STM32F334C6Y6TR [STMICROELECTRONICS]

Arm®Cortex®-M4 32b MCUFPU,up to 64KB Flash,16KB SRAM, 2 ADCs,3 DACs,3 comp.,op-amp, 217ps 10-ch (HRTIM1);
STM32F334C6Y6TR
型号: STM32F334C6Y6TR
厂家: ST    ST
描述:

Arm®Cortex®-M4 32b MCUFPU,up to 64KB Flash,16KB SRAM, 2 ADCs,3 DACs,3 comp.,op-amp, 217ps 10-ch (HRTIM1)

静态存储器
文件: 总125页 (文件大小:2606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F334x4 STM32F334x6  
STM32F334x8  
Arm®Cortex®-M4 32b MCU+FPU,up to 64KB Flash,16KB SRAM,  
2 ADCs,3 DACs,3 comp.,op-amp, 217ps 10-ch (HRTIM1)  
Datasheet - production data  
Features  
®
®
Core: Arm Cortex -M4 32-bit CPU with FPU  
(72 MHz max), single-cycle multiplication and  
HW division DSP instruction  
UFQFPN32 (5 x 5 mm)  
LQFP32 (7 x 7 mm)  
LQFP48 (7 x 7 mm)  
LQFP64 (10 x 10 mm)  
WLCSP49  
(3.89x3.74 mm)  
Memories  
– Up to 64 Kbytes of Flash memory  
– Up to 12 Kbytes of SRAM with HW parity  
check  
Three ultra-fast rail-to-rail analog comparators  
with analog supply from 2 to 3.6 V  
– Routine booster: 4 Kbytes of SRAM on  
instruction and data bus with HW parity  
check (CCM)  
One operational amplifiers that can be used in  
PGA mode, all terminals accessible with  
analog supply from 2.4 to 3.6 V  
CRC calculation unit  
Up to 18 capacitive sensing channels  
supporting touchkeys, linear and rotary touch  
sensors  
Reset and supply management  
– Low-power modes: Sleep, Stop, Standby  
Up to 12 timers  
– V  
V
voltage range: 2.0 to 3.6 V  
DD, DDA  
– HRTIM: 6 x16-bit counters, 217 ps  
resolution, 10 PWM, 5 fault inputs, 10 ext  
event input, 1 synchro. input,1 synchro. out  
– Power-on/Power-down reset (POR/PDR)  
– Programmable voltage detector (PVD)  
– V  
supply for RTC and backup registers  
– One 32-bit timer and one 16-bit timer with  
up to 4 IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input  
BAT  
Clock management  
– 4 to 32 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– One 16-bit 6-channel advanced-control  
timer, with up to 6 PWM channels,  
– Internal 8 MHz RC (up to 64 MHz with PLL  
option)  
deadtime generation and emergency stop  
– One 16-bit timer with 2 IC/OCs,  
1 OCN/PWM, deadtime generation,  
emergency stop  
– Internal 40 kHz oscillator  
Up to 51 fast I/O ports, all mappable on  
external interrupt vectors, several 5 V-tolerant  
– Two 16-bit timers with IC/OC/OCN/PWM,  
deadtime generation and emergency stop  
Interconnect matrix  
– Two watchdog timers (independent,  
window)  
7-channel DMA controller  
Up to two ADC 0.20 µs (up to 21 channels) with  
selectable resolution of 12/10/8/6 bits, 0 to  
3.6 V conversion range, single-ended /  
differential mode, separate analog supply from  
2.0 to 3.6 V  
– SysTick timer: 24-bit downcounter  
– Up to two 16-bit basic timers to drive DAC  
Calendar RTC with alarm, periodic wakeup  
from Stop  
Temperature sensor  
Communication interfaces  
Up to three 12-bit DAC channels with analog  
– CAN interface (2.0 B Active) and one SPI  
supply from 2.4 V to 3.6 V  
July 2018  
DS9994 Rev 9  
1/125  
This is information on a product in full production.  
www.st.com  
STM32F334x4 STM32F334x6 STM32F334x8  
2
– One I C with 20 mA current sink to support  
96-bit unique ID  
All packages ECOPACK 2 compliant  
®
Fast mode plus, SMBus/PMBus  
– Up to 3 USARTs, one with ISO/IEC 7816  
interface, LIN, IrDA, modem control  
Debug mode: serial wire debug (SWD), JTAG  
Table 1. Device summary  
Reference  
Part number  
STM32F334Kx  
STM32F334Cx  
STM32F334Rx  
STM32F334K4/K6/K8  
STM32F334C4/C6/C8  
STM32F334R6/R8  
2/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1  
Arm® Cortex®-M4 core with FPU with embedded Flash  
memory and SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2.1  
3.2.2  
3.2.3  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3  
3.4  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 15  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4.1  
3.4.2  
3.4.3  
3.4.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5  
3.6  
3.7  
3.8  
3.9  
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.9.1  
3.9.2  
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 20  
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 20  
3.10 Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BAT  
3.10.4 OPAMP2 reference voltage (VOPAMP2) . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.12 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.13 Ultra-fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DS9994 Rev 9  
3/125  
5
Contents  
STM32F334x4 STM32F334x6 STM32F334x8  
3.14.1 217 ps high-resolution timer (HRTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.14.2 Advanced timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.14.3 General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17) . . . . . 25  
3.14.4 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.14.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.14.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.14.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.15 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 26  
3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
3.16.1 Inter-integrated circuit interface (I C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.16.2 Universal synchronous / asynchronous  
receivers / transmitters (USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.16.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.16.4 Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.18 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.19.1 Serial-wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4
5
6
Pinout and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input voltage on a pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Measurement of the current consumption . . . . . . . . . . . . . . . . . . . . . . . 49  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.3.1  
6.3.2  
6.3.3  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 53  
Characteristics of the embedded reset and power-control block . . . . . . 53  
4/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Contents  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3.16 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.17 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.18 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.3.19 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6.3.20 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
6.3.21 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6.3.22 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.3.23 Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . 103  
6.3.24  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
BAT  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
7.7.1  
7.7.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 120  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
DS9994 Rev 9  
5/125  
5
List of tables  
STM32F334x4 STM32F334x6 STM32F334x8  
List of tables  
Table 1.  
Table 2.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32F334x4/6/8 family device features and peripheral counts. . . . . . . . . . . . . . . . . . . . 11  
Table 3.  
V
ranges for analog peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
DDA  
Table 4.  
Table 5.  
Table 6.  
STM32F334x4/6/8 peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Comparison of I C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Table 7.  
Table 8.  
Table 9.  
STM32F334x4/6/8 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32F334x4/6/8 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Capacitive sensing GPIOs available on STM32F334x4/6/8 devices . . . . . . . . . . . . . . . . . 30  
No. of capacitive sensing channels available on STM32F334x4/6/8 devices. . . . . . . . . . . 31  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
STM32F334x4/6/8 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
STM32F334x4/6/8 peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . 45  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Typical and maximum current consumption from V supply at V = 3.6V . . . . . . . . . . . 56  
DD  
DD  
Typical and maximum current consumption from the V  
supply . . . . . . . . . . . . . . . . . . 57  
DDA  
Typical and maximum V consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 57  
DD  
Typical and maximum V  
consumption in Stop and Standby modes. . . . . . . . . . . . . . . 58  
DDA  
Typical and maximum current consumption from V  
supply. . . . . . . . . . . . . . . . . . . . . . 58  
BAT  
Typical current consumption in Run mode, code with data processing  
running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Typical current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . 61  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Wakeup time using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
List of tables  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
HRTIM1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
HRTIM output response to fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
HRTIM output response to external events 1 to 5 (Low-Latency mode). . . . . . . . . . . . . . . 83  
HRTIM output response to external events 1 to 10 (Synchronous mode ). . . . . . . . . . . . . 83  
HRTIM synchronization input / output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
IWDG min./max. timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
WWDG min./max. timeout value at 72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2
I C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
ADC accuracy at 1MSPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Comparator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Temperature sensor (TS) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Temperature sensor (TS) calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
BAT  
LQFP32 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LQFP48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LQFP64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
Table 79.  
Table 80.  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 81.  
Table 82.  
Table 83.  
DS9994 Rev 9  
7/125  
7
List of figures  
STM32F334x4 STM32F334x6 STM32F334x8  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F334x4/6/8 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
STM32F334x4/6/8 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 12. Power-supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 13. Scheme of the current-consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 14. Typical V  
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 59  
BAT  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 17. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 19. HSI oscillator accuracy characterization results for soldered parts . . . . . . . . . . . . . . . . . . 71  
Figure 20. TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 21. TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 22. 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . 78  
Figure 23. 5V-tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . 78  
Figure 24. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 25. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
(1)  
Figure 28. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 29. ADC typical current consumption in single-ended and differential modes . . . . . . . . . . . . . 91  
Figure 30. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 31. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 32. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 33. Maximum V  
scaler startup time from power-down . . . . . . . . . . . . . . . . . . . . . . . . . 100  
REFINT  
Figure 34. OPAMP voltage noise versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 35. LQFP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 36. Recommended footprint for the LQFP32 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 37. LQFP32 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 38. LQFP48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 39. Recommended footprint for the LQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 40. LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 41. LQFP64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 42. Recommended footprint for the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 43. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 44. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 45. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 46. WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
8/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
List of figures  
Figure 47. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 48. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 49. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
DS9994 Rev 9  
9/125  
9
Introduction  
STM32F334x4 STM32F334x6 STM32F334x8  
1
Introduction  
This datasheet provides the ordering information and the mechanical device characteristics  
of the STM32F334x4/6/8 microcontrollers.  
This document must be read in conjunction with the STM32F334xx, reference manual  
(RM0364) available from the STMicroelectronics website www.st.com.  
®
For information on the Cortex -M4 core with FPU, refer to:  
®(a)  
®
Arm  
Cortex -M4 Processor Technical Reference Manual available from the  
www.arm.com website.  
®
STM32F3xxx and STM32F4xxx Cortex -M4 programming manual (PM0214) available  
from the www.st.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
10/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Description  
2
Description  
®
®
The STM32F334x4/6/8 family incorporates the high-performance Arm Cortex -M4 32-bit  
RISC core operating at up to 72 MHz frequency embedding a floating point unit (FPU),  
high-speed embedded memories (up to 64 Kbytes of Flash memory, up to 12 Kbytes of  
SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB  
buses.  
The STM32F334x4/6/8 microcontrollers offer two fast 12-bit ADCs (5 Msps), up to three  
ultra-fast comparators, an operational amplifier, three DAC channels, a low-power RTC, one  
high-resolution timer, one general-purpose 32-bit timer, one timer dedicated to motor  
control, and four general-purpose 16-bit timers. They also feature standard and advanced  
2
communication interfaces: one I C, one SPI, up to three USARTs and one CAN.  
The STM32F334x4/6/8 family operates in the –40 to +85 °C and –40 to +105 °C  
temperature ranges from 2.0 to 3.6 V power supply. A comprehensive set of power-saving  
modes allow the design of low-power applications.  
The STM32F334x4/6/8 family offers devices in 32, 48 and 64-pin packages.  
Depending on the device chosen, different sets of peripherals are included.  
Table 2. STM32F334x4/6/8 family device features and peripheral counts  
Peripheral  
STM32F334Kx  
STM32F334Cx  
STM32F334Rx  
Flash memory (Kbyte)  
16  
32  
64  
16  
32  
12  
64  
16  
32  
64  
SRAM on data bus (Kbyte)  
Core coupled memory SRAM  
on instruction bus (CCM  
SRAM) (Kbyte)  
4
High-resolution  
timer  
1 (16-bit / 10 channels)  
1 (16-bit)  
Advanced control  
General purpose  
Basic  
4 (16-bit)  
1 (32 bit)  
2 (16-bit)  
1
SysTick timer  
Timers  
Watchdog timers  
(independent,  
window)  
2
26  
20  
PWM channels  
(all)(1)  
20  
14  
28  
22  
PWM channels  
(except  
complementary)  
DS9994 Rev 9  
11/125  
46  
 
 
 
Description  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 2. STM32F334x4/6/8 family device features and peripheral counts (continued)  
Peripheral  
STM32F334Kx  
STM32F334Cx  
STM32F334Rx  
SPI  
1
1
I2C  
Comm.  
interfaces  
USART  
CAN  
2
3
1
Normal I/Os (TC,  
TTa)  
10  
20  
26  
GPIOs  
5-Volt tolerant  
I/Os (FT,FTf)  
15  
14  
17  
25  
18  
Capacitive sensing channels  
DMA channels  
17  
7
12-bit ADCs  
2
2
2
Number of channels  
10  
15  
21  
12-bit DAC channels  
Ultra-fast analog comparator  
Operational amplifiers  
CPU frequency  
3
2
3
1
72 MHz  
Operating voltage  
2.0 to 3.6 V  
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C  
Junction temperature: - 40 to 125 °C  
Operating temperature  
Packages  
LQFP32, UFQFPN32  
LQFP48, WLCSP49  
LQFP64  
1. This total considers also the PWMs generated on the complementary output channels.  
12/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Description  
Figure 1. STM32F334x4/6/8 block diagram  
@VDD33  
POWER  
TPIU  
V
DD18  
SWJTAG  
FPU  
V
V
=2 to 3.6V  
JTRST  
JTDI  
DD33  
SS  
Flash 64KB  
64 bits  
VOLT. REG.  
3.3V TO 1.8V  
Ibus  
JTCK-SWCLK  
JTMS-SWDAT  
JTDO-TRACESWO  
as AF  
CORTEX M4 CPU  
@VDDA  
Dbus  
SRAM  
12KB  
Dbus  
SUPPLY  
F
= 72MHz  
NVIC  
POR  
NRESET  
VDDA  
VSSA  
max  
SUPERVISION  
System  
bus  
Reset  
@VDDA  
CCM SRAM  
4KB  
POR / PDR  
Int  
RC HS 8MHz  
RC LS  
PVD  
GP DMA1  
7 channels  
@VDD33  
OSC_IN  
XTAL OSC  
PLL  
OSC_OUT  
4-32MHz  
Ind. WDG32K  
AHBPCLK  
Standby  
interface  
Temp sensor  
APBP1CLK  
APBP2CLK  
HCLK  
V
=
BAT  
RESET&  
1.65 to 3.6V  
12bitADC1 IF  
CLOCK  
CTRL  
V
REF+  
V
REF-  
FCLK  
OSC32_IN  
USARTCLK  
I2CCLK  
ADC1/ADC2  
XTAL 32kHz  
12bitADC2 IF  
OSC32_OUT  
Backup  
RTC  
ANTI-TAMP  
reg (20B)  
AWU  
@VDDA  
Backup interface  
TIM2 (32-bit/PWM)  
TIM3  
PA[15:0]  
GPIOPORTA  
4 Channels, ETR  
as AF  
CRC  
PB[15:0]  
PC[15:0]  
GPIOPORTB  
GPIOPORTC  
GPIOPORTD  
GPIOPORTF  
4 Channels, ETR  
as AF  
PD2  
RX,TX, CTS, RTS,  
SmartCard as AF  
USART2  
USART3  
PF[1:0]  
RX,TX, CTS, RTS,  
SmartCard as AF  
6 Groups of  
Touch Sensing  
Controller  
4 Channels as AF  
AHB2  
APB2  
AHB2  
APB1  
WinWATCHDOG  
SCL,SDA,SMBA  
as AF  
I2C1  
EXT.IT  
WKUP  
up to 16 lines  
2 channels,  
1 compl. channel,  
TIM15  
CAN_TX  
CAN_RX  
BRK as AF  
1 channel,  
1 compl. channel,  
BRK as AF  
BxCAN  
TIM16  
TIM17  
1 channel,  
1 compl. channel,  
BRK as AF  
12-bit DAC1  
IF  
4 channels,  
3 compl. channel,  
ETR, BRK as AF  
DAC1_OUT1 as AF  
DAC1_OUT2 as AF  
channel 1  
TIM6  
TIM7  
TIM1  
12-bit DAC1  
channel 2  
IF  
IF  
5 fault inputs as AF  
10 PWM outputs  
10 ext. event inputs  
1 synchro. input  
HRTIM1  
12-bit DAC2  
channel 1  
DAC2_OUT1 as AF  
1 synchro. output  
MOSI,MISO,  
SPI1  
SCK,NSS as AF  
RX,TX, CTS, RTS,  
SmartCard as AF  
USART1  
IF Op-amp2  
@VDDA  
SYSCFG CTL  
INM, INP, OUT as AF  
@VDDA  
GP Comparator 6  
GP Comparator 4  
GP Comparator 2  
INM, INP, OUT as AF  
MSv31953V3  
1. AF: alternate function on I/O pins.  
DS9994 Rev 9  
13/125  
46  
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3
Functional overview  
3.1  
Arm® Cortex®-M4 core with FPU with embedded Flash  
memory and SRAM  
The Arm Cortex-M4 processor with FPU is the latest generation of Arm processors for  
embedded systems. It has been developed to provide a low-cost platform that meets the  
needs of MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
The Arm 32-bit Cortex-M4 RISC processor with FPU features exceptional code-efficiency,  
delivering the high performance expected from an Arm core, with memory sizes usually  
associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions that allows efficient signal processing and  
complex algorithm execution.  
Its single precision FPU speeds up software development by using metalanguage  
development tools, while avoiding saturation.  
With its embedded Arm core, the STM32F334x4/6/8 family is compatible with all Arm tools  
and software.  
Figure 1 shows the general block diagram of the STM32F334x4/6/8 family devices.  
3.2  
Memories  
3.2.1  
Embedded Flash memory  
All STM32F334x4/6/8 devices feature up to 64 Kbytes of embedded Flash memory  
available for storing programs and data. The Flash memory access time is adjusted to the  
CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2  
wait states above).  
3.2.2  
Embedded SRAM  
The STM32F334x4/6/8 devices feature up to 12 Kbytes of embedded SRAM with hardware  
parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait  
states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz when running code from  
CCM (core coupled memory) RAM.  
The SRAM is organized as follows:  
4 Kbytes of SRAM on instruction and data bus with parity check (core coupled memory  
or CCM) and used to execute critical routines or to access data  
12 Kbytes of SRAM with parity check mapped on the data bus  
14/125  
DS9994 Rev 9  
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
3.2.3  
Boot modes  
At startup, BOOT0 pin and BOOT1 option bit are used to select one of the three boot  
options:  
Boot from user Flash memory  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using USART1 (PA9/PA10), USART2 (PA2/PA3), I2C1 (PB6/PB7).  
3.3  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature  
of the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.4  
Power management  
3.4.1  
Power supply schemes  
V
, V = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is  
SS DD  
provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators  
DDA  
SSA  
operational amplifiers, reset blocks, RCs and PLL.The minimum voltage to be applied  
to V differs from one analog peripherals to another. See Table 3 below,  
DDA  
summarizing the V  
ranges for analog peripherals. The V  
voltage level must be  
DDA  
DDA  
always greater or equal to the V voltage level and must be provided first.  
DD  
V
= 1.65 to 1.95 V (V  
domain): power supply for digital core, SRAM and Flash  
DD18  
DD18  
memory. V  
is internally generated through an internal voltage regulator.  
DD18  
Table 3. V  
ranges for analog peripherals  
DDA  
Analog peripheral  
ADC/COMP  
DAC/OPAMP  
Min. VDDAsupply  
Max. VDDAsupply  
2 V  
3.6 V  
3.6 V  
2.4 V  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
3.4.2  
Power supply supervisor  
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.  
They are always active, and ensure proper operation above a threshold of 2 V. The device  
DS9994 Rev 9  
15/125  
46  
 
 
 
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
remains in reset mode when the monitored supply voltage is below a specified threshold,  
VPOR/PDR, without the need for an external reset circuit.  
The POR monitors only the V supply voltage. During the startup phase it is required  
DD  
that V  
must arrive first and be greater than or equal to V  
.
DDA  
DD  
The PDR monitors both the V and V  
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce  
the power consumption if the application design ensures that V is higher than or  
supply voltages, however the V  
power  
DD  
DDA  
DDA  
DDA  
equal to V  
.
DD  
The device features an embedded programmable voltage detector (PVD) that monitors the  
power supply and compares it to the VPVD threshold. An interrupt can be generated  
V
DD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state. The PVD is enabled by software.  
3.4.3  
Voltage regulator  
The regulator has three operation modes: main (MR), low-power (LPR), and power-down.  
The MR mode is used in the nominal regulation mode (Run)  
The LPR mode is used in Stop mode.  
The power-down mode is used in Standby mode: the regulator output is in high  
impedance, and the kernel circuitry is powered down thus inducing zero consumption.  
The voltage regulator is always enabled after reset. It is disabled in Standby mode.  
3.4.4  
Low-power modes  
The STM32F334x4/6/8 supports three low-power modes to achieve the best compromise  
between low power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm, COMPx,  
2
I C or USARTx.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, SRAM and register contents are lost except for registers in the Backup  
domain and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
16/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
3.5  
Interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU resources thus power supply  
consumption. In addition, these hardware connections allow fast and predictable latency.  
Table 4. STM32F334x4/6/8 peripheral interconnect matrix  
Interconnect  
Interconnect source  
Interconnect action  
Timers synchronization or chaining  
Conversion triggers  
destination  
TIMx  
ADCx  
DACx  
TIMx  
DMA  
Memory to memory transfer trigger  
Comparator output blanking  
COMPx  
TIMx  
COMPx  
ADCx  
Timer input: ocrefclear input, input capture  
Timer triggered by analog watchdog  
TIM/HRTIM1  
GPIO  
RTCCLK  
HSE/32  
MC0  
Clock source used as input channel for HSI and  
LSI calibration  
TIM16  
CSS  
CPU (hard fault)  
RAM (parity error)  
COMPx  
TIM1  
Timer break  
TIM15, 16, 17  
PVD  
GPIO  
TIMx  
External trigger, timer break  
Conversion external trigger  
GPIO  
ADCx  
DACx  
DACx  
COMPx  
Comparator inverting input  
Conversion trigger  
HRTIM1  
DACx/ADCx  
COMPx output is an input event or a fault input for  
HRTIM1  
COMPx  
HRTIM1  
OPAMP2  
GPIO  
HRTIM1  
HRTIM1  
GPIO  
OPAMP2 output is an input event for HRTIM1  
External fault/event/ Synchro inputs for HRTIM1  
Synchro output for HRTIM1  
HRTIM1  
Note:  
For more details about the interconnect actions, refer to the corresponding sections in the  
RM0364 reference manual.  
DS9994 Rev 9  
17/125  
46  
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3.6  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected on reset as default CPU clock. An external 4-32 MHz clock can be selected, in  
which case it is monitored for failure. If failure is detected, the system automatically switches  
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full  
interrupt management of the PLL clock entry is available when necessary (for example with  
failure of an indirectly used external oscillator).  
Several prescalers allow to configure the AHB frequency, the high-speed APB (APB2) and  
the low-speed APB (APB1) domains. The maximum frequency of the AHB and the  
high-speed APB domains is 72 MHz, while the maximum allowed frequency of the low-  
speed APB domain is 36 MHz.  
TIM1and HRTIM1 maximum frequency is 144 MHz.  
18/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
Figure 2. Clock tree  
FLITFCLK  
to Flash programming interface  
HSI  
to I2C1  
SYSCLK  
HSI  
8 MHz  
HSI RC  
/2  
HCLK  
to AHB bus, core,  
memory and DMA  
PLLSRC  
to cortex System timer  
SW  
/8  
PLLMUL  
FHCLK Cortex free  
running clock  
HSI  
PLLCLK  
AHB  
prescaler  
APB1  
PLL  
x2,x3,..  
x16  
PCLK1  
to APB1 peripherals  
prescaler  
/1,2,..512  
/1,2,4,8,16  
HSE  
SYSCLK  
If (APB1 prescaler  
=1) x1 else x2  
CSS  
to TIM 2, 3, 6, 7  
/2,/3,...  
/16  
PCLK1  
SYSCLK  
HSI  
OSC_OUT  
OSC_IN  
to USARTx (x = 1, 2, 3)  
4-32 MHz  
HSE OSC  
LSE  
APB2  
prescaler  
/1,2,4,8,16  
PCLK2  
to APB2 peripherals  
to TIM 15,16,17  
/32  
LSE  
RTCCLK  
OSC32_IN  
to RTC  
LSE OSC  
If (APB2 prescaler  
=1) x1 else x2  
32.768kHz  
OSC32_OUT  
RTCSEL[1:0]  
LSI  
IWDGCLK  
to IWDG  
LSI RC  
40kHz  
PLLNODIV  
/2  
MCOPRE  
PLLCLK  
TIM1/  
HRTIM1  
x2  
HSI  
LSI  
/1,2,4,  
...128  
MCO  
HSE  
SYSCLK  
ADC  
to ADCx  
(x = 1, 2)  
Main clock  
output  
MCO  
Prescaler  
/1,2,4  
ADC  
Prescaler  
/1,2,4,6,8,10,12,16,  
32,64,128,256  
MS31933V5  
DS9994 Rev 9  
19/125  
46  
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current  
capable except for analog inputs.  
The I/Os alternate function configuration can be locked if needed, following a specific  
sequence to avoid spurious writing to the I/Os registers.  
Fast I/O handling allows I/O toggling up to 36 MHz.  
3.8  
Direct memory access (DMA)  
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-to-  
memory and memory-to-peripheral transfers. The DMA controller supports circular buffer  
management, avoiding the generation of interrupts when the controller reaches the end of  
the buffer.  
Each of the 7 DMA channels is connected to dedicated hardware DMA requests, with  
software trigger support for each channel. Configuration is done by software and transfer  
sizes between source and destination are independent.  
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,  
high-resolution timer, DAC and ADC.  
3.9  
Interrupts and events  
3.9.1  
Nested vectored interrupt controller (NVIC)  
The STM32F334x4/6/8 devices embed a nested vectored interrupt controller (NVIC) able to  
handle up to 60 interrupt channels that can be masked and 16 priority levels.  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved on interrupt entry and restored on interrupt exit  
with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.9.2  
Extended interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 27 edge detector lines used to generate  
interrupt/event requests and wake-up the system. Each line can be independently  
configured to select the trigger event (rising edge, falling edge, both) and can be masked  
20/125  
DS9994 Rev 9  
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
independently. A pending register maintains the status of the interrupt requests. The EXTI  
can detect an external line with a pulse width shorter than the internal clock period. Up to 51  
GPIOs can be connected to the 16 external interrupt lines.  
3.10  
Fast analog-to-digital converter (ADC)  
Two 5 MSPS fast analog-to-digital converters, with selectable resolution between 12 and 6  
bit, are embedded in the STM32F334x4/6/8 family devices. The ADCs have up to 21  
external channels. Some of the external channels are shared between ADC1 and ADC2,  
performing conversions in single-shot or scan modes. The channels can be configured to be  
either single-ended input or differential input. In scan mode, automatic conversion is  
performed on a selected group of analog inputs.  
The ADCs also have internal channels: temperature sensor connected to ADC1 channel 16,  
V
/2 connected to ADC1 channel 17, voltage reference V  
connected to both ADC1  
BAT  
REFINT  
and ADC2 channel 18 and VOPAMP2 connected to ADC2 channel 17.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
Single-shunt phase current reading techniques.  
Three analog watchdogs are available per ADC. The ADC can be served by the DMA  
controller.  
The analog watchdog feature allows very precise monitoring of the converted voltage of  
one, some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIM2, TIM3, TIM6, TIM15), the  
advanced-control timer (TIM1) and the High-resolution timer (HRTIM1) can be internally  
connected to the ADC start trigger and injection trigger, respectively, to allow the application  
to synchronize A/D conversion and timers.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC1_IN16 input channel that is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
3.10.2  
Internal voltage reference (VREFINT)  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the  
ADC and Comparators. VREFINT is internally connected to the ADC1_IN18 and ADC2_IN18  
DS9994 Rev 9  
21/125  
46  
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
input channels. The precise voltage of VREFINT is individually measured for each part by ST  
during production test and stored in the system memory area. It is accessible in read-only  
mode.  
3.10.3  
V
battery voltage monitoring  
BAT  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC1_IN17. As the V  
voltage may be higher than V  
,
BAT  
DDA  
and thus outside the ADC input range, the V  
pin is internally connected to a bridge  
BAT  
divider by 2. As a consequence, the converted digital value is half the V  
voltage.  
BAT  
3.10.4  
OPAMP2 reference voltage (VOPAMP2)  
OPAMP2 reference voltage can be measured using ADC2 internal channel 17.  
3.11  
Digital-to-analog converter (DAC)  
One 12-bit buffered DAC channel (DAC1_OUT1) and two 12-bit unbuffered DAC channels  
(DAC1_OUT2 and DAC2_OUT1) can be used to convert digital signals into analog voltage  
signal outputs. The chosen design structure is composed of integrated resistor strings and  
an amplifier in inverting configuration.  
This digital interface supports the following features:  
Three DAC output channels  
8-bit or 12-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation (only on DAC1)  
Triangular-wave generation (only on DAC1)  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
3.12  
Operational amplifier (OPAMP)  
The STM32F334x4/6/8 embeds an operational amplifier (OPAMP2) with external or internal  
follower routing and PGA capability (or even amplifier and filter capability with external  
components). When an operational amplifier is selected, an external ADC channel is used  
to enable output measurement.  
The operational amplifier features:  
8 MHz GBP  
0.5 mA output capability  
Rail-to-rail input/output  
In PGA mode, the gain can be programmed to 2, 4, 8 or 16.  
22/125  
DS9994 Rev 9  
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
3.13  
Ultra-fast comparators (COMP)  
The STM32F334x4/6/8 devices embed three ultra-fast rail-to-rail comparators (COMP2/4/6)  
that offer the features below:  
Programmable internal or external reference voltage  
Selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output  
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 23: Embedded  
internal reference voltage for values and parameters of the internal reference voltage.  
All comparators can wake up from STOP mode, generate interrupts and breaks for the  
timers.  
3.14  
Timers and watchdogs  
The STM32F334x4/6/8 includes advanced control timer, 5 general-purpose timers, basic  
timer, two watchdog timers and a SysTick timer. The table below compares the features of  
the advanced control, general purpose and basic timers.  
Table 5. Timer feature comparison  
DMA  
request  
generation channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
/1 /2 /4  
(x2 x4 x8 x16  
x32, with  
DLL)  
High-  
resolution HRTIM1(1)  
timer  
16-bit  
Up  
Yes  
10  
Yes  
Any integer  
between 1  
and 65536  
Advanced  
TIM1(1)  
control  
Up, Down,  
Up/Down  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
2
1
0
Yes  
No  
No  
1
Any integer  
between 1  
and 65536  
General-  
TIM2  
Up, Down,  
Up/Down  
purpose  
Any integer  
between 1  
and 65536  
General-  
TIM3  
Up, Down,  
Up/Down  
purpose  
Any integer  
between 1  
and 65536  
General-  
TIM15  
Up  
Up  
Up  
purpose  
Any integer  
between 1  
and 65536  
General-  
purpose  
TIM16,  
TIM17  
1
Any integer  
between 1  
and 65536  
Basic  
TIM6, TIM7  
No  
1. TIM1 can be clocked from the PLL x 2 running at 144 MHz .  
DS9994 Rev 9  
23/125  
46  
 
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3.14.1  
217 ps high-resolution timer (HRTIM1)  
The high-resolution timer (HRTIM1) allows generating digital signals with high-accuracy  
timings, such as PWM or phase-shifted pulses.  
It consists of 6 timers, 1 master and 5 slaves, totaling 10 high-resolution outputs, which can  
be coupled by pairs for deadtime insertion. It also features 5 fault inputs for protection  
purposes and 10 inputs to handle external events such as current limitation, zero voltage or  
zero current switching.  
HRTIM1 timer is made of a digital kernel clocked at 144 MHz followed by delay lines. Delay  
lines with closed loop control guarantee a 217 ps resolution whatever the voltage,  
temperature or chip-to-chip manufacturing process deviation. The high-resolution is  
available on the 10 outputs in all operating modes: variable duty cycle, variable frequency,  
and constant ON time.  
The slave timers can be combined to control multiswitch complex converters or operate  
independently to manage multiple independent converters.  
The waveforms are defined by a combination of user-defined timings and external events  
such as analog or digital feedbacks signals.  
HRTIM1 timer includes options for blanking and filtering out spurious events or faults. It also  
offers specific modes and features to offload the CPU: DMA requests, burst mode controller,  
push-pull and resonant mode.  
It supports many topologies including LLC, Full bridge phase shifted, buck or boost  
converters, either in voltage or current mode, as well as lighting application (fluorescent or  
LED). It can also be used as a general purpose timer, for instance to achieve high-resolution  
PWM-emulated DAC.  
In debug mode, the HRTIM1 counters can be frozen and the PWM outputs enter safe state.  
3.14.2  
Advanced timer (TIM1)  
The advanced-control timer can be seen as a three-phase PWM multiplexed on 6 channels.  
They have complementary PWM outputs with programmable inserted dead-times. They can  
also be seen as complete general-purpose timers. The 4 independent channels can be  
used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability  
(0-100%)  
One-pulse mode output  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switches driven by these outputs.  
Many features are shared with those of the general-purpose TIM timers (described in  
Section 3.14.3) using the same architecture, so the advanced-control timers can work  
together with the TIM timers via the Timer Link feature for synchronization or event chaining.  
24/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
3.14.3  
General-purpose timers (TIM2, TIM3, TIM15, TIM16 and TIM17)  
There are up to three general-purpose timers embedded in the STM32F334x4/6/8 (see  
Table 5 for differences) that can be synchronized. Each general-purpose timer can be used  
to generate PWM outputs, or act as a simple time base.  
TIM2 and TIM3  
They are full-featured general-purpose timers:  
TIM2 has a 32-bit auto-reload up/down counter and 32-bit prescaler  
TIM3 has a 16-bit auto-reload up/down counter and 16-bit prescaler  
These timers feature four independent channels for input capture/output compare,  
PWM or one-pulse mode output. They can work together, or with the other general-  
purpose timers via the Timer Link feature for synchronization or event chaining.  
The counters can be frozen in debug mode.  
All have independent DMA request generation and support quadrature encoders.  
TIM15, 16 and 17  
They are three general-purpose timers with mid-range features.  
They have 16-bit auto-reload upcounters and 16-bit prescalers.  
TIM15 has two channels and one complementary channel  
TIM16 and TIM17 have one channel and one complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse mode  
output.  
The timers can work together via the Timer Link feature for synchronization or event  
chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.14.4  
3.14.5  
Basic timers (TIM6 and TIM7)  
The basic timers are mainly used for DAC trigger generation. They can also be used as  
generic 16-bit timebases.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 40 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free running timer for application timeout  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
3.14.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
DS9994 Rev 9  
25/125  
46  
 
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3.14.7  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Auto reload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
3.15  
Real-time clock (RTC) and backup registers  
The RTC and the 5 backup registers are supplied through a switch that takes power from  
either the V supply when present or the VBAT pin. The backup registers are five 32-bit  
DD  
registers used to store 20 bytes of user application data when V power is not present.  
DD  
They are not reset by a system or power reset, or when the device wakes up from Standby  
mode.  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms with wakeup from Stop and Standby mode capability.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Two anti-tamper detection pins with programmable filter. The MCU can be woken up  
from Stop and Standby modes on tamper event detection.  
Timestamp feature, which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY  
capability.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 40 kHz)  
The high-speed external clock divided by 32.  
26/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
3.16  
Communication interfaces  
2
3.16.1  
Inter-integrated circuit interface (I C)  
2
The devices feature an I C bus interface that can operate in multimaster and slave mode. It  
can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz)  
modes.  
It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses,  
1 with configurable mask). It also includes programmable analog and digital noise filters.  
2
Table 6. Comparison of I C analog and digital filters  
-
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
Benefits  
Available in Stop mode  
2. Stable length  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, it provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,  
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and  
ALERT protocol management. It also has a clock domain independent from the CPU clock,  
allowing the I2C1 to wake up the MCU from Stop mode on address match.  
2
The I C interface can be served by the DMA controller.  
The features available in I2C1 are showed below in Table 7.  
Table 7. STM32F334x4/6/8 I2C implementation  
I2C features(1)  
I2C1  
7-bit addressing mode  
X
X
X
X
X
X
X
X
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Independent clock  
SMBus  
Wakeup from STOP  
1. X = supported.  
DS9994 Rev 9  
27/125  
46  
 
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
3.16.2  
Universal synchronous / asynchronous  
receivers / transmitters (USARTs)  
The STM32F334x4/6/8 devices have three embedded universal synchronous  
receivers/transmitters (USART1, USART2 and USART3).  
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.  
USART1 provides hardware management of the CTS and RTS signals. It supports IrDA SIR  
ENDEC, the multiprocessor communication mode, the single-wire half-duplex  
communication mode and has LIN Master/Slave capability.  
All USART interfaces can be served by the DMA controller.  
The features available in the USART interfaces are showed below in Table 8.  
Table 8. USART features  
USART2  
USART modes/features(1)  
USART1  
USART3  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
-
-
Dual clock domain and wake up from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
-
-
-
-
X
1. X = supported.  
3.16.3  
Serial peripheral interface (SPI)  
A SPI interface allows to communicate up to 18 Mbits/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits.  
The features available in SPI1 are showed below in Table 9.  
Table 9. STM32F334x4/6/8 SPI implementation  
SPI features(1)  
SPI1  
Hardware CRC calculation  
Rx/Tx FIFO  
X
X
28/125  
DS9994 Rev 9  
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
Table 9. STM32F334x4/6/8 SPI implementation (continued)  
SPI features(1)  
SPI1  
NSS pulse mode  
TI mode  
X
X
1. X = supported.  
3.16.4  
Controller area network (CAN)  
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and  
14 scalable filter banks.  
3.17  
Infrared transmitter  
The STM32F334x4/6/8 devices provide an infrared transmitter solution. The solution is  
based on internal connections between TIM16 and TIM17 as shown in the figure below.  
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be  
sent. The infrared output signal is available on PB9 or PA13.  
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must  
be properly configured to generate correct waveforms. All standard IR pulse modulation  
modes is obtained by programming the two timers of the output compare channels (see  
Figure 3).  
Figure 3. Infrared transmitter  
TIMER 16  
OC  
OC  
(for envelop)  
PB9/PA13  
TIMER 17  
(for carrier)  
MSv30365V1  
3.18  
Touch sensing controller (TSC)  
The STM32F334x4/6/8 devices provide a simple solution for adding capacitive sensing  
functionality to any application. These devices offer up to 18 capacitive sensing channels  
distributed over 6 analog I/Os group.  
Capacitive sensing technology is able to detect the presence of a finger near an electrode  
that is protected from direct touch by a dielectric (glass, plastic and others). The capacitive  
DS9994 Rev 9  
29/125  
46  
 
 
 
 
Functional overview  
STM32F334x4 STM32F334x6 STM32F334x8  
variation introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the electrode capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor, until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library, which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
Table 10. Capacitive sensing GPIOs available on STM32F334x4/6/8 devices  
Group  
Capacitive sensing group name  
Pin name  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
PA0  
PA1  
1
PA2  
PA3  
PA4  
PA5  
2
3
4
5
6
PA6  
PA7  
PC5  
PB0  
PB1  
PB2  
PA9  
PA10  
PA13  
PA14  
PB3  
PB4  
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
30/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Functional overview  
Table 11. No. of capacitive sensing channels available on STM32F334x4/6/8 devices  
Number of capacitive sensing channels  
Analog I/O group  
STM32F334xRx  
STM32F334xCx  
STM32F334xKx  
G1  
G2  
G3  
G4  
G5  
G6  
3
3
3
3
3
3
3
3
2
3
3
3
3
3
2
3
3
0
Total number of capacitive  
sensing channels  
18  
17  
14  
3.19  
Development support  
3.19.1  
Serial-wire JTAG debug port (SWJ-DP)  
The Arm SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
DS9994 Rev 9  
31/125  
46  
 
