STM32F412ZG [STMICROELECTRONICS]

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, 1MB Flash, 256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces;
STM32F412ZG
型号: STM32F412ZG
厂家: ST    ST
描述:

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, 1MB Flash, 256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces

文件: 总193页 (文件大小:2701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F412xE STM32F412xG  
ARM®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, 1MB Flash,  
256KB RAM, USB OTG FS, 17 TIMs, 1 ADC, 17 comm. interfaces  
Datasheet - production data  
Features  
)%*$  
Dynamic Efficiency Line with BAM (Batch  
Acquisition Mode)  
®
®
UFBGA100  
(7x7mm)  
LQFP64 (10x10mm)  
LQFP100 (14x14mm)  
LQFP144 (20x20mm)  
WLCSP64  
(3.623x3.651mm)  
Core: ARM 32-bit Cortex -M4 CPU with  
FPU, Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 100 MHz,  
memory protection unit,  
UFQFPN48  
(7x7 mm)  
UFBGA144  
(10x10mm)  
Up to 17 timers: up to twelve 16-bit timers, two  
32-bit timers up to 100 MHz each with up to  
four IC/OC/PWM or pulse counter and  
quadrature (incremental) encoder input, two  
watchdog timers (independent and window),  
one SysTick timer  
125 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1),  
and DSP instructions  
Memories  
– Up to 1 Mbyte of Flash memory  
– 256 Kbyte of SRAM  
– Flexible external static memory controller  
with up to 16-bit data bus: SRAM, PSRAM,  
NOR Flash memory  
Debug mode  
– Serial wire debug (SWD) & JTAG  
®
– Cortex -M4 Embedded Trace Macrocell™  
Up to 114 I/O ports with interrupt capability  
– Dual mode Quad-SPI interface  
– Up to 109 fast I/Os up to 100 MHz  
– Up to 114 five V-tolerant I/Os  
LCD parallel interface, 8080/6800 modes  
Clock, reset and supply management  
Up to 17 communication interfaces  
2
– 1.7 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– 4-to-26 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
– Up to 4x I C interfaces (SMBus/PMBus)  
– Up to 4 USARTs (2 x 12.5 Mbit/s,  
2 x 6.25 Mbit/s), ISO 7816 interface, LIN,  
IrDA, modem control)  
– Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or  
I2S audio protocol), out of which 2 muxed  
full-duplex I2S interfaces  
Power consumption  
– SDIO interface (SD/MMC/eMMC)  
– Run: 112 µA/MHz (peripheral off)  
– Advanced connectivity: USB 2.0 full-speed  
device/host/OTG controller with PHY  
– 2x CAN (2.0B Active)  
– Stop (Flash in Stop mode, fast wakeup  
time): 50 µA Typ @ 25 °C; 75 µA max  
@25 °C  
True random number generator  
– Stop (Flash in Deep power down mode,  
slow wakeup time): down to 18 µA @  
25 °C; 40 µA max @25 °C  
CRC calculation unit  
96-bit unique ID  
RTC: subsecond accuracy, hardware calendar  
– Standby: 2.4 µA @25 °C / 1.7 V without  
RTC; 12 µA @85 °C @1.7 V  
®
All packages are ECOPACK 2  
Table 1. Device summary  
– V  
supply for RTC: 1 µA @25 °C  
BAT  
Reference  
Part number  
1×12-bit, 2.4 MSPS ADC: up to 16 channels  
STM32F412CE, STM32F412RE, STM32F412VE,  
STM32F412ZE  
2x digital filters for sigma delta modulator,  
STM32F412xE  
4x PDM interfaces, stereo microphone support  
STM32F412CG, STM32F412RG, STM32F412VG,  
STM32F412ZG  
STM32F412xG  
General-purpose DMA: 16-stream DMA  
May 2016  
DocID028087 Rev 4  
1/193  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32F412xE/G  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 19  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 19  
Batch Acquisition mode (BAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.11 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.12 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.13 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23  
3.14 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.15 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.16 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.17 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.18 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.18.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.18.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.19 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.19.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.19.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.19.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31  
3.20 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31  
3.21 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/193  
DocID028087 Rev 4  
STM32F412xE/G  
Contents  
3.22 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.23 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.23.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.23.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.23.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.23.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.23.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.23.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.24 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.25 Universal synchronous/asynchronous receiver transmitters (USART) . . 37  
3.26 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.27 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 38  
3.30 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40  
3.31 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40  
3.33 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.34 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.35 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.36 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.37 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.38 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DocID028087 Rev 4  
3/193  
5
Contents  
STM32F412xE/G  
6.1.6  
6.1.7  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Operating conditions at power-up/power-down (regulator ON) . . . . . . . 79  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 80  
Embedded reset and power control block characteristics . . . . . . . . . . . 80  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110  
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 115  
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
6.3.22  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
BAT  
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
6.3.24 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
6.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
6.3.26 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 159  
6.3.27 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
7.1  
7.2  
7.3  
WLCSP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
4/193  
DocID028087 Rev 4  
STM32F412xE/G  
Contents  
7.4  
7.5  
7.6  
7.7  
7.8  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
7.8.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Appendix A Recommendations when using the internal reset OFF . . . . . . . . 186  
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
B.1  
B.2  
B.3  
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 187  
Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
DocID028087 Rev 4  
5/193  
5
List of tables  
STM32F412xE/G  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F412xE/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
STM32F412xE/G pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
STM32F412xE/G alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
STM32F412xE/G register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 78  
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 79  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 80  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
DD  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V. . . 84  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.6 V . . 85  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 3.6 V. . . . . . . . . . . . . . . 86  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 1.7 V. . . . . . . . . . . . . . . 87  
DD  
Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 3.6 V. . . . . 88  
DD  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Typical and maximum current consumption in Sleep mode - V = 3.6 V. . . . . . . . . . . . . 89  
DD  
Typical and maximum current consumption in Sleep mode - V = 1.7 V. . . . . . . . . . . . . 90  
DD  
Typical and maximum current consumptions in Stop mode - V = 1.7 V . . . . . . . . . . . . . 91  
DD  
Typical and maximum current consumption in Stop mode - V =3.6 V. . . . . . . . . . . . . . . 92  
DD  
Typical and maximum current consumption in Standby mode - V = 1.7 V . . . . . . . . . . . 92  
DD  
Typical and maximum current consumption in Standby mode - V = 3.6 V . . . . . . . . . . . 92  
DD  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 93  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
(1)  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
LSE  
6/193  
DocID028087 Rev 4  
STM32F412xE/G  
List of tables  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Flash memory programming with V voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
PP  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
SCL frequency (f  
= 50 MHz, V = V  
= 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 125  
PCLK1  
DD  
DD_I2C  
2
FMPI C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
ADC accuracy at f  
ADC accuracy at f  
ADC accuracy at f  
= 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
= 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 138  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 138  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
BAT  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
Table 84.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 148  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
Table 85.  
Table 86.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 150  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 152  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
DocID028087 Rev 4  
7/193  
8
List of tables  
STM32F412xE/G  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 157  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 161  
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
WLCSP64 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 163  
Table 99.  
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Table 101. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Table 103. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 179  
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 182  
Table 108. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Table 109. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 110. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
8/193  
DocID028087 Rev 4  
STM32F412xE/G  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F412xE/G block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 25  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 11. STM32F412xE/G WLCSP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 12. STM32F412xE/G UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 13. STM32F412xE/G LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 14. STM32F412xE/G LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 15. STM32F412xE/G LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 16. STM32F412xE/G UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 17. STM32F412xE/G UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 18. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 20. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 21. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 23. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
EXT  
Figure 24. Typical V  
current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“low power” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 25. Typical V current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“high drive” mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 26. Low-power mode wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 31. ACC  
versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
HSI  
Figure 32. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
LSI  
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 35. FT/TC I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
2
Figure 38. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
2
Figure 39. FMPI C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
(1)  
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
(1)  
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
2
(1)  
Figure 43. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
2
(1)  
Figure 44. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
DocID028087 Rev 4  
9/193  
11  
List of figures  
STM32F412xE/G  
Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 135  
Figure 46. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 47. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 48. Power supply and reference decoupling (V  
Figure 49. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 141  
). . . . . . . . . . . . . . . . 142  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 146  
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 148  
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 54. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 55. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 57. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 58. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 59. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 60. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 61. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 62. WLCSP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 64. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 65. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 168  
Figure 67. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 68. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 69. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 171  
Figure 70. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 71. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 72. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 174  
Figure 73. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 74. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 75. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 77. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 78. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 80. UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 81. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 187  
Figure 82. USB peripheral-only Full speed mode with direct connection  
for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 188  
Figure 84. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 188  
Figure 85. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 189  
Figure 86. Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
10/193  
DocID028087 Rev 4  
STM32F412xE/G  
List of figures  
Figure 87. Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
DocID028087 Rev 4  
11/193  
11  
Introduction  
STM32F412xE/G  
1
Introduction  
This datasheet provides the description of the STM32F412xE/G microcontrollers.  
For information on the Cortex -M4 core, refer to the Cortex -M4 programming manual  
(PM0214) available from www.st.com.  
12/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Description  
2
Description  
®
®
The STM32F412XE/G devices are based on the high-performance ARM Cortex -M4 32-  
®
bit RISC core operating at a frequency of up to 100 MHz. Their Cortex -M4 core features a  
Floating point unit (FPU) single precision which supports all ARM single-precision data-  
processing instructions and data types. It also implements a full set of DSP instructions and  
a memory protection unit (MPU) which enhances application security.  
The STM32F412XE/G belong to the STM32 Dynamic Efficiencyproduct line (with  
products combining power efficiency, performance and integration) while adding a new  
innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power  
consumption during data batching.  
The STM32F412XE/G incorporate high-speed embedded memories (up to 1 Mbyte of Flash  
memory, 256 Kbyte of SRAM), and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.  
All devices offer one 12-bit ADC, a low-power RTC, twelve general-purpose 16-bit timers,  
two PWM timer for motor control and two general-purpose 32-bit timers.  
They also feature standard and advanced communication interfaces.  
2
2
Up to four I Cs, including one I C supporting Fast-Mode Plus  
Five SPIs  
2
2
Five I Ss out of which two are full duplex. To achieve audio class accuracy, the I S  
peripherals can be clocked via a dedicate internal audio PLL or via an external clock to  
allow synchronization.  
Four USARTs  
An SDIO/MMC interface  
An USB 2.0 OTG full-speed interface  
Two CANs.  
In addition, the STM32F412xE/G embed advanced peripherals:  
A flexible static memory control interface (FSMC)  
A Quad-SPI memory interface  
A digital filter for sigma modulator (DFSDM), two filters, up to four inputs, and support  
of microphone MEMs.  
The STM32F412xE/G are offered in 7 packages ranging from 48 to 144 pins. The set of  
available peripherals depends on the selected package. Refer to Table 2: STM32F412xE/G  
features and peripheral counts for the peripherals available for each part number.  
The STM32F412xE/G operates in the – 40 to + 105 °C temperature range from a 1.7 (PDR  
OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design  
of low-power applications.  
DocID028087 Rev 4  
13/193  
42  
 
Description  
STM32F412xE/G  
These features make the STM32F412xE/G microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Mobile phone sensor hub  
Wearable devices  
Connected objects  
Wifi modules  
Figure 4 shows the general block diagram of the devices.  
14/193  
DocID028087 Rev 4  
STM32F412xE/G  
Description  
Table 2. STM32F412xE/G features and peripheral counts  
Peripherals  
STM32F412xE  
STM32F412xG  
1024  
Flash memory (Kbyte)  
512  
SRAM  
System  
(Kbyte)  
256  
FSMC memory controller  
-
1
-
1
Quad-SPI memory  
interface  
-
1
-
1
General-  
purpose  
10  
2
Timers  
Advanced-  
control  
Basic  
2
1
Random number generator  
SPI/ I2S  
I2C  
5/5 (2 full duplex)  
3
1
3
1
I2CFMP  
USART  
3
4
4
Comm.  
interfaces  
SDIO/MMC  
1
1
USB/OTG FS  
Dual power rail  
1
No  
1
No  
Yes  
Yes  
CAN  
2
Number of digital Filters for  
Sigma-delta modulator  
2
3
2
4
2
2
4
3
-
Number of channels  
LCD parallel interface  
Data bus size  
-
8
16  
8
16  
GPIOs  
36  
50  
81  
16  
114  
36  
10  
50  
81  
16  
114  
1
12-bit ADC  
Number of channels  
10  
Maximum CPU frequency  
Operating voltage  
100 MHz  
1.7 to 3.6 V  
Ambient temperatures: –40 to +85 °C/–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
Operating temperatures  
Package  
UFBGA  
100  
UFBGA  
144  
LQFP64 UFBGA  
UFBGA  
144  
UFQ  
LQFP64  
FPN48 WLCSP64  
UFQ  
FPN48  
WLCSP  
64  
100  
LQFP100 LQFP144  
LQFP100 LQFP144  
DocID028087 Rev 4  
15/193  
42  
 
 
Description  
STM32F412xE/G  
2.1  
Compatibility with STM32F4 series  
The STM32F412xE/G are fully software and feature compatible with the STM32F4 series  
(STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)  
The STM32F412xE/G can be used as drop-in replacement of the other STM32F4 products  
but some slight changes have to be done on the PCB board.  
Figure 1. Compatible board design for LQFP100 package  
670ꢀꢄ)ꢇꢃꢈ[[  
670ꢀꢄ)ꢇꢈꢈ[[  
670ꢀꢄ)ꢇꢈꢄ[[  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
670ꢀꢄ)ꢇꢇꢆ[[  
670ꢀꢄ)ꢇꢃꢁꢋ670ꢀꢄ)ꢇꢈꢁꢉOLQH  
ꢅꢂ  
ꢅꢁ  
ꢅꢆ  
ꢅꢅ  
ꢅꢇ  
ꢅꢀ  
ꢅꢄ  
ꢅꢈ  
3'ꢈꢈꢉꢉꢉꢉ  
3'ꢈꢃꢉꢉꢉꢉ  
3'ꢊ  
ꢅꢂ  
ꢅꢁ  
ꢅꢆ  
ꢅꢅ  
ꢅꢇ  
ꢅꢀ  
ꢅꢄ  
ꢅꢈ  
3'ꢈꢈꢉꢉꢉꢉ  
3'ꢈꢃꢉꢉꢉꢉ  
3'ꢊ  
670ꢀꢄ)ꢇꢄꢁꢋ670ꢀꢄ)ꢇꢀꢁꢉOLQH  
670ꢀꢄ)ꢇꢄꢊꢋ670ꢀꢄ)ꢇꢀꢊꢉOLQH  
3%ꢈꢈ QRW DYDLODEOHꢉDQ\PRUH  
3'ꢂ  
3'ꢂ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
5HSODFHG E\ 9  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
&$3Bꢈ  
966 9''  
966 9''  
06Yꢀꢁꢂꢃꢄ9ꢄ  
16/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Description  
Figure 2. Compatible board design for LQFP64 package  
670ꢀꢄ)ꢇꢃꢈ[[  
670ꢀꢄ)ꢇꢈꢃ[[  
670ꢀꢄ)ꢇꢈꢈ[[  
670ꢀꢄ)ꢇꢈꢄ[[  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
670ꢀꢄ)ꢇꢇꢆ[[  
ꢅꢀ  ꢇꢊ  
ꢇꢂ 9''  
ꢅꢀ  ꢇꢊ  
9''  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
ꢇꢂ  
9''  
9''  
ꢇꢁ  
9&$3Bꢄ  
ꢇꢁ  
ꢇꢆ  
ꢇꢅ  
ꢇꢇ  
ꢇꢀ  
ꢇꢄ  
ꢇꢈ  
ꢇꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢁ  
ꢇꢆ 3$ꢈꢀ  
ꢇꢅ 3$ꢈꢄ  
ꢇꢇ 3$ꢈꢈ  
ꢇꢀ 3$ꢈꢃ  
ꢇꢄ 3$ꢊ  
ꢇꢈ 3$ꢂ  
ꢇꢃ 3&ꢊ  
ꢀꢊ 3&ꢂ  
ꢀꢂ 3&ꢁ  
ꢀꢁ 3&ꢆ  
966  
966  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
3&ꢆ  
3%ꢈꢈꢉQRWꢉDYDLODEOHꢉDQ\PRUHꢉꢉ  
5HSODFHGꢉE\ꢉ9&$3Bꢈ  
ꢀꢆ  
ꢀꢅ  
ꢀꢇ  
ꢀꢀ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
ꢀꢆ 3%ꢈꢅ  
ꢀꢅ 3%ꢈꢇ  
ꢀꢇ 3%ꢈꢀ  
ꢀꢀ 3%ꢈꢄ  
ꢄꢂ    
ꢄꢂ    
9&$3BꢈꢉLQFUHDVHGꢉWRꢉꢇꢌꢁꢉ—I  
(65ꢉꢈꢉŸꢉRUꢉEHORZꢉꢈꢉꢉ  
966  
9''  
9''  
966  
06Yꢀꢁꢂꢃꢀ9ꢄ  
Figure 3. Compatible board design for LQFP144 package  
670ꢀꢄ)ꢇꢃꢅꢋ670ꢀꢄ)ꢇꢈꢅꢉOLQH  
670ꢀꢄ)ꢇꢃꢁꢋ670ꢀꢄ)ꢇꢈꢁꢉOLQH  
670ꢀꢄ)ꢇꢄꢁꢋ670ꢀꢄ)ꢇꢀꢁꢉOLQH  
670ꢀꢄ)ꢇꢄꢊꢋ670ꢀꢄ)ꢇꢀꢊꢉOLQH  
670ꢀꢄ)ꢇꢈꢄ[[  
670ꢀꢄ)ꢇꢇꢆ[[  
ꢈꢃꢂ  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9''  
966  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
ꢈꢃꢂ  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9''  
966  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3$ꢂ  
3&ꢊ  
6HSDUDWHꢉ86%ꢉSRZHUꢉUDLOꢌ  
3&ꢊ  
ꢊꢂ  
3&ꢂ  
ꢊꢂ  
3&ꢂ  
&RQQHFWHGꢉWRꢉ9''ꢉLIꢉDꢉGLIIHUHQWꢉ  
SRZHUꢉVXSSO\ꢉIRUꢉWKHꢉ86%ꢉLVꢉQRWꢉ  
UHTXLUHGꢌ  
ꢊꢁ  
3&ꢁ  
ꢊꢁ  
3&ꢁ  
ꢊꢆ  
3&ꢆ  
ꢊꢆ  
3&ꢆ  
ꢊꢅ  
9''  
966  
3*ꢂ  
ꢊꢅ  
9''B86%  
966  
ꢊꢇ  
ꢊꢇ  
ꢊꢀ  
ꢊꢀ  
3*ꢂ  
06Yꢀꢊꢇꢇꢆ9ꢈ  
DocID028087 Rev 4  
17/193  
42  
 
 
 
 
Description  
STM32F412xE/G  
Figure 4. STM32F412xE/G block diagram  
)60&  
&/.ꢎꢉ1(>ꢀꢍꢃ@ꢎꢉ$>ꢄꢅꢍꢃ@ꢎ  
'>ꢈꢆꢍꢃ@ꢎꢉ12(1ꢎꢉ1:(1ꢎ  
1%/>ꢈꢍꢃ@ꢎꢉ1:$,7  
125ꢉ)ODVKꢎꢉ  
-7567ꢉ-7',ꢎ  
-7&.ꢋ6:&/.  
65$0ꢎꢉ365$0  
-7$*ꢉꢏꢉ6:  
(70  
038ꢋ)38  
&/.ꢎꢉ&6$ꢎꢉ&6%ꢎꢉ'>ꢁꢍꢃ@  
4XDGꢐ63,  
-7'2ꢋ6:'ꢎꢉ-7'2  
75$&(&/.  
19,&  
,ꢐ%86  
75$&('>ꢀꢍꢃ@  
ꢄꢅꢆꢉ.%ꢉ65$0ꢈ  
$50ꢉ&RUWH[ꢐ0ꢇ  
&RUWH[ꢐ0ꢇ  
ꢈꢃꢃꢉ0+]  
'ꢐ%86  
6ꢐ%86  
8SꢉWRꢉꢈ0%ꢉ)ODVKꢉ  
PHPRU\  
51*  
#9''86%  
$+%ꢄꢉꢈꢃꢃ0+]  
#9''  
'ꢓ  
86%  
27*ꢉ)6  
ꢂꢉ6WUHDPV  
),)2  
'ꢐ  
'0$ꢄ  
'0$ꢈ  
6&/ꢎꢉ6'$ꢎꢉ,17ꢉ,'ꢎꢉ9%86  
$+%ꢈꢉꢈꢃꢃꢉ0+]  
9''  
ꢂꢉ6WUHDPV  
),)2  
3RZHUꢉPDQDJPW  
9ROWDJHꢉ  
9'' ꢉꢈꢌꢂꢉWRꢉꢀꢌꢆꢉ9  
966  
9&$3Bꢈꢎꢉ9&$3Bꢄ  
UHJXODWRU  
ꢀꢌꢀꢉWRꢉꢈꢌꢄꢉ9  
3$>ꢈꢅꢍꢃ@  
3%>ꢈꢅꢍꢃ@  
3&>ꢈꢅꢍꢃ@  
3'>ꢈꢅꢍꢃ@  
#9''$  
5& +6  
*3,2ꢉ3257ꢉ$  
*3,2ꢉ3257ꢉ%  
*3,2ꢉ3257ꢉ&  
#9''  
6XSSO\  
325ꢉꢉ  
UHVHW  
VXSHUYLVLRQ  
5& / 6  
325ꢋ3'5  
%25  
,QW  
9''$ꢎꢉ966$  
1567  
3//ꢈꢐ3//ꢄ  
39'  
*3,2ꢉ3257ꢉ'  
*3,2ꢉ3257ꢉ(  
*3,2ꢉ3257ꢉ*  
#9''$  
#9''  
26&B,1  
26&B287  
3(>ꢈꢅꢍꢃ@  
3*>ꢈꢅꢍꢃ@  
3+>ꢈꢍꢃ@  
;7$/ꢉ26&  
ꢇꢐꢉꢈꢆ0+]  
5HVHWꢉꢏ  
:'*ꢉꢀꢄ.  
FORFN  
FRQWURO  
3:5  
LQWHUIDFH  
*3,2ꢉ3257ꢉ+  
9%$7ꢉ ꢉꢈꢌꢂꢉWRꢉꢀꢌꢆꢉ9  
#
9
%$7  
26&ꢀꢄB,1  
26&ꢀꢄB287  
;7$/ꢉꢀꢄꢉN+]  
57&  
$:8  
$/$50B287  
67$03ꢈꢉꢉ  
%DFNXSꢉUHJLVWHU  
&5&  
ꢀꢄE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢄ  
ꢀꢄE  
ꢀꢄE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢀ  
7,0ꢇ  
'0$ꢄ  
'0$ꢈ  
ꢈꢈꢄꢉ$)  
(;7ꢉ,7ꢉ:.83  
6',2ꢋ00&  
'>ꢁꢍꢃ@  
&0'ꢎ&.ꢉDVꢉ$)  
$+%ꢋꢉ  
$3%ꢄ  
$+%ꢋꢉ  
$3%ꢈ  
ꢀꢄE  
ꢈꢆE  
ꢇꢉFKDQQHOVꢉDVꢉ$)  
ꢄꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢅ  
ꢇꢉ3:0ꢎꢉꢀꢉ3:0ꢎ  
(75ꢎꢉ%.,1ꢉDVꢉ$)  
ꢈꢆE  
7,0ꢈꢉꢋꢉ3:0  
7,0ꢈꢄ  
ꢈꢆE  
ꢈꢆE  
ꢈꢉFKDQQHOVꢉDVꢉ$)  
ꢈꢉFKDQQHOVꢉDVꢉ$)  
7,0ꢈꢀ  
7,0ꢈꢇ  
ꢇꢉ3:0ꢎꢉꢀꢉ3:0ꢎ  
(75ꢎꢉ%.,1ꢉDVꢉ$)  
ꢈꢆE  
ꢈꢆE  
7,0ꢂꢉꢋꢉ3:0  
7,0ꢊ  
ꢄꢉFKDQQHOVꢉDVꢉ$)  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
VPFDUG  
LU'$  
ꢈꢉFKDQQHOꢉDVꢉ$)  
ꢈꢉFKDQQHOꢉDVꢉ$)  
ꢈꢆE  
ꢈꢆE  
7,0ꢈꢃ  
7,0ꢈꢈ  
86$57ꢄ  
86$57ꢀ  
&76ꢎꢉ576ꢉDVꢉ$)ꢉ  
::'*  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)ꢉ  
VPFDUG  
LU'$  
VPFDUG  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
026,ꢎꢉ0,62ꢎꢉ6&.ꢎꢉ  
166ꢋ:6ꢎꢉ0&.ꢉDVꢉ$)ꢉꢉꢉꢉ  
026,ꢎꢉ0,62ꢎꢉ6&.ꢎꢉ  
63,ꢄꢋ,ꢄ6ꢄ  
63,ꢀꢋ,ꢄ6ꢀ  
86$57ꢈ  
ꢈꢆE  
ꢈꢆE  
LU'$  
7,0(5ꢆ  
7,0(5ꢁ  
&76ꢎꢉ576ꢉDVꢉ$)  
VPFDUG  
LU'$  
5;ꢎꢉ7;ꢎꢉ6&.ꢎ  
&76ꢎꢉ576ꢉDVꢉ$)  
86$57ꢆ  
166ꢋ:6ꢎꢉ0&.ꢉDVꢉ$)ꢉꢉꢉꢉ  
026,ꢎꢉ0,62ꢎꢉ  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
63,ꢈꢋ,ꢄ6ꢈ  
,ꢄ&ꢈꢋ60%86  
,ꢄ&ꢄꢋ60%86  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
026,ꢎꢉ0,62ꢎꢉ  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
026,ꢎꢉ0,62ꢎꢉ  
63,ꢇꢋ,ꢄ6ꢇ  
63,ꢅꢋ,ꢄ6ꢅ  
')6'0  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
6&/ꢎꢉ6'$ꢎꢉ60%$ꢉDVꢉ$)  
,ꢄ&ꢀꢋ60%86  
6&.ꢎꢉꢉ166ꢋ:6ꢉDVꢉ$)  
&.,1>ꢀꢍꢃ@ꢎꢉ'$7,1>ꢀꢍꢃ@ꢎ  
&.287  
,ꢄ&)03ꢈꢋ60%86  
9''5()B$'&  
7HPSHUDWXUHꢉVHQVRU  
&$1ꢈ  
&$1ꢄ  
7;ꢎꢉ5;  
7;ꢎꢉ5;  
ꢈꢆꢉDQDORJꢉLQSXWVꢉꢉ  
$'&ꢈ  
#9''$  
,)  
06Yꢀꢁꢄꢁꢅ9ꢀ  
1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked  
from TIMxCLK up to 50 MHz.  
18/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Functional overview  
3
Functional overview  
3.1  
ARM® Cortex®-M4 with FPU core with embedded Flash and  
SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU 32-bit RISC processor features exceptional code-  
efficiency, delivering the high-performance expected from an ARM core in the memory size  
usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F412xE/G devices are compatible with all ARM tools and software.  
Figure 4 shows the general block diagram of the STM32F412xE/G.  
®
®
Note:  
Cortex -M4 with FPU is binary compatible with Cortex -M3.  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
®
standard ARM Cortex -M4 with FPU processors. It balances the inherent performance  
®
advantage of the ARM Cortex -M4 with FPU over Flash memory technologies, which  
normally requires the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 125 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 100 MHz.  
3.3  
Batch Acquisition mode (BAM)  
The Batch acquisition mode allows enhanced power efficiency during data batching. It  
enables data acquisition through any communication peripherals directly to memory using  
the DMA in reduced power consumption as well as data processing while the rest of the  
system is in low-power mode (including the flash and ART). For example in an audio  
system, a smart combination of PDM audio sample acquisition and processing from the  
DFSDM directly to RAM (flash and ARTstopped) with the DMA using BAM followed by  
some very short processing from flash allows to drastically reduce the power consumption  
of the application. A dedicated application note (AN4515) describes how to implement the  
STM32F412xE/G BAM to allow the best power efficiency.  
DocID028087 Rev 4  
19/193  
42  
 
 
 
 
Functional overview  
STM32F412xE/G  
3.4  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of  
addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.5  
Embedded Flash memory  
The devices embed up to 1 Mbyte of Flash memory available for storing programs and data.  
The Flash user area can be protected against reading by an entrusted code (Read  
Protection, RDP) with different protection levels.  
The flash user sectors can also be individually protected against write operation.  
Furthermore the proprietary readout protection (PCROP) can also individually protect the  
flash user sectors against D-bus read accesses.  
(Additional information can be found in the product reference manual).  
To optimize the power consumption the Flash memory can also be switched off in Run or in  
Sleep mode (see Section 3.21: Low-power modes).  
Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between  
power saving and startup time.  
Before disabling the Flash, the code must be executed from the internal RAM.  
3.6  
3.7  
One-time programmable bytes  
A one-time programmable area is available with16 OTP blocks of 32 bytes. Each block can  
be individually locked  
(Additional information can be found in the product reference manual)  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
20/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Functional overview  
3.8  
Embedded SRAM  
All devices embed 256 Kbyte of system SRAM which can be accessed (read/write) at CPU  
clock speed with 0 wait states  
3.9  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves  
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient  
operation even when several high-speed peripherals work simultaneously.  
Figure 5. Multi-AHB matrix  
$50  
&RUWH[ꢐ0ꢇ  
*3  
'0$ꢄ  
*3  
'0$ꢈ  
6ꢃ  
6ꢈ  
6ꢄ  
6ꢀ  
6ꢇ  
6ꢅ  
,&2'(  
0ꢃ  
0ꢈ  
0ꢄ  
)ODVK  
8SꢉWRꢉꢈ0%  
'&2'(  
65$0ꢈ  
ꢄꢅꢆꢉ.%  
$+%  
0ꢀ  
0ꢇ  
$3%ꢈ  
$3%ꢄ  
SHULSKꢌꢉꢈ  
$+%  
SHULSKꢌꢉꢄ  
)60&ꢉH[WHUQDOꢉ  
0HP&WUOꢋ  
0ꢅ  
%XVꢉPDWUL[ꢐ6  
4XDG63,  
06Yꢀꢁꢄꢁꢆ9ꢈ  
3.10  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DocID028087 Rev 4  
21/193  
42  
 
 
 
