STM32F417VE [STMICROELECTRONICS]

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM; ARM的Cortex- M4 32B MCUFPU , 210DMIPS ,高达1MB闪存/ 1924KB内存
STM32F417VE
型号: STM32F417VE
厂家: ST    ST
描述:

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
ARM的Cortex- M4 32B MCUFPU , 210DMIPS ,高达1MB闪存/ 1924KB内存

闪存
文件: 总186页 (文件大小:5450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F415xx  
STM32F417xx  
ARM Cortex-M4 32b MCU+FPU, 210DMIPS, up to 1MB Flash/192+4KB RAM,  
crypto, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera  
Datasheet - production data  
IC/OC/PWM or pulse counter and quadrature  
(incremental) encoder input  
FBGA  
Debug mode  
LQFP64 (10 × 10 mm)  
LQFP100 (14 × 14 mm)  
LQFP144 (20 × 20 mm)  
LQFP176 (24 × 24 mm)  
– Serial wire debug (SWD) & JTAG  
UFBGA176  
interfaces  
WLCSP90  
(10 × 10 mm)  
– Cortex-M4 Embedded Trace Macrocell™  
Up to 140 I/O ports with interrupt capability  
– Up to 136 fast I/Os up to 84 MHz  
– Up to 138 5 V-tolerant I/Os  
Features  
Core: ARM 32-bit Cortex™-M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 168 MHz,  
memory protection unit, 210 DMIPS/  
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP  
instructions  
Up to 15 communication interfaces  
2
– Up to 3 × I C interfaces (SMBus/PMBus)  
– Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO  
7816 interface, LIN, IrDA, modem control)  
– Up to 3 SPIs (42 Mbits/s), 2 with muxed  
2
full-duplex I S to achieve audio class  
accuracy via internal audio PLL or external  
clock  
Memories  
– Up to 1 Mbyte of Flash memory  
– 2 × CAN interfaces (2.0B Active)  
– SDIO interface  
– Up to 192+4 Kbytes of SRAM including 64-  
Kbyte of CCM (core coupled memory) data  
RAM  
– Flexible static memory controller  
supporting Compact Flash, SRAM,  
PSRAM, NOR and NAND memories  
Advanced connectivity  
– USB 2.0 full-speed device/host/OTG  
controller with on-chip PHY  
– USB 2.0 high-speed/full-speed  
device/host/OTG controller with dedicated  
DMA, on-chip full-speed PHY and ULPI  
LCD parallel interface, 8080/6800 modes  
Clock, reset and supply management  
– 1.8 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– 10/100 Ethernet MAC with dedicated DMA:  
supports IEEE 1588v2 hardware, MII/RMII  
8- to 14-bit parallel camera interface up to  
– 4-to-26 MHz crystal oscillator  
54 Mbytes/s  
– Internal 16 MHz factory-trimmed RC (1%  
accuracy)  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
Low power  
– Sleep, Stop and Standby modes  
Cryptographic acceleration: hardware  
acceleration for AES 128, 192, 256, Triple  
DES, HASH (MD5, SHA-1), and HMAC  
True random number generator  
CRC calculation unit  
96-bit unique ID  
– V  
supply for RTC, 20×32 bit backup  
BAT  
RTC: subsecond accuracy, hardware calendar  
registers + optional 4 KB backup SRAM  
3×12-bit, 2.4 MSPS A/D converters: up to 24  
channels and 7.2 MSPS in triple interleaved  
mode  
Table 1. Device summary  
Reference  
Part number  
2×12-bit D/A converters  
STM32F415RG, STM32F415VG, STM32F415ZG,  
STM32F415OG  
STM32F415xx  
General-purpose DMA: 16-stream DMA  
controller with FIFOs and burst support  
STM32F417VG, STM32F417IG, STM32F417ZG,  
STM32F417VE, STM32F417ZE, STM32F417IE  
STM32F417xx  
Up to 17 timers: up to twelve 16-bit and two 32-  
bit timers up to 168 MHz, each with up to 4  
June 2013  
DocID022063 Rev 4  
1/186  
This is information on a product in full production.  
www.st.com  
1
 
Contents  
STM32F415xx, STM32F417xx  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
®
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
ARM Cortex™-M4F core with embedded Flash and SRAM . . . . . . . . 19  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 19  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 20  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 22  
2.2.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 22  
2.2.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.2.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.2.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
2.2.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2.2.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2.2.17 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 29  
2.2.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 29  
2.2.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.2.20  
V
operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
BAT  
2.2.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.2.22 Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2.2.23 Universal synchronous/asynchronous receiver transmitters (USART) . 33  
2.2.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.2.25 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.2.26 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2.2.27 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . 35  
2.2.28 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 35  
2.2.29 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Contents  
2.2.30 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 36  
2.2.31 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 36  
2.2.32 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.2.33 Cryptographic acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.2.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.2.35 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . 37  
2.2.36 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.2.37 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.2.38 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.2.39 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.2.40 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3
4
5
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Operating conditions at power-up / power-down (regulator ON) . . . . . . 81  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 81  
Embedded reset and power control block characteristics . . . . . . . . . . . 81  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DocID022063 Rev 4  
3/186  
Contents  
STM32F415xx, STM32F417xx  
5.3.11  
PLL spread spectrum clock generation (SSCG) characteristics . . . . . 103  
5.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 109  
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
5.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
5.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
5.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
5.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
5.3.22  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
BAT  
5.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
5.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
5.3.25 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
5.3.26 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 156  
5.3.27 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 157  
5.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
6
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
6.1  
6.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
A.1  
A.2  
A.3  
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 172  
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 174  
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
4/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
STM32F415xx and STM32F417xx: features and peripheral counts. . . . . . . . . . . . . . . . . . 13  
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 29  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
STM32F41x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Alternate function mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
STM32F41x register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 80  
VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 81  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 81  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 84  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 88  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 89  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 89  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . . 90  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Flash memory programming with V  
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
DocID022063 Rev 4  
5/186  
List of tables  
STM32F415xx, STM32F417xx  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 117  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
SCL frequency (f  
= 42 MHz.,V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
PCLK1  
DD  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
USB OTG FS electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Ethernet DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Dynamic characteristics: Ehternet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Dynamic characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Dynamic characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ADC accuracy at f  
= 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
BAT  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 139  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 140  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 146  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Switching characteristics for PC Card/CF read and write cycles  
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Switching characteristics for PC Card/CF read and write cycles  
Table 84.  
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . 160  
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data. . . . . . . . . 161  
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 163  
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 165  
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data . . . . . . . 168  
Table 95.  
6/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
List of tables  
Table 96.  
Table 97.  
Table 98.  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
DocID022063 Rev 4  
7/186  
List of figures  
STM32F415xx, STM32F417xx  
List of figures  
Figure 1.  
Figure 2.  
Compatible board design between STM32F10xx/STM32F4xx for LQFP64. . . . . . . . . . . . 15  
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Compatible board design between STM32F2xx and STM32F4xx  
Figure 3.  
Figure 4.  
for LQFP176 and BGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F41x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Multi-AHB matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24  
PDR_ON and NRST control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Figure 10. Startup in regulator OFF mode: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . 28  
CAP_1 CAP_2  
Figure 11. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . 28  
CAP_1 CAP_2  
Figure 12. STM32F41x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 13. STM32F41x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Figure 14. STM32F41x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 15. STM32F41x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 16. STM32F41x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 17. STM32F41x WLCSP90 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 18. STM32F41x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 19. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 20. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 21. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 22. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 23. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
EXT  
Figure 24. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF . . . . 86  
Figure 25. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON . . . . . 86  
Figure 26. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF . . . 87  
Figure 27. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON . . . . 87  
Figure 28. Typical V  
Figure 29. Typical V  
current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . . 90  
current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . . 91  
BAT  
BAT  
Figure 30. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 31. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 32. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 33. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 34. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
LSI  
Figure 35. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 36. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 37. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 38. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
2
Figure 39. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
8/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
List of figures  
Figure 40. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 41. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 42. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 43. I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
(1)  
Figure 44. I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 45. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 125  
Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 52. Power supply and reference decoupling (V  
Figure 53. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 134  
). . . . . . . . . . . . . . . . 134  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 139  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 140  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 149  
Figure 64. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 149  
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write  
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 151  
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 152  
Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 155  
Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 155  
Figure 73. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 74. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Figure 75. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . 160  
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 161  
Figure 78. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 163  
Figure 80. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 165  
Figure 82. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 168  
Figure 85. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 86. USB controller configured as peripheral-only and used  
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 87. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 172  
DocID022063 Rev 4  
9/186  
List of figures  
STM32F415xx, STM32F417xx  
Figure 88. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 173  
Figure 89. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 90. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 91. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 92. RMII with a 25 MHz crystal and PHY with PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
10/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Introduction  
1
Introduction  
This datasheet provides the description of the STM32F415xx and STM32F417xx lines of  
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please  
refer to Section 2.1: Full compatibility throughout the family.  
The STM32F415xx and STM32F417xx datasheet should be read in conjunction with the  
STM32F4xx reference manual.  
The reference and Flash programming manuals are both available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M4 core, please refer to the Cortex™-M4 programming  
manual (PM0214) available from www.st.com.  
DocID022063 Rev 4  
11/186  
 
Description  
STM32F415xx, STM32F417xx  
2
Description  
®
The STM32F415xx and STM32F417xx family is based on the high-performance ARM  
Cortex™-M4 32-bit RISC core operating at a frequency of up to 168 MHz. The Cortex-M4  
core features a Floating point unit (FPU) single precision which supports all ARM single-  
precision data-processing instructions and data types. It also implements a full set of DSP  
instructions and a memory protection unit (MPU) which enhances application security. The  
Cortex-M4 core with FPU will be referred to as Cortex-M4F throughout this document.  
The STM32F415xx and STM32F417xx family incorporates high-speed embedded  
memories (Flash memory up to 1 Mbyte, up to 192 Kbytes of SRAM), up to 4 Kbytes of  
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two  
APB buses, three AHB buses and a 32-bit multi-AHB bus matrix.  
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose  
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.  
a true random number generator (RNG), and a cryptographic acceleration cell. They also  
feature standard and advanced communication interfaces.  
2
Up to three I Cs  
2
Three SPIs, two I Ss full duplex. To achieve audio class accuracy, the I2S peripherals  
can be clocked via a dedicated internal audio PLL or via an external clock to allow  
synchronization.  
Four USARTs plus two UARTs  
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the  
ULPI),  
Two CANs  
An SDIO/MMC interface  
Ethernet and the camera interface available on STM32F417xx devices only.  
New advanced peripherals include an SDIO, an enhanced flexible static memory control  
(FSMC) interface (for devices offered in packages of 100 pins and more), a camera  
interface for CMOS sensors and a cryptographic acceleration cell. Refer to Table 2:  
STM32F415xx and STM32F417xx: features and peripheral counts for the list of peripherals  
available on each part number.  
The STM32F415xx and STM32F417xx family operates in the –40 to +105 °C temperature  
range from a 1.8 to 3.6 V power supply. The supply voltage can drop to 1.7 V when the  
device operates in the 0 to 70 °C temperature range using an external power supply  
supervisor: refer to Section : Internal reset OFF. A comprehensive set of power-saving  
mode allows the design of low-power applications.  
The STM32F415xx and STM32F417xx family offers devices in various packages ranging  
from 64 pins to 176 pins. The set of included peripherals changes with the device chosen.  
12/186  
DocID022063 Rev 4  
 
These features make the STM32F415xx and STM32F417xx microcontroller family suitable for a wide range of applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Figure 5 shows the general block diagram of the device family.  
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts  
STM32F415RG STM32F415OG STM32F415VG STM32F415ZG STM32F417Vx STM32F417Zx STM32F417Ix  
Peripherals  
Flash memory in Kbytes  
1024  
No  
512  
1024  
512  
1024  
512  
1024  
System  
Backup  
192(112+16+64)  
4
SRAM in  
Kbytes  
FSMC memory controller  
Ethernet  
No  
Yes(1)  
Yes  
General-  
purpose  
10  
2
Advanced-  
control  
Timers  
Basic  
2
IWDG  
WWDG  
Yes  
Yes  
Yes  
Yes  
RTC  
Random number generator  
 
Table 2. STM32F415xx and STM32F417xx: features and peripheral counts  
Peripherals  
SPI / I2S  
STM32F415RG STM32F415OG STM32F415VG STM32F415ZG STM32F417Vx STM32F417Zx STM32F417Ix  
3/2 (full duplex)(2)  
I2C  
3
USART/UART  
USB OTG FS  
USB OTG HS  
CAN  
4/2  
Yes  
Yes  
2
Communicatio  
n interfaces  
SDIO  
Yes  
Camera interface  
Cryptography  
GPIOs  
No  
Yes  
114  
24  
Yes  
114  
51  
16  
72  
13  
82  
16  
82  
16  
140  
24  
3
12-bit ADC  
Number of channels  
24  
12-bit DAC  
Number of channels  
Yes  
2
Maximum CPU frequency  
Operating voltage  
168 MHz  
1.8 to 3.6 V(3)  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
Operating temperatures  
Package  
UFBGA176  
LQFP176  
LQFP64  
WLCSP90  
LQFP100  
LQFP144  
LQFP100  
LQFP144  
1. For the LQFP100 and WLCSP90 packages, only FSMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip  
Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this  
package.  
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.  
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to  
Section : Internal reset OFF).  
STM32F415xx, STM32F417xx  
Description  
2.1  
Full compatibility throughout the family  
The STM32F415xx and STM32F417xx are part of the STM32F4 family. They are fully pin-  
to-pin, software and feature compatible with the STM32F2xx devices, allowing the user to  
try different memory densities, peripherals, and performances (FPU, higher frequency) for a  
greater degree of freedom during the development cycle.  
The STM32F415xx and STM32F417xx devices maintain a close compatibility with the  
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The  
STM32F415xx and STM32F417xx, however, are not drop-in replacements for the  
STM32F10xxx devices: the two families do not have the same power scheme, and so their  
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F41x  
family remains simple as only a few pins are impacted.  
Figure 4, Figure 3, Figure 2, and Figure 1 give compatible board designs between the  
STM32F41x, STM32F2xxx, and STM32F10xxx families.  
Figure 1. Compatible board design between STM32F10xx/STM32F4xx for LQFP64  
V
SS  
V
SS  
48  
33  
31  
32  
49  
47  
V
SS  
V
SS  
0 Ω resistor or soldering bridge  
present for the STM32F10xx  
configuration, not present in the  
STM32F4xx configuration  
64  
17  
1
16  
ai18489  
DocID022063 Rev 4  
15/186  
 
Description  
STM32F415xx, STM32F417xx  
Figure 2. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP100 package  
V
SS  
75  
73  
51  
49  
50  
76  
V
SS  
V
SS  
0 ΩΩ resistor or soldering bridge  
present for the STM32F10xxx  
configuration, not present in the  
STM32F4xx configuration  
99 (V  
1
)
SS  
100  
19 20  
26  
25  
V
SS  
V
V
DD  
SS  
V
for STM32F10xx  
for STM32F4xx  
SS  
Two 0 Ω resistors connected to:  
V
V
V
DD  
DD  
- V  
- V  
for the STM32F10xx  
for the STM32F4xx  
SS  
SS  
SS  
ai18488c  
- V , V  
or NC for the STM32F2xx  
SS DD  
Figure 3. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP144 package  
VSS  
108  
73  
71  
72  
109  
106  
VSS  
VSS  
0 Ω resistor or soldering bridge  
present for the STM32F10xx  
configuration, not present in the  
STM32F4xx configuration  
Signal from  
external power  
supply  
143 (PDR_ON)  
1
30  
31  
144  
37  
supervisor  
36  
VSS  
VDD VSS  
VSS for STM32F10xx  
VDD for STM32F4xx  
Two 0 Ω resistors connected to:  
- VSS for the STM32F10xx  
VDD  
VSS  
- VSS, VDD or NC for the STM32F2xx  
- VDD or signal from external power supply supervisor for the STM32F4xx  
ai18487d  
16/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Description  
Figure 4. Compatible board design between STM32F2xx and STM32F4xx  
for LQFP176 and BGA176 packages  
132  
133  
89  
88  
Signal from external  
power supply  
supervisor  
171 (PDR_ON)  
176  
1
45  
44  
VDDVSS  
Two 0 Ω resistors connected to:  
- VSS, VDD or NC for the STM32F2xx  
- VDD or signal from external power supply supervisor for the STM32F4xx  
MS19919V3  
DocID022063 Rev 4  
17/186  
 
Description  
STM32F415xx, STM32F417xx  
2.2  
Device overview  
Figure 5. STM32F41x block diagram  
External memory  
controller (FSMC)  
SRAM, PSRAM, NOR Flash,  
PC Card (ATA), NAND Flash  
CLK, NE [3:0], A[23:0],  
D[31:0], OEN, WEN,  
NBL[3:0], NL, NREG,  
NWAIT/IORDY, CD  
CCM data RAM 64 KB  
NJTRST, JTDI,  
JTCK/SWCLK  
JTDO/SWD, JTDO  
AHB3  
JTAG & SW  
ETM  
MPU  
NVIC  
NIORD, IOWR, INT[2:3]  
INTN, NIIS16 as AF  
TRACECLK  
TRACED[3:0]  
D-BUS  
TDES, AES256  
ARM Cortex-M4  
168 MHz  
FPU  
I-BUS  
HASH  
RNG  
Flash  
up to  
1 MB  
S-BUS  
DMA/  
FIFO  
Ethernet MAC  
10/100  
MII or RMII as AF  
MDIO as AF  
HSYNC, VSYNC  
PUIXCLK, D[13:0]  
Camera  
interface  
SRAM 112 KB  
SRAM 16 KB  
USB  
OTG HS  
DMA/  
FIFO  
DP, DM  
ULPI:CK, D[7:0], DIR, STP, NXT  
ID, VBUS, SOF  
DP  
DM  
USB  
OTG FS  
8 Streams  
FIFO  
ID, VBUS, SOF  
AHB2 168 MHz  
DMA2  
DMA1  
AHB1 168 MHz  
8 Streams  
FIFO  
Power managmt  
VDD  
Voltage  
regulator  
VDD = 1.8 to 3.6 V  
VSS  
3.3 to 1.2 V  
VCAP1, VCPA2  
@VDD  
@VDDA  
POR  
reset  
Supply  
supervision  
RC HS  
PA[15:0]  
PB[15:0]  
PC[15:0]  
GPIO PORT A  
GPIO PORT B  
GPIO PORT C  
RC LS  
P LL1&2  
POR/PDR  
Int  
VDDA, VSSA  
NRST  
BOR  
PVD  
@VDD  
@VDDA  
PD[15:0]  
PE[15:0]  
GPIO PORT D  
GPIO PORT E  
GPIO PORT F  
GPIO PORT G  
GPIO PORT H  
GPIO PORT I  
OSC_IN  
OSC_OUT  
XTAL OSC  
4- 16MHz  
Reset &  
IWDG  
clock  
control  
PF[15:0]  
PG[15:0]  
PWR  
VBAT = 1.65 to 3.6 V  
interface  
@VBAT  
OSC32_IN  
OSC32_OUT  
PH[15:0]  
PI[11:0]  
XTAL 32 kHz  
RTC  
AWU  
Backup register  
RTC_AF1  
RTC_AF1  
4 KB BKPSRAM  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels  
32b  
TIM2  
16b  
TIM3  
140 AF  
EXT IT. WKUP  
SDIO / MMC  
16b  
TIM4  
DMA2  
DMA1  
32b  
TIM5  
D[7:0]  
CMD, CK as AF  
AHB/APB2 AHB/APB1  
16b  
2 channels as AF  
1 channel as AF  
TIM12  
4 compl. channels (TIM1_CH1[1:4]N,  
4 channels (TIM1_CH1[1:4]ETR,  
BKIN as AF  
16b  
16b  
TIM1 / PWM  
TIM8 / PWM  
TIM13  
4 compl. channels (TIM1_CH1[1:4]N,  
4 channels (TIM1_CH1[1:4]ETR,  
BKIN as AF  
1 channel as AF  
16b  
TIM14  
16b  
RX, TX as AF  
CTS, RTS as AF  
smcard  
USART2  
irDA  
2 channels as AF  
16b  
16b  
16b  
TIM9  
TIM10  
TIM11  
RX, TX as AF  
CTS, RTS as AF  
smcard  
USART3  
irDA  
1 channel as AF  
1 channel as AF  
RX, TX as AF  
RX, TX as AF  
UART4  
UART5  
WWDG  
smcard  
RX, TX, CK,  
CTS, RTS as AF  
RX, TX, CK,  
CTS, RTS as AF  
MOSI, MISO,  
SCK, NSS as AF  
USART1  
USART6  
SPI1  
MOSI/SD, MISO/SD_ext, SCK/CK  
NSS/WS, MCK as AF  
irDA  
SP2/I2S2  
SP3/I2S3  
I2C1/SMBUS  
I2C2/SMBUS  
I2C3/SMBUS  
bxCAN1  
smcard  
irDA  
16b  
16b  
MOSI/SD, MISO/SD_ext, SCK/CK  
NSS/WS, MCK as AF  
TIM6  
TIM7  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
TX, RX  
@VDDA  
VDDREF_ADC  
@VDDA  
Temperature sensor  
ADC1  
8 analog inputs common  
to the 3 ADCs  
DAC1  
DAC2  
ITF  
8 analog inputs common  
to the ADC1 & 2  
IF  
ADC2  
ADC3  
TX, RX  
bxCAN2  
8 analog inputs for ADC3  
DAC1_OUT  
as AF  
DAC2_OUT  
as AF  
ai18511d  
1. The timers connected to APB2 are clocked from TIMxCLK up to 168 MHz, while the timers connected to  
APB1 are clocked from TIMxCLK either up to 84 MHz or 168 MHz, depending on TIMPRE bit configuration  
18/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Description  
in the RCC_DCKCFGR register.  
2. The camera interface and ethernet are available only on STM32F417xx devices.  
®
2.2.1  
ARM Cortex™-M4F core with embedded Flash and SRAM  
The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded  
systems. It was developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced response to interrupts.  
The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F415xx and STM32F417xx family is compatible with all ARM tools and software.  
Figure 5 shows the general block diagram of the STM32F41x family.  
Cortex-M4F is binary compatible with Cortex-M3.  
Note:  
2.2.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
standard ARM Cortex™-M4F processors. It balances the inherent performance advantage  
of the ARM Cortex-M4F over Flash memory technologies, which normally requires the  
processor to wait for the Flash memory at higher frequencies.  
To release the processor full 210 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 168 MHz.  
2.2.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
DocID022063 Rev 4  
19/186  
Description  
STM32F415xx, STM32F417xx  
2.2.4  
Embedded Flash memory  
The STM32F41x devices embed a Flash memory of 512 Kbytes or 1 Mbytes available for  
storing programs and data.  
2.2.5  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
2.2.6  
Embedded SRAM  
All STM32F41x products embed:  
Up to 192 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)  
data RAM  
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.  
4 Kbytes of backup SRAM  
This area is accessible only from the CPU. Its content is protected against possible  
unwanted write accesses, and is retained in Standby or VBAT mode.  
2.2.7  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB  
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a  
seamless and efficient operation even when several high-speed peripherals work  
simultaneously.  
20/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Description  
Figure 6. Multi-AHB matrix  
ARM  
Cortex-M4  
GP  
DMA1  
GP  
DMA2  
MAC  
Ethernet  
64-Kbyte  
USB OTG  
HS  
CCM data RAM  
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
ICODE  
M0  
Flash  
memory  
DCODE  
M1  
SRAM1  
M2  
M3  
M4  
M5  
112 Kbyte  
SRAM2  
16 Kbyte  
AHB1  
APB1  
APB2  
peripherals  
AHB2  
peripherals  
FSMC  
M6  
Static MemCtl  
Bus matrix-S  
ai18490c  
2.2.8  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
DocID022063 Rev 4  
21/186  
 
Description  
STM32F415xx, STM32F417xx  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
DAC  
SDIO  
Cryptographic acceleration  
Camera interface (DCMI)  
ADC.  
2.2.9  
Flexible static memory controller (FSMC)  
The FSMC is embedded in the STM32F415xx and STM32F417xx family. It has four Chip  
Select outputs supporting the following modes: PCCard/Compact Flash, SRAM, PSRAM,  
NOR Flash and NAND Flash.  
Functionality overview:  
Write FIFO  
Maximum FSMC_CLK frequency for synchronous accesses is 60 MHz.  
LCD parallel interface  
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
2.2.10  
Nested vectored interrupt controller (NVIC)  
The STM32F415xx and STM32F417xx embed a nested vectored interrupt controller able to  
manage 16 priority levels, and handle up to 82 maskable interrupt channels plus the 16  
interrupt lines of the Cortex™-M4F.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
2.2.11  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
22/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Description  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected  
to the 16 external interrupt lines.  
2.2.12  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full  
temperature range. The application can then select as system clock either the RC oscillator  
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is  
detected, the system automatically switches back to the internal RC oscillator and a  
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing  
to increase the frequency up to 168 MHz. Similarly, full interrupt management of the PLL  
clock entry is available when necessary (for example if an indirectly used external oscillator  
fails).  
Several prescalers allow the configuration of the three AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB  
buses is 168 MHz while the maximum frequency of the high-speed APB domains is  
84 MHz. The maximum allowed frequency of the low-speed APB domain is 42 MHz.  
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class  
2
performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
2.2.13  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB  
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).  
2.2.14  
Power supply schemes  
V
= 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset  
DDA  
SSA  
blocks, RCs and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
Refer to Figure 21: Power supply scheme for more details.  
V /V minimum value of 1.7 V is obtained when the device operates in reduced  
DD DDA  
Note:  
temperature range, and with the use of an external power supply supervisor (refer to  
Section : Internal reset OFF).  
Refer to Table 2 in order to identify the packages supporting this option.  
DocID022063 Rev 4  
23/186  
 
 
Description  
STM32F415xx, STM32F417xx  
2.2.15  
Power supply supervisor  
Internal reset ON  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On all other packages, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default BOR  
threshold levels, or to disable BOR permanently. Three BOR thresholds are available  
through option bytes. The device remains in reset mode when V is below a specified  
DD  
threshold, V  
or V  
, without the need for an external reset circuit.  
POR/PDR  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled with the PDR_ON pin.  
An external power supply supervisor should monitor V and should maintain the device in  
DD  
reset mode as long as V is below a specified threshold. PDR_ON should be connected to  
DD  
this external power supply supervisor. Refer to Figure 7: Power supply supervisor  
interconnection with internal reset OFF.  
Figure 7. Power supply supervisor interconnection with internal reset OFF  
VDD  
External VDD power supply supervisor  
Ext. reset controller active when  
VDD < 1.7 V or 1.8 V (1)  
PDR_ON  
Application reset  
signal (optional)  
NRST  
VDD  
MS31383V3  
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.  
24/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Description  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.8 V (see Figure 7). This supply voltage can drop to 1.7 V when the device operates in the  
0 to 70 °C temperature range.  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no more supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled  
The brownout reset (BOR) circuitry is disabled  
The embedded programmable voltage detector (PVD) is disabled  
V
functionality is no more available and V  
pin should be connected to V  
BAT DD  
BAT  
All packages, except for the LQFP64 and LQFP100, allow to disable the internal reset  
through the PDR_ON signal.  
Figure 8. PDR_ON and NRST control with internal reset OFF  
V
DD  
PDR = 1.7 V or 1.8 V (1)  
time  
Reset by other source than  
power supply supervisor  
NRST  
PDR_ON  
PDR_ON  
time  
MS19009V6  
1. PDR = 1.7 V for reduce temperature range; PDR = 1.8 V for all temperature range.  
2.2.16  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
DocID022063 Rev 4  
25/186  
 