 
 
Pinout and pin descriptions  
STM32F334x4 STM32F334x6 STM32F334x8  
4
Pinout and pin descriptions  
Figure 4. LQFP32 pinout  
32 31 30 29 28 27 26 25  
VDD  
PF0/OSC_IN  
PF1/OSC_OUT  
NRST  
1
2
3
4
5
6
24 PA14  
23 PA13  
22 PA12  
21 PA11  
20 PA10  
19 PA9  
18 PA8  
17 VDD  
LQFP32  
VDDA/VREF+  
PA0  
PA1  
7
8
PA2  
9
10 11 12 13 14 15 16  
MS31949V3  
1. The above figure shows the package top view.  
Figure 5. LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
36  
35  
34  
33  
32  
31  
VBAT  
PC13  
VDD  
VSS  
PC14/OSC32_IN  
PC15/OSC32_OUT  
PF0/OSC_IN  
PF1/OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
LQFP48  
7
8
30  
29  
28  
27  
26  
25  
PA9  
PA8  
VSSA/VREF-  
VDDA/VREF+  
PA0  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA1  
PA2  
13 14 15 16 17 18 19 20 21 22 23 24  
MSv36901V2  
1. The above figure shows the package top view.  
32/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Pinout and pin descriptions  
Figure 6. LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
47  
46  
45  
44  
43  
VDD  
VSS  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
1
2
3
4
5
6
VBAT  
PC13  
PC14/OSC32_IN  
PC15/OSC32_OUT  
PF0/OSC_IN  
PF1/OSC_OUT  
NRST  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
7
8
9
10  
11  
12  
13  
14  
15  
16  
LQFP64  
PC0  
PC1  
PC2  
PC3  
PC6  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
MS31951V2  
1. The above figure shows the package top view.  
DS9994 Rev 9  
33/125  
46  
 
Pinout and pin descriptions  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 7. WLCSP49 ballout  
6
2
4
5
7
3
1
BOOT0  
PB7  
PB6  
PB5  
PB9  
PB8  
PA15  
VDD  
PA13  
VDD  
VSS  
PB3  
PB4  
PA14  
VSS  
A
B
C
PF1  
OSC_OUT  
PF0  
OSC_IN  
PA10  
PC3  
PA2  
PA12  
PA11  
D
PA9  
PB15  
PC7  
PA6  
PA7  
PC4  
PA0  
NRST  
PA8  
PB14  
PB12  
VSSA  
VREF-  
PB13  
PB2  
PC5  
PB0  
PA3  
PA4  
VDDA  
VSS  
E
F
VREF+  
PA1  
G
PB1  
VDD  
PB11  
PB10  
PA5  
MSv44311V1  
1. The above figure shows the package top view.  
34/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Pinout and pin descriptions  
Figure 8. UFQFPN32 pinout  
32 31 30 29 28 27 26 25  
VDD  
1
2
3
24  
23  
22  
21  
20  
19  
PA14  
PA13  
PF0/OSC_IN  
PF1/OSC_OUT  
PA12  
PA11  
4
5
6
NRST  
UFQFPN32  
VDDA/VREF+  
PA10  
PA9  
VSSA/VREF-  
PA0  
7
8
PA8  
18  
17  
PA1  
VDD  
9
10 11 12 13 14 15 16  
MSv44312V2  
DS9994 Rev 9  
35/125  
46  
 
 
Pinout and pin descriptions  
STM32F334x4 STM32F334x6 STM32F334x8  
Definition  
Table 12. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
TT  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
3.3 V tolerant I/O directly connected to ADC  
3.3 V tolerant I/O  
I/O structure  
Notes  
Standard 3.3 V I/O  
Dedicated BOOT0 pin  
RST  
Bi-directional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 13. STM32F334x4/6/8 pin definitions  
Pin Number  
Pin functions  
Pin name  
(function after  
Alternate  
functions  
Additional functions  
reset)  
-
-
-
1
2
1
2
-
-
VBAT  
S
-
Backup power supply  
RTC_TAMP1/RTC_TS/  
RTC_OUT/WKUP2  
(1)  
-
PC13  
I/O  
TC  
TIM1_CH1N  
(1)  
-
-
-
-
3
4
5
6
3
4
5
6
-
PC14 / OSC32_IN  
I/O  
I/O  
I/O  
I/O  
TC  
TC  
FT  
FT  
-
OSC32_IN  
OSC32_OUT  
OSC_IN  
(1)  
-
PC15 / OSC32_OUT  
-
2
3
2
3
C7  
C6  
PF0 / OSC_IN  
TIM1_CH3N  
-
PF1 / OSC_OUT  
OSC_OUT  
Device reset input / internal reset output  
(active low)  
4
-
4
-
7
-
7
8
D7  
-
NRST  
PC0  
I/O  
I/O  
RST  
TTa  
EVENTOUT,  
ADC12_IN6  
TIM1_CH1  
36/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Pinout and pin descriptions  
Pin functions  
Table 13. STM32F334x4/6/8 pin definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)  
Alternate  
functions  
Additional functions  
EVENTOUT,  
TIM1_CH2  
-
-
-
-
-
9
-
-
PC1  
PC2  
I/O  
I/O  
TTa  
TTa  
ADC12_IN7  
ADC12_IN8  
EVENTOUT,  
TIM1_CH3  
-
-
10  
EVENTOUT,  
TIM1_CH4,  
TIM1_BKIN2  
-
-
11  
12  
C5  
PC3  
I/O  
TTa  
ADC12_IN9  
6
-
-
-
8
-
E7  
F7  
E6  
-
VSSA/VREF-  
VREF+  
S
S
S
S
-
-
-
-
Analog ground/Negative reference voltage  
-
-
-
-
VDDA  
5
7
5
6
9
13  
14  
VDDA/VREF+  
Analog power supply/Positive reference voltage  
TIM2_CH1/  
TIM2_ETR,  
TSC_G1_IO1,  
USART2_CTS,  
EVENTOUT  
(2)  
ADC1_IN1  
,
10  
D6  
G7  
PA0  
PA1  
I/O  
I/O  
TTa  
TTa  
RTC_TAMP2/WKUP1  
TIM2_CH2,  
TSC_G1_IO2,  
USART2_RTS_DE,  
TIM15_CH1N,  
EVENTOUT  
(2)  
8
9
7
8
9
11  
12  
13  
15  
16  
17  
ADC1_IN2 , RTC_REFIN  
TIM2_CH3,  
TSC_G1_IO3,  
USART2_TX,  
COMP2_OUT,  
TIM15_CH1,  
EVENTOUT  
(2)  
D5  
E5  
PA2  
PA3  
I/O  
I/O  
TTa  
TTa  
ADC1_IN3 , COMP2_INM  
TIM2_CH4,  
TSC_G1_IO4,  
USART2_RX,  
TIM15_CH2,  
EVENTOUT  
(2)  
10  
ADC1_IN4  
-
-
-
-
-
-
18  
19  
F6  
VSS  
VDD  
S
S
-
-
-
-
-
-
G6  
TIM3_CH2,  
TSC_G2_IO1,  
SPI1_NSS,  
USART2_CK,  
EVENTOUT  
(2)  
ADC2_IN1 , DAC1_OUT1,  
(3)  
11  
12  
10  
11  
14  
15  
20  
21  
F5  
PA4  
I/O  
I/O  
TTa  
TTa  
COMP2_INM, COMP4_INM,  
COMP6_INM  
TIM2_CH1/  
TIM2_ETR,  
TSC_G2_IO2,  
SPI1_SCK,  
EVENTOUT  
(2)  
ADC2_IN2 , DAC1_OUT2,  
(3)  
G5  
PA5  
OPAMP2_VINM  
DS9994 Rev 9  
37/125  
46  
Pinout and pin descriptions  
STM32F334x4 STM32F334x6 STM32F334x8  
Pin functions  
Table 13. STM32F334x4/6/8 pin definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)  
Alternate  
Additional functions  
functions  
TIM16_CH1,  
TIM3_CH1,  
TSC_G2_IO3,  
SPI1_MISO,  
TIM1_BKIN,  
OPAMP2_DIG,  
EVENTOUT  
(2)  
ADC2_IN3 , DAC2_OUT1,  
(3)  
13  
14  
12  
16  
17  
22  
E4  
F4  
PA6  
I/O  
I/O  
TTa  
TTa  
OPAMP2_VOUT  
TIM17_CH1,  
TIM3_CH2,  
TSC_G2_IO4,  
SPI1_MOSI,  
TIM1_CH1N,  
EVENTOUT  
(2)  
ADC2_IN4 , COMP2_INP,  
13  
23  
PA7  
OPAMP2_VINP  
EVENTOUT,  
TIM1_ETR,  
USART1_TX  
(2)  
-
-
-
-
-
-
24  
25  
G4  
E3  
PC4  
PC5  
I/O  
I/O  
TTa  
TTa  
ADC2_IN5  
EVENTOUT,  
TIM15_BKIN,  
TSC_G3_IO1,  
USART1_RX  
ADC2_IN11, OPAMP2_VINM  
TIM3_CH3,  
TSC_G3_IO2,  
TIM1_CH2N,  
EVENTOUT  
ADC1_IN11, COMP4_INP,  
OPAMP2_VINP  
15  
14  
15  
18  
19  
26  
27  
F3  
PB0  
PB1  
I/O  
I/O  
TTa  
TTa  
TIM3_CH4,  
TSC_G3_IO3,  
TIM1_CH3N,  
COMP4_OUT,  
HRTIM1_SCOUT,  
EVENTOUT  
-
G3  
ADC1_IN12  
TSC_G3_IO4,  
HRTIM_SCIN,  
EVENTOUT  
-
-
-
-
20  
21  
28  
29  
F2  
PB2  
I/O  
I/O  
TTa  
TT  
ADC2_IN12, COMP4_INM  
TIM2_CH3,  
TSC_SYNC,  
USART3_TX,  
HRTIM1_FLT3,  
EVENTOUT  
G2  
PB10  
-
TIM2_CH4,  
TSC_G6_IO1,  
USART3_RX,  
HRTIM1_FLT4,  
EVENTOUT  
-
-
22  
30  
G1  
PB11  
I/O  
TTa  
COMP6_INP  
16  
17  
16  
17  
23  
24  
31  
32  
-
VSS  
VDD  
S
S
-
-
Digital ground  
Digital power supply  
TSC_G6_IO2,  
B2  
TIM1_BKIN,  
USART3_CK,  
HRTIM1_CHC1,  
EVENTOUT  
-
-
25  
26  
33  
34  
F1  
E2  
PB12  
PB13  
I/O  
I/O  
TTa  
TTa  
ADC2_IN13  
TSC_G6_IO3,  
TIM1_CH1N,  
USART3_CTS,  
HRTIM1_CHC2,  
EVENTOUT  
-
ADC1_IN13  
38/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Pinout and pin descriptions  
Pin functions  
Table 13. STM32F334x4/6/8 pin definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)  
Alternate  
functions  
Additional functions  
TIM15_CH1,  
TSC_G6_IO4,  
TIM1_CH2N,  
USART3_RTS_DE,  
HRTIM1_CHD1,  
EVENTOUT  
-
-
27  
35  
E1  
PB14  
I/O  
TTa  
ADC2_IN14, OPAMP2_VINP  
TIM15_CH2,  
TIM15_CH1N,  
TIM1_CH3N,  
HRTIM1_CHD2,  
EVENTOUT  
ADC2_IN15, COMP6_INM,  
RTC_REFIN  
-
-
-
-
28  
36  
37  
D3  
PB15  
PC6  
I/O  
I/O  
TTa  
FT  
EVENTOUT,  
TIM3_CH1,  
HRTIM1_EEV10,  
COMP6_OUT  
-
-
-
EVENTOUT,  
TIM3_CH2,  
HRTIM1_FLT5  
-
-
-
-
-
-
-
-
-
38  
39  
40  
D4  
PC7  
PC8  
PC9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
EVENTOUT,  
TIM3_CH3,  
HRTIM1_CHE1  
-
-
EVENTOUT,  
TIM3_CH4,  
HRTIM1_CHE2  
MCO, TIM1_CH1,  
USART1_CK,  
HRTIM1_CHA1,  
EVENTOUT  
18  
19  
18  
19  
29  
30  
41  
42  
D1  
D2  
PA8  
PA9  
I/O  
I/O  
FT  
FT  
-
-
TSC_G4_IO1,  
TIM1_CH2,  
USART1_TX,  
TIM15_BKIN,  
TIM2_CH3,  
HRTIM1_CHA2,  
EVENTOUT  
TIM17_BKIN,  
TSC_G4_IO2,  
TIM1_CH3,  
USART1_RX,  
COMP6_OUT,  
TIM2_CH4,  
20  
20  
31  
43  
C4  
PA10  
I/O  
FT  
-
HRTIM1_CHB1,  
EVENTOUT  
TIM1_CH1N,  
USART1_CTS,  
CAN_RX,  
21  
22  
21  
22  
32  
33  
44  
45  
C1  
C3  
PA11  
PA12  
I/O  
I/O  
FT  
FT  
TIM1_CH4,  
-
-
TIM1_BKIN2,  
HRTIM1_CHB2,  
EVENTOUT  
TIM16_CH1,  
TIM1_CH2N,  
USART1_RTS_DE,  
COMP2_OUT,  
CAN_TX,TIM1_ETR,  
HRTIM1_FLT1,  
EVENTOUT  
DS9994 Rev 9  
39/125  
46  
Pinout and pin descriptions  
STM32F334x4 STM32F334x6 STM32F334x8  
Pin functions  
Table 13. STM32F334x4/6/8 pin definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)  
Alternate  
Additional functions  
functions  
JTMS/SWDAT,  
TIM16_CH1N,  
TSC_G4_IO3,  
IR_OUT,  
USART3_CTS,  
EVENTOUT  
23  
23  
34  
46  
C2  
PA13  
I/O  
FT  
-
-
-
-
-
35  
36  
47  
48  
B1  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
JTCK/SWCLK,  
TSC_G4_IO4,  
I2C1_SDA,  
TIM1_BKIN,  
USART2_TX,  
EVENTOUT  
24  
24  
37  
49  
A1  
PA14  
I/O  
FTf  
-
JTDI,  
TIM2_CH1/TIM2_ET  
R, TSC_SYNC,  
I2C1_SCL,  
25  
25  
38  
50  
A2  
PA15  
I/O  
FTf  
SPI1_NSS,  
-
USART2_RX,  
TIM1_BKIN,  
HRTIM1_FLT2,  
EVENTOUT  
EVENTOUT,  
USART3_TX  
-
-
-
-
-
-
51  
52  
-
-
PC10  
PC11  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT,  
HRTIM1_EEV2,  
USART3_RX  
EVENTOUT,  
HRTIM1_EEV1,  
USART3_CK  
-
-
-
-
-
-
53  
54  
-
-
PC12  
PD2  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT,  
TIM3_ETR  
JTDO/TRACE  
SWO, TIM2_CH2,  
TSC_G5_IO1,  
SPI1_SCK,  
26  
26  
39  
55  
A3  
PB3  
I/O  
FT  
USART2_TX,  
TIM3_ETR,  
-
HRTIM1_SCOUT,  
HRTIM1_EEV9,  
EVENTOUT  
NJTRST,  
TIM16_CH1,  
TIM3_CH1,  
TSC_G5_IO2,  
SPI1_MISO,  
USART2_RX,  
TIM17_BKIN,  
HRTIM1_EEV7,  
EVENTOUT  
27  
27  
40  
56  
B3  
PB4  
I/O  
FT  
-
40/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Pinout and pin descriptions  
Pin functions  
Table 13. STM32F334x4/6/8 pin definitions (continued)  
Pin Number  
Pin name  
(function after  
reset)  
Alternate  
functions  
Additional functions  
TIM16_BKIN,  
TIM3_CH2,  
I2C1_SMBA,  
SPI1_MOSI,  
USART2_CK,  
TIM17_CH1,  
HRTIM1_EEV6,  
EVENTOUT  
28  
29  
28  
41  
42  
57  
B4  
A4  
PB5  
PB6  
I/O  
I/O  
FT  
-
TIM16_CH1N,  
TSC_G5_IO3,  
I2C1_SCL,  
USART1_TX,  
HRTIM1_SCIN,  
HRTIM1_EEV4,  
EVENTOUT  
29  
58  
FTf  
-
TIM17_CH1N,  
TSC_G5_IO4,  
I2C1_SDA,  
30  
31  
30  
31  
43  
44  
59  
60  
B5  
A5  
PB7  
I/O  
FTf  
B
USART1_RX,  
TIM3_CH4,  
HRTIM1_EEV3,  
EVENTOUT  
-
-
BOOT0  
I
-
TIM16_CH1,  
TSC_SYNC,  
I2C1_SCL,  
USART3_RX,  
CAN_RX,  
TIM1_BKIN,  
HRTIM1_EEV8,  
EVENTOUT  
-
-
-
-
45  
46  
61  
62  
B6  
A6  
PB8  
PB9  
I/O  
I/O  
FTf  
FTf  
-
-
TIM17_CH1,  
I2C1_SDA, IR_OUT,  
USART3_TX,  
COMP2_OUT,  
CAN_TX,  
HRTIM1_EEV5,  
EVENTOUT  
32  
1
32  
1
47  
48  
63  
64  
B7  
A7  
VSS  
VDD  
S
S
-
-
-
-
-
-
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of  
GPIO PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup  
registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP  
register description sections in the reference manual.  
2. Fast ADC channel.  
3. These GPIOs offer a reduced touch sensing sensitivity. It is thus recommended to use them as sampling capacitor I/O.  
DS9994 Rev 9  
41/125  
46  
Table 14. Alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
TIM1  
AF12  
AF13  
AF14  
-
AF15  
Port  
TIM2/TIM15/  
TIM16/TIM17/  
EVENT  
TIM1/TIM3/  
TIM15/  
TIM16  
USART1/USA  
RT2/USART3/  
GPCOMP6  
GPCOMP2/  
GPCOMP4/  
GPCOMP6  
SPI1/  
Infrared  
TIM1/  
Infrared  
CAN/TIM1/  
TIM15  
TIM2/TIM3/TI  
M17  
HRTIM1/  
TIM1  
HRTIM1/  
OPAMP2  
SYS_AF  
HRTIM1/TSC  
I2C1/TIM1  
EVENT  
TIM2_CH1/TI  
M2_ETR  
PA0  
-
-
-
-
TSC_G1_IO1  
TSC_G1_IO2  
-
-
-
-
-
-
USART2_CTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
USART2_RTS  
_DE  
PA1  
TIM2_CH2  
TIM15_CH1N  
PA2  
PA3  
PA4  
-
-
-
TIM2_CH3  
TIM2_CH4  
-
-
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
-
-
-
-
-
-
-
USART2_TX  
USART2_RX  
USART2_CK  
COMP2_OUT  
TIM15_CH1  
TIM15_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
-
-
TIM3_CH2  
SPI1_NSS  
TIM2_CH1/TI  
M2_ETR  
PA5  
-
-
TSC_G2_IO2  
-
SPI1_SCK  
-
-
-
-
-
-
-
-
-
EVENTOUT  
PA6  
PA7  
PA8  
PA9  
PA10  
PA11  
-
TIM16_CH1  
TIM3_CH1  
TSC_G2_IO3  
-
-
-
-
-
-
SPI1_MISO  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH1N  
-
-
-
-
-
-
OPAMP2_DIG  
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
TIM17_CH1  
TIM3_CH2  
TSC_G2_IO4  
SPI1_MOSI  
-
-
-
-
-
-
Port A  
MCO  
-
-
-
-
-
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
-
-
TIM15_BKIN  
-
-
-
-
HRTIM1_CHA1  
HRTIM1_CHA2  
HRTIM1_CHB1  
HRTIM1_CHB2  
-
-
-
-
TSC_G4_IO1  
TSC_G4_IO2  
-
-
TIM2_CH3  
TIM2_CH4  
-
-
-
TIM17_BKIN  
-
COMP6_OUT  
-
-
-
CAN_RX  
TIM1_CH4  
TIM1_BKIN2  
USART1_RTS  
_DE  
PA12  
-
TIM16_CH1  
-
-
-
-
TIM1_CH2N  
COMP2_OUT  
CAN_TX  
-
TIM1_ETR  
-
HRTIM1_FLT1  
-
EVENTOUT  
PA13  
PA14  
JTMS/SWDAT TIM16_CH1N  
-
-
TSC_G4_IO3  
TSC_G4_IO4  
-
IR_OUT  
-
-
USART3_CTS  
USART2_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
JTCK/SWCLK  
JTDI  
-
I2C1_SDA  
TIM1_BKIN  
TIM2_CH1/  
TIM2_ETR  
PA15  
-
TSC_SYNC  
I2C1_SCL  
SPI1_NSS  
-
USART2_RX  
-
TIM1_BKIN  
-
-
-
HRTIM1_FLT2  
-
EVENTOUT  
PB0  
PB1  
PB2  
-
-
-
-
-
-
TIM3_CH3  
TIM3_CH4  
-
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
-
-
-
-
-
-
TIM1_CH2N  
TIM1_CH3N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
COMP4_OUT  
-
HRTIM1_SCOUT  
HRTIM1_SCIN  
JTDO/TRACE  
SWO  
HRTIM1_  
SCOUT  
PB3  
TIM2_CH2  
-
TSC_G5_IO1  
-
SPI1_SCK  
-
USART2_TX  
-
-
TIM3_ETR  
-
HRTIM1_EEV9  
-
EVENTOUT  
PB4  
PB5  
NJTRST  
-
TIM16_CH1  
TIM16_BKIN  
TIM3_CH1  
TIM3_CH2  
TSC_G5_IO2  
-
-
SPI1_MISO  
SPI1_MOSI  
-
-
USART2_RX  
USART2_CK  
-
-
-
-
TIM17_BKIN  
TIM17_CH1  
-
-
-
-
HRTIM1_EEV7  
HRTIM1_EEV6  
-
-
EVENTOUT  
EVENTOUT  
Port B  
I2C1_SMBA  
HRTIM1_  
SCIN  
PB6  
-
TIM16_CH1N  
-
TSC_G5_IO3  
I2C1_SCL  
-
-
USART1_TX  
-
-
-
-
HRTIM1_EEV4  
-
EVENTOUT  
PB7  
PB8  
PB9  
-
-
-
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
-
-
-
TSC_G5_IO4  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
-
-
-
-
USART1_RX  
USART3_RX  
USART3_TX  
-
-
TIM3_CH4  
-
-
-
-
HRTIM1_EEV3  
HRTIM1_EEV8  
HRTIM1_EEV5  
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_SYNC  
-
-
-
CAN_RX  
CAN_TX  
-
-
TIM1_BKIN  
-
IR_OUT  
COMP2_OUT  
 
Table 14. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
TIM1  
AF12  
AF13  
AF14  
-
AF15  
Port  
TIM2/TIM15/  
TIM16/TIM17/  
EVENT  
TIM1/TIM3/  
TIM15/  
TIM16  
USART1/USA  
RT2/USART3/  
GPCOMP6  
GPCOMP2/  
GPCOMP4/  
GPCOMP6  
SPI1/  
Infrared  
TIM1/  
Infrared  
CAN/TIM1/  
TIM15  
TIM2/TIM3/TI  
M17  
HRTIM1/  
TIM1  
HRTIM1/  
OPAMP2  
SYS_AF  
HRTIM1/TSC  
I2C1/TIM1  
EVENT  
PB10  
-
-
-
-
TIM2_CH3  
-
-
-
-
TSC_SYNC  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
-
-
-
-
-
-
-
-
-
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
HRTIM1_FLT3  
HRTIM1_FLT4  
HRTIM1_CHC1  
HRTIM1_CHC2  
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PB11  
PB12  
PB13  
TIM2_CH4  
-
-
-
TIM1_BKIN  
TIM1_CH1N  
Port B  
USART3_RTS  
_DE  
PB14  
-
TIM15_CH1  
-
TSC_G6_IO4  
-
-
TIM1_CH2N  
-
-
-
-
-
HRTIM1_CHD1  
-
EVENTOUT  
PB15  
PC0  
-
-
-
-
-
-
-
-
TIM15_CH2  
EVENTOUT  
-
TIM15_CH1N  
TIM1_CH1  
-
-
TIM1_CH3N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
HRTIM1_CHD2  
-
-
-
-
-
-
-
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC2  
PC3  
PC4  
PC5  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
TIM15_BKIN  
-
-
-
-
TIM1_BKIN2  
-
-
-
-
USART1_TX  
USART1_RX  
TSC_G3_IO1  
HRTIM1_  
EEV10  
PC6  
-
EVENTOUT  
TIM3_CH1  
-
-
-
COMP6_OUT  
-
-
-
-
-
-
-
-
PC7  
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
TIM3_CH2  
HRTIM1_FLT5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port C  
PC8  
EVENTOUT  
TIM3_CH3  
HRTIM1_CHE1  
-
-
-
PC9  
EVENTOUT  
TIM3_CH4  
HRTIM1_CHE2  
-
-
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PD2  
EVENTOUT  
-
-
-
-
USART3_TX  
EVENTOUT  
-
HRTIM1_EEV2  
-
-
USART3_RX  
EVENTOUT  
-
HRTIM1_EEV1  
-
-
USART3_CK  
-
-
-
-
-
-
-
-
TIM1_CH1N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port D  
Port F  
EVENTOUT  
TIM3_ETR  
-
PF0  
-
-
-
-
TIM1_CH3N  
-
PF1  
Memory mapping  
STM32F334x4 STM32F334x6 STM32F334x8  
5
Memory mapping  
Figure 9. STM32F334x4/6/8 memory map  
0x5000 03FF  
AHB3  
0xFFFF FFFF  
0x5000 0000  
Cortex-M4  
with FPU  
Internal  
Reserved  
7
0xE000 0000  
6
0x4800 1800  
0x4800 0000  
Peripherals  
AHB2  
Reserved  
AHB1  
0x4002 43FF  
0x4002 0000  
0xC000 0000  
Reserved  
5
0x4001 6C00  
0x4001 0000  
APB2  
Reserved  
APB1  
0xA000 0000  
4
0x4000 A000  
0x4000 0000  
0x8000 0000  
3
0x1FFF FFFF  
0x1FFF F800  
Option bytes  
0x6000 0000  
System memory  
2
0x1FFF D800  
0x1000 1000  
Reserved  
CCM RAM  
Reserved  
Peripherals  
0x4000 0000  
0x1000 0000  
0x0801 0000  
1
SRAM  
CODE  
0x2000 0000  
Flash memory  
0x0800 0000  
0x0001 0000  
0
Reserved  
Flash, system  
memory or SRAM,  
depending on BOOT  
configuration  
0x0000 0000  
Reserved  
0x0000 0000  
MSv33150V1  
44/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Memory mapping  
-
Table 15. STM32F334x4/6/8 peripheral register boundary addresses  
Size  
(bytes)  
Bus  
Boundary address  
Peripheral  
AHB3  
0x5000 0000 - 0x5000 03FF  
0x4800 1800 - 0x4FFF FFFF  
0x4800 1400 - 0x4800 17FF  
0x4800 1000 - 0x4800 13FF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0400 - 0x4002 0FFF  
0x4002 0000 - 0x4002 03FF  
0x4001 8000 - 0x4001 FFFF  
0x4001 7400 - 0x4001 77FF  
0x4001 4C00 - 0x4001 73FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 0800 - 0x4001 2BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 9C00 - 0x4000 FFFF  
1 K  
~132 M  
1 K  
ADC1 - ADC2  
-
AHB2  
-
Reserved  
GPIOF  
1 K  
Reserved  
GPIOD  
1 K  
1 K  
GPIOC  
AHB2  
-
1 K  
GPIOB  
1 K  
GPIOA  
~128 M  
1 K  
Reserved  
TSC  
3 K  
Reserved  
CRC  
1 K  
3 K  
Reserved  
Flash interface  
Reserved  
RCC  
AHB1  
1 K  
3 K  
1 K  
3 K  
Reserved  
DMA1  
1 K  
-
32 K  
1 K  
Reserved  
HRTIM1  
Reserved  
TIM17  
APB2  
12 K  
1 K  
1 K  
TIM16  
1 K  
TIM15  
1 K  
Reserved  
USART1  
Reserved  
SPI1  
1 K  
APB2  
1 K  
1 K  
1 K  
TIM1  
9 K  
Reserved  
EXTI  
1 K  
1 K  
SYSCFG + COMP + OPAMP  
Reserved  
-
25 K  
DS9994 Rev 9  
45/125  
46  
 
Memory mapping  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 15. STM32F334x4/6/8 peripheral register boundary addresses (continued)  
Size  
Bus  
Boundary address  
Peripheral  
(bytes)  
0x4000 9800 - 0x4000 9BFF  
0x4000 7800 - 0x4000 97FF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6800 - 0x4000 6FFF  
0x4000 6400 - 0x4000 67FF  
0x4000 5800 - 0x4000 63FF  
0x4000 5400 - 0x4000 57FF  
0x4000 4C00 - 0x4000 53FF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 3400 - 0x4000 43FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1800 - 0x4000 27FF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0800 - 0x4000 0FFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
0x2000 3000 - 3FFF FFFF  
0x2000 0000 - 0x2000 2FFF  
0x1FFF F800 - 0x1FFF FFFF  
0x1FFF D800 - 0x1FFF F7FF  
0x1000 2000 - 0x1FFF D7FF  
0x1000 0000 - 0x1000 0FFF  
0x0804 0000 - 0x0FFF FFFF  
0x0800 0000 - 0x0800 FFFF  
0x0004 0000 - 0x07FF FFFF  
1 K  
8 K  
DAC2  
Reserved  
DAC1  
1 K  
1 K  
PWR  
2 K  
Reserved  
bxCAN  
1 K  
3 K  
Reserved  
I2C1  
1 K  
2 K  
Reserved  
USART3  
USART2  
Reserved  
IWDG  
1 K  
APB1  
1 K  
2 K  
1 K  
1 K  
WWDG  
1 K  
RTC  
4 K  
Reserved  
TIM7  
1 K  
1 K  
TIM6  
2 K  
Reserved  
TIM3  
1 K  
1 K  
TIM2  
-
-
-
-
-
-
-
-
-
~512 M  
12 K  
2 K  
Reserved  
SRAM  
Option bytes  
System memory  
Reserved  
CCM RAM  
Reserved  
Main Flash memory  
Reserved  
8 K  
~256 M  
4 K  
~128 M  
64 K  
~128 M  
Main Flash memory, system  
memory or SRAM depending  
on BOOT configuration  
-
0x0000 000 - 0x0000 FFFF  
64 K  
46/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3 σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V, V  
3.3 V. They are given only as design guidelines and are not tested.  
=
A
DD  
DDA  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Input voltage on a pin  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19211V1  
MS19210V1  
DS9994 Rev 9  
47/125  
103  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
6.1.6  
Power-supply scheme  
Figure 12. Power-supply scheme  
V
BAT  
Backup circuitry  
(LSE, RTC,  
Power  
switch  
1.65 - 3.6V  
Wake-up logic  
Backup registers)  
OUT  
IN  
I/O  
Logic  
GPIOs  
Kernel logic  
(CPU,  
digital  
V
DD  
& memories)  
4 x V  
DD  
Regulator  
4 x 100 nF  
+ 1 x 4.7 μF  
4 x V  
SS  
V
DDA  
V
DDA  
10 nF  
+ 1 μF  
Analog such as RCs, PLL,  
comparators, OPAMP  
V
V
ADC/  
DAC  
REF+  
REF-  
V
SSA  
MS31954V1  
Caution:  
Each power-supply pair (V /V , V  
/V  
etc..) must be decoupled with filtering  
DD SS  
DDA SSA  
ceramic capacitors as shown above. These capacitors must be placed as close as possible  
to or below the appropriate pins on the underside of the PCB, to ensure the good  
functionality of the device.  
48/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.1.7  
Measurement of the current consumption  
Figure 13. Scheme of the current-consumption measurement  
I
DD_VBAT  
V
BAT  
I
DD  
V
DD  
I
DDA  
V
DDA  
MS19213V1  
DS9994 Rev 9  
49/125  
103  
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics,  
Table 17: Current characteristics, and Table 18: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect the device reliability.  
(1)  
Table 16. Voltage characteristics  
Symbol  
Ratings  
Min.  
Max.  
Unit  
External main supply voltage (including VDDA, VBAT  
VDD–VSS  
-0.3  
4.0  
and VDD  
)
VDD–VDDA  
Allowed voltage difference for VDD > VDDA  
Input voltage on FT and FTf pins  
-
0.4  
VSS 0.3  
VDD + 4.0  
V
Input voltage on TTa and TT pins  
VSS 0.3  
4.0  
4.0  
9
(2)  
VIN  
Input voltage on any other pin  
VSS 0.3  
Input voltage on Boot0 pin  
0
-
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins(3)  
50  
50  
mV  
-
|VSSX VSS  
|
-
see Section 6.3.12: Electrical  
sensitivity characteristics  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range. The following relationship must be respected between VDDA and VDD  
VDDA must power on before or at the same time as VDD in the power up sequence.  
:
V
DDA must be greater than or equal to VDD.  
2. VIN maximum must always be respected. Refer to Table 17: Current characteristics for the maximum allowed injected  
current values.  
3. Include VREF- pin.  
50/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 17. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
ΣIVDD  
ΣIVSS  
IVDD  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power line (source)(1)  
Maximum current out of each VSS _x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on TT, FT, FTf and B pins(3)  
140  
-140  
100  
100  
25  
IVSS  
IIO(PIN)  
-25  
80  
mA  
ΣIIO(PIN)  
-80  
-5 /+0  
±5  
IINJ(PIN)  
Injected current on TC and RST pin(4)  
Injected current on TTa pins(5)  
±5  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
±25  
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 16: Voltage characteristics for the maximum allowed input voltage values.  
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be  
exceeded. Refer also to Table 16: Voltage characteristics for the maximum allowed input voltage values. Negative injection  
disturbs the analog performance of the device. See note 2.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 18. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
DS9994 Rev 9  
51/125  
103  
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 19. General operating conditions  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
-
-
-
-
0
0
0
2
72  
36  
72  
3.6  
MHz  
Core, SRAM and Flash memory  
power supply  
VDD18  
-
1.65  
2
1.95  
3.6  
V
V
V
Analog operating voltage  
(OPAMP and DAC not used)  
Must have a potential equal to  
or higher than VDD  
VDDA  
Analog operating voltage  
(OPAMP and DAC used)  
2.4  
3.6  
VBAT  
Backup operating voltage  
I/O input voltage  
-
1.65  
–0.3  
-0.3  
–0.3  
–0.3  
0
3.6  
TC I/O  
V
DD+0.3  
3.6  
TT I/O  
TTa I/O  
VDDA+0.3  
5.5  
VIN  
FT and FTf I/O(1)  
BOOT0  
5.5  
LQFP64  
-
444  
364  
333  
540  
414  
85  
mW  
mW  
mW  
mW  
mW  
LQFP48  
-
Power dissipation at TA = 85 °C for  
suffix 6 or TA = 105 °C for suffix  
7(2)  
PD  
LQFP32  
-
UFQFPN32  
-
WLCSP49  
-
Maximum power dissipation  
Low power dissipation(3)  
Maximum power dissipation  
Low power dissipation(3)  
6 suffix version  
7 suffix version  
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for 6 suffix  
version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7 suffix  
version  
Junction temperature range  
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.  
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 81: Package thermal  
characteristics).  
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.7:  
Thermal characteristics).  
52/125  
DS9994 Rev 9  
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 20 are derived from tests performed under the ambient  
temperature condition summarized in Table 19.  
Table 20. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
VDD rise time rate  
0
20  
0
tVDD  
-
VDD fall time rate  
µs/V  
VDDA rise time rate  
VDDA fall time rate  
tVDDA  
-
20  
6.3.3  
Characteristics of the embedded reset and power-control block  
The parameters given in Table 21 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 19.  
DD  
Table 21. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Falling edge  
Rising edge  
Min. Typ. Max. Unit  
1.8(2) 1.88 1.96  
1.84 1.92 2.0  
V
V
Power on/power down  
reset threshold  
(1)  
VPOR/PDR  
(1)  
VPDRhyst  
PDR hysteresis  
-
-
-
40  
-
mV  
POR reset  
temporization  
(3)  
tRSTTEMPO  
1.5 2.5  
4.5  
ms  
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector  
monitors only VDD  
.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
3. Guaranteed by design, not tested in production.  
DS9994 Rev 9  
53/125  
103  
 
 
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 22. Programmable voltage detector characteristics  
Symbol  
Parameter  
Conditions  
Rising edge  
Min.(1) Typ. Max.(1) Unit  
2.1  
2
2.18  
2.08  
2.26  
2.16  
2.37  
2.27  
2.48  
2.38  
2.58  
2.48  
2.69  
2.59  
2.79  
2.69  
2.9  
VPVD0  
PVD threshold 0  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.19 2.28  
2.09 2.18  
2.28 2.38  
2.18 2.28  
2.38 2.48  
2.28 2.38  
2.47 2.58  
2.37 2.48  
2.57 2.68  
2.47 2.58  
2.66 2.78  
2.56 2.68  
2.76 2.88  
2.66 2.78  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
VPVD7  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
V
2.8  
3
PVD threshold 7  
PVD hysteresis  
2.9  
(2)  
VPVDhyst  
-
-
-
-
100  
0.15  
-
mV  
µA  
PVD current  
consumption  
IDD(PVD)  
0.26  
1. Data based on characterization results only, not tested in production.  
2. Guaranteed by design, not tested in production.  
6.3.4  
Embedded reference voltage  
The parameters given in Table 23 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 19.  
DD  
Table 23. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
VREFINT  
Internal reference voltage –40 °C < TA < +105 °C 1.20 1.23  
ADC sampling time when  
1.25  
-
V
TS_vrefint  
reading the internal  
reference voltage  
-
2.2  
-
µs  
Internal reference voltage  
spread over the  
temperature range  
VRERINT  
TCoeff  
VDD = 31.8 V ±10 mV  
-
-
-
-
-
10(1)  
mV  
Temperature coefficient  
100(1) ppm/°C  
1. Guaranteed by design, not tested in production.  
54/125  
DS9994 Rev 9  
 