 
Functional overview  
STM32F412xE/G  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
2
I C and I CFMP  
USART  
General-purpose, basic and advanced-control timers TIMx  
SD/SDIO/MMC/eMMC host interface  
Quad-SPI  
ADC  
Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter.  
3.11  
Flexible static memory controller (FSMC)  
The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It  
features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR  
Flash memory.  
The main functions are:  
8-,16-bit data bus width  
Write FIFO  
Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
3.12  
Quad-SPI memory interface (QUAD-SPI)  
All devices embed a Quad-SPI memory interface, which is a specialized communication  
interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode  
through registers, external Flash status register polling mode and memory mapped mode.  
Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or  
32-bit mode. Code execution is also supported. The opcode and the frame format are fully  
programmable. Communication can be performed either in single data rate or dual data  
rate.  
22/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Functional overview  
3.13  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the  
®
Cortex -M4 with FPU.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.14  
3.15  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 21 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected  
to the 16 external interrupt lines.  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The  
application can then select as system clock either the RC oscillator or an external 4-26 MHz  
clock source. This clock can be monitored for failure. If a failure is detected, the system  
automatically switches back to the internal RC oscillator and a software interrupt is  
generated (if enabled). This clock source is input to a PLL thus allowing to increase the  
frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is  
available when necessary (for example if an indirectly used external oscillator fails).  
Several prescalers allow the configuration of the three AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB  
buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the  
low-speed APB domain is 50 MHz.  
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class  
2
performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
DocID028087 Rev 4  
23/193  
42  
 
 
 
Functional overview  
STM32F412xE/G  
3.16  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash memory  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using one of the interface listed in the Table 3 or the USB OTG FS in device mode through  
DFU (device firmware upgrade).  
Table 3. Embedded bootloader interfaces  
SPI3  
SPI1  
PA4/  
PA5/  
PA6/  
PA7  
SPI4  
I2C  
USART1 USART2 USART3 I2C1 I2C2 I2C3  
PE11/ CAN2 USB  
PE12/ PB5/ PA11  
PE13/ PB13 /P12  
PE14  
PA15/  
PC10/  
PC11/  
PC12  
FMP1  
PB14/  
PB15  
Package  
PA9/  
PA10  
PD6/  
PD5  
PB11/  
PB10  
PB6/ PF0/ PA8/  
PB7 PF1 PB4  
UFQFPN48  
WLCSP64  
LQFP64  
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
Y
Y
Y
Y
Y
Y
Y
-
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
LQFP100  
LQFP144  
UFBGA100  
UFBGA144  
Y
Y
Y
Y
-
-
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
For more detailed information on the bootloader, refer to Application Note: AN2606,  
STM32™ microcontroller system memory boot mode.  
3.17  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor  
DD  
(POR/PDR) disabled, provided externally through V pins. Requires the use of an  
DD  
external power supply supervisor connected to the V and NRST pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs  
SSA DDA  
and PLL. V  
and V  
must be connected to V and V , respectively, with  
SSA DD SS  
DDA  
decoupling technique.  
Note:  
The V /V minimum value of 1.7 V is obtained with the use of an external power supply  
DD DDA  
supervisor (refer to Section 3.18.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF  
and internal power supply supervisor availability to identify the packages supporting this  
option.  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
V
can be connected either to VDD or an external independent power supply (3.0  
DDUSB  
to 3.6 V) for USB transceivers.  
For example, when device is powered at 1.8 V, an independent power supply 3.3V can  
be connected to V  
. When the V  
is connected to a separated power supply,  
DDUSB  
DDUSB  
24/193  
DocID028087 Rev 4  
 
 
 
 
 
STM32F412xE/G  
Functional overview  
it is independent from V or V  
but it must be the last supply to be provided and the  
DDA  
DD  
first to disappear.  
The following conditions VDDUSB must be respected:  
During power-on phase (V < V  
), V  
should be always lower than  
DDUSB  
DD  
DD_MIN  
V
DD  
During power-down phase (V < V  
), V  
should be always lower than  
DDUSB  
DD  
DD_MIN  
V
DD  
V
rising and falling time rate specifications must be respected.  
DDUSB  
In operating mode phase, V  
could be lower or higher than VDD:  
DDUSB  
– If USB is used, the associated GPIOs powered by V  
are operating  
DDUSB  
between V  
and V  
.
DDUSB_MIN  
DDUSB_MAX  
– If USB is not used, the associated GPIOs powered by V  
are operating  
DDUSB  
between V  
and V  
.
DD_MIN  
DD_MAX  
Figure 6. V  
connected to an external independent power supply  
DDUSB  
9''86%B0$;  
86% IXQFWLRQDOꢀDUHD  
9''86%  
9''86%B0,1  
86%ꢉQRQꢉ  
86%ꢉQRQꢉ  
IXQFWLRQDOꢉ  
DUHD  
IXQFWLRQDOꢉ  
9''ꢉ ꢉ9''$  
DUHD  
9''B0,1  
WLPH  
3RZHUꢐGRZQ  
2SHUDWLQJꢉPRGH  
3RZHUꢐRQ  
06ꢀꢁꢅꢊꢃ9ꢈ  
DocID028087 Rev 4  
25/193  
42  
 
Functional overview  
STM32F412xE/G  
3.18  
Power supply supervisor  
3.18.1  
Internal reset ON  
This feature is available for V operating voltage range 1.8 V to 3.6 V.  
DD  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other package, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes.  
The device remains in reset mode when V is below a specified threshold, V  
or  
POR/PDR  
DD  
V
, without the need for an external reset circuit.  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.18.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to  
low.  
An external power supply supervisor should monitor V and should set the device in reset  
DD  
mode when V is below 1.7 V. NRST should be connected to this external power supply  
DD  
supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset  
OFF.  
26/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Functional overview  
(1)  
Figure 7. Power supply supervisor interconnection with internal reset OFF  
9''  
([WHUQDOꢀ9''ꢀSRZHUꢀVXSSO\ꢀVXSHUYLVRU  
([WꢌꢉUHVHWꢉFRQWUROOHUꢉDFWLYHꢉZKHQ  
9
''ꢉꢔꢉꢈꢌꢁꢉ9ꢉꢉ  
1567  
3'5B21  
9''  
06Yꢀꢇꢊꢁꢅ9ꢈ  
1. The PRD_ON pin is available only on WLCSP64, UFBGA100, UFBGA144 and LQFP144 packages.  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
3.19  
Voltage regulator  
The regulator has three operating modes:  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
3.19.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
DocID028087 Rev 4  
27/193  
42  
 
 
 
Functional overview  
STM32F412xE/G  
There are three power modes configured by software when the regulator is ON:  
MR is used in the nominal regulation mode (With different voltage scaling in Run mode)  
In Main regulator mode (MR mode), different voltage scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
LPR is used in the Stop mode  
The LP regulator mode is configured by software when entering Stop mode.  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Depending on the package, one or two external ceramic capacitors should be connected on  
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the 100 pins and 144 pins  
packages.  
All packages have the regulator ON feature.  
3.19.2  
Regulator OFF  
This feature is available only on UFBGA100 and UFBGA144 packages, which feature the  
BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator  
OFF mode allows to supply externally a V voltage source through V  
and V  
12  
CAP_1  
CAP_2  
pins.  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency.  
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling  
capacitors.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
28/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Functional overview  
Figure 8. Regulator OFF  
9ꢈꢄ  
([WHUQDOꢉ9&$3BꢈꢋꢄꢉSRZHUꢉ  
$SSOLFDWLRQꢉUHVHWꢉ  
VLJQDOꢉꢑRSWLRQDOꢒꢉꢉ  
VXSSO\ꢉVXSHUYLVRU  
([WꢌꢉUHVHWꢉFRQWUROOHUꢉDFWLYHꢉ  
ꢉꢉ  
ZKHQꢉ9&$3Bꢈꢋꢄꢉꢉꢔꢉ0LQꢉ9ꢈꢄ  
9''  
3$ꢃ  
9''  
1567ꢉꢉ  
%<3$66B5(*  
9ꢈꢄ  
9&$3Bꢈ  
9&$3Bꢄ  
DLꢈꢂꢇꢊꢂ9ꢀ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 9).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 10).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application.  
12  
DocID028087 Rev 4  
29/193  
42  
 
Functional overview  
STM32F412xE/G  
Figure 9. Startup in regulator OFF: slow V slope  
DD  
power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢉ ꢉꢈꢌꢁꢉ9  
9&$3Bꢈꢋ9&$3Bꢄ  
9ꢈꢄ  
0LQꢉ9ꢈꢄ  
WLPH  
1567  
3$ꢃ  
WLPH  
06Yꢀꢈꢈꢁꢊ9ꢄ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢉ ꢉꢈꢌꢁꢉ9ꢉꢉ  
9&$3Bꢈꢋ9&$3Bꢄ  
9ꢈꢄ  
0LQꢉ9ꢈꢄ  
WLPH  
WLPH  
1567  
3$ꢃꢉDVVHUWHGꢉH[WHUQDOO\ꢉꢉ  
06Yꢀꢈꢈꢂꢃ9ꢈ  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
30/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Functional overview  
3.19.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal power supply supervisor availability  
Power supply  
supervisor ON  
Power supply  
supervisor OFF  
Package  
Regulator ON  
Regulator OFF  
UFQFPN48  
WLCSP64  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
Yes  
PDR_ON set to VDD PDR_ON set to VSS  
LQFP64  
LQFP100  
LQFP144  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
Yes  
UFBGA100  
UFBGA144  
BYPASS_REG set to BYPASS_REG set to  
Yes  
Yes  
VSS  
VDD  
PDR_ON set to VDD PDR_ON set to VSS  
Yes  
Yes  
BYPASS_REG set to BYPASS_REG set to  
VSS VDD  
3.20  
Real-time clock (RTC) and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC features a reference clock detection, a more precise  
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC  
provides a programmable alarm and programmable periodic interrupts with wakeup from  
Stop and Standby modes. The sub-seconds value is also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The backup registers are 32-bit registers used to store 80 byte of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 3.21: Low-power  
modes).  
DocID028087 Rev 4  
31/193  
42  
 
 
 
Functional overview  
STM32F412xE/G  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
The RTC and backup registers are supplied through a switch that is powered either from the  
V
supply when present or from the V  
pin.  
DD  
BAT  
3.21  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
To further reduce the power consumption, the Flash memory can be switched off  
before entering in Sleep mode. Note that this requires a code execution from the RAM.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/  
tamper/ time stamp events).  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp  
event occurs.  
Standby mode is not supported when the embedded voltage regulator is bypassed and  
the 1.2 V domain is controlled by an external power.  
3.22  
VBAT operation  
The VBAT pin allows to power the device V  
domain from an external battery, an external  
BAT  
super-capacitor, or from V when no external battery and an external super-capacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The VBAT pin supplies the RTC and the backup registers.  
Note:  
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events  
do not exit it from V  
operation. When PDR_ON pin is not connected to V (internal  
BAT  
DD  
Reset OFF), the V  
functionality is no more available and VBAT pin should be connected  
BAT  
to V  
.
DD  
32/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Functional overview  
3.23  
Timers and watchdogs  
The devices embed two advanced-control timer, ten general-purpose timers, two basic  
timers, two watchdog timers and one SysTick timer.  
All timer counters can be frozen in debug mode.  
Table 5 compares the features of the advanced-control and general-purpose timers.  
DocID028087 Rev 4  
33/193  
42  
 
 
Functional overview  
STM32F412xE/G  
Table 5. Timer feature comparison  
Max.  
Max.  
DMA  
request  
generation channels  
Capture/  
compare  
Timer  
type  
Counter Counter Prescaler  
Complemen- interface timer  
Timer  
resolution  
type  
factor  
tary output  
clock  
(MHz) (MHz)  
clock  
Any  
Up,  
integer  
Advance TIM1,  
d-control TIM8  
16-bit  
Down, between1  
Up/down  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
0
Yes  
100  
50  
100  
100  
100  
100  
100  
100  
100  
100  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM2,  
TIM5  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
No  
No  
No  
No  
Up/down  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
50  
Up/down  
and  
65536  
Any  
integer  
between1  
and  
TIM9  
Up  
100  
100  
50  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM10,  
TIM11  
Up  
Up  
Up  
Up  
No  
65536  
Any  
integer  
between1  
and  
TIM12  
No  
65536  
Any  
integer  
between1  
and  
TIM13,  
TIM14  
No  
50  
65536  
Any  
integer  
between1  
and  
Basic  
timers  
TIM6,  
TIM7  
Yes  
50  
65536  
34/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Functional overview  
3.23.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator  
multiplexed on 4 independent channels. They have complementary PWM outputs with  
programmable inserted dead times. They can also be considered as complete general-  
purpose timers. Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability  
(0-100%).  
The advanced-control timers can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
3.23.2  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32F412xE/G  
(see Table 5 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F412xE/G devices include 4 full-featured general-purpose timers: TIM2.  
TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. This gives up to 15 input capture/output compare/PWMs  
TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in  
conjunction with the other general-purpose timers and TIM1 advanced-control timer via  
the Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM output.  
TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation.  
They are capable of handling quadrature (incremental) encoder signals and the digital  
outputs from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and  
TIM12 have two independent channels for input capture/output compare, PWM or one-  
pulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 full-  
featured general-purpose timers or used as simple time bases.  
3.23.3  
Basic timer (TIM6, TIM7)  
TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request  
generation.  
DocID028087 Rev 4  
35/193  
42  
 
 
 
 
Functional overview  
STM32F412xE/G  
3.23.4  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
3.23.5  
3.23.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
3.24  
Inter-integrated circuit interface (I2C)  
2
The devices feature up to four I C bus interfaces which can operate in multimaster and  
slave modes:  
2
One I C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to  
400 kHz) modes and Fast-mode plus (up to 1 MHz).  
2
Three I C interfaces support the Standard mode (up to 100 KHz) and the Fast mode  
(up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on  
the complete solution, refer to the nearest STMicroelectronics sales office.  
2
All I C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave)  
and embed a hardware CRC generation/verification.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 6).  
Table 6. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
50 ns  
Programmable length from 1 to 15 I2C peripheral clocks  
36/193  
DocID028087 Rev 4  
 
 
 
 
 
STM32F412xE/G  
Functional overview  
3.25  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART6).  
These four interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. USART1 and USART6 interfaces are able to  
communicate at speeds of up to 12.5 Mbit/s. USART2 and USART3 interfaces  
communicate at up to 6.25 bit/s.  
All USART interfaces provide hardware management of the CTS and RTS signals, Smart  
Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can  
be served by the DMA controller.  
Table 7. USART feature comparison  
Max. baud  
Max. baud  
USART Standard Modem  
SPI  
master  
Smartcard rate in Mbit/s rate in Mbit/s APB  
(ISO 7816) (oversampling (oversampling mapping  
LIN  
irDA  
name  
features (RTS/CTS)  
by 16)  
by 8)  
APB2  
(max.  
100 MHz)  
USART1  
USART2  
USART3  
USART6  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
6.25  
12.5  
APB1  
(max.  
50 MHz)  
3.12  
3.12  
6.25  
6.25  
6.25  
12.5  
APB1  
(max.  
50 MHz)  
APB2  
(max.  
100 MHz)  
3.26  
Serial peripheral interface (SPI)  
The devices feature five SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and  
SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the  
DMA controller.  
The SPI interfaces can be configured to operate in TI mode for communications in master  
mode and slave mode.  
DocID028087 Rev 4  
37/193  
42  
 
 
 
Functional overview  
STM32F412xE/G  
3.27  
Inter-integrated sound (I2S)  
2
Five standard I S interfaces (multiplexed with SPI1 to SPI5) are available. They can be  
operated in master or slave mode, in simplex communication mode, and full duplex mode  
2
for I2S2 and I2S3. All I S interfaces can be configured to operate with a 16-/32-bit resolution  
as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz  
2
are supported. When either or both of the I S interfaces is/are configured in master mode,  
the master clock can be output to the external DAC/CODEC at 256 times the sampling  
frequency.  
2
All I Sx interfaces can be served by the DMA controller.  
3.28  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S applications. It allows to  
2
achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
Different sources can be selected for the I2S master clock of the APB1 and the I2S master  
clock of the APB2. This gives the flexibility to work with two different audio sampling  
frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI  
clocks or an external clock provided through a pin (external PLL or Codec output)  
2
The PLLI2S configuration can be modified to manage an I S sample rate change without  
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
3.29  
Digital filter for sigma-delta modulators (DFSDM)  
The device embeds one DFSDM with 2 digital filters modules and 4 external input serial  
channels (transceivers) or alternately 2 internal parallel inputs support.  
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to  
microcontroller and then to perform digital filtering of the received data streams (which  
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse  
Density Modulation) microphones and perform PDM to PCM conversion and filtering in  
hardware. DFSDM features optional parallel data stream inputs from microcontrollers  
memory (through DMA/CPU transfers into DFSDM).  
DFSDM transceivers support several serial interface formats (to support various Σ∆  
modulators). DFSDM digital filter modules perform digital processing according user  
selected filter parameters with up to 24-bit final ADC resolution.  
38/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Functional overview  
The DFSDM peripheral supports:  
4 multiplexed input digital serial channels:  
configurable SPI interface to connect various SD modulator(s)  
configurable Manchester coded 1 wire interface support  
PDM (Pulse Density Modulation) microphone input support  
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)  
clock output for SD modulator(s): 0...20 MHz  
alternative inputs from 4 internal digital parallel channels (up to 16 bit input resolution):  
internal sources: device memory data streams (DMA)  
2 digital filter modules with adjustable digital signal processing:  
x
Sinc filter: filter order/type (1...5), oversampling ratio (up to 1...1024)  
integrator: oversampling ratio (1...256)  
up to 24-bit output data resolution, signed output data format  
automatic data offset correction (offset stored in register by user)  
continuous or single conversion  
start-of-conversion triggered by  
software trigger  
internal timers  
external events  
start-of-conversion synchronously with first digital filter module (DFSDM1FLT0)  
analog watchdog feature:  
low value and high value data threshold registers  
x
dedicated configurable Sinc digital filter (order = 1...3, oversampling ratio = 1...32  
input from digital output data or from selected input digital serial channels  
continuous monitoring independently from standard conversion  
short circuit detector to detect saturated analog input values (bottom and top range):  
up to 8-bit counter to detect 1...256 consecutive 0’s or 1’s on serial data stream  
monitoring continuously each input serial channel  
break signal generation on analog watchdog event or on short circuit detector event  
extremes detector:  
storage of minimum and maximum values of final conversion data  
refreshed by software  
DMA capability to read the final conversion data  
interrupts: end of conversion, overrun, analog watchdog, short circuit input serial  
channel clock absence  
“regulator” or injected” conversions:  
“regular” conversions can be requested at any time or even in continuous mode  
without having any impact on the timing of “injected” conversions  
“injected” conversions for precise timing and with high conversion priority.  
DocID028087 Rev 4  
39/193  
42  
Functional overview  
STM32F412xE/G  
3.30  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
3.31  
3.32  
Controller area network (bxCAN)  
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1  
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 byte of SRAM are allocated for each CAN.  
Universal serial bus on-the-go full-speed (USB_OTG_FS)  
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator. The Battery Charging Detection  
(BCD) can detect and identify the type of port, it is connected to (standard USB or charger).  
The type of charging is also detected: Dedicated Charging Port (DCP), Charging  
Downstream Port (CDP) and Standard Downstream Port (SDP). Some packages provide a  
dedicated USB power rail allowing a different supply for the USB and for the rest of the chip.  
For instance the chip can be powered with the minimum specified supply and the USB  
running at the level defined by the standard. The major features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
6 bidirectional endpoints  
12 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
Link Power Management (LPM)  
Battery Charging Detection (BCD) supporting DCP, CDP and SDP  
40/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Functional overview  
3.33  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
3.34  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 100 MHz.  
3.35  
Analog-to-digital converter (ADC)  
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,  
performing conversions in the single-shot or scan mode. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4 or TIM5 timer.  
3.36  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the ADC_IN18 input channel which is used to convert the sensor output  
voltage into a digital value. Refer to the reference manual for additional information.  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.37  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
DocID028087 Rev 4  
41/193  
42  
 
 
 
 
 
Functional overview  
STM32F412xE/G  
3.38  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F412xE/G through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using any high-speed  
channel available. Real-time instruction and data flow activity can be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
42/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Pinouts and pin description  
4
Pinouts and pin description  
Figure 11. STM32F412xE/G WLCSP64 pinout  
3%ꢅ  
3'ꢃ  
$
%
&
'
(
)
9''  
966  
3%ꢄ  
3%ꢇ  
3%ꢈ  
3&ꢊ  
3$ꢅ  
3$ꢂ  
3&ꢂ  
3%ꢊ  
3&ꢁꢃ  
3&ꢁꢁ  
3&ꢁꢊ  
3$ꢁꢁ  
3$ꢈ  
3$ꢁꢂ  
3$ꢁꢆ  
3$ꢁꢄ  
3$ꢁꢊ  
3&ꢉ  
9''  
966  
3$ꢁꢃ  
3$ꢉ  
3&ꢅ  
3&ꢇ  
3%ꢁꢆ  
9''  
3&ꢁꢄ  
9%$7  
3&ꢁꢂꢋ  
3%ꢉ  
3%ꢆ  
3&ꢁꢆꢋ  
3'5B21  
3&ꢄ  
3%ꢂ  
26&ꢄꢃB,1 26&ꢄꢃB287  
3+ꢊꢀꢋꢀ  
1567  
%227ꢊ  
3&ꢆ  
26&B,1  
3+ꢁꢀꢋꢀ  
3&ꢃ  
3$ꢊ  
26&B287  
9''$ꢌ  
3&ꢁ  
3$ꢄ  
3%ꢁ  
3&ꢈ  
3%ꢁꢂ  
3%ꢁꢄ  
966  
95()ꢍ  
966$ꢌ  
3$ꢁ  
*
+
3$ꢆ  
3%ꢃ  
3%ꢁꢃ  
9&$3Bꢁ  
95()ꢋ  
3$ꢃ  
9''  
3$ꢇ  
3%ꢁꢊ  
06Yꢀꢁꢄꢂꢃ9ꢄ  
1. The above figure shows the package bump side.  
Figure 12. STM32F412xE/G UFQFPN48 pinout  
ꢇꢂ ꢇꢁ ꢇꢆ ꢇꢅ ꢇꢇ ꢇꢀ ꢇꢄ ꢇꢈ ꢇꢃ ꢀꢊ ꢀꢂ ꢀꢁ  
9''  
9%$7  
ꢀꢆ  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3&ꢈꢀ  
ꢀꢅ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
ꢀꢇ  
ꢀꢀ  
3&ꢈꢅꢐ26&ꢀꢄB287  
3+ꢃꢐ26&B,1  
ꢀꢄ  
ꢀꢈ  
3+ꢃꢐ26&B287  
1567  
8)4)31ꢇꢂ  
ꢀꢃ  
ꢄꢊ  
3$ꢂ  
966$ꢋ95()ꢐ  
9''$ꢋ95()ꢓ  
ꢄꢂ  
ꢄꢁ  
3%ꢈꢅ  
3%ꢈꢇ  
3$ꢃ  
3$ꢈ  
3$ꢄ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
ꢄꢆ  
3%ꢈꢀ  
3%ꢈꢄ  
ꢄꢅ  
ꢄꢇ  
ꢈꢀ ꢈꢇ ꢈꢅ ꢈꢆ  
ꢈꢁ ꢈꢂ ꢈꢊ ꢄꢃ  
ꢄꢈ ꢄꢄ ꢄꢀ  
06ꢀꢈꢈꢅꢃ9ꢀ  
1. The above figure shows the package top view.  
DocID028087 Rev 4  
43/193  
67  
 
 
 
Pinouts and pin description  
STM32F412xE/G  
Figure 13. STM32F412xE/G LQFP64 pinout  
ꢆꢇ ꢆꢀ ꢆꢄ ꢆꢈ ꢆꢃ ꢅꢊ ꢅꢂ ꢅꢁ ꢅꢆ ꢅꢅ ꢅꢇ ꢅꢀ ꢅꢄ ꢅꢈ ꢅꢃ ꢇꢊ  
9''  
9%$7  
3&ꢈꢀ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
3&ꢈꢅꢐ26&ꢀꢄB287  
3+ꢃꢐ26&B,1  
ꢇꢂ  
ꢇꢁ  
ꢇꢆ  
ꢇꢅ  
ꢇꢇ  
ꢇꢀ  
ꢇꢄ  
ꢇꢈ  
ꢇꢃ  
ꢀꢊ  
ꢀꢂ  
ꢀꢁ  
ꢀꢆ  
ꢀꢅ  
ꢀꢇ  
ꢀꢀ  
966  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
3+ꢈꢐ26&B287  
1567  
ꢆꢉꢉ  
ꢁꢉꢉ  
ꢂꢉꢉ  
ꢊꢉꢉ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
ꢈꢀ  
ꢈꢇ  
ꢈꢅ  
ꢈꢆ  
3&ꢃ  
3&ꢈ  
3&ꢄ  
3&ꢀ  
/4)3ꢆꢇ  
3&ꢆ  
966$ꢋ95()ꢐ  
9''$ꢋ95()ꢓ  
3$ꢃ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3$ꢈ  
3$ꢄ  
ꢈꢁ ꢈꢂ ꢈꢊ ꢄꢃ ꢄꢈ ꢄꢄ ꢄꢀ ꢄꢇ ꢄꢅ ꢄꢆ ꢄꢁ ꢄꢂ ꢄꢊ ꢀꢃ ꢀꢈ ꢀꢄ  
06ꢀꢈꢈꢇꢊ9ꢀ  
1. The above figure shows the package top view.  
44/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Pinouts and pin description  
Figure 14. STM32F412xE/G LQFP100 pinout  
0%ꢉ  
0%ꢈ  
0%ꢇ  
0%ꢆ  
0%ꢅ  
6"!4  
0#ꢀꢈ  
ꢄꢆ  
ꢄꢇ  
ꢄꢈ  
ꢄꢉ  
ꢄꢀ  
ꢄꢁ  
ꢅꢂ  
ꢅꢃ  
ꢅꢄ  
ꢅꢅ  
ꢅꢆ  
ꢅꢇ  
ꢅꢈ  
ꢅꢉ  
ꢅꢀ  
ꢅꢁ  
ꢆꢂ  
ꢆꢃ  
ꢆꢄ  
ꢆꢅ  
ꢆꢆ  
ꢆꢇ  
ꢆꢈ  
ꢆꢉ  
ꢆꢀ  
6$$  
633  
6#!0?ꢉ  
0!ꢀꢈ  
0!ꢀꢉ  
0!ꢀꢀ  
0!ꢀꢁ  
0!ꢂ  
0!ꢃ  
0#ꢂ  
0#ꢃ  
0#ꢄ  
0#ꢀꢇꢊ/3#ꢈꢉ?).  
0#ꢀꢆꢊ/3#ꢈꢉ?/54  
633  
6$$  
0(ꢁꢊ/3#?).  
0(ꢀꢊ/3#?/54  
.234  
ꢀꢁ  
ꢀꢀ  
ꢀꢉ  
ꢀꢈ  
ꢀꢇ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢂ  
0#ꢅ  
,1&0ꢀꢁꢁ  
0$ꢀꢆ  
0$ꢀꢇ  
0$ꢀꢈ  
0$ꢀꢉ  
0$ꢀꢀ  
0$ꢀꢁ  
0$ꢂ  
0#ꢁ  
0#ꢀ  
0#ꢉ  
0#ꢈ  
6$$  
633!ꢋ62%&ꢊ ꢉꢁ  
62%&ꢌ  
6$$!  
0!ꢁ  
ꢉꢀ  
ꢉꢉ  
ꢉꢈ  
ꢉꢇ  
ꢉꢆ  
0$ꢃ  
0"ꢀꢆ  
0"ꢀꢇ  
0"ꢀꢈ  
0"ꢀꢉ  
0!ꢀ  
0!ꢉ  
-3ꢈꢀꢀꢆꢀ6ꢇ  
1. The above figure shows the package top view.  
DocID028087 Rev 4  
45/193  
67  
 