Description  
STM32F415xx, STM32F417xx  
There are three power modes configured by software when regulator is ON:  
MR is used in the nominal regulation mode (With different voltage scaling in Run)  
In Main regulator mode (MR mode), different voltage scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
Refer to Table 14: General operating conditions.  
LPR is used in the Stop modes  
The LP regulator mode is configured by software when entering Stop mode.  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost)  
Two external ceramic capacitors should be connected on V  
& V  
pin. Refer to  
CAP_1  
CAP_2  
Figure 21: Power supply scheme and Figure 16: VCAP_1/VCAP_2 operating conditions.  
All packages have regulator ON feature.  
Regulator OFF  
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is  
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply  
externally a V voltage source through V  
and V  
pins.  
12  
CAP_1  
CAP_2  
Since the internal voltage scaling is not manage internally, the external voltage value must  
be aligned with the targetted maximum frequency. Refer to Table 14: General operating  
conditions.  
The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling  
capacitors.  
Refer to Figure 21: Power supply scheme  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
26/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Description  
Figure 9. Regulator OFF  
V12  
External VCAP_1/2 power  
Application reset  
signal (optional)  
supply supervisor  
Ext. reset controller active  
when VCAP_1/2 < Min V12  
VDD  
PA0  
VDD  
NRST  
BYPASS_REG  
V12  
VCAP_1  
VCAP_2  
ai18498V4  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.8 V (see Figure 10).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.8 V, then PA0 could be asserted low externally (see  
DD  
Figure 11).  
If V  
and V  
go below V minimum value and V is higher than 1.8 V, then  
CAP_1  
CAP_2 12 DD  
a reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application  
12  
(see Table 14: General operating conditions).  
DocID022063 Rev 4  
27/186  
 
Description  
STM32F415xx, STM32F417xx  
Figure 10. Startup in regulator OFF mode: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
VDD  
PDR = 1.7 V or 1.8 V (2)  
VCAP_1/VCAP_2  
V12  
Min V12  
time  
NRST  
ai18491e  
time  
1. This figure is valid both whatever the internal reset mode (onON or OFFoff).  
2. PDR = 1.7 V for reduced temperature range; PDR = 1.8 V for all temperature ranges.  
Figure 11. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
VDD  
PDR = 1.7 V or 1.8 V (2)  
VCAP_1/VCAP_2  
V12  
Min V12  
time  
time  
NRST  
PA0 asserted externally  
ai18492d  
1. This figure is valid both whatever the internal reset mode (onON or offOFF).  
2. PDR = 1.7 V for a reduced temperature range; PDR = 1.8 V for all temperature ranges.  
28/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Description  
2.2.17  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 3. Regulator ON/OFF and internal reset ON/OFF availability  
Internal reset  
OFF  
Regulator ON  
Regulator OFF Internal reset ON  
LQFP64  
Yes  
No  
LQFP100  
Yes  
Yes  
No  
LQFP144  
LQFP176  
Yes  
Yes  
PDR_ON  
PDR_ON set to  
VDD  
connected to an  
external power  
supply supervisor  
Yes  
WLCSP90  
UFBGA176  
BYPASS_REGset BYPASS_REGset  
to VSS to VDD  
2.2.18  
Real-time clock (RTC), backup SRAM and backup registers  
The backup domain of the STM32F415xx and STM32F417xx includes:  
The real-time clock (RTC)  
4 Kbytes of backup SRAM  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC provides a programmable alarm and programmable  
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is  
also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data  
which need to be retained in V  
and standby mode. This memory area is disabled by  
BAT  
default to minimize power consumption (see Section 2.2.19: Low-power modes). It can be  
enabled by software.  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 2.2.19: Low-power  
modes).  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
DocID022063 Rev 4  
29/186  
 
 
Description  
STM32F415xx, STM32F417xx  
Like backup SRAM, the RTC and backup registers are supplied through a switch that is  
powered either from the V supply when present or from the V  
pin.  
DD  
BAT  
2.2.19  
Low-power modes  
The STM32F415xx and STM32F417xx support three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the V domain are stopped, the PLL, the HSI RC  
12  
and the HSE crystal oscillators are disabled. The voltage regulator can also be put  
either in normal or in low-power mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /  
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire V domain is powered off. The PLL,  
12  
the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain and the backup SRAM when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event  
occurs.  
The standby mode is not supported when the embedded voltage regulator is bypassed  
and the V domain is controlled by an external power.  
12  
2.2.20  
V
operation  
BAT  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when no external battery and an external supercapacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
Note:  
When the microcontroller is supplied from V , external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is not connected to V (internal reset OFF), the V  
functionality is no  
BAT  
DD  
more available and V  
pin should be connected to V  
.
BAT  
DD  
2.2.21  
Timers and watchdogs  
The STM32F415xx and STM32F417xx devices include two advanced-control timers, eight  
general-purpose timers, two basic timers and two watchdog timers.  
All timer counters can be frozen in debug mode.  
30/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Description  
Table 4 compares the features of the advanced-control, general-purpose and basic timers.  
Table 4. Timer feature comparison  
DMA  
request  
generatio  
n
Max  
Max  
Counter  
Timer resolutio  
n
Capture/  
compare  
channels  
Timer  
type  
Counter Prescaler  
Complementar interface timer  
type  
factor  
y output  
clock  
(MHz) (MHz)  
clock  
Up,  
Down,  
Up/dow  
n
Anyinteger  
between 1  
and 65536  
Advanced TIM1,  
16-bit  
32-bit  
16-bit  
Yes  
Yes  
Yes  
4
4
4
Yes  
84  
42  
42  
168  
84  
-control  
TIM8  
Up,  
Down,  
Up/dow  
n
Anyinteger  
between 1  
and 65536  
TIM2,  
TIM5  
No  
No  
Up,  
Down,  
Up/dow  
n
Anyinteger  
between 1  
and 65536  
TIM3,  
TIM4  
84  
Anyinteger  
between 1  
and 65536  
TIM9  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Up  
Up  
Up  
Up  
Up  
No  
No  
No  
No  
Yes  
2
1
2
1
0
No  
No  
No  
No  
No  
84  
84  
42  
42  
42  
168  
168  
84  
General  
purpose  
TIM10  
,
TIM11  
Anyinteger  
between 1  
and 65536  
Anyinteger  
between 1  
and 65536  
TIM12  
TIM13  
,
TIM14  
Anyinteger  
between 1  
and 65536  
84  
Anyinteger  
between 1  
and 65536  
TIM6,  
TIM7  
Basic  
84  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
DocID022063 Rev 4  
31/186  
 
Description  
STM32F415xx, STM32F417xx  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32F41x devices  
(see Table 4 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F41x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,  
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent  
channels for input capture/output compare, PWM or one-pulse mode output. This gives  
up to 16 input capture/output compare/PWMs on the largest packages.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9  
and TIM12 have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers. They can also be used as simple time bases.  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
32/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
SysTick timer  
Description  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
2.2.22  
2.2.23  
Inter-integrated circuit interface (I²C)  
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can  
support the Standard-mode (up to 100 kHz) and Fast-mode (up to 400 kHz) . They support  
the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware  
CRC generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
Universal synchronous/asynchronous receiver transmitters (USART)  
The STM32F415xx and STM32F417xx embed four universal synchronous/asynchronous  
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal  
asynchronous receiver transmitters (UART4 and UART5).  
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to  
communicate at speeds of up to 10.5 Mbit/s. The other available interfaces communicate at  
up to 5.25 Mbit/s.  
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS  
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication  
capability. All interfaces can be served by the DMA controller.  
DocID022063 Rev 4  
33/186  
 
Description  
STM32F415xx, STM32F417xx  
Table 5. USART feature comparison  
Max. baud rate Max. baud rate  
Modem  
(RTS/ LIN  
CTS)  
USART Standard  
SPI  
master  
Smartcard  
in Mbit/s in Mbit/s  
APB  
irDA  
name  
features  
(ISO 7816) (oversampling (oversampling mapping  
by 16)  
by 8)  
APB2  
(max.  
84 MHz)  
USART1  
USART2  
USART3  
UART4  
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
-
5.25  
10.5  
APB1  
(max.  
42 MHz)  
2.62  
2.62  
2.62  
2.62  
5.25  
5.25  
5.25  
5.25  
5.25  
10.5  
APB1  
(max.  
42 MHz)  
APB1  
(max.  
42 MHz)  
APB1  
(max.  
42 MHz)  
UART5  
-
-
-
APB2  
(max.  
USART6  
X
X
X
84 MHz)  
2.2.24  
Serial peripheral interface (SPI)  
The STM32F41x feature up to three SPIs in slave and master modes in full-duplex and  
simplex communication modes. SPI1 can communicate at up to 42 Mbits/s, SPI2 and SPI3  
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies  
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification  
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.  
The SPI interface can be configured to operate in TI mode for communications in master  
mode and slave mode.  
2
2.2.25  
Inter-integrated sound (I S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available. They can be  
operated in master or slave mode, in full duplex and half-duplex communication modes, and  
can be configured to operate with a 16-/32-bit resolution as an input or output channel.  
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of  
2
the I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
2
All I Sx can be served by the DMA controller.  
2.2.26  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S application. It allows to  
2
achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
34/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Description  
2
The PLLI2S configuration can be modified to manage an I S sample rate change without  
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
2
In addition to the audio PLL, a master clock input pin can be used to synchronize the I S  
flow with an external PLL (or Codec output).  
2.2.27  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
2.2.28  
Ethernet MAC interface with dedicated DMA and IEEE 1588 support  
Peripheral available only on the STM32F417xx devices.  
The STM32F417xx devices provide an IEEE-802.3-2002-compliant media access controller  
(MAC) for ethernet LAN communications through an industry-standard medium-  
independent interface (MII) or a reduced medium-independent interface (RMII). The  
STM32F417xx requires an external physical interface device (PHY) to connect to the  
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F417xx MII  
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz  
(MII) from the STM32F417xx.  
The STM32F417xx includes the following features:  
Supports 10 and 100 Mbit/s rates  
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM  
and the descriptors (see the STM32F40x reference manual for details)  
Tagged MAC frame support (VLAN support)  
Half-duplex (CSMA/CD) and full-duplex operation  
MAC control sublayer (control frames) support  
32-bit CRC generation and removal  
Several address filtering modes for physical and multicast address (multicast and  
group addresses)  
32-bit status code for each transmitted or received frame  
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the  
receive FIFO are both 2 Kbytes.  
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008  
(PTP V2) with the time stamp comparator connected to the TIM2 input  
Triggers interrupt when system time becomes greater than target time  
DocID022063 Rev 4  
35/186  
 
Description  
STM32F415xx, STM32F417xx  
2.2.29  
Controller area network (bxCAN)  
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1  
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated for each CAN.  
2.2.30  
Universal serial bus on-the-go full-speed (OTG_FS)  
The STM32F415xx and STM32F417xx embed an USB OTG full-speed device/host/OTG  
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the  
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable  
endpoint setting and supports suspend/resume. The USB OTG full-speed controller  
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE  
oscillator. The major features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
4 bidirectional endpoints  
8 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
2.2.31  
Universal serial bus on-the-go high-speed (OTG_HS)  
The STM32F415xx and STM32F417xx devices embed a USB OTG high-speed (up to  
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and  
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and  
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using  
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.  
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG  
1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator.  
The major features are:  
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
6 bidirectional endpoints  
12 host channels with periodic OUT support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is  
connected to the microcontroller ULPI port through 12 signals. It can be clocked using  
the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
for OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
36/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Description  
2.2.32  
Digital camera interface (DCMI)  
The camera interface is not available in STM32F415xx devices.  
STM32F417xx products embed a camera interface that can connect with camera modules  
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The  
camera interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports continuous mode or snapshot (a single frame) mode  
Capability to automatically crop the image  
2.2.33  
Cryptographic acceleration  
The STM32F415xx and STM32F417xx devices embed a cryptographic accelerator. This  
cryptographic accelerator provides a set of hardware acceleration for the advanced  
cryptographic algorithms usually needed to provide confidentiality, authentication, data  
integrity and non repudiation when exchanging messages with a peer.  
These algorithms consists of:  
Encryption/Decryption  
DES/TDES (data encryption standard/triple data encryption standard): ECB  
(electronic codebook) and CBC (cipher block chaining) chaining algorithms, 64-,  
128- or 192-bit key  
AES (advanced encryption standard): ECB, CBC and CTR (counter mode)  
chaining algorithms, 128, 192 or 256-bit key  
Universal hash  
SHA-1 (secure hash algorithm)  
MD5  
HMAC  
The cryptographic accelerator supports DMA request generation.  
2.2.34  
2.2.35  
Random number generator (RNG)  
All STM32F415xx and STM32F417xx products embed an RNG that delivers 32-bit random  
numbers generated by an integrated analog circuit.  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.  
DocID022063 Rev 4  
37/186  
Description  
STM32F415xx, STM32F417xx  
2.2.36  
Analog-to-digital converters (ADCs)  
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16  
external channels, performing conversions in the single-shot or scan mode. In scan mode,  
automatic conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.  
2.2.37  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.8 V and 3.6 V. The temperature sensor is internally  
connected to the ADC1_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
2.2.38  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA streams.  
2.2.39  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
38/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Description  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
2.2.40  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F41x through a small number of ETM pins to an external hardware trace port  
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer that runs the debugger software. TPA  
hardware is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
DocID022063 Rev 4  
39/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
3
Pinouts and pin description  
Figure 12. STM32F41x LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD  
VCAP_2  
PA13  
PA12  
PA11  
PA10  
PA9  
VBAT  
PC13  
PC14  
1
2
3
4
5
6
7
8
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PC15  
PH0  
PH1  
NRST  
PC0  
PA8  
LQFP64  
PC9  
PC1  
9
PC8  
PC2  
10  
11  
12  
13  
14  
15  
16  
PC7  
PC3  
PC6  
VSSA  
VDDA  
PA0_WKUP  
PA1  
PB15  
PB14  
PB13  
PB12  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai18493b  
40/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Figure 13. STM32F41x LQFP100 pinout  
PE2  
PE3  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
VSS  
2
PE4  
3
VCAP_2  
PA13  
PA12  
PA 11  
PA10  
PA9  
PE5  
PE6  
4
5
VBAT  
PC13  
PC14  
PC15  
VSS  
6
7
8
9
PA8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PC9  
VDD  
PH0  
PC8  
PC7  
PH1  
PC6  
LQFP100  
NRST  
PC0  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2  
PC3  
VDD  
VSSA  
VREF+  
VDDA  
PA0  
PD8  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
ai18495c  
DocID022063 Rev 4  
41/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Figure 14. STM32F41x LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
PC14  
PC15  
PF0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
2
VSS  
3
VCAP_2  
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
7
8
9
PA8  
10  
11  
12  
13  
14  
15  
16  
PC9  
PF1  
98  
PC8  
PF2  
97  
PC7  
PF3  
96  
PC6  
PF4  
95  
VDD  
PF5  
94  
VSS  
VSS  
93  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
VDD  
VDD 17  
92  
PF6  
PF7  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
91  
LQFP144  
90  
PF8  
89  
PF9  
88  
PF10  
PH0  
87  
86  
85  
PH1  
NRST  
PC0  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
VSS  
PC1  
PD13  
PD12  
PD11  
PD10  
PD9  
PC2  
PC3  
VDD  
VSSA  
VREF+  
VDDA  
PA0  
PA1  
PA2  
PD8  
PB15  
PB14  
PB13  
PB12  
ai18496b  
42/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Figure 15. STM32F41x LQFP176 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PI8  
PC13  
PC14  
PC15  
PI9  
1
2
3
4
5
6
7
8
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
PI1  
PI0  
PH15  
PH14  
PH13  
VDD  
VSS  
VCAP_2  
PA13  
PA12  
PA11  
PA10  
PA9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PI10  
PI11  
VSS  
PA8  
VDD  
PC9  
PC8  
PC7  
PC6  
VDD  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
VSS  
VSS  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
VDD  
LQFP176  
VDD  
PF6  
PF7  
PF8  
PF9  
PF10  
PH0  
PH1  
NRST  
PC0  
PC1  
PC2  
PC3  
VDDA  
VSSA  
VREF+  
VDDA  
PA0  
PA1  
PA2  
PH2  
PH3  
107  
106  
105  
104  
103  
VSS  
102  
PD13  
PD12  
PD11  
PD10  
PD9  
PD8  
PB15  
PB14  
PB13  
PB12  
VDD  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
VSS  
PH12  
90  
89  
MS19916V3  
DocID022063 Rev 4  
43/186  
 
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Figure 16. STM32F41x UFBGA176 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
C
D
E
F
PE3  
PE2  
PE5  
PI7  
PE1  
PE6  
PI6  
PE0  
PB9  
PI5  
PB8  
PB7  
VDD  
VSS  
PB5  
PB6  
PG14  
PG15  
VDD  
VSS  
PG13  
PG12  
VDD  
VSS  
PB4  
PG11  
VDD  
VSS  
PB3  
PG10  
PG9  
PD4  
PD7  
PD6  
PD5  
PD3  
PC12  
PD0  
PA15  
PC11  
PI3  
PA14  
PC10  
PI2  
PA13  
PA12  
PA11  
PA10  
PA9  
PE4  
VBAT  
PC13  
PC14  
PD1  
PDR_ON  
BOOT0  
PI8  
PI9  
PI4  
PD2  
PH15  
PH14  
VCAP_2  
VDD  
PI1  
PF0  
VSS  
VSS  
PF2  
PF3  
PF6  
PF9  
PC0  
PA1  
PA2  
PA3  
PI10  
VDD  
VDD  
PF1  
PF4  
PF5  
PF8  
PC1  
PA0  
PA6  
PA7  
PI11  
PH2  
PH3  
PH4  
PH5  
PH13  
VSS  
VSS  
VSS  
VDD  
PH12  
PH11  
PH8  
PI0  
PC15  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
PC9  
PC8  
PG8  
PG7  
PG4  
PD15  
PD14  
PD11  
PD9  
PB14  
PA8  
G
H
J
PH0  
PH1  
PC7  
VDD  
PC6  
NRST  
PF7  
VDD  
PG6  
PG3  
PG2  
PD13  
PD10  
PD8  
K
L
PG5  
VDD  
BYPASS_  
REG  
PF10  
PH10  
PH9  
M
N
P
R
VSSA  
VREF-  
VREF+  
VDDA  
PC2  
PA4  
PA5  
PB1  
PC3  
PC4  
PC5  
PB0  
PB2  
PF13  
PF12  
PF11  
PG1  
PG0  
VSS  
VDD  
PE8  
PE7  
VSS  
VDD  
PE9  
VCAP_1  
VDD  
PH6  
PE13  
PE14  
PE15  
PH7  
PD12  
PB13  
PB11  
PF15  
PF14  
PE11  
PB12  
PB10  
PE10  
PE12  
PB15  
ai18497b  
1. This figure shows the package top view.  
44/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Figure 17. STM32F41x WLCSP90 ballout  
10  
9
8
7
6
5
4
3
2
1
PA14  
A
B
VBAT  
PC14  
PC13 PDR_ON BOOT0  
PB4  
PD7  
PD4  
PC12  
VDD  
PI1  
PC15  
VSS  
VDD  
PB9  
PB7  
PB6  
PB3  
PD5  
PD6  
PD1  
PD2  
PA15  
PI0  
VCAP_2  
PA11  
C
PA0  
PC11  
PA12  
BYPASS_  
REG  
PA13  
VDD  
D
PC2  
PC0  
PB5  
VSS  
PD0  
VDD  
PC10  
VSS  
PA10  
PC9  
PA9  
PC8  
PA8  
PC7  
PB8  
VSS  
PC3  
E
PH1  
VDDA  
PA3  
F
PH0  
VDD  
PB0  
PE10  
PE7  
PE14 VCAP_1  
PC6  
PD14  
PD12  
PD15  
PD11  
PA1  
PA5  
G
H
NRST  
PE13  
PE12  
PE15  
PB10  
PD10  
VSSA  
PA2  
PA6  
PA7  
PB1  
PB2  
PE8  
PE9  
PD9  
PD8  
PB15  
PB13  
PE11  
PB11  
PB12  
PB14  
J
PA4  
MS30402V1  
1. This figure shows the package bump view.  
Table 6. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TTa  
B
Input / output pin  
5 V tolerant I/O  
3.3 V tolerant I/O directly connected to ADC  
Dedicated BOOT0 pin  
I/O structure  
Notes  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
DocID022063 Rev 4  
45/186  
 
 
Pinouts and pin description  
Pin number  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
TRACECLK/ FSMC_A23 /  
ETH_MII_TXD3 /  
EVENTOUT  
-
-
1
1
A2  
1
PE2  
I/O FT  
TRACED0/FSMC_A19 /  
EVENTOUT  
-
-
-
-
2
3
2
3
A1  
B1  
2
3
PE3  
PE4  
I/O FT  
I/O FT  
TRACED1/FSMC_A20 /  
DCMI_D4/ EVENTOUT  
TRACED2 / FSMC_A21 /  
TIM9_CH1 / DCMI_D6 /  
EVENTOUT  
-
-
4
4
B2  
4
PE5  
I/O FT  
TRACED3 / FSMC_A22 /  
TIM9_CH2 / DCMI_D7 /  
EVENTOUT  
-
1
-
-
A10  
-
5
6
-
5
6
-
B3  
C1  
D2  
5
6
7
PE6  
VBAT  
PI8  
I/O FT  
S
RTC_TAMP1,  
RTC_TAMP2,  
RTC_TS  
(2)(  
3)  
I/O FT  
EVENTOUT  
RTC_OUT,  
RTC_TAMP1,  
RTC_TS  
(2)  
(3)  
2
3
4
A9  
B10  
B9  
7
8
9
7
8
9
D1  
E1  
8
9
PC13  
I/O FT  
I/O FT  
I/O FT  
EVENTOUT  
EVENTOUT  
(2)(  
3)  
PC14/OSC32_IN  
(PC14)  
OSC32_IN(4)  
PC15/  
OSC32_OUT  
(2)(  
3)  
F1 10  
EVENTOUT  
OSC32_OUT(4)  
(PC15)  
-
-
-
-
-
-
-
-
D3 11  
E3 12  
PI9  
I/O FT  
I/O FT  
CAN1_RX / EVENTOUT  
ETH_MII_RX_ER /  
EVENTOUT  
PI10  
PI11  
OTG_HS_ULPI_DIR /  
EVENTOUT  
-
-
-
-
E4 13  
I/O FT  
-
-
-
-
-
-
-
-
F2 14  
F3 15  
VSS  
VDD  
S
S
FSMC_A0 / I2C2_SDA /  
EVENTOUT  
-
-
-
10 E2 16  
PF0  
I/O FT  
46/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
FSMC_A1 / I2C2_SCL /  
EVENTOUT  
-
-
-
-
-
-
11 H3 17  
12 H2 18  
PF1  
PF2  
I/O FT  
I/O FT  
FSMC_A2 / I2C2_SMBA /  
EVENTOUT  
(4)  
(4)  
(4)  
-
-
-
-
-
-
-
-
-
-
-
13 J2  
14 J3  
19  
20  
PF3  
PF4  
PF5  
VSS  
VDD  
I/O FT  
I/O FT  
I/O FT  
S
FSMC_A3/EVENTOUT  
FSMC_A4/EVENTOUT  
FSMC_A5/EVENTOUT  
ADC3_IN9  
ADC3_IN14  
ADC3_IN15  
15 K3 21  
C9 10 16 G2 22  
B8 11 17 G3 23  
S
TIM10_CH1 /  
FSMC_NIORD/  
EVENTOUT  
(4)  
(4)  
(4)  
-
-
-
-
-
-
-
-
-
18 K2 24  
19 K1 25  
20 L3 26  
PF6  
PF7  
PF8  
I/O FT  
I/O FT  
I/O FT  
ADC3_IN4  
ADC3_IN5  
ADC3_IN6  
TIM11_CH1/FSMC_NREG  
/ EVENTOUT  
TIM13_CH1 /  
FSMC_NIOWR/  
EVENTOUT  
TIM14_CH1 / FSMC_CD/  
EVENTOUT  
(4)  
(4)  
-
-
-
-
-
-
21 L2 27  
22 L1 28  
PF9  
I/O FT  
I/O FT  
I/O FT  
ADC3_IN7  
ADC3_IN8  
OSC_IN(4)  
PF10  
FSMC_INTR/ EVENTOUT  
EVENTOUT  
PH0/OSC_IN  
(PH0)  
5
F10 12 23 G1 29  
F9 13 24 H1 30  
PH1/OSC_OUT  
(PH1)  
6
7
I/O FT  
EVENTOUT  
OSC_OUT(4)  
RS  
G10 14 25 J1  
E10 15 26 M2 32  
16 27 M3 33  
31  
NRST  
I/O  
T
OTG_HS_ULPI_STP/  
EVENTOUT  
(4)  
(4)  
8
9
PC0  
PC1  
I/O FT  
I/O FT  
ADC123_IN10  
ADC123_IN11  
-
ETH_MDC/ EVENTOUT  
SPI2_MISO /  
OTG_HS_ULPI_DIR /  
ETH_MII_TXD2  
(4)  
10 D10 17 28 M4 34  
PC2  
I/O FT  
ADC123_IN12  
/I2S2ext_SD/ EVENTOUT  
DocID022063 Rev 4  
47/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
SPI2_MOSI / I2S2_SD /  
OTG_HS_ULPI_NXT /  
ETH_MII_TX_CLK/  
EVENTOUT  
(4)  
11 E9 18 29 M5 35  
PC3  
I/O FT  
ADC123_IN13  
-
-
19 30 G3 36  
VDD  
S
S
S
S
S
12 H10 20 31 M1 37  
VSSA  
-
-
-
-
-
-
N1  
-
VREF  
21 32 P1 38  
VREF+  
VDDA  
13 G9 22 33 R1 39  
USART2_CTS/  
UART4_TX/  
ETH_MII_CRS /  
TIM2_CH1_ETR/  
TIM5_CH1 / TIM8_ETR/  
EVENTOUT  
ADC123_IN0/WKUP(4  
PA0/WKUP  
(PA0)  
(5)  
14 C10 23 34 N3 40  
I/O FT  
)
USART2_RTS /  
UART4_RX/  
ETH_RMII_REF_CLK /  
ETH_MII_RX_CLK /  
TIM5_CH2 / TIM2_CH2/  
EVENTOUT  
(4)  
(4)  
15 F8 24 35 N2 41  
PA1  
PA2  
I/O FT  
I/O FT  
ADC123_IN1  
ADC123_IN2  
USART2_TX/TIM5_CH3 /  
TIM9_CH1 / TIM2_CH3 /  
ETH_MDIO/ EVENTOUT  
16 J10 25 36 P2 42  
ETH_MII_CRS/EVENTOU  
T
-
-
-
-
-
-
-
-
F4 43  
G4 44  
PH2  
PH3  
I/O FT  
I/O FT  
ETH_MII_COL/EVENTOU  
T
I2C2_SCL /  
OTG_HS_ULPI_NXT/  
EVENTOUT  
-
-
-
-
-
-
-
-
H4 45  
PH4  
PH5  
I/O FT  
I/O FT  
J4  
46  
I2C2_SDA/ EVENTOUT  
48/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
USART2_RX/TIM5_CH4 /  
TIM9_CH2 / TIM2_CH4 /  
OTG_HS_ULPI_D0 /  
ETH_MII_COL/  
(4)  
17 H9 26 37 R2 47  
PA3  
I/O FT  
ADC123_IN3  
EVENTOUT  
18 E5 27 38  
D9  
-
-
VSS  
BYPASS_REG  
VDD  
S
L4 48  
I
FT  
19 E4 28 39 K4 49  
20 J9 29 40 N4 50  
S
SPI1_NSS / SPI3_NSS /  
USART2_CK /  
DCMI_HSYNC /  
OTG_HS_SOF/ I2S3_WS/  
EVENTOUT  
ADC12_IN4  
/DAC_OUT1  
(4)  
(4)  
(4)  
PA4  
PA5  
PA6  
I/O TTa  
I/O TTa  
I/O FT  
SPI1_SCK/  
OTG_HS_ULPI_CK /  
TIM2_CH1_ETR/  
ADC12_IN5/DAC_OU  
T2  
21 G8 30 41 P4 51  
TIM8_CH1N/ EVENTOUT  
SPI1_MISO /  
TIM8_BKIN/TIM13_CH1 /  
DCMI_PIXCLK /  
TIM3_CH1 / TIM1_BKIN/  
EVENTOUT  
22 H8 31 42 P3 52  
ADC12_IN6  
ADC12_IN7  
SPI1_MOSI/ TIM8_CH1N  
/ TIM14_CH1/TIM3_CH2/  
ETH_MII_RX_DV /  
TIM1_CH1N /  
(4)  
23 J8 32 43 R3 53  
PA7  
I/O FT  
ETH_RMII_CRS_DV/  
EVENTOUT  
ETH_RMII_RX_D0 /  
ETH_MII_RX_D0/  
EVENTOUT  
(4)  
(4)  
24  
25  
-
-
33 44 N5 54  
34 45 P5 55  
PC4  
PC5  
I/O FT  
I/O FT  
ADC12_IN14  
ADC12_IN15  
ETH_RMII_RX_D1 /  
ETH_MII_RX_D1/  
EVENTOUT  
TIM3_CH3 / TIM8_CH2N/  
OTG_HS_ULPI_D1/  
(4)  
26 G7 35 46 R5 56  
PB0  
I/O FT  
ADC12_IN8  
ETH_MII_RXD2 /  
TIM1_CH2N/ EVENTOUT  
DocID022063 Rev 4  
49/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
TIM3_CH4 / TIM8_CH3N/  
OTG_HS_ULPI_D2/  
ETH_MII_RXD3 /  
TIM1_CH3N/ EVENTOUT  
(4)  
27 H7 36 47 R4 57  
28 J7 37 48 M6 58  
PB1  
I/O FT  
I/O FT  
ADC12_IN9  
PB2/BOOT1  
(PB2)  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
49 R6 59  
50 P6 60  
51 M8 61  
52 N8 62  
53 N6 63  
54 R7 64  
55 P7 65  
56 N7 66  
57 M7 67  
PF11  
PF12  
VSS  
I/O FT  
I/O FT  
S
DCMI_D12/ EVENTOUT  
FSMC_A6/ EVENTOUT  
VDD  
S
PF13  
PF14  
PF15  
PG0  
PG1  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FSMC_A7/ EVENTOUT  
FSMC_A8/ EVENTOUT  
FSMC_A9/ EVENTOUT  
FSMC_A10/ EVENTOUT  
FSMC_A11/ EVENTOUT  
FSMC_D4/TIM1_ETR/  
EVENTOUT  
-
-
-
G6 38 58 R8 68  
H6 39 59 P8 69  
J6 40 60 P9 70  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
FSMC_D5/ TIM1_CH1N/  
EVENTOUT  
FSMC_D6/TIM1_CH1/  
EVENTOUT  
-
-
-
-
-
-
61 M9 71  
62 N9 72  
VSS  
VDD  
S
S
FSMC_D7/TIM1_CH2N/  
EVENTOUT  
-
-
-
-
F6 41 63 R9 73  
J5 42 64 P10 74  
H5 43 65 R10 75  
G5 44 66 N11 76  
PE10  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FSMC_D8/TIM1_CH2/  
EVENTOUT  
FSMC_D9/TIM1_CH3N/  
EVENTOUT  
FSMC_D10/TIM1_CH3/  
EVENTOUT  
50/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
FSMC_D11/TIM1_CH4/  
EVENTOUT  
-
-
F5 45 67 P11 77  
G4 46 68 R11 78  
PE14  
PE15  
I/O FT  
I/O FT  
FSMC_D12/TIM1_BKIN/  
EVENTOUT  
SPI2_SCK / I2S2_CK /  
I2C2_SCL/ USART3_TX /  
OTG_HS_ULPI_D3 /  
ETH_MII_RX_ER /  
29 H4 47 69 R12 79  
PB10  
PB11  
I/O FT  
I/O FT  
TIM2_CH3/ EVENTOUT  
I2C2_SDA/USART3_RX/  
OTG_HS_ULPI_D4 /  
ETH_RMII_TX_EN/  
ETH_MII_TX_EN /  
TIM2_CH4/ EVENTOUT  
30 J4 48 70 R13 80  
31 F4 49 71 M10 81  
VCAP_1  
VDD  
S
S
32  
-
50 72 N10 82  
I2C2_SMBA / TIM12_CH1  
/ ETH_MII_RXD2/  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
M11 83  
N12 84  
M12 85  
M13 86  
PH6  
PH7  
PH8  
PH9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I2C3_SCL /  
ETH_MII_RXD3/  
EVENTOUT  
-
-
-
-
-
-
I2C3_SDA /  
DCMI_HSYNC/  
EVENTOUT  
I2C3_SMBA /  
TIM12_CH2/ DCMI_D0/  
EVENTOUT  
TIM5_CH1 / DCMI_D1/  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
L13 87  
L12 88  
K12 89  
PH10  
PH11  
PH12  
I/O FT  
I/O FT  
I/O FT  
TIM5_CH2 / DCMI_D2/  
EVENTOUT  
TIM5_CH3 / DCMI_D3/  
EVENTOUT  
-
-
-
-
-
-
-
-
H12 90  
J12 91  
VSS  
VDD  
S
S
DocID022063 Rev 4  
51/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
SPI2_NSS / I2S2_WS /  
I2C2_SMBA/  
USART3_CK/ TIM1_BKIN  
/ CAN2_RX /  
33 J3 51 73 P12 92  
PB12  
PB13  
I/O FT  
OTG_HS_ULPI_D5/  
ETH_RMII_TXD0 /  
ETH_MII_TXD0/  
OTG_HS_ID/ EVENTOUT  
SPI2_SCK / I2S2_CK /  
USART3_CTS/  
TIM1_CH1N /CAN2_TX /  
OTG_HS_ULPI_D6 /  
ETH_RMII_TXD1 /  
ETH_MII_TXD1/  
34 J1 52 74 P13 93  
I/O FT  
OTG_HS_VBUS  
EVENTOUT  
SPI2_MISO/ TIM1_CH2N  
/ TIM12_CH1 /  
OTG_HS_DM/  
USART3_RTS /  
TIM8_CH2N/I2S2ext_SD/  
EVENTOUT  
35 J2 53 75 R14 94  
PB14  
PB15  
I/O FT  
SPI2_MOSI / I2S2_SD/  
TIM1_CH3N / TIM8_CH3N  
/ TIM12_CH2 /  
36 H1 54 76 R15 95  
I/O FT  
RTC_REFIN  
OTG_HS_DP/  
EVENTOUT  
FSMC_D13 /  
USART3_TX/ EVENTOUT  
-
-
-
H2 55 77 P15 96  
H3 56 78 P14 97  
G3 57 79 N15 98  
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
FSMC_D14 /  
USART3_RX/ EVENTOUT  
FSMC_D15 /  
USART3_CK/ EVENTOUT  
PD10  
FSMC_CLE /  
FSMC_A16/USART3_CT  
S/ EVENTOUT  
-
-
G1 58 80 N14 99  
G2 59 81 N13 100  
PD11  
PD12  
I/O FT  
I/O FT  
FSMC_ALE/  
FSMC_A17/TIM4_CH1 /  
USART3_RTS/  
EVENTOUT  
52/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
FSMC_A18/TIM4_CH2/  
EVENTOUT  
-
-
60 82 M15 101  
PD13  
I/O FT  
-
-
-
-
-
-
83  
-
102  
VSS  
VDD  
S
S
84 J13 103  
FSMC_D0/TIM4_CH3/  
EVENTOUT/ EVENTOUT  
-
-
F2 61 85 M14 104  
F1 62 86 L14 105  
PD14  
PD15  
I/O FT  
I/O FT  
FSMC_D1/TIM4_CH4/  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
87 L15 106  
88 K15 107  
89 K14 108  
90 K13 109  
91 J15 110  
PG2  
PG3  
PG4  
PG5  
PG6  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FSMC_A12/ EVENTOUT  
FSMC_A13/ EVENTOUT  
FSMC_A14/ EVENTOUT  
FSMC_A15/ EVENTOUT  
FSMC_INT2/ EVENTOUT  
FSMC_INT3  
/USART6_CK/  
EVENTOUT  
-
-
-
-
-
-
92 J14 111  
93 H14 112  
PG7  
PG8  
I/O FT  
I/O FT  
USART6_RTS /  
ETH_PPS_OUT/  
EVENTOUT  
-
-
-
-
-
-
94 G12 113  
95 H13 114  
VSS  
VDD  
S
S
I2S2_MCK /  
TIM8_CH1/SDIO_D6 /  
USART6_TX /  
37 F3 63 96 H15 115  
PC6  
I/O FT  
DCMI_D0/TIM3_CH1/  
EVENTOUT  
I2S3_MCK /  
TIM8_CH2/SDIO_D7 /  
USART6_RX /  
DCMI_D1/TIM3_CH2/  
EVENTOUT  
38 E1 64 97 G15 116  
39 E2 65 98 G14 117  
PC7  
PC8  
I/O FT  
I/O FT  
TIM8_CH3/SDIO_D0  
/TIM3_CH3/ USART6_CK  
/ DCMI_D2/ EVENTOUT  
DocID022063 Rev 4  
53/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
I2S_CKIN/ MCO2 /  
TIM8_CH4/SDIO_D1 /  
/I2C3_SDA / DCMI_D3 /  
TIM3_CH4/ EVENTOUT  
40 E3 66 99 F14 118  
41 D1 67 100 F15 119  
PC9  
PA8  
I/O FT  
I/O FT  
MCO1 / USART1_CK/  
TIM1_CH1/ I2C3_SCL/  
OTG_FS_SOF/  
EVENTOUT  
USART1_TX/ TIM1_CH2 /  
I2C3_SMBA / DCMI_D0/  
EVENTOUT  
42 D2 68 101 E15 120  
43 D3 69 102 D15 121  
PA9  
I/O FT  
I/O FT  
OTG_FS_VBUS  
USART1_RX/ TIM1_CH3/  
OTG_FS_ID/DCMI_D1/  
EVENTOUT  
PA10  
USART1_CTS / CAN1_RX  
/ TIM1_CH4 /  
44 C1 70 103 C15 122  
45 C2 71 104 B15 123  
PA11  
PA12  
I/O FT  
OTG_FS_DM/  
EVENTOUT  
USART1_RTS /  
CAN1_TX/ TIM1_ETR/  
OTG_FS_DP/  
I/O FT  
I/O FT  
EVENTOUT  
PA13  
JTMS-SWDIO/  
EVENTOUT  
46 D4 72 105 A15 124  
47 B1 73 106 F13 125  
(JTMS-SWDIO)  
VCAP_2  
VSS  
S
S
S
-
E7 74 107 F12 126  
48 E6 75 108 G13 127  
VDD  
TIM8_CH1N / CAN1_TX/  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
E12 128  
E13 129  
D13 130  
PH13  
PH14  
PH15  
I/O FT  
I/O FT  
I/O FT  
TIM8_CH2N / DCMI_D4/  
EVENTOUT  
TIM8_CH3N / DCMI_D11/  
EVENTOUT  
TIM5_CH4 / SPI2_NSS /  
I2S2_WS / DCMI_D13/  
EVENTOUT  
-
C3  
-
-
E14 131  
PI0  
I/O FT  
54/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
SPI2_SCK / I2S2_CK /  
DCMI_D8/ EVENTOUT  
-
-
B2  
-
-
-
-
-
D14 132  
C14 133  
PI1  
PI2  
I/O FT  
I/O FT  
TIM8_CH4 /SPI2_MISO /  
DCMI_D9 / I2S2ext_SD/  
EVENTOUT  
TIM8_ETR / SPI2_MOSI /  
I2S2_SD / DCMI_D10/  
EVENTOUT  
-
-
-
-
C13 134  
PI3  
I/O FT  
-
-
-
-
-
-
-
-
D9 135  
C9 136  
VSS  
VDD  
S
S
PA14  
JTCK-SWCLK/  
EVENTOUT  
49 A2 76 109 A14 137  
I/O FT  
(JTCK/SWCLK)  
JTDI/ SPI3_NSS/  
I2S3_WS/TIM2_CH1_ET  
R / SPI1_NSS /  
PA15  
50 B3 77 110 A13 138  
I/O FT  
(JTDI)  
EVENTOUT  
SPI3_SCK / I2S3_CK/  
UART4_TX/SDIO_D2 /  
DCMI_D8 / USART3_TX/  
EVENTOUT  
51 D5 78 111 B14 139  
52 C4 79 112 B13 140  
53 A3 80 113 A12 141  
PC10  
PC11  
PC12  
I/O FT  
I/O FT  
I/O FT  
UART4_RX/ SPI3_MISO /  
SDIO_D3 /  
DCMI_D4/USART3_RX /  
I2S3ext_SD/ EVENTOUT  
UART5_TX/SDIO_CK /  
DCMI_D9 / SPI3_MOSI  
/I2S3_SD / USART3_CK/  
EVENTOUT  
FSMC_D2/CAN1_RX/  
EVENTOUT  
-
-
D6 81 114 B12 142  
C5 82 115 C12 143  
PD0  
PD1  
I/O FT  
I/O FT  
FSMC_D3 / CAN1_TX/  
EVENTOUT  
TIM3_ETR/UART5_RX/  
SDIO_CMD / DCMI_D11/  
EVENTOUT  
54 B4 83 116 D12 144  
PD2  
I/O FT  
DocID022063 Rev 4  
55/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
FSMC_CLK/  
USART2_CTS/  
EVENTOUT  
-
-
84 117 D11 145  
PD3  
I/O FT  
FSMC_NOE/  
USART2_RTS/  
EVENTOUT  
-
-
A4 85 118 D10 146  
C6 86 119 C11 147  
PD4  
PD5  
I/O FT  
I/O FT  
FSMC_NWE/USART2_TX  
/ EVENTOUT  
-
-
-
-
-
-
120 D8 148  
121 C8 149  
VSS  
VDD  
S
S
FSMC_NWAIT/  
USART2_RX/ EVENTOUT  
-
-
B5 87 122 B11 150  
A5 88 123 A11 151  
PD6  
PD7  
I/O FT  
I/O FT  
USART2_CK/FSMC_NE1/  
FSMC_NCE2/  
EVENTOUT  
USART6_RX /  
FSMC_NE2/FSMC_NCE3  
/ EVENTOUT  
-
-
-
-
-
-
124 C10 152  
125 B10 153  
PG9  
I/O FT  
I/O FT  
FSMC_NCE4_1/  
FSMC_NE3/ EVENTOUT  
PG10  
FSMC_NCE4_2 /  
ETH_MII_TX_EN/  
ETH _RMII_TX_EN/  
EVENTOUT  
-
-
-
-
-
-
126 B9 154  
127 B8 155  
PG11  
PG12  
I/O FT  
I/O FT  
FSMC_NE4 /  
USART6_RTS/  
EVENTOUT  
FSMC_A24 /  
USART6_CTS  
/ETH_MII_TXD0/  
ETH_RMII_TXD0/  
EVENTOUT  
-
-
-
-
-
-
128 A8 156  
129 A7 157  
PG13  
PG14  
I/O FT  
I/O FT  
FSMC_A25 / USART6_TX  
/ETH_MII_TXD1/  
ETH_RMII_TXD1/  
EVENTOUT  
56/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
-
-
E8  
F7  
-
-
130 D7 158  
VSS  
VDD  
S
S
131 C7 159  
132 B7 160  
USART6_CTS /  
DCMI_D13/ EVENTOUT  
-
-
-
PG15  
I/O FT  
JTDO/ TRACESWO/  
SPI3_SCK / I2S3_CK /  
TIM2_CH2 / SPI1_SCK/  
EVENTOUT  
PB3  
55 B6 89 133 A10 161  
56 A6 90 134 A9 162  
I/O FT  
(JTDO/  
TRACESWO)  
NJTRST/ SPI3_MISO /  
TIM3_CH1 / SPI1_MISO /  
I2S3ext_SD/ EVENTOUT  
PB4  
I/O FT  
I/O FT  
(NJTRST)  
I2C1_SMBA/ CAN2_RX /  
OTG_HS_ULPI_D7 /  
ETH_PPS_OUT/TIM3_CH  
2 / SPI1_MOSI/  
SPI3_MOSI / DCMI_D10 /  
I2S3_SD/ EVENTOUT  
57 D7 91 135 A6 163  
PB5  
PB6  
I2C1_SCL/ TIM4_CH1 /  
CAN2_TX /  
DCMI_D5/USART1_TX/  
EVENTOUT  
58 C7 92 136 B6 164  
I/O FT  
I/O FT  
I2C1_SDA / FSMC_NL /  
DCMI_VSYNC /  
USART1_RX/ TIM4_CH2/  
EVENTOUT  
59 B7 93 137 B5 165  
60 A7 94 138 D6 166  
PB7  
BOOT0  
I
B
VPP  
TIM4_CH3/SDIO_D4/  
TIM10_CH1 / DCMI_D6 /  
ETH_MII_TXD3 /  
I2C1_SCL/ CAN1_RX/  
EVENTOUT  
61 D8 95 139 A5 167  
PB8  
PB9  
I/O FT  
I/O FT  
SPI2_NSS/ I2S2_WS /  
TIM4_CH4/ TIM11_CH1/  
SDIO_D5 / DCMI_D7 /  
I2C1_SDA / CAN1_TX/  
EVENTOUT  
62 C8 96 140 B4 168  
DocID022063 Rev 4  
57/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 7. STM32F41x pin and ball definitions (continued)  
Pin number  
Pin name  
Alternate functions  
Additional functions  
(function after  
reset)(1)  
TIM4_ETR / FSMC_NBL0  
/ DCMI_D2/ EVENTOUT  
-
-
-
-
97 141 A4 169  
98 142 A3 170  
PE0  
PE1  
I/O FT  
FSMC_NBL1 / DCMI_D3/  
EVENTOUT  
I/O FT  
S
63  
-
-
99  
-
-
D5  
-
VSS  
A8  
143 C6 171  
144 C5 172  
PDR_ON  
I
FT  
10  
0
64 A1  
VDD  
PI4  
S
TIM8_BKIN / DCMI_D5/  
EVENTOUT  
-
-
-
-
-
-
-
-
D4 173  
C4 174  
I/O FT  
I/O FT  
TIM8_CH1 /  
DCMI_VSYNC/  
EVENTOUT  
PI5  
TIM8_CH2 / DCMI_D6/  
EVENTOUT  
-
-
-
-
-
-
-
-
C3 175  
C2 176  
PI6  
PI7  
I/O FT  
I/O FT  
TIM8_CH3 / DCMI_D7/  
EVENTOUT  
1. Function availability depends on the chosen device.  
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:  
www.st.com.  
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
5. If the device is delivered in an UFBGA176 or WLCSP90 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset  
ON mode), then PA0 is used as an internal Reset (active low).  
Table 8. FSMC pin definition  
FSMC  
WLCSP90  
Pins(1)  
LQFP100(2)  
(2)  
NOR/PSRAM/  
SRAM  
CF  
NOR/PSRAM Mux NAND 16 bit  
PE2  
PE3  
A23  
A19  
A23  
A19  
Yes  
Yes  
58/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Pinouts and pin description  
Table 8. FSMC pin definition (continued)  
FSMC  
WLCSP90  
Pins(1)  
CF  
LQFP100(2)  
(2)  
NOR/PSRAM/  
SRAM  
NOR/PSRAM Mux NAND 16 bit  
PE4  
PE5  
PE6  
A20  
A21  
A22  
A0  
A20  
A21  
A22  
Yes  
Yes  
Yes  
PF0  
PF1  
A0  
A1  
-
-
A1  
-
-
PF2  
A2  
A2  
-
-
PF3  
A3  
A3  
-
-
-
-
PF4  
A4  
A4  
PF5  
A5  
A5  
-
-
PF6  
NIORD  
NREG  
NIOWR  
CD  
-
-
PF7  
-
-
PF8  
-
-
PF9  
-
-
PF10  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PE7  
INTR  
A6  
-
-
A6  
A7  
-
-
A7  
-
-
A8  
A8  
-
-
A9  
A9  
-
-
A10  
A10  
A11  
D4  
-
-
-
-
D4  
D5  
DA4  
DA5  
D4  
D5  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PE8  
D5  
PE9  
D6  
D6  
DA6  
D6  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
PD9  
PD10  
PD11  
D7  
D7  
DA7  
D7  
D8  
D8  
DA8  
D8  
D9  
D9  
DA9  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D10  
D11  
D12  
D13  
D14  
D15  
A16  
DA10  
DA11  
DA12  
DA13  
DA14  
DA15  
A16  
D10  
D11  
D12  
D13  
D14  
D15  
CLE  
DocID022063 Rev 4  
59/186  
Pinouts and pin description  
STM32F415xx, STM32F417xx  
Table 8. FSMC pin definition (continued)  
FSMC  
WLCSP90  
Pins(1)  
CF  
LQFP100(2)  
(2)  
NOR/PSRAM/  
SRAM  
NOR/PSRAM Mux NAND 16 bit  
PD12  
PD13  
A17  
A18  
D0  
A17  
A18  
DA0  
DA1  
ALE  
Yes  
Yes  
Yes  
Yes  
-
Yes  
PD14  
PD15  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PD0  
PD1  
PD3  
PD4  
PD5  
PD6  
PD7  
PG9  
PG10  
PG11  
PG12  
PG13  
PG14  
PB7  
D0  
D1  
D0  
D1  
Yes  
D1  
Yes  
A12  
A13  
A14  
A15  
-
-
-
-
-
-
-
-
INT2  
INT3  
D2  
-
-
-
D2  
D3  
D2  
D3  
DA2  
DA3  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
-
Yes  
Yes  
D3  
CLK  
NOE  
NWE  
NWAIT  
NE1  
NE2  
NE3  
CLK  
NOE  
NWE  
NOE  
NWE  
NWAIT  
NE1  
NOE  
NWE  
Yes  
Yes  
NWAIT  
NWAIT  
NCE2  
NCE3  
Yes  
Yes  
NE2  
-
NCE4_1  
NCE4_2  
NE3  
-
-
-
-
NE4  
A24  
NE4  
A24  
-
-
-
-
-
A25  
A25  
-
NADV  
NBL0  
NBL1  
NADV  
NBL0  
NBL1  
Yes  
Yes  
Yes  
Yes  
PE0  
PE1  
1. Full FSMC features are available on LQFP144, LQFP176, and UFBGA176. The features available on  
smaller packages are given in the dedicated package column.  
2. Ports F and G are not available in devices delivered in 100-pin packages.  
60/186  
DocID022063 Rev 4  
Table 9. Alternate function mapping  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
TIM2_CH1_E  
TR  
PA0  
PA1  
TIM 5_CH1  
TIM5_CH2  
TIM8_ETR  
USART2_CTS  
USART2_RTS  
UART4_TX  
UART4_RX  
ETH_MII_CRS  
EVENTOUT  
EVENTOUT  
ETH_MII  
_RX_CLK  
TIM2_CH2  
ETH_RMII__REF  
_CLK  
PA2  
PA3  
TIM2_CH3  
TIM2_CH4  
TIM5_CH3  
TIM5_CH4  
TIM9_CH1  
TIM9_CH2  
USART2_TX  
USART2_RX  
ETH_MDIO  
EVENTOUT  
EVENTOUT  
OTG_HS_ULPI_  
D0  
ETH _MII_COL  
SPI3_NSS  
I2S3_WS  
OTG_HS_SO  
F
DCMI_HSYN  
C
PA4  
SPI1_NSS  
USART2_CK  
EVENTOUT  
TIM2_CH1_E  
TR  
OTG_HS_ULPI_  
CK  
PA5  
PA6  
TIM8_CH1N  
TIM8_BKIN  
SPI1_SCK  
EVENTOUT  
EVENTOUT  
TIM1_BKIN  
TIM1_CH1N  
TIM3_CH1  
TIM3_CH2  
SPI1_MISO  
TIM13_CH1  
TIM14_CH1  
DCMI_PIXCK  
ETH_MII _RX_DV  
ETH_RMII  
Port A  
PA7  
TIM8_CH1N  
SPI1_MOSI  
EVENTOUT  
_CRS_DV  
PA8  
PA9  
MCO1  
TIM1_CH1  
TIM1_CH2  
I2C3_SCL  
USART1_CK  
USART1_TX  
OTG_FS_SOF  
EVENTOUT  
EVENTOUT  
I2C3_SMB  
A
DCMI_D0  
DCMI_D1  
PA10  
PA11  
PA12  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
USART1_RX  
USART1_CTS  
USART1_RTS  
OTG_FS_ID  
OTG_FS_DM  
OTG_FS_DP  
EVENTOUT  
EVENTOUT  
EVENTOUT  
CAN1_RX  
CAN1_TX  
JTMS-  
SWDIO  
PA13  
PA14  
PA15  
EVENTOUT  
EVENTOUT  
EVENTOUT  
JTCK-  
SWCLK  
TIM 2_CH1  
TIM 2_ETR  
SPI3_NSS/  
I2S3_WS  
JTDI  
SPI1_NSS  
 
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
OTG_HS_ULPI_  
D1  
PB0  
TIM1_CH2N  
TIM1_CH3N  
TIM3_CH3  
TIM3_CH4  
TIM8_CH2N  
TIM8_CH3N  
ETH _MII_RXD2  
ETH _MII_RXD3  
EVENTOUT  
OTG_HS_ULPI_  
D2  
PB1  
PB2  
EVENTOUT  
EVENTOUT  
JTDO/  
TRACES  
WO  
SPI3_SCK  
I2S3_CK  
PB3  
TIM2_CH2  
SPI1_SCK  
EVENTOUT  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
NJTRST  
TIM3_CH1  
TIM3_CH2  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
SPI1_MISO  
SPI1_MOSI  
SPI3_MISO  
I2S3ext_SD  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2C1_SMB  
A
SPI3_MOSI  
I2S3_SD  
OTG_HS_ULPI_  
D7  
CAN2_RX  
CAN2_TX  
ETH _PPS_OUT  
DCMI_D10  
DCMI_D5  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
USART1_TX  
USART1_RX  
DCMI_VSYN  
C
FSMC_NL  
SDIO_D4  
SDIO_D5  
Port B  
TIM10_CH1  
TIM11_CH1  
CAN1_RX  
CAN1_TX  
ETH _MII_TXD3  
DCMI_D6  
DCMI_D7  
SPI2_NSS  
I2S2_WS  
SPI2_SCK  
I2S2_CK  
OTG_HS_ULPI_  
D3  
PB10  
PB11  
PB12  
TIM2_CH3  
TIM2_CH4  
TIM1_BKIN  
I2C2_SCL  
I2C2_SDA  
USART3_TX  
USART3_RX  
USART3_CK  
ETH_ MII_RX_ER  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ETH _MII_TX_EN  
ETH  
_RMII_TX_EN  
OTG_HS_ULPI_  
D4  
I2C2_SMB  
A
SPI2_NSS  
I2S2_WS  
OTG_HS_ULPI_  
D5  
ETH _MII_TXD0  
ETH _RMII_TXD0  
CAN2_RX  
OTG_HS_ID  
ETH _MII_TXD1  
ETH _RMII_TXD1  
SPI2_SCK  
I2S2_CK  
OTG_HS_ULPI_  
D6  
PB13  
PB14  
PB15  
TIM1_CH1N  
TIM1_CH2N  
TIM1_CH3N  
USART3_CTS  
USART3_RTS  
CAN2_TX  
TIM12_CH1  
TIM12_CH2  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM8_CH2N  
TIM8_CH3N  
SPI2_MISO  
I2S2ext_SD  
OTG_HS_DM  
OTG_HS_DP  
RTC_  
REFIN  
SPI2_MOSI  
I2S2_SD  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
OTG_HS_ULPI_  
STP  
PC0  
PC1  
PC2  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ETH_MDC  
OTG_HS_ULPI_  
DIR  
SPI2_MISO  
I2S2ext_SD  
ETH _MII_TXD2  
SPI2_MOSI  
I2S2_SD  
OTG_HS_ULPI_  
NXT  
ETH  
_MII_TX_CLK  
PC3  
PC4  
PC5  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ETH_MII_RXD0  
ETH_RMII_RXD0  
ETH _MII_RXD1  
ETH _RMII_RXD1  
PC6  
PC7  
PC8  
PC9  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
TIM8_CH1  
TIM8_CH2  
TIM8_CH3  
TIM8_CH4  
I2S2_MCK  
USART6_TX  
USART6_RX  
USART6_CK  
SDIO_D6  
SDIO_D7  
SDIO_D0  
SDIO_D1  
DCMI_D0  
DCMI_D1  
DCMI_D2  
DCMI_D3  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
Port C  
I2S3_MCK  
MCO2  
I2C3_SDA  
I2S_CKIN  
SPI3_SCK/  
I2S3_CK  
PC10  
PC11  
PC12  
USART3_TX/  
USART3_RX  
USART3_CK  
UART4_TX  
UART4_RX  
UART5_TX  
SDIO_D2  
SDIO_D3  
SDIO_CK  
DCMI_D8  
DCMI_D4  
DCMI_D9  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2S3ext_SD  
SPI3_MISO/  
SPI3_MOSI  
I2S3_SD  
PC13  
PC14  
PC15  
EVENTOUT  
EVENTOUT  
EVENTOUT  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
CAN1_RX  
CAN1_TX  
FSMC_D2  
FSMC_D3  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM3_ETR  
UART5_RX  
SDIO_CMD  
FSMC_CLK  
FSMC_NOE  
FSMC_NWE  
FSMC_NWAIT  
DCMI_D11  
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
FSMC_NE1/  
FSMC_NCE2  
PD7  
USART2_CK  
EVENTOUT  
Port D  
PD8  
PD9  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
FSMC_D13  
FSMC_D14  
FSMC_D15  
FSMC_A16  
FSMC_A17  
FSMC_A18  
FSMC_D0  
FSMC_D1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
PE0  
PE1  
TIM4_ETR  
FSMC_NBL0  
FSMC_NBL1  
DCMI_D2  
DCMI_D3  
EVENTOUT  
EVENTOUT  
TRACECL  
K
PE2  
ETH _MII_TXD3  
FSMC_A23  
EVENTOUT  
PE3  
PE4  
PE5  
PE6  
PE7  
PE8  
PE9  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
FSMC_A19  
FSMC_A20  
FSMC_A21  
FSMC_A22  
FSMC_D4  
FSMC_D5  
FSMC_D6  
FSMC_D7  
FSMC_D8  
FSMC_D9  
FSMC_D10  
FSMC_D11  
FSMC_D12  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
DCMI_D4  
DCMI_D6  
DCMI_D7  
TIM9_CH1  
TIM9_CH2  
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
Port E  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
PF0  
PF1  
I2C2_SDA  
I2C2_SCL  
FSMC_A0  
FSMC_A1  
EVENTOUT  
EVENTOUT  
I2C2_  
SMBA  
PF2  
FSMC_A2  
EVENTOUT  
PF3  
PF4  
PF5  
PF6  
PF7  
FSMC_A3  
FSMC_A4  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
FSMC_A5  
TIM10_CH1  
TIM11_CH1  
FSMC_NIORD  
FSMC_NREG  
Port F  
FSMC_  
NIOWR  
PF8  
PF9  
TIM13_CH1  
TIM14_CH1  
EVENTOUT  
FSMC_CD  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
FSMC_INTR  
DCMI_D12  
FSMC_A6  
FSMC_A7  
FSMC_A8  
FSMC_A9  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
FSMC_A10  
FSMC_A11  
FSMC_A12  
FSMC_A13  
FSMC_A14  
FSMC_A15  
FSMC_INT2  
FSMC_INT3  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
USART6_CK  
USART6_  
RTS  
PG8  
PG9  
ETH _PPS_OUT  
EVENTOUT  
EVENTOUT  
FSMC_NE2/  
FSMC_NCE3  
USART6_RX  
Port G  
FSMC_  
NCE4_1/  
FSMC_NE3  
PG10  
PG11  
EVENTOUT  
EVENTOUT  
ETH _MII_TX_EN  
ETH _RMII_  
TX_EN  
FSMC_NCE4_  
2
USART6_  
RTS  
PG12  
PG13  
PG14  
PG15  
FSMC_NE4  
FSMC_A24  
FSMC_A25  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ETH _MII_TXD0  
ETH _RMII_TXD0  
UART6_CTS  
USART6_TX  
ETH _MII_TXD1  
ETH _RMII_TXD1  
USART6_  
CTS  
DCMI_D13  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
PH0  
PH1  
PH2  
PH3  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
ETH _MII_CRS  
ETH _MII_COL  
OTG_HS_ULPI_  
NXT  
PH4  
PH5  
PH6  
PH7  
PH8  
I2C2_SCL  
I2C2_SDA  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
I2C2_SMB  
A
TIM12_CH1  
ETH _MII_RXD2  
ETH _MII_RXD3  
I2C3_SCL  
I2C3_SDA  
PortH  
DCMI_HSYN  
C
I2C3_SMB  
A
PH9  
TIM12_CH2  
DCMI_D0  
EVENTOUT  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
TIM5_CH1  
TIM5_CH2  
TIM5_CH3  
DCMI_D1  
DCMI_D2  
DCMI_D3  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM8_CH1N  
TIM8_CH2N  
TIM8_CH3N  
CAN1_TX  
DCMI_D4  
DCMI_D11  
Table 9. Alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
ETH  
AF12  
AF13  
DCMI  
Port  
AF14  
AF15  
CAN1/  
CAN2/  
TIM12/13/14  
SPI1/SPI2/  
TIM8/9/10/1  
1
SPI3/I2Sext/  
I2S3  
USART1/2/3/  
I2S3ext  
UART4/5/  
USART6  
OTG_FS/  
OTG_HS  
FSMC/SDIO/  
OTG_FS  
TIM1/2  
TIM3/4/5  
I2C1/2/3  
I2S2/I2S2ext  
SPI2_NSS  
I2S2_WS  
PI0  
TIM5_CH4  
DCMI_D13  
EVENTOUT  
SPI2_SCK  
I2S2_CK  
PI1  
PI2  
PI3  
PI4  
PI5  
DCMI_D8  
DCMI_D9  
DCMI_D10  
DCMI_D5  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TIM8_CH4  
TIM8_ETR  
TIM8_BKIN  
TIM8_CH1  
SPI2_MISO  
I2S2ext_SD  
SPI2_MOSI  
I2S2_SD  
DCMI_  
VSYNC  
Port I  
PI6  
PI7  
TIM8_CH2  
TIM8_CH3  
DCMI_D6  
DCMI_D7  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PI8  
PI9  
CAN1_RX  
PI10  
ETH _MII_RX_ER  
OTG_HS_ULPI_  
DIR  
PI11  
EVENTOUT  
Memory mapping  
STM32F415xx, STM32F417xx  
4
Memory mapping  
The memory map is shown in Figure 18.  
Figure 18. STM32F41x memory map  
0xE010 0000 - 0xFFFF FFFF  
Reserved  
0xE000 0000 - 0xE00F FFFF  
CORTEX-M4 internal peripherals  
Reserved  
AHB3  
0xA000 1000 - 0xDFFF FFFF  
0xA000 0FFF  
0x6000 0000  
0x5006 0C00 - 0x5FFF FFFF  
Reserved  
0x5006 0BFF  
AHB2  
0xFFFF FFFF  
512-Mbyte  
block 7  
0x5000 0000  
0x4008 0000 - 0x4FFF FFFF  
0x4007 FFFF  
Cortex-M4's  
internal  
peripherals  
Reserved  
0xE000 0000  
0xDFFF FFFF  
512-Mbyte  
block 6  
Not used  
0xC000 0000  
0xBFFF FFFF  
AHB1  
512-Mbyte  
block 5  
FSMC registers  
0xA000 0000  
0x9FFF FFFF  
512-Mbyte  
block 4  
0x4002 000  
0x4001 5800 - 0x4001 FFFF  
0x4001 57FF  
Reserved  
FSMC bank 3  
& bank4  
0x8000 0000  
0x7FFF FFFF  
512-Mbyte  
block 3  
FSMC bank1  
& bank2  
0x6000 0000  
0x5FFF FFFF  
512-Mbyte  
block 2  
Peripherals  
APB2  
0x4000 0000  
0x3FFF FFFF  
512-Mbyte  
block 1  
SRAM  
0x4001 0000  
0x4000 7800 - 0x4000 FFFF  
0x4000 7FFF  
Reserved  
0x2002 0000 - 0x3FFF FFFF  
0x2001 C000 - 0x2001 FFFF  
0x2000 0000  
0x1FFF FFFF  
Reserved  
SRAM (16 KB aliased  
by bit-banding)  
512-Mbyte  
block 0  
Code  
SRAM (112 KB aliased  
by bit-banding)  
0x2000 0000 - 0x2001 BFFF  
0x0000 0000  
Reserved  
Option Bytes  
Reserved  
0x1FFF C008 - 0x1FFF FFFF  
0x1FFF C000 - 0x1FFF C007  
0x1FFF 7A10 - 0x1FFF 7FFF  
System memory + OTP 0x1FFF 0000 - 0x1FFF 7A0F  
0x1001 0000 - 0x1FFE FFFF  
0x1000 0000 - 0x1000 FFFF  
0x0810 0000 - 0x0FFF FFFF  
Reserved  
CCM data RAM  
(64 KB data SRAM)  
APB1  
Reserved  
Flash  
0x0800 0000 - 0x080F FFFF  
Reserved  
0x0010 0000 - 0x07FF FFFF  
Aliased to Flash, system  
memory or SRAM depending  
on the BOOT pins  
0x0000 0000 - 0x000F FFFF  
0x4000 0000  
ai18513f  
70/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Memory mapping  
Table 10. STM32F41x register boundary addresses  
Bus  
Boundary address  
Peripheral  
0xE00F FFFF - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xA000 1000 - 0xDFFF FFFF  
0xA000 0000 - 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00- 0x5FFF FFFF  
0x5006 0800 - 0x5006 0BFF  
0x5006 0400 - 0x5006 07FF  
0x5006 0000 - 0x5006 03FF  
0x5005 0400 - 0x5005 FFFF  
0x5005 0000 - 0x5005 03FF  
0x5004 0000- 0x5004 FFFF  
0x5000 0000 - 0x5003 FFFF  
0x4008 0000- 0x4FFF FFFF  
Reserved  
Cortex-M4  
Cortex-M4 internal peripherals  
Reserved  
FSMC control register  
FSMC bank 4  
FSMC bank 3  
FSMC bank 2  
FSMC bank 1  
Reserved  
AHB3  
RNG  
HASH  
CRYP  
AHB2  
Reserved  
DCMI  
Reserved  
USB OTG FS  
Reserved  
DocID022063 Rev 4  
71/186  
 
Memory mapping  
STM32F415xx, STM32F417xx  
Table 10. STM32F41x register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4004 0000 - 0x4007 FFFF  
0x4002 9400 - 0x4003 FFFF  
0x4002 9000 - 0x4002 93FF  
0x4002 8C00 - 0x4002 8FFF  
0x4002 8800 - 0x4002 8BFF  
0x4002 8400 - 0x4002 87FF  
0x4002 8000 - 0x4002 83FF  
0x4002 6800 - 0x4002 7FFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0x4002 5000 - 0x4002 5FFF  
0x4002 4000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0x4002 3400 - 0x4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0x4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
0x4001 5800- 0x4001 FFFF  
USB OTG HS  
Reserved  
ETHERNET MAC  
Reserved  
DMA2  
DMA1  
Reserved  
BKPSRAM  
Flash interface register  
RCC  
AHB1  
Reserved  
CRC  
Reserved  
GPIOI  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
Reserved  
72/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Memory mapping  
Table 10. STM32F41x register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 4C00 - 0x4001 57FF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
0x4000 7800- 0x4000 FFFF  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
SYSCFG  
Reserved  
SPI1  
APB2  
SDIO  
Reserved  
ADC1 - ADC2 - ADC3  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
Reserved  
DocID022063 Rev 4  
73/186  
Memory mapping  
STM32F415xx, STM32F417xx  
Table 10. STM32F41x register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4000 7800 - 0x4000 7FFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
DAC  
PWR  
Reserved  
CAN2  
CAN1  
Reserved  
I2C3  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
74/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.8 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 19.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 20.  
Figure 19. Pin loading conditions  
Figure 20. Pin input voltage  
STM32F pin  
STM32F pin  
V
OSC_OUT (Hi-Z when  
using HSE or LSE)  
IN  
C =50 pF  
OSC_OUT (Hi-Z when  
using HSE or LSE)  
MS19010V1  
MS19011V1  
DocID022063 Rev 4  
75/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
5.1.6  
Power supply scheme  
Figure 21. Power supply scheme  
VBAT  
Backup circuitry  
VBAT =  
1.65 to 3.6V  
(OSC32K,RTC,  
Wakeup logic  
Power  
switch  
Backup registers,  
backup RAM)  
OUT  
IN  
IO  
Logic  
GPIOs  
VCAP_1  
VCAP_2  
Kernel logic  
(CPU, digital  
& RAM)  
2 × 2.2 μF  
VDD  
VDD  
1/2/...14/15  
Voltage  
regulator  
15 × 100 nF  
+ 1 × 4.7 μF  
VSS  
1/2/...14/15  
Flash memory  
BYPASS_REG  
PDR_ON  
VDDA  
Reset  
controller  
VDD  
VREF  
VREF+  
Analog:  
RCs,  
PLL,..  
100 nF  
+ 1 μF  
100 nF  
+ 1 μF  
ADC  
VREF-  
VSSA  
MS19911V2  
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These  
capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the  
PCB to ensure the good functionality of the device.  
2. To connect BYPASS_REG and PDR_ON pins, refer to Section 2.2.16: Voltage regulator and Table 2.2.15:  
Power supply supervisor.  
3. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the  
voltage regulator is OFF.  
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
5. VDDA=VDD and VSSA=VSS  
.
76/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 22. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,  
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 11. Voltage characteristics  
Symbol  
DD–VSS  
Ratings  
Min  
Max  
Unit  
(1)  
V
External main supply voltage (including VDDA, VDD  
Input voltage on five-volt tolerant pin(2)  
Input voltage on any other pin  
)
–0.3  
4.0  
VDD+4  
4.0  
VSS–0.3  
V
VIN  
|ΔVDDx  
V
SS–0.3  
|
Variations between different VDD power pins  
Variations between all the different ground pins  
-
-
50  
mV  
|VSSX VSS  
|
50  
see Section 5.3.14:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed  
injected current.  
DocID022063 Rev 4  
77/186  
 
 
 
Electrical characteristics  
Symbol  
STM32F415xx, STM32F417xx  
Table 12. Current characteristics  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on five-volt tolerant I/O(3)  
Injected current on any other pin(4)  
150  
150  
25  
IIO  
25  
mA  
–5/+0  
±5  
(2)  
IINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
±25  
(4)  
ΣIINJ(PIN)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC  
characteristics.  
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer to Table 11 for the values of the maximum allowed input voltage.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 13. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
125  
°C  
°C  
Maximum junction temperature  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 14. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOS bit in PWR_CR register = 0(1)  
VOS bit in PWR_CR register= 1  
0
0
0
0
144  
168  
42  
fHCLK  
Internal AHB clock frequency  
MHz  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
84  
VDD  
Standard operating voltage  
1.8(2)  
3.6  
V
V
V
Analog operating voltage  
(ADC limited to 1.2 M samples)  
1.8(2)  
2.4  
Must be the same potential as  
VDD  
(3)(4)  
VDDA  
(5)  
Analog operating voltage  
(ADC limited to 1.4 M samples)  
2.4  
3.6  
3.6  
VBAT  
Backup operating voltage  
1.65  
78/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 14. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOS bit in PWR_CR register = 0(1)  
Max frequency 144MHz  
1.08  
1.14  
1.20  
V
Regulator ON:  
1.2 V internal voltage on  
VCAP_1/VCAP_2 pins  
VOS bit in PWR_CR register= 1  
Max frequency 168MHz  
1.20  
1.10  
1.26  
1.14  
1.32  
1.20  
V
V
V12  
Regulator OFF:  
Max frequency 144MHz  
1.2 V external voltage must be  
supplied from external regulator  
on VCAP_1/VCAP_2 pins  
Max frequency 168MHz  
1.20  
1.26  
1.30  
V
2 V VDD 3.6 V  
VDD 2 V  
–0.3  
–0.3  
-
-
5.5  
5.2  
Input voltage on RST and FT  
pins(6)  
VIN  
V
VDDA  
0.3  
+
Input voltage on TTa pins  
Input voltage on B pin  
–0.3  
-
-
5.5  
435  
465  
500  
526  
513  
543  
85  
LQFP64  
-
-
LQFP100  
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(7)  
LQFP144  
-
PD  
mW  
LQFP176  
-
UFBGA176  
-
WLCSP90  
-
Maximum power dissipation  
Low power dissipation(8)  
Maximum power dissipation  
Low power dissipation(8)  
6 suffix version  
7 suffix version  
–40  
–40  
–40  
–40  
–40  
–40  
Ambient temperature for 6 suffix  
version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7 suffix  
version  
Junction temperature range  
1. The average expected gain in power consumption when VOS = 0 compared to VOS = 1 is around 10% for the whole  
temperature range, when the system clock frequency is between 30 and 144 MHz.  
2. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of  
an external power supply supervisor (refer to Section : Internal reset OFF).  
3. When the ADC is used, refer to Table 67: ADC characteristics.  
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
V
DDA can be tolerated during power-up and power-down operation.  
6. To sustain a voltage higher than VDD+0.3, the internal pull-up and pull-down resistors must be disabled.  
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
.
DocID022063 Rev 4  
79/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 15. Limitations depending on the operating power supply range  
Maximum  
Flash  
memory  
access  
frequency  
with no wait  
state  
Maximum Flash  
memory access  
frequency  
Operating  
power  
supply  
range  
Possible  
Flash  
memory  
operations  
Clock output  
I/O operation Frequency on  
I/O pins  
ADC  
operation  
with wait  
states(1) (2)  
(fFlashmax  
)
– Degraded  
speed  
performance  
up to 30 MHz  
– No I/O  
compensation  
8-bit erase  
and program  
operations  
only  
Conversion  
time up to  
1.2 Msps  
VDD =1.8 to  
2.1 V(3)  
160 MHz with 7  
wait states  
20 MHz(4)  
– Degraded  
speed  
performance  
Conversion  
time up to  
1.2 Msps  
16-bit erase  
and program  
operations  
VDD = 2.1 to  
2.4 V  
168 MHz with 7  
wait states  
22 MHz  
up to 30 MHz  
up to 48 MHz  
– No I/O  
compensation  
– Degraded  
speed  
performance  
Conversion  
time up to  
2.4 Msps  
16-bit erase  
and program  
operations  
VDD = 2.4 to  
2.7 V  
168 MHz with 6  
wait states  
24 MHz  
– I/O  
compensation  
works  
– up to  
60 MHz  
when VDD  
– Full-speed  
operation  
=
Conversion  
time up to  
2.4 Msps  
32-bit erase  
and program  
operations  
3.0 to 3.6 V  
VDD = 2.7 to  
3.6 V(5)  
168 MHz with 5  
wait states  
30 MHz  
– I/O  
compensation  
works  
– up to  
48 MHz  
when VDD  
=
2.7 to 3.0 V  
1. It applies only when code executed from Flash memory access, when code executed from RAM, no  
wait state is required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here  
does not impact the execution speed from Flash memory since the ART accelerator allows to achieve  
a performance equivalent to 0 wait state program execution.  
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use  
of an external power supply supervisor (refer to Section : Internal reset OFF).  
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.  
5. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.  
5.3.2  
V
/V  
external capacitor  
CAP_1 CAP_2  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the V  
/V  
pins. C  
is specified in Table 16.  
EXT  
CAP_1 CAP_2  
80/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 23. External capacitor C  
EXT  
C
ESR  
R Leak  
MS19044V2  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 16. V  
/V  
operating conditions  
CAP_1 CAP_2  
Symbol  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF  
< 2 Ω  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
5.3.3  
Operating conditions at power-up / power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 17. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
5.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 18. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
Conditions  
Power-up  
Min  
Max Unit  
VDD rise time rate  
20  
20  
tVDD  
V
DD fall time rate  
Power-down  
Power-up  
VCAP_1 and VCAP_2 rise time  
rate  
µs/V  
20  
20  
tVCAP  
VCAP_1 and VCAP_2 fall time  
rate  
Power-down  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
minimum value of V12  
.
5.3.5  
Embedded reset and power control block characteristics  
The parameters given in Table 19 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
DocID022063 Rev 4  
81/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 19. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising  
edge)  
2.09  
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
V
V
V
V
V
PLS[2:0]=000 (falling  
edge)  
1.98  
2.23  
2.13  
2.39  
2.29  
PLS[2:0]=001 (rising  
edge)  
PLS[2:0]=001 (falling  
edge)  
PLS[2:0]=010 (rising  
edge)  
PLS[2:0]=010 (falling  
edge)  
2.35 2.39  
2.60 2.65  
2.51 2.56  
V
V
V
PLS[2:0]=011 (rising edge) 2.54  
PLS[2:0]=011 (falling  
edge)  
2.44  
Programmable voltage  
detector level selection  
VPVD  
PLS[2:0]=100 (rising  
2.70  
2.76 2.82  
2.66 2.71  
2.93 2.99  
V
V
V
edge)  
PLS[2:0]=100 (falling  
edge)  
2.59  
PLS[2:0]=101 (rising  
edge)  
2.86  
PLS[2:0]=101 (falling  
edge)  
2.65  
2.84 3.02  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
V
V
V
V
V
PLS[2:0]=110 (rising edge) 2.96  
PLS[2:0]=110 (falling  
edge)  
2.85  
PLS[2:0]=111 (rising edge) 3.07  
PLS[2:0]=111 (falling  
edge)  
2.95  
(1)  
VPVDhyst  
PVD hysteresis  
-
100  
-
mV  
V
Falling edge  
Rising edge  
1.60  
1.64  
-
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
V
(1)  
VPDRhyst  
PDR hysteresis  
40  
-
mV  
V
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
VBOR2  
VBOR3  
V
V
Brownout level 2  
threshold  
V
V
Brownout level 3  
threshold  
V
82/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 19. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
(1)  
VBORhyst  
BOR hysteresis  
-
100  
1.5  
-
mV  
ms  
(1)(2)  
TRSTTEMPO  
Reset temporization  
0.5  
3.0  
InRush current on  
voltage regulator  
power-on (POR or  
wakeup from Standby)  
(1)  
(1)  
IRUSH  
-
-
160  
-
200  
mA  
µC  
InRush energy on  
voltage regulator  
power-on (POR or  
wakeup from Standby)  
VDD = 1.8 V, TA = 105 °C,  
IRUSH = 171 mA for 31 µs  
ERUSH  
5.4  
1. Guaranteed by design, not tested in production.  
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant  
when first instruction is read by the user application code.  
5.3.6  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 22: Current consumption  
measurement scheme.  
All Run mode current consumption measurements given in this section are performed using  
a CoreMark-compliant code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are configured as analog inputs by firmware.  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted to f  
frequency (0 wait state from 0 to  
HCLK  
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz, 3 wait states  
from 90 to 120 MHz, 4 wait states from 120 to 150 MHz, and 5 wait states from 150 to  
168 MHz).  
When the peripherals are enabled HCLK is the system clock, f  
= f  
/4, and  
PCLK1  
HCLK  
f
= f  
/2, except is explicitly mentioned.  
PCLK2  
HCLK  
The maximum values are obtained for V = 3.6 V and maximum ambient temperature  
DD  
(T ), and the typical values for T = 25 °C and V = 3.3 V unless otherwise specified.  
A
A
DD  
DocID022063 Rev 4  
83/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 20. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from Flash memory (ART accelerator enabled) or RAM  
Typ  
Max(2)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C 105 °C  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz(6)  
8 MHz  
87  
67  
56  
44  
30  
16  
12  
9
102  
80  
69  
56  
42  
28  
24  
20  
17  
15  
14  
54  
43  
38  
32  
26  
20  
18  
16  
15  
14  
14  
109  
86  
75  
62  
49  
35  
31  
28  
24  
22  
21  
61  
50  
45  
39  
33  
27  
25  
24  
22  
21  
21  
External clock(3), all  
peripherals enabled(4)(5)  
5
4 MHz  
3
2 MHz  
2
Supply current in  
Run mode  
IDD  
mA  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz(6)  
8 MHz  
40  
31  
26  
20  
14  
8
External clock(3), all  
peripherals disabled(4)(5)  
6
5
3
4 MHz  
2
2 MHz  
2
1. Code and data processing running from SRAM1 using boot pins.  
2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.  
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.  
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for  
the analog part.  
5. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
6. In this case HCLK = system clock/2.  
84/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 21. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled)  
Typ  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA = 25 °C TA = 85 °C TA = 105 °C  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz  
8 MHz  
93  
76  
67  
53  
37  
20  
16  
11  
6
109  
89  
79  
65  
49  
32  
27  
23  
18  
16  
15  
61  
52  
48  
42  
33  
24  
21  
19  
16  
15  
14  
117  
96  
86  
73  
56  
39  
35  
30  
25  
23  
22  
69  
60  
56  
50  
41  
31  
29  
26  
23  
22  
21  
External clock(2)  
all peripherals  
enabled(3)(4)  
,
4 MHz  
4
2 MHz  
3
Supply current  
in Run mode  
IDD  
mA  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz  
8 MHz  
46  
40  
37  
30  
22  
12  
10  
7
External clock(2)  
all peripherals  
disabled(3)(4)  
,
4
4 MHz  
3
2 MHz  
2
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.  
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.  
3. When analog peripheral blocks such as (ADCs, DACs, HSE, LSE, HSI,LSI) are on, an additional power consumption  
should be considered.  
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
DocID022063 Rev 4  
85/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 24. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator ON) or RAM, and peripherals OFF  
MS19974V1  
Figure 25. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator ON) or RAM, and peripherals ON  
MS19975V1  
86/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 26. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator OFF) or RAM, and peripherals OFF  
MS19976V1  
Figure 27. Typical current consumption versus temperature, Run mode, code with data  
processing running from Flash (ART accelerator OFF) or RAM, and peripherals ON  
MS19977V1  
DocID022063 Rev 4  
87/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 22. Typical and maximum current consumption in Sleep mode  
Typ  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz  
8 MHz  
59  
46  
38  
30  
20  
11  
8
77  
61  
53  
44  
34  
24  
21  
18  
16  
15  
14  
27  
22  
20  
19  
17  
16  
15  
14  
14  
13  
13  
84  
67  
60  
51  
41  
31  
28  
25  
23  
22  
21  
35  
29  
28  
26  
24  
23  
22  
21  
21  
21  
21  
External clock(2)  
,
all peripherals enabled(3)  
6
3
4 MHz  
2
2 MHz  
2
Supply current in  
Sleep mode  
IDD  
mA  
168 MHz  
144 MHz  
120 MHz  
90 MHz  
60 MHz  
30 MHz  
25 MHz  
16 MHz  
8 MHz  
12  
9
8
7
5
External clock(2), all  
peripherals disabled  
3
2
2
1
4 MHz  
1
2 MHz  
1
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.  
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.  
3. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only  
while the ADC is ON (ADON bit is set in the ADC_CR2 register).  
88/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 23. Typical and maximum current consumptions in Stop mode  
Typ  
Max  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C 25 °C 85 °C 105 °C  
Flash in Stop mode, low-speed and high-  
speed internal RC oscillators and high-speed  
oscillator OFF (no independent watchdog)  
Supply  
0.45  
0.40  
0.31  
0.28  
1.5  
1.5  
1.1  
1.1  
11.00 20.00  
11.00 20.00  
current in  
Stop mode  
with main  
regulator in  
Run mode  
Flash in Deep power down mode, low-speed  
and high-speed internal RC oscillators and  
high-speed oscillator OFF (no independent  
watchdog)  
IDD_STOP  
mA  
Flash in Stop mode, low-speed and high-  
speed internal RC oscillators and high-speed  
oscillator OFF (no independent watchdog)  
Supply  
8.00  
8.00  
15.00  
15.00  
current in  
Stop mode  
with main  
regulator in  
Low Power  
mode  
Flash in Deep power down mode, low-speed  
and high-speed internal RC oscillators and  
high-speed oscillator OFF (no independent  
watchdog)  
Table 24. Typical and maximum current consumptions in Standby mode  
Typ  
Max(1)  
TA =  
85 °C  
TA =  
105 °C  
TA = 25 °C  
Symbol  
Parameter  
Conditions  
Unit  
VDD  
1.8 V  
=
VDD  
2.4 V  
=
VDD =  
3.3 V  
VDD = 3.6 V  
Backup SRAM ON, low-  
speed oscillator and RTC ON  
3.0  
3.4  
4.0  
20  
36  
32  
Backup SRAM OFF, low-  
speed oscillator and RTC ON  
2.4  
2.4  
1.7  
2.7  
2.6  
1.9  
3.3  
3.0  
2.2  
16  
12.5  
9.8  
Supply current  
IDD_STBY in Standby  
mode  
µA  
Backup SRAM ON, RTC  
OFF  
24.8  
19.2  
Backup SRAM OFF, RTC  
OFF  
1. Based on characterization, not tested in production.  
DocID022063 Rev 4  
89/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 25. Typical and maximum current consumptions in V  
mode  
Max(1)  
BAT  
Typ  
TA =  
85 °C  
TA =  
105 °C  
TA = 25 °C  
Symbol Parameter  
Conditions  
Unit  
VBAT  
=
1.8 V  
VBAT  
=
3.3 V  
VBAT  
2.4 V  
=
VBAT = 3.6 V  
Backup SRAM ON, low-speed  
oscillator and RTC ON  
1.29  
0.62  
1.42  
0.73  
1.68  
0.96  
6
3
11  
5
Backup  
IDD_VBA domain  
Backup SRAM OFF, low-speed  
oscillator and RTC ON  
µA  
supply  
current  
T
Backup SRAM ON, RTC OFF  
Backup SRAM OFF, RTC OFF  
0.79  
0.10  
0.81  
0.10  
0.86  
0.10  
5
2
10  
4
1. Based on characterization, not tested in production.  
Figure 28. Typical V  
current consumption (LSE and RTC ON/backup RAM OFF)  
BAT  
MS19990V1  
90/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 29. Typical V  
current consumption (LSE and RTC ON/backup RAM ON)  
BAT  
MS19991V1  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 47: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 27: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the MCU  
DocID022063 Rev 4  
91/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
92/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 26. Switching output I/O current consumption  
I/O toggling  
frequency (fSW  
Symbol  
Parameter  
Conditions(1)  
Typ  
Unit  
)
2 MHz  
0.02  
8 MHz  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
0.14  
0.51  
0.86  
1.30  
0.10  
0.38  
1.18  
2.47  
2.86  
0.17  
0.66  
1.70  
2.65  
3.48  
0.23  
0.95  
3.20  
4.69  
8.06  
0.30  
1.22  
3.90  
8.82  
VDD = 3.3 V(2)  
C = CINT  
8 MHz  
VDD = 3.3 V  
CEXT = 0 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT+ CS  
8 MHz  
VDD = 3.3 V  
I/O switching  
current  
IDDIO  
mA  
CEXT = 10 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT+ CS  
8 MHz  
VDD = 3.3 V  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT+ CS  
8 MHz  
VDD = 3.3 V  
CEXT = 33 pF  
25 MHz  
50 MHz  
60 MHz  
C = CINT + CEXT+ CS  
(3)  
-
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
2. This test is performed by cutting the LQFP package pin (pad removal).  
3. At 60 MHz, C maximum load is specified 30 pF.  
DocID022063 Rev 4  
93/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 27. The MCU is placed  
under the following conditions:  
At startup, all I/O pins are configured as analog pins by firmware.  
All peripherals are disabled unless otherwise mentioned  
The code is running from Flash memory and the Flash memory access time is equal to  
5 wait states at 168 MHz.  
The code is running from Flash memory and the Flash memory access time is equal to  
4 wait states at 144 MHz, and the power scale mode is set to 2.  
ART accelerator and Cache off.  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with one peripheral clocked on (with only the clock applied)  
When the peripherals are enabled: HCLK is the system clock, f  
= f  
/4, and  
PCLK1  
HCLK  
f
= f  
/2.  
PCLK2  
HCLK  
The typical values are obtained for V = 3.3 V and T = 25 °C, unless otherwise  
DD  
A
specified.  
Table 27. Peripheral current consumption  
Peripheral(1)  
168 MHz  
144 MHz  
Unit  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
GPIO F  
GPIO G  
GPIO H  
GPIO I  
0.49  
0.45  
0.45  
0.45  
0.47  
0.45  
0.44  
0.45  
0.44  
4.57  
0.07  
0.11  
6.15  
6.24  
0.36  
0.33  
0.34  
0.34  
0.35  
0.33  
0.33  
0.34  
0.33  
3.55  
0.06  
0.08  
4.75  
4.8  
AHB1  
mA  
OTG_HS + ULPI  
CRC  
BKPSRAM  
DMA1  
DMA2  
ETH_MAC +  
ETH_MAC_TX  
ETH_MAC_RX  
ETH_MAC_PTP  
3.28  
2.54  
OTG_FS  
DCMI  
4.59  
1.04  
3.69  
0.80  
AHB2  
mA  
94/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 27. Peripheral current consumption (continued)  
Peripheral(1)  
168 MHz  
144 MHz  
Unit  
RNG  
0.29  
1.71  
0.23  
1.31  
AHB2  
AHB3  
HASH  
mA  
CRYPTO  
FSMC  
0.41  
0.31  
2.18  
1.67  
TIM2  
0.80  
0.61  
TIM3  
0.58  
0.44  
TIM4  
0.62  
0.48  
TIM5  
0.79  
0.61  
TIM6  
0.15  
0.11  
TIM7  
0.16  
0.12  
TIM12  
0.33  
0.26  
TIM13  
0.27  
0.21  
TIM14  
0.27  
0.21  
PWR  
0.04  
0.03  
0.13  
USART2  
USART3  
UART4  
UART5  
I2C1  
0.17  
0.17  
0.13  
0.17  
0.13  
mA  
APB1  
0.17  
0.13  
0.17  
0.13  
I2C2  
0.18  
0.13  
I2C3  
0.18  
0.13  
SPI2/I2S2(2)  
SPI3/I2S3(2)  
CAN1  
0.17/0.16  
0.16/0.14  
0.27  
0.13/0.12  
0.12/0.12  
0.21  
CAN2  
0.26  
0.20  
DAC  
0.14  
0.10  
DAC channel 1(3)  
DAC channel 2(4)  
0.91  
0.89  
0.91  
0.89  
DAC channel 1 and  
2(3)(4)  
1.69  
0.04  
1.68  
0.04  
WWDG  
DocID022063 Rev 4  
95/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 27. Peripheral current consumption (continued)  
Peripheral(1)  
168 MHz  
144 MHz  
Unit  
SDIO  
0.64  
1.47  
1.58  
0.68  
0.45  
0.47  
2.20  
2.04  
2.10  
0.14  
0.34  
0.34  
0.54  
1.14  
1.22  
0.54  
0.36  
0.38  
2.10  
1.93  
2.00  
0.12  
0.27  
0.28  
TIM1  
TIM8  
TIM9  
TIM10  
TIM11  
ADC1(5)  
ADC2(5)  
ADC3(5)  
SPI1  
APB2  
mA  
USART1  
USART6  
1. HSE oscillator with 4 MHz crystal and PLL are ON.  
2. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.  
3. EN1 bit is set in DAC_CR register.  
4. EN2 bit is set in DAC_CR register.  
5. ADON bit set in ADC_CR2 register.  
5.3.7  
Wakeup time from low-power mode  
The wakeup times given in Table 28 is measured on a wakeup phase with a 16 MHz HSI  
RC oscillator. The clock source used to wake up the device depends from the current  
operating mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 14.  
Table 28. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode  
Min(1)  
Typ(1) Max(1) Unit  
(2)  
tWUSLEEP  
-
-
-
1
-
-
µs  
µs  
µs  
Wakeup from Stop mode (regulator in Run mode)  
13  
17  
Wakeup from Stop mode (regulator in low power mode)  
40  
(2)  
tWUSTOP  
Wakeup from Stop mode (regulator in low power mode  
and Flash memory in Deep power down mode)  
-
110  
375  
-
(2)(3)  
tWUSTDBY  
Wakeup from Standby mode  
260  
480  
1. Based on characterization, not tested in production.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.  
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.  
96/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
5.3.8  
External clock source characteristics  
High-speed external user clock generated from an external source  
The characteristics given in Table 29 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 14.  
Table 29. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
Low-speed external user clock generated from an external source  
The characteristics given in Table 30 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 14.  
Table 30. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
VLSEL  
tw(LSE)  
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
OSC32_IN input capacitance(1)  
-
-
50  
Cin(LSE)  
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design, not tested in production.  
DocID022063 Rev 4  
97/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 30. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
I
L
OSC _I N  
clock source  
STM32F  
ai17528  
Figure 31. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
I
L
OSC32_IN  
clock source  
STM32F  
ai17529  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 31. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
98/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Symbol  
Electrical characteristics  
(1) (2)  
Table 31. HSE 4-26 MHz oscillator characteristics  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fOSC_IN Oscillator frequency  
4
-
-
26  
-
MHz  
RF  
Feedback resistor  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 ,  
CL=5 pF@25 MHz  
-
-
449  
532  
-
-
IDD  
HSE current consumption  
µA  
VDD=3.3 V,  
ESR= 30 ,  
CL=10 pF@25 MHz  
gm  
Oscillator transconductance  
Startup time  
Startup  
5
-
-
-
-
mA/V  
ms  
(3)  
tSU(HSE  
VDD is stabilized  
2
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization, not tested in production.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 32). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on electing the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 32. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai17530  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 32. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID022063 Rev 4  
99/186  
 
 
Electrical characteristics  
Symbol  
STM32F415xx, STM32F417xx  
(1)  
Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
IDD  
Feedback resistor  
-
-
18.4  
-
1
-
MΩ  
µA  
LSE current consumption  
Oscillator Transconductance  
startup time  
-
-
gm  
2.8  
-
µA/V  
s
(2)  
tSU(LSE)  
VDD is stabilized  
2
-
1. Guaranteed by design, not tested in production.  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Note:  
For information on electing the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 33. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32F  
OSC32_OUT  
C
L2  
ai17531  
5.3.9  
Internal clock source characteristics  
The parameters given in Table 33 and Table 34 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 14.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 33. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
-
16  
-
MHz  
%
User-trimmed with the RCC_CR  
register  
-
-
-
1
TA = –40 to  
Accuracy of the HSI  
oscillator  
–8  
4.5  
%
105 °C(2)  
ACCHSI  
Factory-  
calibrated  
TA = –10 to 85 °C(2) –4  
-
-
4
1
%
%
TA = 25 °C  
–1  
-
HSI oscillator  
startup time  
(3)  
tsu(HSI)  
2.2  
60  
4
µs  
HSI oscillator  
power consumption  
IDD(HSI)  
-
80  
µA  
100/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 34. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.4  
0.6  
µA  
1.  
VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Based on characterization, not tested in production.  
3. Guaranteed by design, not tested in production.  
Figure 34. ACC versus temperature  
LSI  
MS19013V1  
5.3.10  
PLL characteristics  
The parameters given in Table 35 and Table 36 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
DocID022063 Rev 4  
101/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 35. Main PLL characteristics  
Conditions  
Symbol  
fPLL_IN  
Parameter  
PLL input clock(1)  
Min  
Typ  
Max  
Unit  
0.95(2)  
24  
1
-
2.10  
168  
MHz  
MHz  
fPLL_OUT  
PLL multiplier output clock  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
48  
75  
MHz  
MHz  
PLL VCO output  
192  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 192 MHz  
VCO freq = 432 MHz  
tLOCK  
PLL lock time  
µs  
-
RMS  
25  
peak  
to  
peak  
Cycle-to-cycle jitter  
Period Jitter  
-
-
-
150  
15  
-
-
-
System clock  
120 MHz  
RMS  
peak  
to  
200  
Jitter(3)  
ps  
peak  
Main clock output (MCO) for  
RMII Ethernet  
Cycle to cycle at 50 MHz  
on 1000 samples  
-
-
-
32  
40  
330  
-
-
-
-
Main clock output (MCO) for MII Cycle to cycle at 25 MHz  
Ethernet  
on 1000 samples  
Cycle to cycle at 1 MHz  
on 1000 samples  
Bit Time CAN jitter  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
mA  
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
-
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design, not tested in production.  
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.  
4. Based on characterization, not tested in production.  
Table 36. PLLI2S (audio PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
fPLLI2S_OUT  
fVCO_OUT  
PLLI2S input clock(1)  
0.95(2)  
-
1
-
2.10  
216  
432  
200  
300  
MHz  
MHz  
MHz  
PLLI2S multiplier output clock  
PLLI2S VCO output  
192  
75  
-
VCO freq = 192 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLI2S lock time  
µs  
100  
-
102/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 36. PLLI2S (audio PLL) characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ps  
RMS  
-
90  
-
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
-
Master I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
90  
-
-
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
WS I2S clock jitter  
400  
ps  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
-
mA  
mA  
VCO freq = 192 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design, not tested in production.  
3. Value given with main PLL running.  
4. Based on characterization, not tested in production.  
5.3.11  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 43: EMI characteristics). It is available only on the main PLL.  
Table 37. SSCG parameters constraint  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
Peak modulation depth  
-
0.25  
-
-
-
-
10  
2
KHz  
%
MODEPER * INCSTEP  
2
151  
-
1. Guaranteed by design, not tested in production.  
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
MOD  
PLL_IN  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
DocID022063 Rev 4  
103/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 35. PLL output clock waveforms in center spread mode  
Frequency (PLL_OUT)  
md  
F0  
md  
Time  
2 x tmode  
tmode  
ai17291  
104/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 36. PLL output clock waveforms in down spread mode  
Frequency (PLL_OUT)  
F0  
2 x md  
Time  
tmode  
2 x tmode  
ai17292  
5.3.12  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 105 °C unless otherwise specified.  
A
The devices are shipped to customers with the Flash memory erased.  
Table 38. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Write / Erase 8-bit mode, VDD = 1.8 V  
Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
-
5
8
-
-
-
IDD  
Supply current  
mA  
12  
Table 39. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
600  
500  
ms  
Program/eraseparallelism  
(PSIZE) = x 32  
DocID022063 Rev 4  
105/186  
 
 
Electrical characteristics  
Symbol  
STM32F415xx, STM32F417xx  
Table 39. Flash memory programming (continued)  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8  
-
-
-
-
-
-
-
-
-
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE64KB Sector (64 KB) erase time  
700  
550  
2
1400  
1100  
4
ms  
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE128KB Sector (128 KB) erase time  
1.3  
1
2.6  
2
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
16  
11  
8
32  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
22  
s
Program/eraseparallelism  
(PSIZE) = x 32  
16  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.8  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Based on characterization, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
106/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Symbol  
Electrical characteristics  
Table 40. Flash memory programming with V  
PP  
Parameter  
Double word programming  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
-
-
16  
230  
490  
875  
6.9  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
Vprog  
VPP  
Mass erase time  
-
-
s
V
V
Programming voltage  
VPP voltage range  
2.7  
7
3.6  
9
-
Minimum current sunk on  
the VPP pin  
IPP  
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design, not tested in production.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 41. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
Years  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
10 kcycles(2) at TA = 55 °C  
1. Based on characterization, not tested in production.  
2. Cycling performed over the whole temperature range.  
5.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
DocID022063 Rev 4  
107/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
A device reset allows normal operations to be resumed.  
The test results are given in Table 42. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 42. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP176, TA = +25 °C,  
fHCLK = 168 MHz, conforms to  
IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP176, TA =  
+25 °C, fHCLK = 168 MHz, conforms  
to IEC 61000-4-2  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
?
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
108/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Max vs.  
Table 43. EMI characteristics  
Monitored  
frequency band  
[fHSE/fCPU  
]
Symbol  
Parameter  
Conditions  
Unit  
25/168 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
0.1 to 30 MHz  
32  
25  
29  
4
VDD = 3.3 V, TA = 25 °C, LQFP176  
package, conforming to SAE J1752/3  
EEMBC, code running from Flash with  
ART accelerator enabled  
dBµV  
-
dBµV  
-
SEMI  
Peak level  
19  
16  
18  
3.5  
VDD = 3.3 V, TA = 25 °C, LQFP176  
package, conforming to SAE J1752/3  
EEMBC, code running from Flash with  
ART accelerator and PLL spread  
spectrum enabled  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI level  
5.3.14  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 44. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
VESD(HBM) voltage (human body  
model)  
TA = +25 °C conforming to JESD22-A114  
2
2000(2)  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C conforming to JESD22-C101  
II  
500  
1. Based on characterization results, not tested in production.  
2. On VBAT pin, VESD(HBM) is limited to 1000 V.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
DocID022063 Rev 4  
109/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 45. Electrical sensitivities  
Conditions  
Symbol  
Parameter  
Static latch-up class  
Class  
LU  
TA = +105 °C conforming to JESD78A  
II level A  
5.3.15  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of  
5 uA/+0 uA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 46.  
Table 46. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all FT pins  
Injected current on any other pin  
–5  
–5  
+0  
+5  
(1)  
IINJ  
mA  
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject  
negative currents.  
5.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 47 are derived from tests  
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL  
compliant.  
110/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 47. I/O static characteristics  
Conditions  
Symbol  
Parameter  
Input low level voltage  
Min  
Typ  
Max  
Unit  
VIL  
-
2.0  
-
-
0.8  
TTL ports  
(1)  
2.7 V VDD 3.6 V  
VIH  
Input high level voltage  
Input low level voltage  
-
-
VIL  
-
0.3VDD  
V
CMOS ports  
-
-
-
-
-
(1)  
1.8 V VDD 3.6 V  
VIH  
Input high level voltage  
0.7VDD  
-
I/O Schmitt trigger voltage hysteresis(2)  
200  
Vhys  
mV  
µA  
IO FT Schmitt trigger voltage  
hysteresis(2)  
(3)  
5% VDD  
-
-
I/O input leakage current (4)  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
I/O FT input leakage current (4)  
All pins  
except for  
PA10 and  
resistor(5)  
PB12  
30  
8
40  
11  
40  
50  
15  
50  
15  
Weak pull-up equivalent  
RPU  
VIN = VSS  
PA10 and  
PB12  
kΩ  
All pins  
except for  
PA10 and  
PB12  
30  
8
Weak pull-down  
equivalent resistor  
RPD  
VIN = VDD  
PA10 and  
PB12  
11  
5
(6)  
CIO  
I/O pin capacitance  
pF  
1. Tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
3. With a minimum of 100 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
6. Guaranteed by design, not tested in production.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters.  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14 and PC15 which can  
OL OH  
sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the  
speed should not exceed 2 MHz with a maximum load of 30 pF.  
DocID022063 Rev 4  
111/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 12).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 12).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 48 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 14. All I/Os are CMOS and TTL compliant.  
(1)  
Table 48. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(2)  
VOL  
-
0.4  
CMOS port  
IIO = +8 mA  
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)  
2.7 V < VDD < 3.6 V  
VOH  
VDD–0.4  
-
0.4  
-
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(2)  
VOL  
-
2.4  
-
TTL port  
IIO =+ 8mA  
V
V
V
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)  
2.7 V < VDD < 3.6 V  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(2)(4)  
VOL  
1.3  
-
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)(4)  
VOH  
V
DD–1.3  
-
VDD–0.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(2)(4)  
VOL  
0.4  
-
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)(4)  
VOH  
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited  
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed  
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current  
source (e.g. to drive an LED).  
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data, not tested in production.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 37 and  
Table 49, respectively.  
112/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 49 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 14.  
(1)(2)(3)  
Table 49. I/O AC characteristics  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD > 2.70 V  
CL = 50 pF, VDD > 1.8 V  
CL = 10 pF, VDD > 2.70 V  
CL = 10 pF, VDD > 1.8 V  
-
-
-
-
-
-
-
-
2
2
fmax(IO)out Maximum frequency(4)  
MHz  
TBD  
TBD  
00  
Output high to low level fall  
tf(IO)out  
time  
-
-
-
-
TBD  
ns  
CL = 50 pF, VDD = 1.8 V to  
3.6 V  
Output low to high level rise  
tr(IO)out  
time  
TBD  
CL = 50 pF, VDD > 2.70 V  
CL = 50 pF, VDD > 1.8 V  
CL = 10 pF, VDD > 2.70 V  
CL = 10 pF, VDD > 1.8 V  
CL = 50 pF, VDD < 2.7 V  
CL = 10 pF, VDD > 2.7 V  
CL = 50 pF, VDD < 2.7 V  
CL = 10 pF, VDD > 2.7 V  
CL = 40 pF, VDD > 2.70 V  
CL = 40 pF, VDD > 1.8 V  
CL = 10 pF, VDD > 2.70 V  
CL = 10 pF, VDD > 1.8 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5(5)  
MHz  
fmax(IO)out Maximum frequency(4)  
50(5)  
TBD  
TBD  
01  
Output high to low level fall  
tf(IO)out  
time  
TBD  
ns  
TBD  
Output low to high level rise  
tr(IO)out  
time  
TBD  
50(5)  
25  
fmax(IO)out Maximum frequency(4)  
MHz  
100(5)  
TBD  
TBD  
CL = 50 pF,  
10  
-
-
-
-
-
-
-
-
Output high to low level fall  
2.4 < VDD < 2.7 V  
tf(IO)out  
time  
CL = 10 pF, VDD > 2.7 V  
TBD  
TBD  
TBD  
ns  
CL = 50 pF,  
Output low to high level rise  
2.4 < VDD < 2.7 V  
tr(IO)out  
time  
CL = 10 pF, VDD > 2.7 V  
DocID022063 Rev 4  
113/186  
 
Electrical characteristics  
OSPEEDRy  
STM32F415xx, STM32F417xx  
(1)(2)(3)  
Table 49. I/O AC characteristics  
(continued)  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 30 pF, VDD > 2.70 V  
CL = 30 pF, VDD > 1.8 V  
CL = 10 pF, VDD > 2.70 V  
CL = 10 pF, VDD > 1.8 V  
-
-
-
-
-
-
-
-
100(5)  
50(5)  
MHz  
Fmax(IO)ou  
Maximum frequency(4)  
200(5)  
t
TBD  
TBD  
CL = 20 pF,  
11  
-
-
-
-
-
-
-
-
Output high to low level fall  
time  
2.4 < VDD < 2.7 V  
tf(IO)out  
CL = 10 pF, VDD > 2.7 V  
TBD  
ns  
CL = 20 pF,  
TBD  
Output low to high level rise  
time  
2.4 < VDD < 2.7 V  
tr(IO)out  
CL = 10 pF, VDD > 2.7 V  
TBD  
Pulse width of external  
-
tEXTIpw signals detected by the EXTI  
controller  
10  
-
-
ns  
1. Based on characterization data, not tested in production.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a  
description of the GPIOx_SPEEDR GPIO port output speed register.  
3. TBD stands for “to be defined”.  
4. The maximum frequency is defined in Figure 37.  
5. For maximum frequencies above 50 MHz, the compensation cell should be used.  
Figure 37. I/O AC characteristics definition  
90%  
10%  
50%  
50%  
10%  
90%  
t
t
EXTERNAL  
OUTPUT  
ON 50pF  
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
5.3.17  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 47).  
PU  
Unless otherwise specified, the parameters given in Table 50 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 14.  
114/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 50. NRST pin characteristics  
Symbol  
Parameter  
NRST Input low level voltage  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL(NRST)  
TTL ports  
2.7 V VDD  
3.6 V  
-
-
-
0.8  
(1)  
VIH(NRST)  
NRST Input high level voltage  
NRST Input low level voltage  
NRST Input high level voltage  
2
-
-
V
(1)  
VIL(NRST)  
CMOS ports  
1.8 V VDD  
3.6 V  
0.3VDD  
-
(1)  
VIH(NRST)  
0.7VDD  
NRST Schmitt trigger voltage  
hysteresis  
Vhys(NRST)  
RPU  
-
200  
-
mV  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
30  
-
40  
-
50  
100  
-
kΩ  
ns  
ns  
(1)  
VF(NRST)  
NRST Input filtered pulse  
(1)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
300  
-
Internal  
Reset source  
TNRST_OUT Generated reset pulse duration  
20  
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
Figure 38. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
STM32Fxxx  
NRST  
Filter  
0.1 μF  
ai14132c  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 50. Otherwise the reset is not taken into account by the device.  
5.3.18  
TIM timer characteristics  
The parameters given in Table 51 and Table 52 are guaranteed by design.  
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
DocID022063 Rev 4  
115/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)  
Table 51. Characteristics of TIMx connected to the APB1 domain  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
AHB/APB1  
1
-
tTIMxCLK  
prescaler distinct  
from 1, fTIMxCLK  
84 MHz  
=
11.9  
-
ns  
tres(TIM)  
Timer resolution time  
AHB/APB1  
prescaler = 1,  
fTIMxCLK = 42 MHz  
1
-
-
tTIMxCLK  
ns  
23.8  
0
0
-
fTIMxCLK/2  
42  
MHz  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
ResTIM  
Timer resolution  
16/32  
65536  
bit  
16-bit counter clock  
period when internal clock  
is selected  
1
tTIMxCLK  
f
TIMxCLK = 84 MHz  
0.0119  
1
780  
µs  
tTIMxCLK  
µs  
APB1= 42 MHz  
tCOUNTER  
32-bit counter clock  
period when internal clock  
is selected  
-
0.0119  
51130563  
-
-
65536 × 65536 tTIMxCLK  
51.1  
tMAX_COUNT Maximum possible count  
s
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.  
116/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)  
Table 52. Characteristics of TIMx connected to the APB2 domain  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
AHB/APB2  
1
-
tTIMxCLK  
prescaler distinct  
from 1, fTIMxCLK  
168 MHz  
=
5.95  
-
ns  
tres(TIM)  
Timer resolution time  
AHB/APB2  
prescaler = 1,  
fTIMxCLK = 84 MHz  
1
11.9  
0
-
tTIMxCLK  
ns  
-
fTIMxCLK/2  
84  
Timer external clock  
frequency on CH1 to  
CH4  
MHz  
MHz  
bit  
fEXT  
0
fTIMxCLK  
=
ResTIM  
Timer resolution  
-
16  
168 MHz  
16-bit counter clock  
tCOUNTER period when internal  
clock is selected  
APB2 = 84 MHz  
1
-
65536  
32768  
tTIMxCLK  
tTIMxCLK  
tMAX_COUNT Maximum possible count  
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.  
5.3.19  
Communications interfaces  
I2C interface characteristics  
2
I
The STM32F415xx and STM32F417xx C interface meets the requirements of the  
2
standard I C communication protocol with the following restrictions: the I/O pins SDA and  
SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 53. Refer also to Section 5.3.16: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 53. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
-
-
-
-
1.3  
0.6  
100  
0
-
µs  
-
250  
0(3)  
-
SDA data hold time  
900(4)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
-
-
1000  
300  
20 + 0.1Cb  
-
300  
300  
tf(SDA)  
tf(SCL)  
DocID022063 Rev 4  
117/186  
 
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
2
Table 53. I C characteristics (continued)  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
th(STA)  
tsu(STA)  
Start condition hold time  
4.0  
-
0.6  
-
µs  
Repeated Start condition  
setup time  
4.7  
4.0  
4.7  
-
-
-
0.6  
0.6  
1.3  
-
-
-
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to  
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode  
clock.  
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
2
Figure 39. I C bus AC waveforms and measurement circuit  
V
V
DD_I2C  
DD_I2C  
STM32Fxx  
RP  
RP  
RS  
RS  
SDA  
SCL  
I²C bus  
S TAR T REPEATED  
S TAR T  
S TAR T  
t
su(STA)  
S D A  
t
t
t
su(SDA)  
r(SDA)  
f(SDA)  
t
w(STO:STA)  
S TOP  
t
t
h(STA)  
t
w(SCLL)  
h(SDA)  
SCL  
t
t
t
su(STO)  
r(SCL)  
t
w(SCLH)  
f(SCL)  
ai14979c  
1. Rs= series protection resistor.  
2. Rp = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
118/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)(2)  
Table 54. SCL frequency (f  
= 42 MHz.,VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
fSCL (kHz)  
RP = 4.7 kΩ  
400  
0x8019  
0x8021  
0x8032  
0x0096  
0x012C  
0x02EE  
300  
200  
100  
50  
20  
1. RP = External pull-up resistance, fSCL = I2C speed,  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed 2%. These variations depend on the accuracy of the external  
components used to design the application.  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 55 for SPI are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 14 with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 55. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode, SPI1,  
2.7V < VDD < 3.6V  
42  
fSCK  
-
-
Slave mode, SPI1,  
2.7V < VDD < 3.6V  
42  
21  
21  
70  
SPI clock frequency  
MHz  
Master mode, SPI1/2/3,  
1.7V < VDD < 3.6V  
1/tc(SCK)  
-
-
Slave mode, SPI1/2/3,  
1.7V < VDD < 3.6V  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
DocID022063 Rev 4  
119/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)  
Table 55. SPI dynamic characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
TPCLK-0.5 TPCLK TPCLK+0.5  
PCLK-2 TPCLK TPCLK+2  
Typ  
Max  
Unit  
Master mode, SPI presc = 2,  
2.7V < VDD < 3.6V  
tw(SCKH)  
SCK high and low time  
Master mode, SPI presc = 2,  
1.7V < VDD < 3.6V  
tw(SCKL)  
T
tsu(NSS)  
th(NSS)  
tsu(MI)  
tsu(SI)  
th(MI)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
4 x TPCLK  
-
-
2 x TPCLK  
6.5  
2.5  
2.5  
4
-
-
-
-
-
-
Data input setup time  
Slave mode  
-
Master mode  
-
Data input hold time  
th(SI)  
Slave mode  
-
(2)  
ta(SO)  
Data output access time  
Slave mode, SPI presc = 2  
0
4 x TPCLK  
Slave mode, SPI1,  
2.7V < VDD < 3.6V  
0
0
-
-
-
7.5  
16.5  
13  
(3)  
tdis(SO)  
Data output disable time  
Slave mode, SPI1/2/3  
1.7V < VDD < 3.6V  
ns  
Slave mode (after enable edge),  
SPI1, 2.7V < VDD < 3.6V  
11  
12  
15.5  
18  
-
Slave mode (after enable edge),  
SPI2/3, 2.7V < VDD < 3.6V  
-
16.5  
19  
tv(SO)  
th(SO)  
Data output valid/hold time  
Slave mode (after enable edge),  
SPI1, 1.7V < VDD < 3.6V  
-
Slave mode (after enable edge),  
SPI2/3, 1.7V < VDD < 3.6V  
-
20.5  
2.5  
4.5  
-
Master mode (after enable edge),  
SPI1 , 2.7V < VDD < 3.6V  
-
tv(MO)  
Data output valid time  
Data output hold time  
Master mode (after enable edge),  
SPI1/2/3 , 1.7V < VDD < 3.6V  
-
-
th(MO)  
Master mode (after enable edge)  
0
-
1. Data based on characterization results, not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.  
120/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 40. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
Figure 41. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
DocID022063 Rev 4  
121/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 42. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
122/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 56 for the i S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 14, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 56. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
256 x  
8K  
(2)  
fMCK  
I2S main clock output  
-
256 x FS  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64 x FS  
fCK  
I2S clock frequency  
MHz  
%
64 x FS  
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
0
70  
6
-
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
th(WS)  
0
tsu(WS)  
1
-
th(WS)  
Slave mode  
0
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
7.5  
2
-
Data input setup time  
Data input hold time  
-
ns  
0
-
0
-
tv(SD_ST)  
th(SD_ST)  
Slave transmitter (after enable edge)  
-
27  
Data output valid time  
tv(SD_MT)  
Master transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
20  
-
th(SD_MT) Data output hold time  
2.5  
1. Data based on characterization results, not tested in production.  
2. The maximum value of 256 x FS is 42 MHz (APB1 maximum frequency).  
2
Note:  
Refer to the I S section of RM0090 reference manual for more details on the sampling  
frequency (F ). f  
, f , and D values reflect only the digital peripheral behavior. The  
S
MCK CK  
CK  
value of these parameters might be slightly impacted by the source clock accuracy. D  
CK  
depends mainly on the value of ODD bit. The digital contribution leads to a minimum value  
of I2SDIV / (2 x I2SDIV + ODD) and a maximum value of (I2SDIV + ODD) / (2 x I2SDIV +  
ODD). F maximum value is supported for each mode/condition.  
S
DocID022063 Rev 4  
123/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
2
Figure 43. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
transmit  
(2)  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
h(SD_SR)  
(2)  
LSB receive  
Bitn receive  
LSB receive  
SD  
receive  
ai14881b  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 44. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
(2)  
SD  
transmit  
LSB transmit  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
(2)  
SD  
LSB receive  
Bitn receive  
LSB receive  
receive  
ai14884b  
1. Based on characterization, not tested in production.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
USB OTG FS characteristics  
This interface is present in both the USB OTG HS and USB OTG FS controllers.  
124/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Symbol  
Electrical characteristics  
Table 57. USB OTG FS startup time  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB OTG FS transceiver startup time  
1
µs  
1. Guaranteed by design, not tested in production.  
Table 58. USB OTG FS DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG FS operating  
voltage  
VDD  
3.0(2)  
0.2  
-
-
-
-
3.6  
-
V
I(USB_FS_DP/DM,  
USB_HS_DP/DM)  
(3)  
VDI  
Differential input sensitivity  
Input  
levels  
Differential common mode  
range  
(3)  
VCM  
Includes VDI range  
0.8  
2.5  
2.0  
V
Single ended receiver  
threshold  
(3)  
VSE  
1.3  
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩ to 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
V
(4)  
RL of 15 kΩ to VSS  
2.8  
PA11, PA12, PB14, PB15  
(USB_FS_DP/DM,  
17  
21  
24  
USB_HS_DP/DM)  
RPD  
VIN = VDD  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.65  
1.5  
1.1  
1.8  
2.0  
2.1  
kΩ  
PA12, PB15 (USB_FS_DP,  
USB_HS_DP)  
VIN = VSS  
RPU  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
VIN = VSS  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
2. The STM32F415xx and STM32F417xx USB OTG FS functionality is ensured down to 2.7 V but not the full  
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design, not tested in production.  
RL is the load connected on the USB OTG FS drivers  
4.  
Figure 45. USB OTG FS timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
DocID022063 Rev 4  
125/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)  
Table 59. USB OTG FS electrical characteristics  
Driver characteristics  
Conditions  
Symbol  
Parameter  
Rise time(2)  
Fall time(2)  
Rise/ fall time matching  
Output signal crossover voltage  
Min  
Max  
Unit  
tr  
tf  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
90  
1.3  
110  
2.0  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
USB HS characteristics  
Unless otherwise specified, the parameters given in Table 62 for ULPI are derived from  
tests performed under the ambient temperature, f frequency summarized in Table 61  
HCLK  
and V supply voltage conditions summarized in Table 60, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section Section 5.3.16: I/O port characteristics for more details on the  
input/outputcharacteristics.  
Table 60. USB HS DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
USB OTG HS operating voltage  
2.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
(1)  
Table 61. USB HS clock timing parameters  
Parameter  
Symbol  
Min  
Nominal  
Max  
Unit  
f
HCLK value to guarantee proper operation of  
30  
MHz  
USB HS interface  
Frequency (first transition)  
8-bit ±10%  
FSTART_8BIT  
FSTEADY  
DSTART_8BIT  
DSTEADY  
54  
59.97  
40  
60  
60  
50  
50  
66  
60.03  
60  
MHz  
MHz  
%
Frequency (steady state) ±500 ppm  
Duty cycle (first transition)  
8-bit ±10%  
Duty cycle (steady state) ±500 ppm  
49.975  
50.025  
%
Time to reach the steady state frequency and  
duty cycle after the first transition  
TSTEADY  
-
-
1.4  
ms  
ms  
µs  
Peripheral  
TSTART_DEV  
-
-
-
-
5.6  
-
Clock startup time after the  
de-assertion of SuspendM  
Host  
TSTART_HOST  
PHY preparation time after the first transition  
of the input clock  
TPREP  
-
-
-
126/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
1. Guaranteed by design, not tested in production.  
Table 62. ULPI timing  
Value(1)  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Control in (ULPI_DIR) setup time  
Control in (ULPI_NXT) setup time  
Control in (ULPI_DIR, ULPI_NXT) hold time  
Data in setup time  
-
-
2.0  
1.5  
-
tSC  
tHC  
tSD  
tHD  
tDC  
tDD  
0
-
2.0  
-
ns  
Data in hold time  
0
-
Control out (ULPI_STP) setup time and hold time  
Data out available from clock rising edge  
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.  
9.2  
10.7  
-
Figure 46. ULPI timing diagram  
Clock  
t
t
HC  
SC  
Control In  
(ULPI_DIR,  
ULPI_NXT)  
t
t
HD  
SD  
data In  
(8-bit)  
t
t
DC  
DC  
Control out  
(ULPI_STP)  
t
DD  
data out  
(8-bit)  
ai17361c  
Ethernet characteristics  
Unless otherwise specified, the parameters given in Table 64, Table 65 and Table 66 for  
SMI, RMII and MII are derived from tests performed under the ambient temperature, f  
HCLK  
frequency summarized in Table 14 and VDD supply voltage conditions summarized in  
Table 63, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
DocID022063 Rev 4  
127/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Table 63. Ethernet DC electrical characteristics  
Symbol  
Parameter  
Min.(1)  
Max.(1)  
Unit  
Input level  
VDD  
Ethernet operating voltage  
2.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
Table 64 gives the list of Ethernet MAC signals for the SMI (station management interface)  
and Figure 47 shows the corresponding timing diagram.  
Figure 47. Ethernet SMI timing diagram  
tMDC  
ETH_MDC  
td(MDIO)  
ETH_MDIO(O)  
tsu(MDIO)  
th(MDIO)  
ETH_MDIO(I)  
MS31384V1  
(1)  
Table 64. Dynamic characteristics: Ehternet MAC signals for SMI  
Symbol  
tMDC  
Parameter  
Min  
Typ  
Max  
Unit  
MDC cycle time( 2.38 MHz)  
Write data valid time  
Read data setup time  
Read data hold time  
411  
6
420  
425  
Td(MDIO)  
tsu(MDIO)  
th(MDIO)  
10  
-
13  
-
ns  
12  
0
-
-
1. Data based on characterization results, not tested in production.  
Table 65 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the  
corresponding timing diagram.  
Figure 48. Ethernet RMII timing diagram  
RMII_REF_CLK  
td(TXEN)  
td(TXD)  
RMII_TX_EN  
RMII_TXD[1:0]  
tsu(RXD)  
tsu(CRS)  
tih(RXD)  
tih(CRS)  
RMII_RXD[1:0]  
RMII_CRS_DV  
ai15667  
128/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 65. Dynamic characteristics: Ethernet MAC signals for RMII  
Symbol  
Rating  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(CRS)  
tih(CRS)  
td(TXEN)  
td(TXD)  
Receive data setup time  
Receive data hold time  
2
1
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
-
Carrier sense set-up time  
Carrier sense hold time  
0.5  
2
-
-
-
Transmit enable valid delay time  
Transmit data valid delay time  
8
9.5  
10  
11  
11.5  
8.5  
Table 66 gives the list of Ethernet MAC signals for MII and Figure 48 shows the  
corresponding timing diagram.  
Figure 49. Ethernet MII timing diagram  
MII_RX_CLK  
t
t
t
t
t
t
su(RXD)  
su(ER)  
su(DV)  
ih(RXD)  
ih(ER)  
ih(DV)  
MII_RXD[3:0]  
MII_RX_DV  
MII_RX_ER  
MII_TX_CLK  
t
t
d(TXEN)  
d(TXD)  
MII_TX_EN  
MII_TXD[3:0]  
ai15668  
(1)  
Table 66. Dynamic characteristics: Ethernet MAC signals for MII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(DV)  
tih(DV)  
Receive data setup time  
Receive data hold time  
Data valid setup time  
Data valid hold time  
9
10  
9
-
-
-
8
-
ns  
tsu(ER)  
tih(ER)  
td(TXEN)  
td(TXD)  
Error setup time  
6
-
Error hold time  
8
-
Transmit enable valid delay time  
Transmit data valid delay time  
0
10  
10  
14  
15  
0
1. Data based on characterization results, not tested in production.  
DocID022063 Rev 4  
129/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
CAN (controller area network) interface  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANTX and CANRX).  
5.3.20  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 67 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 14.  
Table 67. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.8(1)  
-
-
3.6  
V
V
VREF+ Positive reference voltage  
1.8(1)(2)(3)  
VDDA  
VDDA = 1.8(1)(3) to  
2.4 V  
0.6  
0.6  
-
15  
18  
36  
MHz  
MHz  
kHz  
fADC  
ADC clock frequency  
VDDA = 2.4 to 3.6 V(3)  
30  
-
fADC = 30 MHz,  
12-bit resolution  
1764  
17  
(4)  
fTRIG  
External trigger frequency  
Conversion voltage range(5)  
-
-
1/fADC  
V
0 (VSSA or VREF-  
tied to ground)  
VAIN  
-
VREF+  
See Equation 1 for  
(4)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
κΩ  
κΩ  
pF  
details  
(4)(6)  
RADC  
Internal sample and hold  
capacitor  
(4)  
CADC  
4
-
fADC = 30 MHz  
fADC = 30 MHz  
-
-
-
0.100  
3(7)  
0.067  
2(7)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(4)  
tlat  
-
-
-
Regular trigger conversion  
latency  
(4)  
tlatr  
-
-
1/fADC  
µs  
f
ADC = 30 MHz  
0.100  
-
(4)  
tS  
Sampling time  
Power-up time  
3
-
-
480  
3
1/fADC  
µs  
(4)  
tSTAB  
2
130/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 67. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fADC = 30 MHz  
12-bit resolution  
0.50  
-
16.40  
µs  
fADC = 30 MHz  
10-bit resolution  
0.43  
0.37  
0.30  
-
-
-
16.34  
16.27  
16.20  
µs  
µs  
Total conversion time (including  
sampling time)  
fADC = 30 MHz  
8-bit resolution  
(4)  
tCONV  
fADC = 30 MHz  
6-bit resolution  
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
Msps  
12-bit resolution  
-
-
-
-
2
Single ADC  
12-bit resolution  
Sampling rate  
3.75  
Msps  
Interleave Dual ADC  
mode  
(4)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(4)  
IVREF+  
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(4)  
IVDDA  
mA  
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of  
an external power supply supervisor (refer to Section : Internal reset OFF).  
2. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.  
3. VDDA -VREF+ < 1.2 V.  
4. Based on characterization, not tested in production.  
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.  
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
RAIN = -------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
DocID022063 Rev 4  
131/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
a
(1)  
Table 68. ADC accuracy at f  
= 30 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(2)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±3  
±1.5  
±1.5  
±1  
f
PCLK2 = 60 MHz,  
Gain error  
fADC = 30 MHz, RAIN < 10 kΩ,  
LSB  
VDDA = 1.8(3) to 3.6 V  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.  
2. Based on characterization, not tested in production.  
3. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range,  
and with the use of an external power supply supervisor (refer to Section : Internal reset OFF).  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 5.3.16 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
Figure 50. ADC accuracy characteristics  
V
V
DDA  
4096  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
E
G
4095  
4094  
4093  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
E
O
L
E
D
1L SB  
IDEAL  
7
0
V
1
2
3
456  
4093 4094 4095 4096  
V
DDA  
SSA  
ai14395c  
1. See also Table 68.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
132/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 51. Typical connection diagram using the ADC  
STM32F  
V
DD  
Sample and hold ADC  
V
0.6 V  
T
converter  
(1)  
C
(1)  
R
R
AIN  
ADC  
AINx  
12-bit  
converter  
V
T
V
AIN  
0.6 V  
C
(1)  
ADC  
parasitic  
I
1 µA  
L
ai17534  
1. Refer to Table 67 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
fADC should be reduced.  
DocID022063 Rev 4  
133/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 52. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32F  
V
REF+  
(See note 1)  
1 µF // 10 nF  
V
V
DDA  
1 µF // 10 nF  
/V  
SSA REF-  
(See note 1)  
ai17535  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
Figure 53. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F  
V
/V  
REF+ DDA  
(See note 1)  
1 µF // 10 nF  
V
/V  
REF– SSA  
(See note 1)  
ai17536  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
134/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
5.3.21  
Temperature sensor characteristics  
Table 69. Temperature sensor characteristics  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
(1)  
V25  
Voltage at 25 °C  
-
(2)  
tSTART  
Startup time  
-
10  
-
µs  
(3)(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Based on characterization, not tested in production.  
2. Guaranteed by design, not tested in production.  
3. Shortest sampling time can be determined in the application by multiple iterations.  
Table 70. Temperature sensor calibration values  
Parameter  
Symbol  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA=3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA=3.3 V  
5.3.22  
V
monitoring characteristics  
BAT  
Table 71. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
2
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design, not tested in production.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
DocID022063 Rev 4  
135/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
5.3.23  
Embedded reference voltage  
The parameters given in Table 72 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
Table 72. Embedded internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21 1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3 V  
3
5
mV  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production.  
Table 73. Internal reference voltage calibration values  
Parameter  
Symbol  
Memory address  
VREFIN_CAL  
Raw data acquired at temperature of 30 °C, VDDA=3.3 V  
0x1FFF 7A2A - 0x1FFF 7A2B  
5.3.24  
DAC electrical characteristics  
Table 74. DAC characteristics  
Symbol  
Parameter  
Min Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
1.8(1)  
-
3.6  
V
VREF+  
VSSA  
Reference supply voltage  
Ground  
1.8(1)  
0
-
-
3.6  
0
V
V
VREF+ VDDA  
Resistive load with buffer  
ON  
(2)  
RLOAD  
5
-
-
kΩ  
When the buffer is OFF, the  
Minimum resistive load between  
DAC_OUT and VSS to have a 1%  
accuracy is 1.5 MΩ  
Impedance output with  
buffer OFF  
(2)  
RO  
-
-
15  
kΩ  
Maximum capacitive load at  
pF DAC_OUT pin (when the buffer is  
ON).  
(2)  
CLOAD  
Capacitive load  
-
-
50  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(2)  
with buffer ON  
0.2  
-
-
-
-
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+  
3.6 V and (0x1C7) to (0xE38) at  
VREF+ = 1.8 V  
=
DAC_OUT Higher DAC_OUT voltage  
max(2)  
with buffer ON  
V
DDA – 0.2  
V
136/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Comments  
Table 74. DAC characteristics (continued)  
Symbol  
Parameter  
Min Typ  
Max  
Unit  
DAC_OUT Lower DAC_OUT voltage  
-
-
0.5  
-
-
mV  
min(2)  
with buffer OFF  
It gives the maximum output  
excursion of the DAC.  
DAC_OUT Higher DAC_OUT voltage  
V
REF+ – 1LSB  
V
max(2)  
with buffer OFF  
With no load, worst code (0x800)  
at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
170  
240  
DAC DC VREF current  
consumption in quiescent  
mode (Standby mode)  
(4)  
IVREF+  
µA  
µA  
With no load, worst code (0xF1C)  
at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
-
-
50  
75  
With no load, middle code (0x800)  
on the inputs  
280  
475  
380  
625  
DAC DC VDDA current  
consumption in quiescent  
mode(3)  
(4)  
IDDA  
With no load, worst code (0xF1C)  
µA at VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
Given for the DAC in 10-bit  
configuration.  
-
-
±0.5  
LSB  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
DNL(4)  
Given for the DAC in 12-bit  
configuration.  
-
-
-
-
±2  
±1  
LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration.  
LSB  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(4)  
Given for the DAC in 12-bit  
configuration.  
-
-
±4  
LSB  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
-
-
-
-
±10  
±3  
mV  
Offset error  
(difference between  
measured value at Code  
(0x800) and the ideal value  
= VREF+/2)  
Given for the DAC in 10-bit at  
VREF+ = 3.6 V  
Offset(4)  
LSB  
Given for the DAC in 12-bit at  
LSB  
±12  
±0.5  
VREF+ = 3.6 V  
Gain  
Given for the DAC in 12-bit  
configuration  
Gain error  
%
µs  
dB  
error(4)  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value ±4LSB  
CLOAD 50 pF,  
RLOAD 5 kΩ  
(4)  
tSETTLING  
-
-
3
-
6
-
Total Harmonic Distortion  
Buffer ON  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
DocID022063 Rev 4  
137/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Comments  
Table 74. DAC characteristics (continued)  
Symbol  
Parameter  
Min Typ  
Max  
Unit  
Max frequency for a correct  
DAC_OUT change when  
small variation in the input  
code (from code i to i+1LSB)  
Update  
rate(2)  
CLOAD 50 pF,  
RLOAD 5 kΩ  
-
-
1
MS/s  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest and  
highest possible ones.  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(4)  
tWAKEUP  
-
-
6.5  
10  
µs  
Power supply rejection ratio  
PSRR+ (2) (to VDDA) (static DC  
measurement)  
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of  
an external power supply supervisor (refer to Section : Internal reset OFF).  
2. Guaranteed by design, not tested in production.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed by characterization, not tested in production.  
Figure 54. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
LOAD  
DACx_OUT  
12-bit  
digital to  
analog  
converter  
C
LOAD  
ai17157  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
5.3.25  
FSMC characteristics  
Unless otherwise specified, the parameters given in Table 75 to Table 86 for the FSMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 14, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section Section 5.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
138/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Asynchronous waveforms and timings  
Figure 55 through Figure 58 represent asynchronous waveforms and Table 75 through  
Table 78 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
AddressSetupTime = 1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1  
BusTurnAroundDuration = 0x0  
In all timing tables, the THCLK is the HCLK clock period.  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FSMC_NOE  
FSMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FSMC_D[15:0]  
FSMC_NADV(1)  
t
v(NADV_NE)  
t
w(NADV)  
ai14991c  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1)(2)  
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
2THCLK–0.5 2 THCLK+1  
0.5  
2THCLK–2 2THCLK+ 2  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NEx low to FSMC_NOE low  
FSMC_NOE low time  
3
th(NE_NOE)  
tv(A_NE)  
FSMC_NOE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
Address hold time after FSMC_NOE high  
0
-
-
4.5  
-
th(A_NOE)  
4
DocID022063 Rev 4  
139/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)(2)  
Table 75. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
tv(BL_NE)  
th(BL_NOE)  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NOE high  
Data to FSMC_NEx high setup time  
Data to FSMC_NOEx high setup time  
Data hold time after FSMC_NOE high  
Data hold time after FSMC_NEx high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
-
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
-
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
THCLK+4  
-
THCLK+4  
-
0
0
-
-
-
2
tv(NADV_NE)  
tw(NADV)  
-
THCLK  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
FSMC_NWE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FSMC_D[15:0]  
FSMC_NADV(1)  
t
v(NADV_NE)  
t
w(NADV)  
ai14990  
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.  
(1)(2)  
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
3THCLK  
3THCLK+ 4 ns  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low time  
THCLK–0.5 THCLK+0.5 ns  
THCLK–1  
THCLK–1  
-
THCLK+2  
ns  
ns  
ns  
th(NE_NWE)  
tv(A_NE)  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
-
0
140/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)(2)  
Table 76. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
th(A_NWE)  
tv(BL_NE)  
Address hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
FSMC_BL hold time after FSMC_NWE high  
Data to FSMC_NEx low to Data valid  
Data hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
THCLK– 2  
-
ns  
ns  
ns  
ns  
ns  
ns  
-
1.5  
th(BL_NWE)  
tv(Data_NE)  
th(Data_NWE)  
tv(NADV_NE)  
tw(NADV)  
THCLK– 1  
-
-
THCLK+3  
THCLK–1  
-
-
-
2
THCLK+0.5 ns  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FSMC_NE  
t
t
h(NE_NOE)  
v(NOE_NE)  
FSMC_NOE  
t
w(NOE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NOE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FSMC_NBL[1:0]  
NBL  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
su(Data_NOE)  
Address  
Data  
FSMC_AD[15:0]  
FSMC_NADV  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
ai14892b  
(1)(2)  
Table 77. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
Max  
3THCLK+1  
Unit  
tw(NE)  
3THCLK–1  
ns  
ns  
ns  
ns  
ns  
tv(NOE_NE) FSMC_NEx low to FSMC_NOE low  
tw(NOE) FSMC_NOE low time  
th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time  
2THCLK–0.5 2THCLK+0.5  
THCLK–1  
THCLK+1  
0
-
-
tv(A_NE)  
FSMC_NEx low to FSMC_A valid  
3
DocID022063 Rev 4  
141/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)(2)  
Table 77. Asynchronous multiplexed PSRAM/NOR read timings  
(continued)  
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low  
1
2
ns  
tw(NADV)  
th(AD_NADV)  
th(A_NOE)  
FSMC_NADV low time  
THCLK– 2  
THCLK+1  
ns  
ns  
FSMC_AD(adress) valid hold time after  
FSMC_NADV high)  
THCLK  
-
Address hold time after FSMC_NOE high  
THCLK–1  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(BL_NOE) FSMC_BL time after FSMC_NOE high  
tv(BL_NE) FSMC_NEx low to FSMC_BL valid  
0
-
2
-
tsu(Data_NE) Data to FSMC_NEx high setup time  
tsu(Data_NOE) Data to FSMC_NOE high setup time  
th(Data_NE) Data hold time after FSMC_NEx high  
th(Data_NOE) Data hold time after FSMC_NOE high  
THCLK+4  
THCLK+4  
-
0
0
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FSMC_NEx  
FSMC_NOE  
t
t
t
h(NE_NWE)  
v(NWE_NE)  
w(NWE)  
FSMC_NWE  
t
tv(A_NE)  
h(A_NWE)  
FSMC_A[25:16]  
Address  
tv(BL_NE)  
t
h(BL_NWE)  
FSMC_NBL[1:0]  
FSMC_AD[15:0]  
NBL  
t
t
h(Data_NWE)  
t
v(A_NE)  
v(Data_NADV)  
Address  
Data  
t
th(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FSMC_NADV  
ai14891B  
(1)(2)  
Table 78. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
FSMC_NE low time  
Min  
4THCLK–0.5 4THCLK+3  
THCLK–0.5 THCLK -0.5  
2THCLK–0.5 2THCLK+3  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
ns  
ns  
ns  
FSMC_NEx low to FSMC_NWE low  
FSMC_NWE low tim e  
142/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)(2)  
Table 78. Asynchronous multiplexed PSRAM/NOR write timings  
th(NE_NWE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FSMC_NWE high to FSMC_NE high hold time  
FSMC_NEx low to FSMC_A valid  
FSMC_NEx low to FSMC_NADV low  
FSMC_NADV low time  
THCLK  
-
ns  
ns  
ns  
ns  
-
1
0
2
THCLK– 2  
THCLK+ 1  
FSMC_AD(address) valid hold time after  
FSMC_NADV high)  
th(AD_NADV)  
THCLK–2  
-
ns  
th(A_NWE)  
th(BL_NWE)  
tv(BL_NE)  
Address hold time after FSMC_NWE high  
FSMC_BL hold time after FSMC_NWE high  
FSMC_NEx low to FSMC_BL valid  
THCLK  
-
ns  
ns  
ns  
ns  
ns  
THCLK–2  
-
-
1.5  
tv(Data_NADV) FSMC_NADV high to Data valid  
-
THCLK–0.5  
-
th(Data_NWE) Data hold time after FSMC_NWE high  
THCLK  
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Synchronous waveforms and timings  
Figure 59 through Figure 62 represent synchronous waveforms and Table 80 through  
Table 82 provide the corresponding timings. The results shown in these tables are obtained  
with the following FSMC configuration:  
BurstAccessMode = FSMC_BurstAccessMode_Enable;  
MemoryType = FSMC_MemoryType_CRAM;  
WriteBurst = FSMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F40xxx/41xxx reference manual)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
In all timing tables, the THCLK is the HCLK clock period (with maximum  
FSMC_CLK = 60 MHz).  
DocID022063 Rev 4  
143/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
t
t
d(CLKL-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
d(CLKL-AIV)  
d(CLKL-AV)  
FSMC_A[25:16]  
t
t
d(CLKL-NOEH)  
d(CLKL-NOEL)  
FSMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 1b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
ai14893g  
(1)(2)  
Max  
Table 79. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Unit  
tw(CLK)  
FSMC_CLK period  
2THCLK  
-
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2)  
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
2
-
2
-
2
-
td(CLKL-AV)  
td(CLKL-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK low to FSMC_Ax invalid (x=16…25)  
0
-
0
-
td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low  
td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high  
0
-
2
-
td(CLKL-ADV)  
FSMC_CLK low to FSMC_AD[15:0] valid  
4.5  
-
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid  
0
6
tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high  
-
144/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)(2)  
Table 79. Synchronous multiplexed NOR/PSRAM read timings  
(continued)  
ns  
th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high  
0
4
0
-
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
-
ns  
ns  
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 60. Synchronous multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
t
d(CLKL-NExH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FSMC_NADV  
t
t
t
d(CLKL-AIV)  
d(CLKL-AV)  
FSMC_A[25:16]  
FSMC_NWE  
t
d(CLKL-NWEL)  
d(CLKL-NWEH)  
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
D1  
t
d(CLKL-Data)  
d(CLKL-ADV)  
FSMC_AD[15:0]  
AD[15:0]  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
t
d(CLKL-NBLH)  
ai14992g  
(1)(2)  
Table 80. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FSMC_CLK period  
2THCLK  
-
1
-
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2)  
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
-
1
-
0
-
0
-
td(CLKL-AV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
0
DocID022063 Rev 4  
145/186  
 
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)(2)  
Table 80. Synchronous multiplexed PSRAM write timings  
td(CLKL-AIV)  
FSMC_CLK low to FSMC_Ax invalid (x=16…25)  
8
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low  
0.5  
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high  
td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid  
td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low  
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high  
0
0
-
-
-
3
-
0
4
0
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKL-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FSMC_NEx  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
t
t
d(CLKL-AIV)  
d(CLKL-AV)  
FSMC_A[25:0]  
t
t
d(CLKL-NOEL)  
d(CLKL-NOEH)  
FSMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
su(DV-CLKH)  
t
t
h(CLKH-DV)  
FSMC_D[15:0]  
FSMC_NWAIT  
D1  
D2  
h(CLKH-NWAITV)  
t
t
su(NWAITV-CLKH)  
(WAITCFG = 1b, WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
ai14894f  
(1)(2)  
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
tw(CLK)  
td(CLKL-NExL)  
Parameter  
Min  
Max  
Unit  
FSMC_CLK period  
2THCLK –0.5  
-
-
ns  
ns  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
0.5  
146/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)(2)  
Table 81. Synchronous non-multiplexed NOR/PSRAM read timings  
(continued)  
td(CLKL-NExH)  
FSMC_CLK low to FSMC_NEx high (x= 0…2)  
0
-
-
2
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
3
td(CLKL-AV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK low to FSMC_Ax invalid (x=16…25)  
FSMC_CLK low to FSMC_NOE low  
-
2
0
-
td(CLKL-AIV)  
td(CLKL-NOEL)  
td(CLKL-NOEH)  
tsu(DV-CLKH)  
th(CLKH-DV)  
-
0.5  
-
FSMC_CLK low to FSMC_NOE high  
1.5  
6
FSMC_D[15:0] valid data before FSMC_CLK high  
FSMC_D[15:0] valid data after FSMC_CLK high  
-
3
-
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
4
-
0
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
Figure 62. Synchronous non-multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FSMC_CLK  
t
t
d(CLKL-NExL)  
FSMC_NEx  
d(CLKL-NExH)  
Data latency = 0  
d(CLKL-NADVH)  
t
t
d(CLKL-NADVL)  
FSMC_NADV  
FSMC_A[25:0]  
FSMC_NWE  
t
t
t
d(CLKL-AIV)  
d(CLKL-AV)  
t
d(CLKL-NWEL)  
d(CLKL-NWEH)  
t
t
d(CLKL-Data)  
d(CLKL-Data)  
FSMC_D[15:0]  
D1  
D2  
FSMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FSMC_NBL  
t
t
d(CLKL-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
ai14993g  
DocID022063 Rev 4  
147/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)(2)  
Table 82. Synchronous non-multiplexed PSRAM write timings  
Symbol  
tw(CLK)  
Parameter  
Min  
Max Unit  
FSMC_CLK period  
2THCLK  
-
1
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
FSMC_CLK low to FSMC_NEx low (x=0..2)  
FSMC_CLK low to FSMC_NEx high (x= 0…2)  
-
1
-
td(CLKL-NExH)  
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low  
td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high  
7
-
6
-
td(CLKL-AV)  
td(CLKL-AIV)  
FSMC_CLK low to FSMC_Ax valid (x=16…25)  
FSMC_CLK low to FSMC_Ax invalid (x=16…25)  
FSMC_CLK low to FSMC_NWE low  
0
-
6
-
td(CLKL-NWEL)  
td(CLKL-NWEH)  
td(CLKL-Data)  
td(CLKL-NBLH)  
1
-
FSMC_CLK low to FSMC_NWE high  
2
-
FSMC_D[15:0] valid data after FSMC_CLK low  
FSMC_CLK low to FSMC_NBL high  
3
-
3
4
0
tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high  
th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high  
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
PC Card/CompactFlash controller waveforms and timings  
Figure 63 through Figure 68 represent synchronous waveforms, and Table 83 and Table 84  
provide the corresponding timings. The results shown in this table are obtained with the  
following FSMC configuration:  
COM.FSMC_SetupTime = 0x04;  
COM.FSMC_WaitSetupTime = 0x07;  
COM.FSMC_HoldSetupTime = 0x04;  
COM.FSMC_HiZSetupTime = 0x00;  
ATT.FSMC_SetupTime = 0x04;  
ATT.FSMC_WaitSetupTime = 0x07;  
ATT.FSMC_HoldSetupTime = 0x04;  
ATT.FSMC_HiZSetupTime = 0x00;  
IO.FSMC_SetupTime = 0x04;  
IO.FSMC_WaitSetupTime = 0x07;  
IO.FSMC_HoldSetupTime = 0x04;  
IO.FSMC_HiZSetupTime = 0x00;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the THCLK is the HCLK clock period.  
148/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 63. PC Card/CompactFlash controller waveforms for common memory read  
access  
FSMC_NCE4_2(1)  
FSMC_NCE4_1  
t
h(NCEx-AI)  
t
v(NCEx-A)  
FSMC_A[10:0]  
t
t
t
h(NCEx-NREG)  
h(NCEx-NIORD)  
t
t
d(NREG-NCEx)  
d(NIORD-NCEx)  
h(NCEx-NIOWR  
)
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
FSMC_NWE  
t
t
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
h(NOE-D)  
su(D-NOE)  
FSMC_D[15:0]  
ai14895b  
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.  
Figure 64. PC Card/CompactFlash controller waveforms for common memory write  
access  
FSMC_NCE4_1  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
t
t
t
h(NCE4_1-NREG)  
h(NCE4_1-NIORD)  
h(NCE4_1-NIOWR)  
t
t
d(NREG-NCE4_1)  
d(NIORD-NCE4_1)  
FSMC_NREG  
FSMC_NIOWR  
FSMC_NIORD  
t
t
t
d(NCE4_1-NWE)  
w(NWE)  
d(NWE-NCE4_1)  
FSMC_NWE  
FSMC_NOE  
MEMxHIZ =1  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FSMC_D[15:0]  
ai14896b  
DocID022063 Rev 4  
149/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read  
access  
FSMC_NCE4_1  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NCE4_2  
FSMC_A[10:0]  
High  
FSMC_NIOWR  
FSMC_NIORD  
t
t
h(NCE4_1-NREG)  
d(NREG-NCE4_1)  
FSMC_NREG  
FSMC_NWE  
t
t
t
d(NOE-NCE4_1)  
d(NCE4_1-NOE)  
w(NOE)  
FSMC_NOE  
t
t
su(D-NOE)  
h(NOE-D)  
FSMC_D[15:0](1)  
ai14897b  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
150/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write  
access  
FSMC_NCE4_1  
High  
FSMC_NCE4_2  
FSMC_A[10:0]  
t
t
h(NCE4_1-AI)  
v(NCE4_1-A)  
FSMC_NIOWR  
FSMC_NIORD  
t
t
d(NREG-NCE4_1)  
h(NCE4_1-NREG)  
FSMC_NREG  
t
t
d(NCE4_1-NWE)  
w(NWE)  
FSMC_NWE  
t
d(NWE-NCE4_1)  
FSMC_NOE  
t
v(NWE-D)  
FSMC_D[7:0](1)  
ai14898b  
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).  
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIOWR  
t
t
w(NIORD)  
t
d(NIORD-NCE4_1)  
FSMC_NIORD  
t
su(D-NIORD)  
d(NIORD-D)  
FSMC_D[15:0]  
ai14899B  
DocID022063 Rev 4  
151/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access  
FSMC_NCE4_1  
FSMC_NCE4_2  
t
t
h(NCE4_1-AI)  
v(NCEx-A)  
FSMC_A[10:0]  
FSMC_NREG  
FSMC_NWE  
FSMC_NOE  
FSMC_NIORD  
t
t
w(NIOWR)  
d(NCE4_1-NIOWR)  
FSMC_NIOWR  
ATTxHIZ =1  
t
h(NIOWR-D)  
t
v(NIOWR-D)  
FSMC_D[15:0]  
ai14900c  
Table 83. Switching characteristics for PC Card/CF read and write cycles  
(1)(2)  
in attribute/common space  
Symbol  
Parameter  
Min  
Max  
Unit  
tv(NCEx-A)  
FSMC_Ncex low to FSMC_Ay valid  
FSMC_NCEx high to FSMC_Ax invalid  
-
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(NCEx_AI)  
4
-
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid  
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid  
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low  
td(NCEx-NOE) FSMC_NCEx low to FSMC_NOE low  
-
3.5  
THCLK+4  
-
-
5THCLK+0.5  
-
5THCLK +0.5  
tw(NOE)  
FSMC_NOE low width  
8THCLK–1  
5THCLK+2.5  
4.5  
8THCLK+1  
td(NOE_NCEx) FSMC_NOE high to FSMC_NCEx high  
-
tsu (D-NOE)  
th(N0E-D)  
tw(NWE)  
FSMC_D[15:0] valid data before FSMC_NOE high  
FSMC_N0E high to FSMC_D[15:0] invalid  
FSMC_NWE low width  
-
3
-
8THCLK–0.5  
8THCLK+ 3  
td(NWE_NCEx) FSMC_NWE high to FSMC_NCEx high  
td(NCEx-NWE) FSMC_NCEx low to FSMC_NWE low  
-
ns  
5THCLK–1  
-
5THCLK+ 1  
ns  
ns  
ns  
ns  
tv(NWE-D)  
FSMC_NWE low to FSMC_D[15:0] valid  
-
0
-
th (NWE-D) FSMC_NWE high to FSMC_D[15:0] invalid  
td (D-NWE) FSMC_D[15:0] valid before FSMC_NWE high  
8THCLK –1  
13THCLK –1  
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
152/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
Table 84. Switching characteristics for PC Card/CF read and write cycles  
(1)(2)  
in I/O space  
Parameter  
FSMC_NIOWR low width  
FSMC_NIOWR low to FSMC_D[15:0] valid  
FSMC_NIOWR high to FSMC_D[15:0] invalid  
Symbol  
Min  
Max  
Unit  
tw(NIOWR)  
tv(NIOWR-D)  
th(NIOWR-D)  
8THCLK –1  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
5THCLK– 1  
8THCLK– 2  
-
td(NCE4_1-NIOWR) FSMC_NCE4_1 low to FSMC_NIOWR valid  
th(NCEx-NIOWR) FSMC_NCEx high to FSMC_NIOWR invalid  
td(NIORD-NCEx) FSMC_NCEx low to FSMC_NIORD valid  
th(NCEx-NIORD) FSMC_NCEx high to FSMC_NIORD) valid  
-
5THCLK+ 2.5  
5THCLK–1.5  
-
-
5THCLK+ 2  
5THCLK– 1.5  
-
-
tw(NIORD)  
tsu(D-NIORD)  
td(NIORD-D)  
FSMC_NIORD low width  
8THCLK–0.5  
FSMC_D[15:0] valid before FSMC_NIORD high  
FSMC_D[15:0] valid after FSMC_NIORD high  
9
0
-
-
1. CL = 30 pF.  
2. Based on characterization, not tested in production.  
NAND controller waveforms and timings  
Figure 69 through Figure 72 represent synchronous waveforms, and Table 85 and Table 86  
provide the corresponding timings. The results shown in this table are obtained with the  
following FSMC configuration:  
COM.FSMC_SetupTime = 0x01;  
COM.FSMC_WaitSetupTime = 0x03;  
COM.FSMC_HoldSetupTime = 0x02;  
COM.FSMC_HiZSetupTime = 0x01;  
ATT.FSMC_SetupTime = 0x01;  
ATT.FSMC_WaitSetupTime = 0x03;  
ATT.FSMC_HoldSetupTime = 0x02;  
ATT.FSMC_HiZSetupTime = 0x01;  
Bank = FSMC_Bank_NAND;  
MemoryDataWidth = FSMC_MemoryDataWidth_16b;  
ECC = FSMC_ECC_Enable;  
ECCPageSize = FSMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the THCLK is the HCLK clock period.  
DocID022063 Rev 4  
153/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 69. NAND controller waveforms for read access  
FSMC_NCEx  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
FSMC_NWE  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
t
t
h(NOE-D)  
su(D-NOE)  
ai14901c  
Figure 70. NAND controller waveforms for write access  
FSMC_NCEx  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NWE)  
th(NWE-ALE)  
FSMC_NWE  
FSMC_NOE (NRE)  
FSMC_D[15:0]  
tv(NWE-D)  
th(NWE-D)  
ai14902c  
154/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Electrical characteristics  
Figure 71. NAND controller waveforms for common memory read access  
FSMC_NCEx  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
tw(NOE)  
tsu(D-NOE)  
th(NOE-D)  
FSMC_D[15:0]  
ai14912c  
Figure 72. NAND controller waveforms for common memory write access  
FSMC_NCEx  
ALE (FSMC_A17)  
CLE (FSMC_A16)  
td(ALE-NOE)  
tw(NWE)  
th(NOE-ALE)  
FSMC_NWE  
FSMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FSMC_D[15:0]  
ai14913c  
(1)  
Table 85. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
4THCLK  
0.5  
tw(N0E)  
FSMC_NOE low width  
4THCLK+ 3  
ns  
tsu(D-NOE) FSMC_D[15-0] valid data before FSMC_NOE high  
th(NOE-D) FSMC_D[15-0] valid data after FSMC_NOE high  
10  
0
-
ns  
ns  
ns  
ns  
-
td(ALE-NOE) FSMC_ALE valid before FSMC_NOE low  
th(NOE-ALE) FSMC_NWE high to FSMC_ALE invalid  
1. CL = 30 pF.  
-
3THCLK  
-
3THCLK– 2  
DocID022063 Rev 4  
155/186  
Electrical characteristics  
STM32F415xx, STM32F417xx  
(1)  
Table 86. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
FSMC_NWE low width  
Min  
Max  
Unit  
tw(NWE)  
tv(NWE-D)  
4THCLK–1  
-
4THCLK+ 3  
ns  
ns  
ns  
ns  
ns  
ns  
FSMC_NWE low to FSMC_D[15-0] valid  
FSMC_NWE high to FSMC_D[15-0] invalid  
FSMC_D[15-0] valid before FSMC_NWE high  
FSMC_ALE valid before FSMC_NWE low  
FSMC_NWE high to FSMC_ALE invalid  
0
th(NWE-D)  
3THCLK –2  
5THCLK–3  
-
-
td(D-NWE)  
-
td(ALE-NWE)  
th(NWE-ALE)  
1. CL = 30 pF.  
3THCLK  
-
3THCLK–2  
5.3.26  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 87 for DCMI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
HCLK  
DD  
summarized in Table 13, with the following configuration:  
PCK polarity: falling  
VSYNC and HSYNC polarity: high  
Data format: 14 bits  
Figure 73. DCMI timing diagram  
1/DCMI_PIXCLK  
Pixel clock  
HSYNC  
tsu(HSYNC)  
th(HSYNC)  
tsu(VSYNC)  
th(HSYNC)  
VSYNC  
tsu(DATA) th(DATA)  
DATA[0:13]  
MS32414V1  
(1)  
Table 87. DCMI characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Frequency ratio DCMI_PIXCLK/fHCLK  
-
0.4  
DCMI_PIXCLK  
Dpixel  
Pixel clock input  
-
54  
70  
MHz  
%
Pixel clock input duty cycle  
30  
156/186  
DocID022063 Rev 4  
 
 
 
 
STM32F415xx, STM32F417xx  
Electrical characteristics  
(1)  
Table 87. DCMI characteristics (continued)  
Symbol  
tsu(DATA)  
Parameter  
Data input setup time  
Min  
2.5  
1
Max  
Unit  
-
-
th(DATA)  
Data hold time  
tsu(HSYNC)  
tsu(VSYNC)  
,
ns  
HSYNC/VSYNC input setup time  
2
-
-
th(HSYNC)  
,
HSYNC/VSYNC input hold time  
0.5  
th(VSYNC)  
1. Data based on characterization results, not tested in production.  
5.3.27  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 88 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 14 with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Figure 74. SDIO high-speed mode  
t
t
r
f
t
C
t
t
W(CKH)  
W(CKL)  
CK  
t
t
OV  
OH  
D, CMD  
(output)  
t
t
ISU  
IH  
D, CMD  
(input)  
ai14887  
DocID022063 Rev 4  
157/186  
 
Electrical characteristics  
STM32F415xx, STM32F417xx  
Figure 75. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
(1)  
Table 88. Dynamic characteristics: SD / MMC characteristics  
Symbol  
fPP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
0
-
48  
8/3  
-
MHz  
-
-
9
tW(CKL)  
tW(CKH)  
fpp = 48 MHz  
fpp = 48 MHz  
8.5  
8.3  
ns  
ns  
ns  
ns  
ns  
Clock high time  
10  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp = 48 MHz  
fpp = 48 MHz  
3
0
-
-
-
-
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp = 48 MHz  
fpp = 48 MHz  
-
4.5  
-
6
-
1
CMD, D inputs (referenced to CK) in SD default mode  
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp = 24 MHz  
fpp = 24 MHz  
1.5  
0.5  
-
-
-
-
CMD, D outputs (referenced to CK) in SD default mode  
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp = 24 MHz  
fpp = 24 MHz  
-
4.5  
-
7
-
0.5  
1. Data based on characterization results, not tested in production.  
5.3.28  
RTC characteristics  
Table 89. RTC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
158/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Package characteristics  
6
Package characteristics  
6.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
DocID022063 Rev 4  
159/186  
Package characteristics  
STM32F415xx, STM32F417xx  
Figure 76. WLCSP90 - 0.400 mm pitch wafer level chip size package outline  
e1  
A1 ball location  
D
e
e
Detail A  
E
e2  
G
A2  
A
F
Bump side  
Wafer back side  
Side view  
Detail A  
rotated by 90 °C  
A1  
eee  
b
Seating plane  
A0JW_ME  
Table 90. WLCSP90 - 0.400 mm pitch wafer level chip size package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.520  
0.165  
0.350  
0.240  
4.178  
3.964  
0.570  
0.190  
0.380  
0.270  
4.218  
3.969  
0.400  
3.600  
3.200  
0.312  
0.385  
0.620  
0.215  
0.410  
0.300  
4.258  
4.004  
0.0205  
0.0065  
0.0138  
0.0094  
0.1645  
0.1561  
0.0224  
0.0075  
0.015  
0.0244  
0.0085  
0.0161  
0.0118  
0.1676  
0.1576  
0.0106  
0.1661  
0.1563  
0.0157  
0.1417  
0.126  
D
E
e
e1  
e2  
F
0.0123  
0.0152  
G
eee  
0.050  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
160/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Package characteristics  
Figure 77. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline  
A
A2  
A1  
b
E
E1  
e
D1  
D
c
L1  
L
ai14398b  
1. Drawing is not to scale.  
Table 91. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.050  
1.350  
0.170  
0.090  
0.0020  
0.0531  
0.0067  
0.0035  
1.400  
0.220  
0.0551  
0.0087  
c
D
12.000  
10.000  
12.000  
10.000  
0.500  
3.5°  
0.4724  
0.3937  
0.4724  
0.3937  
0.0197  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.450  
0.600  
1.000  
0.750  
0.0177  
0.0236  
0.0394  
0.0295  
L1  
Number of pins  
64  
N
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID022063 Rev 4  
161/186  
Package characteristics  
STM32F415xx, STM32F417xx  
Figure 78. LQFP64 recommended footprint  
48  
33  
0.3  
49  
32  
0.5  
12.7  
10.3  
10.3  
64  
17  
1.2  
1
16  
7.8  
12.7  
ai14909  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
162/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Package characteristics  
Figure 79. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
L
D
L1  
D1  
D3  
75  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V4  
1. Drawing is not to scale.  
(1)  
Table 92. LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
1.400  
0.220  
0.0551  
0.0087  
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.80v  
13.800  
16.200  
14.200  
0.6220  
0.5433  
0.6378  
0.5591  
E1  
E3  
e
L
0.450  
0°  
0.600  
0.750  
0.0177  
0°  
0.0295  
L1  
k
1.000  
3.5°  
7°  
7°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID022063 Rev 4  
163/186  
Package characteristics  
STM32F415xx, STM32F417xx  
Figure 80. LQFP100 recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
164/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Package characteristics  
Figure 81. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline  
Seating plane  
C
A
A2 A1  
c
b
0.25 mm  
gage plane  
ccc  
C
k
D
D1  
A1  
L
D3  
L1  
108  
73  
72  
109  
E3 E1  
E
144  
37  
Pin 1  
identification  
1
36  
ME_1A  
e
1. Drawing is not to scale.  
Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
1.400  
0.220  
0.0551  
0.0087  
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.8661  
0.7874  
0.689  
D1  
D3  
E
0.7953  
21.800  
19.800  
22.200  
20.200  
0.8583  
0.7795  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
0.8740  
0.7953  
E1  
E3  
e
L
0.450  
0.600  
0.750  
0.0177  
0.0295  
L1  
1.000  
DocID022063 Rev 4  
165/186  
Package characteristics  
STM32F415xx, STM32F417xx  
Table 93. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
k
0°  
3.5°  
7°  
0°  
3.5°  
7°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 82. LQFP144 recommended footprint  
1.35  
108  
73  
109  
72  
0.35  
0.5  
17.85  
22.6  
19.9  
144  
37  
1
36  
19.9  
22.6  
ai14905c  
1. Drawing is not to scale.  
2. Dimensions are in millimeters.  
166/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Package characteristics  
Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm,  
package outline  
C
Seating plane  
A2  
ddd  
C
A
A1  
A1 ball  
A
A1 ball  
E
identifier index area  
e
F
A
F
D
e
B
R
15  
1
TOP VIEW  
BOTTOM VIEW  
Øb (176 + 25 balls)  
Ø eee M  
Ø fff  
C
C
A B  
M
A0E7_ME_V4  
1. Drawing is not to scale.  
Table 94. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.460  
0.050  
0.530  
0.080  
0.600  
0.110  
0.0181  
0.002  
0.0209  
0.0031  
0.0236  
0.0043  
A1  
A2  
0.400  
0.450  
0.500  
0.0157  
0.0177  
0.0197  
b
D
0.230  
9.900  
9.900  
0.280  
10.000  
10.000  
0.650  
0.330  
10.100  
10.100  
0.0091  
0.3898  
0.3898  
0.0110  
0.3937  
0.3937  
0.0256  
0.0177  
0.0130  
0.3976  
0.3976  
E
e
F
0.425  
0.450  
0.475  
0.080  
0.150  
0.080  
0.0167  
0.0187  
0.0031  
0.0059  
0.0031  
ddd  
eee  
fff  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID022063 Rev 4  
167/186  
 
 
Package characteristics  
STM32F415xx, STM32F417xx  
Figure 84. LQFP176 24 x 24 mm, 176-pin low-profile quad flat package outline  
C Seating plane  
A A2  
0.25 mm  
gauge plane  
k
c
A1  
ccc  
C
A1  
HD  
D
L
L1  
ZD  
ZE  
89  
132  
133  
176  
88  
b
HE  
E
45  
Pin 1  
1
44  
identification  
e
1T_ME  
1. Drawing is not to scale.  
Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
24.100  
0.0630  
0.050  
1.350  
0.170  
0.090  
23.900  
23.900  
0.0020  
0.0531  
0.0067  
0.0035  
0.9409  
0.9409  
0.0060  
0.0106  
0.0079  
0.9488  
0.9488  
C
D
E
e
0.500  
0.0197  
HD  
HE  
L
25.900  
25.900  
0.450  
26.100  
26.100  
0.750  
1.0200  
1.0200  
0.0177  
1.0276  
1.0276  
0.0295  
L1  
ZD  
ZE  
1.000  
1.250  
1.250  
0.0394  
0.0492  
0.0492  
168/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Package characteristics  
Table 95. LQFP176, 24 x 24 mm, 176-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
ccc  
k
0.080  
7 °  
0.0031  
7 °  
0 °  
0 °  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 85. LQFP176 recommended footprint  
1.2  
176  
133  
132  
0.5  
1
0.3  
44  
45  
89  
88  
1.2  
21.8  
26.7  
1T_FP_V1  
1. Dimensions are expressed in millimeters.  
DocID022063 Rev 4  
169/186  
 
Package characteristics  
STM32F415xx, STM32F417xx  
6.2  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 96. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
46  
43  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
40  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
LQFP176 - 24 × 24 mm / 0.5 mm pitch  
38  
Thermal resistance junction-ambient  
UFBGA176 - 10× 10 mm / 0.65 mm pitch  
39  
Thermal resistance junction-ambient  
WLCSP90 - 0.400 mm pitch  
38.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
170/186  
DocID022063 Rev 4  
 
STM32F415xx, STM32F417xx  
Part numbering  
7
Part numbering  
Table 97. Ordering information scheme  
STM32  
Example:  
F
415 R  
E
T
6 xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
415 = STM32F41x, connectivity, cryptographic acceleration  
417= STM32F41x, connectivity, camera interface, Ethernet  
cryptographic acceleration, Ethernet,  
Pin count  
R = 64 pins  
O = 90 pins  
V = 100 pins  
Z = 144 pins  
I = 176 pins  
Flash memory size  
E = 512 Kbytes of Flash memory  
G = 1024 Kbytes of Flash memory  
Package  
T = LQFP  
H = UFBGA  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID022063 Rev 4  
171/186  
 
Application block diagrams  
STM32F415xx, STM32F417xx  
Appendix A Application block diagrams  
A.1  
USB OTG full speed (FS) interface solutions  
Figure 86. USB controller configured as peripheral-only and used  
in Full speed mode  
VDD  
5V to VDD  
Volatge regulator  
(1)  
STM32F4xx  
VBUS  
DM  
PA11//PB14  
OSC_IN  
DP  
PA12/PB15  
V
SS  
OSC_OUT  
MS19000V5  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
Figure 87. USB controller configured as host-only and used in full speed mode  
VDD  
EN  
GPIO  
Current limiter  
5 V Pwr  
(1)  
power switch  
Overcurrent  
GPIO+IRQ  
STM32F4xx  
VBUS  
DM  
PA11//PB14  
OSC_IN  
DP  
PA12/PB15  
VSS  
OSC_OUT  
MS19001V4  
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
172/186  
DocID022063 Rev 4  
 
 
 
STM32F415xx, STM32F417xx  
Application block diagrams  
Figure 88. USB controller configured in dual mode and used in full speed mode  
VDD  
5 V to VDD  
voltage regulator  
(1)  
VDD  
EN  
GPIO  
5 V Pwr  
Current limiter  
(2)  
Overcurrent  
power switch  
GPIO+IRQ  
STM32F4xx  
VBUS  
PA9/PB13  
DM  
PA11/PB14  
OSC_IN  
DP  
(3)  
PA12/PB15  
PA10/PB12  
ID  
OSC_OUT  
V
SS  
MS19002V3  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
3. The ID pin is required in dual role only.  
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
DocID022063 Rev 4  
173/186  
 
Application block diagrams  
STM32F415xx, STM32F417xx  
A.2  
USB OTG high speed (HS) interface solutions  
Figure 89. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode  
STM32F4xx  
FS PHY  
DP  
not connected  
DM  
USB HS  
OTG Ctrl  
DP  
ULPI_CLK  
DM  
ULPI_D[7:0]  
(2)  
ID  
VBUS  
USB  
connector  
ULPI_DIR  
ULPI_STP  
ULPI  
VSS  
ULPI_NXT  
High speed  
OTG PHY  
XT1  
PLL  
24 or 26 MHz XT(1)  
MCO1 or MCO2  
XI  
MS19005V2  
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F41x  
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible  
connection.  
2. The ID pin is required in dual role only.  
174/186  
DocID022063 Rev 4  
 
 
STM32F415xx, STM32F417xx  
Application block diagrams  
A.3  
Ethernet interface solutions  
Figure 90. MII mode using a 25 MHz crystal  
STM32  
MII_TX_CLK  
MII_TX_EN  
MII_TXD[3:0]  
MII_CRS  
MCU  
Ethernet  
MAC 10/100  
Ethernet  
PHY 10/100  
MII  
MII_COL  
= 15 pins  
(1)  
HCLK  
MII_RX_CLK  
MII_RXD[3:0]  
MII_RX_DV  
MII_RX_ER  
MII + MDC  
= 17 pins  
IEEE1588 PTP  
Timer  
input  
trigger  
Timestamp  
comparator  
MDIO  
MDC  
TIM2  
(2)  
PPS_OUT  
HCLK  
MCO1/MCO2  
PLL  
XTAL  
OSC  
25 MHz  
PHY_CLK 25 MHz  
XT1  
MS19968V1  
1. fHCLK must be greater than 25 MHz.  
2. Pulse per second when using IEEE1588 PTP optional signal.  
Figure 91. RMII with a 50 MHz oscillator  
STM32  
Ethernet  
PHY 10/100  
MCU  
RMII_TX_EN  
Ethernet  
MAC 10/100  
RMII_TXD[1:0]  
RMII_RXD[1:0]  
RMII_CRX_DV  
RMII_REF_CLK  
RMII  
= 7 pins  
(1)  
HCLK  
RMII + MDC  
= 9 pins  
IEEE1588 PTP  
MDIO  
MDC  
Timer  
input  
trigger  
Timestamp  
comparator  
TIM2  
/2 or /20  
synchronous  
2.5 or 25 MHz  
50 MHz  
HCLK  
OSC  
50 MHz  
PLL  
PHY_CLK 50 MHz XT1  
50 MHz  
MS19969V1  
1. fHCLK must be greater than 25 MHz.  
DocID022063 Rev 4  
175/186  
 
Application block diagrams  
STM32F415xx, STM32F417xx  
Figure 92. RMII with a 25 MHz crystal and PHY with PLL  
STM32F  
Ethernet  
PHY 10/100  
MCU  
RMII_TX_EN  
Ethernet  
MAC 10/100  
RMII_TXD[1:0]  
RMII_RXD[1:0]  
RMII_CRX_DV  
RMII_REF_CLK  
RMII  
(1)  
HCLK  
= 7 pins  
REF_CLK  
RMII + MDC  
= 9 pins  
IEEE1588 PTP  
MDIO  
MDC  
Timer  
input  
trigger  
Timestamp  
comparator  
TIM2  
/2 or /20  
synchronous  
2.5 or 25 MHz  
50 MHz  
PLL  
XT1  
HCLK  
MCO1/MCO2  
XTAL  
PLL  
OSC  
25 MHz  
PHY_CLK 25 MHz  
MS19970V1  
1. fHCLK must be greater than 25 MHz.  
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.  
176/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Revision history  
8
Revision history  
Table 98. Document revision history  
Changes  
Date  
Revision  
15-Sep-2011  
1
Initial release.  
Added WLCSP90 package on cover page.  
Renamed USART4 and USART5 into UART4 and UART5,  
respectively.  
Updated number of USB OTG HS and FS in Table 2: STM32F415xx  
and STM32F417xx: features and peripheral counts.  
Updated Figure 3: Compatible board design between  
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package and  
Figure 4: Compatible board design between STM32F2xx and  
STM32F4xx for LQFP176 and BGA176 packages, and removed note  
1 and 2.  
Updated Section 2.2.9: Flexible static memory controller (FSMC).  
Modified I/Os used to reprogram the Flash memory for CAN2 and  
USB OTG FS in Section 2.2.13: Boot modes.  
Updated note in Section 2.2.14: Power supply schemes.  
PDR_ON no more available on LQFP100 package. Updated  
Section 2.2.16: Voltage regulator. Updated condition to obtain a  
minimum supply voltage of 1.7 V in the whole document.  
Renamed USART4/5 to UART4/5 and added LIN and IrDA feature for  
UART4 and UART5 in Table 5: USART feature comparison.  
Removed support of I2C for OTG PHY in Section 2.2.30: Universal  
serial bus on-the-go full-speed (OTG_FS).  
24-Jan-2012  
2
Added Table 6: Legend/abbreviations used in the pinout table.  
Table 7: STM32F41x pin and ball definitions: replaced VSS_3, VSS_4,  
and VSS_8 by VSS; reformatted Table 7: STM32F41x pin and ball  
definitions to better highlight I/O structure, and alternate functions  
versus additional functions; signal corresponding to LQFP100 pin 99  
changed from PDR_ON to VSS; EVENTOUT added in the list of  
alternate functions for all I/Os; ADC3_IN8 added as alternate function  
for PF10; FSMC_CLE and FSMC_ALE added as alternate functions  
for PD11 and PD12, respectively; PH10 alternate function  
TIM15_CH1_ETR renamed TIM5_CH1; updated PA4 and PA5 I/O  
structure to TTa.  
Removed OTG_HS_SCL, OTG_HS_SDA, OTG_FS_INTN in Table 7:  
STM32F41x pin and ball definitions and Table 9: Alternate function  
mapping.  
Changed TCM data RAM to CCM data RAM in Figure 18: STM32F41x  
memory map.  
Added IVDD and IVSS maximum values in Table 12: Current  
characteristics.  
Added Note 1 related to fHCLK, updated Note 2 in Table 14: General  
operating conditions, and added maximum power dissipation values.  
Updated Table 15: Limitations depending on the operating power  
supply range.  
DocID022063 Rev 4  
177/186  
Revision history  
STM32F415xx, STM32F417xx  
Table 98. Document revision history (continued)  
Date  
Revision  
Changes  
Added V in Table 19: Embedded reset and power control block  
12  
characteristics.  
Updated Table 21: Typical and maximum current consumption in Run  
mode, code with data processing running from Flash memory (ART  
accelerator disabled) and Table 20: Typical and maximum current  
consumption in Run mode, code with data processing running from  
Flash memory (ART accelerator enabled) or RAM. Added Figure ,  
Figure 25, Figure 26, and Figure 27.  
Updated Table 22: Typical and maximum current consumption in Sleep  
mode and removed Note 1.  
Updated Table 23: Typical and maximum current consumptions in Stop  
mode and Table 24: Typical and maximum current consumptions in  
Standby mode, Table 25: Typical and maximum current consumptions  
in VBAT mode, and Table 26: Switching output I/O current  
consumption.  
Section : On-chip peripheral current consumption: modified conditions,  
and updated Table 27: Peripheral current consumption and Note 2.  
Changed fHSE_ext to 50 MHz and tr(HSE) f(HSE) maximum value in  
/t  
Table 29: High-speed external user clock characteristics.  
2
Added Cin(LSE) in Table 30: Low-speed external user clock  
characteristics.  
24-Jan-2012  
(continued)  
Updated maximum PLL input clock frequency, removed related note,  
and deleted jitter for MCO for RMII Ethernet typical value in Table 35:  
Main PLL characteristics. Updated maximum PLLI2S input clock  
frequency and removed related note in Table 36: PLLI2S (audio PLL)  
characteristics.  
Updated Section : Flash memory to specify that the devices are  
shipped to customers with the Flash memory erased. Updated  
Table 38: Flash memory characteristics, and added tME in Table 39:  
Flash memory programming.  
Updated Table 42: EMS characteristics, and Table 43: EMI  
characteristics.  
Updated Table 56: I2S dynamic characteristics  
Updated Figure 46: ULPI timing diagram and Table 62: ULPI timing.  
Added tCOUNTER and tMAX_COUNT in Table 51: Characteristics of TIMx  
connected to the APB1 domain and Table 52: Characteristics of TIMx  
connected to the APB2 domain. Updated Table 65: Dynamic  
characteristics: Ethernet MAC signals for RMII.  
Removed USB-IF certification in Section : USB OTG FS  
characteristics.  
178/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Revision history  
Table 98. Document revision history (continued)  
Revision Changes  
Date  
Updated Table 61: USB HS clock timing parameters  
Updated Table 67: ADC characteristics.  
Updated Table 68: ADC accuracy at fADC = 30 MHz.  
Updated Note 1 in Table 74: DAC characteristics.  
Section 5.3.25: FSMC characteristics: updated Table 75 toTable 86,  
changed CL value to 30 pF, and modified FSMC configuration for  
asynchronous timings and waveforms. Updated Figure 60:  
Synchronous multiplexed PSRAM write timings.  
Updated Table 96: Package thermal characteristics.  
Appendix A.1: USB OTG full speed (FS) interface solutions: modified  
Figure 86: USB controller configured as peripheral-only and used in  
Full speed mode added Note 2, updated Figure 87: USB controller  
configured as host-only and used in full speed mode and added  
Note 2, changed Figure 88: USB controller configured in dual mode  
and used in full speed mode and added Note 3.  
2
24-Jan-2012  
(continued)  
Appendix A.2: USB OTG high speed (HS) interface solutions: removed  
figures USB OTG HS device-only connection in FS mode and USB  
OTG HS host-only connection in FS mode, and updated Figure 89:  
USB controller configured as peripheral, host, or dual-mode and used  
in high speed mode and added Note 2.  
Added Appendix A.3: Ethernet interface solutions.  
DocID022063 Rev 4  
179/186  
Revision history  
STM32F415xx, STM32F417xx  
Table 98. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Figure 5: STM32F41x block diagram and Figure 7: Power  
supply supervisor interconnection with internal reset OFF  
Added SDIO, added notes related to FSMC and SPI/I2S in Table 2:  
STM32F415xx and STM32F417xx: features and peripheral counts.  
Starting from Silicon revision Z, USB OTG full-speed interface is now  
available for all STM32F415xx devices.  
Added full information on WLCSP90 package together with  
corresponding part numbers.  
Changed number of AHB buses to 3.  
Modified available Flash memory sizes in Section 2.2.4: Embedded  
Flash memory.  
Modified number of maskable interrupt channels in Section 2.2.10:  
Nested vectored interrupt controller (NVIC).  
Updated case of Regulator ON/internal reset ON, Regulator  
ON/internal reset OFF, and Regulator OFF/internal reset ON in  
Section 2.2.16: Voltage regulator.  
Updated standby mode description in Section 2.2.19: Low-power  
modes.  
Added Note 1 below Figure 16: STM32F41x UFBGA176 ballout.  
Added Note 1 below Figure 17: STM32F41x WLCSP90 ballout.  
Updated Table 7: STM32F41x pin and ball definitions.  
Added Table 8: FSMC pin definition.  
31-May-2012  
3
Removed OTG_HS_INTN alternate function in Table 7: STM32F41x  
pin and ball definitions and Table 9: Alternate function mapping.  
Removed I2S2_WS on PB6/AF5 in Table 9: Alternate function  
mapping.  
Replaced JTRST by NJTRST, removed ETH_RMII _TX_CLK, and  
modified I2S3ext_SD on PC11 in Table 9: Alternate function mapping.  
Added Table 10: STM32F41x register boundary addresses.  
Updated Figure 18: STM32F41x memory map.  
Updated VDDA and VREF+ decoupling capacitor in Figure 21: Power  
supply scheme.  
Added power dissipation maximum value for WLCSP90 in Table 14:  
General operating conditions.  
Updated VPOR/PDR in Table 19: Embedded reset and power control  
block characteristics.  
Updated notes in Table 21: Typical and maximum current consumption  
in Run mode, code with data processing running from Flash memory  
(ART accelerator disabled), Table 20: Typical and maximum current  
consumption in Run mode, code with data processing running from  
Flash memory (ART accelerator enabled) or RAM, and Table 22:  
Typical and maximum current consumption in Sleep mode.  
Updated maximum current consumption at TA = 25 °n Table 23:  
Typical and maximum current consumptions in Stop mode.  
180/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Revision history  
Table 98. Document revision history (continued)  
Revision Changes  
Date  
Removed fHSE_ext typical value in Table 29: High-speed external user  
clock characteristics. Updated Table 31: HSE 4-26 MHz oscillator  
characteristics and Table 32: LSE oscillator characteristics (fLSE =  
32.768 kHz).  
Added fPLL48_OUT maximum value in Table 35: Main PLL  
characteristics.  
Modified equation 1 and 2 in Section 5.3.11: PLL spread spectrum  
clock generation (SSCG) characteristics.  
Updated Table 38: Flash memory characteristics, Table 39: Flash  
memory programming, and Table 40: Flash memory programming with  
VPP.  
Updated Section : Output driving current.  
Table 53: I2C characteristics: Note 4 updated and applied to th(SDA) in  
Fast mode, and removed note 4 related to th(SDA) minimum value.  
3
31-May-2012  
(continued)  
Updated Table 67: ADC characteristics. Updated note concerning ADC  
accuracy vs. negative injection current below Table 68: ADC accuracy  
at fADC = 30 MHz.  
Added WLCSP90 thermal resistance in Table 96: Package thermal  
characteristics.  
Updated Table 90: WLCSP90 - 0.400 mm pitch wafer level chip size  
package mechanical data.  
Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array  
10 × 10 × 0.6 mm, package outline and Table 94: UFBGA176+25 -  
ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data.  
Added Figure 85: LQFP176 recommended footprint.  
Removed 256 and 768 Kbyte Flash memory density from Table 97:  
Ordering information scheme.  
DocID022063 Rev 4  
181/186  
Revision history  
STM32F415xx, STM32F417xx  
Table 98. Document revision history (continued)  
Date  
Revision  
Changes  
Modified Note 1 below Table 2: STM32F415xx and STM32F417xx:  
features and peripheral counts.  
Updated Figure 4 title.  
Updated Note 3 below Figure 21: Power supply scheme.  
Changed simplex mode into half-duplex mode in Section 2.2.25: Inter-  
integrated sound (I2S).  
Replaced DAC1_OUT and DAC2_OUT by DAC_OUT1 and  
DAC_OUT2, respectively.  
Updated pin 36 signal in Figure 15: STM32F41x LQFP176 pinout.  
Changed pin number from F8 to D4 for PA13 pin in Table 7:  
STM32F41x pin and ball definitions.  
Replaced TIM2_CH1/TIM2_ETR by TIM2_CH1_ETR for PA0 and PA5  
pins in Table 9: Alternate function mapping.  
Changed system memory into System memory + OTP in Figure 18:  
STM32F41x memory map.  
Added Note 1 below Table 16: VCAP_1/VCAP_2 operating conditions.  
Updated IDDA description in Table 74: DAC characteristics.  
Removed PA9/PB13 connection to VBUS in Figure 86: USB controller  
configured as peripheral-only and used in Full speed mode and  
Figure 87: USB controller configured as host-only and used in full  
speed mode.  
Updated SPI throughput on front page and Section 2.2.24: Serial  
peripheral interface (SPI)  
Updated operating voltages in Table 2: STM32F415xx and  
STM32F417xx: features and peripheral counts  
04-Jun-2013  
4
Updated note in Section 2.2.14: Power supply schemes  
Updated Section 2.2.15: Power supply supervisor  
Updated “Regulator ON” paragraph in Section 2.2.16: Voltage  
regulator  
Removed note in Section 2.2.19: Low-power modes  
Corrected wrong reference manual in Section 2.2.28: Ethernet MAC  
interface with dedicated DMA and IEEE 1588 support  
Updated Table 15: Limitations depending on the operating power  
supply range  
Updated Table 24: Typical and maximum current consumptions in  
Standby mode  
Updated Table 25: Typical and maximum current consumptions in  
VBAT mode  
Updated Table 36: PLLI2S (audio PLL) characteristics  
Updated Table 43: EMI characteristics  
Updated Table 48: Output voltage characteristics  
Updated Table 50: NRST pin characteristics  
Updated Table 55: SPI dynamic characteristics  
Updated Table 56: I2S dynamic characteristics  
Deleted Table 59  
Updated Table 62: ULPI timing  
Updated Figure 47: Ethernet SMI timing diagram  
182/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Revision history  
Table 98. Document revision history (continued)  
Revision Changes  
Date  
Updated Figure 83: UFBGA176+25 - ultra thin fine pitch ball grid array  
10 × 10 × 0.6 mm, package outline  
Updated Table 94: UFBGA176+25 - ultra thin fine pitch ball grid array  
10 × 10 × 0.6 mm mechanical data  
Updated Figure 5: STM32F41x block diagram  
Updated Section 2: Description  
Updated footnote (3) in Table 2: STM32F415xx and STM32F417xx:  
features and peripheral counts  
Updated Figure 3: Compatible board design between  
STM32F10xx/STM32F2xx/STM32F4xx for LQFP144 package  
Updated Figure 4: Compatible board design between STM32F2xx and  
STM32F4xx for LQFP176 and BGA176 packages  
Updated Section 2.2.14: Power supply schemes  
Updated Section 2.2.15: Power supply supervisor  
Updated Section 2.2.16: Voltage regulator, including figures.  
Updated Table 14: General operating conditions, including footnote (2)  
.
Updated Table 15: Limitations depending on the operating power  
supply range, including footnote (3)  
.
Updated footnote (1) in Table 67: ADC characteristics.  
Updated footnote (3) in Table 68: ADC accuracy at fADC = 30 MHz.  
Updated footnote (1) in Table 74: DAC characteristics.  
Updated Figure 9: Regulator OFF.  
Updated Figure 7: Power supply supervisor interconnection with  
internal reset OFF.  
4
04-Jun-2013  
(continued)  
Added Section 2.2.17: Regulator ON/OFF and internal reset ON/OFF  
availability.  
Updated footnote (2) of Figure 21: Power supply scheme.  
Replaced respectively “I2S3S_WS" by "I2S3_WS”, “I2S3S_CK” by  
“I2S3_CK” and “FSMC_BLN1” by “FSMC_NBL1” in Table 9: Alternate  
function mapping.  
Added “EVENTOUT” as alternate function “AF15” for pin PC13, PC14,  
PC15, PH0, PH1, PI8 in Table 9: Alternate function mapping  
Replaced “DCMI_12” by “DCMI_D12” in Table 7: STM32F41x pin and  
ball definitions.  
Removed the following sentence from Section : I2C interface  
characteristics: ”Unless otherwise specified, the parameters  
given in Table 53 are derived from tests performed under the  
ambient temperature, f  
frequency and V supply voltage  
PCLK1  
DD  
conditions summarized in Table 14.”.  
In Table 7: STM32F41x pin and ball definitions on page 46:  
– For pin PC13, replaced “RTC_AF1” by “RTC_OUT, RTC_TAMP1,  
RTC_TS”  
– for pin PI8, replaced “RTC_AF2” by “RTC_TAMP1, RTC_TAMP2,  
RTC_TS”.  
– for pin PB15, added RTC_REFIN in Alternate functions column.  
In Table 9: Alternate function mapping on page 61, for port  
PB15, replaced “RTC_50Hz” by “RTC_REFIN”.  
DocID022063 Rev 4  
183/186  
Revision history  
STM32F415xx, STM32F417xx  
Table 98. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Figure 6: Multi-AHB matrix.  
Updated Figure 7: Power supply supervisor interconnection with  
internal reset OFF  
Changed 1.2 V to V in Section : Regulator OFF  
12  
Updated LQFP176 pin 48.  
Updated Section 1: Introduction.  
Updated Section 2: Description.  
Updated operating voltage in Table 2: STM32F415xx and  
STM32F417xx: features and peripheral counts.  
Updated Note 1.  
Updated Section 2.2.15: Power supply supervisor.  
Updated Section 2.2.16: Voltage regulator.  
Updated Figure 9: Regulator OFF.  
Updated Table 3: Regulator ON/OFF and internal reset ON/OFF  
availability.  
Updated Section 2.2.19: Low-power modes.  
Updated Section 2.2.20: VBAT operation.  
Updated Section 2.2.22: Inter-integrated circuit interface (I²C) .  
Updated pin 48 in Figure 15: STM32F41x LQFP176 pinout.  
Updated Table 6: Legend/abbreviations used in the pinout table.  
Updated Table 7: STM32F41x pin and ball definitions.  
Updated Table 14: General operating conditions.  
4
Updated Table 15: Limitations depending on the operating power  
supply range.  
04-Jun-2013  
(continued)  
Updated Section 5.3.7: Wakeup time from low-power mode.  
Updated Table 33: HSI oscillator characteristics.  
Updated Section 5.3.15: I/O current injection characteristics.  
Updated Table 47: I/O static characteristics.  
Updated Table 50: NRST pin characteristics.  
Updated Table 53: I2C characteristics.  
Updated Figure 39: I2C bus AC waveforms and measurement circuit.  
Updated Section 5.3.19: Communications interfaces.  
Updated Table 67: ADC characteristics.  
Added Table 70: Temperature sensor calibration values.  
Added Table 73: Internal reference voltage calibration values.  
Updated Section 5.3.25: FSMC characteristics.  
Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO)  
characteristics.  
Updated Table 23: Typical and maximum current consumptions in Stop  
mode.  
Updated Section : SPI interface characteristics included Table 55.  
Updated Section : I2S interface characteristics included Table 56.  
Updated Table 64: Dynamic characteristics: Ehternet MAC signals for  
SMI.  
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for  
MII.  
184/186  
DocID022063 Rev 4  
STM32F415xx, STM32F417xx  
Revision history  
Table 98. Document revision history (continued)  
Revision Changes  
Date  
Updated Table 64: Dynamic characteristics: Ehternet MAC signals for  
SMI.  
Updated Table 66: Dynamic characteristics: Ethernet MAC signals for  
MII.  
Updated Table 79: Synchronous multiplexed NOR/PSRAM read  
timings.  
Updated Table 80: Synchronous multiplexed PSRAM write timings.  
Updated Table 81: Synchronous non-multiplexed NOR/PSRAM read  
timings.  
4
04-Jun-2013  
(continued)  
Updated Table 82: Synchronous non-multiplexed PSRAM write  
timings.  
Updated Section 5.3.26: Camera interface (DCMI) timing specifications  
including Table 87: DCMI characteristics and addition of Figure 73:  
DCMI timing diagram.  
Updated Section 5.3.27: SD/SDIO MMC card host interface (SDIO)  
characteristics including Table 88.  
Updated Chapter Figure 9.  
DocID022063 Rev 4  
185/186  
STM32F415xx, STM32F417xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
186/186  
DocID022063 Rev 4  

相关型号:

STM32F417VG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417xx

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417ZE

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F417ZG

ARM Cortex-M4 32b MCUFPU, 210DMIPS, up to 1MB Flash/1924KB RAM
STMICROELECTR

STM32F427AG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427AI

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427IG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427II

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427VG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427VI

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427XX

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F427ZG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR