Data.  
Section 1: Introduction and Section 2.2: Full compatibility throughout  
the family modified. Small text changes.  
Note 2 added in Table 2: STM32F103xC, STM32F103xD and  
STM32F103xE features and peripheral counts on page 11.  
LQPF100/BGA100 column added to Table 6: FSMC pin definition on  
page 36.  
Values and Figures added to Maximum current consumption on  
page 44 (see Table 14, Table 15, Table 16 and Table 17 and see  
Figure 14, Figure 15, Figure 17, Figure 18 and Figure 19).  
Values added to Typical current consumption on page 50 (see Table 18,  
Table 19 and Table 20). Table 19: Typical current consumption in  
Standby mode removed.  
22-May-2008  
2
Note 4 and Note 1 added to Table 56: USB DC electrical characteristics  
and Table 57: USB: full-speed electrical characteristics on page 97,  
respectively.  
VUSB added to Table 56: USB DC electrical characteristics on page 97.  
Figure 64: Recommended footprint(1) on page 111 corrected.  
Equation 1 corrected. Figure 69: LQFP100 PD max vs. TA on page 116  
modified.  
Tolerance values corrected in Table 64: LFBGA144 – 144-ball low  
profile fine pitch ball grid array, 10 x 10 mm, 0.8 mm pitch, package data  
on page 107.  
118/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 72. Document revision history  
Revision history  
Date  
Revision  
Changes  
Document status promoted from Preliminary Data to full datasheet.  
FSMC (flexible static memory controller) on page 15 modified.  
Number of complementary channels corrected in Figure 1:  
STM32F103xC, STM32F103xD and STM32F103xE performance line  
block diagram.  
Power supply supervisor on page 17 modified and VDDA added to  
Table 10: General operating conditions on page 42.  
Table notes revised in Section 5: Electrical characteristics.  
Capacitance modified in Figure 12: Power supply scheme on page 40.  
Table 51: SCL frequency (fPCLK1= 36 MHz.,VDD = 3.3 V) updated.  
Table 52: SPI characteristics modified, th(NSS) modified in Figure 45:  
SPI timing diagram - slave mode and CPHA = 0 on page 91.  
Minimum SDA and SCL fall time value for Fast mode removed from  
Table 50: I2C characteristics on page 88, note 1 modified.  
21-Jul-2008  
3
IDD_VBAT values and some IDD values with regulator in run mode added  
to Table 17: Typical and maximum current consumptions in Stop and  
Standby modes on page 48.  
Table 30: Flash memory endurance and data retention on page 61  
updated.  
tsu(NSS) modified in Table 52: SPI characteristics on page 90.  
EO corrected in Table 61: ADC accuracy on page 100. Figure 54:  
Typical connection diagram using the ADC on page 101 and note below  
corrected.  
Typical TS_temp value removed from Table 63: TS characteristics on  
page 105.  
Section 6.1: Package mechanical data on page 106 updated.  
Small text changes.  
Doc ID 14611 Rev 7  
119/123  
Revision history  
Table 72. Document revision history  
STM32F103xC, STM32F103xD, STM32F103xE  
Changes  
Date  
Revision  
Timers specified on page 1 (motor control capability mentioned).  
Section 2.2: Full compatibility throughout the family updated.  
Table 4: High-density timer feature comparison added.  
General-purpose timers (TIMx) and Advanced-control timers (TIM1 and  
TIM8) on page 19 updated.  
Figure 1: STM32F103xC, STM32F103xD and STM32F103xE  
performance line block diagram modified.  
Note 10 added, main function after reset and Note 5 on page 35  
updated in Table 5: High-density STM32F103xx pin definitions.  
Note 2 modified below Table 7: Voltage characteristics on page 41,  
|VDDx| min and |VDDx| min removed.  
12-Dec-2008  
4
Note 2 and PD values for LQFP144 and LFBGA144 packages added to  
Table 10: General operating conditions on page 42.  
Measurement conditions specified in Section 5.3.5: Supply current  
characteristics on page 44.  
Max values at TA = 85 °C and TA = 105 °C updated in Table 17: Typical  
and maximum current consumptions in Stop and Standby modes on  
page 48.  
Section 5.3.10: FSMC characteristics on page 61 updated.  
Data added to Table 42: EMI characteristics on page 81.  
IVREF added to Table 58: ADC characteristics on page 98.  
Table 70: Package thermal characteristics on page 114 updated.  
Small text changes.  
120/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Table 72. Document revision history  
Revision history  
Date  
Revision  
Changes  
I/O information clarified on page 1. Figure 4: STM32F103xC and  
STM32F103xE performance line BGA100 ballout corrected.  
I/O information clarified on page 1.  
In Table 5: High-density STM32F103xx pin definitions:  
– I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15  
updated  
– PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default  
column to Remap column  
PG14 pin description modified in Table 6: FSMC pin definition.  
Figure 9: Memory map on page 38 modified.  
Note modified in Table 14: Maximum current consumption in Run mode,  
code with data processing running from Flash and Table 16: Maximum  
current consumption in Sleep mode, code running from Flash or RAM.  
Figure 17, Figure 18 and Figure 19 show typical curves (titles  
changed).  
Table 21: High-speed external user clock characteristics and Table 22:  
Low-speed external user clock characteristics modified. ACCHSI max  
values modified in Table 25: HSI oscillator characteristics.  
FSMC configuration modified for Asynchronous waveforms and timings.  
Notes modified below Figure 24: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR read waveforms and Figure 25: Asynchronous  
non-multiplexed SRAM/PSRAM/NOR write waveforms.  
tw(NADV) values modified in Table 31: Asynchronous non-multiplexed  
SRAM/PSRAM/NOR read timings and Table 34: Asynchronous  
multiplexed PSRAM/NOR write timings. th(Data_NWE) modified in  
Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write  
timings  
30-Mar-2009  
5
In Table 36: Synchronous multiplexed PSRAM write timings and  
Table 38: Synchronous non-multiplexed PSRAM write timings:  
– tv(Data-CLK) renamed as td(CLKL-Data)  
– td(CLKL-Data) min value removed and max value added  
– th(CLKL-DV) / th(CLKL-ADV) removed  
Figure 28: Synchronous multiplexed NOR/PSRAM read timings,  
Figure 29: Synchronous multiplexed PSRAM write timings and  
Figure 31: Synchronous non-multiplexed PSRAM write timings  
modified.  
Figure 48: I2S slave timing diagram (Philips protocol)(1) and Figure 49:  
I2S master timing diagram (Philips protocol)(1) modified.  
WLCSP64 package added (see Figure 8: STM32F103xC and  
STM32F103xE performance line WLCSP64 ballout, ball side, Table 5:  
High-density STM32F103xx pin definitions, Figure 61: WLCSP, 64-ball  
4.466 × 4.395 mm, 0.500 mm pitch, wafer-level chip-scale package  
outline and Table 66: WLCSP, 64-ball 4.466 × 4.395 mm, 0.500 mm  
pitch, wafer-level chip-scale package mechanical data).  
Small text changes.  
Doc ID 14611 Rev 7  
121/123  
Revision history  
Table 72. Document revision history  
STM32F103xC, STM32F103xD, STM32F103xE  
Changes  
Date  
Revision  
Figure 1: STM32F103xC, STM32F103xD and STM32F103xE  
performance line block diagram updated.  
Note 5 updated and Note 4 added in Table 5: High-density  
STM32F103xx pin definitions.  
VRERINT and TCoeff added to Table 13: Embedded internal reference  
voltage.  
Table 16: Maximum current consumption in Sleep mode, code running  
from Flash or RAM modified.  
fHSE_ext min modified in Table 21: High-speed external user clock  
characteristics.  
CL1 and CL2 replaced by C in Table 23: HSE 4-16 MHz oscillator  
characteristics and Table 24: LSE oscillator characteristics (fLSE =  
32.768 kHz), notes modified and moved below the tables.  
Note 1 modified below Figure 22: Typical application with an 8 MHz  
crystal. Table 25: HSI oscillator characteristics modified. Conditions  
removed from Table 27: Low-power mode wakeup timings.  
Jitter added to Table 28: PLL characteristics.  
Figure 43: Recommended NRST pin protection modified.  
In Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read  
timings: th(BL_NOE) and th(A_NOE) modified.  
21-Jul-2009  
6
In Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write  
timings: th(A_NWE) and th(Data_NWE) modified.  
In Table 33: Asynchronous multiplexed PSRAM/NOR read timings:  
th(AD_NADV) and th(A_NOE) modified.  
In Table 34: Asynchronous multiplexed PSRAM/NOR write timings:  
th(A_NWE) modified.  
In Table 35: Synchronous multiplexed NOR/PSRAM read timings:  
th(CLKH-NWAITV) modified.  
In Table 40: Switching characteristics for NAND Flash read and write  
cycles: th(NOE-D) modified.  
Table 52: SPI characteristics modified. Values added to Table 53: I2S  
characteristics and Table 54: SD / MMC characteristics.  
CADC and RAIN parameters modified in Table 58: ADC characteristics.  
RAIN max values modified in Table 59: RAIN max for fADC = 14 MHz.  
Table 62: DAC characteristics modified. Figure 57: 12-bit buffered /non-  
buffered DAC added.  
Figure 60: LFBGA100 - 10 x 10 mm low profile fine pitch ball grid array  
package outline and Table 65: LFBGA100 - 10 x 10 mm low profile fine  
pitch ball grid array package mechanical data updated.  
Number of DACs corrected in Table 3: STM32F103xx family.  
IDD_VBAT updated in Table 17: Typical and maximum current  
consumptions in Stop and Standby modes.  
Figure 16: Typical current consumption on VBAT with RTC on vs.  
temperature at different VBAT values added.  
24-Sep-2009  
7
IEC 1000 standard updated to IEC 61000 and SAE J1752/3 updated to  
IEC 61967-2 in Section 5.3.11: EMC characteristics on page 80.  
Table 62: DAC characteristics modified. Small text changes.  
122/123  
Doc ID 14611 Rev 7  
STM32F103xC, STM32F103xD, STM32F103xE  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 14611 Rev 7  
123/123  

相关型号:

STM32F103ZEH6XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZEH6XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,BGA,144PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZEH7

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZEH7TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZEH7XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZEH7XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,BGA,144PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET6TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET6XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET6XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,QFP,144PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET7TR

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET7XXX

High-density performance line ARM-based 32-bit MCU with 256 to 512KB Flash, USB, CAN, 11 timers, 3 ADCs, 13 communication interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F103ZET7XXXTR

IC,MICROCONTROLLER,32-BIT,CORTEX-M3 CPU,CMOS,QFP,144PIN,PLASTIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR