STM32F303 [STMICROELECTRONICS]

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM;
STM32F303
型号: STM32F303
厂家: ST    ST
描述:

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM

静态存储器
文件: 总133页 (文件大小:2061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F302xB STM32F302xC  
STM32F303xB STM32F303xC  
ARM Cortex-M4F 32b MCU+FPU, up to 256KB Flash+48KB SRAM  
4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V operation  
Datasheet production data  
Features  
Core: ARM® 32-bit Cortex-M4F CPU (72 MHz  
max), single-cycle multiplication and HW  
division, DSP instruction with FPU (floating-point  
unit) and MPU (memory protection unit).  
LQFP48 (7 × 7 mm)  
LQFP64 (10 × 10 mm)  
LQFP100 (14 × 14 mm)  
Operating conditions:  
Up to 13 timers  
– V , V  
voltage range: 2.0 V to 3.6 V  
DD DDA  
– One 32-bit timer and two 16-bit timers with  
up to 4 IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input  
– Up to two 16-bit 6-channel advanced-control  
timers, with up to 6 PWM channels,  
deadtime generation and emergency stop  
– One 16-bit timer with 2 IC/OCs, 1  
OCN/PWM, deadtime generation and  
emergency stop  
Two 16-bit timers with IC/OC/OCN/PWM,  
deadtime generation and emergency stop  
Two watchdog timers (independent, window)  
– SysTick timer: 24-bit downcounter  
– Up to two 16-bit basic timers to drive the  
DAC  
Memories  
– 128 to 256 Kbytes of Flash memory  
– Up to 40 Kbytes of SRAM on data bus with  
HW parity check  
– 8 Kbytes of SRAM on instruction bus with  
HW parity check (CCM)  
CRC calculation unit  
Reset and supply management  
– Power-on/Power down reset (POR/PDR)  
– Programmable voltage detector (PVD)  
– Low power modes: Sleep, Stop and Standby  
– V  
supply for RTC and backup registers  
BAT  
Clock management  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– Internal 8 MHz RC with x 16 PLL option  
– Internal 40 kHz oscillator  
Calendar RTC with Alarm, periodic wakeup from  
Stop/Standby  
Communication interfaces  
Up to 87 fast I/Os  
– CAN interface (2.0B Active)  
2
– All mappable on external interrupt vectors  
– Several 5 V-tolerant  
12-channel DMA controller  
Up to four ADC 0.20 µS (up to 39 channels) with  
selectable resolution of 12/10/8/6 bits, 0 to 3.6 V  
conversion range, separate analog supply from  
2 to 3.6 V  
Up to two 12-bit DAC channels with analog  
supply from 2.4 to 3.6 V  
Seven fast rail-to-rail analog comparators with  
analog supply from 2 to 3.6 V  
Up to four operational amplifiers that can be  
used in PGA mode, all terminal accessible with  
analog supply from 2.4 to 3.6 V  
Two I C Fast mode plus (1 Mbit/s) with 20  
mA current sink, SMBus/PMBus, wakeup  
from STOP  
– Up to five USART/UARTs (ISO 7816  
interface, LIN, IrDA, modem control)  
– Up to three SPIs, two with multiplexed I S  
2
interface, 4 to 16 programmable bit frame  
– USB 2.0 full speed interface  
– Infrared Transmitter  
Serial wire debug, JTAG, Cortex-M4F ETM  
96-bit unique ID  
Table 1.  
Device summary  
Reference  
Part number  
Up to 24 capacitive sensing channels supporting  
touchkey, linear and rotary touch sensors  
STM32F302CB, STM32F302CC, STM32F302RB,  
STM32F302RC, STM32F302VB, STM32F302VC  
STM32F302xx  
STM32F303xx  
STM32F303CB, STM32F303CC, STM32F303RB,  
STM32F303RC, STM32F303VB, STM32F303VC  
January 2013  
Doc ID 023353 Rev 5  
1/133  
This is information on a product in full production.  
www.st.com  
1
 
 
Contents  
STM32F302xx/STM32F303xx  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
ARM® Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . . 13  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.8  
3.9  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.11.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19  
3.12 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.12.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
REFINT  
3.12.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
BAT  
3.12.4 OPAMP reference voltage (VOPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.13 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.14 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.15 Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16.1 Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 24  
3.16.3 Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Contents  
3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.16.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 25  
3.18 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.19 Universal synchronous/asynchronous receiver transmitter (USART) . . . 27  
3.20 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27  
3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 28  
3.22 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.23 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.24 Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.25 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.26 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.26.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.26.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 59  
Embedded reset and power control block characteristics . . . . . . . . . . . 59  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Doc ID 023353 Rev 5  
3/133  
Contents  
STM32F302xx/STM32F303xx  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6.3.16 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.3.18 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
6.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.20 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.3.21 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
6.3.23  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
BAT  
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
7.1  
7.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
7.2.1  
7.2.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 127  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
4/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F30xB/C family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . 10  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2
Table 5.  
STM32F30xB/C I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
STM32F30xB/C SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices . . . . . . . . 29  
No. of capacitive sensing channels available on STM32F302xx/STM32F303xx devices . 30  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
STM32F302xx/STM32F303xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
STM32F30xB/C memory map and peripheral register boundary addresses . . . . . . . . . . . 51  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Typical and maximum current consumption from V supply at V = 3.6V . . . . . . . . . . . 62  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . . 63  
DDA  
Typical and maximum V consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 65  
DD  
Typical and maximum V  
consumption in Stop and Standby modes. . . . . . . . . . . . . . . 65  
DDA  
Typical and maximum current consumption from V  
supply. . . . . . . . . . . . . . . . . . . . . . 66  
BAT  
Typical current consumption in Run mode, code with data processing running from Flash67  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 68  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Doc ID 023353 Rev 5  
5/133  
List of tables  
STM32F302xx/STM32F303xx  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
2
I S characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
BAT  
LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 120  
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 122  
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . 124  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
6/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F302xB/STM32F302xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
STM32F302xx/STM32F303xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
STM32F302xx/STM32F303xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32F302xx/STM32F303xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32F30xB/C memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 11. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 12. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 13. Typical V  
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 66  
BAT  
Figure 14. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 15. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 16. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 18. HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 19. TC and TTa I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 20. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 88  
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port. . . . . . . . . . . . . . . . . . . 89  
Figure 23. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 24. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
2
Figure 25. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
(1)  
Figure 28. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
2
(1)  
Figure 29. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
2
(1)  
Figure 30. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 31. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 32. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 33. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 34. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 35. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . 120  
Figure 36. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 37. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 122  
Figure 38. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 39. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 124  
Figure 40. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Doc ID 023353 Rev 5  
7/133  
Introduction  
STM32F302xx/STM32F303xx  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F30xB/C microcontrollers.  
This STM32F30xB/C datasheet should be read in conjunction with the STM32F30xB/C  
reference manual. The reference manual is available from the STMicroelectronics website  
www.st.com.  
For information on the Cortex™-M4F core please refer to:  
Cortex™-M4F Technical Reference Manual, available from the www.arm.com  
website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/  
index.html  
STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214)  
available from the www.st.com website at the following address:  
http://www.st.com/internet/com/TECHNICAL_RESOURCES/  
TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/DM00046982.pdf  
8/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Description  
2
Description  
The STM32F302xx/STM32F303xx family is based on the high-performance ARM®  
Cortex™-M4F 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a  
floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell  
(ETM). The family incorporates high-speed embedded memories (up to 256 Kbytes of Flash  
memory, up to 48 Kbytes of SRAM) and an extensive range of enhanced I/Os and  
peripherals connected to two APB buses.  
The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four  
operational amplifiers, up to two DAC channels, a low-power RTC, up to five general-  
purpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor  
2
control. They also feature standard and advanced communication interfaces: up to two I Cs,  
up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on  
STM32F303xB/STM32F303xC devices), three USARTs, up to two UARTs, CAN and USB.  
To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.  
The STM32F302xx/STM32F303xx family operates in the -40 to +85 °C and -40 to +105 °C  
temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F302xx/STM32F303xx family offers devices in three packages ranging from 48  
pins to 100 pins.  
The set of included peripherals changes with the device chosen.  
Doc ID 023353 Rev 5  
9/133  
Description  
Table 2.  
STM32F302xx/STM32F303xx  
STM32F30xB/C family device features and peripheral counts  
STM32F  
302Cx  
STM32F  
302Rx  
STM32F  
302Vx  
STM32F  
303Cx  
STM32F  
303Rx  
STM32F  
303Vx  
Peripheral  
Flash (Kbytes)  
128  
24  
256  
32  
128  
24  
256  
32  
128 256 128 256  
128  
32  
256  
40  
128  
32  
256  
40  
SRAM (Kbytes) on  
data bus  
24  
32  
8
32  
40  
SRAM (Kbytes) on  
instruction bus (CCM:  
core coupled memory)  
Advanced  
control  
1 (16-bit)  
2 (16-bit)  
Timers  
General  
purpose  
5 (16-bit)  
1 (32-bit)  
Basic  
SPI(I2S)(1)  
I2C  
1 (16-bit)  
3
2 (16-bit)  
3(2)  
2
3
Comm.  
interfaces  
USART  
UART  
CAN  
0
2
0
2
1
1
USB  
Normal  
I/Os  
(TC, TTa)  
20  
17  
27  
25  
45  
20  
17  
27  
25  
45  
42  
GPIOs  
5 volts  
Tolerant  
I/Os  
42  
24  
(FT, FTf)  
DMA channels  
12  
Capacitive sensing  
channels  
17  
18  
17  
18  
24  
12-bit ADCs  
2
1
4
2
4
2
7
4
12-bit DAC channels  
Analog comparator  
Operational amplifiers  
CPU frequency  
72 MHz  
2.0 to 3.6 V  
Operating voltage  
Operating  
temperature  
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C  
Junction temperature: - 40 to 125 °C  
Packages  
LQFP48  
LQFP64  
LQFP100  
LQFP48  
LQFP64  
LQFP100  
1. In STM32F303xB/STM32F303xC devices the SPI interfaces can work in an exclusive way in either the SPI mode or the I2S  
audio mode.  
10/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Figure 1. STM32F302xB/STM32F302xC block diagram  
Description  
Power  
TPIU  
VDD18  
VDDIO = 2 to 3.6 V  
VSS  
ETM  
TRADECLK  
TRACED[0-3]  
as AF  
Trace/Trig  
Voltage reg.  
3.3 V to 1.8V  
SWJTAG  
MPU/FPU  
@VDDIO  
FLASH 256 KB  
64 bits  
JTRST  
JTDI  
Ibus  
Dbus  
Supply  
Supervision  
POR  
Cortex M4 CPU  
Fmax: 72 MHz  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Reset  
Int.  
NRESET  
VDDA  
VSSA  
POR /PDR  
PVD  
CCM RAM  
8KB  
As AF  
System  
SRAM  
40 KB  
NVIC  
@VDDA  
@VDDA  
RC HS 8MHz  
@VDDIO  
GP DMA1  
7 channels  
RC LS  
PLL  
XTAL OSC  
4 -32 MHz  
OSC_IN  
OSC_OUT  
GP DMA2  
5 channels  
Ind. WDG32K  
Standby  
interface  
AHBPCLK  
Temp. sensor  
APBP1CLK  
APBP2CLK  
HCLK  
VBAT = 1.65V to 3.6V  
12-bit ADC1  
12-bit ADC2  
VREF+  
VREF-  
IF  
@VSW  
Reset &  
OSC32_IN  
OSC32_OUT  
clock  
FCLK  
XTAL 32kHz  
Backup  
control  
USARTCLK  
I2CCLK  
ADC SAR  
1/2/3/4 CLK  
RTC  
Reg  
(64Byte)  
Backup  
interface  
ANTI-TAMP  
AWU  
TIMER2  
CRC  
4 Channels, ETR as AF  
4 Channels, ETR as AF  
GPIO PORT A  
GPIO PORT B  
GPIO PORT C  
GPIO PORT D  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
(32-bit/PWM)  
TIMER 3  
TIMER 4  
4 Channels, ETR as AF  
MOSI, MISO,  
SCK, NSS as AF  
SPI2  
SPI3  
GPIO PORT E  
GPIO PORT F  
PE[15:0]  
PF[7:0]  
MOSI, MISO,  
SCK, NSS as AF  
USART2  
USART3  
UART4  
RX, TX, CTS, RTS, as AF  
RX, TX, CTS, RTS, as AF  
RX, TX as AF  
Touch Sensing  
Controller  
XX Groups of  
4 channels as AF  
AHB2  
APB2  
AHB2  
APB1  
UART5  
I2C1  
RX, TX as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
EXT.IT  
WKUP  
XX AF  
I2C2  
WinWATCHDOG  
USB SRAM 512B  
bx CAN &  
512B SRAM  
CAN TX, CAN RX  
USB_DP, USB_DM  
2 Channels,1 Comp  
Channel, BRK as AF  
TIMER 15  
TIMER 16  
USB 2.0 FS  
1 Channel, 1 Comp  
Channel, BRK as AF  
TIMER6  
1 Channel, 1 Comp  
Channel, BRK as AF  
IF 12bit DAC1  
@VDDA  
TIMER 17  
DAC1_CH1 as AF  
4 Channels,  
4 Comp channels,  
ETR, BRK as AF  
SYSCFG CTL  
TIMER 1 / PWM  
OpAmp1  
OpAmp2  
INxx / OUTxx  
INxx / OUTxx  
@VDDA  
SPI1  
MOSI, MISO,  
SCK,NSS as AF  
GP Comparator 6  
GP Comparator 4  
GP Comparator 2  
@VDDA  
RX, TX, CTS, RTS,  
SmartCard as AF  
USART1  
GP Comparator 1  
MS18959V5  
Xx Ins, 4 OUTs as AF  
1. AF: alternate function on I/O pins.  
Doc ID 023353 Rev 5  
11/133  
 
Description  
Figure 2.  
STM32F302xx/STM32F303xx  
STM32F303xB/STM32F303xC block diagram  
Power  
TPIU  
ETM  
VDD18  
VDDIO = 2 to 3.6 V  
VSS  
TRADECLK  
TRACED[0-3]  
as AF  
Trace/Trig  
SWJTAG  
Voltage reg.  
3.3 V to 1.8V  
MPU/FPU  
@VDDIO  
FLASH 256 KB  
64 bits  
JTRST  
JTDI  
Ibus  
Dbus  
Supply  
Supervision  
POR  
Cortex M4 CPU  
Fmax: 72 MHz  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Reset  
Int.  
NRESET  
VDDA  
VSSA  
POR /PDR  
PVD  
CCM RAM  
8KB  
As AF  
System  
SRAM  
40 KB  
NVIC  
@VDDA  
@VDDA  
RC HS 8MHz  
@VDDIO  
GP DMA1  
7 channels  
RC LS  
PLL  
XTAL OSC  
4 -32 MHz  
OSC_IN  
OSC_OUT  
GP DMA2  
5 channels  
Ind. WDG32K  
Standby  
interface  
AHBPCLK  
Temp. sensor  
APBP1CLK  
APBP2CLK  
HCLK  
VBAT = 1.65V to 3.6V  
12-bit ADC1  
12-bit ADC2  
IF  
IF  
@VSW  
VREF+  
VREF-  
Reset &  
OSC32_IN  
OSC32_OUT  
clock  
FCLK  
XTAL 32kHz  
Backup  
control  
USARTCLK  
I2CCLK  
ADC SAR  
1/2/3/4 CLK  
RTC  
12-bit ADC3  
12-bit ADC4  
Reg  
(64Byte)  
Backup  
interface  
ANTI-TAMP  
AWU  
TIMER2  
CRC  
4 Channels, ETR as AF  
4 Channels, ETR as AF  
GPIO PORT A  
GPIO PORT B  
GPIO PORT C  
GPIO PORT D  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
(32-bit/PWM)  
TIMER 3  
TIMER 4  
4 Channels, ETR as AF  
MOSI/SD, MISO/ext_SD,  
SCK/CK, NSS/WS, MCLK as AF  
SPI2/I2S  
SPI3/I2S  
USART2  
USART3  
UART4  
GPIO PORT E  
GPIO PORT F  
PE[15:0]  
PF[7:0]  
MOSI/SD, MISO/ext_SD,  
SCK/CK, NSS/WS, MCLK as AF  
RX, TX, CTS, RTS, as AF  
RX, TX, CTS, RTS, as AF  
RX, TX as AF  
Touch Sensing  
Controller  
XX Groups of  
4 channels as AF  
AHB2  
APB2  
AHB2  
APB1  
UART5  
I2C1  
RX, TX as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
I2C2  
WinWATCHDOG  
USB SRAM 512B  
bx CAN &  
512B SRAM  
CAN TX, CAN RX  
USB_DP, USB_DM  
EXT.IT  
WKUP  
XX AF  
USB 2.0 FS  
2 Channels,1 Comp  
Channel, BRK as AF  
TIMER 15  
TIMER 16  
TIMER6  
TIMER7  
DAC1_CH1 as AF  
DAC1_CH2 as AF  
1 Channel, 1 Comp  
Channel, BRK as AF  
IF 12bit DAC1  
@VDDA  
1 Channel, 1 Comp  
Channel, BRK as AF  
TIMER 17  
4 Channels,  
TIMER 1 / PWM  
TIMER 8 / PWM  
4 Comp channels,  
ETR, BRK as AF  
OpAmp1  
OpAmp2  
OpAmp3  
OpAmp4  
INxx / OUTxx  
INxx / OUTxx  
INxx / OUTxx  
INxx / OUTxx  
4 Channels,  
4 Comp channels,  
ETR, BRK as AF  
SYSCFG CTL  
MOSI, MISO,  
SCK,NSS as AF  
@VDDA  
SPI1  
@VDDA  
GP Comparator 7  
GP Comparator...  
GP Comparator 1  
RX, TX, CTS, RTS,  
SmartCard as AF  
USART1  
MS18960V4  
Xx Ins, 7 OUTs as AF  
1. AF: alternate function on I/O pins.  
12/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Functional overview  
3
Functional overview  
3.1  
ARM® Cortex™-M4F core with embedded Flash and SRAM  
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded  
systems. It was developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced response to interrupts.  
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing  
and complex algorithm execution.  
Its single precision FPU speeds up software development by using metalanguage  
development tools, while avoiding saturation.  
With its embedded ARM core, the STM32F302xx/STM32F303xx family is compatible with  
all ARM tools and software.  
Figure 1 and Figure 2 show the general block diagrams of the  
STM32F302xx/STM32F303xx family devices.  
3.2  
Memory protection unit (MPU)  
The memory protection unit (MPU) is used to separate the processing of tasks from the data  
protection. The MPU can manage up to 8 protection areas that can all be further divided up  
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes  
of addressable memory.  
The memory protection unit is especially helpful for applications where some critical or  
certified code has to be protected against the misbehavior of other tasks. It is usually  
managed by an RTOS (real-time operating system). If a program accesses a memory  
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS  
environment, the kernel can dynamically update the MPU area setting, based on the  
process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.3  
Embedded Flash memory  
All STM32F302xx/STM32F303xx devices feature up to 256 Kbytes of embedded Flash  
memory available for storing programs and data. The Flash memory access time is adjusted  
to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz  
and 2 wait states above).  
Doc ID 023353 Rev 5  
13/133  
 
Functional overview  
STM32F302xx/STM32F303xx  
3.4  
3.5  
3.6  
Embedded SRAM  
STM32F302xx/STM32F303xx devices feature up to 48 Kbytes of embedded SRAM with  
hardware parity check. The memory can be accessed in read/write at CPU clock speed with  
0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running  
code from CCM, core coupled memory).  
8 Kbytes of SRAM mapped on the instruction bus (Core Coupled Memory (CCM)),  
used to execute critical routines or to access data (parity check on all of CCM RAM).  
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).  
Boot modes  
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device  
firmware upgrade) .  
Cyclic redundancy check (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at  
linktime and stored at a given memory location.  
14/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Functional overview  
3.7  
Power management  
3.7.1  
Power supply schemes  
V
, V = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is  
SS DD  
provided externally through V pins  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators  
DDA  
SSA  
operational amplifiers, reset blocks, RCs and PLL (minimum voltage to be applied to  
is 2.4 V when the DACs and operational amplifiers are used). The V voltage  
V
DDA  
DDA  
level must be always greater or equal to the V voltage level and must be provided  
DD  
first.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
3.7.2  
Power supply supervisor  
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
VPOR/PDR, without the need for an external reset circuit.  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
should arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply voltages, however the V  
power  
DDA  
DD  
DDA  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
DDA  
equal to V  
.
DD  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the VPVD threshold. An interrupt can be generated  
V
DD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state. The PVD is enabled by software.  
3.7.3  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR), and power-down.  
The MR mode is used in the nominal regulation mode (Run)  
The LPR mode is used in Stop mode.  
The power-down mode is used in Standby mode: the regulator output is in high  
impedance, and the kernel circuitry is powered down thus inducing zero consumption.  
The voltage regulator is always enabled after reset. It is disabled in Standby mode.  
Doc ID 023353 Rev 5  
15/133  
Functional overview  
STM32F302xx/STM32F303xx  
3.7.4  
Low-power modes  
The STM32F302xx/STM32F303xx supports three low power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the USB wakeup on  
STM32F303xB/STM32F303xC devices, the RTC alarm, COMPx, I2Cx or U(S)ARTx.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin or an RTC alarm occurs.  
Note:  
The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
16/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Functional overview  
3.8  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example with  
failure of an indirectly used external oscillator).  
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and  
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high  
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed  
APB domain is 36 MHz.  
Doc ID 023353 Rev 5  
17/133  
 
Functional overview  
Figure 3. Clock tree  
STM32F302xx/STM32F303xx  
FLITFCLK  
to Flash programming interface  
HSI  
to I2Cx (x = 1,2)  
SYSCLK  
I2SSRC  
SYSCLK  
to I2Sx (x = 2,3)  
Ext. clock  
I2S_CKIN  
USB  
prescaler  
/1,1.5  
USBCLK  
to USB interface  
HSI  
8 MHz  
HSI RC  
/2  
HCLK  
/8  
to AHB bus, core,  
memory and DMA  
PLLSRC  
to cortex System timer  
FHCLK Cortex free  
running clock  
SW  
HSI  
PLLMUL  
AHB  
APB1  
PLL  
x2,x3,..  
x16  
PLLCLK  
PCLK1  
to APB1 peripherals  
prescaler  
/1,2,..512  
prescaler  
/1,2,4,8,16  
HSE  
SYSCLK  
If (APB1 prescaler  
=1) x1 else x2  
CSS  
to TIM 2,3,4,6,7  
/2,/3,...  
/16  
PCLK1  
SYSCLK  
to U(S)ARTx (x = 2..5)  
OSC_OUT  
OSC_IN  
HSI  
4-32 MHz  
HSE OSC  
LSE  
APB2  
prescaler  
/1,2,4,8,16  
PCLK2  
to APB2 peripherals  
to TIM 15,16,17  
/32  
RTCCLK  
OSC32_IN  
to RTC  
LSE OSC  
If (APB2 prescaler  
=1) x1 else x2  
32.768kHz LSE  
OSC32_OUT  
RTCSEL[1:0]  
PCLK2  
LSI  
/2  
IWDGCLK  
to IWDG  
LSI RC  
40kHz  
SYSCLK  
to USART1  
TIM1/8  
HSI  
LSE  
x2  
PLLCLK  
Main clock  
output  
HSI  
MCO  
LSI  
HSE  
SYSCLK  
MCO  
ADC  
Prescaler  
/1,2,4  
to ADCxy  
(xy = 12, 34)  
ADC  
Prescaler  
/1,2,4,6,8,10,12,16,  
32,64,128,256  
MS19989V4  
18/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Functional overview  
3.9  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
3.10  
Direct memory access (DMA)  
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-  
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer  
management, avoiding the generation of interrupts when the controller reaches the end of  
the buffer.  
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with  
software trigger support for each channel. Configuration is done by software and transfer  
sizes between source and destination are independent.  
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,  
DAC and ADC.  
3.11  
Interrupts and events  
3.11.1  
Nested vectored interrupt controller (NVIC)  
The STM32F302xx/STM32F303xx devices embed a nested vectored interrupt controller  
(NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
Doc ID 023353 Rev 5  
19/133  
Functional overview  
STM32F302xx/STM32F303xx  
3.12  
Fast analog-to-digital converter (ADC)  
Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12  
and 6 bit, are embedded in the STM32F302xx/STM32F303xx family devices. The ADCs  
have up to 39 external channels. Some of the external channels are shared between  
ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In  
scan mode, automatic conversion is performed on a selected group of analog inputs.  
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel  
16, V  
connected to ADC1 channel 17, Voltage reference V  
connected to the 4  
BAT/2  
REFINT  
ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to  
ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to  
ADC4 channel 17.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single-shunt phase current reading techniques.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers and the advanced-control timers (TIM1  
on all devices and TIM8 on STM32F303xB/STM32F303xC devices) can be internally  
connected to the ADC start trigger and injection trigger, respectively, to allow the application  
to synchronize A/D conversion and timers.  
3.12.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy  
of the temperature measurement. As the offset of the temperature sensor varies from chip  
to chip due to process variation, the uncalibrated internal temperature sensor is suitable for  
applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
3.12.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN18 input channel. The  
REFINT  
precise voltage of V  
is individually measured for each part by ST during production  
REFINT  
test and stored in the system memory area. It is accessible in read-only mode.  
20/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Functional overview  
3.12.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC_IN17. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
3.12.4  
OPAMP reference voltage (VOPAMP)  
Every OPAMP reference voltage can be measured using a corresponding ADC internal  
channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2  
channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4  
channel 17.  
Doc ID 023353 Rev 5  
21/133  
Functional overview  
STM32F302xx/STM32F303xx  
3.13  
Digital-to-analog converter (DAC)  
Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog  
voltage signal outputs. The chosen design structure is composed of integrated resistor  
strings and an amplifier in inverting configuration.  
This digital interface supports the following features:  
Up to two DAC output channels on STM32F303xB/STM32F303xC devices  
8-bit or 10-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability on STM32F303xB/STM32F303xC devices  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions on  
STM32F303xB/STM32F303xC devices  
DMA capability (for each channel on STM32F303xB/STM32F303xC devices)  
External triggers for conversion  
3.14  
Operational amplifier (OPAMP)  
The STM32F302xx/STM32F303xx embeds up to four operational amplifiers with external or  
internal follower routing and PGA capability (or even amplifier and filter capability with  
external components). When an operational amplifier is selected, an external ADC channel  
is used to enable output measurement.  
The operational amplifier features:  
8.2 MHz bandwidth  
0.5 mA output capability  
Rail-to-rail input/output  
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.  
3.15  
Fast comparators (COMP)  
The STM32F302xx/STM32F303xx devices embed seven fast rail-to-rail comparators with  
programmable reference voltage (internal or external), hysteresis and speed (low speed for  
low power) and with selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output pin  
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 26: Embedded  
internal reference voltage on page 60 for the value and precision of the internal  
reference voltage.  
All comparators can wake up from STOP mode, generate interrupts and breaks for the  
timers and can be also combined per pair into a window comparator  
22/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Functional overview  
3.16  
Timers and watchdogs  
The STM32F302xx/STM32F303xx includes up to two advanced control timers, up to 6  
general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. The  
table below compares the features of the advanced control, general purpose and basic  
timers.  
Table 3.  
Timer feature comparison  
DMA  
request  
generation Channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
TIM1,  
TIM8  
(on  
Any integer  
between 1  
and 65536  
Up, Down,  
Up/Down  
Advanced  
16-bit  
Yes  
4
Yes  
STM32F303xB  
/STM32F303x  
C devices only)  
Any integer  
between 1  
and 65536  
General-  
purpose  
Up, Down,  
Up/Down  
TIM2  
TIM3, TIM4  
TIM15  
32-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
Yes  
4
4
2
1
No  
No  
1
Any integer  
between 1  
and 65536  
General-  
purpose  
Up, Down,  
Up/Down  
Any integer  
between 1  
and 65536  
General-  
purpose  
Up  
Up  
Any integer  
between 1  
and 65536  
General-  
purpose  
TIM16, TIM17  
1
TIM6,  
TIM7  
(on  
Any integer  
between 1  
and 65536  
Basic  
16-bit  
Up  
Yes  
0
No  
STM32F303xB  
/STM32F303x  
C devices only)  
3.16.1  
Advanced timers (TIM1, TIM8)  
The advanced-control timers (TIM1 on all devices and TIM8 on  
STM32F303xB/STM32F303xC devices) can each be seen as a three-phase PWM  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead-times. They can also be seen as complete general-purpose timers. The 4  
independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability (0-  
100%)  
One-pulse mode output  
Doc ID 023353 Rev 5  
23/133  
 
Functional overview  
STM32F302xx/STM32F303xx  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switches driven by these outputs.  
Many features are shared with those of the general-purpose TIM timers (described in  
Section 3.16.2 using the same architecture, so the advanced-control timers can work  
together with the TIM timers via the Timer Link feature for synchronization or event chaining.  
3.16.2  
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)  
There are up to six synchronizable general-purpose timers embedded in the  
STM32F302xx/STM32F303xx (see Table 3 for differences). Each general-purpose timer  
can be used to generate PWM outputs, or act as a simple time base.  
TIM2, 3, and TIM4  
These are full-featured general-purpose timers:  
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler  
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.  
These timers all feature 4 independent channels for input capture/output compare,  
PWM or one-pulse mode output. They can work together, or with the other general-  
purpose timers via the Timer Link feature for synchronization or event chaining.  
The counters can be frozen in debug mode.  
All have independent DMA request generation and support quadrature encoders.  
TIM15, 16 and 17  
These three timers general-purpose timers with mid-range features:  
They have 16-bit auto-reload upcounters and 16-bit prescalers.  
TIM15 has 2 channels and 1 complementary channel  
TIM16 and TIM17 have 1 channel and 1 complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse mode  
output.  
The timers can work together via the Timer Link feature for synchronization or event  
chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.16.3  
3.16.4  
Basic timers (TIM6, TIM7)  
These timers are mainly used for DAC trigger generation. They can also be used as a  
generic 16-bit time base.  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
24/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Functional overview  
3.16.5  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.16.6  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
3.17  
Real-time clock (RTC) and backup registers  
The RTC and the 16 backup registers are supplied through a switch that takes power from  
either the V supply when present or the V  
pin. The backup registers are sixteen 32-bit  
DD  
BAT  
registers used to store 64 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, or when the device wakes up from Standby  
mode.  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.  
Two programmable alarms with wake up from Stop and Standby mode capability.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Three anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stopand Standby modes on tamper event detection.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY  
capability.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 40 kHz)  
The high-speed external clock divided by 32.  
Doc ID 023353 Rev 5  
25/133  
Functional overview  
STM32F302xx/STM32F303xx  
3.18  
Inter-integrated circuit interface (I2C)  
2
Up to two I C bus interfaces can operate in multimaster and slave modes. They can support  
standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.  
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses  
(2 addresses, 1 with configurable mask). They also include programmable analog and  
digital noise filters.  
Table 4.  
Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
Benefits  
Available in Stop mode  
2. Stable length  
Disabled when Wakeup from Stop  
mode is enabled  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,  
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and  
ALERT protocol management. They also have a clock domain independent from the CPU  
clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.  
The I2C interfaces can be served by the DMA controller.  
Refer to Table 5 for the features available in I2C1 and I2C2.  
2
Table 5.  
STM32F30xB/C I C implementation  
I2C features(1)  
I2C1  
I2C2  
7-bit addressing mode  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
26/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Functional overview  
3.19  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The STM32F302xx/STM32F303xx devices have three embedded universal  
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).  
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.  
They provide hardware management of the CTS and RTS signals, they support IrDA SIR  
ENDEC, the multiprocessor communication mode, the single-wire half-duplex  
communication mode and have LIN Master/Slave capability. The USART interfaces can be  
served by the DMA controller.  
3.20  
Universal asynchronous receiver transmitter (UART)  
The STM32F302xx/STM32F303xx devices have 2 embedded universal asynchronous  
receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR ENDEC,  
multiprocessor communication mode and single-wire half-duplex communication mode. The  
UART interfaces can be served by the DMA controller.  
Refer to Table 6 for the features available in all U(S)ARTs interfaces  
Table 6.  
USART features  
USART modes/features(1)  
USART1  
USART2  
USART3  
UART4  
UART5  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
X
X
X
X
X
X
X
X
X
X
X
X
LIN mode  
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
1. X = supported.  
Doc ID 023353 Rev 5  
27/133  
 
 
Functional overview  
STM32F302xx/STM32F303xx  
3.21  
Serial peripheral interface (SPI)/Inter-integrated sound  
interfaces (I2S)  
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in  
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio  
standards can operate as master or slave at half-duplex and full duplex communication  
modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data  
resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to  
192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode  
it can output a clock for an external audio component at 256 times the sampling frequency.  
Refer to Table 7 for the features available in SPI1, SPI2 and SPI3.  
Table 7.  
STM32F30xB/C SPI/I2S implementation  
SPI features(1)  
SPI1  
SPI2  
SPI3  
Hardware CRC calculation  
Rx/Tx FIFO  
X
X
X
X
X
X
X
X
X
X
X
X
X
NSS pulse mode  
I2S mode  
TI mode  
X
1. X = supported.  
3.22  
3.23  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
Universal serial bus (USB)  
The STM32F302xx/STM32F303xx devices embed an USB device peripheral compatible  
with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s)  
function interface. It has software-configurable endpoint setting and suspend/resume  
support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock  
source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM  
memory for data transmission and reception.  
3.24  
Infrared Transmitter  
The STM32F302xx/STM32F303xx devices provide an infrared transmitter solution. The  
solution is based on internal connections between TIM16 and TIM17 as shown in the figure  
below.  
28/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Functional overview  
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be  
sent. The infrared output signal is available on PB9 or PA13.  
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must  
be properly configured to generate correct waveforms. All standard IR pulse modulation  
modes can be obtained by programming the two timers output compare channels.  
Figure 4.  
Infrared transmitter  
TIMER 16  
(for envelop)  
OC  
PB9/PA13  
TIMER 17  
(for carrier)  
OC  
MS30365V1  
3.25  
Touch sensing controller (TSC)  
The STM32F302xx/STM32F303xx devices provide a simple solution for adding capacitive  
sensing functionality to any application. These devices offer up to 24 capacitive sensing  
channels distributed over 8 analog I/O groups.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
Table 8.  
Group  
Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx  
devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
PB3  
PB4  
1
2
5
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
6
Doc ID 023353 Rev 5  
29/133  
 
 
Functional overview  
Table 8.  
STM32F302xx/STM32F303xx  
Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx  
devices (continued)  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
Group  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
PC5  
PB0  
PB1  
PB2  
PA9  
TSC_G7_IO1  
TSC_G7_IO2  
TSC_G7_IO3  
TSC_G7_IO4  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
PE2  
PE3  
3
7
PE4  
PE5  
PD12  
PD13  
PD14  
PD15  
PA10  
PA13  
PA14  
4
8
Table 9.  
No. of capacitive sensing channels available on  
STM32F302xx/STM32F303xx devices  
Number of capacitive sensing channels  
STM32F30xVx STM32F30xRx STM32F30xCx  
Analog I/O group  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
0
0
3
3
2
3
3
3
0
0
Number of capacitive  
sensing channels  
24  
18  
17  
3.26  
Development support  
3.26.1  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
3.26.2  
Embedded trace macrocell™  
The ARM embedded trace macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
30/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Functional overview  
STM32F302xx/STM32F303xx through a small number of ETM pins to an external hardware  
trace port analyzer (TPA) device. The TPA is connected to a host computer using a high-  
speed channel. Real-time instruction and data flow activity can be recorded and then  
formatted for display on the host computer running debugger software. TPA hardware is  
commercially available from common development tool vendors. It operates with third party  
debugger software tools.  
Doc ID 023353 Rev 5  
31/133  
Pinouts and pin description  
STM32F302xx/STM32F303xx  
4
Pinouts and pin description  
Figure 5.  
STM32F302xx/STM32F303xx LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_3  
VSS_3  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
VBAT  
PC13  
PC14/OSC32_IN  
PC15/OSC32_OUT  
PF0/OSC_IN  
4
5
6
7
8
9
PF1/OSC_OUT  
,1&0ꢀꢁ  
NRST  
PA8  
VSSA/VREF-  
PB15  
PB14  
PB13  
PB12  
VDDA/VREF+  
PA0  
PA1  
PA2  
10  
11  
12  
13 14 15 16 17 18 19 20 21 22 23 24  
.4ꢀꢁꢂꢀꢁ7ꢃ  
32/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Figure 6. STM32F302xx/STM32F303xx LQFP64 pinout  
Pinouts and pin description  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_3  
VSS_3  
PA13  
PA12  
PA11  
PA10  
PA9  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
3
4
5
6
7
8
VBAT  
PC13  
PC14/OSC32_IN  
PC15/OSC32_OUT  
PF0/OSC_IN  
PF1/OSC_OUT  
NRST  
PA8  
PC0  
,1&0ꢂꢀ  
PC9  
PC1  
9
PC8  
PC2  
10  
11  
12  
13  
14  
15  
16  
PC7  
PC3  
PC6  
VSSA/VREF-  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
AIꢃꢁꢀꢁꢀ6ꢀ  
Doc ID 023353 Rev 5  
33/133  
 
Pinouts and pin description  
STM32F302xx/STM32F303xx  
Figure 7.  
STM32F302xx/STM32F303xx LQFP100 pinout  
0%ꢉ  
0%ꢈ  
0%ꢀ  
0%ꢇ  
ꢆꢇ  
ꢆꢀ  
ꢆꢈ  
ꢆꢉ  
ꢆꢃ  
ꢆꢄ  
ꢂꢅ  
ꢂꢁ  
ꢂꢆ  
ꢂꢂ  
ꢂꢇ  
ꢂꢀ  
ꢂꢈ  
ꢂꢉ  
ꢂꢃ  
ꢂꢄ  
ꢇꢅ  
ꢇꢁ  
ꢇꢆ  
ꢇꢂ  
ꢇꢇ  
ꢇꢀ  
ꢇꢈ  
ꢇꢉ  
ꢇꢃ  
6$$?ꢈ  
633?ꢈ  
0&ꢂ  
0!ꢃꢈ  
0!ꢃꢉ  
0!ꢃꢃ  
0!ꢃꢄ  
0!ꢅ  
0!ꢁ  
0#ꢅ  
0#ꢁ  
0#ꢆ  
0%ꢂ  
6"!4  
0#ꢃꢈ  
0#ꢃꢀꢊ/3#ꢈꢉ?).  
0#ꢃꢇꢊ/3#ꢈꢉ?/54  
0&ꢅ  
0&ꢃꢄ  
0&ꢄꢊ/3#?).  
0&ꢃꢊ/3#?/54  
.234  
ꢃꢄ  
ꢃꢃ  
ꢃꢉ  
ꢃꢈ  
ꢃꢀ  
ꢃꢇ  
ꢃꢂ  
ꢃꢆ  
ꢃꢁ  
ꢃꢅ  
ꢉꢄ  
ꢉꢃ  
ꢉꢉ  
ꢉꢈ  
ꢉꢀ  
ꢉꢇ  
0#ꢂ  
,1&0ꢃꢄꢄ  
0$ꢃꢇ  
0$ꢃꢀ  
0$ꢃꢈ  
0$ꢃꢉ  
0$ꢃꢃ  
0$ꢃꢄ  
0$ꢅ  
0#ꢄ  
0#ꢃ  
0#ꢉ  
0#ꢈ  
0&ꢉ  
633!ꢊ62%&ꢋ  
62%&ꢌ  
6$$!  
0!ꢄ  
0$ꢁ  
0"ꢃꢇ  
0"ꢃꢀ  
0"ꢃꢈ  
0"ꢃꢉ  
0!ꢃ  
0!ꢉ  
AIꢃꢁꢀꢁꢇ6ꢀ  
34/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Pinouts and pin description  
Table 10. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Definition  
Unless otherwise specified in brackets below the pin name, the pin function  
during and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
3.3 V tolerant I/O directly connected to ADC  
Standard 3.3V I/O  
I/O structure  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during  
and after reset  
Notes  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Doc ID 023353 Rev 5  
35/133  
Pinouts and pin description  
STM32F302xx/STM32F303xx  
Table 11. STM32F302xx/STM32F303xx pin definitions  
Pin number  
Pin functions  
Pin name  
(function  
after  
reset)  
Alternate functions  
Additional functions  
TRACECK, TIM3_CH1,  
TSC_G7_IO1  
(1)  
(1)  
(1)  
1
2
3
4
PE2  
PE3  
PE4  
PE5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
TRACED0, TIM3_CH2,  
TSC_G7_IO2  
TRACED1, TIM3_CH3,  
TSC_G7_IO3  
TRACED2, TIM3_CH4,  
TSC_G7_IO4  
(1)  
(1)  
5
6
PE6  
I/O FT  
S
TRACED3  
WKUP3, RTC_TAMP3  
1
2
1
2
VBAT  
Backup power supply  
WKUP2, RTC_TAMP1,  
RTC_TS, RTC_OUT  
7
PC13(2) I/O TC  
TIM1_CH1N  
PC14(2)  
8
3
4
3
4
OSC32_IN I/O TC  
(PC14)  
PC15(2)  
OSC32_  
I/O TC  
OUT  
OSC32_IN  
9
OSC32_OUT  
(PC15)  
(1)  
(1)  
10  
11  
PF9  
PF10  
PF0-  
I/O FT  
I/O FT  
TIM15_CH1, SPI2_SCK  
TIM15_CH2, SPI2_SCK  
12  
13  
5
6
5
OSC_IN I/O FTf  
(PF0)  
TIM1_CH3N, I2C2_SDA  
I2C2_SCL  
OSC_IN  
PF1-  
6
7
OSC_OUT I/O FTf  
(PF1)  
OSC_OUT  
14  
15  
16  
17  
18  
19  
7
8
NRST  
PC0  
PC1  
PC2  
PC3  
PF2  
I/O RST  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
Device reset input / internal reset output (active low)  
ADC12_IN6, COMP7_INM(3)  
(1)  
(1)  
(1)  
(1)  
(1)  
9
ADC12_IN7, COMP7_INP(3)  
10  
11  
COMP7_OUT(3)  
TIM1_BKIN2  
ADC12_IN8  
ADC12_IN9  
ADC12_IN10  
VSSA/  
VREF-  
20  
12  
13  
8
9
S
Analog ground/Negative reference voltage  
21  
22  
VREF+  
VDDA  
S
S
Positive reference voltage  
Analog power supply  
VDDA/  
VREF+  
S
Analog power supply/Positive reference voltage  
36/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Pinouts and pin description  
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function  
after  
Alternate functions  
Additional functions  
reset)  
USART2_CTS,  
ADC1_IN1, COMP1_INM,  
RTC_ TAMP2, WKUP1,  
COMP7_INP(3)  
TIM2_CH1_ETR,  
23  
14  
10  
PA0  
I/O TTa  
TIM8_BKIN(3), TIM8_ETR(3)  
,
TSC_G1_IO1, COMP1_OUT  
ADC1_IN2, COMP1_INP,  
OPAMP1_VINP,  
USART2_RTS, TIM2_CH2,  
TSC_G1_IO2, TIM15_CH1N  
24  
25  
26  
15  
16  
17  
11  
12  
13  
PA1  
PA2  
PA3  
I/O TTa  
I/O TTa  
I/O TTa  
OPAMP3_VINP(3)  
USART2_TX, TIM2_CH3,  
TIM15_CH1, TSC_G1_IO3,  
COMP2_OUT  
ADC1_IN3, COMP2_INM,  
OPAMP1_VOUT  
ADC1_IN4, OPAMP1_VINP,  
COMP2_INP,  
OPAMP1_VINM  
USART2_RX, TIM2_CH4,  
TIM15_CH2, TSC_G1_IO4  
(1)  
27  
28  
18  
19  
PF4  
I/O TTa  
S
COMP1_OUT  
ADC1_IN5  
VDD_4  
ADC2_IN1, DAC1_OUT1,  
OPAMP4_VINP(3)  
,
COMP1_INM, COMP2_INM,  
SPI1_NSS, SPI3_NSS,  
I2S3_WS(3), USART2_CK,  
TSC_G2_IO1, TIM3_CH2  
COMP3_INM(3)  
COMP4_INM,  
COMP5_INM(3)  
COMP6_INM,  
COMP7_INM(3)  
,
29  
20  
14  
PA4  
I/O TTa  
,
ADC2_IN2, DAC1_OUT2(3)  
OPAMP1_VINP,  
OPAMP2_VINM,  
OPAMP3_VINP(3)  
,
SPI1_SCK, TIM2_CH1_ETR,  
TSC_G2_IO2  
COMP1_INM, COMP2_INM,  
30  
21  
15  
PA5  
I/O TTa  
COMP3_INM(3)  
COMP4_INM,  
COMP5_INM(3)  
COMP6_INM,  
COMP7_INM(3)  
,
,
SPI1_MISO, TIM3_CH1,  
TIM8_BKIN(3), TIM1_BKIN,  
TIM16_CH1, COMP1_OUT,  
TSC_G2_IO3  
31  
32  
22  
23  
16  
17  
PA6  
PA7  
I/O TTa  
I/O TTa  
ADC2_IN3, OPAMP2_VOUT  
SPI1_MOSI, TIM3_CH2,  
TIM17_CH1, TIM1_CH1N,  
TIM8_CH1N(3), TSC_G2_IO4,  
COMP2_OUT  
ADC2_IN4, COMP2_INP,  
OPAMP2_VINP,  
OPAMP1_VINP  
(1)  
(1)  
33  
34  
24  
25  
PC4  
PC5  
I/O TTa  
I/O TTa  
USART1_TX  
ADC2_IN5  
ADC2_IN11,OPAMP2_VINM,  
OPAMP1_VINM  
USART1_RX, TSC_G3_IO1  
Doc ID 023353 Rev 5  
37/133  
Pinouts and pin description  
STM32F302xx/STM32F303xx  
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function  
after  
Alternate functions  
Additional functions  
reset)  
ADC3_IN12(3), COMP4_INP,  
TIM3_CH3, TIM1_CH2N,  
35  
26  
18  
PB0  
I/O TTa  
OPAMP3_VINP(3)  
OPAMP2_VINP  
,
TIM8_CH2N(3), TSC_G3_IO2  
TIM3_CH4, TIM1_CH3N,  
TIM8_CH3N(3), COMP4_OUT,  
TSC_G3_IO3  
ADC3_IN1(3)  
,
36  
37  
27  
28  
19  
20  
PB1  
PB2  
I/O TTa  
I/O TTa  
OPAMP3_VOUT(3)  
ADC2_IN12, COMP4_INM,  
OPAMP3_VINM(3)  
TSC_G3_IO4  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
38  
39  
40  
41  
42  
43  
44  
45  
46  
PE7  
PE8  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
I/O TTa  
TIM1_ETR  
ADC3_IN13(3), COMP4_INP  
COMP4_INM, ADC34_IN6(3)  
ADC3_IN2(3)  
ADC3_IN14(3)  
ADC3_IN15(3)  
ADC3_IN16(3)  
ADC3_IN3(3)  
ADC4_IN1(3)  
ADC4_IN2(3)  
TIM1_CH1N  
PE9  
TIM1_CH1  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4, TIM1_BKIN2  
USART3_RX, TIM1_BKIN  
COMP5_INM(3)  
,
USART3_TX, TIM2_CH3,  
TSC_SYNC  
47  
29  
30  
21  
22  
PB10  
I/O TTa  
OPAMP4_VINM(3)  
OPAMP3_VINM(3)  
,
USART3_RX, TIM2_CH4,  
TSC_G6_IO1  
COMP6_INP,  
48  
PB11  
I/O TTa  
OPAMP4_VINP(3)  
49  
50  
31  
32  
23  
24  
VSS_2  
VDD_2  
S
S
Digital ground  
Digital power supply  
SPI2_NSS, I2S2_WS(3)  
,
I2C2_SMBA, USART3_CK,  
TIM1_BKIN, TSC_G6_IO2  
ADC4_IN3(3)  
,
51  
52  
53  
33  
25  
PB12  
PB13  
PB14  
I/O TTa  
I/O TTa  
I/O TTa  
COMP3_INM(3)  
,
OPAMP4_VOUT(3)  
,
ADC3_IN5(3)  
,
SPI2_SCK, I2S2_CK(3)  
USART3_CTS, TIM1_CH1N,  
TSC_G6_IO3  
,
COMP5_INP(3)  
,
34  
26  
OPAMP4_VINP(3)  
OPAMP3_VINP(3)  
,
SPI2_MISO, I2S2ext_SD(3)  
USART3_RTS, TIM1_CH2N,  
TIM15_CH1, TSC_G6_IO4  
SPI2_MOSI, I2S2_SD(3)  
TIM1_CH3N, TIM15_CH1N,  
TIM15_CH2  
,
COMP3_INP(3)  
,
35  
36  
27  
28  
ADC4_IN4(3), OPAMP2_VINP  
,
ADC4_IN5(3), RTC_REFIN,  
COMP6_INM  
54  
55  
PB15  
PD8  
I/O TTa  
I/O TTa  
ADC4_IN12(3)  
,
(1)  
USART3_TX  
OPAMP4_VINM(3)  
(1)  
(1)  
56  
57  
PD9  
I/O TTa  
I/O TTa  
USART3_RX  
USART3_CK  
ADC4_IN13(3)  
ADC34_IN7(3), COMP6_INM  
PD10  
38/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Pinouts and pin description  
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function  
after  
Alternate functions  
Additional functions  
reset)  
ADC34_IN8(3), COMP6_INP,  
OPAMP4_VINP(3)  
(1)  
(1)  
(1)  
58  
PD11  
PD12  
PD13  
I/O TTa  
I/O TTa  
I/O TTa  
USART3_CTS  
USART3_RTS, TIM4_CH1,  
TSC_G8_IO1  
ADC34_IN9(3)  
,
59  
60  
COMP5_INP(3)  
ADC34_IN10(3)  
,
TIM4_CH2, TSC_G8_IO2  
COMP5_INM(3)  
COMP3_INP(3)  
,
,
(1)  
61  
PD14  
I/O TTa  
TIM4_CH3, TSC_G8_IO3  
ADC34_IN11(3)  
OPAMP2_VINP  
COMP3_INM(3)  
SPI2_NSS, TIM4_CH4,  
TSC_G8_IO4  
(1)  
(1)  
(1)  
(1)  
(1)  
62  
63  
64  
65  
66  
PD15  
PC6  
PC7  
PC8  
PC9  
I/O TTa  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I2S2_MCK(3), COMP6_OUT,  
37  
38  
39  
40  
TIM8_CH1(3), TIM3_CH1  
I2S3_MCK(3), TIM8_CH2(3)  
,
TIM3_CH2, COMP5_OUT(3)  
TIM8_CH3(3), TIM3_CH3,  
COMP3_OUT(3)  
TIM8_CH4(3), TIM8_BKIN2(3)  
TIM3_CH4, I2S_CKIN(3)  
,
I2C2_SMBA, I2S2_MCK(3)  
USART1_CK, TIM1_CH1,  
TIM4_ETR, MCO,  
,
67  
68  
69  
70  
71  
41  
42  
43  
44  
29  
30  
31  
32  
PA8  
PA9  
I/O FT  
I/O FTf  
I/O FTf  
I/O FT  
I/O FT  
COMP3_OUT(3)  
I2C2_SCL, I2S3_MCK(3)  
,
USART1_TX, TIM1_CH2,  
TIM2_CH3, TIM15_BKIN,  
TSC_G4_IO1, COMP5_OUT(3)  
I2C2_SDA, USART1_RX,  
TIM1_CH3, TIM2_CH4,  
PA10  
PA11  
PA12  
TIM8_BKIN(3), TIM17_BKIN,  
TSC_G4_IO2, COMP6_OUT  
USART1_CTS, USB_DM,  
CAN_RX, TIM1_CH1N,  
TIM1_CH4, TIM1_BKIN2,  
TIM4_CH1, COMP1_OUT  
USART1_RTS, USB_DP,  
CAN_TX, TIM1_CH2N,  
TIM1_ETR, TIM4_CH2,  
TIM16_CH1, COMP2_OUT  
45  
46  
33  
34  
USART3_CTS, TIM4_CH3,  
TIM16_CH1N, TSC_G4_IO3,  
IR_OUT, SWDIO-JTMS  
72  
73  
PA13  
PF6  
I/O FT  
I/O FTf  
I2C2_SCL, USART3_RTS,  
TIM4_CH4  
(1)  
Doc ID 023353 Rev 5  
39/133  
Pinouts and pin description  
STM32F302xx/STM32F303xx  
Additional functions  
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function  
after  
Alternate functions  
reset)  
74  
47  
48  
35  
VSS_3  
VDD_3  
S
S
Ground  
Digital power supply  
75  
36  
I2C1_SDA, USART2_TX,  
76  
49  
37  
PA14  
I/O FTf  
TIM8_CH2(3), TIM1_BKIN,  
TSC_G4_IO4, SWCLK-JTCK  
I2C1_SCL, SPI1_NSS,  
SPI3_NSS, I2S3_WS(3), JTDI,  
USART2_RX, TIM1_BKIN,  
TIM2_CH1_ETR, TIM8_CH1(3)  
77  
50  
38  
PA15  
I/O FTf  
SPI3_SCK, I2S3_CK(3)  
,
(1)  
(1)  
(1)  
78  
79  
80  
51  
52  
53  
PC10  
PC11  
PC12  
I/O FT  
I/O FT  
I/O FT  
USART3_TX, UART4_TX,  
TIM8_CH1N(3)  
SPI3_MISO, I2S3ext_SD(3)  
USART3_RX, UART4_RX,  
TIM8_CH2N(3)  
,
SPI3_MOSI, I2S3_SD(3)  
,
USART3_CK, UART5_TX,  
TIM8_CH3N(3)  
(1)  
(1)  
81  
82  
PD0  
PD1  
I/O FT  
I/O FT  
CAN_RX  
CAN_TX, TIM8_CH4(3)  
,
TIM8_BKIN2(3)  
UART5_RX, TIM3_ETR,  
TIM8_BKIN(3)  
(1)  
(1)  
83  
84  
54  
PD2  
PD3  
I/O FT  
I/O FT  
USART2_CTS,  
TIM2_CH1_ETR  
(1)  
(1)  
(1)  
(1)  
85  
86  
87  
88  
PD4  
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
USART2_RTS, TIM2_CH2  
USART2_TX  
USART2_RX, TIM2_CH4  
USART2_CK, TIM2_CH3  
SPI3_SCK, I2S3_CK(3)  
,
SPI1_SCK, USART2_TX,  
TIM2_CH2, TIM3_ETR,  
TIM4_ETR, TIM8_CH1N(3)  
TSC_G5_IO1, JTDO-  
TRACESWO  
89  
90  
55  
56  
39  
40  
PB3  
PB4  
I/O FT  
,
SPI3_MISO, I2S3ext_SD(3)  
SPI1_MISO, USART2_RX,  
TIM3_CH1, TIM16_CH1,  
,
I/O FT  
TIM17_BKIN, TIM8_CH2N(3)  
TSC_G5_IO2, NJTRST  
,
40/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Pinouts and pin description  
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)  
Pin number  
Pin functions  
Pin name  
(function  
after  
Alternate functions  
Additional functions  
reset)  
SPI3_MOSI, SPI1_MOSI,  
I2S3_SD(3), I2C1_SMBA,  
USART2_CK, TIM16_BKIN,  
91  
57  
58  
41  
PB5  
PB6  
I/O FT  
TIM3_CH2, TIM8_CH3N(3)  
TIM17_CH1  
,
I2C1_SCL, USART1_TX,  
TIM16_CH1N, TIM4_CH1,  
92  
42  
I/O FTf  
I/O FTf  
TIM8_CH1(3), TSC_G5_IO3,  
TIM8_ETR(3), TIM8_BKIN2(3)  
I2C1_SDA, USART1_RX,  
TIM3_CH4, TIM4_CH2,  
93  
94  
95  
59  
60  
61  
43  
44  
45  
PB7  
BOOT0  
PB8  
TIM17_CH1N, TIM8_BKIN(3)  
TSC_G5_IO4  
,
I
B
Boot memory selection  
I2C1_SCL, CAN_RX,  
TIM16_CH1, TIM4_CH3,  
TIM8_CH2(3), TIM1_BKIN,  
TSC_SYNC, COMP1_OUT  
I/O FTf  
I2C1_SDA, CAN_TX,  
TIM17_CH1, TIM4_CH4,  
TIM8_CH3(3), IR_OUT,  
COMP2_OUT  
96  
97  
62  
46  
PB9  
PE0  
I/O FTf  
I/O FT  
USART1_TX, TIM4_ETR,  
TIM16_CH1  
(1)  
(1)  
98  
99  
PE1  
I/O FT  
USART1_RX, TIM17_CH1  
63  
64  
47  
48  
VSS_1  
VDD_1  
S
S
Ground  
Digital power supply  
100  
1. Function availability depends on the chosen device.  
When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must  
not be configured in analog mode.  
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current  
(3 mA), the use of GPIO PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the  
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to  
the Battery backup domain and BKP register description sections in the reference manual.  
3. On STM32F303xx devices only.  
Doc ID 023353 Rev 5  
41/133  
 
 
Table 12. Alternate functions for port A  
Port  
&
Pin  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF14  
AF15  
Name  
TIM2_  
CH1_  
ETR  
TSC_  
G1_IO1  
USART2 COMP1 TIM8_  
TIM8_  
ETR  
EVENT  
OUT  
PA0  
_CTS  
_OUT  
BKIN  
TIM2_  
CH2  
TSC_  
G1_IO2  
USART2  
_RTS  
TIM15_  
CH1N  
EVENT  
OUT  
PA1  
PA2  
PA3  
PA4  
TIM2_  
CH3  
TSC_  
G1_IO3  
USART2 COMP2 TIM15_  
_TX  
EVENT  
OUT  
_OUT  
CH1  
TIM2_  
CH4  
TSC_  
G1_IO4  
USART2  
_RX  
TIM15_  
CH2  
EVENT  
OUT  
TIM3_ TSC_  
CH2 G2_IO1  
SPI1_ SPI3_NSS, USART2  
EVENT  
OUT  
NSS  
I2S3_WS  
_CK  
TIM2_  
CH1_  
ETR  
TSC_  
G2_IO2  
SPI1_  
SCK  
EVENT  
OUT  
PA5  
TIM16_ TIM3_ TSC_  
CH1 CH1 G2_IO3 BKIN  
TIM8_ SPI1_  
COMP1  
_OUT  
EVENT  
OUT  
PA6  
PA7  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH1N  
MISO  
TIM17_ TIM3_ TSC_  
TIM8_ SPI1_  
COMP2  
_OUT  
EVENT  
OUT  
CH1  
CH2  
G2_IO4 CH1N MOSI  
I2C2_ I2S2_  
SMBA MCK  
USART1 COMP3  
_CK _OUT  
TIM4_  
ETR  
EVENT  
OUT  
PA8 MCO  
PA9  
TSC_  
G4_IO1 SCL  
I2C2_ I2S3_  
MCK  
USART1 COMP5 TIM15_ TIM2_  
EVENT  
OUT  
_TX  
_OUT  
BKIN  
CH3  
TIM17_  
BKIN  
TSC_  
G4_IO2 SDA  
I2C2_  
USART1 COMP6  
_RX _OUT  
TIM2_ TIM8_  
CH4  
EVENT  
OUT  
PA10  
BKIN  
USB_  
DM  
USART1 COMP1  
TIM4_  
CH1  
TIM1_  
BKIN2  
EVENT  
OUT  
PA11  
CAN_RX  
TIM1_CH4  
_CTS  
_OUT  
Table 12. Alternate functions for port A (continued)  
Port  
&
Pin  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF14  
AF15  
Name  
TIM16_  
CH1  
USART1 COMP2  
TIM4_  
CH2  
USB_  
DP  
EVENT  
OUT  
PA12  
PA13  
PA14  
TIM1_CH2N  
CAN_TX  
TIM1_ETR  
_RTS  
_OUT  
SWDIO TIM16_  
-JTMS CH1N  
TSC_  
G4_IO3  
IR_  
OUT  
USART3  
_CTS  
TIM4_  
CH3  
EVENT  
OUT  
SWCLK  
-JTCK  
TSC_  
G4_IO4 SDA  
I2C1_ TIM8_  
USART2  
_TX  
EVENT  
OUT  
TIM1_BKIN  
CH2  
TIM2_  
CH1_  
ETR  
TIM8_  
CH1  
I2C1_ SPI1_ SPI3_NSS, USART2  
SCL NSS I2S3_WS _RX  
TIM1_  
BKIN  
EVENT  
OUT  
PA15 JTDI  
Table 13. Alternate functions for port B  
Port  
&
Pin  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
Name  
TIM3_ TSC_  
CH3 G3_IO2 CH2N  
TIM8_  
EVENT  
OUT  
PB0  
PB1  
PB2  
TIM1_CH2N  
TIM1_CH3N  
TIM3_ TSC_ TIM8_  
COMP4_  
OUT  
EVENT  
OUT  
CH4  
G3_IO3 CH3N  
TSC_  
G3_IO4  
EVENT  
OUT  
JTDO-  
PB3 TRACES  
WO  
TIM2_ TIM4_ TSC_  
TIM8_  
SPI1_  
SCK  
SPI3_SCK,  
I2S3_CK  
USART2_  
TX  
TIM3_  
ETR  
EVENT  
OUT  
CH2  
ETR  
G5_IO1 CH1N  
TIM16_ TIM3_ TSC_  
TIM8_  
SPI1_  
MISO  
SPI3_MISO, USART2_  
I2S3ext_SD RX  
TIM17_  
BKIN  
EVENT  
OUT  
PB4 NJTRST  
PB5  
CH1  
CH1  
G5_IO2 CH2N  
TIM16_ TIM3_ TIM8_  
BKIN CH2 CH3N  
I2C1_  
SMBA  
SPI1_  
MOSI  
SPI3_MOSI, USART2_  
TIM17_  
CH1  
EVENT  
OUT  
I2S3_SD  
CK  
TIM16_ TIM4_ TSC_  
CH1N CH1 G5_IO3  
TIM8_  
ETR  
USART1_  
TX  
TIM8_  
BKIN2  
EVENT  
OUT  
PB6  
I2C1_SCL TIM8_CH1  
TIM17_ TIM4_ TSC_  
CH1N CH2 G5_IO4 SDA  
I2C1_  
TIM8_  
BKIN  
USART1_  
RX  
TIM3_  
CH4  
EVENT  
OUT  
PB7  
TIM16_ TIM4_ TSC_  
COMP1_  
OUT  
TIM8_  
CH2  
TIM1_ EVENT  
PB8  
I2C1_SCL  
CAN_RX  
CAN_TX  
CH1  
CH3  
SYNC  
BKIN  
OUT  
TIM17_ TIM4_  
I2C1_  
SDA  
COMP2_  
OUT  
TIM8_  
CH3  
EVENT  
OUT  
PB9  
IR_OUT  
CH1  
CH4  
TIM2_  
CH3  
TSC_  
SYNC  
USART3_  
TX  
EVENT  
OUT  
PB10  
PB11  
PB12  
TIM2_  
CH4  
TSC_  
G6_IO1  
USART3_  
RX  
EVENT  
OUT  
TSC_  
G6_IO2 SMBA  
I2C2_  
SPI2_NSS,  
I2S2_WS  
TIM1_  
BKIN  
USART3_  
CK  
EVENT  
OUT  
Table 13. Alternate functions for port B (continued)  
Port  
&
Pin  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
Name  
TSC_  
G6_IO3  
SPI2_SCK, TIM1_  
I2S2_CK CH1N  
USART3_  
CTS  
EVENT  
OUT  
PB13  
PB14  
PB15  
TIM15_  
CH1  
TSC_  
G6_IO4  
SPI2_MISO, TIM1_  
I2S2ext_SD CH2N  
USART3_  
RTS  
EVENT  
OUT  
TIM15_ TIM15_  
CH2 CH1N  
TIM1_  
CH3N  
SPI2_MOSI,  
I2S2_SD  
EVENT  
OUT  
Table 14. Alternate functions for port C  
Port &  
Pin  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
Name  
PC0  
PC1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PC2  
COMP7_OUT  
TSC_G3_IO1  
PC3  
TIM1_BKIN2  
PC4  
USART1_TX  
USART1_RX  
COMP6_OUT  
COMP5_OUT  
COMP3_OUT  
PC5  
PC6  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TIM8_CH1  
TIM8_CH2  
TIM8_CH3  
TIM8_CH4  
TIM8_CH1N  
TIM8_CH2N  
TIM8_CH3N  
TIM1_CH1N  
I2S2_MCK  
I2S3_MCK  
PC7  
PC8  
PC9  
I2S_CKIN  
TIM8_BKIN2  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
UART4_TX  
UART4_RX  
UART5_TX  
SPI3_SCK, I2S3_CK  
SPI3_MISO, I2S3ext_SD  
SPI3_MOSI, I2S3_SD  
USART3_TX  
USART3_RX  
USART3_CK  
Table 15. Alternate functions for port D  
Port &  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
CAN_RX  
Pin Name  
PD0  
PD1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM8_CH4  
TIM8_BKIN  
TIM8_BKIN2  
CAN_TX  
PD2  
TIM3_ETR  
UART5_RX  
PD3  
TIM2_CH1_ETR  
TIM2_CH2  
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
PD4  
PD5  
PD6  
TIM2_CH4  
TIM2_CH3  
PD7  
PD8  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
SPI2_NSS  
Table 16. Alternate functions for port E  
Port &  
AF0  
AF1  
AF2  
TIM4_ETR  
AF3  
AF4  
AF6  
AF7  
Pin Name  
PE0  
PE1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM16_CH1  
TIM17_CH1  
USART1_TX  
USART1_RX  
PE2  
TRACECK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TSC_G7_IO1  
TSC_G7_IO2  
TSC_G7_IO3  
TSC_G7_IO4  
PE3  
PE4  
PE5  
PE6  
PE7  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
PE8  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM1_BKIN2  
USART3_RX  
Table 17. Alternate functions for port F  
Port &  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
Pin Name  
PF0  
PF1  
PF2  
PF4  
PF6  
PF9  
PF10  
I2C2_SDA  
I2C2_SCL  
TIM1_CH3N  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
COMP1_OUT  
TIM4_CH4  
I2C2_SCL  
USART3_RTS  
TIM15_CH1  
TIM15_CH2  
SPI2_SCK  
SPI2_SCK  
Memory mapping  
STM32F302xx/STM32F303xx  
5
Memory mapping  
Figure 8.  
STM32F30xB/C memory map  
0x5000 07FF  
AHB3  
0xFFFF FFFF  
0x5000 0000  
Reserved  
Cortex-M4F  
Internal  
Peripherals  
7
0x4800 1800  
0x4800 0000  
AHB2  
0xE000 0000  
Reserved  
AHB1  
6
0x4002 43FF  
0x4002 0000  
0xC000 0000  
Reserved  
5
0x4001 6C00  
0x4001 0000  
APB2  
Reserved  
APB1  
0xA000 0000  
4
0x4000 A000  
0x4000 0000  
0x8000 0000  
3
0x1FFF FFFF  
0x1FFF F800  
Option bytes  
0x6000 0000  
System memory  
2
0x1FFF D800  
0x1000 2000  
Reserved  
Peripherals  
0x4000 0000  
CCM RAM  
0x1000 0000  
0x0804 0000  
Reserved  
1
SRAM  
CODE  
0x2000 0000  
Flash memory  
0x0800 0000  
0x0004 0000  
0
Reserved  
0x0000 0000  
Flash, system memory  
or SRAM, depending  
on BOOT configuration  
Reserved  
0x0000 0000  
MS30355V1  
50/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Memory mapping  
Table 18. STM32F30xB/C memory map and peripheral register boundary  
addresses  
Size  
(bytes)  
Bus  
Boundary address  
Peripheral  
0x5000 0400 - 0x5000 07FF  
0x5000 0000 - 0x5000 03FF  
0x4800 1800 - 0x4FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0800 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 4C00 - 0x4001 7FFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 0800 - 0x4001 2BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
1 K  
1 K  
ADC3 - ADC4  
AHB3  
ADC1 - ADC2  
Reserved  
GPIOF  
~132 M  
1 K  
1 K  
GPIOE  
1 K  
GPIOD  
AHB2  
1 K  
GPIOC  
1 K  
GPIOB  
1 K  
GPIOA  
~128 M  
1 K  
Reserved  
TSC  
3 K  
Reserved  
CRC  
1 K  
3 K  
Reserved  
Flash interface  
Reserved  
RCC  
1 K  
AHB1  
3 K  
1 K  
2 K  
Reserved  
DMA2  
1 K  
1 K  
DMA1  
32 K  
13 K  
1 K  
Reserved  
Reserved  
TIM17  
1 K  
TIM16  
1 K  
TIM15  
1 K  
Reserved  
USART1  
TIM8  
1 K  
APB2  
1 K  
1 K  
SPI1  
1 K  
TIM1  
9 K  
Reserved  
EXTI  
1 K  
1 K  
SYSCFG + COMP + OPAMP  
Doc ID 023353 Rev 5  
51/133  
Memory mapping  
STM32F302xx/STM32F303xx  
Table 18. STM32F30xB/C memory map and peripheral register boundary addresses  
(continued)  
Size  
(bytes)  
Bus  
Boundary address  
Peripheral  
0x4000 8000 - 0x4000 FFFF  
0x4000 7800 - 0x4000 7FFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1800 - 0x4000 27FF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
32 K  
2 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
4 K  
1 K  
1 K  
1 K  
1 K  
1 K  
1 K  
Reserved  
Reserved  
DAC (dual)  
PWR  
Reserved  
Reserved  
bxCAN  
USB SRAM 512 bytes  
USB device FS  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
I2S3ext  
SPI3/I2S3  
SPI2/I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC  
Reserved  
TIM7  
TIM6  
Reserved  
TIM4  
TIM3  
TIM2  
52/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3.3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 9.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 10.  
Figure 9.  
Pin loading conditions  
Figure 10. Pin input voltage  
-#5 PIN  
-#5 PIN  
C = 50 pF  
6
).  
-3ꢃꢅꢉꢃꢄ6ꢃ  
-3ꢃꢅꢉꢃꢃ6ꢃ  
Doc ID 023353 Rev 5  
53/133  
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.1.6  
Power supply scheme  
Figure 11. Power supply scheme  
V
BAT  
Backup circuitry  
Power switch  
(LSE,RTC,  
1.65 - 3.6V  
Wake-up logic  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
V
DD  
& Memories)  
4 ×  
3 ×  
V
V
DD  
Regulator  
4 × 100 nF  
+ 1 × 4.7 μF  
SS  
V
DDA  
V
DDA  
V
REF  
!NALOGꢍ 2#Sꢎ 0,,ꢎ  
COMPARATORSꢎ /0!-0ꢏꢏꢏ  
V
ADC/  
DAC  
REF+  
10 nF  
+ 1 μF  
V
REF-  
10 nF  
+ 1 μF  
V
SSA  
MS19875V3  
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply  
pins.  
Caution:  
Each power supply pair (V /V , V  
/V  
etc..) must be decoupled with filtering  
DD SS  
DDA SSA  
ceramic capacitors as shown above. These capacitors must be placed as close as possible  
to, or below the appropriate pins on the underside of the PCB to ensure the good  
functionality of the device.  
54/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.1.7  
Current consumption measurement  
Figure 12. Current consumption measurement scheme  
)
?6  
$$ "!4  
6
"!4  
)
$$  
6
$$  
)
$$!  
6
$$!  
-3ꢃꢅꢉꢃꢈ6ꢃ  
Doc ID 023353 Rev 5  
55/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,  
Table 20: Current characteristics, and Table 21: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
(1)  
Table 19. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VBAT  
and VDD  
VDD–VSS  
-0.3  
4.0  
)
VDD–VDDA  
REF+–VDDA  
Allowed voltage difference for VDD > VDDA  
Allowed voltage difference for VREF+ > VDDA  
Input voltage on FT and FTf pins  
-
0.4  
0.4  
(2)  
V
-
V
VSS 0.3  
VDD + 4.0  
4.0  
(3)  
VIN  
Input voltage on TTa pins  
VSS 0.3  
Input voltage on any other pin  
VSS 0.3  
4.0  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
50  
mV  
|VSSX VSS  
|
50  
Electrostatic discharge voltage (human body  
model)  
see Section 6.3.12: Electrical  
sensitivity characteristics  
VESD(HBM)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range. The following relationship must be respected between VDDA and VDD  
:
VDDA must power on before or at the same time as VDD in the power up sequence.  
V
DDA must be greater than or equal to VDD.  
2. VREF+ must be always lower or equal than VDDA (VREF+ VDDA). If unused then it must be connected to VDDA  
.
3. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected  
current values.  
56/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Table 20. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDD(Σ)  
IVSS(Σ)  
IVDD  
Total current into sum of all VDD_x power lines (source)  
Total current out of sum of all VSS_x ground lines (sink)  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS _x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/O and control pin  
Total output current sunk by sum of all IOs and control pins(2)  
Total output current sourced by sum of all IOs and control pins(2)  
Injected current on FT, FTf and B pins(3)  
160  
160  
100  
100  
25  
IVSS  
IIO(PIN)  
25  
80  
mA  
ΣIIO(PIN)  
80  
-5/+0  
5
IINJ(PIN)  
Injected current on TC and RST pin(4)  
Injected current on TTa pins(5)  
5
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
25  
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in  
the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values.  
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection  
disturbs the analog performance of the device. See note (2) below Table 68.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 21. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
Doc ID 023353 Rev 5  
57/133  
 
 
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 22. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
0
0
0
2
72  
36  
72  
3.6  
MHz  
V
Analog operating voltage  
(OPAMP and DAC not used)  
2
3.6  
Must have a potential  
equal to or higher than  
VDD  
VDDA  
V
V
Analog operating voltage  
(OPAMP and DAC used)  
2.4  
3.6  
3.6  
VBAT  
Backup operating voltage  
1.65  
TC I/O  
–0.3 VDD+0.3  
TTa I/O  
–0.3  
V
DDA+0.3  
VIN  
I/O input voltage  
V
FT and FTf I/O(1)  
–0.3  
5.5  
BOOT0  
0
-
5.5  
LQFP100  
LQFP64  
488  
Power dissipation at TA =  
85 °C for suffix 6 or TA =  
105 °C for suffix 7(2)  
PD  
-
444  
mW  
°C  
LQFP48  
-
364  
Maximum power  
dissipation  
–40  
–40  
–40  
85  
Ambient temperature for 6  
suffix version  
Low power dissipation(3)  
105  
105  
TA  
TJ  
Maximum power  
dissipation  
Ambient temperature for 7  
suffix version  
°C  
°C  
Low power dissipation(3)  
–40  
–40  
–40  
125  
105  
125  
6 suffix version  
Junction temperature range  
7 suffix version  
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 21: Thermal  
characteristics).  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Table 21: Thermal characteristics).  
58/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 23 are derived from tests performed under the ambient  
temperature condition summarized in Table 22.  
Table 23. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
0
tVDD  
VDD fall time rate  
20  
0
µs/V  
VDDA rise time rate  
VDDA fall time rate  
tVDDA  
20  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 24 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 22.  
DD  
Table 24. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
1.8(2)  
Falling edge  
Rising edge  
1.88 1.96  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
1.84 1.92 2.0  
(1)  
VPDRhyst  
PDR hysteresis  
-
40  
-
mV  
POR reset  
temporization  
(3)  
tRSTTEMPO  
1.5  
2.5  
4.5  
ms  
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector  
monitors only VDD  
.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
3. Guaranteed by design, not tested in production  
Doc ID 023353 Rev 5  
59/133  
 
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 25. Programmable voltage detector characteristics  
Symbol  
Parameter  
Conditions  
Rising edge  
Min(1)  
Typ Max(1) Unit  
2.1  
2
2.18  
2.08  
2.28  
2.18  
2.38  
2.28  
2.48  
2.38  
2.58  
2.48  
2.68  
2.58  
2.78  
2.68  
2.88  
2.78  
100  
2.26  
2.16  
2.37  
2.27  
2.48  
2.38  
2.58  
2.48  
2.69  
2.59  
2.79  
2.69  
2.9  
VPVD0  
PVD threshold 0  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.19  
2.09  
2.28  
2.18  
2.38  
2.28  
2.47  
2.37  
2.57  
2.47  
2.66  
2.56  
2.76  
2.66  
-
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
VPVD7  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
V
2.8  
3
PVD threshold 7  
PVD hysteresis  
2.9  
(2)  
VPVDhyst  
-
mV  
µA  
PVD current  
consumption  
IDD(PVD)  
-
0.15  
0.26  
1. Data based on characterization results only, not tested in production.  
2. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 26 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 22.  
DD  
Table 26. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
–40 °C < TA < +105 °C 1.16  
–40 °C < TA < +85 °C 1.16  
1.2  
1.25  
V
V
Internal reference voltage  
V
REFINT  
1.2 1.24(1)  
ADC sampling time when  
reading the internal  
reference voltage  
TS_vrefint  
2.2  
-
-
µs  
Internal reference voltage  
spread over the  
temperature range  
10(2)  
VRERINT  
VDD = 3 V 10 mV  
-
-
-
-
mV  
100(2)  
TCoeff  
Temperature coefficient  
ppm/°C  
60/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
1. Data based on characterization results, not tested in production.  
2. Guaranteed by design, not tested in production  
Table 27. Internal reference voltage calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 30 °C  
VREFINT_CAL  
0x1FFF F7BA - 0x1FFF F7BB  
VDDA= 3.3 V  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 12: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
and f  
= f  
PCLK2  
HCLK  
PCLK1 HCLK/2  
When f  
> 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or  
HCLK  
HSE (8 MHz) in bypass mode.  
The parameters given in Table 28 to Table 32 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 22.  
Doc ID 023353 Rev 5  
61/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 28. Typical and maximum current consumption from V supply at V = 3.6V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Symbol Parameter Conditions fHCLK  
Max @ TA  
Max @ TA  
Unit  
Typ  
Typ  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
72 MHz 61.2 65.8  
67.6  
60.2  
46.2  
32.5  
24.4  
8.6  
68.5  
61.1  
47.2  
32.7  
25.2  
9.4  
27.8 30.3  
24.6 27.2  
19.2 21.1  
12.9 14.6  
10.0 11.4  
30.7  
27.6  
21.4  
14.8  
11.4  
4.4  
31.5  
28.3  
21.8  
15.3  
12.1  
5.0  
64 MHz 54.7 59.1  
48 MHz 41.7 45.1  
External  
clock (HSE 32 MHz 28.1 31.5  
bypass)  
24 MHz 21.4 23.7  
Supply  
current in  
Run mode,  
executing  
from Flash  
8 MHz  
1 MHz  
7.4  
1.3  
8.4  
1.6  
3.6  
0.8  
4.1  
1.0  
1.8  
2.6  
1.2  
2.1  
64 MHz 49.7 54.4  
48 MHz 37.9 42.2  
32 MHz 25.8 29.2  
24 MHz 19.7 22.3  
55.4  
43.0  
29.2  
22.6  
8.3  
56.3  
43.5  
30.0  
23.2  
8.8  
24.5 27.2  
18.9 21.4  
12.7 14.2  
27.4  
21.5  
14.6  
7.9  
28.1  
21.6  
15.2  
8.5  
Internal  
clock (HSI)  
6.7  
7.7  
8 MHz  
6.9  
7.8  
3.5  
4.0  
4.4  
5.0  
IDD  
mA  
72 MHz 60.8 66.2(2) 69.7 70.4(2) 27.4 31.7(2) 32.2 32.5(2)  
64 MHz 54.3 59.1  
48 MHz 41.0 45.6  
62.2  
47.3  
32.4  
24.3  
8.7  
63.3  
47.9  
32.9  
25.0  
9.0  
24.3 28.3  
18.3 21.6  
12.3 15.0  
28.7  
21.9  
15.2  
11.4  
4.2  
28.8  
22.1  
15.4  
12.0  
4.9  
External  
clock (HSE 32 MHz 27.6 32.4  
bypass)  
24 MHz 20.8 23.9  
9.3  
3.1  
0.4  
11.3  
3.7  
Supply  
current in  
Run mode,  
executing  
from RAM  
8 MHz  
1 MHz  
6.9  
0.9  
7.8  
1.2  
1.5  
2.3  
0.6  
1.0  
1.8  
64 MHz 49.2 53.9  
48 MHz 37.3 40.8  
32 MHz 25.1 27.6  
24 MHz 19.0 21.6  
55.2  
41.4  
29.1  
22.1  
7.9  
57.4  
44.1  
30.1  
22.9  
8.4  
23.9 27.8  
18.2 21.0  
12.0 14.0  
28.2  
21.6  
14.5  
7.7  
28.4  
21.9  
15.1  
8.1  
Internal  
clock (HSI)  
6.3  
3.0  
7.2  
3.5  
8 MHz  
6.4  
7.3  
4.0  
4.7  
62/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Table 28. Typical and maximum current consumption from V supply at V = 3.6V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Symbol Parameter Conditions fHCLK  
Max @ TA  
Max @ TA  
Unit  
Typ  
Typ  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
72 MHz 44.0 48.4  
49.4  
44.0  
33.3  
23.3  
17.8  
6.1  
50.5  
45.2  
34.3  
23.5  
18.3  
6.9  
6.6  
6.0  
4.5  
3.1  
2.4  
0.8  
0.1  
5.7  
4.3  
2.9  
1.5  
0.7  
7.5  
6.8  
5.2  
3.5  
2.8  
1.0  
0.3  
6.3  
4.8  
3.2  
1.8  
0.9  
7.9  
7.2  
5.6  
4.0  
3.3  
1.4  
0.6  
6.8  
5.2  
3.7  
2.2  
1.2  
8.7  
7.9  
6.3  
4.8  
3.9  
2.2  
1.5  
7.5  
5.9  
4.5  
2.9  
2.1  
64 MHz 39.2 43.3  
48 MHz 29.6 32.7  
External  
clock (HSE 32 MHz 19.7 23.3  
Supply  
current in  
Sleep  
bypass)  
24 MHz 14.9 17.6  
8 MHz  
1 MHz  
4.9  
0.6  
5.7  
0.9  
IDD  
mode,  
mA  
1.2  
2.1  
executing  
from Flash  
or RAM  
64 MHz 34.2 38.1  
48 MHz 25.8 28.7  
32 MHz 17.4 19.4  
24 MHz 13.2 15.1  
39.2  
29.6  
19.9  
15.6  
5.6  
40.3  
30.3  
20.7  
15.9  
6.2  
Internal  
clock (HSI)  
8 MHz  
4.5  
5.0  
1. Data based on characterization results, not tested in production unless otherwise specified.  
2. Data based on characterization results and tested in production with code executing from RAM.  
Table 29. Typical and maximum current consumption from the V  
supply  
DDA  
V
= 2.4 V  
V
= 3.6 V  
DDA  
DDA  
Conditions  
(2)  
(2)  
Symbol Parameter  
fHCLK  
Max @ TA  
25 °C 85 °C 105 °C  
Max @ TA  
25 °C 85 °C 105 °C  
Unit  
(1)  
Typ  
Typ  
72 MHz 225  
64 MHz 198  
48 MHz 149  
32 MHz 102  
24 MHz 80  
276  
249  
195  
145  
119  
3
289  
261  
204  
152  
124  
4
297  
268  
211  
157  
128  
6
245  
216  
159  
110  
86  
302  
270  
209  
154  
126  
4
319  
284  
222  
162  
131  
5
329  
293  
230  
169  
135  
9
HSE  
bypass  
Supply  
current in  
Run mode,  
8 MHz  
1 MHz  
2
2
3
IDDA  
code  
µA  
3
5
7
3
4
6
9
executing  
from Flash  
or RAM  
64 MHz 270  
48 MHz 220  
323  
269  
218  
194  
97  
337  
280  
228  
200  
99  
344  
286  
233  
204  
103  
299  
244  
193  
169  
88  
354  
293  
239  
211  
105  
371  
309  
251  
219  
110  
381  
318  
257  
225  
116  
HSI clock 32 MHz 173  
24 MHz 151  
8 MHz  
73  
Doc ID 023353 Rev 5  
63/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the  
PLL is off, IDDA is independent from the frequency.  
2. Data based on characterization results, not tested in production.  
64/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
Table 30. Typical and maximum V consumption in Stop and Standby modes  
DD  
Typ @VDD (VDD=VDDA  
)
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in run mode,  
all oscillators OFF  
20.05 20.33 20.42 20.50 20.67 20.80 44.2(2) 553 1202(2)  
7.63 7.77 7.90 8.07 8.17 8.33 30.6(2) 529 1156(2)  
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators OFF  
IDD  
µA  
Supply  
current in  
Standby  
mode  
LSI ON and IWDG ON  
0.80 0.96 1.09 1.23 1.37 1.51  
-
-
-
LSI OFF and IWDG OFF 0.60 0.74 0.83 0.93 1.02 1.11 5.0(2) 7.8 13.3(2)  
1. Data based on characterization results, not tested in production unless otherwise specified.  
2. Data based on characterization results and tested in production.  
Table 31. Typical and maximum V  
consumption in Stop and Standby modes  
DDA  
Typ @VDD (VDD = VDDA  
)
Max(1)  
Symbol Parameter  
Conditions  
Unit  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in run mode,  
all oscillators OFF  
1.81 1.95 2.07 2.20 2.35 2.52 3.7  
1.81 1.95 2.07 2.20 2.35 2.52 3.7  
5.5  
5.5  
8.8  
8.8  
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators  
OFF  
Supply  
LSI ON and IWDG ON 2.22 2.42 2.59 2.78 3.0 3.24  
-
-
-
current in  
Standby  
mode  
LSI OFF and IWDG  
OFF  
1.69 1.82 1.94 2.08 2.23 2.40 3.5  
5.4  
9.2  
IDDA  
µA  
Regulator in run mode,  
all oscillators OFF  
1.05 1.08 1.10 1.15 1.22 1.29  
1.05 1.08 1.10 1.15 1.22 1.29  
-
-
-
-
-
-
Supply  
current in  
Stop mode  
Regulator in low-power  
mode, all oscillators  
OFF  
Supply  
current in  
Standby  
mode  
LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98  
-
-
-
-
-
-
LSI OFF and IWDG  
0.93 0.95 0.98 1.02 1.08 1.15  
OFF  
1. Data based on characterization results, not tested in production.  
Doc ID 023353 Rev 5  
65/133  
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 32. Typical and maximum current consumption from V  
supply  
BAT  
Max  
Typ @VBAT  
@VBAT = 3.6 V(2)  
Para Conditions  
meter  
Symbol  
Unit  
(1)  
TA = TA = TA =  
25°C 85°C 105°C  
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V  
LSE & RTC  
ON; "Xtal  
mode"lower  
driving  
capability;  
LSEDRV[1:  
0] = '00'  
0.48 0.50 0.52 0.58 0.65 0.72 0.80 0.90 1.1  
1.5  
2.2  
2.0  
2.9  
Backup  
domain  
supply  
current  
IDD_VBAT  
µA  
LSE & RTC  
ON; "Xtal  
mode"  
higher  
driving  
0.83 0.86 0.90 0.98 1.03 1.10 1.20 1.30 1.5  
capability;  
LSEDRV[1:  
0] = '11'  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Data based on characterization results, not tested in production.  
Figure 13. Typical V  
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)  
BAT  
ꢃꢏꢀ  
ꢃꢏꢉ  
ꢃꢏꢂꢇ 6  
ꢃꢏꢁ 6  
ꢉ 6  
ꢄꢏꢁ  
ꢄꢏꢂ  
ꢄꢏꢀ  
ꢄꢏꢉ  
ꢉꢏꢀ 6  
ꢉꢏꢆ 6  
ꢈ 6  
ꢈꢏꢈ 6  
ꢈꢏꢂ 6  
ꢉꢇ #  
ꢂꢄ #  
ꢁꢇ #  
ꢃꢄꢇ #  
ꢀ #ꢁ  
4!  
-3ꢈꢃꢃꢉꢀ6ꢃ  
66/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 3.3 V  
DDA  
DD  
All I/O pins available on each package are in analog input configuration  
The Flash access time is adjusted to f frequency (0 wait states from 0 to 24 MHz,  
HCLK  
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash  
prefetch is ON  
When the peripherals are enabled, f  
= f  
, f  
= f  
APB1  
AHB/2 APB2 AHB  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,  
500 kHz and 125 kHz respectively.  
Table 33. Typical current consumption in Run mode, code with data processing running from  
Flash  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
61.3  
54.8  
41.9  
28.5  
21.8  
14.9  
7.7  
28.0  
25.4  
19.3  
13.3  
10.4  
7.2  
Supply current in  
Run mode from  
VDD supply  
IDD  
mA  
3.9  
4 MHz  
4.5  
2.5  
2 MHz  
2.8  
1.7  
1 MHz  
1.9  
1.3  
500 kHz  
125 kHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.4  
1.1  
Running from HSE  
crystal clock 8 MHz,  
code executing from  
Flash  
1.1  
0.9  
240.3  
210.9  
155.8  
105.7  
82.1  
58.8  
2.4  
239.5  
210.3  
155.6  
105.6  
82.0  
58.8  
2.4  
Supply current in  
Run mode from  
VDDA supply  
(1) (2)  
IDDA  
µA  
4 MHz  
2.4  
2.4  
2 MHz  
2.4  
2.4  
1 MHz  
2.4  
2.4  
500 kHz  
125 kHz  
2.4  
2.4  
2.4  
2.4  
1. VDDA monitoring is ON.  
Doc ID 023353 Rev 5  
67/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,  
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.  
Table 34. Typical current consumption in Sleep mode, code running from Flash or RAM  
Typ  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
44.1  
39.7  
30.3  
20.5  
15.4  
10.6  
5.4  
7.0  
6.3  
4.9  
3.5  
2.8  
Supply current in  
Sleep mode from  
VDD supply  
2.0  
IDD  
mA  
1.1  
4 MHz  
3.2  
1.0  
2 MHz  
2.1  
0.9  
1 MHz  
1.5  
0.8  
500 kHz  
125 kHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
1.2  
0.8  
Running from HSE  
crystal clock 8 MHz,  
code executing from  
Flash or RAM  
1.0  
0.8  
239.7  
210.5  
155.0  
105.3  
81.9  
58.7  
2.4  
238.5  
209.6  
155.6  
105.2  
81.8  
58.6  
2.4  
Supply current in  
Sleep mode from  
VDDA supply  
(1) (2)  
IDDA  
µA  
4 MHz  
2.4  
2.4  
2 MHz  
2.4  
2.4  
1 MHz  
2.4  
2.4  
500 kHz  
125 kHz  
2.4  
2.4  
2.4  
2.4  
1. VDDA monitoring is ON  
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,  
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.  
68/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 52: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (seeTable 36: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+C  
S
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
Doc ID 023353 Rev 5  
69/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 35. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
)
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
48 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
0.90  
0.93  
1.16  
1.60  
2.51  
2.97  
0.93  
1.06  
1.47  
2.26  
3.39  
5.99  
1.03  
1.30  
1.79  
3.01  
5.99  
1.10  
1.31  
2.06  
3.47  
8.35  
1.20  
1.54  
2.46  
4.51  
9.98  
V
DD = 3.3 V  
Cext = 0 pF  
C = CINT + CEXT+ CS  
VDD = 3.3 V  
Cext = 10 pF  
C = CINT + CEXT +CS  
I/O current  
consumption  
ISW  
mA  
VDD = 3.3 V  
Cext = 22 pF  
C = CINT + CEXT +CS  
VDD = 3.3 V  
Cext = 33 pF  
C = CINT + CEXT+ CS  
VDD = 3.3 V  
Cext = 47 pF  
C = CINT + CEXT+ CS  
1. CS = 5 pF (estimated value).  
70/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
all I/O pins are in analog input configuration  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
ambient operating temperature at 25°C and V = V  
= 3.3 V.  
DD  
DDA  
Table 36. Peripheral current consumption  
(1)  
Typical consumption  
IDD  
Unit  
Peripheral  
BusMatrix (2)  
DMA1  
5.6  
15.3  
12.5  
2.1  
DMA2  
CRC  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
TSC  
10.0  
10.3  
2.2  
8.8  
3.3  
3.0  
5.5  
ADC1&2  
ADC3&4  
APB2-Bridge (3)  
SYSCFG  
TIM1  
17.3  
18.8  
3.6  
µA/MHz  
7.3  
40.0  
8.8  
SPI1  
TIM8  
36.4  
23.3  
17.1  
10.1  
11.0  
6.1  
USART1  
TIM15  
TIM16  
TIM17  
APB1-Bridge (3)  
TIM2  
49.1  
38.8  
38.3  
TIM3  
TIM4  
Doc ID 023353 Rev 5  
71/133  
 
Electrical characteristics  
Table 36. Peripheral current consumption (continued)  
STM32F302xx/STM32F303xx  
(1)  
Typical consumption  
IDD  
Peripheral  
Unit  
TIM6  
TIM7  
9.7  
12.1  
6.4  
WWDG  
SPI2  
40.4  
40.0  
41.9  
40.2  
36.5  
30.8  
10.5  
10.4  
26.2  
33.4  
5.7  
SPI3  
USART2  
USART3  
UART4  
UART5  
I2C1  
µA/MHz  
I2C2  
USB  
CAN  
PWR  
DAC  
15.4  
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp  
etc. is not included. Refer to the tables of characteristics in the subsequent sections.  
2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).  
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.  
72/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.3.6  
Wakeup time from low-power mode  
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep mode: the wakeup event is WFE.  
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 22.  
Table 37. Low-power mode wakeup timings  
Typ @VDD, VDD = VDDA  
Symbol  
Parameter  
Conditions  
Max Unit  
2.0 V  
2.4 V  
2.7 V  
3 V  
3.3 V  
3.6 V  
Regulator in  
run mode  
4.1  
3.9  
3.8  
3.7  
3.6  
3.5  
4.5  
Wakeup from  
Stop mode  
tWUSTOP  
Regulator in  
low power  
mode  
7.9  
6.7  
6.1  
5.7  
5.4  
5.2  
50  
9
100  
-
µs  
Wakeup from LSI and  
Standby mode IWDG OFF  
(1)  
tWUSTANDBY  
69.2  
60.3  
56.4  
53.7  
51.7  
CPU  
clock  
Wakeup from  
Sleep mode  
tWUSLEEP  
6
cycles  
1. Data based on characterization results, not tested in production.  
Doc ID 023353 Rev 5  
73/133  
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The  
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the  
recommended clock input waveform is shown in Figure 14.  
Table 38. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
32  
MHz  
VHSEH  
VHSEL  
tw(HSEH)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
15  
-
-
-
-
tw(HSEL)  
ns  
tr(HSE)  
tf(HSE)  
20  
1. Guaranteed by design, not tested in production.  
Figure 14. High-speed external clock source AC timing diagram  
T
7ꢐ(3%(ꢑ  
6
(3%(  
ꢒ  
ꢒ  
6
(3%,  
T
T
T
Rꢐ(3%ꢑ  
T
7ꢐ(3%,ꢑ  
Fꢐ(3%ꢑ  
4
(3%  
-3ꢃꢅꢉꢃꢀ6ꢉ  
74/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The  
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the  
recommended clock input waveform is shown in Figure 15  
Table 39. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSEH)  
0.7VDD  
VSS  
450  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
tw(LSEL)  
ns  
tr(LSE)  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
Figure 15. Low-speed external clock source AC timing diagram  
T
7ꢐ,3%(ꢑ  
6
,3%(  
ꢒ  
ꢒ  
6
,3%,  
T
T
T
Rꢐ,3%ꢑ  
Fꢐ,3%ꢑ  
T
7ꢐ,3%,ꢑ  
4
,3%  
-3ꢃꢅꢉꢃꢇ6ꢉ  
Doc ID 023353 Rev 5  
75/133  
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 40. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 40. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min(2) Typ Max(2) Unit  
fOSC_IN Oscillator frequency  
4
-
8
200  
-
32  
MHz  
RF  
Feedback resistor  
kΩ  
During startup(3)  
-
8.5  
-
V
DD=3.3 V, Rm= 30Ω,  
CL=10 pF@8 MHz  
-
-
-
-
-
0.4  
0.5  
0.8  
1
VDD=3.3 V, Rm= 45Ω,  
CL=10 pF@8 MHz  
-
-
-
-
IDD  
HSE current consumption  
mA  
VDD=3.3 V, Rm= 30Ω,  
CL=10 pF@32 MHz  
VDD=3.3 V, Rm= 30Ω,  
CL=10 pF@32 MHz  
V
DD=3.3 V, Rm= 30Ω,  
CL=10 pF@32 MHz  
1.5  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
76/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 16). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 16. Typical application with an 8 MHz crystal  
2ESONATOR WITH  
INTEGRATED CAPACITORS  
#
,ꢃ  
F
/3#?).  
(3%  
"IAS  
CONTROLLED  
GAIN  
ꢁ -(Z  
RESONATOR  
2
&
/3#?/54  
ꢐꢃꢑ  
2
%84  
#
,ꢉ  
-3ꢃꢅꢁꢆꢂ6ꢃ  
1. REXT value depends on the crystal characteristics.  
Doc ID 023353 Rev 5  
77/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 41. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min(2)  
Typ Max(2) Unit  
LSEDRV[1:0]=00  
lower driving capability  
-
0.5  
0.9  
1
LSEDRV[1:0]=01  
medium low driving capability  
-
-
-
-
-
-
-
-
IDD  
LSE current consumption  
µA  
LSEDRV[1:0]=10  
medium high driving capability  
1.3  
1.6  
-
LSEDRV[1:0]=11  
higher driving capability  
-
LSEDRV[1:0]=00  
lower driving capability  
5
8
15  
LSEDRV[1:0]=01  
medium low driving capability  
-
Oscillator  
transconductance  
gm  
µA/V  
LSEDRV[1:0]=10  
medium high driving capability  
-
LSEDRV[1:0]=11  
higher driving capability  
25  
-
-
-
-
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
78/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Figure 17. Typical application with a 32.768 kHz crystal  
Electrical characteristics  
2ESONATOR WITH  
INTEGRATED CAPACITORS  
#
,ꢃ  
F
/3#ꢈꢉ?).  
,3%  
$RIVE  
PROGRAMMABLE  
AMPLIFIER  
ꢈꢉꢏꢆꢂꢁ K(Z  
RESONATOR  
/3#ꢈꢉ?/54  
#
,ꢉ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
Doc ID 023353 Rev 5  
79/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 42 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 22.  
High-speed internal (HSI) RC oscillator  
(1)  
Table 42. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
8
-
-
-
-
-
-
-
MHz  
%
TRIM  
1(2)  
55(2)  
4.6(3)  
2.9(3)  
-
DuCy(HSI) Duty cycle  
45(2)  
–3.8(3)  
–2.9(3)  
-
%
TA = –40 to 105 °C  
TA = –10 to 85 °C  
TA = 0 to 70 °C  
TA = 25 °C  
%
Accuracy of the HSI  
oscillator (factory  
calibrated)  
%
ACCHSI  
%
–1  
1
%
HSI oscillator startup  
time  
tsu(HSI)  
1(2)  
-
2(2)  
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
-
80  
100(3)  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 18. HSI oscillator accuracy characterization results  
!##  
(3)  
ꢇꢒ  
ꢀꢒ  
ꢈꢒ  
ꢉꢒ  
ꢃꢒ  
ꢄꢒ  
-!8  
-).  
4! ; #=  
ꢋꢀꢄ  
ꢋꢉꢄ  
ꢉꢄ  
ꢀꢄ  
ꢂꢄ  
ꢁꢄ  
ꢃꢄꢄ  
ꢃꢉꢄ  
ꢋꢃꢒ  
ꢋꢉꢒ  
ꢋꢈꢒ  
ꢋꢀꢒ  
ꢋꢇꢒ  
-3ꢈꢄꢅꢁꢇ6ꢉ  
1. The above curves are based on characterisation results, not tested in production  
Doc ID 023353 Rev 5  
80/133  
 
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 43. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
(2)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.75  
1.2  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.9  
PLL characteristics  
The parameters given in Table 44 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 22.  
Table 44. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
-
-
-
-
-
24(2)  
60(2)  
72  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
Jitter  
Cycle-to-cycle jitter  
-
ps  
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
Doc ID 023353 Rev 5  
81/133  
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.10  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 45. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
tprog  
16-bit programming time TA = –40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
µs  
ms  
ms  
mA  
mA  
tERASE Page (2 KB) erase time TA = –40 to +105 °C  
-
-
-
-
tME  
Mass erase time  
TA = –40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
1. Guaranteed by design, not tested in production.  
Table 46. Flash memory endurance and data retention  
Value  
Min(1)  
Symbol  
Parameter  
Conditions  
Unit  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND  
Endurance  
10  
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
30  
10  
20  
tRET  
Data retention  
Years  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
82/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 47. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 47. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 72 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
3B  
4A  
conforms to IEC 61000-4-2  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 72 MHz  
conforms to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Doc ID 023353 Rev 5  
83/133  
 
Electrical characteristics  
Prequalification trials  
STM32F302xx/STM32F303xx  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 48. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/72 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
7
20  
27  
4
VDD = 3.3 V, TA = 25 °C,  
LQFP100 package  
compliant with IEC  
61967-2  
dBµV  
-
SEMI  
Peak level  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 49. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
TA = +25 °C, conforming  
V
2
II  
2000  
500  
ESD(HBM) voltage (human body model) to JESD22-A114  
V
Electrostatic discharge  
TA = +25 °C, conforming  
V
ESD(CDM) voltage (charge device model) to JESD22-C101  
1. Data based on characterization results, not tested in production.  
84/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 50. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator  
frequency deviation).  
The test results are given in Table 51  
Doc ID 023353 Rev 5  
85/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 51. I/O current injection susceptibility  
Functionalsusceptibility  
Unit  
Symbol  
Description  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0  
– 0  
NA  
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,  
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,  
PB2 with induced leakage current on other pins from this  
group less than -50 µA  
– 5  
-
Injected current on PB0, PB1, PE7, PE8, PE9, PE10,  
PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14,  
PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with  
induced leakage current on other pins from this group  
less than -50 µA  
– 5  
-
IINJ  
mA  
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,  
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,  
PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12,  
PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8,  
PD9, PD10, PD11, PD12, PD13, PD14 with induced  
leakage current on other pins from this group less than  
400 µA  
-
+5  
Injected current on any other FT and FTf pins  
Injected current on any other pins  
– 5  
– 5  
NA  
+5  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
86/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 52 are derived from tests  
performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL  
compliant.  
Table 52. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
0.3 VDD+0.07 (1)  
0.475 VDD-0.2 (1)  
0.3 VDD–0.3 (1)  
-
-
Low level input  
voltage  
VIL  
-
-
(2)  
All I/Os except BOOT0  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
0.3 VDD  
V
0.445 VDD+0.398 (1)  
0.5 VDD+0.2 (1)  
0.2 VDD+0.95 (1)  
-
-
-
-
-
-
-
-
-
High level input  
voltage  
VIH  
-
(2)  
All I/Os except BOOT0  
TC and TTa I/O  
FT and FTf I/O  
BOOT0  
0.7 VDD  
-
-
-
-
200 (1)  
100 (1)  
300 (1)  
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT and FTf I/O  
TTa I/O in digital mode  
VSS VIN VDD  
-
-
0.1  
TTa I/O in digital mode  
-
-
-
-
1
Input leakage  
current (3)  
VDD VIN VDDA  
Ilkg  
µA  
TTa I/O in analog mode  
0.2  
10  
55  
VSS VIN VDDA  
FT and FTf I/O(4)  
-
-
VDD VIN 5 V  
Weak pull-up  
RPU  
VIN = VSS  
VIN = VDD  
25  
40  
kΩ  
equivalent resistor(5)  
Weak pull-down  
RPD  
CIO  
25  
-
40  
5
55  
-
kΩ  
equivalent resistor(5)  
I/O pin capacitance  
pF  
1. Data based on design simulation.  
2. Tested in production.  
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 51: I/O  
current injection susceptibility.  
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
Doc ID 023353 Rev 5  
87/133  
 
 
 
 
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.  
Figure 19. TC and TTa I/O input characteristics - CMOS port  
VIL/VIH (V)  
+0.398  
= 0.445V  
V
VIHmin 2.0  
+0.07  
= 0.3V  
V
1.3  
Area not determined  
CMOS standard requirements VILmax = 0.3VDD  
VILmax 0.7  
0.6  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30255V2  
Figure 20. TC and TTa I/O input characteristics - TTL port  
VIL/VIH (V)  
+0.398  
TTL standard requirements VIHmin = 2 V  
= 0.445V  
= 0.3V  
V
VIHmin 2.0  
1.3  
+0.07  
V
Area not determined  
VILmax 0.8  
0.7  
TTL standard requirements VILmax = 0.8 V  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30256V2  
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port  
VIL/VIH (V)  
+0.2  
= 0.5V  
V
V
2.0  
-0.2  
= 0.475V  
Area not determined  
1.0  
CMOS standard requirements VILmax = 0.3VDD  
0.5  
VDD (V)  
2.0  
3.6  
MS30257V2  
88/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port  
VIL/VIH (V)  
+0.2  
TTL standard requirements VIHmin = 2 V  
Area not determined  
= 0.5V  
V
V
2.0  
-0.2  
= 0.475V  
1.0  
0.8  
TTL standard requirements VILmax = 0.8 V  
0.5  
VDD (V)  
2.0  
2.7  
3.6  
MS30258V2  
Doc ID 023353 Rev 5  
89/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V ).  
V
OL/ OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
IVDD(Σ) (see Table 20).  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
IVSS(Σ) (see Table 20).  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 22. All I/Os (FT, TTa and Tc unless otherwise specified) are CMOS and TTL  
compliant.  
Table 53. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
0.4  
-
Unit  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
-
(1)  
(3)  
VOH  
VDD–0.4  
VOL  
TTL port(2)  
IIO =+ 8mA  
2.7 V < VDD < 3.6 V  
-
0.4  
-
(1)  
(3)  
VOH  
2.4  
(1)(4)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
-
V
I
IO = +20 mA  
(3)(4)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–1.3  
-
(1)(4)  
VOL  
0.4  
-
I
IO = +6 mA  
(3)(4)  
2 V < VDD < 2.7 V  
VOH  
VDD–0.4  
Output low level voltage for an FTf I/O pin in  
FM+ mode  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
(1)(4)  
VOLFM+  
-
0.4  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20 and the sum of  
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN)  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum  
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN)  
.
4. Data based on design simulation.  
90/133  
Doc ID 023353 Rev 5  
 
 
 
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 23 and  
Table 54, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 22.  
DD  
(1)  
Table 54. I/O AC characteristics  
OSPEEDRy[1:0]  
value(1)  
Symbol  
Parameter  
Conditions  
Min Max Unit  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
-
-
2(3) MHz  
Output high to low level fall  
tf(IO)out  
time  
125(3)  
ns  
125(3)  
x0  
01  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 3.6 V  
Output low to high level  
rise time  
tr(IO)out  
-
-
-
fmax(IO)out Maximum frequency(2)  
10(3) MHz  
Output high to low level fall  
tf(IO)out  
time  
25(3)  
ns  
Output low to high level  
rise time  
tr(IO)out  
-
25(3)  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
-
-
-
-
-
-
-
-
-
-
50(3) MHz  
30(3) MHz  
20(3) MHz  
5(3)  
fmax(IO)out Maximum frequency(2)  
Output high to low level fall  
11  
tf(IO)out  
time  
8(3)  
12(3)  
ns  
5(3)  
Output low to high level  
rise time  
tr(IO)out  
8(3)  
12(3)  
fmax(IO)out Maximum frequency(2)  
2(4) MHz  
Output high to low level fall  
FM+  
tf(IO)out  
time  
-
-
12(4)  
CL = 50 pF, VDD = 2 V to 3.6 V  
configuration(4)  
ns  
Output low to high level  
rise time  
tr(IO)out  
34(4)  
Pulse width of external  
signals detected by the  
EXTI controller  
-
tEXTIpw  
10(3)  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of  
GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 23.  
3. Guaranteed by design, not tested in production.  
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30xB/C reference manual RM0316 for a  
description of FM+ I/O mode configuration.  
Doc ID 023353 Rev 5  
91/133  
 
 
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Figure 23. I/O AC characteristics definition  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 52).  
PU  
Unless otherwise specified, the parameters given in Table 55 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 22.  
Table 55. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.3VDD  
+
(1)  
VIL(NRST)  
NRST Input low level voltage  
-
-
0.07(1)  
V
0.445VDD  
0.398(1)  
+
(1)  
VIH(NRST)  
NRST Input high level voltage  
-
-
Vhys(NRST) NRST Schmitt trigger voltage hysteresis  
-
25  
-
200  
-
55  
100  
-
mV  
kΩ  
ns  
RPU  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
40  
-
(1)  
VF(NRST)  
NRST Input filtered pulse  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
500  
-
ns  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
92/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Figure 24. Recommended NRST pin protection  
Electrical characteristics  
6
$$  
%XTERNAL  
RESET CIRCUITꢐꢃꢑ  
2
05  
ꢐꢉꢑ  
)NTERNAL 2ESET  
.234  
&ILTER  
ꢄꢏꢃ —&  
-3ꢃꢅꢁꢆꢁ6ꢃ  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 55. Otherwise the reset will not be taken into account by the device.  
6.3.16  
Timer characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.475VDDA  
- 0.2  
(1)  
VIL(NPOR)  
NPOR Input low level voltage  
V
0.5VDDA  
+ 0.2  
(1)  
VIH(NPOR)  
NPOR Input high level voltage  
NPOR Schmitt trigger voltage  
hysteresis  
(1)  
Vhys(NPOR)  
200  
40  
mV  
RPU  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
25  
55  
kΩ  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is minimal (~10% order).  
The parameters given in Table 56 are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 56. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
1
-
fTIMxCLK = 72 MHz  
(except TIM1/8)  
13.9  
6.95  
-
ns  
ns  
(2)  
Timer resolution time  
tres(TIM)  
f
TIMxCLK = 144 MHz,  
-
x= 1.8  
fTIMxCLK/2  
0
0
-
MHz  
MHz  
Timer external clock  
frequency on CH1 to CH4  
(2)  
fEXT  
f
TIMxCLK = 72 MHz  
36  
16  
32  
TIMx (except TIM2)  
TIM2  
(2)  
Timer resolution  
bit  
ResTIM  
-
Doc ID 023353 Rev 5  
93/133  
 
 
Electrical characteristics  
Table 56. TIMx characteristics (continued)  
STM32F302xx/STM32F303xx  
(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
1
65536  
fTIMxCLK = 72 MHz  
(except TIM1/8)  
0.0139  
0.0069  
910  
455  
µs  
µs  
(2)  
16-bit counter clock period  
tCOUNTER  
fTIMxCLK = 144 MHz,  
x= 1.8  
tTIMxCLK  
s
-
-
65536 × 65536  
59.65  
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 72 MHz  
(2)  
f
TIMxCLK = 144 MHz,  
-
29.825  
s
x= 1.8  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17  
timers  
2. Guaranteed by design, not tested in production.  
94/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
(1)  
Table 57. IWDG min/max timeout period at 40 kHz (LSI)  
Min timeout (ms) RL[11:0]=  
0x000  
Max timeout (ms) RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
/4  
/8  
0
1
2
3
4
5
7
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
/16  
/32  
/64  
/128  
/256  
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
Table 58. WWDG min-max timeout value @72 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
1
2
4
8
0
1
2
3
0.05687 (1)  
0.1137 (1)  
0.2275 (1)  
0.4551 (1)  
3.6409 (1)  
7.2817 (1)  
14.564 (1)  
29.127 (1)  
1. Guaranteed by design, not tested in production.  
Doc ID 023353 Rev 5  
95/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.17  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 22.  
2
2
The I C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and V is  
DD  
disabled, but is still present.  
2
The I C characteristics are described in Table 59. Refer also to Section 6.3.14: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
(1)  
Table 59. I C characteristics  
Standard  
mode  
Fast mode  
Fast Mode Plus  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
4.7  
4.0  
-
1.3  
0.6  
-
0.5  
0.26  
50  
-
µs  
SCL clock high time  
SDA setup time  
-
-
-
-
-
250  
0(3)  
-
100  
0(3)  
SDA data hold time  
3450(2)  
900(2)  
0
450  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
-
-
1000  
300  
300  
300  
120  
120  
-
-
-
-
tf(SDA)  
tf(SCL)  
th(STA)  
tsu(STA)  
tsu(STO)  
Start condition hold time  
4.0  
4.7  
4.0  
4.7  
-
-
0.6  
0.6  
0.6  
1.3  
-
-
0.26  
0.26  
0.26  
0.5  
-
-
µs  
Repeated Start condition setup time  
Stop condition setup time  
-
-
-
-
-
-
-
-
-
μs  
μs  
pF  
tw(STO:STA) Stop to Start condition time (bus free)  
Cb Capacitive load for each bus line  
400  
400  
550  
The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when  
I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in  
production.  
1.  
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.  
2.  
3.  
The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of  
the falling edge of SCL.  
(1)  
Table 60. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Pulse width of spikes that are  
suppressed by the analog filter  
tSP  
50  
260  
ns  
1. Guaranteed by design, not tested in production.  
96/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
2
Figure 25. I C bus AC waveforms and measurement circuit  
6
6
$$  
$$  
-#5  
2
2
Ω  
Ω  
3$!  
3#,  
)# BUS  
34!24 2%0%!4%$  
34!24  
34!24  
T
SUꢐ34!ꢑ  
3$!  
T
T
T
Rꢐ3$!ꢑ  
Fꢐ3$!ꢑ  
SUꢐ3$!ꢑ  
T
Wꢐ34/ꢍ34!ꢑ  
34/0  
T
T
T
Wꢐ3#,,ꢑ  
Hꢐ3$!ꢑ  
Hꢐ34!ꢑ  
3#,  
T
T
T
SUꢐ34/ꢑ  
Rꢐ3#,ꢑ  
T
Fꢐ3#,ꢑ  
Wꢐ3#,(ꢑ  
-3ꢃꢅꢁꢆꢅ6ꢃ  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
Doc ID 023353 Rev 5  
97/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
SPI/I2S characteristics  
2
Unless otherwise specified, the parameters given in Table 61 for SPI or in Table 62 for I S  
are derived from tests performed under ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 22.  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
2
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I S).  
Table 61. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max  
Unit  
-
-
18  
18  
fSCK  
SPI clock frequency  
MHz  
(1)  
1/tc(SCK)  
Slave mode  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
-
8
ns  
%
(1)  
SPI slave input clock  
duty cycle  
DuCy(SCK)(1)  
Slave mode  
30  
70  
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
2Tpclk  
4Tpclk  
-
-
(1)  
th(NSS)  
(1)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = 36 MHz,  
presc = 4  
Tpclk/2 Tpclk/2  
SCK high and low time  
Data input setup time  
(1)  
- 3  
5.5  
6.5  
5
+ 3  
(1)  
Master mode  
Slave mode  
Master mode  
Slave mode  
-
tsu(MI)  
tsu(SI)  
(1)  
-
(1)  
th(MI)  
-
Data input hold time  
ns  
(1)  
th(SI)  
5
-
(1)(2)  
ta(SO)  
Data output access time Slave mode, fPCLK = 24 MHz  
Data output disable time Slave mode  
0
4Tpclk  
(1)(3)  
tdis(SO)  
0
24  
39  
3
(1)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
(1)  
tv(MO)  
-
(1)  
th(SO)  
15  
4
-
Data output hold time  
(1)  
th(MO)  
-
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z.  
98/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Figure 26. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
w(SCKH)  
CPHA=0  
CPOL=1  
t
w(SCKL)  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
t
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
Doc ID 023353 Rev 5  
99/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
(1)  
Figure 28. SPI timing diagram - master mode  
(IGH  
.33 INPUT  
T
Cꢐ3#+ꢑ  
#0(!ꢄ  
#0/,ꢓꢄ  
#0(!ꢄ  
#0/,ꢓꢃ  
#0(!ꢃ  
#0/,ꢓꢄ  
#0(!ꢃ  
#0/,ꢓꢃ  
T
T
T
Wꢐ3#+(ꢑ  
Wꢐ3#+,ꢑ  
Rꢐ3#+ꢑ  
T
SUꢐ-)ꢑ  
T
Fꢐ3#+ꢑ  
-)3/  
).054  
-3").  
")4ꢂ ).  
,3" ).  
T
Hꢐ-)ꢑ  
-/3)  
- 3" /54  
")4ꢃ /54  
,3" /54  
/54054  
T
T
Vꢐ-/ꢑ  
Hꢐ-/ꢑ  
AIꢃꢀꢃꢈꢂ6ꢉ  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
2
Table 62. I S characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master data: 16 bits,  
audio freq=48 kHz  
1.496  
1.503  
12.288  
8
fCK  
1/tc(CK)  
I2S clock frequency  
MHz  
(1)  
Slave  
0
-
tr(CK)  
I2S clock rise and fall  
time  
Capacitive load  
CL = 30 pF  
(1)  
tf(CK)  
tw(CKH)  
I2S clock high time  
I2S clock low time  
Master fPCLK= 36 MHz,  
audio frequency =  
48 kHz  
331  
332  
-
-
(1)  
(1)  
tw(CKL)  
ns  
%
(1)  
(1)  
(1)  
(1)  
tv(WS)  
th(WS)  
tsu(WS)  
th(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
Slave mode  
4
4
4
0
-
-
-
-
I2S slave input clock  
duty cycle  
Duty Cycle(1)  
Slave mode  
30  
70  
100/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
2
Table 62. I S characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
(1)  
tsu(SD_MR)  
tsu(SD_SR)  
Data input setup time  
Data input setup time  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
9
2
0
0
(1)  
(1)  
th(SD_MR)  
Data input hold time  
(1)  
th(SD_SR)  
Slave transmitter  
(after enable edge)  
(1)  
tv(SD_ST)  
th(SD_ST)  
tv(SD_MT)  
th(SD_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
29  
3
ns  
Slave transmitter  
(after enable edge)  
(1)  
(1)  
(1)  
12  
2
Master transmitter  
(after enable edge)  
Master transmitter  
(after enable edge)  
1. Data based on characterization results, not tested in production.  
2
(1)  
Figure 29. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
WS input  
t
t
t
h(SD_ST)  
t
v(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. Measurement points are done at 0.5VDD and with external CL=30 pF  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
Doc ID 023353 Rev 5  
101/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
2
(1)  
Figure 30. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. Measurement points are done at 0.5VDD and with external CL=30 pF  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
USB characteristics  
Table 63. USB startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB transceiver startup time  
1
µs  
1. Guaranteed by design, not tested in production.  
102/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
Table 64. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
3.0(3)  
0.2  
3.6  
-
V
V
(4)  
VDI  
Differential input sensitivity  
Differential common mode range  
Single ended receiver threshold  
I(USB_DP, USB_DM)  
Includes VDI range  
(4)  
VCM  
0.8  
2.5  
2.0  
(4)  
VSE  
Output levels  
1.3  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(5)  
-
0.3  
3.6  
V
(5)  
RL of 15 kΩ to VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled  
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.  
3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics  
which are degraded in the 2.7-to-3.0 V VDD voltage range.  
4. Guaranteed by design, not tested in production.  
RL is the load connected on the USB drivers  
5.  
Figure 31. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Doc ID 023353 Rev 5  
103/133  
 
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 65.  
Symbol  
USB: Full-speed electrical characteristics(1)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Driver characteristics  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
-
-
-
-
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
Output driver  
Impedance(3)  
ZDRV  
driving high and low  
28  
40  
44  
Ω
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter  
7 (version 2.0).  
2.  
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is  
already included in the embedded driver.  
CAN (controller area network) interface  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
104/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
6.3.18  
ADC characteristics  
Unless otherwise specified, the parameters given in Table 66 to Table 69 are guaranteed by  
design, with conditions summarized in Table 22.  
Table 66. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage for  
ADC  
VDDA  
fADC  
2
-
-
-
3.6  
72  
V
ADC clock frequency  
Sampling rate  
0.14  
0.01  
MHz  
Resolution = 12 bits,  
Fast Channel  
5.14  
Resolution = 10 bits,  
Fast Channel  
0.012  
0.014  
0.0175  
-
-
-
-
-
6
7.2  
9
(1)  
fS  
MSPS  
Resolution = 8 bits,  
Fast Channel  
Resolution = 6 bits,  
Fast Channel  
fADC = 72 MHz  
Resolution = 12 bits  
5.14  
MHz  
(1)  
fTRIG  
External trigger frequency  
Resolution = 12 bits  
-
0
-
-
-
-
14  
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
VDDA  
100  
(1)  
RAIN  
kΩ  
Internal sample and hold  
capacitor  
(1)  
CADC  
-
5
-
pF  
f
ADC = 72 MHz  
1.56  
112  
µs  
(1)  
tCAL  
Calibration time  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
µs  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
1.5  
2
-
2.5  
2
Trigger conversion latency  
Regular and injected  
channels without conversion  
abort  
-
(1)  
tlatr  
-
-
2.25  
2.125  
3.5  
-
-
2.5  
3
-
Trigger conversion latency  
Injected channels aborting a  
regular conversion  
-
3
(1)  
tlatrinj  
-
-
-
3.25  
3.125  
8.35  
601.5  
-
f
ADC = 72 MHz  
0.021  
1.5  
-
(1)  
tS  
Sampling time  
-
1/fADC  
ADC Voltage Regulator  
Start-up time  
TADCVREG  
(1)  
-
-
-
10  
µs  
µs  
_STUP  
fADC = 72 MHz  
Resolution = 12 bits  
0.19  
3.5  
Total conversion time  
(including sampling time)  
(1)  
tCONV  
14 to 252 (tS for sampling + 12.5 for  
successive approximation)  
Resolution = 12 bits  
1/fADC  
1. Data guaranteed by design  
Doc ID 023353 Rev 5  
105/133  
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Table 67. Maximum ADC R  
Sampling  
AIN  
R
AIN max (kΩ)  
Sampling  
time [ns] @  
72 MHz  
Resolution  
cycle @  
72 MHz  
Fast  
Slow  
channels  
Other  
channels(1)  
channels(2)  
1.5  
2.5  
20.83  
34.72  
0.018  
0.150  
0.470  
0.820  
2.70  
NA  
NA  
NA  
0.022  
0.180  
0.470  
1.50  
4.5  
62.50  
0.220  
0.560  
1.80  
6.80  
18.0  
68.0  
NA  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
20.83  
12 bits  
19.5  
61.5  
181.5  
601.5  
1.5  
8.20  
4.70  
22.0  
15.0  
82.0  
47.0  
0.082  
0.270  
0.560  
1.20  
NA  
2.5  
34.72  
0.082  
0.390  
0.82  
2.70  
8.2  
0.100  
0.330  
0.68  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
20.83  
10 bits  
8 bits  
6 bits  
19.5  
61.5  
181.5  
601.5  
1.5  
3.30  
2.20  
10.0  
6.8  
33.0  
27.0  
82.0  
NA  
22.0  
100.0  
0.150  
0.390  
0.820  
1.50  
68.0  
0.039  
0.180  
0.470  
1.00  
2.5  
34.72  
0.180  
0.560  
1.20  
3.30  
12.00  
33.00  
100.00  
0.100  
0.390  
0.820  
1.80  
4.70  
15.0  
47.0  
100.0  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
20.83  
19.5  
61.5  
181.5  
601.5  
1.5  
3.90  
2.70  
12.00  
39.00  
100.00  
0.270  
0.560  
1.200  
2.20  
8.20  
27.00  
82.00  
0.150  
0.330  
0.820  
1.50  
2.5  
34.72  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
19.5  
61.5  
181.5  
601.5  
5.60  
3.90  
18.0  
12.0  
56.0  
39.0  
100.00  
100.0  
1. All fast channels, expect channels on PA2, PA6, PB1, PB12.  
2. Channels available on PA2, PA6, PB1 and PB12.  
106/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Min  
(1)(2)  
Table 68. ADC accuracy - limited test conditions  
Symbol Parameter  
Conditions  
Typ Max(3) Unit  
(3)  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.5  
4.5  
3.5  
3.5  
1
6
7
Single ended  
Differential  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
6
6
5
Single ended  
Differential  
1
5
Offset error  
Gain error  
1
3
1
3
3
6
Single ended  
Differential  
4
6
LSB  
1
2
1.5  
1
3
1
Single ended  
Differential  
Differential  
linearity  
error  
ADC clock freq.  
1
1.5  
1
72 MHz  
1
Sampling freq 5  
1
1
Msps  
VDDA = VREF+ = 3.3 V  
25°C  
1.5  
2
3
Single ended  
Differential  
Integral  
linearity  
error  
3
1
2
1
2
Fast channel 5.1 Ms 10.3 10.7  
Slow channel 4.8 Ms 10.4 10.7  
Fast channel 5.1 Ms 10.9 11.3  
Slow channel 4.8 Ms 10.9 11.3  
-
-
-
Single ended  
Differential  
Effective  
ENOB number of  
bits  
bits  
-
-
-
-
-
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
64  
65  
67  
67  
66  
66  
70  
70  
Single ended  
Differential  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
dB  
Doc ID 023353 Rev 5  
107/133  
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
Min  
(1)(2)  
Table 68. ADC accuracy - limited test conditions  
(continued)  
Symbol Parameter  
Conditions  
Typ Max(3) Unit  
(3)  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
64  
65  
68  
69  
67  
67  
70  
70  
-
-
-
Single ended  
Signal-to-  
SNR  
ADC clock freq. 72  
noise ratio  
MHz  
Sampling freq 5  
Differential  
dB  
Msps  
-
VDDA = VREF+ = 3.3 V  
25°C  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
75  
72  
80  
76  
72  
70  
74  
71  
Single ended  
Differential  
Total  
THD  
harmonic  
distortion  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Data based on characterization results, not tested in production.  
108/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
Min (4) Max(4) Unit  
(1)(2)(3)  
Table 69. ADC accuracy  
Symbol  
Parameter  
Conditions  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
7
7
Single Ended  
Total  
unadjusted  
error  
ET  
7
Differential  
Single Ended  
Differential  
7
5
5
EO  
EG  
ED  
EL  
Offset error  
Gain error  
4
4
7
Single Ended  
Differential  
7
LSB  
3
3
ADC clock freq.  
72 MHz,  
1.5  
1.5  
1.5  
1
Sampling freq. 5  
Single Ended  
Differential  
Msps  
Differential  
linearity error  
2V VDDA , VREF+  
3.6 V  
3
Single Ended  
Differential  
3
Integral  
linearity error  
2
2
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
10.2  
10.2  
10.8  
10.8  
-
-
-
-
Single Ended  
Differential  
Effective  
number of bits  
ENOB  
bits  
Doc ID 023353 Rev 5  
109/133  
 
Electrical characteristics  
Table 69. ADC accuracy  
STM32F302xx/STM32F303xx  
Min (4) Max(4) Unit  
(1)(2)(3)  
(continued)  
Conditions  
Symbol  
Parameter  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
63  
63  
67  
67  
Single Ended  
Differential  
Signal-to-  
noise and  
distortion ratio  
SINAD  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
64  
64  
67  
67  
-
-
-
ADC clock freq.  
Single Ended  
Differential  
72 MHz,  
Signal-to-  
noise ratio  
Sampling freq. 5  
SNR  
THD  
dB  
Msps,  
2V VDDA , VREF+  
3.6 V  
-
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
71  
69  
73  
70  
Single Ended  
Differential  
Total  
harmonic  
distortion  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
Figure 32. ADC accuracy characteristics  
V
V
DDA  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
4096  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4095  
4094  
4093  
(3) End point correlation line  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E =Offset Error: deviation between the first actual  
O
(1)  
transition and the first ideal one.  
E =Gain Error: deviation between the last ideal  
G
transition and the last actual one.  
E
E
O
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
V
V
DDA  
SSA  
ai14395b  
110/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Figure 33. Typical connection diagram using the ADC  
Electrical characteristics  
6
$$!  
Sample and hold ADC  
converter  
V
0.6 V  
T
(1)  
AIN  
R
R
ADC  
AINx  
12-bit  
converter  
I
1 μA  
L
C
V
T
parasitic  
V
AIN  
0.6 V  
C
ADC  
-3ꢃꢅꢁꢁꢃ6ꢉ  
1. Refer to Table 66 for the values of RAIN  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 11. The 10 nF capacitor  
should be ceramic (good quality) and it should be placed as close as possible to the chip.  
Doc ID 023353 Rev 5  
111/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.19  
DAC electrical specifications  
Table 70. DAC characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
Analog supply voltage for  
DAC ON  
VDDA  
2.4  
5
-
-
3.6  
-
V
(1)  
RLOAD  
Resistive load with buffer ON  
kΩ  
When the buffer is OFF, the Minimum  
resistive load between DAC_OUT  
and VSS to have a 1% accuracy is  
1.5 MΩ  
Impedance output with buffer  
OFF  
(1)  
RO  
-
-
15  
kΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer is  
ON).  
(1)  
CLOAD  
Capacitive load  
-
-
-
50  
-
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(1)  
with buffer ON  
0.2  
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VDDA = 3.6 V  
DAC_OUT Higher DAC_OUT voltage  
max(1) with buffer ON  
and (0x155) and (0xEAB) at VDDA  
2.4 V  
=
-
-
-
-
-
-
VDDA – 0.2  
V
mV  
V
DAC_OUT Lower DAC_OUT voltage  
0.5  
-
VDDA – 1LSB  
380  
min(1)  
with buffer OFF  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
max(1) with buffer OFF  
-
-
-
With no load, middle code (0x800) on  
the input  
µA  
µA  
DAC DC current  
(3)  
IDDA  
consumption in quiescent  
mode (Standby mode)(2)  
With no load, worst code (0xF1C) on  
the input  
480  
Differential non linearity  
-
-
0.5  
LSB Given for a 10-bit input code  
DNL(3) Difference between two  
consecutive code-1LSB)  
-
-
-
-
2
1
LSB Given for a 12-bit input code  
LSB Given for a 10-bit input code  
Integral non linearity  
(difference between  
measured value at Code i  
and the value at Code i on a  
INL(3)  
-
-
4
LSB Given for a 12-bit input code  
mV  
line drawn between Code 0  
and last Code 1023)  
-
-
-
-
10  
3
Offset error  
Given for a 10-bit input code at VDDA  
(difference between  
measured value at Code  
LSB  
Offset(3)  
= 3.6 V  
(0x800) and the ideal value =  
VDDA/2)  
Given for a 12-bit input code at VDDA  
= 3.6 V  
-
-
-
-
12  
LSB  
Gain  
Gain error  
error(3)  
0.5  
% Given for a 12-bit input code  
112/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
Comments  
Table 70. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Settling time (full scale: for a  
10-bit input code transition  
(3) between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value 1LSB  
tSETTLING  
-
3
4
µs CLOAD 50 pF, RLOAD 5 kΩ  
Max frequency for a correct  
Update DAC_OUT change when  
-
-
1
MS/s CLOAD 50 pF, RLOAD 5 kΩ  
CLOAD 50 pF, RLOAD 5 kΩ  
rate(3)  
small variation in the input  
code (from code i to i+1LSB)  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(3)  
tWAKEUP  
-
-
6.5  
10  
µs  
input code between lowest and  
highest possible ones.  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. Guaranteed by design, not tested in production.  
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is  
involved.  
3. Data based on characterization results, not tested in production.  
Figure 34. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
RLOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
CLOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
Doc ID 023353 Rev 5  
113/133  
 
 
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.20  
Comparator characteristics  
Table 71. Comparator characteristics  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
VDDA  
Analog supply voltage  
2
0
-
-
3.6  
Comparator input voltage  
range  
VIN  
VDDA  
V
VBG  
VSC  
Scaler input voltage  
Scaler offset voltage  
-
-
1.2  
5
-
10  
mV  
ms  
Scaler startup time from  
power down  
tS_SC  
-
-
-
-
0.1  
60  
Startup time to reach propagation delay  
specification  
tSTART  
Comparator startup time  
µs  
µs  
Ultra-low power mode  
Low power mode  
-
-
-
-
-
-
-
-
-
-
-
2
0.7  
0.3  
50  
100  
2
4.5  
1.5  
0.6  
100  
240  
7
Propagation delay for  
200 mV step with 100 mV Medium power mode  
overdrive  
VDDA 2.7 V  
VDDA < 2.7 V  
High speed mode  
ns  
µs  
tD  
Ultra-low power mode  
Low power mode  
0.7  
0.3  
90  
110  
4
2.1  
1.2  
180  
300  
10  
Propagation delay for full  
range step with 100 mV  
overdrive  
Medium power mode  
VDDA 2.7 V  
VDDA < 2.7 V  
High speed mode  
ns  
Voffset  
Comparator offset error  
mV  
Offset error temperature  
coefficient  
µV/°  
C
dVoffset/dT  
-
18  
-
Ultra-low power mode  
Low power mode  
-
-
-
-
1.2  
3
1.5  
5
COMP current  
consumption  
IDD(COMP)  
µA  
Medium power mode  
High speed mode  
10  
75  
15  
100  
114/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Electrical characteristics  
Min(1) Typ Max(1) Unit  
Table 71. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
No hysteresis  
(COMPxHYST[1:0]=00)  
-
3
0
8
-
High speed mode  
13  
10  
26  
19  
49  
40  
Low hysteresis  
(COMPxHYST[1:0]=01)  
All other power  
modes  
5
Vhys  
Comparator hysteresis  
High speed mode  
7
mV  
Medium hysteresis  
(COMPxHYST[1:0]=10)  
15  
31  
All other power  
modes  
9
High speed mode  
18  
19  
High hysteresis  
(COMPxHYST[1:0]=11)  
All other power  
modes  
1. Data based on characterization results, not tested in production.  
Doc ID 023353 Rev 5  
115/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.21  
Operational amplifier characteristics  
(1)  
Table 72. Operational amplifier characteristics  
Symbol  
Parameter  
Analog supply voltage  
Common mode input range  
Condition  
Min  
Typ  
Max  
Unit  
VDDA  
CMIR  
2.4  
0
-
-
3.6  
V
V
VDDA  
25°C, No Load  
on output.  
-
-
-
-
-
-
-
-
4
6
Maximum  
calibration range  
All  
voltage/Temp.  
VIOFFSET  
Input offset voltage  
mV  
25°C, No Load  
on output.  
1.6  
3
After offset  
calibration  
All  
voltage/Temp.  
ΔVIOFFSET  
Input offset voltage drift  
Drive current  
-
-
5
-
-
µV/°C  
µA  
ILOAD  
500  
No load,  
quiescent mode  
IDDOPAMP Consumption  
-
690  
1450  
µA  
CMRR  
PSRR  
GBW  
SR  
Common mode rejection ratio  
-
73  
-
90  
117  
8.2  
4.7  
-
-
-
dB  
dB  
Power supply rejection ratio  
Bandwidth  
DC  
-
MHz  
V/µs  
kΩ  
Slew rate  
-
-
RLOAD  
CLOAD  
Resistive load  
Capacitive load  
4
-
-
-
50  
pF  
R
load = min,  
-
-
-
-
-
-
100  
20  
Input at VDDA  
.
VOHSAT  
High saturation voltage  
Rload = 20K,  
Input at VDDA  
.
mV  
Rload = min,  
input at 0V  
100  
VOLSAT  
Low saturation voltage  
Phase margin  
Rload = 20K,  
input at 0V.  
-
-
-
20  
-
ϕm  
62  
°
Offset trim time: during calibration,  
minimum time needed between two  
steps to have 1 mV accuracy  
tOFFTRIM  
-
-
-
2
5
ms  
CLOAD 50 pf,  
RLOAD 4 kΩ,  
Follower  
tWAKEUP  
Wake up time from OFF state.  
2.8  
µs  
configuration  
116/133  
Doc ID 023353 Rev 5  
 
STM32F302xx/STM32F303xx  
Electrical characteristics  
(1)  
Table 72. Operational amplifier characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
-
2
-
-
4
-
PGA gain  
Non inverting gain value  
-
8
16  
-
-
-
Gain=2  
Gain=4  
Gain=8  
Gain=16  
-
5.4/5.4  
16.2/5.4  
37.8/5.4  
40.5/2.7  
-
-
-
-
R2/R1 internal resistance values in  
PGA mode (2)  
Rnetwork  
kΩ  
-
-
-
-1%  
-
-
PGA gain error PGA gain error  
1%  
0.2(3)  
Ibias  
OPAMP input bias current  
-
µA  
1. Data guaranteed by design.  
2. R2 is the internal resistance between OPAMP output and OPAMP inverting input.  
R1 is the internal resistance between OPAMP inverting input and ground.  
The PGA gain =1+R2/R1  
3. Mostly TTa I/O leakage, when used in analog mode.  
Doc ID 023353 Rev 5  
117/133  
Electrical characteristics  
STM32F302xx/STM32F303xx  
6.3.22  
Temperature sensor characteristics  
Table 73. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1
4.3  
1.43  
-
2
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
V25  
Voltage at 25 °C  
Startup time  
(1)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(1)(2)  
TS_temp  
2.2  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
Table 74. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V  
TS ADC raw data acquired at  
temperature of 110 °C  
TS_CAL2  
VDDA= 3.3 V  
6.3.23  
V
monitoring characteristics  
BAT  
Table 75.  
Symbol  
V
monitoring characteristics  
Parameter  
BAT  
Min  
Typ  
Max  
Unit  
R
Q
Er(1)  
Resistor bridge for VBAT  
Ratio on VBAT measurement  
Error on Q  
-
-
50  
2
-
-
KΩ  
-1  
-
+1  
%
ADC sampling time when reading the VBAT  
1mV accuracy  
(1)(2)  
TS_vbat  
2.2  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
118/133  
Doc ID 023353 Rev 5  
 
 
 
STM32F302xx/STM32F303xx  
Package characteristics  
7
Package characteristics  
7.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 023353 Rev 5  
119/133  
 
Package characteristics  
STM32F302xx/STM32F303xx  
Figure 35. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢏꢉꢇ MM  
'!5'% 0,!.%  
CCC  
#
,
$
,ꢃ  
$ꢃ  
$ꢈ  
ꢇꢃ  
ꢆꢇ  
ꢇꢄ  
ꢆꢂ  
ꢃꢄꢄ  
ꢉꢂ  
0). ꢃ  
ꢉꢇ  
)$%.4)&)#!4)/.  
E
ꢃ,?-%?6ꢈ  
1. Drawing is not to scale.  
Table 76. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.2  
0.063  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.05  
1.35  
0.002  
0.0531  
0.0067  
0.0035  
0.622  
1.40  
0.22  
0.0551  
0.0087  
0.17  
c
0.09  
D
15.80  
13.80  
16.00  
14.00  
12.00  
16.00  
16.2  
14.2  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
0.5433  
15.80  
16.2  
0.622  
0.6378  
120/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Package characteristics  
Table 76. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
E1  
E3  
e
13.80  
14.00  
12.00  
0.50  
0.60  
1.00  
3.5°  
14.2  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
L
0.45  
0°  
0.75  
0.0177  
0°  
0.0295  
L1  
K
7°  
7°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. Recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
1
26  
1.2  
25  
12.3  
16.7  
ai14906b  
1. Dimensions are in millimeters.  
Doc ID 023353 Rev 5  
121/133  
Package characteristics  
STM32F302xx/STM32F303xx  
Figure 37. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢏꢉꢇ MM  
'!5'% 0,!.%  
CCC  
#
,
$
,ꢃ  
$ꢃ  
$ꢈ  
ꢈꢈ  
ꢀꢁ  
ꢈꢉ  
ꢀꢅ  
B
ꢂꢀ  
ꢃꢆ  
ꢃꢂ  
0). ꢃ  
)$%.4)&)#!4)/.  
E
ꢇ7?-%?6ꢉ  
1. Drawing is not to scale.  
Table 77. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
12.20  
10.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.4803  
0.4016  
0.05  
1.350  
0.17  
0.0020  
0.0531  
0.0067  
0.0035  
0.4646  
0.3858  
1.40  
0.22  
0.0551  
0.0087  
c
0.09  
D
11.80  
9.80  
12.00  
10.00  
7.50  
0.4724  
0.3937  
0.2953  
D1  
D3  
122/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Package characteristics  
Table 77. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
E
E1  
E3  
e
11.80  
9.80  
12.00  
10.00  
7.50  
0.50  
0.60  
1.00  
3.5°  
12.20  
10.20  
0.4646  
0.3858  
0.4724  
0.3937  
0.2953  
0.0197  
0.0236  
0.0394  
3.5°  
0.4803  
0.4016  
L
0.45  
0°  
0.75  
0.0177  
0°  
0.0295  
L1  
K
7°  
7°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 38. Recommended footprint  
ꢀꢁ  
ꢈꢈ  
ꢄꢏꢈ  
ꢄꢏꢇ  
ꢀꢅ  
ꢈꢉ  
ꢃꢉꢏꢆ  
ꢃꢄꢏꢈ  
ꢃꢄꢏꢈ  
ꢂꢀ  
ꢃꢆ  
ꢃꢏꢉ  
ꢃꢂ  
ꢆꢏꢁ  
ꢃꢉꢏꢆ  
AIꢃꢀꢅꢄꢅB  
1. Dimensions are in millimeters.  
Doc ID 023353 Rev 5  
123/133  
Package characteristics  
STM32F302xx/STM32F303xx  
Figure 39. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢏꢉꢇ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢃ  
$ꢈ  
,ꢃ  
ꢈꢂ  
ꢉꢇ  
ꢈꢆ  
ꢉꢀ  
B
ꢀꢁ  
ꢃꢈ  
0). ꢃ  
)$%.4)&)#!4)/.  
ꢃꢉ  
E
ꢇ"?-%?6ꢉ  
1. Drawing is not to scale.  
Table 78. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
9.20  
7.20  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.05  
1.35  
0.17  
0.09  
8.80  
6.80  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.40  
0.22  
0.0551  
0.0087  
c
D
9.00  
7.00  
5.50  
9.00  
7.00  
5.50  
0.50  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
D1  
D3  
E
8.80  
6.80  
9.20  
7.20  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
124/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Package characteristics  
Table 78. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
L
L1  
K
0.45  
0.60  
1.00  
3.5°  
0.75  
0.0177  
0.0236  
0.0394  
3.5°  
0.0295  
0°  
7°  
0°  
7°  
ccc  
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 40. Recommended footprint  
ꢄꢏꢇꢄ  
ꢃꢏꢉꢄ  
ꢄꢏꢈꢄ  
ꢈꢂ  
ꢈꢆ  
ꢉꢇ  
ꢉꢀ  
ꢄꢏꢉꢄ  
ꢆꢏꢈꢄ  
ꢅꢏꢆꢄ ꢇꢏꢁꢄ  
ꢆꢏꢈꢄ  
ꢀꢁ  
ꢃꢈ  
ꢃꢉ  
ꢃꢏꢉꢄ  
ꢇꢏꢁꢄ  
ꢅꢏꢆꢄ  
AIꢃꢀꢅꢃꢃD  
1. Dimensions are in millimeters.  
Doc ID 023353 Rev 5  
125/133  
Package characteristics  
STM32F302xx/STM32F303xx  
7.2  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 22: General operating conditions on page 58.  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 79. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
45  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm  
ΘJA  
55  
41  
°C/W  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
7.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
126/133  
Doc ID 023353 Rev 5  
 
 
STM32F302xx/STM32F303xx  
Package characteristics  
7.2.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Part numbering.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32F30xB/C at maximum dissipation, it is  
useful to calculate the exact power consumption and junction temperature to determine  
which temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 3 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 2 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 61.6 mW:  
IOmax  
INTmax  
P
= 175 + 61.6 = 236.6 mW  
Dmax  
Thus: P  
= 236.6 mW  
Dmax  
Using the values obtained in Table 79 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 45°C/W  
= 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8: Part numbering).  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 115 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 9 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 9 × 8 mA × 0.4 V = 28.8 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 28.8 mW:  
IOmax  
INTmax  
P
= 70 + 28.8 = 98.8 mW  
Dmax  
Thus: P  
= 98.8 mW  
Dmax  
Doc ID 023353 Rev 5  
127/133  
Package characteristics  
Using the values obtained in Table 79 T  
STM32F302xx/STM32F303xx  
is calculated as follows:  
Jmax  
T
For LQFP100, 41°C/W  
= 115 °C + (41°C/W × 98.8 mW) = 115 °C + 4.05 °C = 119.05 °C  
Jmax  
This is within the range of the suffix 7 version parts (–40 < T < 125 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8: Part numbering).  
128/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Part numbering  
8
Part numbering  
Table 80. Ordering information scheme  
Example:  
STM32  
F
303 R  
B
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
302 = STM32F302xx  
303 = STM32F303xx  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
B = 128 Kbytes of Flash memory (medium density)  
C = 256 Kbytes of Flash memory (high density)  
Package  
T = LQFP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
7 = Industrial temperature range, –40 to 105 °C  
Options  
xxx = programmed parts  
TR = tape and reel  
Doc ID 023353 Rev 5  
129/133  
Revision history  
STM32F302xx/STM32F303xx  
9
Revision history  
Table 81. Document revision history  
Date  
Revision  
Changes  
22-Jun-2012  
1
Initial release  
Modified Features on cover page.  
Modified Table 2: STM32F301xx family device features and peripheral  
counts  
Added clock tree to Section 3.8: Clocks and startup  
Added Table 5: STM32F30xB/C I2C implementation  
Added Table 6: USART features  
Added Table 7: STM32F30xB/C SPI/I2S implementation  
Modified Table 8: Capacitive sensing GPIOs available on  
STM32F302xx/STM32F303xx devices  
Modified Figure 5, Figure 6 and Figure 7:  
STM32F302xx/STM32F303xx LQFP100 pinout  
Modified Table 11: STM32F302xx/STM32F303xx pin definitions  
Modified Figure 11: Power supply scheme  
Modified Table 19: Voltage characteristics  
Modified Table 20: Current characteristics  
Modified Table 23: Operating conditions at power-up / power-down  
Added footnote to Table 29: Typical and maximum current consumption  
from the VDDA supply  
07-Sep-2012  
2
Added footnote to Table 33 and Table 34: Typical current consumption  
in Sleep mode, code running from Flash or RAM  
Removed table “Switching output I/O current consumption” and table  
“Peripheral current consumption”  
Added note under Figure 17: Typical application with a 32.768 kHz  
crystal  
Updated Table 42: HSI oscillator characteristics  
Updated Wakeup time from low-power mode and Table 37: Low-power  
mode wakeup timings  
Updated Table 45: Flash memory characteristics  
Updated Table 50: Electrical sensitivities  
Updated Table 51: I/O current injection susceptibility  
Updated Table 52: I/O static characteristics  
Updated Table 53: Output voltage characteristics  
Updated Table 55: NRST pin characteristics  
Updated Table 61: SPI characteristics  
Updated Table 62: I2S characteristics  
Corrected LQFP100 in Section 7.2.3: Selecting the product  
temperature range  
21-Sep-2012  
3
Updated Table 61: SPI characteristics  
130/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Table 81. Document revision history  
Revision history  
Date  
Revision  
Changes  
Updated first page  
Removed references to VDDSDx and VSSSD  
Added reference to PM0214 in Section 1  
Moved Temp. sensor calibartion values toTable 74 and VREF  
calibration values to Table 27  
Updated Table 2: STM32F30xB/C family device features and  
peripheral counts on page 10  
UpdatedSection 3.4: Embedded SRAM on page 14  
Updated Section 3.2: Memory protection unit (MPU) on page 13  
Updated Section 3.23: Universal serial bus (USB) on page 28  
Modified Section 3.25: Touch sensing controller (TSC) on page 29  
Updated heading of Table 6: USART features on page 27  
Updated Table 11: STM32F302xx/STM32F303xx pin definitions on  
page 36  
Added notes to PC13, PC14 and PC15 in Table 11:  
STM32F302xx/STM32F303xx pin definitions on page 36  
Updated Figure 11: Power supply scheme on page 54  
Modified Table 19: Voltage characteristics on page 56  
Modified Table 20: Current characteristics on page 57  
Modified Table 22: General operating conditions on page 58  
Modified Figure 13: Typical VBAT current consumption (LSE and RTC  
ON/LSEDRV[1:0] = ’00’) on page 66  
Updated Section 6.3.14: I/O port characteristics on page 87  
Updated Table 28: Typical and maximum current consumption from  
VDD supply at VDD = 3.6V on page 62 and Table 29: Typical and  
maximum current consumption from the VDDA supply on page 63  
Updated Table 30: Typical and maximum VDD consumption in Stop  
and Standby modes on page 65 and Table 31: Typical and maximum  
VDDA consumption in Stop and Standby modes on page 65  
Updated Table 32: Typical and maximum current consumption from  
VBAT supply on page 66  
05-Dec-2012  
4
Added Figure 13: Typical VBAT current consumption (LSE and RTC  
ON/LSEDRV[1:0] = ’00’)  
Updated Table 33: Typical current consumption in Run mode, code  
with data processing running from Flash on page 67 and Table 34:  
Typical current consumption in Sleep mode, code running from Flash  
or RAM on page 68  
Added Table 36: Peripheral current consumption on page 71  
Added Table 35: Switching output I/O current consumption on page 70  
Updated Section 6.3.6: Wakeup time from low-power mode on page 73  
Modified ESD absolute maximum ratings on page 84  
Modified Table 53: Output voltage characteristics on page 90  
Updated EMI characteristics on page 84  
Updated Table 54: I/O AC characteristics on page 91  
Updated Table 51: I/O current injection susceptibility on page 86  
Updated Table 56: TIMx characteristics on page 93  
Updated Section 7.2: Thermal characteristics on page 126  
Added Table 67: Maximum ADC RAIN on page 106  
Added Table 68: ADC accuracy - limited test conditions on page 107  
Updated Table 69: ADC accuracy on page 109  
Updated Table 70: DAC characteristics on page 112  
Updated Table 72: Operational amplifier characteristics on page 116  
Updated figures and tables in Section 7: Package characteristics  
Doc ID 023353 Rev 5  
131/133  
Revision history  
Table 81. Document revision history  
STM32F302xx/STM32F303xx  
Date  
Revision  
Changes  
Updated Vhys and Ilkg in Table 52: I/O static characteristics.  
Updated VIL(NRST), VIH(NRST), and VNF(NRST) in Table 55: NRST pin  
characteristics.  
08-Jan-2013  
5
Updated Table 68: ADC accuracy - limited test conditions and Table 69:  
ADC accuracy.  
132/133  
Doc ID 023353 Rev 5  
STM32F302xx/STM32F303xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 023353 Rev 5  
133/133  

相关型号:

STM32F303C6

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303C8

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303CB

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM
STMICROELECTR

STM32F303CC

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM
STMICROELECTR

STM32F303CCT6

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM
STMICROELECTR

STM32F303K6

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303K8

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303R6

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303R8

Up to 64 Kbytes of Flash memory
STMICROELECTR

STM32F303RB

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM
STMICROELECTR

STM32F303RC

ARM Cortex-M4F 32b MCUFPU, up to 256KB Flash48KB SRAM
STMICROELECTR

STM32F303RD

ARM Cortex-M4 32b MCUFPU, up to 512KB Flash, 80KB SRAM, FSMC, 4 ADCs, 2 DAC ch., 7 comp, 4 Op-Amp, 2.0-3.6 V
STMICROELECTR