 
Pinouts and pin description  
STM32F412xE/G  
Figure 15. STM32F412xE/G LQFP144 pinout  
3(ꢄ  
3(ꢀ  
3(ꢇ  
3(ꢅ  
3(ꢆ  
9%$7  
ꢈꢃꢂ  
ꢈꢃꢁ  
ꢈꢃꢆ  
ꢈꢃꢅ  
ꢈꢃꢇ  
ꢈꢃꢀ  
ꢈꢃꢄ  
ꢈꢃꢈ  
ꢈꢃꢃ  
ꢊꢊ  
9''  
966  
9&$3Bꢄ  
3$ꢈꢀ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
3$ꢊ  
3$ꢂ  
3&ꢊ  
3&ꢂ  
3&ꢁ  
3&ꢈꢀ  
3&ꢈꢇꢐ26&ꢀꢄB,1  
3&ꢈꢅꢐ26&ꢀꢄB287  
3)ꢃ  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
3)ꢈ  
3)ꢄ  
ꢊꢂ  
ꢊꢁ  
3)ꢀ  
3)ꢇ  
3)ꢅ  
966  
9''  
3)ꢆ  
3)ꢁ  
3)ꢂ  
3)ꢊ  
ꢈꢀ  
ꢈꢇ  
ꢈꢅ  
ꢈꢆ  
ꢈꢁ  
ꢈꢂ  
ꢈꢊ  
ꢄꢃ  
ꢄꢈ  
ꢄꢄ  
ꢄꢀ  
ꢄꢇ  
ꢄꢅ  
ꢄꢆ  
ꢄꢁ  
ꢄꢂ  
ꢄꢊ  
ꢀꢃ  
ꢀꢈ  
ꢀꢄ  
ꢀꢀ  
ꢀꢇ  
ꢀꢅ  
ꢀꢆ  
ꢊꢆ  
ꢊꢅ  
ꢊꢇ  
ꢊꢀ  
ꢊꢄ  
ꢊꢈ  
ꢊꢃ  
ꢂꢊ  
ꢂꢂ  
ꢂꢁ  
ꢂꢆ  
ꢂꢅ  
ꢂꢇ  
ꢂꢀ  
ꢂꢄ  
ꢂꢈ  
ꢂꢃ  
ꢁꢊ  
ꢁꢂ  
ꢁꢁ  
ꢁꢆ  
ꢁꢅ  
ꢁꢇ  
ꢁꢀ  
3&ꢆ  
9''86%  
966  
3*ꢂ  
3*ꢁ  
3*ꢆ  
3*ꢅ  
3*ꢇ  
3*ꢀ  
/4)3ꢈꢇꢇ  
3)ꢈꢃ  
3*ꢄ  
3+ꢃꢉꢐꢉ26&B,1  
3+ꢈꢉꢐꢉ26&B287  
1567  
3&ꢃ  
3'ꢈꢅ  
3'ꢈꢇ  
9''  
966  
3'ꢈꢀ  
3'ꢈꢄ  
3'ꢈꢈ  
3'ꢈꢃ  
3'ꢊ  
3&ꢈ  
3&ꢄ  
3&ꢀ  
9''  
966$ꢋ95()ꢐ  
95()ꢓ  
9''$  
3$ꢃ  
3'ꢂ  
3%ꢈꢅ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3$ꢈ  
3$ꢄ  
06Yꢀꢁꢄꢂꢈ9ꢀ  
1. The above figure shows the package top view.  
46/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Pinouts and pin description  
Figure 16. STM32F412xE/G UFBGA100 pinout  
ꢈꢃ  
ꢈꢈ  
ꢈꢄ  
3(ꢀ  
3(ꢈ  
3%ꢂ %227ꢃ  
3'ꢁ  
3%ꢆ  
3%ꢅ  
3'ꢅ  
3'ꢆ  
3%ꢇ  
3'ꢇ  
3%ꢀ  
3'ꢀ  
3'ꢄ  
3$ꢈꢅ  
3'ꢈ  
3'ꢃ  
3$ꢈꢇ  
3&ꢈꢄ  
3&ꢈꢈ  
3$ꢈꢀ  
3&ꢈꢃ  
3$ꢈꢄ  
3$ꢈꢈ  
3$ꢈꢃ  
$
%
3(ꢇ  
3(ꢄ  
3(ꢅ  
3%ꢊ  
3(ꢃ  
3%ꢁ  
9&$3  
Bꢄ  
&
3&ꢈꢀ  
9''  
3&ꢈꢇꢐ  
26&ꢀꢄ  
B,1  
'
(
3(ꢆ  
966  
3$ꢊ  
3&ꢂ  
3$ꢂ  
3&ꢁ  
3&ꢊ  
3&ꢆ  
3&ꢈꢅꢐ  
26&ꢀꢄ  
B287  
%<3$66  
B5(*  
9%$7  
966  
3+ꢃꢐ  
26&B  
,1  
966  
9''  
966  
9''  
)
3+ꢈꢐ  
26&B  
287  
*
9''  
3'5  
B21  
3'ꢈꢇ  
3'ꢈꢈ  
3'ꢈꢀ  
3'ꢈꢃ  
+
-
3'ꢈꢅ  
3'ꢈꢄ  
3&ꢃ  
966$  
95()ꢐ  
95()ꢓ  
9''$  
1567  
3&ꢈ  
3&ꢀ  
3$ꢃ  
3&ꢄ  
3$ꢄ  
3$ꢀ  
3$ꢇ  
.
/
3$ꢅ  
3$ꢆ  
3$ꢁ  
3&ꢇ  
3&ꢅ  
3%ꢃ  
3'ꢊ  
3(ꢈꢃ  
3(ꢊ  
3%ꢈꢈ  
3(ꢈꢄ  
3(ꢈꢈ  
3%ꢈꢅ  
3%ꢈꢃ  
3(ꢈꢀ  
3%ꢈꢇ  
3%ꢈꢀ  
3%ꢈꢄ  
3(ꢈꢅ  
9&$3  
Bꢈ  
3%ꢄ  
3%ꢈ  
3(ꢂ  
3(ꢁ  
3$ꢈ  
3(ꢈꢇ  
0
06Yꢀꢁꢄꢂꢄ9ꢈ  
1. The above figure shows the package top view.  
DocID028087 Rev 4  
47/193  
67  
 
 
Pinouts and pin description  
STM32F412xE/G  
Figure 17. STM32F412xE/G UFBGA144 pinout  
3(ꢊ  
3%ꢄ  
3'ꢅ  
ꢁꢊ  
ꢁꢁ  
3$ꢁꢆ  
3&ꢁꢊ  
9''86%  
3$ꢁꢊ  
3&ꢉ  
ꢁꢃ  
3&ꢁꢄ  
3(ꢄ  
3(ꢆ  
9%$7  
966  
3)ꢄ  
3)ꢅ  
3)ꢉ  
3&ꢁ  
3$ꢊ  
3$ꢁ  
3$ꢃ  
3$ꢄ  
3(ꢃ  
3(ꢂ  
3)ꢊ  
9''  
3)ꢆ  
3)ꢇ  
3)ꢈ  
3&ꢃ  
3$ꢆ  
3$ꢂ  
3$ꢇ  
3$ꢅ  
3(ꢁ  
3(ꢇ  
3)ꢁ  
3)ꢃ  
3)ꢂ  
9''  
966  
3&ꢄ  
3&ꢆ  
3&ꢂ  
3%ꢊ  
3%ꢁ  
3%ꢆ  
3%ꢂ  
3%ꢇ  
3%ꢅ  
966  
9''  
9''  
966  
3*ꢁ  
3*ꢊ  
3)ꢁꢂ  
3)ꢁꢆ  
3'ꢇ  
3$ꢁꢂ  
3&ꢁꢁ  
3&ꢁꢃ  
3'ꢁ  
3$ꢁꢄ  
3$ꢁꢃ  
3$ꢁꢁ  
3$ꢉ  
$
%
&
'
(
)
3&ꢁꢆꢋ  
26&ꢄꢃB,1  
3%ꢉ  
3*ꢁꢂ  
3*ꢁꢆ  
3*ꢁꢄ  
966  
3*ꢁꢃ  
3*ꢁꢁ  
3*ꢁꢊ  
3*ꢉ  
3'ꢂ  
3&ꢁꢂꢋ  
26&ꢄꢃB287  
3%ꢈ  
3'ꢆ  
3+ꢊꢀꢋꢀ  
26&B,1  
%227ꢊ  
3'5B21  
9''  
3'ꢄ  
3+ꢁꢀꢋꢀ  
26&B287  
3'ꢃ  
3'ꢊ  
3$ꢈ  
1567  
3)ꢁꢊ  
9''  
9''  
9&$3Bꢁ  
3(ꢁꢊ  
3(ꢉ  
9''  
966  
9''  
9&$3Bꢃ  
3'ꢁꢁ  
3'ꢁꢊ  
3'ꢉ  
9''  
966  
3&ꢈ  
3&ꢅ  
9''  
3*ꢈ  
3&ꢇ  
*
+
-
%<3$66B  
5(*  
3&ꢊ  
3(ꢁꢁ  
3(ꢁꢃ  
3(ꢁꢄ  
3(ꢁꢆ  
3(ꢁꢂ  
3*ꢅ  
3*ꢇ  
3*ꢂ  
966$  
95()ꢋ  
95()ꢍ  
9''$  
3%ꢃ  
3)ꢁꢄ  
3)ꢁꢃ  
3)ꢁꢁ  
3*ꢆ  
3*ꢄ  
3*ꢃ  
3'ꢁꢄ  
3'ꢁꢃ  
3%ꢁꢁ  
3'ꢁꢆ  
3%ꢁꢆ  
3%ꢁꢃ  
3'ꢁꢂ  
3%ꢁꢂ  
3%ꢁꢄ  
06Yꢀꢁꢄꢂꢀ9ꢄ  
.
/
3(ꢈ  
3'ꢈ  
3(ꢅ  
3%ꢁꢊ  
0
1. The above figure shows the package top view.  
Table 8. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TC  
B
Input/ output pin  
5 V tolerant I/O  
Standard 3.3 V I/O  
I/O structure  
Notes  
Dedicated BOOT0 pin  
NRST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
48/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition  
Pin name  
Pin Number  
(function Pin  
I/O  
Additional  
Alternate functions  
functions  
Notes  
after  
type structure  
reset)(1)  
TRACECLK,  
SPI4_SCK/I2S4_CK,  
-
-
-
-
-
-
-
1
B2 A3  
1
2
3
PE2  
PE3  
PE4  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
SPI5_SCK/I2S5_CK,  
QUADSPI_BK1_IO2,  
FSMC_A23, EVENTOUT  
-
-
-
TRACED0, FSMC_A19,  
EVENTOUT  
-
2
A1 A2  
B1 B2  
TRACED1,  
SPI4_NSS/I2S4_WS,  
SPI5_NSS/I2S5_WS,  
DFSDM1_DATIN3,  
-
3
FSMC_A20, EVENTOUT  
TRACED2, TIM9_CH1,  
SPI4_MISO, SPI5_MISO,  
DFSDM1_CKIN3,  
-
-
-
-
-
-
4
5
C2 B3  
D2 B4  
4
5
PE5  
PE6  
I/O  
I/O  
FT  
FT  
-
-
-
-
FSMC_A21, EVENTOUT  
TRACED3, TIM9_CH2,  
SPI4_MOSI/I2S4_SD,  
SPI5_MOSI/I2S5_SD,  
FSMC_A22, EVENTOUT  
1
2
1
2
B7  
B8  
6
7
E2 C2  
C1 A1  
6
7
VBAT  
PC13  
S
-
-
-
VBAT  
(2)(3)  
I/O  
FT  
EVENTOUT  
TAMP_1  
(2)(3)  
(4)  
PC14-  
OSC32_IN  
3
4
3
4
C8  
C7  
8
9
D1 B1  
E1 C1  
8
9
I/O  
I/O  
FT  
FT  
EVENTOUT  
EVENTOUT  
OSC32_IN  
PC15-  
OSC32_  
OUT  
OSC32_  
OUT  
(2)(4)  
I2C2_SDA, FSMC_A0,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C3 10  
C4 11  
D4 12  
E2 13  
E3 14  
PF0  
PF1  
PF2  
PF3  
PF4  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
-
-
I2C2_SCL, FSMC_A1,  
EVENTOUT  
I2C2_SMBA, FSMC_A2,  
EVENTOUT  
TIM5_CH1, FSMC_A3,  
EVENTOUT  
TIM5_CH2, FSMC_A4,  
EVENTOUT  
DocID028087 Rev 4  
49/193  
67  
 
 
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM5_CH3, FSMC_A5,  
EVENTOUT  
-
-
-
-
-
E4 15  
PF5  
I/O  
FT  
-
-
-
-
-
-
-
-
10 F2 D2 16  
11 G2 D3 17  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TRACED0, TIM10_CH1,  
QUADSPI_BK1_IO3,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F3 18  
F2 19  
G3 20  
PF6  
PF7  
PF8  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
TRACED1, TIM11_CH1,  
QUADSPI_BK1_IO2,  
EVENTOUT  
TIM13_CH1,  
QUADSPI_BK1_IO0,  
EVENTOUT  
TIM14_CH1,  
QUADSPI_BK1_IO1,  
EVENTOUT  
-
-
-
-
-
-
G2 21  
G1 22  
PF9  
TIM1_ETR, TIM5_CH4,  
EVENTOUT  
-
-
PF10  
I/O  
I/O  
FT  
FT  
-
-
PH0 -  
OSC_IN  
(4)  
5
5
D8 12 F1 D1 23  
EVENTOUT  
OSC_IN  
PH1 -  
OSC_OUT  
(4)  
6
7
-
6
7
8
E8 13 G1 E1 24  
D7 14 H2 F1 25  
D5 15 H1 H1 26  
I/O  
I/O  
I/O  
FT  
RST  
FT  
EVENTOUT  
-
OSC_OUT  
NRST  
NRST  
PC0  
-
-
ADC1_10,  
WKUP2  
EVENTOUT  
ADC1_11,  
WKUP3  
-
-
9
F8 16 J2 H2 27  
PC1  
PC2  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT  
SPI2_MISO, I2S2ext_SD,  
DFSDM1_CKOUT,  
FSMC_NWE, EVENTOUT  
10 E7 17 J3 H3 28  
11 D6 18 K2 H4 29  
ADC1_12  
SPI2_MOSI/I2S2_SD,  
FSMC_A0, EVENTOUT  
-
-
PC3  
VDD  
I/O  
S
FT  
-
-
-
-
ADC1_13  
-
-
19  
-
-
-
-
30  
31  
-
-
-
-
-
-
-
-
-
-
VSSA/  
VREF  
8
-
12 G8 20  
S
-
-
-
J1  
J1  
VSSA  
S
50/193  
DocID028087 Rev 4  
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
-
-
-
-
K1 K1  
-
-
VREF-  
S
S
-
-
-
-
-
-
-
-
VDDA/  
VREF+  
9
13 F7  
-
-
-
-
-
-
-
-
-
21 L1 L1 32  
22 M1 M1 33  
VREF+  
VDDA  
S
S
-
-
-
-
-
-
-
-
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS,  
ADC1_0,  
WKUP1  
10 14 E6 23 L2 J2 34  
PA0  
PA1  
PA2  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT  
TIM2_CH2, TIM5_CH2,  
SPI4_MOSI/I2S4_SD,  
USART2_RTS,  
QUADSPI_BK1_IO3,  
EVENTOUT  
11 15 G7 24 M2 K2 35  
ADC1_1  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1, I2S2_CKIN,  
USART2_TX, FSMC_D4,  
EVENTOUT  
12 16 H8 25 K3 L2 36  
I/O  
I/O  
FT  
FT  
-
-
ADC1_2  
ADC1_3  
TIM2_CH4, TIM5_CH4,  
TIM9_CH2, I2S2_MCK,  
USART2_RX, FSMC_D5,  
EVENTOUT  
13 17 F6 26 L3 M2 37  
PA3  
-
-
-
18  
-
-
-
27  
-
-
G4 38  
E3 H5  
F4 39  
VSS  
S
I
-
FT  
-
-
-
-
-
-
-
-
-
-
BYPASS_  
REG  
-
19 H7 28  
-
VDD  
S
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
DFSDM1_DATIN1,  
FSMC_D6, EVENTOUT  
14 20 G6 29 M3 J3 40  
PA4  
I/O  
I/O  
FT  
FT  
-
-
ADC1_4  
ADC1_5  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK/I2S1_CK,  
DFSDM1_CKIN1,  
15 21 F5 30 K4 K3 41  
PA5  
FSMC_D7, EVENTOUT  
DocID028087 Rev 4  
51/193  
67  
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN, SPI1_MISO,  
I2S2_MCK, TIM13_CH1,  
QUADSPI_BK2_IO0,  
16 22 H6 31 L4 L3 42  
PA6  
PA7  
I/O  
I/O  
FT  
FT  
-
-
ADC1_6  
ADC1_7  
SDIO_CMD, EVENTOUT  
TIM1_CH1N, TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI/I2S1_SD,  
TIM14_CH1,  
17 23 E5 32 M4 M3 43  
QUADSPI_BK2_IO1,  
EVENTOUT  
I2S1_MCK,  
-
-
24 E4 33 K5 J4 44  
PC4  
PC5  
I/O  
I/O  
FT  
FT  
-
-
QUADSPI_BK2_IO2,  
FSMC_NE4, EVENTOUT  
ADC1_14  
ADC1_15  
I2CFMP1_SMBA,  
USART3_RX,  
QUADSPI_BK2_IO3,  
FSMC_NOE, EVENTOUT  
25 G5 34 L5 K4 45  
TIM1_CH2N, TIM3_CH3,  
TIM8_CH2N,  
SPI5_SCK/I2S5_CK,  
EVENTOUT  
18 26 H5 35 M5 L4 46  
PB0  
I/O  
FT  
-
ADC1_8  
TIM1_CH3N, TIM3_CH4,  
TIM8_CH3N,  
SPI5_NSS/I2S5_WS,  
DFSDM1_DATIN0,  
QUADSPI_CLK,  
EVENTOUT  
19 27 F4 36 M6 M4 47  
PB1  
PB2  
I/O  
I/O  
FT  
FT  
-
-
ADC1_9  
BOOT1  
DFSDM1_CKIN0,  
QUADSPI_CLK,  
EVENTOUT  
20 28 G4 37 L6 J5 48  
-
-
-
-
-
-
-
-
-
-
M5 49  
L5 50  
PF11  
PF12  
I/O  
I/O  
FT  
FT  
-
-
TIM8_ETR, EVENTOUT  
-
-
TIM8_BKIN, FSMC_A6,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
51  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
G5 52  
K5 53  
I2CFMP1_SMBA,  
FSMC_A7, EVENTOUT  
-
-
-
-
-
PF13  
I/O  
FT  
-
-
52/193  
DocID028087 Rev 4  
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
I2CFMP1_SCL,  
FSMC_A8, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M6 54  
L6 55  
K6 56  
J6 57  
PF14  
PF15  
PG0  
PG1  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
I2CFMP1_SDA,  
FSMC_A9, EVENTOUT  
CAN1_RX, FSMC_A10,  
EVENTOUT  
CAN1_TX, FSMC_A11,  
EVENTOUT  
TIM1_ETR,  
DFSDM1_DATIN2,  
QUADSPI_BK2_IO0,  
FSMC_D4/FSMC_DA4,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
38 M7 M7 58  
39 L7 L7 59  
40 M8 K7 60  
PE7  
PE8  
PE9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
-
-
TIM1_CH1N,  
DFSDM1_CKIN2,  
QUADSPI_BK2_IO1,  
FSMC_D5/FSMC_DA5,  
EVENTOUT  
TIM1_CH1,  
DFSDM1_CKOUT,  
QUADSPI_BK2_IO2,  
FSMC_D6/FSMC_DA6,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
61  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
G6 62  
TIM1_CH2N,  
QUADSPI_BK2_IO3,  
FSMC_D7/FSMC_DA7,  
EVENTOUT  
-
-
-
-
-
-
41 L8 J7 63  
PE10  
PE11  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM1_CH2,  
SPI4_NSS/I2S4_WS,  
SPI5_NSS/I2S5_WS,  
FSMC_D8/FSMC_DA8,  
EVENTOUT  
42 M9 H8 64  
TIM1_CH3N,  
SPI4_SCK/I2S4_CK,  
SPI5_SCK/I2S5_CK,  
FSMC_D9/FSMC_DA9,  
EVENTOUT  
-
-
-
43 L9 J8 65  
PE12  
I/O  
FT  
-
-
DocID028087 Rev 4  
53/193  
67  
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM1_CH3, SPI4_MISO,  
SPI5_MISO,  
FSMC_D10/FSMC_DA10,  
EVENTOUT  
M1  
0
-
-
-
44  
K8 66  
PE13  
I/O  
FT  
-
-
TIM1_CH4,  
SPI4_MOSI/I2S4_SD,  
SPI5_MOSI/I2S5_SD,  
FSMC_D11/FSMC_DA11,  
EVENTOUT  
-
-
-
-
-
-
45 M11 L8 67  
PE14  
PE15  
PB10  
PB11  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
TIM1_BKIN,  
FSMC_D12/FSMC_DA12,  
EVENTOUT  
M1  
2
46  
M8 68  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
I2S3_MCK, USART3_TX,  
I2CFMP1_SCL, SDIO_D7,  
EVENTOUT  
21 29 H4 47 L10 M9 69  
TIM2_CH4, I2C2_SDA,  
I2S2_CKIN, USART3_RX,  
EVENTOUT  
M1  
0
-
-
-
-
K9  
70  
22 30 H3 48 L11 H7 71  
VCAP_1  
VSS  
S
S
-
-
-
-
-
-
-
-
23 31 H2 49 F12 H6  
G1  
-
24 32 H1 50  
G7 72  
VDD  
S
-
-
-
-
2
TIM1_BKIN, I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
SPI4_NSS/I2S4_WS,  
SPI3_SCK/I2S3_CK,  
USART3_CK, CAN2_RX,  
DFSDM1_DATIN1,  
25 33 G3 51 L12 M11 73  
PB12  
I/O  
FT  
-
-
FSMC_D13/FSMC_DA13,  
EVENTOUT  
TIM1_CH1N,  
I2CFMP1_SMBA,  
SPI2_SCK/I2S2_CK,  
SPI4_SCK/I2S4_CK,  
USART3_CTS, CAN2_TX,  
DFSDM1_CKIN1,  
EVENTOUT  
M1  
2
26 34 G2 52 K12  
74  
PB13  
I/O  
FT  
-
-
54/193  
DocID028087 Rev 4  
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM1_CH2N,  
TIM8_CH2N,  
I2CFMP1_SDA,  
SPI2_MISO, I2S2ext_SD,  
USART3_RTS,  
DFSDM1_DATIN2,  
TIM12_CH1, FSMC_D0,  
SDIO_D6, EVENTOUT  
27 35 G1 53 K11 L11 75  
PB14  
PB15  
I/O  
I/O  
FT  
FT  
-
-
-
-
RTC_50Hz, TIM1_CH3N,  
TIM8_CH3N,  
I2CFMP1_SCL,  
28 36 F2 54 K10 L12 76  
SPI2_MOSI/I2S2_SD,  
DFSDM1_CKIN2,  
TIM12_CH2, SDIO_CK,  
EVENTOUT  
USART3_TX, FSMC_D13/  
FSMC_DA13, EVENTOUT  
-
-
-
-
-
-
55  
-
L9 77  
PD8  
PD9  
I/O  
I/O  
FT  
FT  
-
-
-
-
USART3_RX,  
FSMC_D14/FSMC_DA14,  
EVENTOUT  
56 K8 K9 78  
57 J12 J9 79  
USART3_CK,  
FSMC_D15/FSMC_DA15,  
EVENTOUT  
-
-
-
-
-
-
PD10  
PD11  
I/O  
I/O  
FT  
FT  
-
-
-
-
I2CFMP1_SMBA,  
USART3_CTS,  
QUADSPI_BK1_IO0,  
FSMC_A16, EVENTOUT  
58 J11 H9 80  
59 J10 L10 81  
60 H12 K10 82  
TIM4_CH1,  
I2CFMP1_SCL,  
USART3_RTS,  
-
-
-
-
-
-
PD12  
PD13  
I/O  
I/O  
FT  
FT  
-
-
-
-
QUADSPI_BK1_IO1,  
FSMC_A17, EVENTOUT  
TIM4_CH2,  
I2CFMP1_SDA,  
QUADSPI_BK1_IO3,  
FSMC_A18, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
G8 83  
F8 84  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DocID028087 Rev 4  
55/193  
67  
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM4_CH3,  
I2CFMP1_SCL,  
FSMC_D0/FSMC_DA0,  
EVENTOUT  
-
-
-
-
-
-
61 H11 K11 85  
PD14  
PD15  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM4_CH4,  
I2CFMP1_SDA,  
FSMC_D1/FSMC_DA1,  
EVENTOUT  
62 H10 K12 86  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J12 87  
J11 88  
J10 89  
H12 90  
PG2  
PG3  
PG4  
PG5  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
-
-
-
-
FSMC_A12, EVENTOUT  
FSMC_A13, EVENTOUT  
FSMC_A14, EVENTOUT  
FSMC_A15, EVENTOUT  
-
-
-
-
QUADSPI_BK1_NCS,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H11 91  
H10 92  
G11 93  
PG6  
PG7  
PG8  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
-
-
-
-
USART6_CK, EVENTOUT  
USART6_RTS,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
94  
-
VSS  
VDD  
S
S
S
-
-
-
-
F10  
C11 95 VDDUSB  
-
-
-
-
-
TIM3_CH1, TIM8_CH1,  
I2CFMP1_SCL,  
I2S2_MCK,  
DFSDM1_CKIN3,  
-
37 F1 63 E12 G12 96  
PC6  
I/O  
FT  
USART6_TX, FSMC_D1,  
SDIO_D6, EVENTOUT  
TIM3_CH2, TIM8_CH2,  
I2CFMP1_SDA,  
SPI2_SCK/I2S2_CK,  
I2S3_MCK, USART6_RX,  
DFSDM1_DATIN3,  
-
-
38 E1 64 E11 F12 97  
PC7  
PC8  
I/O  
I/O  
FT  
FT  
-
-
-
-
SDIO_D7, EVENTOUT  
TIM3_CH3, TIM8_CH3,  
USART6_CK,  
QUADSPI_BK1_IO2,  
SDIO_D0, EVENTOUT  
39 F3 65 E10 F11 98  
56/193  
DocID028087 Rev 4  
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
MCO_2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S2_CKIN,  
-
40 E2 66 D12 E11 99  
PC9  
I/O  
FT  
-
-
QUADSPI_BK1_IO0,  
SDIO_D1, EVENTOUT  
MCO_1, TIM1_CH1,  
I2C3_SCL, USART1_CK,  
USB_FS_SOF, SDIO_D1,  
EVENTOUT  
29 41 E3 67 D11 E12 100  
30 42 D1 68 D10 D12 101  
31 43 D2 69 C12 D11 102  
PA8  
PA9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
-
-
TIM1_CH2, I2C3_SMBA,  
USART1_TX,  
USB_FS_VBUS,  
SDIO_D2, EVENTOUT  
TIM1_CH3,  
SPI5_MOSI/I2S5_SD,  
USART1_RX,  
PA10  
USB_FS_ID, EVENTOUT  
TIM1_CH4, SPI4_MISO,  
USART1_CTS,  
32 44 D3 70 B12 C12 103  
PA11  
I/O  
FT  
-
USART6_TX, CAN1_RX,  
USB_FS_DM,  
-
EVENTOUT  
TIM1_ETR, SPI5_MISO,  
USART1_RTS,  
USART6_RX, CAN1_TX,  
USB_FS_DP, EVENTOUT  
33 45 C1 71 A12 B12 104  
34 46 C2 72 A11 A12 105  
PA12  
PA13  
I/O  
I/O  
FT  
FT  
-
-
-
-
JTMS-SWDIO,  
EVENTOUT  
-
-
-
73 C11 G9 106 VCAP_2  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
35 47 B1 74 F11 G10 107  
VSS  
VDD  
VDD  
36 48  
-
75 G11  
-
-
-
-
A1  
-
-
F9 108  
JTCK-SWCLK,  
EVENTOUT  
37 49 B2 76 A10 A11 109  
38 50 A2 77 A9 A10 110  
PA14  
I/O  
FT  
-
-
JTDI,  
TIM2_CH1/TIM2_ETR,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART1_TX, EVENTOUT  
PA15  
I/O  
FT  
-
-
DocID028087 Rev 4  
57/193  
67  
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
SPI3_SCK/I2S3_CK,  
USART3_TX,  
QUADSPI_BK1_IO1,  
SDIO_D2, EVENTOUT  
-
-
51 C3 78 B11 B11 111  
PC10  
PC11  
I/O  
I/O  
FT  
FT  
-
-
-
-
I2S3ext_SD, SPI3_MISO,  
USART3_RX,  
QUADSPI_BK2_NCS,  
FSMC_D2, SDIO_D3,  
EVENTOUT  
52 B3 79 C10 B10 112  
53 A3 80 B10 C10 113  
SPI3_MOSI/I2S3_SD,  
USART3_CK, FSMC_D3,  
SDIO_CK, EVENTOUT  
-
-
PC12  
PD0  
I/O  
I/O  
FT  
FT  
-
-
-
-
CAN1_RX,  
FSMC_D2/FSMC_DA2,  
EVENTOUT  
-
-
-
-
81 C9 E10 114  
82 B9 D10 115  
CAN1_TX,  
FSMC_D3/FSMC_DA3,  
EVENTOUT  
-
-
PD1  
PD2  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM3_ETR, FSMC_NWE,  
SDIO_CMD, EVENTOUT  
54 A4 83 C8 E9 116  
TRACED1,  
SPI2_SCK/I2S2_CK,  
DFSDM1_DATIN0,  
USART2_CTS,  
-
-
-
84 B8 D9 117  
PD3  
I/O  
FT  
-
-
QUADSPI_CLK,  
FSMC_CLK, EVENTOUT  
DFSDM1_CKIN0,  
USART2_RTS,  
FSMC_NOE, EVENTOUT  
-
-
-
-
-
-
85 B7 C9 118  
86 A6 B9 119  
PD4  
PD5  
I/O  
I/O  
FT  
FT  
-
-
-
-
USART2_TX,  
FSMC_NWE, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
E7 120  
F7 121  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
SPI3_MOSI/I2S3_SD,  
DFSDM1_DATIN1,  
USART2_RX,  
-
-
-
87 B6 A8 122  
PD6  
I/O  
FT  
-
-
FSMC_NWAIT,  
EVENTOUT  
58/193  
DocID028087 Rev 4  
STM32F412xE/G  
Pinouts and pin description  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
DFSDM1_CKIN1,  
USART2_CK,  
FSMC_NE1, EVENTOUT  
-
-
-
-
-
88 A5 A9 123  
PD7  
PG9  
I/O  
I/O  
FT  
FT  
-
-
-
-
USART6_RX,  
QUADSPI_BK2_IO2,  
FSMC_NE2, EVENTOUT  
-
-
-
E8 124  
-
-
-
-
-
-
-
-
-
-
D8 125  
C8 126  
PG10  
PG11  
I/O  
I/O  
FT  
FT  
-
-
FSMC_NE3, EVENTOUT  
CAN2_RX, EVENTOUT  
-
-
USART6_RTS, CAN2_TX,  
FSMC_NE4, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
B8 127  
D7 128  
PG12  
PG13  
I/O  
I/O  
FT  
FT  
-
-
-
-
TRACED2,  
USART6_CTS,  
FSMC_A24, EVENTOUT  
TRACED3, USART6_TX,  
QUADSPI_BK2_IO3,  
-
-
-
-
-
C7 129  
PG14  
I/O  
FT  
-
-
FSMC_A25, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
130  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
F6 131  
B7 132  
USART6_CTS,  
EVENTOUT  
-
-
-
-
-
PG15  
I/O  
FT  
-
-
JTDO-SWO, TIM2_CH2,  
I2CFMP1_SDA,  
SPI1_SCK/I2S1_CK,  
SPI3_SCK/I2S3_CK,  
USART1_RX, I2C2_SDA,  
EVENTOUT  
39 55 A5 89 A8 A7 133  
PB3  
I/O  
FT  
-
-
JTRST, TIM3_CH1,  
SPI1_MISO, SPI3_MISO,  
I2S3ext_SD, I2C3_SDA,  
SDIO_D0, EVENTOUT  
40 56 B4 90 A7 A6 134  
PB4  
PB5  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM3_CH2, I2C1_SMBA,  
SPI1_MOSI/I2S1_SD,  
SPI3_MOSI/I2S3_SD,  
CAN2_RX, SDIO_D3,  
EVENTOUT  
41 57 C4 91 C5 B6 135  
DocID028087 Rev 4  
59/193  
67  
Pinouts and pin description  
STM32F412xE/G  
Table 9. STM32F412xE/G pin definition (continued)  
Pin Number  
Pin name  
(function Pin  
I/O  
Additional  
functions  
Notes  
Alternate functions  
after  
type structure  
reset)(1)  
TIM4_CH1, I2C1_SCL,  
USART1_TX, CAN2_TX,  
QUADSPI_BK1_NCS,  
SDIO_D0, EVENTOUT  
42 58 B5 92 B5 C6 136  
43 59 A6 93 B4 D6 137  
PB6  
PB7  
I/O  
FT  
-
-
TIM4_CH2, I2C1_SDA,  
USART1_RX, FSMC_NL,  
EVENTOUT  
I/O  
I
FT  
B
-
-
-
44 60 D4 94 A4 D5 138 BOOT0  
-
VPP  
TIM4_CH3, TIM10_CH1,  
I2C1_SCL,  
45 61 C5 95 A3 C5 139  
PB8  
I/O  
FT  
-
SPI5_MOSI/I2S5_SD,  
CAN1_RX, I2C3_SDA,  
SDIO_D4, EVENTOUT  
-
TIM4_CH4, TIM11_CH1,  
I2C1_SDA,  
46 62 B6 96 B3 B5 140  
PB9  
PE0  
I/O  
I/O  
FT  
FT  
-
-
SPI2_NSS/I2S2_WS,  
CAN1_TX, I2C2_SDA,  
SDIO_D5, EVENTOUT  
-
-
TIM4_ETR, FSMC_NBL0,  
EVENTOUT  
-
-
-
-
-
-
97 C3 A5 141  
98 A2 A4 142  
PE1  
VSS  
I/O  
S
FT  
-
-
-
-
FSMC_NBL1, EVENTOUT  
-
-
-
47 63 A7 99  
-
E6  
-
-
-
-
-
C6  
-
H3 E5 143 PDR_ON  
F5 144 VDD  
I
FT  
10  
0
48 64 A8  
-
S
-
-
-
-
1. Function availability depends on the chosen device.  
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F412xE/Greference manual.  
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
60/193  
DocID028087 Rev 4  
Table 10. STM32F412xE/G alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
TIM2_CH1/  
TIM2_ETR  
PA0  
-
-
TIM5_CH1  
TIM5_CH2  
TIM8_ETR  
-
-
-
-
-
-
USART2_CTS  
USART2_RTS  
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
SPI4_MOSI/I  
2S4_SD  
QUADSPI_  
BK1_IO3  
PA1  
TIM2_CH2  
PA2  
PA3  
-
-
TIM2_CH3  
TIM2_CH4  
TIM5_CH3  
TIM5_CH4  
TIM9_CH1  
TIM9_CH2  
-
-
I2S2_CKIN  
I2S2_MCK  
-
-
USART2_TX  
USART2_RX  
-
-
-
-
-
-
FSMC_D4  
FSMC_D5  
EVENTOUT  
EVENTOUT  
SPI1_NSS/I2  
S1_WS  
SPI3_NSS/  
I2S3_WS  
DFSDM1_  
DATIN1  
PA4  
PA5  
-
-
-
-
-
USART2_CK  
-
-
-
-
FSMC_D6  
FSMC_D7  
EVENTOUT  
EVENTOUT  
TIM2_CH1/  
TIM2_ETR  
SPI1_SCK/  
I2S1_CK  
DFSDM1_  
CKIN1  
-
-
TIM8_CH1N  
-
-
-
TIM13_  
CH1  
QUADSPI_  
BK2_IO0  
PA6  
-
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
-
TIM3_CH1  
TIM8_BKIN  
-
SPI1_MISO  
I2S2_MCK  
-
-
-
-
-
-
SDIO_CMD EVENTOUT  
SPI1_MOSI/I  
2S1_SD  
TIM14_  
CH1  
QUADSPI_  
BK2_IO1  
PA7  
-
TIM3_CH2  
TIM8_CH1N  
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
USB_FS_  
SOF  
PA8  
MCO_1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_SCL  
-
-
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
-
-
SDIO_D1  
I2C3_  
SMBA  
USB_FS_  
VBUS  
PA9  
-
-
-
-
-
SDIO_D2  
SPI5_MOSI/  
I2S5_SD  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
-
-
-
-
-
-
-
USB_FS_ID  
-
-
-
-
-
-
USART6_  
TX  
SPI4_MISO  
CAN1_RX  
USB_FS_DM  
USART6_  
RX  
SPI5_MISO  
CAN1_TX  
USB_FS_DP  
JTMS-  
SWDIO  
-
-
-
-
-
-
-
-
-
-
-
JTCK-  
SWCLK  
-
-
TIM2_CH1/  
TIM2_ETR  
SPI1_NSS/  
I2S1_WS  
SPI3_NSS/  
I2S3_WS  
JTDI  
USART1_TX  
 
 
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
SPI5_SCK/  
I2S5_CK  
PB0  
-
-
-
TIM1_CH2N  
TIM3_CH3  
TIM3_CH4  
-
TIM8_CH2N  
TIM8_CH3N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
SPI5_NSS/  
I2S5_WS  
DFSDM1_  
DATIN0  
QUADSPI_  
CLK  
PB1  
PB2  
PB3  
PB4  
PB5  
TIM1_CH3N  
-
-
DFSDM1_  
CKIN0  
QUADSPI_  
CLK  
-
-
-
-
-
-
-
JTDO-  
SWO  
I2CFMP1_  
SDA  
SPI1_SCK/I2  
S1_CK  
SPI3_SCK/  
I2S3_CK  
TIM2_CH2  
USART1_RX  
I2C2_SDA  
I2C3_SDA  
CAN2_RX  
-
I2S3ext_  
SD  
JTRST  
-
-
-
TIM3_CH1  
TIM3_CH2  
-
-
-
SPI1_MISO  
SPI3_MISO  
SDIO_D0  
SDIO_D3  
SPI1_MOSI/I  
2S1_SD  
SPI3_MOSI/  
I2S3_SD  
I2C1_SMBA  
-
QUADSPI_  
BK1_NCS  
PB6  
-
-
TIM4_CH1  
-
I2C1_SCL  
-
-
-
USART1_TX  
-
CAN2_TX  
SDIO_D0  
EVENTOUT  
PB7  
PB8  
-
-
-
-
TIM4_CH2  
TIM4_CH3  
-
I2C1_SDA  
I2C1_SCL  
-
-
USART1_RX  
-
-
-
-
-
FSMC_NL  
SDIO_D4  
EVENTOUT  
EVENTOUT  
SPI5_MOSI/I2S  
5_SD  
TIM10_CH1  
CAN1_RX  
I2C3_SDA  
SPI2_NSS/  
I2S2_WS  
PB9  
-
-
TIM4_CH4  
TIM11_CH1  
I2C1_SDA  
-
-
CAN1_TX  
I2C2_SDA  
-
SDIO_D5  
EVENTOUT  
SPI2_SCK/  
I2S2_CK  
I2CFMP1_  
SCL  
PB10  
PB11  
-
-
TIM2_CH3  
TIM2_CH4  
-
-
-
-
I2C2_SCL  
I2C2_SDA  
I2S3_MCK  
-
USART3_TX  
USART3_RX  
-
-
-
-
SDIO_D7  
-
EVENTOUT  
EVENTOUT  
I2S2_CKIN  
-
SPI2_NSS/  
I2S2_WS  
SPI4_NSS/  
I2S4_WS  
SPI3_SCK/  
I2S3_CK  
USART3_  
CK  
DFSDM1_  
DATIN1  
FSMC_D13/F  
SMC_DA13  
PB12  
-
TIM1_BKIN  
-
-
I2C2_SMBA  
CAN2_RX  
EVENTOUT  
I2CFMP1_  
SMBA  
SPI2_SCK/  
I2S2_CK  
SPI4_SCK/  
I2S4_CK  
USART3_  
CTS  
DFSDM1_  
CKIN1  
PB13  
PB14  
PB15  
-
-
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
-
-
-
-
-
CAN2_TX  
TIM12_CH1  
TIM12_CH2  
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2CFMP1_  
SDA  
USART3_  
RTS  
DFSDM1_  
DATIN2  
TIM8_CH2N  
TIM8_CH3N  
SPI2_MISO  
I2S2ext_SD  
-
FSMC_D0  
-
SDIO_D6  
SDIO_CK  
RTC_  
50Hz  
I2CFMP1_  
SCL  
SPI2_MOSI/I  
2S2_SD  
DFSDM1_  
CKIN2  
-
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
PC1  
PC2  
DFSDM1_  
CKOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_MISO  
I2S2ext_SD  
-
-
-
-
-
-
-
-
-
FSMC_NWE EVENTOUT  
SPI2_MOSI/I  
2S2_SD  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
-
-
-
-
-
-
-
-
-
-
FSMC_A0  
EVENTOUT  
QUADSPI_  
BK2_IO2  
-
-
-
I2S1_MCK  
-
-
FSMC_NE4 EVENTOUT  
FSMC_NOE EVENTOUT  
I2CFMP1_  
SMBA  
QUADSPI_  
BK2_IO3  
-
-
-
USART3_RX  
I2CFMP1_  
SCL  
DFSDM1_  
CKIN3  
USART6_  
TX  
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
-
TIM8_CH1  
TIM8_CH2  
TIM8_CH3  
TIM8_CH4  
-
I2S2_MCK  
-
FSMC_D1  
SDIO_D6  
SDIO_D7  
SDIO_D0  
SDIO_D1  
SDIO_D2  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2CFMP1_  
SDA  
SPI2_SCK/  
I2S2_CK  
USART6_  
RX  
DFSDM1_  
DATIN3  
-
I2S3_MCK  
-
USART6_  
CK  
QUADSPI_  
BK1_IO2  
-
-
-
-
-
-
-
-
-
QUADSPI_  
BK1_IO0  
MCO_2  
-
I2C3_SDA  
-
I2S2_CKIN  
-
-
-
-
SPI3_SCK/  
I2S3_CK  
QUADSPI_  
BK1_IO1  
USART3_TX  
QUADSPI_  
BK2_NCS  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
I2S3ext_SD  
-
SPI3_MISO  
USART3_RX  
USART3_CK  
-
-
FSMC_D2  
FSMC_D3  
SDIO_D3  
SDIO_CK  
EVENTOUT  
EVENTOUT  
SPI3_MOSI/  
I2S3_SD  
-
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
SYS_AF  
-
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
USART3/ CAN1/CAN2  
USART6/  
CAN1  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
FSMC /SDIO SYS_AF  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
FSMC_D2/FS  
EVENTOUT  
MC_DA2  
PD0  
-
-
-
-
-
-
-
-
CAN1_RX  
-
FSMC_D3/FS  
EVENTOUT  
MC_DA3  
PD1  
PD2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_TX  
-
-
TIM3_ETR  
-
FSMC_NWE  
-
SDIO_CMD EVENTOUT  
FSMC_CLK EVENTOUT  
SPI2_SCK/  
I2S2_CK  
DFSDM1_  
DATIN0  
USART2_  
CTS  
QUADSPI_  
CLK  
PD3 TRACED1  
DFSDM1_  
CKIN0  
USART2_  
RTS  
PD4  
PD5  
PD6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_NOE EVENTOUT  
FSMC_NWE EVENTOUT  
-
USART2_TX  
USART2_RX  
SPI3_MOSI/I  
2S3_SD  
DFSDM1_  
DATIN1  
FSMC_  
EVENTOUT  
NWAIT  
DFSDM1_  
CKIN1  
PD7  
PD8  
-
-
-
-
-
-
-
-
-
-
-
-
USART2_CK  
USART3_TX  
-
-
-
-
-
-
FSMC_NE1 EVENTOUT  
FSMC_D13/  
EVENTOUT  
FSMC_DA13  
-
-
FSMC_D14/  
EVENTOUT  
FSMC_DA14  
PD9  
-
-
-
-
-
-
-
-
-
-
-
USART3_RX  
USART3_CK  
-
-
-
-
-
-
FSMC_D15/  
EVENTOUT  
FSMC_DA15  
PD10  
-
-
-
-
I2CFMP1_  
SMBA  
USART3_  
CTS  
QUADSPI_  
BK1_IO0  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A16  
FSMC_A17  
FSMC_A18  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2CFMP1_  
SCL  
USART3_  
RTS  
QUADSPI_  
BK1_IO1  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
I2CFMP1_  
SDA  
QUADSPI_  
BK1_IO3  
-
-
-
-
-
-
-
-
-
I2CFMP1_  
SCL  
FSMC_D0/  
FSMC_DA0  
-
-
I2CFMP1_  
SDA  
FSMC_D1/  
FSMC_DA1  
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
PE0  
-
-
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_NBL0 EVENTOUT  
FSMC_NBL1 EVENTOUT  
PE1  
PE2  
TRACECL  
K
SPI4_SCK/  
I2S4_CK  
SPI5_SCK/  
I2S5_CK  
QUADSPI_  
BK1_IO2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A23  
FSMC_A19  
FSMC_A20  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PE3 TRACED0  
PE4 TRACED1  
-
-
-
-
SPI4_NSS/  
I2S4_WS  
SPI5_NSS/  
I2S5_WS  
DFSDM1_  
DATIN3  
DFSDM1_  
CKIN3  
PE5 TRACED2  
PE6 TRACED3  
-
-
-
-
-
-
-
-
-
TIM9_CH1  
-
-
-
-
-
-
-
-
SPI4_MISO  
SPI5_MISO  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A21  
FSMC_A22  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
SPI4_MOSI/I  
2S4_SD  
SPI5_MOSI/  
I2S5_SD  
-
TIM9_CH2  
-
-
-
-
-
-
-
DFSDM1_  
DATIN2  
QUADSPI_  
BK2_IO0  
FSMC_D4/  
FSMC_DA4  
PE7  
PE8  
-
-
-
-
-
-
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
-
-
-
-
-
-
-
-
-
-
DFSDM1_  
CKIN2  
QUADSPI_  
BK2_IO1  
FSMC_D5/  
FSMC_DA5  
DFSDM1_  
CKOUT  
QUADSPI_  
BK2_IO2  
FSMC_D6/  
FSMC_DA6  
PE9  
QUADSPI_  
BK2_IO3  
FSMC_D7/  
FSMC_DA7  
PE10  
PE11  
PE12  
-
SPI4_NSS/  
I2S4_WS  
SPI5_NSS/  
I2S5_WS  
FSMC_D8/  
FSMC_DA8  
SPI4_SCK/  
I2S4_CK  
SPI5_SCK/  
I2S5_CK  
FSMC_D9/  
FSMC_DA9  
-
-
FSMC_D10/  
FSMC_DA10  
PE13  
PE14  
PE15  
-
-
-
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
SPI4_MISO  
SPI5_MISO  
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
SPI4_MOSI/I  
2S4_SD  
SPI5_MOSI/  
I2S5_SD  
FSMC_D11/  
FSMC_DA11  
-
-
FSMC_D12/  
FSMC_DA12  
-
-
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A0  
FSMC_A1  
FSMC_A2  
FSMC_A3  
FSMC_A4  
FSMC_A5  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PF1  
PF2  
PF3  
PF4  
PF5  
-
I2C2_SCL  
-
I2C2_SMBA  
TIM5_CH1  
TIM5_CH2  
TIM5_CH3  
-
-
-
QUADSPI_  
BK1_IO3  
PF6 TRACED0  
PF7 TRACED1  
-
-
-
-
-
-
-
-
TIM10_CH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
QUADSPI_  
BK1_IO2  
TIM11_CH1  
QUADSPI_  
BK1_IO0  
PF8  
PF9  
-
-
-
-
TIM13_CH1  
TIM14_CH1  
QUADSPI_  
BK1_IO1  
PF10  
PF11  
PF12  
-
-
-
TIM1_ETR  
TIM5_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
-
-
TIM8_ETR  
TIM8_BKIN  
-
FSMC_A6  
I2CFMP1_  
SMBA  
PF13  
PF14  
PF15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FSMC_A7  
FSMC_A8  
FSMC_A9  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2CFMP1_  
SCL  
I2CFMP1_  
SDA  
Table 10. STM32F412xE/G alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF12  
AF15  
I2C2/I2C3/  
I2CFMP1/  
USART3/ CAN1/CAN2  
TIM8/  
TIM9/  
TIM10/  
TIM11  
I2C1/  
I2C2/  
I2C3/  
SPI1/I2S1/ SPI2/I2S2/SPI3  
SPI2/I2S2/ /I2S3/SPI4/  
SPI3/I2S3/ I2S4/SPI5/I2S5  
SPI3/I2S3/  
USART1/  
USART2/  
USART3  
DFSDM1/  
DFSDM1/  
QUADSPI/  
FSMC  
Port  
TIM3/  
TIM4/  
TIM5  
TIM1/  
TIM2  
SYS_AF  
FSMC /SDIO SYS_AF  
USART6/  
CAN1  
/TIM12/  
TIM13/TIM14  
/QUADSPI  
I2CFMP1  
SPI4/I2S4  
/DFSDM1  
/OTG1_FS  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_RX  
-
-
-
-
-
-
FSMC_A10  
FSMC_A11  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PG1  
PG2  
PG3  
PG4  
PG5  
CAN1_TX  
-
-
-
-
QUADSPI_  
BK1_NCS  
PG6  
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
USART6_  
CK  
PG7  
PG8  
PG9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
USART6_  
RTS  
USART6_  
RX  
QUADSPI_  
BK2_IO2  
FSMC_NE2 EVENTOUT  
FSMC_NE3 EVENTOUT  
PG10  
PG11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN2_RX  
-
EVENTOUT  
USART6_  
RTS  
PG12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN2_TX  
-
-
-
-
-
FSMC_NE4 EVENTOUT  
USART6_  
CTS  
PG13 TRACED2  
PG14 TRACED3  
FSMC_A24  
FSMC_A25  
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
USART6_  
TX  
QUADSPI_  
BK2_IO3  
USART6_  
CTS  
PG15  
-
-
PH0  
PH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
Memory mapping  
STM32F412xE/G  
5
Memory mapping  
The memory map is shown in Figure 18.  
Figure 18. Memory map  
5HVHUYHG  
ꢃ[(ꢃꢈꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[))))ꢉ))))  
½
&RUWH[ ꢐ0ꢇꢉLQWHUQDOꢉ  
ꢃ[(ꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[(ꢃꢃ)ꢉ))))  
ꢃ[$ꢃꢃꢃꢉꢄꢃꢃꢃꢉ±ꢉꢃ')))ꢉ)))  
SHULSKHUDOV  
5HVHUYHG  
ꢃ[$ꢃꢃꢃꢉꢈ)))  
$+%ꢀ  
ꢃ[ꢆꢃꢃꢃꢉꢃꢃꢃꢃꢉꢉ  
ꢃ[ꢅ)))ꢉ))))  
$+%ꢄ  
ꢃ[ꢅꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢄꢉꢆꢂꢃꢃꢉꢐꢉꢃ[ꢇ)))ꢉ))))  
ꢃ[ꢇꢃꢃꢄꢉꢆꢁ))  
5HVHUYHG  
ꢃ[))))ꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢁ  
LQWHUQDO  
3HULSKHUDOV  
$+%ꢈ  
ꢃ[(ꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[')))ꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢆ  
1RWꢉXVHG  
ꢃ[&ꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[%)))ꢉ))))  
ꢃ[ꢇꢃꢃꢄꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢈꢉꢁꢇꢃꢃꢉꢐꢉꢃ[ꢇꢃꢃꢈꢉ))))  
5HVHUYHG  
5HVHUYHG  
ꢃ[ꢇꢃꢃꢈꢉꢆꢀ))  
ꢃ[$ꢃꢃꢃꢉꢄꢃꢃꢃ  
ꢃ[$ꢃꢃꢃꢉꢈ)))  
)60&ꢉ  
DQG  
4XDG63,  
ꢃ[ꢆꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢅ)))ꢉ))))  
$3%ꢄ  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢄ  
3HULSKHUDOV  
ꢃ[ꢇꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢀ)))ꢉ))))  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢈ  
3HULSKHUDOV  
ꢃ[ꢄꢃꢃꢇꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢀ)))ꢉ))))  
ꢃ[ꢄꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢄꢃꢃꢀꢉ))))  
ꢃ[ꢈ)))ꢉ&ꢃꢃꢂꢉꢐꢉꢃ[ꢈ)))ꢉ))))  
5HVHUYHG  
ꢃ[ꢇꢃꢃꢈꢉꢃꢃꢃꢃ  
ꢃ[ꢇꢃꢃꢃꢉꢁꢇꢃꢃꢉꢐꢉꢃ[ꢇꢃꢃꢃꢉ))))  
ꢃ[ꢇꢃꢃꢃꢉꢁꢀ))  
65$0ꢉꢑꢄꢅꢆꢉ.%ꢉDOLDVHGꢉ  
E\ꢉELWꢐEDQGLQJꢒ  
5HVHUYHG  
ꢃ[ꢄꢃꢃꢃꢉꢃꢃꢃꢃ  
ꢃ[ꢈ)))ꢉ))))  
5HVHUYHG  
2SWLRQꢉE\WHV  
ꢃ[ꢈ)))ꢉ&ꢃꢃꢃꢉꢐꢉꢃ[ꢈ)))ꢉ&ꢃꢃꢁ  
ꢃ[ꢈ)))ꢉꢁ$ꢈꢃꢉꢐꢉꢃ[ꢈ)))ꢉ%)))  
ꢃ[ꢈ)))ꢉꢁꢂꢃꢃꢉꢐꢉꢃ[ꢈ)))ꢉꢁ$ꢃ)  
ꢃ[ꢈ)))ꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢈ)))ꢉꢁꢁ))  
ꢃ[ꢃꢂꢃꢂꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢈ))(ꢉ))))ꢉꢉ  
ꢅꢈꢄꢐ0E\WH  
EORFNꢉꢃ  
3HULSKHUDOV  
5HVHUYHG  
273ꢉDUHDꢉꢓꢉORFN  
6\VWHPꢉPHPRU\  
ꢃ[ꢃꢃꢃꢃꢉꢃꢃꢃꢃ  
5HVHUYHG  
)ODVKꢉPHPRU\  
ꢃ[ꢃꢂꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃꢂꢃ)ꢉ))))ꢉꢉ  
ꢃ[ꢃꢃꢈꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃꢁ))ꢉ))))  
$3%ꢈ  
5HVHUYHG  
$OLDVHGꢉWRꢉ)ODVKꢎꢉV\VWHPꢎꢉ  
PHPRU\ꢉRUꢉ65$0ꢉGHSHQGLQJꢎꢉ ꢃ[ꢃꢃꢃꢃꢉꢃꢃꢃꢃꢉꢐꢉꢃ[ꢃꢃꢃ)ꢉ))))  
RQꢉWKHꢉ%227ꢉSLQV  
ꢃ[ꢇꢃꢃꢃꢉꢃꢃꢃꢃ  
06Yꢀꢁꢄꢂꢇ9ꢇ  
68/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Memory mapping  
Table 11. STM32F412xE/G register boundary addresses  
Bus  
Boundary address  
Peripheral  
0xE010 0000 - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xA000 2000 - 0xDFFF FFFF  
0xA000 1000 - 0xA000 1FFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x7000 0000 - 0x08FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00 - 0x5FFF FFFF  
0x5006 0800 0x5006 0BFF  
0x5004 000- 0x5006 07FF  
0x5000 0000 - 0x5003 FFFF  
0x4002 6800 - 0x4FFF FFFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0x4002 5000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0x4002 3400 - 0x4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2000 - 0x4002 2FFF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0x4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
®
Cortex -M4  
Cortex-M4 internal peripherals  
Reserved  
QuadSPI control register  
FSMC control register  
QUADSPI  
Reserved  
FSMC  
AHB3  
AHB2  
Reserved  
RNG  
Reserved  
USB OTG FS  
Reserved  
DMA2  
DMA1  
Reserved  
Flash interface register  
RCC  
Reserved  
CRC  
AHB1  
Reserved  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
DocID028087 Rev 4  
69/193  
71  
 
 
Memory mapping  
STM32F412xE/G  
Table 11. STM32F412xE/G register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 6400- 0x4001 FFFF  
0x4001 6000 - 0x4001 63FF  
0x4001 5400 - 0x4001 5FFF  
0x4001 5000 - 0x4001 53FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7400 - 0x4000 FFFF  
Reserved  
DFSDM1  
Reserved  
SPI5/I2S5  
TIM11  
TIM10  
TIM9  
EXTI  
SYSCFG  
SPI4/I2S4  
SPI1/I2S1  
SDIO  
APB2  
Reserved  
ADC1  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
Reserved  
70/193  
DocID028087 Rev 4  
STM32F412xE/G  
Memory mapping  
Table 11. STM32F412xE/G register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800- 0x4000 6BFF  
0x4000 6400- 0x4000 67FF  
0x4000 6000- 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 4C00 - 0x4000 53FF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
PWR  
Reserved  
CAN2  
CAN1  
I2CFMP1  
I2C3  
I2C2  
I2C1  
Reserved  
USART3  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
DocID028087 Rev 4  
71/193  
71  
Electrical characteristics  
STM32F412xE/G  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3 σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2 σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 19.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 20.  
Figure 19. Pin loading conditions  
Figure 20. Input voltage measurement  
-#5 PIN  
-#5 PIN  
6
# ꢍ ꢆꢁ P&  
).  
-3ꢀꢂꢁꢀꢀ6ꢉ  
-3ꢀꢂꢁꢀꢁ6ꢉ  
72/193  
DocID028087 Rev 4  
 
 
 
 
 
 
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 21. Power supply scheme  
9%$7  
%DFNXSꢉFLUFXLWU\  
ꢑ26&ꢀꢄ.ꢎ57&ꢎ  
:DNHXSꢉORJLF  
9%$7  
ꢈꢌꢆꢅꢉWRꢉꢀꢌꢆ9  
3RZHUꢉ  
VZLWFK  
%DFNXSꢉUHJLVWHUVꢒ  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢈ  
9&$3Bꢄ  
.HUQHOꢉORJLFꢉ  
ꢑ&38ꢎꢉGLJLWDOꢉ  
ꢏꢉ5$0ꢒꢉꢉ  
ꢄꢉîꢉꢄꢌꢄꢉ—)  
9''  
9''  
ꢈꢋꢄꢋꢌꢌꢌꢈꢈꢋꢈꢄ  
9ROWDJHꢉ  
UHJXODWRU  
ꢈꢈꢉîꢉꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉîꢉꢇꢌꢁꢉ—)  
966  
ꢈꢋꢄꢋꢌꢌꢌꢈꢈꢋꢈꢄ  
%<3$66B5(*  
9''86%  
)ODVKꢉPHPRU\  
9''B86%  
27*  
)6  
3+<  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
5HVHWꢉ  
FRQWUROOHU  
3'5B21  
9''$  
9''  
95()  
95()ꢓ  
$QDORJꢍ  
5&Vꢎꢉ  
3//ꢎꢌꢌ  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
ꢈꢃꢃꢉQ)  
ꢓꢉꢈꢉ—)  
$'&  
95()ꢐ  
966$  
06Yꢀꢊꢃꢄꢄ9ꢄ  
1. To connect PDR_ON pin, refer to Section: Power supply supervisor.  
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
3. VCAP_2 pad is only available on 100-pin and 144-pin packages.  
4. VDDA=VDD and VSSA=VSS  
.
5. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and  
associated DP/DM GPIOs. VDDUSB value does not depend on the VDD and VDDA values, but it must be the  
last supply to be provided and the first to disappear.  
Caution:  
Each power supply pair (for example V /V , V  
/V  
) must be decoupled with filtering  
DD SS  
DDA SSA  
ceramic capacitors as shown above. These capacitors must be placed as close as possible  
to, or below, the appropriate pins on the underside of the PCB to ensure good operation of  
the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
DocID028087 Rev 4  
73/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
6.1.7  
Current consumption measurement  
Figure 22. Current consumption measurement scheme  
,
B9  
'' %$7  
9
%$7  
,
''  
9
''  
9
''$  
DLꢈꢇꢈꢄꢆ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics,  
Table 13: Current characteristics, and Table 14: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 12. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD  
,
VDD–VSS  
–0.3  
4.0  
(1)  
VDDUSB and VBAT  
)
Input voltage on FT and TC pins(2)  
VSS–0.3 VDD+4.0  
V
VIN  
Input voltage on any other pin  
V
SS–0.3  
4.0  
9.0  
50  
Input voltage for BOOT0  
VSS  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
mV  
|VSSX VSS  
|
50  
see Section 6.3.14:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the  
external power supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 13 for the values of the maximum allowed  
injected current.  
74/193  
DocID028087 Rev 4  
 
 
 
 
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
Table 13. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
Σ IVDDUSB  
IVDD  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Total current into VDDUSB power lines (source)  
160  
-160  
25  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
100  
-100  
25  
IVSS  
IIO  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sunk by sum of all USB I/Os  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT and TC pins (4)  
-25  
mA  
120  
25  
ΣIIO  
-120  
(3)  
–5/+0  
±25  
IINJ(PIN)  
Injected current on NRST and B pins (4)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply,  
in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins.  
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 14. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
125  
Maximum junction temperature  
°C  
Maximum lead temperature during soldering  
(WLCSP64, LQFP64/100/144, UFQFPN48,  
UFBGA100/144)  
TLEAD  
see note (1)  
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®  
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS  
directive 2011/65/EU, July 2011).  
DocID028087 Rev 4  
75/193  
161  
 
 
 
 
 
Electrical characteristics  
STM32F412xE/G  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 15. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Power Scale3: Regulator ON,  
0
-
64  
VOS[1:0] bits in PWR_CR register = 0x01  
Power Scale2: Regulator ON,  
fHCLK  
Internal AHB clock frequency  
0
0
0
-
-
-
84  
100  
50  
MHz  
VOS[1:0] bits in PWR_CR register = 0x10  
Power Scale1: Regulator ON,  
VOS[1:0] bits in PWR_CR register = 0x11  
Internal APB1 clock  
frequency  
fPCLK1  
-
MHz  
Internal APB2 clock  
frequency  
fPCLK2  
VDD  
-
-
0
-
-
100  
3.6  
MHz  
V
Standard operating voltage  
1.7(1)  
Analog operating voltage  
1.7(1)  
-
-
2.4  
3.6  
(ADC limited to 1.2 M  
samples)  
(2)(3)  
(4)  
VDDA  
Must be the same potential as VDD  
V
Analog operating voltage  
2.4  
(ADC limited to 2.4 M  
samples)  
USB supply voltage  
VDDUSB (supply voltage for PA11 and  
PA12 pins)  
USB not used  
1.7  
3.0  
3.3  
3.6  
3.6  
3.6  
V
V
USB used(5)  
-
-
VBAT  
Backup operating voltage  
-
1.65  
VOS[1:0] bits in PWR_CR register = 0x01  
Max frequency 64 MHz  
1.08(6) 1.14 1.20(6)  
1.20(6) 1.26 1.32(6)  
1.26 1.32 1.38  
Regulator ON: 1.2 V  
VOS[1:0] bits in PWR_CR register = 0x10  
Max frequency 84 MHz  
V12  
V
internal voltage on  
VCAP_1/VCAP_2 pins  
VOS[1:0] bits in PWR_CR register = 0x11  
Max frequency 100 MHz  
Max frequency 64 MHz  
Max frequency 84 MHz  
Max frequency 100 MHz  
2 V VDD 3.6 V  
VDD 2 V  
1.10 1.14 1.20  
1.20 1.26 1.32  
1.26 1.32 1.38  
Regulator OFF: 1.2 V  
external voltage must be  
supplied on  
V12  
V
V
VCAP_1/VCAP_2 pins  
–0.3  
–0.3  
0
-
-
-
5.5  
5.2  
9
Input voltage on RST, FT and  
TC pins(7)  
VIN  
Input voltage on BOOT0 pin  
-
76/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
Table 15. General operating conditions (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
UFQFPN48  
WLCSP64  
LQFP64  
-
-
-
-
-
-
-
-
625  
392  
425  
Power dissipation at  
PD  
TA = 85°C for range 6 or  
LQFP100  
LQFP144  
UFBGA100  
UFBGA144  
465  
571  
351  
416  
85  
mW  
TA = 105°C for range 7(8)  
-
-
-
-
-
-
-
-
-
-
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
Range 6  
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for  
range 6  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for  
range 7  
°C  
Junction temperature range  
Range 7  
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.18.2: Internal  
reset OFF).  
2. When the ADC is used, refer to Table 71: ADC characteristics.  
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
VDDA can be tolerated during power-up and power-down operation.  
5. Only the DM (PA11) and DP (PA12) pads are supplied through VDDUSB. For application where the VBUS (PA9) is directly  
connected to the chip, a minimum VDD supply of 2.7V is required.  
(some application examples are shown in appendix B)  
6. Guaranteed by test in production  
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
DocID028087 Rev 4  
77/193  
161  
Electrical characteristics  
STM32F412xE/G  
Table 16. Features depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
Possible  
Flash  
memory  
operations  
Clock output  
frequency on  
I/O pins(3)  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
8-bit erase  
and program  
operations  
only  
Conversion  
time up to  
1.2 Msps  
VDD =1.7 to  
2.1 V(4)  
100 MHz with 6 – No I/O  
wait states compensation  
16 MHz(5)  
up to 30 MHz  
up to 30 MHz  
Conversion  
time up to  
1.2 Msps  
16-bit erase  
and program  
operations  
VDD = 2.1 to  
2.4 V  
100 MHz with 5 – No I/O  
18 MHz  
24 MHz  
wait states  
compensation  
Conversion  
time up to  
2.4 Msps  
– I/O  
16-bit erase  
and program  
operations  
VDD = 2.4 to  
2.7 V  
100 MHz with 4  
wait states  
compensation up to 50 MHz  
works  
– up to  
100 MHz  
when VDD  
3.0 to 3.6 V  
=
Conversion  
time up to  
2.4 Msps  
– I/O  
compensation  
works  
32-bit erase  
and program  
operations  
VDD = 2.7 to  
3.6 V(6)  
100 MHz with 3  
wait states  
30 MHz  
– up to  
50 MHz  
when VDD  
=
2.7 to 3.0 V  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. Refer to Table 58: I/O AC characteristics for frequencies vs. external load.  
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.18.2: Internal  
reset OFF).  
5. Prefetch available over the complete VDD supply range.  
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of  
D- and D+ pins will be degraded between 2.7 and 3 V.  
78/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
6.3.2  
VCAP_1/VCAP_2 external capacitors  
Stabilization for the main regulator is achieved by connecting the external capacitor C  
to  
EXT  
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT  
capacitors are replaced by a single capacitor.  
C
is specified in Table 17.  
EXT  
Figure 23. External capacitor C  
EXT  
&
(65  
5ꢉ/HDN  
06ꢈꢊꢃꢇꢇ9ꢄ  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 17. VCAP_1/VCAP_2 operating conditions  
Parameter  
Symbol  
Conditions  
Capacitance of external capacitor with the pins  
VCAP_1 and VCAP_2 available  
CEXT  
2.2 µF  
< 2 Ω  
4.7 µF  
< 1 Ω  
ESR of external capacitor with the pins VCAP_1 and  
VCAP_2 available  
ESR  
CEXT  
ESR  
Capacitance of external capacitor with a single VCAP  
pin available  
ESR of external capacitor with a single VCAP pin  
available  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
6.3.3  
Operating conditions at power-up/power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 18. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
DocID028087 Rev 4  
79/193  
161  
 
 
 
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 19. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
Note:  
This feature is only available for UFBGA100 and UFBGA144 packages.  
6.3.5  
Embedded reset and power control block characteristics  
The parameters given in Table 20 are derived from tests performed under ambient  
temperature and V supply voltage @ 3.3V.  
DD  
Table 20. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
-
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
V
2.76 2.82  
Programmable voltage  
detector level selection  
VPVD  
2.66 2.71  
2.93 2.99  
2.84 3.02  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
(2)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
1.60(1)  
1.64  
Falling edge  
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
Rising edge  
80/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 20. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
(2)  
VPDRhyst  
PDR hysteresis  
-
-
40  
-
mV  
Falling edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Brownout level 2  
threshold  
VBOR2  
V
Brownout level 3  
threshold  
VBOR3  
(2)  
VBORhyst  
BOR hysteresis  
POR reset timing  
-
-
100  
1.5  
-
mV  
ms  
TRSTTEMPO  
0.5  
3.0  
(2)(3)  
In-Rush current on  
voltage regulator power-  
on (POR or wakeup from  
Standby)  
(2)  
IRUSH  
-
-
160  
-
200  
5.4  
mA  
µC  
In-Rush energy on  
voltage regulator power-  
on (POR or wakeup from IRUSH = 171 mA for 31 µs  
Standby)  
VDD = 1.7 V, TA = 105 °C,  
(2)  
ERUSH  
-
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.  
2. Guaranteed by design, not tested in production.  
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first  
instruction is fetched by the user application code.  
6.3.6  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 22: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
DocID028087 Rev 4  
81/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at VDD or VSS (no load).  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted to both f frequency and VDD ranges  
HCLK  
(refer to Table 16: Features depending on the operating power supply range).  
The voltage scaling is adjusted to f frequency as follows:  
HCLK  
Scale 3 for f  
64 MHz  
HCLK  
Scale 2 for 64 MHz < f  
Scale 1 for 84 MHz < f  
84 MHz  
100 MHz  
HCLK  
HCLK  
The system clock is HCLK, f  
= f  
/2, and f  
= f  
.
PCLK1  
HCLK  
PCLK2  
HCLK  
External clock is 4 MHz and PLL is ON except if it is explicitly mentioned.  
The maximum values are obtained for V = 3.6 V and a maximum ambient  
DD  
temperature (T ), and the typical values for T = 25 °C and V = 3.3 V unless  
A
A
DD  
otherwise specified.  
Table 21. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA= 25 °C TA= 25 °C TA=85 °C TA=105 °C  
100  
84  
64  
50  
25  
20  
16  
28.1  
22.7  
15.7  
12.3  
6.5  
30.24  
24.05  
16.99  
13.36  
7.44  
31.27  
24.54  
17.47  
13.82  
7.82  
32.21  
25.11  
18.03  
14.36  
8.30  
External clock,  
PLL ON,  
all peripherals  
enabled(2)(3)  
5.6  
6.16  
6.66  
7.20  
HSI, PLL off, all  
peripherals  
3.9  
4.70  
5.31  
6.08  
enabled(2)(3)  
1
0.6  
0.78  
1.33  
1.98  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
14.0  
11.3  
7.9  
15.48  
12.23  
8.84  
7.06  
4.18  
3.44  
2.51  
16.08  
12.75  
9.31  
7.53  
4.61  
3.98  
3.13  
16.83  
13.41  
10.01  
8.19  
External clock,  
PLL ON, all  
peripherals  
disabled(3)  
6.2  
3.4  
5.13  
2.9  
4.65  
HSI, PLL off, all  
peripherals  
2.0  
3.89  
disabled(3)  
1
0.5  
0.64  
1.21  
1.90  
1. Based on characterization, not tested in production unless otherwise specified  
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
82/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 22. Typical and maximum current consumption, code with data processing (ART  
accelerator disabled) running from SRAM - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA=  
TA=  
TA=  
TA=  
25 °C  
25 °C  
85 °C  
105 °C  
100  
84  
64  
50  
25  
20  
16  
1
28.4  
23.0  
16.0  
12.6  
6.8  
28.80(3)  
24.09(3)  
16.83(3)  
13.46  
7.63  
30.84  
25.20  
17.77  
13.98  
8.14  
32.39(3)  
26.57(3)  
19.12(3)  
14.68  
8.61  
External clock,  
PLL ON,  
all peripherals enabled(2)  
5.8  
6.31  
6.74  
7.43  
HSI, PLL OFF(4)  
,
3.9  
4.65  
5.33  
6.11  
all peripherals enabled(2)  
0.6  
0.78  
1.34  
2.00  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
14.3  
11.6  
8.2  
15.09(3)  
12.28(3)  
8.75(3)  
7.21  
16.22  
13.36  
9.68  
17.90(3)  
14.99(3)  
11.21(3)  
8.47  
External clock,  
PLL ON,  
all peripherals disabled(2)  
6.5  
7.69  
3.6  
4.22  
4.68  
5.29  
3.2  
3.65  
4.18  
4.94  
2.0  
2.48  
3.12  
3.94  
HSI, PLL OFF,  
all peripherals disabled(2)  
0.5  
0.65  
1.26  
1.94  
1. Based on characterization, not tested in production unless otherwise specified  
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the  
analog part.  
3. Tested in production  
4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be  
considered  
DocID028087 Rev 4  
83/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
Table 23. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory- V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
1
26.9  
21.6  
15.0  
11.8  
6.3  
28.78  
23.14  
16.08  
12.74  
7.13  
29.86  
23.93  
16.70  
13.33  
7.69  
31.30  
24.89  
17.46  
14.07  
8.30  
External clock,  
PLL ON,  
all peripherals enabled(2)(3)  
5.5  
6.09  
6.64  
7.30  
3.9  
4.20  
4.78  
4.49  
HSI, PLL OFF,  
all peripherals enabled(2)  
0.9  
0.98  
1.50  
2.20  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
12.7  
10.3  
7.2  
13.82  
11.20  
7.87  
14.71  
11.97  
8.57  
15.76  
12.96  
9.41  
External clock,  
PLL ON(4)  
all peripherals disabled(2)  
5.7  
6.33  
7.02  
7.87  
3.2  
3.77  
4.38  
5.13  
2.9  
3.31  
3.93  
4.69  
2.1  
2.25  
2.83  
3.56  
HSI, PLL OFF, all  
peripherals disabled(2)  
0.7  
0.83  
1.42  
2.12  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
4. Refer to Table 44 and RM0383 for the possible PLL VCO setting  
84/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 24. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled except prefetch) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
1
27.2  
21.9  
15.2  
12.1  
6.6  
28.70(4) 30.14  
31.98  
25.37  
17.87  
14.46  
8.77  
23.60  
16.45  
13.12  
7.59  
24.31  
17.03  
13.67  
8.12  
External clock,  
PLL ON(2)  
,
all peripherals enabled(3)  
5.7  
6.51  
7.07  
7.77  
4.0  
4.32  
4.88  
5.69  
HSI, PLL OFF, all  
peripherals enabled(3)  
0.8  
1.14  
1.67  
2.38  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
13.0  
10.5  
7.5  
14.06(4) 15.34  
17.27  
13.47  
9.88  
11.21  
8.29  
6.73  
4.18  
3.72  
2.41  
0.99  
12.16  
9.01  
7.32  
4.73  
4.25  
2.94  
1.51  
External clock, PLL ON(2)  
all peripherals disabled(3)  
6.0  
8.27  
3.5  
5.57  
3.1  
5.10  
2.1  
3.75  
HSI, PLL OFF, all  
peripherals disabled(3)  
0.7  
2.30  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting  
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
4. Tested in production.  
DocID028087 Rev 4  
85/193  
161  
 
 
 
 
Electrical characteristics  
STM32F412xE/G  
Table 25. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
1
36.3  
31.1  
22.3  
18.3  
10.1  
8.6  
38.95  
33.22  
23.97  
19.77  
11.39  
9.60  
41.19  
34.81  
25.10  
20.65  
12.16  
10.25  
7.51  
42.95  
36.10  
26.23  
21.73  
13.11  
11.06  
8.38  
External clock,  
PLL ON(2)  
,
all peripherals enabled(3)  
6.3  
6.85  
HSI, PLL OFF, all  
peripherals enabled(3)  
1.1  
1.39  
1.82  
2.61  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
22.1  
19.7  
14.5  
12.2  
7.0  
23.95  
20.79  
15.88  
13.38  
8.05  
25.80  
22.52  
17.21  
14.59  
8.89  
27.50  
24.12  
18.54  
15.79  
10.16  
8.52  
External clock, PLL ON(2)  
all peripherals disabled(3)  
6.0  
6.84  
7.51  
4.4  
4.91  
5.56  
6.54  
HSI, PLL OFF, all  
peripherals disabled(3)  
0.9  
1.25  
1.79  
2.59  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Refer to Table 44 and RM0383 for the possible PLL VCO setting  
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
86/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 26. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator disabled) running from Flash memory - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
1
35.9  
29.4  
22.4  
18.6  
10.3  
8.9  
38.55  
31.59  
24.02  
20.07  
11.62  
9.85  
40.77  
33.12  
25.15  
21.08  
12.39  
10.59  
8.04  
42.52  
34.42  
26.28  
22.05  
13.34  
11.32  
8.80  
External clock,  
PLL ON,  
all peripherals enabled(2)(3)  
6.7  
7.26  
HSI, PLL OFF, all  
peripherals enabled(2)(3)  
1.1  
1.44  
1.99  
2.66  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
21.7  
18.0  
14.6  
12.5  
7.2  
23.55  
19.16  
15.93  
13.63  
8.25  
25.48  
20.93  
17.32  
14.90  
9.26  
27.07  
22.39  
18.59  
16.07  
10.26  
8.84  
External clock, PLL ON(3)  
all peripherals disabled  
6.3  
7.15  
7.99  
4.9  
5.37  
6.20  
7.03  
HSI, PLL OFF, all  
peripherals disabled(3)  
1.0  
1.30  
1.91  
2.65  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the  
analog part.  
DocID028087 Rev 4  
87/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
Table 27. Typical and maximum current consumption in run mode, code with data processing  
(ART accelerator enabled with prefetch) running from Flash memory - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
1
38.9  
32.8  
23.6  
18.7  
10.1  
8.6  
41.10  
34.61  
24.96  
19.90  
11.11  
9.46  
42.85  
35.77  
25.84  
20.67  
11.70  
10.07  
7.42  
44.28  
36.72  
26.64  
21.45  
12.40  
10.81  
8.21  
External clock,  
PLL ON,  
all peripherals enabled(2)  
6.3  
6.77  
HSI, PLL OFF,  
all peripherals enabled  
1.1  
1.35  
1.84  
2.59  
Supply current  
in Run mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
24.7  
21.4  
15.8  
12.6  
7.0  
26.11  
22.22  
16.80  
13.51  
7.85  
27.59  
23.53  
17.90  
14.52  
8.57  
28.84  
24.66  
18.99  
15.54  
9.39  
External clock,  
PLL ON(2)  
all peripherals disabled  
6.0  
6.67  
7.37  
8.26  
4.5  
4.80  
5.47  
6.33  
HSI, PLL OFF,  
all peripherals disabled  
0.9  
1.25  
1.81  
2.58  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
88/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 28. Typical and maximum current consumption in Sleep mode - V = 3.6 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
17.7  
14.3  
10.0  
7.9  
18.48(3) 19.83  
21.70  
17.48  
12.13  
9.89  
15.39  
10.71  
8.53  
4.99  
4.42  
2.83  
16.31  
11.35  
9.13  
5.46  
4.95  
3.47  
All peripherals enabled(2)  
External clock,  
PLL ON,  
,
Flash deep power down  
4.4  
6.11  
4.0  
5.64  
All peripherals enabled(2)  
HSI, PLL OFF,  
,
2.7  
4.21  
1
0.5  
0.68  
1.25  
1.92  
Flash deep power down  
100  
84  
64  
50  
25  
20  
16  
1
18.1  
14.7  
10.3  
8.2  
4.7  
4.2  
2.7  
0.8  
3.2  
2.6  
2.0  
1.7  
1.2  
1.3  
0.5  
19.39  
15.80  
11.02  
8.88  
5.30  
4.67  
3.10  
0.93  
3.42  
3.09  
2.33  
2.02  
1.63  
1.62  
0.63  
20.70  
16.71  
11.66  
9.53  
5.82  
5.18  
3.72  
1.50  
4.98  
3.63  
2.81  
2.54  
2.21  
2.09  
1.24  
22.24  
17.92  
12.45  
10.26  
6.53  
5.90  
4.50  
2.18  
6.88  
4.44  
3.46  
3.12  
2.89  
2.78  
1.92  
All peripherals enabled(2)  
External clock,  
PLL ON Flash ON  
,
All peripherals enabled(2)  
HSI, PLL ON, Flash ON  
,
Supply current  
in Sleep mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
All peripherals disabled,  
External clock,  
PLL ON(2)  
,
Flash deep power down  
All peripherals disabled,  
HSI, PLL OFF(2)  
,
1
0.4  
0.53  
1.14  
1.82  
Flash deep power down  
100  
84  
64  
50  
25  
20  
16  
3.6  
3.0  
2.3  
2.0  
1.4  
1.5  
0.8  
4.17  
3.49  
2.69  
2.33  
1.88  
1.88  
0.91  
4.84  
4.13  
3.23  
2.83  
2.39  
2.43  
1.50  
5.63  
4.88  
3.85  
3.45  
3.06  
3.06  
2.22  
All peripherals disabled,  
External clock,  
PLL ON(2), Flash ON  
All peripherals disabled,  
HSI, PLL OFF(2)  
Flash ON  
,
1
0.7  
0.78  
1.37  
2.09  
1. Based on characterization, not tested in production unless otherwise specified.  
DocID028087 Rev 4  
89/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
3. Tested in production.  
Table 29. Typical and maximum current consumption in Sleep mode - V = 1.7 V  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
17.3  
14.0  
9.7  
18.62  
15.08  
10.41  
8.27  
19.90  
16.04  
11.02  
8.89  
21.40  
17.16  
11.80  
9.62  
External clock,  
PLL ON,  
Flash deep power down,  
7.6  
all peripherals enabled(2)  
4.2  
4.79  
5.35  
6.00  
3.7  
4.11  
4.67  
5.31  
HSI, PLL OFF(2)  
,
2.4  
2.81  
3.45  
4.20  
Flash deep power down,  
all peripherals enabled  
1
0.5  
0.67  
1.27  
1.91  
Supply current  
in Sleep mode  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
17.8  
14.4  
10.0  
7.9  
19.08  
15.49  
10.76  
8.58  
20.35  
16.42  
11.43  
9.19  
21.90  
17.59  
12.18  
9.94  
External clock, PLL ON(2)  
all peripherals enabled,  
Flash ON  
4.4  
4.99  
5.54  
6.21  
4.0  
4.42  
4.95  
5.64  
HSI, PLL OFF(2), all  
peripherals enabled,  
Flash ON  
2.7  
3.09  
3.75  
4.49  
1
0.8  
0.93  
1.52  
2.18  
90/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Table 29. Typical and maximum current consumption in Sleep mode - V = 1.7 V (continued)  
DD  
Typ  
Max(1)  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C  
85 °C 105 °C  
100  
84  
64  
50  
25  
20  
16  
2.9  
2.4  
1.7  
1.4  
1.0  
1.3  
0.5  
3.51  
2.83  
2.08  
1.77  
1.37  
1.37  
0.63  
4.14  
3.46  
2.59  
2.23  
1.88  
1.88  
1.23  
4.90  
4.16  
3.18  
2.84  
2.50  
2.50  
1.91  
All peripherals disabled,  
External clock,  
PLL ON(2)  
,
Flash deep power down  
All peripherals disabled,  
HSI, PLL OFF(2)  
,
1
0.4  
0.52  
1.13  
1.81  
Supply current  
in Sleep mode  
Flash deep power down  
IDD  
mA  
100  
84  
64  
50  
25  
20  
16  
1
3.3  
2.8  
2.1  
1.7  
1.2  
1.3  
0.8  
0.7  
3.22  
2.62  
1.89  
1.58  
1.28  
1.28  
0.88  
0.77  
3.98  
3.30  
2.50  
2.16  
1.82  
1.82  
1.36  
1.26  
4.90  
4.16  
3.18  
2.84  
2.50  
2.50  
1.91  
1.81  
All peripherals disabled,  
External clock, PLL ON(2)  
Flash ON  
,
All peripherals disabled,  
HSI, PLL OFF(2), Flash ON  
1. Based on characterization, not tested in production unless otherwise specified.  
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
Table 30. Typical and maximum current consumptions in Stop mode - V = 1.7 V  
DD  
Typ(1)  
Max(1)  
Symbol  
Conditions  
Parameter  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
121.1 168.0 648.7 1213.0  
50.8 104.7 667.4 1328.0  
79.1 122.0 609.1 1181.0  
Flash in Stop mode, all  
oscillators OFF, no  
independent watchdog  
Main regulator usage  
Low power regulator usage  
Main regulator usage  
IDD_STOP  
µA  
Flash in Deep power  
down mode, all oscillators Low power regulator usage  
22.4  
18.5  
74.7 631.9 1286.0  
58.5 558.3 1145.0  
OFF, no independent  
Low power low voltage regulator  
watchdog  
usage  
1. Based on characterization, not tested in production.  
DocID028087 Rev 4  
91/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
Table 31. Typical and maximum current consumption in Stop mode - V =3.6 V  
DD  
Max(1)  
Typ  
Symbol  
Conditions  
Parameter  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
124.0 179.0(2) 907.2 1762.0(2)  
52.8 104.9(2) 773.8 1559.0  
87.6 123.0 698.5 1374.0  
Flash in Stop mode, all  
oscillators OFF, no  
independent watchdog  
Main regulator usage  
Low power regulator usage  
IDD_STOP  
µA  
Flash in Deep power  
down mode, all oscillators  
OFF, no independent  
watchdog  
Main regulator usage  
Low power regulator usage  
26.2  
74.7 737.2 1515.0  
Low power low voltage regulator usage 20.1 58.5(2) 629.1 1299.0(2)  
1. Based on characterization, not tested in production.  
2. Tested in production.  
Table 32. Typical and maximum current consumption in Standby mode - V = 1.7 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA = TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
Low-speed oscillator (LSE in low drive  
mode) and RTC ON  
1.8  
3.7  
12.9  
23.7  
Supply current in  
Standby mode  
IDD_STBY  
Low-speed oscillator (LSE in high drive  
mode) and RTC ON  
µA  
2.6  
1.1  
4.5  
3.0  
13.7  
13.1  
24.5  
25.0  
RTC and LSE OFF  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Based on characterization, not tested in production unless otherwise specified.  
Table 33. Typical and maximum current consumption in Standby mode - V = 3.6 V  
DD  
Typ(1)  
Max(2)  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA = TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
Low-speed oscillator (LSE in low drive  
mode) and RTC ON  
3.7  
5.4  
16.0  
28.4  
Supply current in  
Standby mode  
IDD_STBY  
Low-speed oscillator (LSE in high drive  
mode) and RTC ON  
µA  
4.5  
2.6  
6.2  
4.0  
16.8  
16.0  
29.2  
RTC and LSE OFF  
30.0(3)  
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.  
2. Guaranteed by characterization, not tested in production unless otherwise specified.  
3. Tested in production.  
92/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Electrical characteristics  
Table 34. Typical and maximum current consumptions in V  
mode  
BAT  
Typ  
Max(2)  
TA = TA =  
85 °C 105 °C Unit  
TA = 25 °C  
Symbol Parameter  
Conditions(1)  
VBAT = VBAT= VBAT = VBAT  
1.7 V 2.4 V 3.3 V 3.6 V  
=
VBAT = 3.6 V  
Low-speed oscillator (LSE in low-  
drive mode) and RTC ON  
0.74  
0.87  
1.04  
1.11  
3.0  
5.0  
Backup  
I
DD_VBAT domain supply Low-speed oscillator (LSE in high-  
µA  
1.52  
0.04  
1.70  
0.04  
1.97  
0.05  
2.09  
0.05  
3.8  
2.0  
5.8  
4.0  
current  
drive mode) and RTC ON  
RTC and LSE OFF  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed by characterization, not tested in production.  
Figure 24. Typical V  
current consumption (LSE and RTC ON/LSE oscillator  
“low power” mode selection)  
BAT  
ꢀꢌꢅꢃ  
ꢀꢌꢃꢃ  
ꢄꢌꢅꢃ  
ꢄꢌꢃꢃ  
ꢈꢌꢅꢃ  
ꢈꢌꢃꢃ  
ꢃꢌꢅꢃ  
ꢃꢌꢃꢃ  
ꢈꢌꢆꢅ9  
ꢈꢌꢁ9  
ꢈꢌꢂ9  
ꢄ9  
ꢄꢌꢇ9  
ꢄꢌꢁ9  
ꢀ9  
ꢈꢅ  
ꢀꢃ  
ꢇꢅ  
ꢆꢃ  
ꢁꢅ  
ꢊꢃ  
ꢈꢃꢅ  
7HPSHUDWXUHꢉꢑƒ&ꢒ  
06ꢀꢊꢃꢄꢀ9ꢈ  
DocID028087 Rev 4  
93/193  
161  
 
 
Electrical characteristics  
Figure 25. Typical V  
STM32F412xE/G  
current consumption (LSE and RTC ON/LSE oscillator  
BAT  
“high drive” mode selection)  
ꢇꢌꢅ  
ꢈꢌꢆꢅ9  
ꢈꢌꢁ9  
ꢈꢌꢂ9  
ꢄ9  
ꢀꢌꢅ  
ꢄꢌꢇ9  
ꢄꢌꢁ9  
ꢀ9  
ꢄꢌꢅ  
ꢀꢌꢀ9  
ꢀꢌꢆ9  
ꢈꢌꢅ  
ꢃꢌꢅ  
ꢈꢅ  
ꢀꢃ  
ꢇꢅ  
ꢆꢃ  
ꢁꢅ  
ꢊꢃ  
ꢈꢃꢅ  
7HPSHUDWXUHꢉꢑƒ&ꢒ  
06ꢀꢊꢃꢄꢇ9ꢈ  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 36: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
94/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID028087 Rev 4  
95/193  
161  
Electrical characteristics  
STM32F412xE/G  
Table 35. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
frequency (fSW  
)
2 MHz  
8 MHz  
0.05  
0.15  
0.45  
0.85  
1.00  
1.40  
1.67  
0.10  
0.35  
1.05  
2.20  
2.40  
3.55  
4.23  
0.20  
0.65  
1.85  
2.45  
4.70  
8.80  
10.47  
0.25  
1.00  
3.45  
7.15  
11.55  
0.32  
1.27  
3.88  
12.34  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
C = CINT  
8 MHz  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
CEXT = 0 pF  
C = CINT + CEXT + CS  
I/O switching  
current  
IDDIO  
mA  
8 MHz  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
VDD = 3.3 V  
CEXT =10 pF  
C = CINT + CEXT + CS  
8 MHz  
VDD = 3.3 V  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT + CS  
VDD = 3.3 V  
8 MHz  
CEXT = 33 pF  
25 MHz  
50 MHz  
C = CINT + CEXT + CS  
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
96/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
The ART accelerator is ON.  
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.  
HCLK is the system clock at 100 MHz. f = f /2, and f = f .  
HCLK  
PCLK1  
HCLK  
PCLK2  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off,  
with only one peripheral clocked on,  
scale 1 with f  
scale 2 with f  
scale 3 with f  
= 100 MHz,  
= 84 MHz,  
= 64 MHz.  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
Table 36. Peripheral current consumption  
I
DD (Typ)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
GPIOH  
CRC  
1.84  
1.90  
1.77  
1.67  
1.75  
1.65  
1.65  
0.62  
0.26  
1.75  
1.80  
1.67  
1.58  
1.67  
1.56  
1.56  
0.57  
0.25  
1.55  
1.61  
1.50  
1.42  
1.48  
1.39  
1.39  
0.53  
0.22  
AHB1  
µA/MHz  
DMA1(1)  
DMA2(1)  
RNG  
1,71N+2,98 1,62N+2,87 1,45N+2,58  
1,78N+2,62 1,70N+2.53 1,52N+2.26  
0.77  
19.68  
5.36  
0.74  
18.73  
5.11  
0.66  
16.78  
4.56  
AHB2  
AHB3  
USB_OTG_FS  
FSMC  
QSPI  
9.99  
9.51  
8.53  
DocID028087 Rev 4  
97/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
Table 36. Peripheral current consumption (continued)  
DD (Typ)  
I
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
AHB-APB1 bridge  
TIM2  
1.10  
13.62  
10.56  
10.72  
13.46  
2.92  
2.72  
6.22  
4.70  
4.60  
1.76  
4.04  
4.26  
4.42  
4.44  
4.32  
4.36  
4.36  
5.96  
6.18  
5.86  
1.82  
1.00  
12.95  
10.05  
10.21  
12.83  
2.79  
2.60  
5.93  
4.48  
4.38  
1.67  
3.83  
4.05  
4.19  
4.21  
4.10  
4.17  
4.14  
5.69  
5.90  
5.52  
1.69  
0.94  
11.59  
8.97  
9.12  
11.47  
2.47  
2.31  
5.28  
3.97  
3.91  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
WWDG  
SPI2/I2S2  
SPI3/I2S3  
USART2  
USART3  
I2C1  
1.47  
APB1  
µA/MHz  
3.41  
3.62  
3.75  
3.75  
3.66  
3.69  
3.69  
5.06  
5.25  
4.97  
1.56  
I2C2  
I2C3  
I2CFMP1  
CAN1  
CAN2  
PWR  
98/193  
DocID028087 Rev 4  
STM32F412xE/G  
Electrical characteristics  
Table 36. Peripheral current consumption (continued)  
DD (Typ)  
I
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
AHB-APB2 bridge  
TIM1  
0.09  
6.83  
6.63  
3.31  
3.21  
3.51  
3.74  
1.47  
1.56  
0.54  
3.09  
1.91  
1.93  
1.54  
4.25  
3.23  
0.07  
6.46  
6.29  
3.11  
3.02  
3.31  
3.51  
1.36  
1.45  
0.49  
2.92  
1.79  
1.81  
1.44  
4.02  
3.06  
0.08  
5.81  
5.63  
2.80  
2.73  
2.98  
3.17  
1.23  
1.31  
0.45  
2.63  
1.61  
1.64  
1.30  
3.61  
2.73  
TIM8  
USART1  
USART6  
ADC1  
SDIO  
APB2  
SPI1  
µA/MHz  
SPI4  
SYSCFG  
TIM9  
TIM10  
TIM11  
SPI5  
DFSDM1  
Bus Matrix  
1. N is the number of stream enable (1...8).  
6.3.7  
Wakeup time from low-power modes  
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0/PC0/PC1) pins are used to wakeup from Standby, Stop and Sleep modes.  
DocID028087 Rev 4  
99/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
Figure 26. Low-power mode wakeup  
:DNHXSꢀIURPꢀ6WRSꢀPRGHꢎꢀ  
PDLQꢀUHJXODWRU  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
5HJXODWRUꢉ  
UDPSꢐXS  
)ODVKꢉVWRSꢉH[LW  
+6,ꢉUHVWDUW  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WRSꢀPRGHꢎꢀ  
PDLQꢀUHJXODWRUꢎꢀ  
IODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UDPSꢐXS  
:DNHXSꢀIURPꢀ6WRSꢎꢀ  
UHJXODWRUꢀLQꢀORZꢀSRZHUꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
5HJXODWRUꢉ  
UDPSꢐXS  
)ODVKꢉVWRSꢉH[LW  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WRSꢎꢀ  
UHJXODWRUꢀLQꢀORZꢀSRZHUꢀPRGHꢎꢀ  
IODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQꢀPRGH  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UDPSꢐXS  
+6,ꢉUHVWDUW  
:DNHXSꢀIURPꢀ6WDQGE\ꢀPRGH  
5HJXODWRU  
2))  
&38ꢉUHVWDUW  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
5HJXODWRUꢉ  
UHVWDUW  
+6,ꢉUHVWDUW  
2SWLRQꢉE\WHVꢉORDGLQJ  
:DNHXSꢀIURPꢀ6OHHSꢀDQGꢀ  
)ODVKꢀLQꢀ'HHSꢀSRZHUꢀGRZQ  
5HJXODWRU  
21  
2SWLRQꢉE\WHVꢉDUHꢉQRWꢉUHORDGHG  
)ODVKꢉ'HHSꢉ3GꢉUHFRYHU\  
&38ꢉUHVWDUW  
06ꢀꢅꢅꢇꢄ9ꢈ  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 37. Low-power mode wakeup timings(1)  
Min(1)  
Typ(1) Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
clk  
cycles  
tWUSLEEP  
-
-
4
-
6
Wakeup from Sleep mode  
Flash memory in Deep  
power down mode  
tWUSLEEPFDSM  
-
50.0  
µs  
100/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
Table 37. Low-power mode wakeup timings(1) (continued)  
Min(1)  
Typ(1) Max(1)  
12.9 15.0  
Parameter  
Conditions  
Unit  
Main regulator  
-
Main regulator, Flash  
memory in Deep power  
down mode  
-
-
-
-
104.9 120.0  
Wakeup from STOP mode  
Code execution on Flash  
Wakeup from Stop mode,  
regulator in low power  
mode(2)  
tWUSTOP  
20.8  
112.9  
4.9  
28.0  
130.0  
7.0  
Regulator in low power  
mode, Flash memory in  
Deep power down mode(2)  
Main regulator with Flash in  
Stop mode or Deep power  
down  
µs  
Wakeup from STOP mode  
code execution on RAM(3)  
tWUSTOP  
Wakeup from Stop mode,  
regulator in low power mode  
and Flash in Stop mode or  
Deep power down(2)  
-
12.8  
20.0  
Wakeup from Standby  
mode  
tWUSTDBY  
-
-
-
-
316.8 400.0  
11.0  
From Flash_Stop mode  
tWUFLASH  
Wakeup of Flash  
From Flash Deep power  
down mode  
50.0  
1. Guaranteed by characterization, not tested in production.  
2. The specification is valid for wakeup from regulator in low power mode or low power low voltage mode, since the timing  
difference is negligible.  
3. For the faster wakeup time for code execution on RAM, the Flash must be in STOP or DeepPower Down mode (see  
reference manual RM0402).  
6.3.8  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56. However, the recommended clock input  
waveform is shown in Figure 27.  
The characteristics given in Table 38 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 15.  
DocID028087 Rev 4  
101/193  
161  
 
 
Electrical characteristics  
Symbol  
STM32F412xE/G  
Table 38. High-speed external user clock characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56. However, the recommended clock input  
waveform is shown in Figure 28.  
The characteristics given in Table 39 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 15.  
Table 39. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
VLSEL  
tw(LSE)  
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
-
-
50  
Cin(LSE)  
OSC32_IN input capacitance(1)  
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
102/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Figure 27. High-speed external clock source AC timing diagram  
6
(3%(  
ꢐ  
ꢀꢁ ꢐ  
(3%,  
6
T
T
T
7ꢎ(3%ꢏ  
T
T
7ꢎ(3%ꢏ  
Rꢎ(3%ꢏ  
Fꢎ(3%ꢏ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢈꢉ&  
AIꢀꢄꢆꢉꢃ  
Figure 28. Low-speed external clock source AC timing diagram  
9
/6(+  
ꢊꢃꢕ  
 
9
/6(/  
W
W
W
:ꢑ/6(ꢒ  
W
W
:ꢑ/6(ꢒ  
Uꢑ/6(ꢒ  
Iꢑ/6(ꢒ  
7
/6(  
I
/6(BH[W  
([WHUQDO  
,
/
26&ꢀꢄB,1  
FORFNꢉVRXUFH  
670ꢀꢄ)  
DLꢈꢁꢅꢄꢊ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 40. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID028087 Rev 4  
103/193  
161  
 
 
Electrical characteristics  
Symbol  
STM32F412xE/G  
(1)  
Table 40. HSE 4-26 MHz oscillator characteristics  
Parameter  
Conditions  
Min  
Typ Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
4
-
-
26  
-
MHz  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 Ω,  
-
-
450  
530  
-
-
CL=5 pF @25 MHz  
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 Ω,  
CL=10 pF @25 MHz  
(2)  
ACCHSE  
-
-500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design, not tested in production.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (Typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 29). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 29. Typical application with an 8 MHz crystal  
5HVRQDWRUꢉZLWK  
LQWHJUDWHGꢉFDSDFLWRUV  
&
/ꢈ  
I
26&B,1  
+6(  
%LDVꢉ  
FRQWUROOHG  
JDLQ  
ꢂꢉ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢑꢈꢒ  
670ꢀꢄ)  
5
(;7  
&
/ꢄ  
DLꢈꢁꢅꢀꢃ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 41. In  
the application, the resonator and the load capacitors have to be placed as close as  
104/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
The LSE high-power mode allows to cover a wider range of possible crystals but with a cost  
of higher power consumption.  
(1)  
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
Feedback resistor  
-
-
18.4  
-
MΩ  
Low-power mode  
(default)  
-
-
1
IDD  
LSE current consumption  
LSE accuracy  
µA  
High-drive mode  
-
-
-
-
3
(2)  
ACCLSE  
-500  
500  
ppm  
Startup, low-power  
mode  
-
-
0.56  
Gm_crit_max Maximum critical crystal gm  
µA/V  
s
Startup, high-drive  
mode  
-
-
-
1.50  
-
(3)  
tSU(LSE)  
startup time  
VDD is stabilized  
2
1. Guaranteed by design, not tested in production.  
2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in  
production. It is measured for a standard crystal resonator and it can vary significantly with the crystal  
manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
For information about the LSE high-power mode, refer to the reference manual RM0383.  
Figure 30. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢉZLWK  
LQWHJUDWHGꢉFDSDFLWRUV  
&
/ꢈ  
I
26&ꢀꢄB ,1  
/6(  
%LDVꢉꢉ  
FRQWUROOHG  
JDLQ  
ꢀꢄꢌꢁꢆꢂꢉN+]  
UHVRQDWRU  
5
)
26&ꢀꢄB 28 7  
670ꢀꢄ)  
&
/ꢄ  
DLꢈꢁꢅꢀꢈD  
DocID028087 Rev 4  
105/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.9  
Internal clock source characteristics  
The parameters given in Table 42 and Table 43 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 15.  
DD  
High-speed internal (HSI) RC oscillator  
L
(1)  
Table 42. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI user trimming step(2)  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
-
-
-
16  
-
1
MHz  
%
-
-
TA = –40 to 105 °C(3)  
–8  
–4  
–1  
-
-
-
4.5  
4
%
ACCHSI  
Accuracy of the HSI oscillator TA = –10 to 85 °C(3)  
TA = 25 °C(4)  
%
-
1
%
(2)  
tsu(HSI)  
HSI oscillator startup time  
-
-
2.2  
4
µs  
HSI oscillator power  
consumption  
(2)  
IDD(HSI)  
-
60  
80  
µA  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design, not tested in production  
3. Based on characterization, not tested in production  
4. Factory calibrated, parts not soldered.  
Figure 31. ACC  
versus temperature  
HSI  
ꢁꢑꢁꢅ  
ꢁꢑꢁꢇ  
ꢁꢑꢁꢉ  
ꢊꢇꢁ  
ꢉꢆ  
ꢀꢁꢆ  
ꢀꢉꢆ  
4! ꢎ #ꢏ  
ꢊꢁꢑꢁꢉ  
ꢊꢁꢑꢁꢇ  
ꢊꢁꢑꢁꢅ  
ꢊꢁꢑꢁꢃ  
-IN  
-AX  
4YPICAL  
-3ꢈꢁꢇꢂꢉ6ꢀ  
1. Guaranteed by characterization, not tested in production.  
106/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 43. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.4  
0.6  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Figure 32. ACC versus temperature  
LSI  
-3ꢀꢂꢁꢀꢈ6ꢀ  
DocID028087 Rev 4  
107/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.10  
PLL characteristics  
The parameters given in Table 44 and Table 45 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 15.  
DD  
Table 44. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
-
-
0.95(2)  
24  
1
-
2.10  
100  
MHz  
MHz  
fPLL_OUT  
PLL multiplier output clock  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
-
48  
75  
MHz  
MHz  
PLL VCO output  
PLL lock time  
-
100  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
µs  
-
Cycle-to-cycle jitter  
Period Jitter  
RMS  
25  
peak  
to  
peak  
-
-
-
150  
15  
-
-
-
System clock  
100 MHz  
RMS  
Jitter(3)  
ps  
peak  
to  
200  
peak  
Cycle to cycle at 1 MHz  
on 1000 samples.  
Bit Time CAN jitter  
-
330  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
-
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design, not tested in production.  
3. The use of two PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed by characterization, not tested in production.  
108/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
Table 45. PLLI2S (audio PLL) characteristics  
Parameter  
PLLI2S input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
fPLLI2S_OUT  
fVCO_OUT  
-
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
PLLI2S multiplier output clock  
PLLI2S VCO output  
-
-
-
MHz  
100  
75  
100  
-
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLI2S lock time  
µs  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48 kHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
ps  
-
-
-
-
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
400  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design, not tested in production.  
3. Value given with main PLL running.  
4. Guaranteed by characterization, not tested in production.  
DocID028087 Rev 4  
109/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.11  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 52: EMI characteristics for LQFP144). It is available only on the  
main PLL.  
Table 46. SSCG parameter constraints  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
Peak modulation depth  
-
0.25  
-
-
-
-
10  
2
kHz  
%
MODEPER * INCSTEP  
(Modulation period) * (Increment Step)  
215-1  
-
1. Guaranteed by design, not tested in production.  
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
PLL_IN  
MOD  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
110/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 33. PLL output clock waveforms in center spread mode  
&REQUENCY ꢎ0,,?/54ꢏ  
MD  
&ꢁ  
MD  
4IME  
TMODE  
ꢉXTMODE  
AIꢀꢄꢉꢂꢀ  
Figure 34. PLL output clock waveforms in down spread mode  
)UHTXHQF\ꢉꢑ3//B287ꢒ  
)ꢃ  
ꢄ[PG  
7LPH  
WPRGH  
ꢄ[WPRGH  
DLꢈꢁꢄꢊꢄE  
6.3.12  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 105 °C unless otherwise specified.  
A
The devices are shipped to customers with the Flash memory erased.  
Table 47. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
-
5
8
-
-
-
IDD  
Supply current  
mA  
12  
DocID028087 Rev 4  
111/193  
161  
 
 
 
 
Electrical characteristics  
STM32F412xE/G  
Table 48. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
16  
11  
8
32  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
22  
s
Program/eraseparallelism  
(PSIZE) = x 32  
16  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed by characterization, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
112/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Table 49. Flash memory programming with V voltage  
PP  
Symbol  
tprog  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Double word programming  
-
-
16  
230  
490  
875  
6.9  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
Vprog  
VPP  
Mass erase time  
-
-
s
V
V
Programming voltage  
VPP voltage range  
-
-
2.7  
7
3.6  
9
-
Minimum current sunk on  
the VPP pin  
IPP  
-
-
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 50. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
10 kcycle(2) at TA = 55 °C  
1. Guaranteed by characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
6.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
DocID028087 Rev 4  
113/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
The test results are given in Table 52. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 51. EMS characteristics for LQFP144 package  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP144  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
TA = +25 °C, fHCLK = 100 MHz,  
conforms to IEC 61000-4-2  
2B  
4B  
V
DD = 3.3 V, LQFP144  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VEFTB  
TA = +25 °C, fHCLK = 100 MHz,  
conforms to IEC 61000-4-4  
When the application is exposed to a noisy environment, it is recommended to avoid pin  
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,  
PA2, on LQFP144 packages and PDR_ON on WLCSP49.  
As a consequence, it is recommended to add a serial resistor (1 kΩ maximum) located as  
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than  
50 mm on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
114/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 52. EMI characteristics for LQFP144  
Max vs.  
[fHSE/fCPU  
]
Monitored  
frequency band  
Symbol  
Parameter  
Conditions  
Unit  
8/100 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
20  
28  
21  
3.5  
VDD = 3.6 V, TA = 25 °C, LQFP144  
package, conforming to IEC 61967-2,  
EEMBC, ART ON, all peripheral clocks  
enabled, clock dithering disabled.  
dBµV  
-
SEMI  
Peak level  
6.3.14  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 53. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Electrostatic  
Conditions  
Class  
Unit  
value(1)  
VESD(HBM) discharge voltage  
(human body model)  
TA = +25 °C conforming to JESD22-A114  
2
2000  
TA = +25 °C conforming to ANSI/ESD STM5.3.1,  
UFBGA144, UFBGA100, LQFP100, LQFP64,  
UFQFPN48  
4
500  
V
Electrostatic  
VESD(CDM) discharge voltage  
TA = +25 °C conforming to ANSI/ESD STM5.3.1,  
3
3
400  
250  
(charge device model) WLCSP64  
TA = +25 °C conforming to ANSI/ESD STM5.3.1,  
LQFP144  
1. Guaranteed by characterization, not tested in production.  
DocID028087 Rev 4  
115/193  
161  
 
 
 
Electrical characteristics  
Static latchup  
STM32F412xE/G  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 54. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.15  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins  
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator  
frequency deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 55.  
116/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Table 55. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0 pin  
Injected current on NRST pin  
–0  
–0  
NA  
NA  
Injected current on PB3, PB4, PB5, PB6,  
PB7, PB8, PB9, PC13, PC14, PC15, PH1,  
PDR_ON, PC0, PC1,PC2, PC3, PD1,  
PD5, PD6, PD7, PE0, PE2, PE3, PE4,  
PE5, PE6  
IINJ  
–0  
NA  
mA  
Injected current on any other FT pin  
Injected current on any other pins  
–5  
–5  
NA  
+5  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
6.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 56 are derived from tests  
performed under the conditions summarized in Table 15. All I/Os are CMOS and TTL  
compliant.  
Table 56. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT, TC and NRST I/O input low  
level voltage  
(1)  
1.7 VVDD3.6 V  
-
-
0.3VDD  
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VIL  
-
-
-
-
-
V
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1(2)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
FT, TC and NRST I/O input high  
level voltage(5)  
(1)  
1.7 VVDD3.6 V  
0.7VDD  
-
-
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VIH  
V
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(2)  
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
DocID028087 Rev 4  
117/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
Table 56. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT, TC and NRST I/O input  
hysteresis  
(2)(3)  
1.7 VVDD3.6 V  
10% VDD  
-
-
1.75 VVDD 3.6 V,  
-40 °CTA 105 °C  
VHYS  
V
BOOT0 I/O input hysteresis  
I/O input leakage current (4)  
0.1  
-
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
µA  
I/O FT/TC input leakage current  
(5)  
All pins  
except for  
PA10  
(OTG_FS_ID)  
VIN = VSS  
30  
7
40  
10  
40  
50  
14  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
PA10  
(OTG_FS_ID)  
-
kΩ  
All pins  
except for  
PA10  
VIN = VDD  
30  
Weak pull-down  
equivalent  
RPD  
(OTG_FS_ID)  
resistor(7)  
PA10  
(OTG_FS_ID)  
-
-
7
-
10  
5
14  
-
(8)  
CIO  
I/O pin capacitance  
pF  
1. Guaranteed by test in production.  
2. Guaranteed by design, not tested in production.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O  
current injection susceptibility  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection  
susceptibility  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization, not tested in production.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT and TC I/Os is shown in Figure 35.  
118/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
Figure 35. FT/TC I/O input characteristics  
9,/ꢋ9,+ꢉꢑ9ꢒ  
ꢄꢌꢅꢄ  
77/ꢉUHTXLUHPHQWꢉ  
9,+PLQꢉ ꢉꢄ9  
ꢄꢌꢃ  
ꢈꢌꢊꢄ  
ꢈꢌꢁ  
ꢈꢌꢄꢄ  
ꢈꢌꢈꢊ  
$UHDꢉQRWꢉ  
GHWHUPLQHG  
ꢈꢌꢃꢆꢅ  
ꢃꢌꢂ  
77/ꢉUHTXLUHPHQWꢉ9,/PD[ꢉ  
 ꢉꢃꢌꢂ9  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢋꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢊꢏꢄ9''  
ꢃꢌꢅꢅ  
ꢃꢌꢅꢈ  
9''ꢉꢑ9ꢒ  
ꢈꢌꢁ  
ꢄꢌꢃ  
ꢄꢌꢇ  
ꢄꢌꢁ  
ꢀꢌꢀ  
ꢀꢌꢆ  
06ꢀꢀꢁꢇꢆ9ꢈ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14 and PC15 which can  
OL OH  
sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the speed  
should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 13).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 13).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 15. All I/Os are CMOS and TTL compliant.  
DocID028087 Rev 4  
119/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
Max Unit  
Table 57. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
(1)  
VOL  
VOH  
VOL  
VOH  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
V
(3)  
(1)  
(3)  
VDD–0.4  
-
0.4  
-
2.7 V VDD 3.6 V  
TTL port(2)  
IIO =+8 mA  
-
V
2.4  
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
IIO = +20 mA  
V
V
V
(3)  
VDD–1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
VOH  
-
0.4(4)  
(1)  
IIO = +6 mA  
(3)  
VDD–0.4(4)  
-
0.4(5)  
-
1.8 V VDD 3.6 V  
(1)  
VOL  
-
IIO = +4 mA  
VOH  
VDD–0.4(5)  
(3)  
1.7 V VDD 3.6 V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 13.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 13 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
4. Guaranteed by characterization results, not tested in production.  
5. Guaranteed by design, not tested in production.  
.
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 36 and  
Table 58, respectively.  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 15.  
(1)(2)  
Table 58. I/O AC characteristics  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
Output high to low level fall  
MHz  
8
00  
4
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V to  
3.6 V  
time and output low to high  
level rise time  
-
-
100  
ns  
tr(IO)out  
120/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
OSPEEDRy  
Electrical characteristics  
(1)(2)  
Table 58. I/O AC characteristics  
(continued)  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.70 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.70 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.70 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD2.70 V  
CL = 40 pF, VDD1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.70 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.70 V  
CL = 10 pF, VDD1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
MHz  
50  
fmax(IO)out Maximum frequency(3)  
20  
10  
01  
Output high to low level fall  
time and output low to high  
level rise time  
20  
ns  
6
tf(IO)out  
tr(IO)out  
/
10  
50(4)  
25  
fmax(IO)out Maximum frequency(3)  
MHz  
100(4)  
50(4)  
6
10  
Output high to low level fall  
time and output low to high  
level rise time  
10  
ns  
4
tf(IO)out  
tr(IO)out  
/
6
100(4)  
MHz  
Fmax(IO)out Maximum frequency(3)  
50(4)  
4
11  
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
2.5  
4
Pulse width of external signals  
-
tEXTIpw detected by the EXTI  
controller  
-
10  
-
-
ns  
1. Guaranteed by characterization, not tested in production.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 36.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
DocID028087 Rev 4  
121/193  
161  
Electrical characteristics  
STM32F412xE/G  
Figure 36. I/O AC characteristics definition  
ꢊꢃꢕ  
ꢈꢃꢕ  
ꢅꢃꢕ  
ꢅꢃꢕ  
ꢊꢃꢕ  
W
ꢈꢃꢕ  
W
(;7(51$/  
287387  
21ꢉ&/  
Uꢑ,2ꢒRXW  
Iꢑ,2ꢒRXW  
7
0D[LPXPꢉIUHTXHQF\ꢉLVꢉDFKLHYHGꢉLIꢉꢑW ꢓꢉW ꢒꢉ”ꢉꢑꢄꢋꢀꢒ7ꢉDQGꢉLIꢉWKHꢉGXW\ꢉF\FOHꢉLVꢉꢑꢇꢅꢐꢅꢅꢕꢒꢉ  
Uꢉ  
I
ZKHQꢉORDGHGꢉE\ꢉ&  
/
ꢉVSHFLILHGꢉLQꢉWKHꢉWDEOHꢉ³ꢉ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢌꢉ  
DLꢈꢇꢈꢀꢈG  
6.3.17  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 56).  
PU  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 15. Refer to Table 56: I/O static characteristics for the values of VIH and VIL for  
NRST pin.  
Table 59. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Weak pull-up equivalent  
resistor(1)  
RPU  
VIN = VSS  
30  
40  
50  
kΩ  
(2)  
VF(NRST)  
NRST Input filtered pulse  
-
-
-
-
100  
-
ns  
ns  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
300  
Internal Reset  
source  
TNRST_OUT Generated reset pulse duration  
20  
-
-
µs  
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design, not tested in production.  
122/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
Figure 37. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢉFLUFXLW  
ꢑꢈꢒ  
5
38  
ꢑꢄꢒ  
,QWHUQDOꢉ5HVHW  
1567  
)LOWHU  
ꢃꢌꢈꢉ—)  
670ꢀꢄ)  
DLꢈꢇꢈꢀꢄF  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 59. Otherwise the reset is not taken into account by the device.  
6.3.18  
TIM timer characteristics  
The parameters given in Table 60 are guaranteed by design.  
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 60. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
tTIMxCLK  
1
-
-
or 2 or 4, fTIMxCLK  
100 MHz  
=
11.9  
ns  
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
1
11.9  
0
-
AHB/APBx prescaler>4,  
fTIMxCLK = 100 MHz  
-
fTIMxCLK/2  
MHz  
MHz  
bit  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 100 MHz  
0
50  
ResTIM  
Timer resolution  
-
16/32  
16-bit counter clock  
period when internal clock  
is selected  
tCOUNTER  
fTIMxCLK = 100 MHz  
0.0119  
780  
µs  
65536 ×  
65536  
tTIMxCLK  
S
-
-
-
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 100 MHz  
51.1  
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.  
2. Guaranteed by design, not tested in production.  
3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE  
bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise  
TIMxCLK >= 4x PCLKx.  
DocID028087 Rev 4  
123/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.19  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the requirements of the standard I C communication protocol with  
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-  
drain. When configured as open-drain, the PMOS connected between the I/O pin and V is  
DD  
disabled, but is still present.  
2
The I C characteristics are described in Table 61. Refer also to Section 6.3.16: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
The I C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400  
2
kHz). The I C bus frequency can be increased up to 1 MHz. For more details about the  
complete solution, contact your local ST sales representative.  
2
Table 61. I C characteristics  
Standard mode  
Fast mode I2C(1)(2)  
I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
0
-
1.3  
0.6  
100  
0
-
µs  
-
-
-
-
SDA data hold time  
3450(3)  
900(4)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
-
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
-
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
µs  
µs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Pulse width of the spikes  
that are suppressed by the  
analog filter for standard fast  
mode  
tSP  
-
-
-
50  
-
120(5)  
400  
ns  
Capacitive load for each bus  
line  
Cb  
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to  
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode  
clock.  
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
124/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
5. The minimum width of the spikes filtered by the analog filter is above tSP (max)  
2
Figure 38. I C bus AC waveforms and measurement circuit  
9''B,ꢄ& 9''B,ꢄ&  
670ꢀꢄ)[[  
6'$  
6&/  
53  
53  
56  
56  
,ð&ꢉEXV  
67$57ꢉ5(3($7('  
67$57  
67$57  
W
VXꢑ67$ꢒ  
6'$  
W
W
W
Uꢑ6'$ꢒ  
Iꢑ6'$ꢒ  
VXꢑ6'$ꢒ  
W
6723  
Zꢑ672ꢍ67$ꢒ  
W
W
W
Zꢑ6&/+ꢒ  
Kꢑ6'$ꢒ  
Kꢑ67$ꢒ  
6&/  
W
W
W
Uꢑ6&/ꢒ  
VXꢑ672ꢒ  
W
Zꢑ6&//ꢒ  
Iꢑ6&/ꢒ  
06Yꢇꢀꢃꢈꢈ9ꢈ  
1. RS = series protection resistor.  
2. RP = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
(1)(2)  
Table 62. SCL frequency (f  
= 50 MHz, VDD = VDD_I2C = 3.3 V)  
I2C_CCR value  
PCLK1  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x8019  
0x8021  
0x8032  
0x0096  
0x012C  
0x02EE  
20  
1. RP = External pull-up resistance, fSCL = I2C speed  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
DocID028087 Rev 4  
125/193  
161  
 
 
 
Electrical characteristics  
STM32F412xE/G  
FMPI2C characteristics  
2
The following table presents FMPI C characteristics.  
Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output  
function characteristics (SDA and SCL).  
2
(1)  
Table 63. FMPI C characteristics  
Standard mode Fast mode  
Fast+ mode  
Min Max  
18  
Parameter  
Unit  
Min  
Max  
Min  
Max  
fFMPI2CC  
FMPI2CCLK frequency  
2
-
8
-
-
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
0.25  
0
-
1.3  
0.6  
0.10  
0
-
-
0.5  
0.26  
0.05  
0
-
-
-
-
-
-
-
-
tH(SDA)  
SDA data hold time  
Data, ACK valid time  
-
tv(SDA,ACK)  
-
3.45  
-
0.9  
-
0.45  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
-
1.0  
-
0.30  
-
0.12  
tf(SDA)  
tf(SCL)  
µs  
SDA and SCL fall time  
Start condition hold time  
-
0.30  
-
0.30  
-
0.12  
th(STA)  
tsu(STA)  
4
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
0.26  
0.26  
0.26  
0.5  
-
-
-
-
Repeated Start condition  
setup time  
4.7  
4
tsu(STO)  
Stop condition setup time  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
4.7  
Pulse width of the spikes that  
are suppressed by the  
analog filter for standard and  
fast mode  
tSP  
Cb  
-
-
-
0.05  
-
0.1  
0.05  
-
0.1  
Capacitive load for each bus  
Line  
550(2)  
400  
400  
pF  
1. Based on characterization results, not tested in production.  
2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:  
tr(SDA/SCL) = 0.8473 x Rp x Cload  
Rp(min) = (VDD -VOL(max)) / IOL(max)  
126/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
2
Figure 39. FMPI C timing diagram and measurement circuit  
9''B,ꢄ& 9''B,ꢄ&  
670ꢀꢄ)[[  
6'$  
6&/  
53  
53  
56  
56  
,ð&ꢉEXV  
67$57ꢉ5(3($7('  
67$57  
67$57  
W
VXꢑ67$ꢒ  
6'$  
W
W
W
Uꢑ6'$ꢒ  
Iꢑ6'$ꢒ  
VXꢑ6'$ꢒ  
W
6723  
Zꢑ672ꢍ67$ꢒ  
W
W
W
Zꢑ6&/+ꢒ  
Kꢑ6'$ꢒ  
Kꢑ67$ꢒ  
6&/  
W
W
W
Uꢑ6&/ꢒ  
VXꢑ672ꢒ  
W
Zꢑ6&//ꢒ  
Iꢑ6&/ꢒ  
06Yꢇꢀꢃꢈꢄ9ꢈ  
DocID028087 Rev 4  
127/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 64 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 15, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 64. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master full duplex/receiver mode,  
2.7 V < VDD < 3.6 V  
-
-
50  
SPI1/4/5  
Master transmitter mode  
1.7 V < VDD < 3.6 V  
SPI1/4/5  
50  
25  
-
-
-
-
-
-
Master mode  
1.7 V < VDD < 3.6 V  
SPI1/2/3/4/5  
Slave transmitter/full duplex mode  
fSCK  
SPI clock frequency  
MHz  
50  
2.7 V < VDD < 3.6 V  
SPI1//4/5  
1/tc(SCK)  
Slave transmitter/full duplex mode  
1.7 V < VDD < 3.6 V  
SPI1/4/5  
35(2)  
-
-
-
-
-
-
Slave receiver mode,  
1.7 V < VDD < 3.6 V  
50  
SPI1/4/5  
Slave mode,  
1.7 V < VDD < 3.6 V  
SPI2/3  
25  
70  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
tw(SCKH)  
tw(SCKL)  
TPCLK  
+1.5  
TPCLK  
SCK high and low time Master mode, SPI presc = 2  
TPCLK1.5  
ns  
tsu(NSS)  
th(NSS)  
tsu(MI)  
tsu(SI)  
th(MI)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
3TPCLK  
2TPCLK  
4.5  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
Data input setup time  
Data input hold time  
Slave mode  
1.5  
Master mode  
5
th(SI)  
Slave mode  
0.5  
128/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
(1)  
Table 64. SPI dynamic characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ta(SO  
)
Data output access time Slave mode  
Data output disable time Slave mode  
7
5
-
-
21  
12  
ns  
ns  
tdis(SO)  
Slave mode (after enable edge),  
2.7 V < VDD < 3.6 V  
-
-
7.5  
7.5  
-
9
14  
-
ns  
ns  
ns  
tv(SO)  
Data output valid time  
Data output hold time  
Slave mode (after enable edge),  
1.7 V < VDD < 3.6 V  
Slave mode (after enable edge),  
1.7 V < VDD < 3.6 V  
th(SO)  
5.5  
tv(MO)  
th(MO)  
Data output valid time Master mode (after enable edge)  
Master mode (after enable edge)  
-
3
-
8
-
ns  
ns  
2
Data output hold time  
1. Guaranteed by characterization, not tested in production.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit  
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI  
communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%  
Figure 40. SPI timing diagram - slave mode and CPHA = 0  
166ꢉLQSXW  
W68ꢑ166ꢒ  
W
Kꢑ166ꢒ  
WFꢑ6&.ꢒ  
&3+$ ꢃ  
&32/ ꢃ  
W
Zꢑ6&.+ꢒ  
&3+$ ꢃ  
&32/ ꢈ  
WZꢑ6&./ꢒ  
W
WUI66&&..  
W
9ꢑ62ꢒ  
WKꢑ62ꢒ  
WGLVꢑ62ꢒ  
WDꢑ62ꢒ  
0,62  
06%ꢉ287  
%,7ꢆꢉ287  
%,7ꢈꢉ,1  
/6%ꢉ287  
287387  
WVXꢑ6,ꢒ  
026,  
,1387  
06%ꢉ,1  
/6%ꢉ,1  
WKꢑ6,ꢒ  
DLꢈꢇꢈꢀꢇF  
DocID028087 Rev 4  
129/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
(1)  
Figure 41. SPI timing diagram - slave mode and CPHA = 1  
166ꢉLQSXW  
W68ꢑ166ꢒ  
WKꢑ166ꢒ  
WFꢑ6&.ꢒ  
&3+$ ꢈ  
&32/ ꢃ  
&3+$ ꢈ  
&32/ ꢈ  
WZꢑ6&.+ꢒ  
WZꢑ6&./ꢒ  
WUꢑ6&.ꢒ  
WIꢑ6&.ꢒ  
WKꢑ62ꢒ  
WGLVꢑ62ꢒ  
WYꢑ62ꢒ  
WDꢑ62ꢒ  
0,62  
06%ꢉ287  
06%ꢉ,1  
%,7ꢆꢉ287  
/6%ꢉ287  
287387  
WKꢑ6,ꢒ  
WVXꢑ6,ꢒ  
026,  
,1387  
/6%ꢉ,1  
%,7ꢉꢈꢉ,1  
DLꢈꢇꢈꢀꢅE  
(1)  
Figure 42. SPI timing diagram - master mode  
+LJK  
166ꢉLQSXW  
W
Fꢑ6&.ꢒ  
&3+$   
&32/ ꢃ  
&3+$   
&32/ ꢈ  
&3+$   
&32/ ꢃ  
&3+$   
&32/ ꢈ  
W
W
W
W
Zꢑ6&.+ꢒ  
Zꢑ6&./ꢒ  
Uꢑ6&.ꢒ  
Iꢑ6&.ꢒ  
W
VXꢑ0,ꢒ  
0,62  
,1387  
%,7ꢆꢉ,1  
/6%ꢉ,1  
06%ꢉ,1  
W
Kꢑ0,ꢒ  
026,  
287387  
%,7ꢈꢉ287  
/6%ꢉ287  
06%ꢉ287  
W
W
Kꢑ02ꢒ  
Yꢑ02ꢒ  
DLꢈꢇꢈꢀꢆF  
130/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 65 for the I S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 15, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 65. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256x8K 256xFs(2)  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64xFs  
fCK  
MHz  
%
64xFs  
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
-
70  
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
5
th(WS)  
0
-
tsu(WS)  
2
-
th(WS)  
Slave mode  
0.5  
0
-
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
Data output valid time  
2
-
ns  
0
-
2.5  
-
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
15  
2.5  
-
-
6
Data output hold time  
th(SD_MT)  
Master transmitter (after enable edge)  
0
-
1. Guaranteed by characterization, not tested in production.  
2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).  
Note:  
Refer to the I2S section of RM0383 reference manual for more details on the sampling  
frequency (F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
DocID028087 Rev 4  
131/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
2
(1)  
Figure 43. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 44. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
receive  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
ai14884b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
132/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
QSPI interface characteristics  
Unless otherwise specified, the parameters given in the following tables for QSPI are  
derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 15, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C=20pF  
Measurement points are done at CMOS levels: 0.5VDD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 66. QSPI dynamic characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write mode  
1.71 VVDD3.6 V  
-
-
80  
Cload = 15 pF  
fSCK  
QSPI clock  
frequency  
MHz  
Read mode  
2.7 V<VDD<3.6 V  
Cload = 15 pF  
1/tc(SCK)  
-
-
100  
1.71 VVDD3.6 V  
-
-
-
-
50  
tw(CKH)  
tw(CKL)  
(T(CK) / 2)-1  
T(CK) / 2)  
T(CK) / 2  
QSPI clock high  
and low  
-
(T(CK) / 2)+1  
Data input setup  
time  
ts(IN)  
-
-
-
-
0.5  
3.5  
-
-
-
-
-
Data input hold  
time  
ns  
th(IN)  
Data output valid  
time  
tv(OUT)  
th(OUT)  
1
-
1.5  
-
Data output hold  
time  
0.5  
1. Guaranteed by characterization results, not tested in production.  
(1)  
Table 67. QSPI dynamic characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write mode  
1.71 VVDD3.6 V  
-
-
80  
Cload = 15 pF  
fSCK  
QSPI clock  
frequency  
MHz  
Read mode  
2.7 V<VDD<3.6 V  
Cload = 15 pF  
1/tc(SCK)  
-
-
-
-
80  
50  
1.71 VVDD3.6 V  
DocID028087 Rev 4  
133/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
(1)  
Table 67. QSPI dynamic characteristics in DDR mode (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(CKH)  
tw(CKL)  
(T(CK) / 2)-1  
T(CK) / 2)  
-
-
T(CK) / 2  
QSPI clock high  
and low  
-
(T(CK) / 2)+1  
Data input setup  
time  
ts(IN)  
th(IN)  
-
-
0
4
-
-
-
-
Data input hold  
time  
ns  
2.7 V<VDD<3.6 V  
1.71 V<VDD<3.6 V  
-
-
8
8
10.5  
13  
Data output valid  
time  
tv(OUT)  
Data output hold  
time  
th(OUT)  
-
7.5  
-
-
1. Guaranteed by characterization results, not tested in production.  
USB OTG full speed (FS) characteristics  
This interface is present in USB OTG FS controller.  
Table 68. USB OTG FS startup time  
Parameter  
USB OTG FS transceiver startup time  
Symbol  
Max  
Unit  
µs  
(1)  
tSTARTUP  
1
1. Guaranteed by design, not tested in production.  
Table 69. USB OTG FS DC electrical characteristics  
Symbol  
VDD  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG FS operating  
voltage  
3.0(2)  
0.2  
-
-
-
3.6  
-
V
(3)  
VDI  
Differential input sensitivity  
I(USB_FS_DP/DM)  
Includes VDI range  
Input  
Differential common mode  
range  
(3)  
levels  
VCM  
0.8  
2.5  
V
Single ended receiver  
threshold  
(3)  
VSE  
1.3  
-
2.0  
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩto 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
V
(4)  
RL of 15 kΩto VSS  
2.8  
PA11, PA12  
(USB_FS_DM/DP)  
17  
0.65  
1.5  
21  
1.1  
1.8  
24  
2.0  
2.1  
RPD  
VIN = VDD  
PA9 (OTG_FS_VBUS)  
kΩ  
PA11, PA12  
(USB_FS_DM/DP)  
VIN = VSS  
VIN = VSS  
RPU  
PA9 (OTG_FS_VBUS)  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
134/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical  
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design, not tested in production.  
RL is the load connected on the USB OTG FS drivers.  
4.  
When VBUS sensing feature is enabled, PA9 should be left at their default state (floating  
input), not as alternate function. A typical 200 µA current consumption of the embedded  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 when the feature is enabled.  
Note:  
Figure 45. USB OTG FS timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 70. USB OTG FS electrical characteristics(1)  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -  
Chapter 7 (version 2.0).  
2.  
CAN (controller area network) interface  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANx_TX and CANx_RX).  
DocID028087 Rev 4  
135/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.20  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 71 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 15.  
Table 71. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
0.6  
-
-
3.6  
VDDA  
18  
V
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
V
VDDA = 1.7(1) to 2.4 V  
15  
MHz  
MHz  
fADC  
ADC clock frequency  
VDDA = 2.4 to 3.6 V  
0.6  
30  
-
36  
fADC = 30 MHz,  
-
-
1764  
17  
kHz  
1/fADC  
V
(2)  
12-bit resolution  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
-
-
0 (VSSA or VREF-  
tied to ground)  
VAIN  
-
-
VREF+  
See Equation 1 for  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
kΩ  
kΩ  
pF  
details  
(2)(4)  
RADC  
-
-
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
f
f
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
ADC = 30 MHz  
-
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
-
-
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
2
fADC = 30 MHz  
12-bit resolution  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
f
ADC = 30 MHz  
10-bit resolution  
ADC = 30 MHz  
8-bit resolution  
ADC = 30 MHz  
6-bit resolution  
Total conversion time (including  
sampling time)  
f
(2)  
tCONV  
µs  
f
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
136/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Symbol  
Electrical characteristics  
Table 71. ADC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
12-bit resolution  
Single ADC  
-
-
2
Msps  
12-bit resolution  
Sampling rate  
-
-
3.75  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
-
-
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.18.2:  
Internal reset OFF).  
2. Guaranteed by characterization, not tested in production.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 71.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
RAIN = ---------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
(1)  
Table 72. ADC accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(2)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
DocID028087 Rev 4  
137/193  
161  
 
 
Electrical characteristics  
Symbol  
STM32F412xE/G  
(1)  
Table 73. ADC accuracy at f  
= 30 MHz  
ADC  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±4  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
Gain error  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
(1)  
Table 74. ADC accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
V
DDA = 2.4 to 3.6 V,  
LSB  
Gain error  
VREF = 1.7 to 3.6 V  
Differential linearity error  
Integral linearity error  
VDDA VREF < 1.2 V  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Guaranteed by characterization, not tested in production.  
(1)  
Table 75. ADC dynamic accuracy at f  
Parameter  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
64  
-
10.4  
64.2  
65  
-
-
bits  
fADC =18 MHz  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 kHz  
Temperature = 25 °C  
-
dB  
THD  
Total harmonic distortion  
-72  
-67  
1. Guaranteed by characterization, not tested in production.  
(1)  
Table 76. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
64  
-
10.8  
67  
-
-
bits  
fADC = 36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 kHz  
Temperature = 25 °C  
68  
-
dB  
THD  
Total harmonic distortion  
-72  
-70  
1. Guaranteed by characterization, not tested in production.  
138/193  
DocID028087 Rev 4  
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.16 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
Figure 46. ADC accuracy characteristics  
6
6
$$!  
2%&ꢌ  
;ꢀ,3"  
ꢎOR  
DEPENDING ON PACKAGEꢏ=  
)$%!,  
ꢇꢁꢂꢅ  
ꢇꢁꢂꢅ  
%
'
ꢇꢁꢂꢆ  
ꢇꢁꢂꢇ  
ꢇꢁꢂꢈ  
ꢎꢉꢏ  
%
4
ꢎꢈꢏ  
ꢎꢀꢏ  
%
%
/
,
%
$
ꢀ, 3"  
)$%!,  
ꢇꢆꢅ  
ꢇꢁꢂꢈ ꢇꢁꢂꢇ ꢇꢁꢂꢆ ꢇꢁꢂꢅ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 73.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
DocID028087 Rev 4  
139/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
Figure 47. Typical connection diagram using the ADC  
9''  
6DPSOHꢉDQGꢉKROGꢉ$'&  
FRQYHUWHU  
97  
ꢃꢌꢆꢉ9  
ꢑꢈꢒ  
5$'&  
5$,1  
$,1[  
ꢈꢄꢐELW  
FRQYHUWHU  
,/ꢉ“ꢉꢈꢉ—$  
97  
9$,1  
ꢃꢌꢆꢉ9  
&SDUDVLWLF  
&$'&  
06ꢈꢊꢂꢂꢈ9ꢀ  
1. Refer to Table 71 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
140/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 48 or Figure 49,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 48. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
670ꢀꢄ)  
95()ꢑꢈꢒ  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
9''$  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
ꢑꢈꢒ  
966$ꢋ95()ꢓ  
DLꢈꢁꢅꢀꢅE  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
.
DocID028087 Rev 4  
141/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
Figure 49. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢄ)  
ꢑꢈꢒ  
95()ꢓꢋ9''$  
ꢈꢉ—)ꢉꢋꢋꢉꢈꢃꢉQ)  
ꢑꢈꢒ  
95()ꢐꢋ966$  
DLꢈꢁꢅꢀꢆF  
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When  
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA  
.
6.3.21  
Temperature sensor characteristics  
Table 77. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
Startup time  
-
-
10  
-
(2)  
tSTART  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
Table 78. Temperature sensor calibration values  
Parameter  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
Symbol  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
142/193  
DocID028087 Rev 4  
 
 
 
 
 
STM32F412xE/G  
Electrical characteristics  
6.3.22  
V
monitoring characteristics  
BAT  
Table 79. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.23  
Embedded reference voltage  
The parameters given in Table 80 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 15.  
DD  
Table 80. Embedded internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
-
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production  
Table 81. Internal reference voltage calibration values  
Symbol  
Parameter  
Memory address  
Raw data acquired at temperature of  
30 °C VDDA = 3.3 V  
VREFIN_CAL  
0x1FFF 7A2A - 0x1FFF 7A2B  
DocID028087 Rev 4  
143/193  
161  
 
 
 
 
 
Electrical characteristics  
STM32F412xE/G  
6.3.24  
DFSDM characteristics  
Unless otherwise specified, the parameters given in Table 82 for DFSDM are derived from  
tests performed under the ambient temperature, f  
frequency and V supply voltage  
APB2  
DD  
conditions summarized in Table 15: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 VDD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).  
(1)  
Table 82. DFSDM characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fDFSDMCLK DFSDM clock  
-
-
-
fSYSCLK  
MHz  
fCKIN  
(1/TCKIN  
Input clock  
frequency  
20  
SPI mode (SITP[1:0] = 01)  
-
-
-
-
-
)
(fDFSDMCLK/4)  
Output clock  
frequency  
fCKOUT  
20  
75  
MHz  
%
Output clock  
DuCyCKOUT frequency  
duty cycle  
-
30  
50  
Input clock  
twh(CKIN)  
SPI mode (SITP[1:0] = 01),  
(SPICKSEL[1:0] = 0)  
high and low External clock mode  
TCKIN/2-0.5 TCKIN/2  
-
-
-
twl(CKIN)  
time  
SPI mode (SITP[1:0]=01),  
External clock mode  
(SPICKSEL[1:0] = 0)  
Data input  
setup time  
tsu  
1
1
-
-
ns  
SPI mode (SITP[1:0]=01),  
External clock mode  
(SPICKSEL[1:0] = 0)  
Data input  
hold time  
th  
Manchester  
data period  
(recovered  
Manchester mode (SITP[1:0]  
= 10 or 11),  
Internal clock mode  
(CKOUT  
DIV+1) ₓ  
TDFSDMCLK  
(2 CKOUTDIV)  
TDFSDMCLK  
TManchester  
-
clock period) (SPICKSEL[1:0] 0)  
1. Data based on characterization results, not tested in production.  
144/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Figure 16: DFSDM timing diagram  
WZO  
WZK  
WU  
WI  
63,&.6(/ꢉ ꢉꢃ  
6,73ꢉ ꢉꢃꢃ  
WVX WK  
WVX WK  
6,73ꢉ ꢉꢃꢈ  
63,&.6(/ꢉ ꢉꢀ  
63,&.6(/ꢉ ꢉꢄ  
63,&.6(/ꢉ ꢉꢈ  
6,73ꢉ ꢉꢃꢃ  
WU  
WI  
WZO  
WZK  
WVX WK  
WVX WK  
6,73ꢉ ꢉꢃꢈ  
6,73ꢉ ꢉꢄ  
6,73ꢉ ꢉꢀ  
5HFRYHUHGꢉFORFN  
5HFRYHUHGꢉGDWD  
06Yꢀꢊꢄꢊꢁ9ꢈ  
6.3.25  
FSMC characteristics  
Unless otherwise specified, the parameters given in Table 83 to Table 90 for the FSMC  
interface are derived from tests performed under the ambient temperature, f frequency  
HCLK  
and V supply voltage conditions summarized in Table 14, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitance load C = 30 pF  
Measurement points are done at CMOS levels: 0.5.V  
DD  
DocID028087 Rev 4  
145/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 50 through Figure 53 represent asynchronous waveforms and Table 83 through  
Table 90 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
In all timing tables, the T  
is the HCLK clock period.  
HCLK  
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
WZꢑ1(ꢒ  
)60&B1(  
WYꢑ12(B1(ꢒ  
WZꢑ12(ꢒ  
WKꢑ1(B12(ꢒ  
)60&B12(  
)60&B1:(  
WYꢑ$B1(ꢒ  
WKꢑ$B12(ꢒ  
)60&B$>ꢄꢅꢍꢃ@  
$GGUHVV  
WYꢑ%/B1(ꢒ  
WKꢑ%/B12(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
WKꢑ'DWDB1(ꢒ  
WKꢑ'DWDB12(ꢒ  
WVXꢑ'DWDB12(ꢒ  
WVXꢑ'DWDB1(ꢒ  
'DWD  
)60&B'>ꢈꢅꢍꢃ@  
WYꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1$'9ꢉꢑꢈꢒ  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢀ9ꢈ  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
146/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
(1)(2)  
read timings  
Parameter  
FSMC_NE low time  
Symbol  
Min  
Max  
Unit  
tw(NE)  
2THCLK – 1 2 THCLK + 0.5  
tv(NOE_NE)  
tw(NOE)  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
0
1
2THCLK - 1.5  
2THCLK  
FSMC_NOE high to FSMC_NE high hold  
time  
th(NE_NOE)  
0
-
tv(A_NE)  
th(A_NOE)  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NOE high  
Data to FSMC_NEx high setup time  
Data to FSMC_NOEx high setup time  
Data hold time after FSMC_NOE high  
Data hold time after FSMC_NEx high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
-
1.5  
0
-
tv(BL_NE)  
-
0.5  
ns  
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
0
-
THCLK - 1  
-
THCLK - 1  
-
0
0
-
-
-
0
-
THCLK + 0.5  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
7THCLK - 1 7THCLK + 0.5  
tw(NOE)  
FSMC_NWE low time  
FSMC_NWAIT low time  
5THCLK – 1.5  
THCLK – 0.5  
5THCLK  
-
tw(NWAIT)  
ns  
FSMC_NWAIT valid before FSMC_NEx  
high  
tsu(NWAIT_NE)  
5THCLK -1  
-
-
FSMC_NEx hold time after FSMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK + 1  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
DocID028087 Rev 4  
147/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
WZꢑ1(ꢒ  
)60&B1([  
)60&B12(  
WKꢑ1(B1:(ꢒ  
WYꢑ1:(B1(ꢒ  
WZꢑ1:(ꢒ  
)60&B1:(  
WKꢑ$B1:(ꢒ  
WYꢑ$B1(ꢒ  
)60&B$>ꢄꢅꢍꢃ@  
$GGUHVV  
WYꢑ%/B1(ꢒ  
WKꢑ%/B1:(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
1%/  
WKꢑ'DWDB1:(ꢒ  
'DWD  
WYꢑ'DWDB1(ꢒ  
)60&B'>ꢈꢅꢍꢃ@  
)60&B1$'9ꢉꢑꢈꢒ  
WYꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢇ9ꢈ  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1)(2)  
Table 85. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
Parameter  
Min  
Max  
Unit  
FSMC_NE low time  
3 THCLK - 1 3 THCLK +0.5  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
THCLK + 0.5 THCLK + 0.5  
THCLK – 1.5  
THCLK+ 1  
FSMC_NWE high to FSMC_NE high hold time THCLK - 1  
-
FSMC_NEx low to FSMC_A valid  
-
0.5  
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
Data to FSMC_NEx low to Data valid  
THCLK - 0.5  
-
ns  
-
1
THCLK - 1  
-
-
THCLK + 2  
th(Data_NWE) Data hold time after FSMC_NWE high  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
THCLK + 0.5  
-
-
-
1
tw(NADV)  
FSMC_NADV low time  
THCLK+ 0.5  
148/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
FSMC_NE low time  
FSMC_NWE low time  
Min  
Max  
Unit  
tw(NE)  
8THCLK - 1  
8THCLK + 0.5  
tw(NWE)  
6THCLK + 0.5 6THCLK + 1  
ns  
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK + 0.5  
-
-
FSMC_NEx hold time after FSMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK + 1  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms  
WZꢑ1(ꢒ  
)60&B1(  
WKꢑ1(B12(ꢒ  
WYꢑ12(B1(ꢒ  
)60&B12(  
WZꢑ12(ꢒ  
)60&B1:(  
WKꢑ$B12(ꢒ  
WYꢑ$B1(ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
$GGUHVV  
1%/  
WKꢑ%/B12(ꢒ  
WYꢑ%/B1(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
WKꢑ'DWDB1(ꢒ  
WVXꢑ'DWDB1(ꢒ  
WVXꢑ'DWDB12(ꢒ  
'DWD  
WKꢑ'DWDB12(ꢒ  
WYꢑ$B1(ꢒ  
$GGUHVV  
)60&B$'>ꢈꢅꢍꢃ@  
WYꢑ1$'9B1(ꢒ  
WKꢑ$'B1$'9ꢒ  
WZꢑ1$'9ꢒ  
)60&B1$'9  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢅ9ꢈ  
DocID028087 Rev 4  
149/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
(1)(2)  
Table 87. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
ttw(NOE)  
3THCLK – 1 3THCLK + 0.5  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
2THCLK  
2THCLK + 1  
THCLK  
THCLK – 1.5  
FSMC_NOE high to FSMC_NE high hold  
time  
th(NE_NOE)  
0
-
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FSMC_NEx low to FSMC_A valid  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
-
0.5  
1
0
THCLK – 0.5 THCLK + 0.5  
FSMC_AD(address) valid hold time after  
FSMC_NADV high)  
ns  
th(AD_NADV)  
0
-
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FSMC_NOE high  
FSMC_BL time after FSMC_NOE high  
FSMC_NEx low to FSMC_BL valid  
Data to FSMC_NEx high setup time  
THCLK – 0.5  
-
0
-
-
0.5  
tsu(Data_NE)  
THCLK - 2  
-
-
tsu(Data_NOE) Data to FSMC_NOE high setup time  
THCLK - 2  
th(Data_NE)  
th(Data_NOE)  
Data hold time after FSMC_NEx high  
Data hold time after FSMC_NOE high  
0
0
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
(1)(2)  
Table 88. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
8THCLK - 1  
8THCLK + 0.5  
tw(NOE)  
FSMC_NWE low time  
5THCLK  
5THCLK + 0.5  
-
ns  
FSMC_NWAIT valid before FSMC_NEx  
high  
tsu(NWAIT_NE)  
5THCLK - 1  
FSMC_NEx hold time after  
FSMC_NWAIT invalid  
th(NE_NWAIT)  
4THCLK + 1  
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
150/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms  
WZꢑ1(ꢒ  
)60&B1([  
)60&B12(  
WKꢑ1(B1:(ꢒ  
WYꢑ1:(B1(ꢒ  
WZꢑ1:(ꢒ  
)60&B1:(  
WKꢑ$B1:(ꢒ  
WYꢑ$B1(ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
$GGUHVV  
WYꢑ%/B1(ꢒ  
WKꢑ%/B1:(ꢒ  
)60&B1%/>ꢈꢍꢃ@  
1%/  
WYꢑ'DWDB1$'9ꢒ  
WYꢑ$B1(ꢒ  
$GGUHVV  
WKꢑ'DWDB1:(ꢒ  
'DWD  
)60&B$'>ꢈꢅꢍꢃ@  
W
WKꢑ$'B1$'9ꢒ  
Yꢑ1$'9B1(ꢒ  
WZꢑ1$'9ꢒ  
)60&B1$'9  
)60&B1:$,7  
WKꢑ1(B1:$,7ꢒ  
WVXꢑ1:$,7B1(ꢒ  
06Yꢀꢊꢃꢀꢆ9ꢈ  
DocID028087 Rev 4  
151/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
(1)(2)  
Table 89. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
4THCLK - 1 4THCLK+0.5  
THCLK THCLK + 1  
2THCLK - 1 2THCLK + 0.5  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
th(NE_NWE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FSMC_NWE high to FSMC_NE high hold time THCLK - 1.5  
-
FSMC_NEx low to FSMC_A valid  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
-
2
1
0
THCLK – 0.5 THCLK+ 0.5  
ns  
FSMC_AD(adress) valid hold time after  
FSMC_NADV high)  
th(AD_NADV)  
THCLK  
-
th(A_NWE)  
th(BL_NWE)  
Address hold time after FSMC_NWE high  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_NADV high to Data valid  
THCLK- 1.5  
-
THCLK  
-
tv(BL_NE)  
-
1.5  
tv(Data_NADV)  
th(Data_NWE)  
1. CL = 30 pF.  
-
THCLK + 2  
-
Data hold time after FSMC_NWE high  
THCLK + 0.5  
2. Based on characterization, not tested in production.  
(1)(2)  
Table 90. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FSMC_NE low time  
FSMC_NWE low time  
9THCLK - 1 9THCLK + 0.5  
7THCLK - 1 7THCLK + 0.5  
tw(NWE)  
ns  
tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6THCLK -1  
-
-
FSMC_NEx hold time after FSMC_NWAIT  
th(NE_NWAIT)  
4THCLK + 1  
invalid  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Synchronous waveforms and timings  
Figure 54 through Figure 57 represent synchronous waveforms and Table 91 through  
Table 94 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
152/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Electrical characteristics  
In all timing tables, the T  
is the HCLK clock period (with maximum  
HCLK  
FSMC_CLK = 90 MHz).  
Figure 54. Synchronous multiplexed NOR/PSRAM read timings  
%867851ꢉ ꢉꢃ  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
)60&B1([  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ$9ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
WGꢑ&/./ꢐ12(/ꢒ  
WGꢑ&/.+ꢐ12(+ꢒ  
)60&B12(  
WGꢑ&/./ꢐ$',9ꢒ  
WKꢑ&/.+ꢐ$'9ꢒ  
WVXꢑ$'9ꢐ&/.+ꢒ  
WGꢑ&/./ꢐ$'9ꢒ  
WKꢑ&/.+ꢐ$'9ꢒ  
WVXꢑ$'9ꢐ&/.+ꢒ  
)60&B$'>ꢈꢅꢍꢃ@  
$'>ꢈꢅꢍꢃ@  
'ꢈ  
'ꢄ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢈEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
06Yꢀꢊꢃꢀꢁ9ꢈ  
DocID028087 Rev 4  
153/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
(1)(2)  
Table 91. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
FSMC_CLK period  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
Min  
Max  
Unit  
tw(CLK)  
2THCLK - 0.5  
-
-
1
-
td(CLKL-NExL)  
td(CLKH_NExH)  
FSMC_CLK high to FSMC_NEx high (x= 0…2) THCLK + 0.5  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
0
-
1
-
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
2
FSMC_CLK high to FSMC_Ax invalid  
(x=16…25)  
THCLK  
-
FSMC_CLK low to FSMC_NOE low  
-
1.5  
-
ns  
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high  
THCLK  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FSMC_CLK low to FSMC_AD[15:0] valid  
FSMC_CLK low to FSMC_AD[15:0] invalid  
-
2.5  
-
0
FSMC_A/D[15:0] valid data before FSMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
1
2
-
-
FSMC_A/D[15:0] valid data after FSMC_CLK  
high  
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
2
2
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
154/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
Figure 55. Synchronous multiplexed PSRAM write timings  
%867851ꢉ ꢉꢃ  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
)60&B1([  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ$9ꢒ  
)60&B$>ꢄꢅꢍꢈꢆ@  
WGꢑ&/.+ꢐ1:(+ꢒ  
WGꢑ&/./ꢐ1:(/ꢒ  
)60&B1:(  
WGꢑ&/./ꢐ$',9ꢒ  
$'>ꢈꢅꢍꢃ@  
WGꢑ&/./ꢐ'DWDꢒ  
WGꢑ&/./ꢐ$'9ꢒ  
)60&B$'>ꢈꢅꢍꢃ@  
WGꢑ&/./ꢐ'DWDꢒ  
'ꢈ  
'ꢄ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WGꢑ&/.+ꢐ1%/+ꢒ  
)60&B1%/  
06Yꢀꢊꢃꢀꢂ9ꢈ  
DocID028087 Rev 4  
155/193  
161  
 
Electrical characteristics  
STM32F412xE/G  
(1)(2)  
Table 92. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period, VDD range= 2.7 to 3.6 V  
2THCLK - 0.5  
-
1
-
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2)  
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
THCLK + 0.5  
-
1
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
-
2
-
THCLK  
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low  
t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high  
td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid  
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid  
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low  
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low  
-
1.5  
-
ns  
THCLK + 0.5  
-
2.5  
-
0
-
4
3
-
-
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high  
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
THCLK  
2
2
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
156/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings  
W
W
Zꢑ&/.ꢒ  
Zꢑ&/.ꢒ  
)60&B&/.  
WGꢑ&/./ꢐ1([/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
)60&B1([  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
WGꢑ&/./ꢐ$9ꢒ  
WGꢑ&/.+ꢐ$,9ꢒ  
)60&B$>ꢄꢅꢍꢃ@  
WGꢑ&/.+ꢐ12(+ꢒ  
WGꢑ&/./ꢐ12(/ꢒ  
)60&B12(  
WVXꢑ'9ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ'9ꢒ  
WVXꢑ'9ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ'9ꢒ  
)60&B'>ꢈꢅꢍꢃ@  
)60&B1:$,7  
'ꢈ  
'ꢄ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
ꢑ:$,7&)*ꢉ ꢉꢈEꢎꢉꢉ  
:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎꢉꢉ  
:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
06Yꢀꢊꢃꢀꢊ9ꢈ  
(1)(2)  
Table 93. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
2THCLK – 0.5  
-
1
-
t(CLKL-NExL)  
-
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
THCLK +0.5  
-
1
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
-
2
-
THCLK  
-
ns  
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low  
td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high  
1.5  
-
THCLK  
FSMC_D[15:0] valid data before FSMC_CLK  
high  
tsu(DV-CLKH)  
th(CLKH-DV)  
1
-
FSMC_D[15:0] valid data after FSMC_CLK high  
2
2
2
-
-
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
-
DocID028087 Rev 4  
157/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 57. Synchronous non-multiplexed PSRAM write timings  
WZꢑ&/.ꢒ  
WZꢑ&/.ꢒ  
)60&B&/.  
WGꢑ&/./ꢐ1([/ꢒ  
)60&B1([  
WGꢑ&/./ꢐ1$'9/ꢒ  
WGꢑ&/.+ꢐ1([+ꢒ  
'DWDꢉODWHQF\ꢉ ꢉꢃ  
WGꢑ&/./ꢐ1$'9+ꢒ  
)60&B1$'9  
)60&B$>ꢄꢅꢍꢃ@  
)60&B1:(  
WGꢑ&/./ꢐ$9ꢒ  
WGꢑ&/.+ꢐ$,9ꢒ  
WGꢑ&/./ꢐ1:(/ꢒ  
WGꢑ&/.+ꢐ1:(+ꢒ  
WGꢑ&/./ꢐ'DWDꢒ  
WGꢑ&/./ꢐ'DWDꢒ  
'ꢄ  
)60&B'>ꢈꢅꢍꢃ@  
'ꢈ  
)60&B1:$,7  
ꢑ:$,7&)*ꢉ ꢉꢃEꢎ  
ꢉ:$,732/ꢉꢓꢉꢃEꢒ  
WVXꢑ1:$,79ꢐ&/.+ꢒ  
WGꢑ&/.+ꢐ1%/+ꢒ  
WKꢑ&/.+ꢐ1:$,79ꢒ  
)60&B1%/  
06Yꢀꢊꢃꢇꢃ9ꢈ  
158/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Electrical characteristics  
(1)(2)  
Table 94. Synchronous non-multiplexed PSRAM write timings  
Symbol  
tw(CLK)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
2THCLK – 0.5  
-
1
-
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2)  
td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
THCLK + 0.5  
-
1
-
0
td(CLKL-AV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
-
2
-
td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16…25)  
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low  
td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high  
td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low  
td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low  
THCLK  
ns  
-
1.5  
-
THCLK + 0.5  
-
-
4
3
-
td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high  
THCLK  
tsu(NWAIT-  
FSMC_NWAIT valid before FSMC_CLK high  
2
2
-
-
CLKH)  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
6.3.26  
SD/SDIO MMC/eMMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 95 for the SDIO are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLK2  
DD  
conditions summarized in Table 15, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
DocID028087 Rev 4  
159/193  
161  
 
 
Electrical characteristics  
STM32F412xE/G  
Figure 58. SDIO high-speed mode  
T
T
R
F
T
#
T
T
7ꢎ#+(ꢏ  
7ꢎ#+,ꢏ  
#+  
T
T
/6  
/(  
$ꢒ #-$  
ꢎOUTPUTꢏ  
T
T
)(  
)35  
$ꢒ #-$  
ꢎINPUTꢏ  
AIꢀꢇꢃꢃꢄ  
Figure 59. SD default mode  
#+  
T
T
/6$  
/($  
$ꢒ #-$  
ꢎOUTPUTꢏ  
AIꢀꢇꢃꢃꢃ  
(1)(2)  
Table 95. Dynamic characteristics: SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
0
-
-
-
50  
8/3  
-
MHz  
-
-
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
4
-
-
-
-
2.5  
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
13  
-
13.5  
-
11  
160/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Electrical characteristics  
(1)(2)  
Table 95. Dynamic characteristics: SD / MMC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CMD, D inputs (referenced to CK) in SD default mode  
2.5  
2.5  
-
-
-
-
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp =25MHz  
fpp =25MHz  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
-
1.5  
-
2
-
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =25 MHz  
fpp =25 MHz  
ns  
0.5  
1. Guaranteed by characterization results, not tested in production.  
2. VDD = 2.7 to 3.6 V.  
(1)(2)  
Table 96. Dynamic characteristics: eMMC characteristics V = 1.7 V to 1.9 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
0
-
-
-
50  
8/3  
-
MHz  
-
fpp =50MHz  
fpp =50MHz  
9.5  
8.5  
10.5  
9.5  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50MHz  
fpp =50MHz  
3.5  
4
-
-
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50MHz  
fpp =50MHz  
-
13.5  
-
15  
-
12  
1. Guaranteed by characterization results, not tested in production.  
2. CLOAD = 20 pF.  
6.3.27  
RTC characteristics  
Table 97. RTC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
DocID028087 Rev 4  
161/193  
161  
 
 
 
 
Package information  
STM32F412xE/G  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
WLCSP64 package information  
Figure 60. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
package outline  
Hꢈ  
EEE =  
)
*
$
'HWDLOꢉ$  
Hꢄ  
*
H
+
$
$ꢄ  
H
)
$ꢀ  
%XPSꢉVLGH  
6LGHꢉYLHZ  
'
%XPS  
$ꢈ  
HHH  
=
(
$ꢈ 2ULHQWDWLRQ  
UHIHUHQFH  
E
=
FFF  
GGG  
= ; <  
=
6HDWLQJꢉSODQH  
DDD  
ꢑꢇ[ꢒ  
:DIHUꢉEDFNꢉVLGH  
'HWDLOꢉ$  
ꢑURWDWHGꢉꢊꢃƒꢒ  
$ꢃꢇ)B0(B9ꢈ  
1. Drawing is not to scale.  
162/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Package information  
Table 98. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
0.555  
0.170  
0.380  
0.025  
0.250  
3.623  
3.651  
0.400  
2.800  
2.800  
0.4115  
0.4255  
-
Max  
Min  
Typ  
0.0219  
0.0067  
0.0150  
0.0010  
0.0098  
0.1426  
0.1437  
0.0157  
0.1102  
0.1102  
0.0162  
0.0168  
-
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
0.525  
0.585  
0.0207  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
3.658  
3.686  
-
0.0087  
0.0110  
0.1440  
0.1451  
-
3.588  
0.1413  
E
3.616  
0.1424  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 61. WLCSP64 - 64-pin, 3.658 x 3.686 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint  
'SDG  
'VP  
$ꢃꢇ)B)3B9ꢈ  
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
Pitch  
Dpad  
0.4 mm  
0.225 mm  
DocID028087 Rev 4  
163/193  
190  
 
 
 
Package information  
STM32F412xE/G  
Table 99. WLCSP64 recommended PCB design rules (0.4 mm pitch) (continued)  
Dimension  
Recommended values  
0.290 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
Device marking for WLCSP64  
The following figure gives an example of topside marking and pin 1 position identifier  
location.  
Figure 62. WLCSP64 marking example (package top view)  
WŝŶꢀϭꢀŝĚĞŶƚŝĨŝĞƌ  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ  
)ꢀꢁꢂ5*<ꢃ  
'DWHꢉFRGHꢉ ꢉ\HDUꢉꢓꢉZHHN  
ꢁĚĚŝƚŝŽŶĂůꢀŝŶĨŽƌŵĂƚŝŽŶ  
<
::  
=
06Yꢀꢊꢇꢇꢁ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
164/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
7.2  
UFQFPN48 package information  
Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline  
3LQꢉꢈꢉLGHQWLILHU  
ODVHUꢉPDUNLQJꢉDUHD  
'
$
(
<
(
6HDWLQJꢉ  
SODQH  
7
GGG  
$ꢈ  
E
H
'HWDLOꢉ<  
'
([SRVHGꢉSDGꢉ  
DUHD  
'ꢄ  
/
ꢇꢂ  
&ꢉꢃꢌꢅꢃꢃ[ꢇꢅƒ  
SLQꢈꢉFRUQHU  
5ꢉꢃꢌꢈꢄꢅꢉW\Sꢌ  
'HWDLOꢉ=  
(ꢄ  
ꢇꢂ  
=
$ꢃ%ꢊB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
0.550  
0.020  
7.000  
7.000  
5.600  
0.600  
0.050  
7.100  
7.100  
5.700  
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
E
D2  
DocID028087 Rev 4  
165/193  
190  
 
 
 
Package information  
STM32F412xE/G  
Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
E2  
L
5.500  
5.600  
0.400  
0.152  
0.250  
0.500  
-
5.700  
0.500  
-
0.2165  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.2244  
0.0197  
-
0.300  
0.0118  
T
-
-
b
0.200  
0.300  
-
0.0079  
0.0118  
-
e
-
-
-
-
ddd  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 64. UFQFPN48 recommended footprint  
ꢄꢑꢈꢁ  
ꢅꢑꢉꢁ  
ꢇꢃ  
ꢈꢄ  
ꢈꢅ  
ꢆꢑꢅꢁ  
ꢁꢑꢉꢁ  
ꢄꢑꢈꢁ  
ꢆꢑꢃꢁ  
ꢅꢑꢉꢁ  
ꢆꢑꢅꢁ  
ꢁꢑꢈꢁ  
ꢀꢉ  
ꢉꢆ  
ꢀꢈ  
ꢉꢇ  
ꢁꢑꢄꢆ  
ꢁꢑꢆꢁ  
ꢁꢑꢆꢆ  
ꢆꢑꢃꢁ  
!ꢁ"ꢂ?&0?6ꢉ  
1. Dimensions are in millimeters.  
166/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Package information  
Device marking for UFQFPN48  
The following figure gives an example of topside marking and pin 1 position identifier  
location.  
Figure 65. UFQFPN48 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
670ꢄꢂ)  
ꢀꢁꢂ&*8ꢃ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
5HYLVLRQꢉFRGH  
5
06Yꢀꢁꢄꢂꢅ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID028087 Rev 4  
167/193  
190  
 
Package information  
STM32F412xE/G  
7.3  
LQFP64 package information  
Figure 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline  
6($7,1*ꢉ3/$1(  
&
ꢃꢌꢄꢅꢉPP  
*$8*(ꢉ3/$1(  
FFF  
&
'
'ꢈ  
'ꢀ  
/
/ꢈ  
ꢀꢀ  
ꢇꢂ  
ꢀꢄ  
ꢇꢊ  
ꢆꢇ  
E
ꢈꢁ  
ꢈꢆ  
3,1ꢉꢈ  
H
,'(17,),&$7,21  
ꢅ:B0(B9ꢀ  
1. Drawing is not to scale.  
168/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
Table 101. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
12.000  
10.000  
7.500  
12.000  
10.000  
7.500  
0.500  
3.5°  
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
3.5°  
-
D1  
D3  
E
-
-
-
-
-
-
-
-
-
-
-
-
E1  
E3  
e
-
-
-
-
-
-
-
-
-
-
7°  
-
-
7°  
Κ
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID028087 Rev 4  
169/193  
190  
 
Package information  
STM32F412xE/G  
Figure 67. LQFP64 recommended footprint  
ꢇꢃ  
ꢈꢈ  
ꢁꢑꢈ  
ꢁꢑꢆ  
ꢇꢂ  
ꢈꢉ  
ꢀꢉꢑꢄ  
ꢀꢁꢑꢈ  
ꢀꢁꢑꢈ  
ꢄꢑꢃ  
ꢀꢄ  
ꢅꢇ  
ꢀꢑꢉ  
ꢀꢅ  
ꢀꢉꢑꢄ  
AIꢀꢇꢂꢁꢂC  
1. Dimensions are in millimeters.  
Device marking for LQFP64  
The following figure gives an example of topside marking and pin 1 position identifier  
location.  
Figure 68. LQFP64 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
5HYLVLRQꢉFRGH  
5
670ꢄꢂ)ꢀꢁꢂ  
5*7ꢃ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
06Yꢀꢁꢄꢂꢆ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
170/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
7.4  
LQFP100 package information  
Figure 69. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢁꢑꢉꢆ MM  
'!5'% 0,!.%  
CCC  
ꢄꢆ  
#
$
,
$ꢀ  
$ꢈ  
,ꢀ  
ꢆꢀ  
ꢆꢁ  
ꢄꢅ  
ꢀꢁꢁ  
ꢉꢅ  
0). ꢀ  
)$%.4)&)#!4)/.  
ꢉꢆ  
E
ꢀ,?-%?6ꢆ  
1. Drawing is not to scale. Dimensions are in millimeters.  
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
0.6299  
0.5512  
D1  
DocID028087 Rev 4  
171/193  
190  
 
 
 
Package information  
STM32F412xE/G  
Table 102. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
D3  
E
-
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
-
16.200  
14.200  
-
-
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
-
0.6378  
0.5591  
-
15.800  
0.6220  
E1  
E3  
e
13.800  
0.5433  
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
0.080  
7.0°  
0.0031  
ccc  
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 70. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint  
ꢄꢆ  
ꢆꢀ  
ꢄꢅ  
ꢆꢁ  
ꢁꢑꢆ  
ꢁꢑꢈ  
ꢀꢅꢑꢄ ꢀꢇꢑꢈ  
ꢀꢁꢁ  
ꢉꢅ  
ꢀꢑꢉ  
ꢉꢆ  
ꢀꢉꢑꢈ  
ꢀꢅꢑꢄ  
AIꢀꢇꢂꢁꢅC  
1. Dimensions are in millimeters.  
172/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Package information  
Device marking for LQFP100  
The following figure gives an example of topside marking and pin 1 position identifier  
location.  
Figure 71. LQFP100 marking example (package top view)  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
(6ꢄꢂ)ꢀꢁꢂ  
9*7ꢃꢅꢅ5  
5HYLVLRQꢉFRGH  
'DWHꢉFRGH  
<
::  
3LQꢉꢈꢉ  
LQGHQWLILHU  
06Yꢀꢁꢄꢂꢁ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID028087 Rev 4  
173/193  
190  
 
Package information  
STM32F412xE/G  
7.5  
LQFP144 package information  
Figure 72. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
C
ꢁꢑꢉꢆ MM  
'!5'% 0,!.%  
CCC  
#
$
,
+
$ꢀ  
$ꢈ  
,ꢀ  
ꢀꢁꢃ  
ꢄꢈ  
ꢀꢁꢂ  
ꢄꢉ  
ꢈꢄ  
ꢀꢇꢇ  
ꢈꢅ  
0). ꢀ  
)$%.4)&)#!4)/.  
E
ꢀ!?-%?6ꢈ  
1. Drawing is not to scale.  
174/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
Table 103. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.8740  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.6890  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID028087 Rev 4  
175/193  
190  
 
Package information  
STM32F412xE/G  
Figure 73. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint  
ꢈꢌꢀꢅ  
ꢈꢃꢂ  
ꢁꢀ  
ꢈꢃꢊ  
ꢁꢄ  
ꢃꢌꢀꢅ  
ꢃꢌꢅ  
ꢈꢊꢌꢊ  
ꢈꢁꢌꢂꢅ  
ꢄꢄꢌꢆ  
ꢈꢇꢇ  
ꢀꢁ  
ꢀꢆ  
ꢈꢊꢌꢊ  
ꢄꢄꢌꢆ  
DLꢈꢇꢊꢃꢅH  
1. Dimensions are expressed in millimeters.  
176/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Package information  
Device marking for LQFP144  
The following figure gives an example of topside marking and pin 1 position identifier  
location.  
Figure 74. LQFP144 marking example (package top view)  
5HYLVLRQꢉFRGH  
3URGXFWꢉLGHQWLILFDWLRQꢑꢈꢒ  
5
(6ꢄꢂ)ꢀꢁꢂ=*7ꢃ  
'DWHꢉFRGH  
< ::  
3LQꢉꢈꢉ  
LGHQWLILHU  
06Yꢀꢁꢄꢂꢂ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID028087 Rev 4  
177/193  
190  
 
Package information  
STM32F412xE/G  
7.6  
UFBGA100 package information  
Figure 75. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline  
= 6HDWLQJꢉSODQH  
GGG =  
$ꢇ  
$ꢄ  
$
$ꢀ  
$ꢈ  
$
(ꢈ  
;
$ꢈꢉEDOOꢉ  
$ꢈꢉEDOOꢉ  
(
LGHQWLILHU LQGH[ꢉDUHD  
H
)
)
'ꢈ  
'
H
<
0
ꢈꢄ  
‘EꢉꢑꢈꢃꢃꢉEDOOVꢒ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢉ9,(:  
723ꢉ9,(:  
$ꢃ&ꢄB0(B9ꢇ  
1. Drawing is not to scale.  
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.250  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
-
0.270  
0.200  
6.950  
5.450  
6.950  
5.450  
-
0.370  
0.300  
7.050  
5.550  
7.050  
5.550  
-
0.0106  
0.0079  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0146  
0.0118  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
178/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Package information  
Table 104. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
'SDG  
'VP  
$ꢃ&ꢄB)3B9ꢈ  
Table 105. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
DocID028087 Rev 4  
179/193  
190  
 
 
Package information  
STM32F412xE/G  
Device marking for UFBGA100  
The following figure gives an example of topside marking and ball 1 position identifier  
location.  
Figure 77. UFBGA100 marking example (package top view)  
WƌŽĚƵĐƚꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ;ϭͿ  
670ꢄꢂ)  
ꢀꢁꢂ9*+ꢃ  
ꢃĂƚĞꢀĐŽĚĞꢀсꢀLJĞĂƌꢀнꢀǁĞĞŬ  
< ::  
ꢂĂůůꢀϭꢀŝĚĞŶƚŝĨŝĐĂƚŝŽŶ  
ꢁĚĚŝƚŝŽŶĂůꢀŝŶĨŽƌŵĂƚŝŽŶ  
=
06Yꢀꢊꢇꢇꢂ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
180/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
7.7  
UFBGA144 package information  
Figure 78. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package outline  
& 6HDWLQJꢉSODQH  
GGG =  
$ꢇ  
$ꢄ  
$
$ꢀ  
$ꢈ  
$
(ꢈ  
$
$ꢈꢉEDOOꢉ  
$ꢈꢉEDOOꢉ  
(
LGHQWLILHU LQGH[ꢉDUHD  
H
)
)
'ꢈ  
'
H
%
0
ꢈꢄ  
‘EꢉꢑꢈꢇꢇꢉEDOOVꢒ  
‘ HHH 0 & $ %  
‘ III 0 &  
%27720ꢉ9,(:  
723ꢉ9,(:  
$ꢃꢄ<B0(B9ꢈ  
1. Drawing is not to scale.  
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
0.050  
0.270  
0.360  
9.950  
8.750  
9.950  
8.750  
0.750  
0.530  
0.080  
0.450  
0.080  
0.320  
0.400  
10.000  
8.800  
10.000  
8.800  
0.800  
0.600  
0.110  
0.500  
0.110  
0.370  
0.440  
10.050  
8.850  
10.050  
8.850  
0.850  
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0236  
0.0043  
0.0197  
-
0.0106  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0146  
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
DocID028087 Rev 4  
181/193  
190  
 
 
 
Package information  
STM32F412xE/G  
Table 106. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
F
0.550  
0.600  
0.650  
0.080  
0.150  
0.080  
0.0177  
0.0197  
0.0217  
0.0039  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball  
grid array recommended footprint  
'SDG  
'VP  
ꢁϬϮzͺ&Wͺsϭ  
Table 107. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.80 mm  
0.400 mm  
0.550 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Note:  
Non solder mask defined (NSMD) pads are recommended.  
4 to 6 mils solder paste screen printing process.  
Stencil opening is 0.400 mm.  
Stencil thickness is between 0.100 mm and 0.125 mm.  
Pad trace width is 0.120 mm.  
182/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Package information  
Device marking for UFBGA144  
The following figure gives an example of topside marking and ball A1 position identifier  
location.  
Figure 80. UFBGA144 marking example (package top view)  
3URGXFWꢉ  
LGHQWLILFDWLRQꢑꢈꢒ  
670ꢄꢂ)ꢀꢁꢂ  
=*-ꢃ  
$GGLWLRQDOꢉ  
LQIRUPDWLRQ  
=
'DWHꢉFRGH  
< ::  
%DOOꢉꢉ$ꢈꢉ  
LQGHQWLILHU  
06Yꢀꢊꢇꢇꢊ9ꢈ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID028087 Rev 4  
183/193  
190  
 
 
Package information  
STM32F412xE/G  
7.8  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 15: General operating conditions on page 76.  
The maximum chip-junction temperature, T max., in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (PD max x Θ )  
J
A
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
PD max is the sum of P  
max and P max (PD max = P  
max + P max),  
INT I/O  
INT  
I/O  
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 108. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm  
35  
43  
47  
48  
57  
51  
32  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm  
Thermal resistance junction-ambient  
UFBGA144 - 10 x 10 mm / 0.8 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
UFBGA100 - 7 x 7 mm  
Thermal resistance junction-ambient  
WLCSP64 - 3.623 x 3.651 mm  
Thermal resistance junction-ambient  
UFQFPN48 - 7 x 7 mm  
7.8.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
184/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Part numbering  
8
Part numbering  
Table 109. Ordering information scheme  
STM32 F 412 C E T  
Example:  
6
TR  
Device family  
®
STM32 = ARM -based 32-bit microcontroller  
Product type  
F = General-purpose  
Device subfamily  
412 = 412 line  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
Flash memory size  
E = 512 Kbytes of Flash memory  
G = 1024 Kbytes of Flash memory  
Package  
H = UFBGA 7 x 7 mm  
J = UFBGA 10 x 10 mm  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
Packing  
TR = tape and reel  
No character = tray or tube  
DocID028087 Rev 4  
185/193  
190  
 
 
Recommendations when using the internal reset OFF  
STM32F412xE/G  
Appendix A Recommendations when using the internal  
reset OFF  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on-reset (POR)/power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled. By default BOR is OFF.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
186/193  
DocID028087 Rev 4  
 
STM32F412xE/G  
Application block diagrams  
Appendix B Application block diagrams  
B.1  
USB OTG full speed (FS) interface solutions  
Figure 81. USB controller configured as peripheral-only and used in Full speed mode  
9''  
9''86%  
ꢅꢉ9ꢉWRꢉ9''86%  
9ROWDJHꢉUHJXODWRUꢑꢈꢒ  
670ꢄꢃ)ꢆꢁꢃ[[  
ꢈꢇꢇꢉSLQVꢉSDFNDJHV  
9%86  
'0  
3$ꢈꢈ  
26&B,1  
'3  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢅꢄ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
Figure 82. USB peripheral-only Full speed mode with direct connection  
for VBUS sense  
9''86%  
9''ꢉ!ꢉꢄꢌꢁꢉ9  
670ꢄꢃ)ꢆꢁꢃ[[  
ꢈꢇꢇꢉSLQVꢉSDFNDJHV  
9%86  
'0  
3$ꢊ  
3$ꢈꢈ  
26&B,1  
'3  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢆꢂ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
DocID028087 Rev 4  
187/193  
190  
 
 
 
 
 
Application block diagrams  
STM32F412xE/G  
Figure 83. USB peripheral-only Full speed mode, VBUS detection using GPIO  
9''86%  
ꢈꢌꢁ9ꢉꢔꢉ9''ꢉꢔꢉꢉꢄꢌꢁꢉ9  
670ꢄꢃ)ꢆꢁꢃ[[  
ꢈꢇꢇꢉSLQVꢉSDFNDJHV  
*3,2  
9%86  
'0  
'3  
3$ꢈꢈ  
26&B,1  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢊꢇꢆꢊ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
Figure 84. USB controller configured as host-only and used in full speed mode  
9''  
670ꢄꢃ)ꢆꢁꢃ[[  
(1  
*3,2  
&XUUHQWꢉOLPLWHUꢉꢉ  
ꢅꢉ9  
ꢑꢈꢒ  
SRZHUꢉVZLWFK  
2YHUFXUUHQW  
*3,2ꢓ,54  
9%86  
'0  
3$ꢈꢈ  
26&B,1  
'3  
3$ꢈꢄ  
26&B287  
966  
06Yꢀꢁꢄꢊꢆ9ꢈ  
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
188/193  
DocID028087 Rev 4  
 
 
 
STM32F412xE/G  
Application block diagrams  
Figure 85. USB controller configured in dual mode and used in full speed mode  
9''  
ꢅꢉ9ꢉWRꢉ9''  
9ROWDJHꢉ  
UHJXODWRUꢑꢈꢒ  
9''  
670ꢄꢃ)ꢆꢁꢃ[[  
(1  
*3,2  
ꢅꢉ9  
&XUUHQWꢉOLPLWHUꢉ  
SRZHUꢉVZLWFKꢑꢄꢒ  
2YHUFXUUHQW  
*3,2ꢓ,54  
9%86  
'0  
3$ꢊ  
3$ꢈꢈ  
'3  
26&B,1  
3$ꢈꢄ  
3$ꢈꢃ  
,'ꢑꢀꢒ  
26&B287  
966  
06Yꢀꢁꢄꢊꢁ9ꢈ  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
3. The ID pin is required in dual role only.  
B.2  
Sensor Hub application example  
Figure 86. Sensor Hub application example  
$FFHOHURPHWHU  
*\URVFRSH  
0DJQHWRPHWHU  
670ꢀꢄ)ꢇꢈꢄ  
6&/  
6'$  
3%ꢆꢋ3%ꢈꢃꢋ3$   
3%ꢁꢋ3%ꢊꢋ3%ꢇ  
,ꢄ&  
,ꢄ6  
ꢇꢂꢐSLQꢉSDFNDJH  
3UHVVXUH  
3UR[LPLW\  
6/.  
$PELHQWꢉOLJKW  
3%ꢈꢀ  
3%ꢈꢅ  
[ *3,2  
ꢈꢃ.  
*3,2  
'$7$  
%227ꢃ  
7;  
5;  
3$   
8$57  
0LFUR  
3$   
6:',2  
6:&/.  
3$   
166  
6&.  
3$   
3$   
-7$*  
3$   
3%  
63,  
6:2  
+267  
0,62  
026,  
3$   
3$   
1567  
26& ꢀꢄN  
3&ꢈꢇ  
3&ꢈꢅ  
$'&  
7HPSHUDWXUH ꢋ+XPLGLW\  
3$ 3$   
8S WR ꢈꢃ $'& LQSXWV  
06Yꢀꢊꢇꢅꢀ9ꢈ  
DocID028087 Rev 4  
189/193  
190  
 
 
 
Application block diagrams  
STM32F412xE/G  
B.3  
Display application example  
Figure 87. Display application example  
%DFNOLJKWꢉ  
FRQWURO  
3&ꢂ  
7,0ꢄBFKꢄ  
*3,2  
7(ꢉꢑ7HDULQJꢒ  
1:(  
$ꢃ  
1(ꢇ  
12(  
3&ꢄ  
3&ꢀ  
3&ꢇ  
3&ꢅ  
:5  
'&  
&6  
ꢈꢃN  
'LVSOD\ꢀ0RGXOH  
5'  
%227ꢃ  
'ꢃ  
'ꢈ  
'ꢄ  
'ꢀ  
'ꢇ  
'ꢅ  
'ꢆ  
'ꢁ  
3%ꢈꢇ  
3&ꢆ  
3&ꢈꢈ  
3&ꢈꢄ  
3$ꢄ  
3$ꢀ  
3$ꢇ  
3$ꢅ  
)60&  
6:',2 3$ꢈꢀ  
-7$* 6:&/. 3$ꢈꢇ  
6:2 3%ꢀ  
>'ꢃꢍ'ꢁ@  
,QWHUUXSW  
*3,2  
7RXFKꢀ6FUHHQꢀ  
&RQWUROOHU  
6&/  
6'$  
3%ꢆ  
3%ꢊ  
,ꢄ&  
06Yꢀꢊꢇꢅꢇ9ꢈ  
Note:  
16 bit displays interfaces can be addressed with 100 and 144 pins packages.  
190/193  
DocID028087 Rev 4  
 
 
STM32F412xE/G  
Revision history  
Revision history  
Table 110. Document revision history  
Changes  
Date  
Revision  
10-Nov-2015  
1
Initial release.  
Added  
Table 3: Embedded bootloader interfaces  
Figure 3: Compatible board design for LQFP144 package  
Figure 62: WLCSP64 marking example (package top view)  
Figure 77: UFBGA100 marking example (package top view)  
Updated  
Section 3.17: Power supply schemes  
Section 3.23: Timers and watchdogs  
Section 3.32: Universal serial bus on-the-go full-speed (USB_OTG_FS)  
Figure 1: Compatible board design for LQFP100 package  
Figure 2: Compatible board design for LQFP64 package  
Figure 14: STM32F412xE/G LQFP100 pinout  
Figure 16: STM32F412xE/G UFBGA100 pinout  
Figure 17: STM32F412xE/G UFBGA144 pinout  
Figure 20: Input voltage measurement  
01-Feb-2016  
2
Figure 80: UFBGA144 marking example (package top view)  
Table 2: STM32F412xE/G features and peripheral counts  
Table 9: STM32F412xE/G pin definition  
Table 12: Voltage characteristics  
Table 13: Current characteristics  
Table 15: General operating conditions  
Table 36: Peripheral current consumption  
Table 51: EMS characteristics for LQFP144 package  
Table 63: FMPI2C characteristics  
DocID028087 Rev 4  
191/193  
192  
 
 
Revision history  
STM32F412xE/G  
Table 110. Document revision history  
Changes  
Date  
Revision  
Added:  
Figure 82: USB peripheral-only Full speed mode with direct connection for VBUS  
sense  
Figure 83: USB peripheral-only Full speed mode, VBUS detection using GPIO  
Updated:  
Figure 15: STM32F412xE/G LQFP144 pinout  
Section 6.3.6: Supply current characteristics  
Table 9: STM32F412xE/G pin definition  
25-Mar-2016  
3
Table 10: STM32F412xE/G alternate functions  
Table 11: STM32F412xE/G register boundary addresses  
Table 15: General operating conditions  
Table 36: Peripheral current consumption  
Table 96: Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V  
Updated:  
Section 3.23.2: General-purpose timers (TIMx)  
Table 21: Typical and maximum current consumption, code with data processing  
(ART accelerator disabled) running from SRAM - VDD = 1.7 V  
Table 22: Typical and maximum current consumption, code with data processing  
(ART accelerator disabled) running from SRAM - VDD = 3.6 V  
Table 23: Typical and maximum current consumption in run mode, code with data  
processing (ART accelerator enabled except prefetch) running from Flash  
memory- VDD = 1.7 V  
Table 24: Typical and maximum current consumption in run mode, code with data  
processing (ART accelerator enabled except prefetch) running from Flash  
memory - VDD = 3.6 V  
27-May-2016  
4
Table 25: Typical and maximum current consumption in run mode, code with data  
processing (ART accelerator disabled) running from Flash memory - VDD = 3.6 V  
Table 26: Typical and maximum current consumption in run mode, code with data  
processing (ART accelerator disabled) running from Flash memory - VDD = 1.7 V  
Table 27: Typical and maximum current consumption in run mode, code with data  
processing (ART accelerator enabled with prefetch) running from Flash memory -  
VDD = 3.6 V  
Table 28: Typical and maximum current consumption in Sleep mode - VDD = 3.6 V  
Table 29: Typical and maximum current consumption in Sleep mode - VDD = 1.7 V  
Table 37: Low-power mode wakeup timings(1)  
Figure 38: I2C bus AC waveforms and measurement circuit  
Figure 39: FMPI2C timing diagram and measurement circuit  
192/193  
DocID028087 Rev 4  
STM32F412xE/G  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
DocID028087 Rev 4  
193/193  
193  
 

相关型号:

STM32F413CG

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413CH

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413MG

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413MH

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413RG

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413RH

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413RHT6

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413VG

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413VGJ3TR

RISC Microcontroller
STMICROELECTR

STM32F413VH

ARM-Cortex-M4 32b MCUFPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
STMICROELECTR

STM32F413VHH3TR

RISC MICROCONTROLLER
STMICROELECTR

STM32F413VHH6

High-performance access line, Arm Cortex-M4 core with DSP and FPU, 1,5 MByte of Flash memory, 100 MHz CPU, ART Accelerator, DFSDM
STMICROELECTR