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 24. Internal reference voltage calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 30 °C  
VDDA= 3.3 V  
VREFINT_CAL  
0x1FFF F7BA - 0x1FFF F7BB  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 13: Scheme of the current-  
consumption measurement.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to CoreMark code.  
Note:  
The total current consumption is the sum of the IDD and IDDA values.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted to the f frequency (0 wait state from 0  
HCLK  
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)  
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)  
When the peripherals are enabled f  
= f  
and f  
= f  
PCLK1 HCLK/2  
PCLK2  
HCLK  
When f  
> 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or  
HCLK  
HSE (8 MHz) in bypass mode.  
The parameters given in Table 25 to Table 29 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 19.  
DS9994 Rev 9  
55/125  
103  
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 25. Typical and maximum current consumption from V supply at V = 3.6V  
DD  
DD  
All peripherals enabled  
All peripherals disabled  
(1)  
(1)  
Symbol Parameter Conditions fHCLK  
Max. @ TA  
Max. @ TA  
Unit  
Typ.  
Typ.  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
72 MHz 71.4  
77.9  
70.6  
56.6  
38.6  
30.2  
14.1  
8.9  
79.1  
71.3  
57.1  
38.9  
30.4  
14.3  
9.1  
80.0  
71.5  
57.7  
39.2  
30.6  
14.4  
9.5  
27.1 32.2  
24.2 27.0  
18.7 21.4  
12.9 14.6  
10.0 11.1  
32.4  
27.5  
21.6  
14.9  
11.2  
4.4  
32.4  
27.7  
21.9  
15.9  
12.3  
5.1  
64 MHz 63.9  
48 MHz 49.5  
External  
clock (HSE 32 MHz 34.0  
bypass)  
Supply  
24 MHz 25.9  
current in  
Run mode,  
executing  
from Flash  
8 MHz  
1 MHz  
9.3  
3.5  
3.3  
0.7  
4.0  
0.9  
1.0  
1.2  
64 MHz 61.6  
48 MHz 48.1  
32 MHz 33.3  
24 MHz 25.7  
68.1  
54.6  
37.8  
29.8  
12.2  
77.8  
70.5  
56.5  
37.7  
28.8  
13.2  
7.6  
68.8  
54.8  
37.9  
29.8  
12.3  
78.7  
70.7  
56.9  
37.9  
29.0  
13.3  
7.8  
70.1  
55.1  
38.0  
30.0  
12.8  
78.9  
70.9  
57.4  
38.0  
29.2  
13.8  
8.0  
24.1 27.0  
18.6 21.6  
12.7 14.4  
10.0 11.1  
27.1  
21.7  
14.9  
11.2  
4.2  
27.2  
21.9  
16.0  
12.3  
5.0  
Internal  
clock (HSI)  
8 MHz  
9.7  
3.4  
3.8  
IDD  
mA  
72 MHz 71.3  
64 MHz 63.8  
48 MHz 49.3  
27.6 32.1  
24.5 27.2  
18.1 21.6  
12.9 14.9  
32.2  
27.6  
21.8  
14.9  
11.3  
4.0  
32.3  
27.7  
21.8  
15.9  
11.5  
4.6  
External  
clock (HSE 32 MHz 33.9  
bypass)  
Supply  
24 MHz 25.8  
9.8  
3.2  
0.3  
11.1  
3.6  
current in  
Run mode,  
executing  
from RAM  
8 MHz  
1 MHz  
9.0  
3.2  
0.4  
0.8  
1.2  
64 MHz 61.3  
48 MHz 48.0  
32 MHz 33.1  
24 MHz 25.6  
66.9  
52.4  
35.6  
28.5  
11.6  
58.7  
52.7  
40.6  
28.8  
23.2  
11.5  
7.4  
67.3  
52.6  
35.8  
28.7  
11.6  
61.1  
54.5  
41.7  
29.2  
23.7  
11.7  
7.7  
67.8  
53.1  
36.6  
28.8  
11.7  
61.9  
54.8  
41.8  
29.5  
23.9  
11.9  
7.9  
24.1 26.9  
19.1 21.6  
12.6 14.8  
27.0  
21.6  
14.9  
11.3  
4.1  
27.1  
22.1  
15.9  
11.5  
4.7  
Internal  
clock (HSI)  
9.8  
3.0  
7.0  
6.3  
4.6  
3.0  
2.4  
0.6  
0.3  
5.4  
4.3  
2.9  
1.3  
0.5  
11.1  
3.1  
7.3  
6.7  
5.1  
3.3  
2.5  
0.9  
0.3  
6.5  
4.7  
3.1  
1.7  
0.7  
8 MHz  
9.7  
72 MHz 55.5  
64 MHz 49.8  
48 MHz 38.5  
8.4  
8.5  
7.0  
7.8  
5.6  
5.9  
External  
clock (HSE 32 MHz 26.9  
4.0  
4.5  
Supply  
current in  
Sleep  
bypass)  
24 MHz 19.1  
3.2  
3.8  
8 MHz  
1 MHz  
7.1  
3.0  
1.2  
2.1  
IDD  
mode,  
mA  
0.4  
1.2  
executing  
from Flash  
or RAM  
64 MHz 47.7  
48 MHz 35.0  
32 MHz 23.7  
24 MHz 18.5  
52.4  
40.4  
27.7  
23.8  
9.6  
52.6  
40.6  
28.3  
24.0  
9.7  
52.8  
40.8  
28.8  
24.2  
9.7  
6.8  
7.5  
5.2  
5.7  
Internal  
clock (HSI)  
3.2  
4.4  
2.2  
2.7  
8 MHz  
7.5  
1.1  
2.0  
1. Data based on characterization results, not tested in production unless otherwise specified.  
56/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 26. Typical and maximum current consumption from the V  
supply  
DDA  
VDDA = 2.4 V  
VDDA = 3.6 V  
Conditions  
(2)  
(2)  
Symbol Parameter  
fHCLK  
Max. @ TA  
Max. @ TA  
Unit  
(1)  
Typ.  
Typ.  
25 °C 85 °C 105 °C  
25 °C 85 °C 105 °C  
72 MHz 224  
64 MHz 196  
48 MHz 147  
32 MHz 100  
24 MHz 79  
252  
225  
174  
126  
102  
5
265  
237  
183  
133  
107  
5
269  
241  
186  
135  
108  
6
245  
214  
159  
109  
85  
272  
243  
186  
133  
108  
6
288  
257  
196  
142  
113  
6
295  
263  
201  
145  
116  
7
HSE  
bypass  
Supply  
current in  
Run/Sleep  
mode,  
code  
8 MHz  
1 MHz  
3
3
4
IDDA  
µA  
5
5
6
3
5
6
6
executing  
from Flash  
or RAM  
64 MHz 259  
48 MHz 208  
288  
239  
190  
168  
85  
304  
251  
198  
175  
88  
309  
254  
202  
178  
89  
285  
230  
179  
155  
71  
315  
258  
206  
181  
94  
332  
271  
216  
188  
96  
338  
277  
219  
191  
98  
HSI clock 32 MHz 162  
24 MHz 140  
8 MHz  
62  
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the  
PLL is off, IDDA is independent from the frequency.  
2. Data based on characterization results, not tested in production.  
Table 27. Typical and maximum V consumption in Stop and Standby modes  
DD  
Typ. @VDD (VDD=VDDA  
)
Max.(1)  
Symbol Parameter  
Conditions  
Unit  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in run  
mode, all  
oscillators OFF  
17.51 17.68 17.84 18.17 18.57 19.39 30.6 232.5 612.2  
Supply  
current in  
Stop mode  
Regulator in low-  
power mode, all 6.44 6.51 6.60 6.73 6.96 7.20 20.0 246.4 585.0  
oscillators OFF  
IDD  
µA  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
0.73 0.89 1.02 1.14 1.28 1.44  
0.55 0.66 0.75 0.85 0.93 1.01  
-
-
-
LSI OFF and  
IWDG OFF  
4.9  
7.0  
7.9  
1. Data based on characterization results, not tested in production unless otherwise specified.  
DS9994 Rev 9  
57/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
consumption in Stop and Standby modes  
Table 28. Typical and maximum V  
DDA  
Typ. @VDD (VDD = VDDA  
)
Max.(1)  
Symbo  
l
Uni  
t
Parameter  
Conditions  
TA = TA = TA =  
25 °C 85 °C 105 °C  
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V  
Regulator in  
run/low-power  
mode, all  
Supply  
current in  
Stop mode  
1.67 1.79 1.91 2.04 2.19 2.35  
2.5  
5.9  
6.2  
oscillators OFF  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
2.06 2.24 2.41 2.60 2.80 3.04  
1.54 1.68 1.78 1.92 2.06 2.22  
-
-
-
LSI OFF and  
IWDG OFF  
2.6  
3.0  
3.8  
IDDA  
µA  
Regulator in  
run/low-power  
mode, all  
Supply  
current in  
Stop mode  
0.97 0.99 1.03 1.07 1.14 1.22  
-
-
-
oscillators OFF  
LSI ON and  
IWDG ON  
Supply  
current in  
Standby  
mode  
1.36 1.44 1.52 1.62 1.76 1.91  
0.86 0.88 0.91 0.95 1.03 1.09  
-
-
-
-
-
-
LSI OFF and  
IWDG OFF  
1. Data based on characterization results, not tested in production.  
Table 29. Typical and maximum current consumption from V  
supply  
BAT  
Max.  
@VBAT= 3.6V(2)  
Typ.@VBAT  
Para  
meter  
Conditions  
Symbol  
Unit  
(1)  
TA= TA=  
TA=  
1.65V 1.8V 2V 2.4V 2.7V 3V 3.3V 3.6V  
25°C 85°C 105°C  
LSE & RTC  
ON; “Xtal  
mode” lower  
driving  
capability;  
LSEDRV[1:0]  
= '00'  
0.42 0.44 0.47 0.54 0.60 0.66 0.74 0.82  
-
-
-
-
-
-
Backup  
domain  
supply  
current  
IDD_VBAT  
µA  
LSE & RTC  
ON; “Xtal  
mode” higher  
driving  
0.71 0.74 0.77 0.85 0.91 0.98 1.06 1.16  
capability;  
LSEDRV[1:0]  
= '11'  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Data based on characterization results, not tested in production.  
58/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Figure 14. Typical V  
current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)  
BAT  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
1.65 V  
1.8 V  
2 V  
2.4 V  
2.7 V  
3 V  
3.3 V  
3.6 V  
0.00  
25°C  
60°C  
85°C  
105°C  
(
TA  
°C)  
MS34525V1  
Typical current consumption  
The MCU is placed under the following conditions:  
V
= V  
= 3.3 V  
DDA  
DD  
All I/O pins available on each package are in analog input configuration  
The Flash access time is adjusted to f frequency (0 wait states from 0 to 24 MHz,  
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash  
prefetch is ON  
HCLK  
When the peripherals are enabled, f  
= f  
, f  
= f  
APB1  
AHB/2 APB2 AHB  
PLL is used for frequencies greater than 8 MHz  
AHB prescaler of 2, 4, 8, 16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,  
500 kHz and 125 kHz respectively.  
Typical current consumption in Run mode, code with data processing running from  
Flash  
DS9994 Rev 9  
59/125  
103  
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 30. Typical current consumption in Run mode, code with data processing  
running from Flash memory  
Typ.  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
70.6  
60.3  
46.0  
31.3  
25.0  
16.2  
8.4  
25.2  
22.6  
17.3  
12.0  
9.3  
Supply current in  
Run mode from  
VDD supply  
6.5  
IDD  
mA  
3.55  
2.21  
1.52  
1.17  
0.94  
0.82  
234.0  
208.6  
153.5  
103.6  
80.0  
56.6  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
4 MHz  
4.75  
2.81  
1.82  
1.34  
0.93  
240.0  
209.9  
154.5  
104.1  
80.2  
56.8  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
Running from HSE  
crystal clock 8 MHz,  
code executing from  
Flash memory  
Supply current in  
Run mode from  
VDDA supply  
(1) (2)  
IDDA  
µA  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
1. VDDA supervisor is OFF.  
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,  
OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections.  
60/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 31. Typical current consumption in Sleep mode, code running from Flash or RAM  
Typ.  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
Peripherals  
enabled  
Peripherals  
disabled  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
51.8  
46.4  
35.0  
23.7  
18.0  
12.2  
6.2  
6.3  
5.7  
4.40  
3.13  
2.49  
1.85  
0.99  
0.88  
0.80  
0.76  
0.74  
0.72  
236.7  
207.8  
152.9  
103.2  
79.8  
56.6  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
Supply current in  
Sleep mode from  
VDD supply  
IDD  
mA  
4 MHz  
3.68  
2.26  
1.55  
1.20  
0.89  
239.0  
209.4  
154.0  
103.7  
80.1  
56.7  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
Running from HSE  
crystal clock 8 MHz,  
code executing from  
Flash or RAM  
Supply current in  
Sleep mode from  
VDDA supply  
(1) (2)  
IDDA  
µA  
4 MHz  
2 MHz  
1 MHz  
500 kHz  
125 kHz  
1. VDDA supervisor is OFF.  
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,  
OpAmp and others, is not included. Refer to the tables of characteristics in the subsequent sections.  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 50: I/O static characteristics.  
DS9994 Rev 9  
61/125  
103  
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins that must be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 33: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where:  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT+CS  
62/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
Table 32. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions(1)  
Typ.  
Unit  
frequency (fSW  
)
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
2 MHz  
4 MHz  
8 MHz  
18 MHz  
36 MHz  
0.90  
0.93  
1.16  
1.60  
2.51  
0.93  
1.06  
1.47  
2.26  
3.39  
1.03  
1.30  
1.79  
3.01  
5.99  
1.10  
1.31  
2.06  
3.47  
8.35  
1.20  
1.54  
2.46  
4.51  
9.98  
VDD = 3.3 V  
Cext = 0 pF  
C = CINT + CEXT+ CS  
VDD = 3.3 V  
Cext = 10 pF  
C = CINT + CEXT +CS  
VDD = 3.3 V  
Cext = 22 pF  
C = CINT + CEXT +CS  
I/O current  
consumption  
ISW  
mA  
VDD = 3.3 V  
Cext = 33 pF  
C = CINT + CEXT+ CS  
VDD = 3.3 V  
Cext = 47 pF  
C = CINT + CEXT+ CS  
1. CS = 5 pF (estimated value).  
DS9994 Rev 9  
63/125  
103  
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input configuration  
All peripherals are disabled unless otherwise mentioned  
The given value is calculated by measuring the current consumption:  
With all peripherals clocked off  
With only one peripheral clocked on  
Ambient operating temperature at 25°C and V = V  
= 3.3 V  
DDA  
DD  
Table 33. Peripheral current consumption  
Typical consumption(1)  
Peripheral  
Unit  
IDD  
BusMatrix (2)  
DMA1  
11.1  
8.0  
CRC  
2.1  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOF  
8.7  
8.4  
8.4  
2.6  
1.7  
TSC  
4.7  
ADC1&2  
APB2-Bridge (3)  
SYSCFG  
TIM1  
17.4  
3.3  
4.2  
32.3  
20.3  
13.8  
9.7  
USART1  
TIM15  
µA/MHz  
TIM16  
TIM17  
10.3  
324.2  
5.3  
HRTIM  
APB1-Bridge (3)  
TIM2  
43.4  
34.0  
9.7  
TIM3  
TIM6  
TIM7  
10.3  
6.9  
WWDG  
USART2  
USART3  
18.8  
19.1  
64/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 33. Peripheral current consumption (continued)  
Typical consumption(1)  
Peripheral  
Unit  
IDD  
I2C1  
CAN  
PWR  
DAC  
DAC2  
SPI1  
13.3  
31.3  
4.7  
µA/MHz  
15.4  
8.6  
8.2  
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp  
and others, is not included. Refer to the tables of characteristics in the subsequent sections.  
2. BusMatrix is automatically active when at least one master is ON (CPU or DMA1).  
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.  
DS9994 Rev 9  
65/125  
103  
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
6.3.6  
Wakeup time from low-power mode  
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep mode: the wakeup event is WFE.  
WKUP1 (PA0) pin is used to wake up from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 19.  
Table 34. Low-power mode wakeup timings  
Typ. @VDD, VDD = VDDA  
Symbol  
Parameter  
Conditions  
Max. Unit  
2.0 V  
2.4 V  
2.7 V  
3 V  
3.3 V  
3.6 V  
Regulator in  
run mode  
4.3  
4.1  
4.0  
3.9  
3.8  
3.7  
4.5  
Wakeup from  
Stop mode  
tWUSTOP  
Regulator in  
low-power  
mode  
7.8  
6.7  
6.1  
5.9  
5.5  
5.3  
9
103  
-
µs  
Wakeup from LSI and  
Standby mode IWDG OFF  
(1)  
tWUSTANDBY  
74.4  
64.3  
60.0  
56.9  
54.3  
51.1  
CPU  
clock  
cycles  
Wakeup from  
-
tWUSLEEP  
6
Sleep mode  
1. Data based on characterization results, not tested in production.  
(1)  
Table 35. Wakeup time using USART  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Stop mode with main  
regulator in low  
power mode  
Wakeup time needed to calculate  
the maximum USART baudrate  
allowing to wake up from stop  
mode when USART clock source is  
HSI  
-
-
13.125  
3.125  
tWUUSART  
µs  
Stop mode with main  
regulator in run  
mode  
1. Guaranteed by design.  
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The  
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the  
recommended clock input waveform is shown in Figure 15.  
66/125  
DS9994 Rev 9  
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 36. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
1
8
32  
MHz  
VHSEH  
VHSEL  
tw(HSEH)  
OSC_IN input pin high-level voltage  
OSC_IN input pin low-level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
-
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
15  
-
-
-
-
tw(HSEL)  
ns  
tr(HSE)  
tf(HSE)  
20  
1. Guaranteed by design, not tested in production.  
Figure 15. High-speed external clock source AC timing diagram  
t
w(HSEH)  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
t
r(HSE)  
f(HSE)  
w(HSEL)  
T
HSE  
MS19214V2  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The  
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the  
recommended clock input waveform is shown in Figure 16.  
Table 37. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high-level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
450  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low-level  
voltage  
-
tw(LSEH)  
tw(LSEL)  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
ns  
tr(LSE)  
tf(LSE)  
50  
1. Guaranteed by design, not tested in production.  
DS9994 Rev 9  
67/125  
103  
 
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 16. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 38. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins to minimize output distortion and startup stabilization time. Refer to the  
crystal resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 38. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions(1)  
Min.(2) Typ. Max.(2) Unit  
fOSC_IN Oscillator frequency  
-
4
-
8
200  
-
32  
-
MHz  
RF  
Feedback resistor  
-
kΩ  
During startup(3)  
-
8.5  
V
DD= 3.3 V, Rm= 30Ω,  
-
-
-
-
-
0.4  
0.5  
0.8  
1
-
-
-
-
-
CL=10 pF@8 MHz  
VDD= 3.3 V, Rm= 45Ω,  
CL=10 pF@8 MHz  
IDD  
HSE current consumption  
mA  
VDD= 3.3 V, Rm= 30Ω,  
CL=5 pF@32 MHz  
VDD= 3.3 V, Rm= 30Ω,  
CL=10 pF@32 MHz  
V
DD= 3.3 V, Rm= 30Ω,  
1.5  
CL=20 pF@32 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
10  
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by design, not tested in production.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer.  
68/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 17). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 17. Typical application with an 8 MHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 39. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins to minimize output distortion and startup stabilization time. Refer to the  
crystal resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(1)  
Min.(2) Typ. Max.(2) Unit  
LSEDRV[1:0]=00  
lower driving capability  
-
-
0.5  
-
0.9  
1
LSEDRV[1:0]=10  
medium low driving  
capability  
IDD  
LSE current consumption  
µA  
LSEDRV[1:0]=01  
medium high-driving  
capability  
-
-
-
-
1.3  
1.6  
LSEDRV[1:0]=11  
higher-driving capability  
DS9994 Rev 9  
69/125  
103  
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 39. LSE oscillator characteristics (fLSE = 32.768 kHz) (continued)  
Symbol  
Parameter  
Conditions(1)  
Min.(2) Typ. Max.(2) Unit  
LSEDRV[1:0]=00  
lower-driving capability  
5
8
-
-
-
-
LSEDRV[1:0]=10  
medium low-driving  
capability  
Oscillator  
transconductance  
gm  
µA/V  
LSEDRV[1:0]=01  
medium high-driving  
capability  
15  
-
-
LSEDRV[1:0]=11  
higher-driving capability  
25  
-
-
-
-
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
2. Guaranteed by design, not tested in production.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly  
with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available at the ST website www.st.com.  
Figure 18. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 40 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 19.  
70/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
High-speed internal (HSI) RC oscillator  
(1)  
Table 40. HSI oscillator characteristics  
Symbol  
fHSI  
TRIM  
DuCy(HSI) Duty cycle  
Parameter  
Frequency  
HSI user trimming step  
Conditions  
Min.  
Typ.  
Max.  
Unit  
-
-
-
8
-
-
-
-
-
-
-
-
-
MHz  
%
-
1(2)  
55(2)  
3.8(3)  
2.3(3)  
2(3)  
2(3)  
2(3)  
1
-
45(2)  
–2.8(3)  
–1.9(3)  
-1.9(3)  
-1.3(3)  
–1(3)  
–1  
%
TA = –40 to 105 °C  
TA = –10 to 85 °C  
TA = 0 to 85 °C  
TA = 0 to 70 °C  
TA = 0 to 55 °C  
TA = 25 °C(4)  
Accuracy of the HSI  
ACCHSI  
oscillator (factory  
calibrated)  
%
HSI oscillator startup  
time  
tsu(HSI)  
-
-
1(2)  
-
2(2)  
µs  
HSI oscillator power  
consumption  
IDDA(HSI)  
-
80  
100(2)  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
4. Factory calibrated, parts not soldered  
Figure 19. HSI oscillator accuracy characterization results for soldered parts  
4%  
MAX  
MIN  
3%  
2%  
1%  
0%  
T [ºC]  
A
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-1%  
-2%  
-3%  
-4%  
MS30985V4  
DS9994 Rev 9  
71/125  
103  
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 41. LSI oscillator characteristics  
Parameter Min.  
Symbol  
Typ.  
Max.  
Unit  
fLSI  
Frequency  
30  
-
40  
-
50  
85  
kHz  
µs  
(2)  
tsu(LSI)  
LSI oscillator startup time  
LSI oscillator power consumption  
(2)  
IDD(LSI)  
-
0.75  
1.2  
µA  
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production.  
6.3.9  
PLL characteristics  
The parameters given in Table 42 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 19.  
Table 42. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min.  
Typ.  
Max.  
PLL input clock(1)  
1(2)  
40(2)  
16(2)  
-
-
-
-
-
-
24(2)  
60(2)  
72  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
fPLL_OUT  
tLOCK  
MHz  
µs  
200(2)  
300(2)  
Jitter  
Cycle-to-cycle jitter  
-
ps  
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
2. Guaranteed by design, not tested in production.  
72/125  
DS9994 Rev 9  
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.3.10  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 105 °C unless otherwise specified.  
A
Table 43. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.(1) Unit  
tprog  
16-bit programming time TA = –40 to +105 °C  
40  
20  
20  
-
53.5  
60  
40  
40  
10  
12  
µs  
ms  
ms  
mA  
mA  
tERASE Page (2 KB) erase time TA = –40 to +105 °C  
-
-
-
-
tME  
Mass erase time  
TA = –40 to +105 °C  
Write mode  
IDD  
Supply current  
Erase mode  
-
1. Guaranteed by design, not tested in production.  
Table 44. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min.(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND  
Endurance  
10  
kcycles  
Years  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
30  
10  
20  
tRET  
Data retention  
1. Data based on characterization results, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
The device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 45. They are based on the EMS levels and classes  
defined in “EMC design guide for ST microcontrollers” application note (AN1709).  
DS9994 Rev 9  
73/125  
103  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 45. EMS characteristics  
Parameter  
Level/  
Class  
Conditions  
VDD = 3.3 V, LQFP64, TA = +25°C,  
fHCLK = 72 MHz  
conforms to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP64, TA = +25°C,  
fHCLK = 72 MHz  
conforms to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It must be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (for example control registers)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see the “Software techniques for improving  
microcontrollers EMC performance” application note (AN1015)).  
Electromagnetic interference (EMI)  
The electromagnetic field emitted by the device are monitored, while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with the  
IEC 61967-2 standard that specifies the test board and the pin loading.  
Table 46. EMI characteristics  
Max vs. [fHSE/fHCLK  
8/72 MHz  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
5
9
VDD = 3.6 V, TA =25 °C,  
LQFP64 package  
compliant with IEC  
61967-2  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
dBµV  
-
SEMI  
Peak level  
31  
4
74/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 47. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
TA = +25 °C,  
conforming to JESD22-  
A114  
VESD  
Electrostatic discharge  
voltage (human body model)  
2
2000  
(HBM)  
V
Electrostatic discharge  
voltage (charge device  
model)  
TA = +25 °C,  
conforming to JESD22-  
C101  
VESD  
II  
250  
(CDM)  
1. Data based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 48. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) must be avoided during normal product  
DD  
operation. However, to give an indication of the robustness of the microcontroller in cases  
when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
DS9994 Rev 9  
75/125  
103  
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator  
frequency deviation). The test results are given in the table below.  
Table 49. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
NA(Injection is not  
possible)  
Injected current on BOOT0  
– 0  
Injected current on PC0, PC1, PC2, PC3 (TTa pins) and PF1  
pin (FT pin)  
-0  
+5  
+5  
IINJ  
Injected current on PA0, PA1, PA2, PA3, PA4, PA5, PA6,  
PA7, PC4, PC5, PB0, PB1, PB2, PB12, PB13, PB14, PB15  
with induced leakage current on other pins from this group  
less than -100 µA or more than +900 µA  
mA  
-5  
Injection is not  
possible  
Injected current on PB11, other TT, FT, and FTf pins  
Injected current on all other TC, TTa and RESET pins  
– 5  
– 5  
+5  
Note:  
It is recommended to add a Schottky diode (pin to ground) to the analog pins that may  
potentially inject negative currents.  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under the conditions summarized in Table 19. All I/Os are CMOS and TTL  
compliant.  
Table 50. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
TT, TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
-
-
-
-
-
-
0.3 VDD+0.07 (1)  
0.475 VDD-0.2 (1)  
0.3 VDD–0.3 (1)  
-
Low-level input  
voltage  
VIL  
-
(2)  
All I/Os except BOOT0  
TTa and TT I/O  
FT and FTf I/O  
BOOT0  
-
0.3 VDD  
V
0.445 VDD+0.398 (1)  
-
-
-
-
(1)  
0.5 VDD+0.2  
0.2 VDD+0.95 (1)  
High-level input  
voltage  
VIH  
(2)  
All I/Os except BOOT0  
0.7 VDD  
76/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 50. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
TT, TC and TTa I/O  
FT and FTf I/O  
BOOT0  
-
-
-
200 (1)  
100 (1)  
300 (1)  
-
-
-
Schmitt trigger  
hysteresis  
Vhys  
mV  
TC, FT, TT, FTf and TTa  
I/O in digital mode  
-
-
±0.1  
VSS VIN VDD  
TTa I/O in digital mode  
-
-
-
-
1
±0.2  
10  
VDD VIN VDDA  
Input leakage  
current (3)  
TTa I/O in analog mode  
Ilkg  
µA  
VSS VIN VDDA  
FT and FTf I/O(4)  
-
-
VDD VIN 5 V  
Weak pull-up  
RPU  
VIN = VSS  
25  
40  
55  
kΩ  
equivalent resistor(5)  
Weak pull-down  
RPD  
CIO  
VIN = VDD  
25  
-
40  
5
55  
-
kΩ  
equivalent resistor(5)  
I/O pin capacitance  
-
pF  
1. Data based on design simulation.  
2. Tested in production.  
3. Leakage could be higher than the maximum value. If negative current is injected on adjacent pins. Refer to Table 49: I/O  
current injection susceptibility.  
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 20 and Figure 21 for standard I/Os.  
Figure 20. TC and TTa I/O input characteristics - CMOS port  
VIL/VIH (V)  
VIHmin 2.0  
1.3  
Area not determined  
CMOS standard requirements VILmax = 0.3V  
VDD (V)  
DD  
VILmax 0.7  
0.6  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30255V2  
DS9994 Rev 9  
77/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 21. TC and TTa I/O input characteristics - TTL port  
VIL/VIH (V)  
TTL standard requirements VIHmin = 2V  
VIHmin 2.0  
1.3  
Area not determined  
VILmax 0.8  
0.7  
TTL standard requirements VILmax = 0.8V  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MS30256V2  
Figure 22. 5V- tolerant (FT and FTf) I/O input characteristics - CMOS port  
VIL/VIH (V)  
2.0  
Area not determined  
1.0  
0.5  
VDD (V)  
2.0  
2.7  
3.6  
MS30257V3  
Figure 23. 5V-tolerant (FT and FTf) I/O input characteristics - TTL port  
VIL/VIH (V)  
TTL standard requirements VIHmin = 2V  
Area not determined  
2.0  
1.0  
0.8  
TTL standard requirements VILmax = 0.8V  
0.5  
VDD (V)  
2.0  
2.7  
3.6  
MS30258V2  
78/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Output driving current  
Electrical characteristics  
The GPIOs (general-purpose input/output) can sink or source up to +/-8 mA, and sink or  
source up to +/- 20 mA (with a relaxed V ).  
V
OL/ OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣIVDD (see Table 17).  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣIVSS (see Table 17).  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 47: ESD absolute maximum  
ratings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 19. All I/Os (FT, TTa and TC unless otherwise  
specified) are CMOS and TTL compliant.  
Table 51. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
0.4  
-
Unit  
VOL  
Low-level output voltage for an I/O pin  
High- level output voltage for an I/O pin  
Low-level output voltage for an I/O pin  
High-level output voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
-
(1)  
(3)  
VOH  
VDD–0.4  
VOL  
TTL port(2)  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
-
0.4  
-
(1)  
(3)  
VOH  
2.4  
(1)(4)  
VOL  
Low-level output voltage for an I/O pin  
High-level output voltage for an I/O pin  
Low-level output voltage for an I/O pin  
High-level output voltage for an I/O pin  
-
1.3  
-
V
I
IO = +20 mA  
(3)(4)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–1.3  
-
(1)(4)  
VOL  
0.4  
-
I
IO = +6 mA  
(3)(4)  
2 V < VDD < 2.7 V  
VOH  
VDD–0.4  
Low-level output voltage for an FTf I/O pin  
in FM+ mode  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
(1)(4)  
VOLFM+  
-
0.4  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 17 and the sum of  
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN)  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 17 and the sum  
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN)  
.
4. Data based on design simulation.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 24 and  
DS9994 Rev 9  
79/125  
103  
 
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 66, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 19.  
DD  
(1)  
Table 52. I/O AC characteristics  
OSPEEDRy  
[1:0] value(1)  
Symbol  
Parameter  
Conditions  
Min.  
Max. Unit  
MH  
z
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
-
-
-
-
-
-
-
-
-
2(3)  
125(3)  
Output high to low level  
fall time  
x0  
01  
tf(IO)out  
CL = 50 pF, VDD = 2 V to 3.6 V  
ns  
Output low to high level  
tr(IO)out  
125(3)  
rise time  
MH  
z
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2 V to 3.6 V  
10(3)  
Output high to low level  
fall time  
25  
tf(IO)out  
(3)  
CL = 50 pF, VDD = 2 V to 3.6 V  
ns  
Output low to high level  
25  
tr(IO)out  
(3)  
rise time  
MH  
z
CL = 30 pF, VDD = 2.7 V to 3.6 V  
fmax(IO)out Maximum frequency(2) CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
50(3)  
30(3)  
20(3)  
MH  
z
MH  
z
CL = 30 pF, VDD = 2.7 V to 3.6 V  
Output high to low level  
fall time  
-
-
-
-
-
-
5(3)  
8(3)  
11  
tf(IO)out  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
12(3)  
ns  
5(3)  
Output low to high level  
rise time  
tr(IO)out  
8(3)  
12(3)  
MH  
z
fmax(IO)out Maximum frequency(2)  
-
-
-
2(4)  
12(4)  
FM+  
Output high to low level  
fall time  
tf(IO)out  
CL = 50 pF, VDD = 2 V to 3.6 V  
configuration(4)  
ns  
Output low to high level  
rise time  
tr(IO)out  
34(4)  
Pulse width of external  
-
tEXTIpw  
signals detected by the  
EXTI controller  
-
10  
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0364 reference manual for a description of  
GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 24.  
3. Guaranteed by design, not tested in production.  
80/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the RM0364 reference manual for a description of FM+  
I/O mode configuration.  
Figure 24. I/O AC characteristics definition  
90%  
10%  
50%  
50%  
90%  
t
10%  
t
EXTERNAL  
OUTPUT  
ON CL  
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t ) ≤ (2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by CL specified in the table “ I/O AC characteristics”.  
ai14131d  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 50).  
PU  
Unless otherwise specified, the parameters given in Table 53 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 19.  
Table 53. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
0.3VDD  
(1)  
VIL(NRST)  
NRST Input low level voltage  
-
-
-
+ 0.07(1)  
V
0.445VDD  
0.398(1)  
+
(1)  
VIH(NRST)  
NRST Input high-level voltage  
-
-
-
Vhys(NRST) NRST Schmitt trigger voltage hysteresis  
-
-
25  
200  
-
55  
mV  
kΩ  
ns  
RPU  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
40  
-
(1)  
VF(NRST)  
NRST Input filtered pulse  
-
-
-
100(1)  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
500(1)  
-
-
ns  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
DS9994 Rev 9  
81/125  
103  
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 25. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢅFLUFXLWꢆꢀꢇ  
9''  
538  
1567ꢆꢈꢇ  
,QWHUQDOꢅUHVHW  
)LOWHU  
ꢉꢊꢀꢅ—)ꢆꢄꢇ  
06ꢀꢁꢂꢃꢂ9ꢄ  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 53. Otherwise the reset is not be taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
4. Place the external capacitor 0.1u F on NRST as close as possible to the chip.  
6.3.16  
High-resolution timer (HRTIM)  
The parameters given in Table 54 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 19.  
Table 54. HRTIM1 characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fHRTIM=144MHz (1)  
fHRTIM=128MHz (2)  
-40  
-10  
128  
6.9  
-
-
-
-
105  
105  
144  
7.8  
°C  
°C  
Timer ambient  
temperature range  
TA  
fHRTIM  
tHRTIM  
MHz  
ns  
HRTIM input clock for  
DLL calibration  
As per TA conditions  
fHRTIM=144MHz (1), TA from -  
40 to 105°C  
fHRTIM=128MHz (2),TA from -10  
to 105°C  
-
-
217  
244  
-
-
ps  
ps  
tRES(HRTIM) Timer resolution time  
ResHRTIM  
tDTG  
Timer resolution  
-
-
-
-
-
-
-
-
-
-
-
16  
16  
bit  
tHRTIM  
ns  
-
0.125  
0.868  
-
Dead time generator  
clock period  
fHRTIM=144MHz (1)  
111.10  
511  
-
tDTG  
µs  
|tDTR| / |tDTF| Dead time range  
fHRTIM=144MHz (1)  
-
56.77  
1/16  
9
(absolute value)  
max  
-
fHRTIM=144MHz (1)  
-
1/256  
0.562  
16  
fHRTIM  
MHz  
tHRTIM  
µs  
Chopper stage clock  
frequency  
fCHPFRQ  
256  
1.77  
Chopper first pulse  
t1STPW  
length  
fHRTIM=144MHz (1)  
0.111  
1. Using HSE with 8MHz XTAL as clock source, configuring PLL to get PLLCLK=144MHz, and selecting PLLCLKx2 as  
HRTIM clock source. (Refer to Reset and clock control section in RM0364.)  
2. Using HSI (internal 8MHz RC oscillator), configuring PLL to get PLLCLK=128MHz, and selecting PLLCLKx2 as HRTIM  
clock source. (Refer to Reset and clock control section in RM0364.  
82/125  
DS9994 Rev 9  
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
(1)  
Table 55. HRTIM output response to fault protection  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max.(2)  
Unit  
Propagation delay from  
HRTIM1_FLTx digital input to  
HRTIM_CHxy output pin  
Digital fault response  
latency  
tLAT(DF)  
-
12  
-
25  
-
Minimum Fault pulse  
width  
tW(FLT)  
-
12.5  
-
ns  
Propagation delay from comparator  
COMPx_INP input pin to  
HRTIM_CHxy output pin  
Analog fault response  
latency  
tLAT(AF)  
25  
43  
1. Refer to Fault paragraph in HRTIM section of RM0364.  
2. Data based on characterization results, not tested in production.  
(1)  
Table 56. HRTIM output response to external events 1 to 5 (Low-Latency mode  
)
Symbol  
Parameter  
Conditions  
Min. Typ. Max.(2)  
Unit  
Propagation delay from  
HRTIM1_EEVx digital input to  
HRTIM_CHxy output pin (30pF  
load)  
Digital external event  
response latency  
tLAT(DEEV)  
-
12.5  
-
12  
-
25  
-
ns  
ns  
ns  
Minimum external event  
pulse width  
tW(FLT)  
-
Propagation delay from comparator  
COMPx_INP input pin to  
HRTIM_CHxy output pin (30pF  
load)  
Analog external event  
response latency  
tLAT(AEEV)  
25  
43  
Jitter of the delay from  
External event response HRTIM1_EEVx digital input or  
(3)  
(3)  
TJIT(EEV)  
-
-
-
-
0
1
tHRTIM  
jitter  
COMPx_INP input pin to  
HRTIM_CHxy output pin  
Jitter on output pulse  
width in response to an  
external event  
TJIT(PW)  
-
tHRTIM  
1. EExFAST bit in HRTIM_EECR1 register is set (Low Latency mode). This functionality is available on external events  
channels 1 to 5. Refer to Latency to external events paragraph in HRTIM section of RM0364.  
2. Data based on characterization results, not tested in production.  
3. THRTIM = 1 / fHRTIM with fHRTIM= 144 MHz or fHRTIM = 128 MHZ depending on the clock controller configuration. (Refer to  
Reset and clock control section in RM0364.)  
(1)  
Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode  
)
Symbol  
Parameter  
Conditions  
Min. Typ. Max.(2)  
Unit  
External event response  
latency in HRTIM  
TPROP(HRTIM)  
HRTIM internal propagation delay (3)  
6
-
-
7
tHRTIM  
Propagation delay from HRTIM1_EEVx  
digital input to HRTIM_CHxy output pin  
(30pF load) (4)  
Digital external event  
response latency  
tLAT(DEEV)  
61  
72  
ns  
DS9994 Rev 9  
83/125  
103  
 
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)  
Table 57. HRTIM output response to external events 1 to 10 (Synchronous mode ) (continued)  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.(2)  
Unit  
Propagation delay from COMPx_INP  
input pin to HRTIM_CHxy output pin  
(30pF load) (4)  
Analog external event  
response latency  
tLAT(AEEV)  
-
12.5  
-
81  
-
94  
-
ns  
Minimum external event  
pulse width  
tW(FLT)  
-
ns  
Jitter of the delay from HRTIM1_EEVx  
digital input or COMPx_INP to  
HRTIM_CHxy output pin  
External event response  
jitter  
(5)  
(5)  
TJIT(EEV)  
-
1
tHRTIM  
Jitter on output pulse  
width in response to an  
external event  
TJIT(PW)  
-
-
-
0
tHRTIM  
1. EExFAST bit in HRTIM_EECR1 or HRTIM_EECR2 register is cleared (synchronous mode). External event filtering is  
disabled, i.e. EExF[3:0]=0000 in HRTIM_EECR2 register. Refer to Latency to external events paragraph in HRTIM section  
of RM0364.  
2. Data based on characterization results, not tested in production.  
3. This parameter does not take into account latency introduced by GPIO or comparator. Refer to DEERL or SACRL  
parameter for complete latency.  
4. This parameter is given for fHRTIM = 144 MHz.  
5. THRTIM = 1 / fHRTIM with fHRTIM= 144 MHz or fHRTIM = 128 MHZ depending on the clock controller configuration. (Refer to  
Reset and clock control section in RM0364.)  
(1)  
Table 58. HRTIM synchronization input / output  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
Minimum pulse width on  
tW(SYNCIN) SYNCIN inputs, including  
HRTIM1_SCIN  
-
2
-
-
-
-
tHRTIM  
Response time to external  
tLAT(DF)  
-
-
1
tHRTIM  
synchronization request  
-
-
16  
-
-
tHRTIM  
ns  
Pulse width on  
tLAT(AF)  
HRTIM1_SCOUT output  
fHRTIM=144 MHz  
111.1  
1. Guaranteed by design, not tested in production.  
84/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.3.17  
Timer characteristics  
The parameters given in Table 59 are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 59. TIMx  
characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Max.  
Unit  
-
1
-
tTIMxCLK  
fTIMxCLK = 72 MHz  
tres(TIM)  
Timer resolution time  
13.9  
-
ns  
fTIM1CLK = 144 MHz  
6.95  
-
fTIMxCLK/2  
36  
ns  
-
0
0
-
MHz  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 72 MHz  
TIMx (except TIM2)  
16  
ResTIM  
Timer resolution  
bit  
TIM2  
-
-
32  
1
65536  
910  
tTIMxCLK  
µs  
16-bit counter clock  
period  
tCOUNTER  
fTIMxCLK = 72 MHz 0.0139  
fTIM1CLK = 144 MHz 0.0069  
455  
µs  
-
-
-
-
65536 × 65536 tTIMxCLK  
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 72 MHz  
fTIM1CLK = 144 MHz  
59.65  
s
s
29.825  
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM15, TIM16 and TIM17 timers.  
2. Guaranteed by design, not tested in production.  
DS9994 Rev 9  
85/125  
103  
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)  
Table 60. IWDG min./max. timeout period at 40 kHz (LSI)  
Min. timeout (ms)  
RL[11:0] = 0x000  
Max. timeout (ms)  
RL[11:0] = 0xFFF  
Prescaler divider PR[2:0] bits  
/4  
/8  
0
1
2
3
4
5
7
0.1  
0.2  
0.4  
0.8  
1.6  
3.2  
6.4  
409.6  
819.2  
/16  
/32  
/64  
/128  
/256  
1638.4  
3276.8  
6553.6  
13107.2  
26214.4  
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30  
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing  
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.  
(1)  
Table 61. WWDG min./max. timeout value at 72 MHz (PCLK)  
Prescaler  
WDGTB  
Min. timeout value  
Max. timeout value  
1
2
4
8
0
1
2
3
0.05687  
0.1137  
0.2275  
0.4551  
3.6409  
7.2817  
14.564  
29.127  
1. Guaranteed by design, not tested in production.  
6.3.18  
Communication interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 Kbit/s  
Fast-mode (Fm): with a bit rate up to 400 Kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
2
The I C timings requirements are guaranteed by design when the I C peripheral is properly  
configured (refer to Reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and VDD is disabled, but is still present. Only FTf I/O pins  
support Fm+ low-level output current maximum requirement. Refer to Section 6.3.14: I/O  
2
port characteristics for the I C I/O characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
86/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
2
(1)  
Table 62. I C analog filter characteristics  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Maximum pulse width of spikes that are  
suppressed by the analog filter.  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design, not tested in production.  
2. Spikes with width below tAF(min.) are filtered.  
3. Spikes with width above tAF(max.) are not filtered.  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 53 for SPI are derived from tests  
performed under ambient temperature, f frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 19: General operating conditions.  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 63. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Master mode 2.7 < VDD < 3.6 V  
Master mode 2 < VDD < 3.6 V  
Slave mode 2 < VDD < 3.6 V  
24  
18  
24  
fSCK  
1/tc(SCK)  
SPI clock frequency  
-
-
MHz  
Slave mode transmitter/full  
duplex  
18(2)  
2 < VDD < 3.6 V  
Duty cycle of SPI clock  
frequency  
DuCy(SCK)  
Slave mode  
30  
50  
70  
%
tsu(NSS) NSS setup time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
4*Tpclk  
2*Tpclk  
-
-
-
-
th(NSS)  
NSS hold time  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Master mode  
Tpclk-2 Tpclk Tpclk+2  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
0
3
-
-
-
-
Data input setup time  
Data input hold time  
Slave mode  
Master mode  
5
-
-
th(SI)  
Slave mode  
1
-
-
ns  
ta(SO)  
tdis(SO)  
Data output access time  
Data output disable time  
Slave mode  
10  
10  
-
-
40  
17  
20  
27.5  
5
Slave mode  
-
Slave mode 2.7 < VDD < 3.6 V  
Slave mode 2 < VDD < 3.6 V  
Master mode  
12  
12  
1.5  
-
tv(SO)  
Data output valid time  
Data output hold time  
-
tv(MO)  
th(SO)  
th(MO)  
-
Slave mode  
7.5  
0
-
Master mode  
-
-
1. Data based on characterization results, not tested in production.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low  
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%.  
DS9994 Rev 9  
87/125  
103  
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 26. SPI timing diagram - slave mode and CPHA = 0  
(1)  
Figure 27. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tSU(NSS)  
th(NSS)  
tc(SCK)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(SO)  
tdis(SO)  
tv(SO)  
ta(SO)  
MISO  
MSB OUT  
MSB IN  
BIT6 OUT  
LSB OUT  
OUTPUT  
th(SI)  
tsu(SI)  
MOSI  
INPUT  
LSB IN  
BIT 1 IN  
ai14135b  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
88/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
(1)  
Figure 28. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
CAN (controller area network) interface  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CAN_TX and CAN_RX).  
6.3.19  
ADC characteristics  
Unless otherwise specified, the parameters showed from Table 64 to Table 67 are  
guaranteed by design, with the conditions summarized in Table 19.  
Table 64. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Analog supply voltage for  
ADC  
VDDA  
-
2
-
3.6  
V
Single ended mode,  
5 MSPS  
-
-
-
1011.3  
214.7  
54.7  
1172.0  
322.3  
81.1  
Single ended mode,  
1 MSPS  
Single ended mode,  
200 KSPS  
ADC current consumption  
(Figure 29)  
IDDA  
µA  
Differential mode, 5 MSPS  
Differential mode, 1 MSPS  
-
-
1061.5  
246.6  
1243.6  
337.6  
Differential mode,  
200 KSPS  
-
-
56.4  
0
83.0  
-
Negative reference  
voltage  
VREF-  
-
V
DS9994 Rev 9  
89/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 64. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fADC  
ADC clock frequency  
-
0.14  
-
72  
MHz  
Resolution = 12 bits,  
Fast Channel  
0.01  
0.012  
0.014  
0.0175  
-
-
-
-
-
-
5.14  
6
Resolution = 10 bits,  
Fast Channel  
(1)  
fS  
Sampling rate  
Msps  
Resolution = 8 bits,  
Fast Channel  
7.2  
9
Resolution = 6 bits,  
Fast Channel  
fADC = 72 MHz  
Resolution = 12 bits  
5.14  
MHz  
(1)  
fTRIG  
External trigger frequency  
Resolution = 12 bits  
-
0
-
-
-
-
14  
1/fADC  
V
VAIN  
Conversion voltage range  
External input impedance  
-
-
VDDA  
100  
(1)  
RAIN  
κΩ  
Internal sample and hold  
capacitor  
(1)  
CADC  
-
-
5
-
pF  
f
ADC = 72 MHz  
1.56  
112  
µs  
(1)  
tCAL  
Calibration time  
-
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
1/fADC  
µs  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
1.5  
2
-
2.5  
2
Trigger conversion latency  
Regular and injected  
channels without  
-
(1)  
tlatr  
-
-
2.25  
2.125  
3.5  
conversion abort  
-
-
2.5  
3
-
Trigger conversion latency  
Injected channels aborting  
a regular conversion  
-
3
(1)  
tlatrinj  
-
-
-
3.25  
3.125  
8.35  
601.5  
-
fADC = 72 MHz  
0.021  
1.5  
-
(1)  
tS  
Sampling time  
-
-
1/fADC  
tADCVRE  
ADC Voltage Regulator  
Start-up time  
(
G_STUP  
1)  
-
-
-
-
10  
µs  
conver  
sion  
tSTAB Power-up time  
1
cycle  
90/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Table 64. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fADC = 72 MHz  
Resolution = 12 bits  
0.19  
-
8.52  
µs  
Total conversion time  
(including sampling time)  
(1)  
tCONV  
14 to 614 (tS for sampling + 12.5 for  
successive approximation)  
Resolution = 12 bits  
1/fADC  
(VSSA  
VREF+)/2  
+ 0.18  
+
Common Mode Input  
signal  
(VSSA+VREF+)/ (VSSA  
+
CMIR  
ADC differential mode  
V
2-0.18 VREF+)/2  
1. Data guaranteed by design, not tested in production.  
Figure 29. ADC typical current consumption in single-ended and differential modes  
Clock frequency (MSPS)  
MS34994V1  
(1)  
Table 65. Maximum ADC R  
AIN  
R
AIN max. (kΩ)  
Sampling  
cycle @  
72 MHz  
Sampling  
time [ns] @  
72 MHz  
Resolution  
Other  
Fast channels(2) Slow channels  
channels(3)  
1.5  
2.5  
20.83  
34.72  
0.018  
0.150  
0.470  
0.820  
2.70  
NA  
NA  
NA  
0.022  
0.180  
0.470  
1.50  
4.5  
62.50  
0.220  
0.560  
1.80  
6.80  
18.0  
68.0  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
12 bits  
19.5  
61.5  
181.5  
601.5  
8.20  
4.70  
22.0  
15.0  
82.0  
47.0  
DS9994 Rev 9  
91/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)  
Table 65. Maximum ADC R  
(continued)  
RAIN max. (kΩ)  
AIN  
Sampling  
cycle @  
Sampling  
time [ns] @  
72 MHz  
Resolution  
Other  
Fast channels(2) Slow channels  
72 MHz  
channels(3)  
1.5  
2.5  
20.83  
34.72  
0.082  
0.270  
0.560  
1.20  
NA  
0.082  
0.390  
0.82  
NA  
0.100  
0.330  
0.68  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
20.83  
10 bits  
19.5  
61.5  
181.5  
601.5  
1.5  
3.30  
2.70  
2.20  
10.0  
8.2  
6.8  
33.0  
27.0  
22.0  
100.0  
0.150  
0.390  
0.820  
1.50  
82.0  
68.0  
NA  
0.039  
0.180  
0.470  
1.00  
2.5  
34.72  
0.180  
0.560  
1.20  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
20.83  
8 bits  
19.5  
61.5  
181.5  
601.5  
1.5  
3.90  
3.30  
2.70  
12.00  
39.00  
100.00  
0.270  
0.560  
1.200  
2.20  
12.00  
33.00  
100.00  
0.100  
0.390  
0.820  
1.80  
8.20  
27.00  
82.00  
0.150  
0.330  
0.820  
1.50  
2.5  
34.72  
4.5  
62.50  
7.5  
104.17  
270.83  
854.17  
2520.83  
8354.17  
6 bits  
19.5  
61.5  
181.5  
601.5  
5.60  
4.7  
3.90  
18.0  
15.0  
12.0  
56.0  
47.0  
39.0  
100.00  
100.0  
100.0  
1. Data based on characterization results, not tested in production.  
2. All fast channels, expect channel on PA6.  
3. Channels available on PA6.  
92/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
(1)(2)  
Table 66. ADC accuracy - limited test conditions  
Min.  
Symbol Parameter  
Conditions  
Typ. Max.(3) Unit  
(3)  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±4  
±5.5  
±3.5  
±3.5  
±2  
±4.5  
±6  
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
±4  
Differential  
±4  
±2  
Single  
ended  
±1.5  
±1.5  
±1.5  
±3  
±2  
Offset  
error  
±2  
Differential  
±2  
±4  
Single  
ended  
±5  
±5.5  
±3  
Gain error  
LSB  
±3  
Differential  
Single  
±3  
±3.5  
±1  
±1  
ADC clock freq. 72 MHz  
ended  
Differential  
linearity  
error  
±1  
±1  
Sampling freq. 5 Msps  
VDDA = 3.3 V  
25°C  
±1  
±1  
Differential  
±1  
±1  
±1.5  
±2  
±2  
Single  
ended  
Integral  
linearity  
error  
±3  
±1.5 ±1.5  
Differential  
±1.5  
±2  
-
Fast channel 5.1 Ms 10.8 10.8  
Slow channel 4.8 Ms 10.8 10.8  
Fast channel 5.1 Ms 11.2 11.3  
Slow channel 4.8 Ms 11.2 11.3  
Single  
ended  
Effective  
-
ENOB(4) number of  
bits  
bit  
-
Differential  
-
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
66  
66  
69  
69  
67  
67  
70  
70  
-
Single  
ended  
Signal-to-  
SINAD noise and  
-
dB  
(4)  
distortion  
ratio  
-
Differential  
-
DS9994 Rev 9  
93/125  
103  
 
Electrical characteristics  
Symbol Parameter  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)(2)  
Table 66. ADC accuracy - limited test conditions  
(continued)  
Min.  
Conditions  
Typ. Max.(3) Unit  
(3)  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
66  
66  
69  
69  
-
67  
67  
-
-
Single  
ended  
Signal-to-  
SNR(4)  
noise ratio  
70  
-
ADC clock freq. 72 MHz  
Sampling freq. 5 Msps  
Differential  
70  
-
dB  
VDDA = 3.3 V  
-80  
-78  
-83  
-81  
-80  
-77  
-82  
-80  
Single  
ended  
25°C  
Total  
THD(4) harmonic  
distortion  
-
-
Differential  
-
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Data based on characterization results, not tested in production.  
4. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.  
(1)(2)(3)  
Table 67. ADC accuracy  
Symbol Parameter  
Conditions  
Min.(4) Max.(4) Unit  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±6.5  
±6.5  
±4  
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
Differential  
±4.5  
±3  
Single  
ended  
±3  
Offset error  
Gain error  
±2.5  
±2.5  
±6  
Differential  
ADC clock freq. 72 MHz,  
Sampling freq. 5 Msps  
LSB  
Single  
ended  
2.0 V VDDA 3.6 V  
±6  
±3.5  
±4  
Differential  
±1.5  
±1.5  
±1.5  
±1.5  
Single  
ended  
Differential  
linearity  
error  
Differential  
94/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Min.(4) Max.(4) Unit  
(1)(2)(3)  
Table 67. ADC accuracy  
(continued)  
Symbol Parameter  
Conditions  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
Fast channel 5.1 Ms  
Slow channel 4.8 Ms  
-
-
±3  
Single  
ended  
Integral  
linearity  
error  
±3.5  
EL  
LSB  
bits  
-
±2  
Differential  
-
±2.5  
10.4  
10.4  
10.8  
10.8  
64  
63  
67  
67  
64  
64  
67  
67  
-
-
Single  
ended  
ADC clock freq. 72 MHz,  
Sampling freq. 5 Msps  
Effective  
number of  
bits  
-
ENOB  
(5)  
-
2.0 V VDDA 3.6 V  
Differential  
-
-
Single  
ended  
Signal-to-  
SINAD noise and  
-
(5)  
distortion  
ratio  
-
-
Differential  
-
Single  
ended  
-
Signal-to-  
SNR(5)  
dB  
noise ratio  
-
Differential  
ADC clock freq. 72 MHz,  
Sampling freq 5 Msps,  
2.0 V VDDA 3.6 V  
-
-75  
-75  
-79  
-78  
Single  
ended  
Total  
THD(5) harmonic  
distortion  
-
-
Differential  
-
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. Data based on characterization results, not tested in production.  
5. Value measured with a -0.5 dB full scale 50 kHz sine wave input signal.  
DS9994 Rev 9  
95/125  
103  
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)(2)  
Table 68. ADC accuracy  
at 1MSPS  
Symbol  
Parameter  
Test conditions  
Typ.  
Max(3) Unit  
Fast channel  
Slow channel  
Fast channel  
Slow channel  
Fast channel  
Slow channel  
Fast channel  
Slow channel  
Fast channel  
Slow channel  
±2.5  
±3.5  
±1  
±5  
±5  
ET  
Total unadjusted error  
±2.5  
±2.5  
EO  
EG  
ED  
EL  
Offset error  
±1.5  
±2  
ADC Freq. 72 MHz  
Sampling Freq. 1MSPS  
2.4 V VDDA = VREF+ 3.6 V  
±3  
Gain error  
LSB  
±4  
±3  
Single-ended mode  
±0.7  
±0.7  
±1  
± 2  
±2  
±3  
±3  
Differential linearity error  
Integral linearity error  
±1.2  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins must be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current  
within the limits specified for IINJ(PIN) and IINJ(PIN) in Section 6.3.14: I/O port characteristics does not affect the ADC  
accuracy.  
3. Data based on characterization results, not tested in production.  
Figure 30. ADC accuracy characteristics  
V
4096  
DDA  
1LSB  
=
IDEAL  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
4095  
4094  
4093  
(2)  
ET=Total Unadjusted Error: maximum deviation  
between the actual and the ideal transfer curves.  
ET  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
(1)  
transition and the first ideal one.  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1LSBIDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
VDDA  
VSSA  
MS34980V1  
96/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Figure 31. Typical connection diagram using the ADC  
VDD  
Sample and hold ADC  
converter  
VT  
0.6 V  
(1)  
RADC  
RAIN  
AINx  
12-bit  
converter  
IL 1 μA  
VT  
VAIN  
0.6 V  
Cparasitic  
CADC  
MS19881V3  
1. Refer to Table 64 for the values of RAIN  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
fADC must be reduced.  
General PCB design guidelines  
Power supply decoupling must be performed as shown in Figure 12: Power-supply scheme.  
The 10 nF capacitor must be ceramic (good quality) and it must be placed as close as  
possible to the chip.  
6.3.20  
DAC electrical specifications  
Table 69. DAC characteristics  
Symbol  
VDDA  
Parameter  
Conditions  
Min. Typ.  
Max.  
Unit  
Analog supply voltage  
-
2.4  
-
3.6  
V
DAC output buffer ON (to VSSA  
)
5
25  
-
(1)  
RLOAD  
Resistive load  
-
kΩ  
DAC output buffer ON (to VDDA  
DAC output buffer OFF  
)
(1)  
RO  
Output impedance  
Capacitive load  
-
-
15  
50  
kΩ  
(1)  
CLOAD  
DAC output buffer ON  
-
pF  
Corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VDDA = 3.6 V  
0.2  
-
VDDA – 0.2  
V
and (0x155) and (0xEAB) at VDDA  
2.4 V  
=
(
VDAC_OUT Voltage on DAC_OUT  
1)  
output  
-
-
0.5  
-
-
mV  
V
DAC output buffer OFF  
VDDA– 1LSB  
With no load, middle code (0x800)  
on the input  
-
-
-
-
380  
480  
µA  
µA  
DAC DC current  
(3)  
IDDA  
consumption in quiescent  
mode(2)  
With no load, worst code (0xF1C) on  
the input.  
DS9994 Rev 9  
97/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 69. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min. Typ.  
Max.  
Unit  
Given for a 10-bit input code  
DAC1 channel 1  
-
-
±0.5  
LSB  
Given for a 12-bit input code  
DAC1 channel 1  
-
-
-
-
±2  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(3)  
Given for a 10-bit input code  
-0.75/+0.25 LSB  
DAC1 channel 2 & DAC2 channel 1  
Given for a 12-bit input code  
-
-
-
-
-3/+1  
±1  
LSB  
LSB  
DAC1 channel 2 & DAC2 channel 1  
Integral non linearity  
(difference between  
Given for a 10-bit input code  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 4095)  
INL(3)  
Given for a 12-bit input code  
-
-
±4  
LSB  
Offset error  
-
-
-
-
-
-
-
-
-
±10  
±3  
mV  
LSB  
LSB  
%
(difference between  
measured value at Code  
(0x800) and the ideal value  
= VDDA/2)  
Given for a 10-bit input code at  
VDDA = 3.6 V  
Offset(3)  
Given for a 12-bit input code  
Given for a 12-bit input code  
±12  
±0.5  
Gain  
Gain error  
error(3)  
Settling time (full scale: for  
a 12-bit input code  
tSETTLING transition between the  
(3  
CLOAD 50 pF, RLOAD 5 kΩ  
-
-
3
-
4
1
µs  
)
lowest and the highest input  
codes when DAC_OUT  
reaches final value ±1LSB  
Max frequency for a correct  
DAC_OUT change when  
Update  
MS/  
s
small variation in the input CLOAD 50 pF, RLOAD 5 kΩ  
rate(3)  
code (from code i to  
i+1LSB)  
DAC buffer ON  
Output sink current  
Iskink  
100  
-
-
-
µA  
µs  
Output level higher than 0.2 V  
Wakeup time from off state  
(3)  
tWAKEUP  
(Setting the ENx bit in the  
DAC Control register)  
CLOAD 50 pF, RLOAD 5 kΩ  
6.5  
10  
Power supply rejection ratio  
PSRR+ (1) (to VDDA) (static DC  
measurement  
No RLOAD, CLOAD = 50 pF  
-
–67  
–40  
dB  
1. Guaranteed by design, not tested in production.  
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is  
involved.  
3. Data based on characterization results, not tested in production.  
98/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
Figure 32. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
L
DAC_OUTx  
12-bit  
digital to  
analog  
converter  
C
L
ai17157V3  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
6.3.21  
Comparator characteristics  
(1)  
Table 70. Comparator characteristics  
Symbol  
VDDA  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Analog supply voltage  
-
2
-
3.6  
V
Comparator input voltage  
range  
VIN  
-
0
-
VDDA  
-
VBG  
VSC  
Scaler input voltage  
Scaler offset voltage  
-
-
-
-
VREFINIT  
±5  
-
-
±10  
mV  
First VREFINT scaler activation  
after device power on  
-
-
1(2)  
s
VREFINT scaler startup time  
from power down  
tS_SC  
Next activations  
-
-
-
-
-
-
0.2  
4
ms  
VDDA < 2.7 V  
tSTART  
Comparator startup time  
µs  
VDDA < 2.7 V  
10  
V
DDA 2.7 V  
-
-
-
-
25  
28  
32  
35  
28  
30  
35  
40  
Propagation delay for  
200 mV step with 100 mV  
overdrive  
VDDA < 2.7 V  
tD  
ns  
VDDA 2.7 V  
Propagation delay for full  
range step with 100 mV  
overdrive  
VDDA < 2.7 V  
V
DDA 2.7 V  
-
-
-
5
-
10  
25  
3
VOFFSET Comparator offset error  
TVOFFSET Total offset variation  
mV  
VDDA < 2.7 V  
Full temperature range  
-
mV  
µA  
COMP current  
IDD(COMP)  
-
-
400  
600  
consumption  
1. Guaranteed by design, not tested in production.  
2. For more details and conditions see Figure 33: Maximum VREFINT scaler startup time from power-down.  
DS9994 Rev 9  
99/125  
103  
 
 
 
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
Figure 33. Maximum VREFINT scaler startup time from power-down  
6.3.22  
Operational amplifier characteristics  
(1)  
Table 71. Operational amplifier characteristics  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
VDDA  
CMIR  
Analog supply voltage  
-
-
2.4  
0
-
-
3.6  
V
V
Common mode input range  
VDDA  
25°C, No Load  
on output.  
-
-
-
-
-
-
-
-
4
6
Maximum  
calibration range  
All  
voltage/Temp.  
VIOFFSET  
Input offset voltage  
mV  
25°C, No Load  
on output.  
1.6  
3
After offset  
calibration  
All  
voltage/Temp.  
ΔVIOFFSET  
Input offset voltage drift  
Drive current  
-
-
-
-
5
-
-
µV/°C  
µA  
ILOAD  
500  
No load,  
quiescent mode  
IDDOPAMP Consumption  
-
690  
1450  
µA  
CMRR  
PSRR  
GBW  
SR  
Common mode rejection ratio  
-
-
73  
-
90  
117  
8.2  
4.7  
-
-
-
dB  
dB  
Power supply rejection ratio  
Bandwidth  
DC  
-
-
-
-
-
MHz  
V/µs  
kΩ  
Slew rate  
-
-
RLOAD  
CLOAD  
Resistive load  
Capacitive load  
4
-
-
-
50  
pF  
100/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
(1)  
Table 71. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Rload = min,  
Input at VDDA  
VDDA-100  
-
.
VOHSAT  
High saturation voltage(2)  
Rload = 20K,  
Input at VDDA  
V
DDA-20  
-
-
.
mV  
R
load = min,  
-
100  
input at 0 V  
VOLSAT  
Low saturation voltage  
Phase margin  
Rload = 20K,  
input at 0 V.  
-
-
-
20  
-
ϕm  
-
62  
°
Offset trim time: during calibration,  
minimum time needed between two  
steps to have 1 mV accuracy  
tOFFTRIM  
-
-
-
-
2
5
ms  
CLOAD 50 pf,  
RLOAD 4 kΩ,  
Follower  
tWAKEUP  
Wakeup time from OFF state.  
2.8  
µs  
configuration  
tS_OPAM_VOUT ADC sampling time when reading the OPAMP output  
400  
-
2
-
-
-
-
-
-
-
-
-
ns  
-
-
-
-
-
-
-
-
-
4
-
PGA gain  
Non inverting gain value  
-
8
-
16  
-
Gain=2  
Gain=4  
Gain=8  
Gain=16  
5.4/5.4  
16.2/5.4  
37.8/5.4  
40.5/2.7  
R2/R1 internal resistance values in  
PGA mode (3)  
Rnetwork  
kΩ  
PGA gain  
error  
PGA gain error  
-
-
-1%  
-
-
-
1%  
-
Ibias  
OPAMP input bias current  
0.2(4)  
µA  
PGA Gain = 2,  
Cload = 50pF,  
Rload = 4 KΩ  
-
-
-
-
4
2
-
-
-
-
PGA Gain = 4,  
Cload = 50pF,  
Rload = 4 KΩ  
PGA bandwidth for different non  
inverting gain  
PGA BW  
MHz  
PGA Gain = 8,  
Cload = 50pF,  
1
Rload = 4 KΩ  
PGA Gain = 16,  
Cload = 50pF,  
0.5  
Rload = 4 KΩ  
DS9994 Rev 9  
101/125  
103  
Electrical characteristics  
STM32F334x4 STM32F334x6 STM32F334x8  
(1)  
Table 71. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
@ 1KHz, Output  
loaded with  
4 KΩ  
-
109  
-
nV  
en  
Voltage noise density  
-----------  
@ 10KHz,  
Output loaded  
with 4 KΩ  
Hz  
-
43  
-
1. Guaranteed by design, not tested in production.  
2. The saturation voltage can also be limited by the Iload  
.
3. R2 is the internal resistance between OPAMP output and OPAMP inverting input.  
R1 is the internal resistance between OPAMP inverting input and ground.  
The PGA gain =1+R2/R1  
4. Mostly TTa I/O leakage, when used in analog mode.  
Figure 34. OPAMP voltage noise versus frequency  
102/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Electrical characteristics  
6.3.23  
Temperature sensor (TS) characteristics  
Table 72. Temperature sensor (TS) characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1
4.3  
1.43  
-
2
4.6  
1.52  
10  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
4.0  
1.34  
4
V25  
Voltage at 25 °C  
Startup time  
(1)  
tSTART  
µs  
ADC sampling time when reading the  
temperature  
(1)(2)  
TS_temp  
2.2  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
Table 73. Temperature sensor (TS) calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
TS_CAL1  
0x1FFF F7B8 - 0x1FFF F7B9  
VDDA= 3.3 V  
TS ADC raw data acquired at  
temperature of 110 °C  
TS_CAL2  
0x1FFF F7C2 - 0x1FFF F7C3  
VDDA= 3.3 V  
6.3.24  
V
monitoring characteristics  
BAT  
Table 74. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min.  
Typ.  
Max.  
Unit  
R
Q
-
-
50  
2
-
-
KΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
-1  
-
+1  
%
ADC sampling time when reading the VBAT  
1mV accuracy  
(1)(2)  
TS_vbat  
2.2  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
DS9994 Rev 9  
103/125  
103  
 
 
 
 
 
 
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
7
Package information  
7.1  
Package mechanical data  
To meet the environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
®
®
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
104/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
7.2  
LQFP32 package information  
LQFP32 is a 32-pin, 7 x 7mm low-profile quad flat package.  
Figure 35. LQFP32 package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
K
D
D1  
D3  
L
L1  
24  
17  
16  
25  
32  
9
PIN 1  
IDENTIFICATION  
1
8
e
5V_ME_V2  
1. Drawing is not to scale.  
Table 75. LQFP32 mechanical data  
Millimeters  
Inches(1)  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
-
-
-
1.600  
0.150  
1.450  
-
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.050  
1.350  
0.0020  
0.0531  
1.400  
0.0551  
DS9994 Rev 9  
105/125  
121  
 
 
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 75. LQFP32 mechanical data (continued)  
Millimeters  
Typ.  
Inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
b
c
0.300  
0.090  
8.800  
6.800  
-
0.370  
-
0.450  
0.200  
9.200  
7.200  
-
0.0118  
0.0146  
-
0.0177  
0.0079  
0.3622  
0.2835  
-
0.0035  
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3465  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
0.2677  
-
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.3622  
0.2835  
-
E1  
E3  
e
0.2677  
-
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
0.0°  
-
7.0°  
0.100  
7.0°  
ccc  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. Recommended footprint for the LQFP32 package  
0.80  
1.20  
24  
17  
25  
16  
0.50  
0.30  
7.30  
6.10  
9.70  
7.30  
32  
9
8
1
1.20  
6.10  
9.70  
5V_FP_V2  
1. Drawing is not to scale.  
2. Dimensions are expressed in millimeters.  
106/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Device marking for LQFP32  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 37. LQFP32 marking example (package top view)  
Product Identification(1)  
STM32F  
334K6T6  
Y WW  
Revision code  
R
Pin 1  
indentifier  
MSv33098V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS9994 Rev 9  
107/125  
121  
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
7.3  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7mm low-profile quad flat package.  
Figure 38. LQFP48 package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
Table 76. LQFP48 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
0.3543  
0.2756  
0.2165  
D1  
D3  
108/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
Table 76. LQFP48 package mechanical data (continued)  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
E
E1  
E3  
e
8.800  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
9.200  
0.3465  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
0.3622  
6.800  
7.200  
0.2677  
0.2835  
-
-
-
-
-
-
-
0.750  
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
7°  
0°  
-
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 39. Recommended footprint for the LQFP48 package  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
DS9994 Rev 9  
109/125  
121  
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
Device marking for LQFP48  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 40. LQFP48 marking example (package top view)  
Product Identification(1)  
STM32F  
334C6T6  
Y WW  
Revision code  
R
Pin 1  
indentifier  
MSv33099V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
110/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
7.4  
LQFP64 package information  
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 41. LQFP64 package outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 77. LQFP64 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
11.800  
9.800  
-
-
1.600  
-
-
0.0630  
-
0.150  
0.0020  
-
0.0059  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.270  
0.0067  
0.0106  
c
0.200  
0.0035  
0.0079  
D
12.000  
10.000  
12.000  
10.000  
0.500  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
-
-
-
-
-
D1  
E
E1  
e
-
-
DS9994 Rev 9  
111/125  
121  
 
 
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 77. LQFP64 package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
θ
L
0°  
0.450  
-
3.5°  
7°  
0.750  
-
0°  
0.0177  
-
3.5°  
7°  
0.0295  
-
0.600  
1.000  
0.0236  
0.0394  
L1  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 42. Recommended footprint for the LQFP64 package  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
112/125  
DS9994 Rev 9  
 
STM32F334x4 STM32F334x6 STM32F334x8  
Device marking for LQFP64  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 43. LQFP64 marking example (package top view)  
Revision code  
Engineering Sample marking(1)  
R
STM32F334  
R6T6  
Pin 1  
indentifier  
Y WW  
MSv33100V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS9994 Rev 9  
113/125  
121  
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
7.5  
WLCSP49 package information  
Figure 44. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
package outline  
bbb  
Z
A1 BALL LOCATION  
e1  
A1  
F
7
1
G
A
DETAIL A  
e2 E  
E
e
G
aaa  
e
A2  
D
D
A
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
A3  
A2  
BUMP  
FRONT VIEW  
A2  
SEATING PLANE  
DETAIL A  
ROTATED 90  
B01F_WLCSP49_ME_V1  
1. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
2. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
3. Bump position designation per JESD 95-1, SPP-010.  
114/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
Table 78. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
b
-
-
0.23  
0.36  
0.025(2)  
0.33  
3.89  
3.74  
0.50  
3.00  
3.00  
0.445(3)  
0.370(4)  
-
0.62  
-
-
0.0244  
-
-
-
0.009  
0.014  
0.001  
0.013  
0.153  
0.147  
0.020  
0.118  
0.118  
0.017  
0.015  
-
-
-
-
-
-
-
-
-
-
0.30  
0.36  
3.91  
3.76  
-
0.012  
0.014  
0.154  
0.148  
-
D
3.87  
0.152  
E
3.72  
0.146  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
-
-
-
-
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.10  
0.05  
0.05  
0.004  
0.004  
0.004  
0.002  
0.002  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. A3 value is guaranteed by technology design value.  
3. This value is calculated from over value D and e1.  
4. This value is calculated from over value E and e2.  
Figure 45. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
recommended footprint  
Dpad  
Dsm  
B01F_WLCSP49_FP_V1  
1. Dimensions are expressed in millimeters.  
DS9994 Rev 9  
115/125  
121  
 
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 79. WLCSP - 49 ball, 3.89x3.74 mm, 0.5 mm pitch, wafer level chip scale,  
recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
0.5 mm  
0.290 mm  
0.350 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.310 mm  
0.100 mm  
Device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 46. WLCSP49 marking example (package top view)  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
116/125  
DS9994 Rev 9  
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
7.6  
UFQFPN32 package information  
Figure 47. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
package outline  
D1  
E1  
e
L
Pin 1 identifier  
e
b
BOTTOM VIEW  
A1  
A3  
DETAIL A  
FRONT VIEW  
Pin 1 identifier  
LASER MARKING AREA  
A3  
A1  
A
E
SEATING  
PLANE  
e
b
DETAIL A  
D
A09E_ME_V1  
TOP VIEW  
1. Drawing is not in scale.  
DS9994 Rev 9  
117/125  
121  
 
 
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 80. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A(2)  
A1  
A3  
b
0.500  
0
0.550  
0.020  
0.152  
0.250  
5.000  
3.500  
5.000  
3.500  
0.500  
0.400  
-
0.600  
0.050  
-
0.0197  
0
0.0217  
0.0008  
0.0060  
0.0098  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0157  
-
0.0236  
0.0020  
-
-
-
0.180  
4.900  
3.400  
4.900  
3.400  
-
0.280  
5.100  
3.600  
5.100  
3.600  
-
0.0071  
0.1929  
0.1339  
0.1929  
0.1339  
-
0.0110  
0.2008  
0.1417  
0.2008  
0.1417  
-
D(3)  
D1  
E(3)  
E1  
e
L
0.300  
-
0.500  
0.080  
0.0118  
-
0.0197  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. UFQFPN stands for Thermally Enhanced Ultrathin Fine pitch Quad Flat Package No lead.  
3. Dimensions D and E do not include mold protrusion, not to exceed 0,15mm.  
Figure 48. UFQFPN - 32 pin, 5 x 5 mm 0.5 mm pitch ultra thin fine pitch quad flat  
recommended footprint  
5.30  
3.80  
0.60  
3.80  
5.30  
0.50  
0.30  
0.75  
3.80  
A09E_FP_V1  
1. Dimensions are expressed in millimeters.  
118/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 49. UFQFPN32 marking example (package top view)  
Product identification (1)  
E334K6U  
Y WW  
Revision code  
R
Pin 1 identifier  
MSv44309V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST's Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS9994 Rev 9  
119/125  
121  
 
Package information  
STM32F334x4 STM32F334x6 STM32F334x8  
7.7  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in ° C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 81. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
45  
55  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP32 - 7 × 7 mm / 0.8 mm pitch  
Θ
60  
°C/W  
JA  
Thermal resistance junction-ambient  
UFQFN32 - 5 x 5 mm  
37  
Thermal resistance junction-ambient  
WLCSP49 - 3.89 x 3.74 mm / 0.5 mm pitch  
48.3  
7.7.1  
7.7.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available at the www.jedec.org website.  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Table 82: Ordering information scheme.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and to a specific maximum junction temperature.  
As applications do not commonly use the STM32F334x4/6/8 microcontroller at maximum  
dissipation, it is useful to calculate the exact power consumption and junction temperature  
to determine which temperature range is best suited to the application.  
120/125  
DS9994 Rev 9  
 
 
 
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Package information  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example: high-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
mode at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V = 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Thus: P  
= 447 mW  
Dmax  
Using the values obtained in Table 81: Package thermal characteristics, T  
is calculated  
Jmax  
as follows:  
T
For LQFP64, 45 °C/W  
= 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Table 82: Ordering information scheme).  
DS9994 Rev 9  
121/125  
121  
Ordering information  
STM32F334x4 STM32F334x6 STM32F334x8  
8
Ordering information  
Table 82. Ordering information scheme  
STM32 334  
Example:  
F
C
8
T
6
xxx  
Device family  
®
STM32 = Arm -based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
334 = STM32F334xx, 2.0 to 3.6 V operating voltage  
Pin count  
K = 32 pins  
C = 48 or 49 pins  
R = 64 pins  
Flash memory size  
4 = 16 Kbytes of Flash memory  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
Package  
T = LQFP  
Y = WLCSP  
U = UFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
7 = Industrial temperature range, –40 to 105 °C  
Options  
xxx = programmed parts  
TR = tape and reel  
122/125  
DS9994 Rev 9  
 
 
 
STM32F334x4 STM32F334x6 STM32F334x8  
Revision history  
9
Revision history  
Table 83. Document revision history  
Date  
Revision  
Changes  
19-Jun-2014  
1
Initial release.  
Updated:  
Table 54: TIMx characteristics  
Table 14: STM32F334x6/8 pin definitions  
Table 59: ADC characteristics  
Table 34: Peripheral current consumption  
Table 40: HSI oscillator characteristics  
09-Dec-2014  
2
Table 17: HSI oscillator accuracy characterization results  
for soldered parts  
Table 2: STM32F334x4/6/8 family device features and  
peripheral counts  
Updated:  
Figure 1: STM32F334x4/6/8 block diagram  
Table 38: HSE oscillator characteristics  
Table 43: Flash memory characteristics  
2-Feb-2015  
09-Jun-2015  
3
4
Added Figure 15: High-speed external clock source AC timing  
diagram  
Updated:  
– Title  
Section 3.14.1: 217 ps high-resolution timer (HRTIM1)  
Section 6.1.6: Power-supply scheme  
Table 19: General operating conditions  
Updated:  
Section Table 69.: DAC characteristics, Section Table 64.:  
ADC characteristics,Table 53: NRST pin characteristics,  
Figure 2: Clock tree, Table 13: STM32F334x4/6/8 pin  
definitions, Table 71: Operational amplifier characteristics,  
Figure 22: 5V- tolerant (FT and FTf) I/O input characteristics -  
CMOS port, Table 23: Embedded internal reference voltage,  
Table 39: LSE oscillator characteristics (fLSE = 32.768 kHz)  
27-Sep-2016  
5
Added Table 35: Wakeup time using USART.  
Updated:  
Table 2: STM32F334x4/6/8 family device features and  
peripheral counts  
Table 13: STM32F334x4/6/8 pin definitions  
Table 19: General operating conditions  
Table 81: Package thermal characteristics  
Table 82: Ordering information scheme  
Added:  
15-May-2017  
6
Figure 7: WLCSP49 ballout  
Section 7.5: WLCSP49 package information  
DS9994 Rev 9  
123/125  
124  
 
 
Revision history  
STM32F334x4 STM32F334x6 STM32F334x8  
Table 83. Document revision history (continued)  
Date  
Revision  
Changes  
Updated:  
– Footnotes of Table 25: Typical and maximum current  
23-Nov--2017  
19-Dec-2017  
7
consumption from VDD supply at VDD = 3.6V  
– Footnotes of Table 26: Typical and maximum current  
consumption from the VDDA supply  
Updated Table 1: Device summary: STM32F334R4 product  
not covered by this datasheet  
8
9
Updated:  
Table 2: STM32F334x4/6/8 family device features and  
peripheral counts  
Table 13: STM32F334x4/6/8 pin definitions  
Table 19: General operating conditions  
Table 81: Package thermal characteristics  
Table 82: Ordering information scheme  
Added:  
16-Jul-2018  
Figure 8: UFQFPN32 pinout  
Section 7.6: UFQFPN32 package information  
124/125  
DS9994 Rev 9  
STM32F334x4 STM32F334x6 STM32F334x8  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2018 STMicroelectronics – All rights reserved  
DS9994 Rev 9  
125/125  
125  
 
 

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX