STM32F429BI [STMICROELECTRONICS]

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT;
STM32F429BI
型号: STM32F429BI
厂家: ST    ST
描述:

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT

CD
文件: 总239页 (文件大小:3112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F427xx  
STM32F429xx  
ARM Cortex-M4 32b MCU+FPU, 225DMIPS, up to 2MB Flash/256+4KB RAM, USB  
OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT  
Datasheet - production data  
Features  
®
®
Core: ARM 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
&"'!  
Accelerator™) allowing 0-wait state execution  
from Flash memory, frequency up to 180 MHz,  
MPU, 225 DMIPS/1.25 DMIPS/MHz  
(Dhrystone 2.1), and DSP instructions  
LQFP100 (14 × 14 mm)  
LQFP144 (20 × 20 mm)  
LQFP176 (24 × 24 mm)  
UFBGA176 (10 x 10 mm)  
UFBGA169 (7 × 7 mm)  
TFBGA216 (13 x 13 mm)  
Memories  
WLCSP143  
– Up to 2 MB of Flash memory organized into  
LQFP208 (28 x 28 mm)  
two banks allowing read-while-write  
– Up to 256+4 KB of SRAM including 64-KB  
of CCM (core coupled memory) data RAM  
Up to 168 I/O ports with interrupt capability  
– Up to 164 fast I/Os up to 90 MHz  
– Up to 166 5 V-tolerant I/Os  
– Flexible external memory controller with up  
to 32-bit data bus:  
SRAM,PSRAM,SDRAM/LPSDR SDRAM ,  
Compact Flash/NOR/NAND memories  
Up to 21 communication interfaces  
2
– Up to 3 × I C interfaces (SMBus/PMBus)  
LCD parallel interface, 8080/6800 modes  
– Up to 4 USARTs/4 UARTs (11.25 Mbit/s,  
ISO7816 interface, LIN, IrDA, modem  
control)  
LCD-TFT controller up to XGA resolution with  
dedicated Chrom-ART Accelerator™ for  
enhanced graphic content creation (DMA2D)  
– Up to 6 SPIs (45 Mbits/s), 2 with muxed  
2
full-duplex I S for audio class accuracy via  
Clock, reset and supply management  
internal audio PLL or external clock  
– 1 x SAI (serial audio interface)  
– 2 × CAN (2.0B Active) and SDIO interface  
Advanced connectivity  
– 1.7 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– 4-to-26 MHz crystal oscillator  
– Internal 16 MHz factory-trimmed RC (1%  
– USB 2.0 full-speed device/host/OTG  
accuracy)  
controller with on-chip PHY  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
Low power  
– USB 2.0 high-speed/full-speed  
device/host/OTG controller with dedicated  
DMA, on-chip full-speed PHY and ULPI  
– 10/100 Ethernet MAC with dedicated DMA:  
– Sleep, Stop and Standby modes  
supports IEEE 1588v2 hardware, MII/RMII  
– V  
supply for RTC, 20×32 bit backup  
BAT  
8- to 14-bit parallel camera interface up to  
registers + optional 4 KB backup SRAM  
54 Mbytes/s  
3×12-bit, 2.4 MSPS ADC: up to 24 channels  
and 7.2 MSPS in triple interleaved mode  
True random number generator  
CRC calculation unit  
2×12-bit D/A converters  
General-purpose DMA: 16-stream DMA  
RTC: subsecond accuracy, hardware calendar  
96-bit unique ID  
controller with FIFOs and burst support  
Up to 17 timers: up to twelve 16-bit and two 32-  
bit timers up to 180 MHz, each with up to 4  
IC/OC/PWM or pulse counter and quadrature  
(incremental) encoder input  
Debug mode  
– SWD & JTAG interfaces  
– Cortex-M4 Trace Macrocell™  
July 2016  
DocID024030 Rev 9  
1/238  
This is information on a product in full production.  
www.st.com  
STM32F427xx STM32F429xx  
Table 1. Device summary  
Part number  
Reference  
STM32F427VG, STM32F427ZG, STM32F427IG, STM32F427AG, STM32F427VI, STM32F427ZI,  
STM32F427II, STM32F427AI  
STM32F427xx  
STM32F429VG, STM32F429ZG, STM32F429IG, STM32F429BG, STM32F429NG,  
STM32F429AG, STM32F429VI, STM32F429ZI, STM32F429II,, STM32F429BI,  
STM32F429NI,STM32F429AI, STM32F429VE, STM32F429ZE, STM32F429IE, STM32F429BE,  
STM32F429NE  
STM32F429xx  
2/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Contents  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 20  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 20  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 21  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.10 LCD-TFT controller (available only on STM32F429xx) . . . . . . . . . . . . . . 23  
3.11 Chrom-ART Accelerator™ (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 24  
3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.18 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31  
3.19 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 31  
3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.21  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
DocID024030 Rev 9  
3/238  
6
Contents  
STM32F427xx STM32F429xx  
3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.22.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.22.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.23 Inter-integrated circuit interface ( I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 36  
3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.29 Audio and LCD PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.30 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 39  
3.31 Ethernet MAC interface with dedicated DMA and IEEE 1588 support . . . 39  
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 40  
3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 40  
3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.36 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.37 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.38 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.39 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.40 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.41 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.42 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.1.1  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Contents  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Operating conditions at power-up / power-down (regulator ON) . . . . . . 97  
Operating conditions at power-up / power-down (regulator OFF) . . . . . 97  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 98  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 126  
6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 132  
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
6.3.23  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
BAT  
6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 192  
6.3.28 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 192  
6.3.29 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 195  
DocID024030 Rev 9  
5/238  
6
Contents  
STM32F427xx STM32F429xx  
6.3.30 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
WLCSP143 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
LQFP176 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
LQFP208 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
UFBGA169 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
UFBGA176+25 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
TFBGA216 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 226  
A.1  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
B.1  
B.2  
B.3  
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 227  
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 229  
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
6/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32F427xx and STM32F429xx features and peripheral counts . . . . . . . . . . . . . . . . . . 15  
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 28  
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 31  
Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
STM32F427xx and STM32F429xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . 52  
FMC pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
STM32F427xx and STM32F429xx alternate function mapping . . . . . . . . . . . . . . . . . . . . . 74  
STM32F427xx and STM32F429xx register boundary addresses. . . . . . . . . . . . . . . . . . . . 86  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 96  
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 97  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 97  
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator enabled except prefetch) or RAM. . . . . . 101  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . 103  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 104  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 105  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . 105  
BAT  
Typical current consumption in Run mode, code with data processing running from  
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),  
VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Typical current consumption in Run mode, code with data processing running  
Table 31.  
from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . 108  
Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . 109  
Tyical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 110  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
LSE  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
DocID024030 Rev 9  
7/238  
9
List of tables  
STM32F427xx STM32F429xx  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
PLLISAI (audio and LCD-TFT PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Flash memory programming with V  
PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 153  
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 154  
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
ADC static accuracy at f  
ADC static accuracy at f  
ADC static accuracy at f  
= 18 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
= 30 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
= 36 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 158  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 158  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
BAT  
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
Table 87.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 170  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
Table 88.  
Table 89.  
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 172  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Table 90.  
Table 91.  
Table 92.  
8/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
List of tables  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 174  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 178  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Switching characteristics for PC Card/CF read and write cycles  
in attribute/common space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Switching characteristics for PC Card/CF read and write cycles  
Table 99.  
in I/O space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 100. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 101. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 102. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 103. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 104. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 105. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 106. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 107. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 108. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 109. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 110. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data. . . . . . . . 198  
Table 111. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 112. WLCSP143 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 203  
Table 113. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 115. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Table 117. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 217  
Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 220  
Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Table 121. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Table 122. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 123. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 226  
Table 124. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
DocID024030 Rev 9  
9/238  
9
List of figures  
STM32F427xx STM32F429xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Compatible board design STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Compatible board design between STM32F2xx and STM32F4xx  
for LQFP176 and UFBGA176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
STM32F427xx and STM32F429xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
STM32F427xx and STM32F429xx Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 26  
PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . 30  
CAP_1 CAP_2  
Figure 11. STM32F42x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 12. STM32F42x WLCSP143 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 13. STM32F42x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 14. STM32F42x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 15. STM32F42x LQFP208 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 16. STM32F42x UFBGA169 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 17. STM32F42x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 18. STM32F42x TFBGA216 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 19. Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 20. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 21. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 22. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 23. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 24. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
EXT  
Figure 25. Typical V  
Figure 26. Typical V  
current consumption (LSE and RTC ON/backup RAM OFF) . . . . . . . . . . . 106  
current consumption (LSE and RTC ON/backup RAM ON) . . . . . . . . . . . . 106  
BAT  
BAT  
Figure 27. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 28. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 29. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 30. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 31. ACCHSI accuracy versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 32. ACC versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
LSI  
Figure 33. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 34. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 35. FT I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 36. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 37. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 38. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Figure 39. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Figure 40. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
2
(1)  
Figure 41. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
2
(1)  
Figure 42. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 43. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
List of figures  
Figure 44. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 45. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 150  
Figure 46. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 47. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 48. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 49. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 50. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 51. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 52. Power supply and reference decoupling (V  
Figure 53. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 161  
). . . . . . . . . . . . . . . . 162  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 54. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 168  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 170  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 63. PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 181  
Figure 64. PC Card/CompactFlash controller waveforms for common memory write access. . . . . . 181  
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory  
read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory  
write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 183  
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 184  
Figure 69. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 70. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Figure 71. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 187  
Figure 72. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 187  
Figure 73. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Figure 74. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Figure 75. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Figure 76. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 77. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 78. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Figure 79. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 197  
Figure 81. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 82. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 83. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Figure 84. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 85. WLCSP143 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . . 204  
Figure 87. LQPF144- 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 88. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline . . . . . . . . . . . . . . 208  
DocID024030 Rev 9  
11/238  
12  
List of figures  
STM32F427xx STM32F429xx  
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended footprint. . . . . . . . . 210  
Figure 91. LQFP176 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline . . . . . . . . . . . . . . 212  
Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 94. LQFP208 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 96. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch  
ball grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Figure 97. UFBGA169 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch  
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch  
ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 100. UFBGA176+25 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch  
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 102. TFBGA176 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Figure 103. USB controller configured as peripheral-only and used  
in Full speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Figure 104. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 227  
Figure 105. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 228  
Figure 106. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Figure 107. MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Figure 108. RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Figure 109. RMII with a 25 MHz crystal and PHY with PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
12/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Introduction  
1
Introduction  
This datasheet provides the description of the STM32F427xx and STM32F429xx line of  
microcontrollers. For more details on the whole STMicroelectronics STM32 family, please  
refer to Section 2.1: Full compatibility throughout the family.  
The STM32F427xx and STM32F429xx datasheet should be read in conjunction with the  
STM32F4xx reference manual.  
®
®
For information on the Cortex -M4 core, please refer to the Cortex -M4 programming  
manual (PM0214), available from www.st.com.  
DocID024030 Rev 9  
13/238  
43  
Description  
STM32F427xx STM32F429xx  
2
Description  
®
The STM32F427xx and STM32F429xx devices are based on the high-performance ARM  
®
Cortex -M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4  
®
core features a Floating point unit (FPU) single precision which supports all ARM single-  
precision data-processing instructions and data types. It also implements a full set of DSP  
instructions and a memory protection unit (MPU) which enhances application security.  
The STM32F427xx and STM32F429xx devices incorporate high-speed embedded  
memories (Flash memory up to 2 Mbyte, up to 256 kbytes of SRAM), up to 4 Kbytes of  
backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two  
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.  
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose  
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.  
They also feature standard and advanced communication interfaces.  
2
Up to three I Cs  
2
2
Six SPIs, two I Ss full duplex. To achieve audio class accuracy, the I S peripherals can  
be clocked via a dedicated internal audio PLL or via an external clock to allow  
synchronization.  
Four USARTs plus four UARTs  
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the  
ULPI),  
Two CANs  
One SAI serial audio interface  
An SDIO/MMC interface  
Ethernet and camera interface  
LCD-TFT display controller  
Chrom-ART Accelerator™.  
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a  
camera interface for CMOS sensors. Refer to Table 2: STM32F427xx and STM32F429xx  
features and peripheral counts for the list of peripherals available on each part number.  
The STM32F427xx and STM32F429xx devices operates in the –40 to +105 °C temperature  
range from a 1.7 to 3.6 V power supply.  
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor  
(refer to Section 3.17.2: Internal reset OFF). A comprehensive set of power-saving mode  
allows the design of low-power applications.  
The STM32F427xx and STM32F429xx devices offer devices in 8 packages ranging from  
100 pins to 216 pins. The set of included peripherals changes with the device chosen.  
14/238  
DocID024030 Rev 9  
These features make the STM32F427xx and STM32F429xx microcontrollers suitable for a wide range of applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Figure 4 shows the general block diagram of the device family.  
Table 2. STM32F427xx and STM32F429xx features and peripheral counts  
STM32F427  
Vx  
STM32F427  
Zx  
STM32F427 STM32F429 STM32F427  
Ax Ax Ix  
Peripherals  
STM32F429Vx  
STM32F429Zx  
STM32F429Ix  
STM32F429Bx  
STM32F429Nx  
Flash memory in Kbytes  
1024 2048 512 1024 2048 1024 2048 512 1024 2048 1024 2048 1024 2048 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048  
System  
256(112+16+64+64)  
4
SRAM in  
Kbytes  
Backup  
(1)  
FMC memory controller  
Ethernet  
Yes  
Yes  
10  
General-  
purpose  
Timers  
Advanced  
-control  
2
Basic  
2
Random number generator  
Yes  
 
Table 2. STM32F427xx and STM32F429xx features and peripheral counts (continued)  
STM32F427  
Vx  
STM32F427  
Zx  
STM32F427 STM32F429 STM32F427  
Peripherals  
STM32F429Vx  
STM32F429Zx  
STM32F429Ix  
STM32F429Bx  
STM32F429Nx  
Ax  
Ax  
Ix  
2
(2)  
(2)  
SPI / I S  
4/2 (full duplex)  
6/2 (full duplex)  
2
I C  
3
USART/  
UART  
4/4  
USBOTG  
FS  
Yes  
Yes  
Communication  
interfaces  
USBOTG  
HS  
CAN  
SAI  
2
1
SDIO  
Yes  
Yes  
Camera interface  
LCD-TFT (STM32F429xx  
only)  
No  
Yes  
No  
Yes  
No  
Yes  
No  
Yes  
Chrom-ART Accelerator™  
GPIOs  
Yes  
82  
114  
130  
140  
168  
3
12-bit ADC  
Number of channels  
16  
24  
12-bit DAC  
Number of channels  
Yes  
2
Maximum CPU frequency  
Operating voltage  
180 MHz  
(3)  
1.8 to 3.6 V  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
Operating temperatures  
Packages  
WLCSP143  
LQFP144  
UFBGA176  
LQFP176  
LQFP100  
UFBGA169  
LQFP208  
TFBGA216  
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit  
NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. For UFBGA169 package, only SDRAM, NAND and multiplexed  
static memories are supported.  
2. The SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.  
3.  
V
/V  
minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset  
DD DDA  
OFF).  
STM32F427xx STM32F429xx  
Description  
2.1  
Full compatibility throughout the family  
The STM32F427xx and STM32F429xx devices are part of the STM32F4 family. They are  
fully pin-to-pin, software and feature compatible with the STM32F2xx devices, allowing the  
user to try different memory densities, peripherals, and performances (FPU, higher  
frequency) for a greater degree of freedom during the development cycle.  
The STM32F427xx and STM32F429xx devices maintain a close compatibility with the  
whole STM32F10xx family. All functional pins are pin-to-pin compatible. The STM32F427xx  
and STM32F429xx, however, are not drop-in replacements for the STM32F10xx devices:  
the two families do not have the same power scheme, and so their power pins are different.  
Nonetheless, transition from the STM32F10xx to the STM32F42x family remains simple as  
only a few pins are impacted.  
Figure 1, Figure 2, and Figure 3, give compatible board designs between the STM32F4xx,  
STM32F2xx, and STM32F10xx families.  
Figure 1. Compatible board design STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP100 package  
9
66  
ꢈꢆ  
ꢈꢉ  
ꢆꢀ  
ꢂꢅ  
ꢆꢄ  
ꢈꢇ  
9
66  
9
66  
ꢄꢊŸꢊUHVLVWRUꢊRUꢊVROGHULQJꢊEULGJH  
SUHVHQWꢊIRUꢊWKHꢊ670ꢉꢃ)ꢀꢄ[[[ꢊ  
FRQILJXUDWLRQꢋꢊQRWꢊSUHVHQWꢊLQꢊWKH  
670ꢉꢃ)ꢂ[[ꢊFRQILJXUDWLRQꢊꢊ  
ꢅꢅꢊꢌ966ꢍ  
ꢀꢄꢄ  
ꢀꢅ ꢃꢄ  
ꢃꢇ  
ꢃꢆ  
9
66  
9
66  
966ꢊIRUꢊ670ꢉꢃ)ꢀꢄ[[  
9''ꢊIRUꢊ670ꢉꢃ)ꢂ[[  
7ZRꢊꢄꢊŸꢊUHVLVWRUVꢊFRQQHFWHGꢊWRꢎꢊꢊ  
ꢏꢊ966ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢀꢄ[[  
ꢏꢊ966ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢂ[[  
9
9
''  
66  
ꢏꢊ966ꢊRUꢊ1&ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢃ[[  
DLꢀꢁꢂꢁꢁG  
DocID024030 Rev 9  
17/238  
43  
 
 
Description  
STM32F427xx STM32F429xx  
Figure 2. Compatible board design between STM32F10xx/STM32F2xx/STM32F4xx  
for LQFP144 package  
ꢄꢊŸꢊUHVLVWRUꢊRUꢊVROGHULQJꢊEULGJH  
SUHVHQWꢊIRUꢊWKHꢊ670ꢉꢃ)ꢀꢄ[[  
FRQILJXUDWLRQꢋꢊQRWꢊSUHVHQWꢊLQꢊWKHꢊ  
670ꢉꢃ)ꢂ[[ꢊFRQILJXUDWLRQꢊꢊ  
966  
ꢈꢉ  
ꢀꢄꢁ  
ꢀꢄꢇ  
ꢀꢄꢅ  
ꢈꢃ  
ꢈꢀ  
966  
1RWꢊSRSXODWHGꢊZKHQꢊꢄꢊŸꢊ  
966  
UHVLVWRUꢊRUꢊVROGHULQJꢊ  
EULGJHꢊSUHVHQWꢊꢊ  
6LJQDOꢊIURPꢊ  
H[WHUQDOꢊSRZHUꢊ  
VXSSO\ꢊ  
ꢀꢂꢉꢊꢌ3'5B21ꢍ  
ꢀꢂꢂ  
ꢉꢈ  
ꢉꢄ ꢉꢀ  
VXSHUYLVRU  
ꢉꢇ  
966  
9'' 966  
1RWꢊSRSXODWHGꢊIRUꢊ670ꢉꢃ)ꢀꢄ[[ꢊ  
7ZRꢊꢄꢊŸꢊꢊUHVLVWRUVꢊFRQQHFWHGꢊWRꢎꢊ  
ꢏꢊ966ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢀꢄ[[  
966ꢊꢊIRUꢊ670ꢉꢃ)ꢀꢄ[[  
9''ꢊIRUꢊ670ꢉꢃ)ꢂ[[  
9''  
966  
ꢏꢊ966ꢋꢊ9''ꢊRUꢊ1&ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢃ[[  
ꢏꢊ9''ꢊRUꢊVLJQDOꢊIURPꢊH[WHUQDOꢊSRZHUꢊVXSSO\ꢊVXSHUYLVRUꢊIRUꢊWKHꢊ670ꢉꢃ)ꢂ[[  
DLꢀꢁꢂꢁꢈG  
Figure 3. Compatible board design between STM32F2xx and STM32F4xx  
for LQFP176 and UFBGA176 packages  
ꢀꢉꢃ  
ꢁꢅ  
ꢁꢁ  
ꢀꢉꢉ  
ꢂꢁ  
ꢏꢊ*1'ꢊIRUꢊ670ꢉꢃ)ꢃ[[  
ꢏꢊ%<3$66B5(*ꢊIRUꢊ670ꢉꢃ)ꢂ[[  
6LJQDOꢊIURPꢊH[WHUQDOꢊ  
SRZHUꢊVXSSO\ꢊ  
VXSHUYLVRU  
ꢀꢈꢀꢊꢌ3'5B21ꢍ  
ꢀꢈꢇ  
ꢂꢆ  
ꢂꢂ  
9''966  
7ZRꢊꢄꢊŸꢊꢊUHVLVWRUVꢊFRQQHFWHGꢊWRꢎꢊꢊꢊꢊ  
ꢏꢊ966ꢋꢊ9''ꢊRUꢊ1&ꢊIRUꢊWKHꢊ670ꢉꢃ)ꢃ[[  
ꢏꢊ9''ꢊRUꢊVLJQDOꢊIURPꢊH[WHUQDOꢊSRZHUꢊVXSSO\ꢊVXSHUYLVRUꢊIRUꢊWKHꢊ670ꢉꢃ)ꢂ[[  
06ꢉꢀꢁꢉꢆ9ꢀ  
18/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Description  
Figure 4. STM32F427xx and STM32F429xx block diagram  
#,+ꢌ .% ;ꢍꢇꢈ=ꢌ !;ꢁꢍꢇꢈ=ꢌ  
%XTERNAL MEMORY CONTROLLER ꢊ&-#ꢋ  
32!-ꢌ 3$2!-ꢌ 032!-ꢌ  
./2 &LASHꢌ 0# #ARDꢌ  
##- DATA 2!- ꢄꢉ +"  
$;ꢍꢃꢇꢈ=ꢌ ./%.ꢌ .7%.ꢌ  
.",;ꢍꢇꢈ=ꢌ 3$#,+%;ꢃꢇꢈ=ꢌ 3$.%;ꢃꢇꢈ=ꢌ  
3$.7%ꢌ .,  
.*4234 *4$)ꢌ  
*4#+ꢀ37#,+  
!("ꢍ  
*4!'  37  
-05  
*4$/ꢀ37$ꢌ *4$/  
.2!3ꢌ .#!3ꢌ .!$6  
.7!)4ꢀ.)/2$ꢌ .2%'ꢌ #$  
).42  
.!.$ &LASH  
%4-  
.6)#  
42!#%#,+  
42!#%$;ꢍꢇꢈ=  
$ꢑ"53  
!2- #ORTEXꢑ-ꢉ  
ꢃꢅꢈ -(Z  
)ꢑ"53  
&05  
ꢃ-" &LASH  
ꢃ-" &LASH  
3ꢑ"53  
2.'  
$-!ꢀ  
&)&/  
%THERNET -!#  
ꢃꢈꢀꢃꢈꢈ  
-)) OR 2-)) AS !&  
-$)/ AS !&  
(39.#ꢌ 639.#  
05)8#,+ꢌ $;ꢃꢍꢇꢈ=  
#AMERA  
INTERFACE  
32!- ꢃꢃꢁ +"  
32!- ꢃꢄ +"  
53"  
/4' (3  
$-!ꢀ  
&)&/  
$
 $-  
5,0)ꢇ#+ꢌ $;ꢎꢇꢈ=ꢌ $)2ꢌ 34  .84  
)$ꢌ 6"53ꢌ 3/&  
$0  
$-  
53"  
/4' &3  
32!- ꢄꢉ +"  
!("ꢁ ꢃꢅꢈ -(Z  
 3TREAMS  
&)&/  
)$ꢌ 6"53ꢌ 3/&  
$-!ꢁ  
$-!ꢃ  
!("ꢃ ꢃꢅꢈ -(Z  
 3TREAMS  
&)&/  
0OWER MANAGMT  
6$$  
6OLTAGE  
REGULATOR  
ꢍꢂꢍ TO ꢃꢂꢁ 6  
6$$  ꢃꢂꢅ TO ꢍꢂꢄ 6  
633  
6#!0ꢃꢌ 6#!0ꢁ  
,#$?2;ꢎꢇꢈ=ꢌ ,#$?';ꢎꢇꢈ=ꢌ ,#$?";ꢎꢇꢈ=ꢌ  
,#$?(39.#ꢌ ,#$?639.#ꢌ ,#$?$%ꢌ  
,#$?#,+  
&)&/  
&)&/  
,#$ꢑ4&4  
 6$$  
 6$$!  
2# (3  
2# ,3  
#(2/-ꢑ!24  
$-!ꢁ$  
0/2  
RESET  
3UPPLY  
SUPERVISION  
0/2ꢀ0$2  
"/2  
)NT  
0!;ꢃꢆꢇꢈ=  
0";ꢃꢆꢇꢈ=  
6$$!ꢌ 633!  
.234  
'0)/ 0/24 !  
'0)/ 0/24 "  
0,,ꢃꢌꢁꢌꢍ  
06$  
 6$$  
 6$$!  
0#;ꢃꢆꢇꢈ=  
'0)/ 0/24 #  
/3#?).  
/3#?/54  
84!, /3#  
ꢉꢑ ꢁꢄ-(Z  
0$;ꢃꢆꢇꢈ=  
0%;ꢃꢆꢇꢈ=  
'0)/ 0/24 $  
'0)/ 0/24 %  
'0)/ 0/24 &  
'0)/ 0/24 '  
'0)/ 0/24 (  
2ESET   
)7$'  
CLOCK  
CONTROL  
3TANDBY  
INTERFACE  
6"!4  ꢂꢄꢆ TO ꢍꢂꢄ 6  
0&;ꢃꢆꢇꢈ=  
0';ꢃꢆꢇꢈ=  
 6  
"!4  
/3#ꢍꢁ?).  
/3#ꢍꢁ?/54  
84!, ꢍꢁ K(Z  
0(;ꢃꢆꢇꢈ=  
24#  
!75  
"ACKUP REGISTER  
24#?!&ꢃ  
24#?!&ꢃ  
24#?ꢆꢈ(:  
0);ꢃꢆꢇꢈ=  
0*;ꢃꢆꢇꢈ=  
'0)/ 0/24 )  
'0)/ 0/24 *  
 +" "+032!-  
0+;ꢎꢇꢈ=  
 CHANNELSꢌ %42 AS !&  
 CHANNELSꢌ %42 AS !&  
 CHANNELSꢌ %42 AS !&  
4)-ꢁ  
ꢍꢁB  
ꢃꢄB  
'0)/ 0/24 +  
4)-ꢍ  
4)-ꢉ  
$-!ꢃ  
$-!ꢁ  
!("ꢀ!0"ꢁ  
ꢃꢄꢅ !&  
ꢃꢄB  
ꢍꢁB  
ꢃꢄB  
ꢃꢄB  
%84 )4 7+50  
3$)/  --#  
$;ꢎꢇꢈ=  
#-$ꢌ #+ AS !&  
 CHANNELS  
4)-ꢆ  
4)-ꢃꢁ  
4)-ꢃꢍ  
4)-ꢃꢉ  
!("ꢀ!0"ꢃ  
 COMPLꢂ CHANꢂ ꢊ4)-ꢃ?#(ꢃ;ꢃꢇꢉ=.ꢋꢌ  
 CHANꢂ ꢊ4)-ꢃ?#(ꢃ;ꢃꢇꢉ=%42ꢌ  
"+). AS !&  
 CHANNELS AS !&  
 CHANNEL AS !&  
 CHANNEL AS !&  
ꢃꢄB  
4)-ꢃ  07-  
4)-ꢅ  07-  
4)-ꢒ  
 COMPLꢂ CHANꢂꢊ4)-ꢅ?#(ꢃ;ꢃꢇꢉ=.ꢋꢌ  
ꢃꢄB  
ꢃꢄB  
 CHANꢂ ꢊ4)-ꢅ?#(ꢃ;ꢃꢇꢉ=ꢌ %42ꢌ  
ꢃꢄB  
"+). AS !&  
SMCARD  
IR$!  
28ꢌ 48 AS !&  
#43ꢌ 243 AS !&  
 CHANNELS AS !&  
 CHANNEL AS !&  
 CHANNEL AS !&  
53!24ꢁ  
ꢃꢄB  
ꢃꢄB  
4)-ꢃꢈ  
77$'  
SMCARD  
IR$!  
28ꢌ 48 AS !&  
#43ꢌ 243 AS !&  
53!24ꢍ  
4)-ꢃꢃ  
28ꢌ 48 AS !&  
28ꢌ 48 AS !&  
28ꢌ 48 AS !&  
28ꢌ 48 AS !&  
5!24ꢉ  
5!24ꢆ  
5!24ꢎ  
5!24ꢅ  
30ꢁꢀ)ꢁ3ꢁ  
28ꢌ 48ꢌ #+ꢌ  
#43ꢌ 243 AS !&  
SMCARD  
IR$!  
53!24ꢃ  
28ꢌ 48ꢌ #+ꢌ  
#43ꢌ 243 AS !&  
SMCARD  
IR$!  
53!24ꢄ  
-/3)ꢌ -)3/ꢌ  
3#+ꢌ .33 AS !&  
30)ꢃ  
30)ꢉ  
30)ꢆ  
30)ꢄ  
ꢃꢄB  
ꢃꢄB  
4)-ꢄ  
4)-ꢎ  
-/3)ꢌ -)3/ꢌ  
3#+ꢌ .33 AS !&  
-/3)ꢌ -)3/ꢌ  
3#+ꢌ .33 AS !&  
-/3)ꢌ -)3/ꢌ  
-/3)ꢀ3$ꢌ -)3/ꢀ3$?EXTꢌ 3#+ꢀ#+  
.33ꢀ73ꢌ -#+ AS !&  
-/3)ꢀ3$ꢌ -)3/ꢀ3$?EXTꢌ 3#+ꢀ#+  
.33ꢀ73ꢌ -#+ AS !&  
30ꢍꢀ)ꢁ3ꢍ  
3#+ꢌ .33 AS !&  
3#,ꢌ 3$!ꢌ 3-"! AS !&  
3#,ꢌ 3$!ꢌ 3-"! AS !&  
3#,ꢌ 3$!ꢌ 3-"! AS !&  
48ꢌ 28  
)ꢁ#ꢃꢀ3-"53  
)ꢁ#ꢁꢀ3-"53  
3$ꢌ 3#+ꢌ &3ꢌ -#,+ AS !&  
3!)ꢃ  
 6$$!  
6$$2%&?!$#  
4EMPERATURESENSOR  
)ꢁ#ꢍꢀ3-"53  
BX#!.ꢃ  
$!#ꢃ  
$!#ꢁ  
)4&  
 ANALOG INPUTS COMMON  
TO THE  !$#S  
 ANALOG INPUTS COMMON  
TO THE !$#ꢃ    
!$#ꢃ  
!$#ꢁ  
)&  
BX#!.ꢁ  
48ꢌ 28  
!$#ꢍ  
 ANALOG INPUTS FOR !$#ꢍ  
$!#ꢃ?/54  
AS !&  
$!#ꢁ?/54  
AS !&  
 6$$!  
-3ꢍꢈꢉꢁꢈ6ꢉ  
1. The timers connected to APB2 are clocked from TIMxCLK up to 180 MHz, while the timers connected to APB1 are clocked  
from TIMxCLK either up to 90 MHz or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.  
2. The LCD-TFT is available only on STM32F429xx devices.  
DocID024030 Rev 9  
19/238  
43  
 
 
Functional overview  
STM32F427xx STM32F429xx  
3
Functional overview  
3.1  
ARM® Cortex®-M4 with FPU and embedded Flash and SRAM  
®
®
The ARM Cortex -M4 with FPU processor is the latest generation of ARM processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The ARM Cortex -M4 with FPU core is a 32-bit RISC processor that features exceptional  
code-efficiency, delivering the high-performance expected from an ARM core in the memory  
size usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU (floating point unit) speeds up software development by using  
metalanguage development tools, while avoiding saturation.  
The STM32F42x family is compatible with all ARM tools and software.  
Figure 4 shows the general block diagram of the STM32F42x family.  
Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.  
Note:  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
standard ARM Cortex -M4 with FPU processors. It balances the inherent performance  
®
®
advantage of the ARM Cortex -M4 with FPU over Flash memory technologies, which  
normally requires the processor to wait for the Flash memory at higher frequencies.  
To release the processor full 225 DMIPS performance at this frequency, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 180 MHz.  
3.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
20/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
3.4  
Embedded Flash memory  
The devices embed a Flash memory of up to 2 Mbytes available for storing programs and  
data.  
3.5  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a software  
signature during runtime, to be compared with a reference signature generated at link-time  
and stored at a given memory location.  
3.6  
Embedded SRAM  
All devices embed:  
Up to 256Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory)  
data RAM  
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.  
4 Kbytes of backup SRAM  
This area is accessible only from the CPU. Its content is protected against possible  
unwanted write accesses, and is retained in Standby or VBAT mode.  
3.7  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB  
HS, LCD-TFT, and DMA2D) and the slaves (Flash memory, RAM, FMC, AHB and APB  
peripherals) and ensures a seamless and efficient operation even when several high-speed  
peripherals work simultaneously.  
DocID024030 Rev 9  
21/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
Figure 5. STM32F427xx and STM32F429xx Multi-AHB matrix  
$50  
&RUWH[ꢏ0ꢂ  
*3  
0$&  
&KURPꢊ$57ꢊ$FFHOHUDWRU  
ꢌ'0$ꢃ'ꢍ  
ꢇꢂꢏ.E\WH  
86%ꢊ27*  
+6  
*3  
/&'ꢏ7)7  
'0$ꢀ  
'0$ꢃ (WKHUQHW  
&&0ꢊGDWDꢊ5$0ꢊ  
,&2'(  
)ODVK  
PHPRU\  
'&2'(  
65$0ꢀꢊ  
ꢀꢀꢃꢊ.E\WH  
65$0ꢃ  
ꢀꢇꢊ.E\WH  
65$0ꢉꢊ  
ꢇꢂꢊ.E\WH  
$+%ꢃ  
$3%ꢀ  
$3%ꢃ  
SHULSKHUDOV  
$+%ꢀ  
SHULSKHUDOV  
)0&ꢊH[WHUQDO  
0HP&WO  
%XVꢊPDWUL[ꢏ6  
-3ꢍꢈꢉꢁꢃ6ꢄ  
3.8  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. Configuration is made by software and transfer sizes between  
source and destination are independent.  
22/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
DAC  
SDIO  
Camera interface (DCMI)  
ADC  
SAI1.  
3.9  
Flexible memory controller (FMC)  
All devices embed an FMC. It has four Chip Select outputs supporting the following modes:  
PCCard/Compact Flash, SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND  
Flash.  
Functionality overview:  
8-,16-, 32-bit data bus width  
Read FIFO for SDRAM controller  
Write FIFO  
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.  
LCD parallel interface  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
3.10  
LCD-TFT controller (available only on STM32F429xx)  
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)  
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to  
XGA (1024x768) resolution with the following features:  
2 displays layers with dedicated FIFO (64x32-bit)  
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer  
Up to 8 Input color formats selectable per layer  
Flexible blending between two layers using alpha value (per pixel or constant)  
Flexible programmable parameters for each layer  
Color keying (transparency color)  
Up to 4 programmable interrupt events.  
DocID024030 Rev 9  
23/238  
43  
 
Functional overview  
STM32F427xx STM32F429xx  
3.11  
Chrom-ART Accelerator™ (DMA2D)  
The Chrom-Art Accelerator™ (DMA2D) is a graphic accelerator which offers advanced bit  
blitting, row data copy and pixel format conversion. It supports the following functions:  
Rectangle filling with a fixed color  
Rectangle copy  
Rectangle copy with pixel format conversion  
Rectangle composition with blending and pixel format conversion.  
Various image format coding are supported, from indirect 4bpp color mode up to 32bpp  
direct color. It embeds dedicated memory to store color lookup tables.  
An interrupt can be generated when an operation is complete or at a programmed  
watermark.  
All the operations are fully automatized and are running independently from the CPU or the  
DMAs.  
3.12  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
®
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex -  
M4 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.13  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 168 GPIOs can be connected  
to the 16 external interrupt lines.  
3.14  
Clocks and startup  
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy over the full  
temperature range. The application can then select as system clock either the RC oscillator  
or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is  
24/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
detected, the system automatically switches back to the internal RC oscillator and a  
software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing  
to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL  
clock entry is available when necessary (for example if an indirectly used external oscillator  
fails).  
Several prescalers allow the configuration of the two AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB  
buses is 180 MHz while the maximum frequency of the high-speed APB domains is  
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.  
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio  
2
class performance. In this case, the I S master clock can generate all standard sampling  
frequencies from 8 kHz to 192 kHz.  
3.15  
Boot modes  
At startup, boot pins are used to select one out of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The boot loader is located in system memory. It is used to reprogram the Flash memory  
through a serial interface. Refer to application note AN2606 for details.  
3.16  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset  
DDA  
SSA  
blocks, RCs and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
Note:  
V
/V  
minimum value of 1.7 V is obtained with the use of an external power supply  
DD DDA  
supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 3: Voltage regulator  
configuration mode versus device operating mode to identify the packages supporting this  
option.  
3.17  
Power supply supervisor  
3.17.1  
Internal reset ON  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other package, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
DocID024030 Rev 9  
25/238  
43  
 
 
 
Functional overview  
STM32F427xx STM32F429xx  
reached, the option byte loading process starts, either to confirm or modify default BOR  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes. The device remains in reset mode when V is below a specified threshold,  
DD  
V
or V  
, without the need for an external reset circuit.  
POR/PDR  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.17.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.  
An external power supply supervisor should monitor V and should maintain the device in  
DD  
reset mode as long as V is below a specified threshold. PDR_ON should be connected to  
DD  
this external power supply supervisor. Refer to Figure 6: Power supply supervisor  
interconnection with internal reset OFF.  
Figure 6. Power supply supervisor interconnection with internal reset OFF  
9''  
([WHUQDOꢀ9''ꢀSRZHUꢀVXSSO\ꢀVXSHUYLVRU  
([WꢐꢊUHVHWꢊFRQWUROOHUꢊDFWLYHꢊZKHQ  
9''ꢊꢑꢊꢀꢐꢈꢊ9ꢊꢊ  
3'5B21  
$SSOLFDWLRQꢊUHVHW  
VLJQDOꢊꢌRSWLRQDOꢍ  
1567  
9''  
06ꢉꢀꢉꢁꢉ9ꢉ  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.7 V (see Figure 7).  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no more supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled  
The brownout reset (BOR) circuitry must be disabled  
The embedded programmable voltage detector (PVD) is disabled  
V
functionality is no more available and V  
pin should be connected to V  
.
DD  
BAT  
BAT  
All packages, except for the LQFP100, allow to disable the internal reset through the  
PDR_ON signal.  
26/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Functional overview  
Figure 7. PDR_ON control with internal reset OFF  
9
''  
3'5ꢊ ꢊꢀꢐꢈꢊ9ꢊꢊ  
WLPH  
5HVHWꢊE\ꢊRWKHUꢊVRXUFHꢊWKDQꢊ  
SRZHUꢊVXSSO\ꢊVXSHUYLVRUꢊꢊ  
1567  
3'5B21  
3'5B21  
WLPH  
06ꢀꢅꢄꢄꢅ9ꢇ  
3.18  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
3.18.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
There are three power modes configured by software when the regulator is ON:  
MR mode used in Run/sleep modes or in Stop modes  
In Run/Sleep mode  
The MR mode is used either in the normal mode (default mode) or the over-drive  
mode (enabled by software). Different voltages scaling are provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
DocID024030 Rev 9  
27/238  
43  
 
Functional overview  
STM32F427xx STM32F429xx  
The over-drive mode allows operating at a higher frequency than the normal mode  
for a given voltage scaling.  
In Stop modes  
The MR can be configured in two ways during stop mode:  
MR operates in normal mode (default mode of MR in stop mode)  
MR operates in under-drive mode (reduced leakage mode).  
LPR is used in the Stop modes:  
The LP regulator mode is configured by software when entering Stop mode.  
Like the MR mode, the LPR can be configured in two ways during stop mode:  
LPR operates in normal mode (default mode when LPR is ON)  
LPR operates in under-drive mode (reduced leakage mode).  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.  
Two external ceramic capacitors should be connected on V and V pin. Refer to  
CAP_1  
CAP_2  
Figure 22: Power supply scheme and Table 19: VCAP1/VCAP2 operating conditions.  
All packages have the regulator ON feature.  
(1)  
Table 3. Voltage regulator configuration mode versus device operating mode  
Voltage regulator  
Run mode  
Sleep mode  
Stop mode  
Standby mode  
configuration  
Normal mode  
MR  
MR  
-
MR  
MR  
-
MR or LPR  
-
Over-drive  
mode(2)  
-
-
-
Under-drive mode  
MR or LPR  
-
Power-down  
mode  
-
-
Yes  
1. ‘-’ means that the corresponding configuration is not available.  
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.  
3.18.2  
Regulator OFF  
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is  
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply  
externally a V voltage source through V  
and V  
pins.  
12  
CAP_1  
CAP_2  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency. Refer to Table 17: General operating  
conditions.The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling  
capacitors. Refer to Figure 22: Power supply scheme.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
28/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Functional overview  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
The over-drive and under-drive modes are not available.  
The Standby mode is not available.  
Figure 8. Regulator OFF  
9ꢀꢃ  
([WHUQDOꢊ9&$3BꢀꢒꢃꢊSRZHUꢊ  
$SSOLFDWLRQꢊUHVHWꢊ  
VLJQDOꢊꢌRSWLRQDOꢍꢊꢊ  
VXSSO\ꢊVXSHUYLVRU  
([WꢐꢊUHVHWꢊFRQWUROOHUꢊDFWLYHꢊ  
ꢊꢊ  
ZKHQꢊ9&$3Bꢀꢒꢃꢊꢊꢑꢊ0LQꢊ9ꢀꢃ  
9''  
3$ꢄ  
9''  
1567ꢊꢊ  
%<3$66B5(*  
9ꢀꢃ  
9&$3Bꢀ  
9&$3Bꢃ  
DLꢀꢁꢂꢅꢁ9ꢉ  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 9).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 10).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application  
12  
(see Table 17: General operating conditions).  
DocID024030 Rev 9  
29/238  
43  
 
Functional overview  
STM32F427xx STM32F429xx  
Figure 9. Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢊ ꢊꢀꢐꢈꢊ9ꢊRUꢊꢀꢐꢁꢊ9  
9&$3Bꢀꢒ9&$3Bꢃ  
9ꢀꢃ  
0LQꢊ9ꢀꢃ  
WLPH  
1567  
DLꢀꢁꢂꢅꢀI  
WLPH  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 10. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
9''  
3'5ꢊ ꢊꢀꢐꢈꢊ9ꢊRUꢊꢀꢐꢁꢊ9ꢊꢊ  
9&$3Bꢀꢒ9&$3Bꢃ  
9ꢀꢃ  
0LQꢊ9ꢀꢃ  
WLPH  
WLPH  
1567  
3$ꢄꢊDVVHUWHGꢊH[WHUQDOO\ꢊꢊ  
DLꢀꢁꢂꢅꢃH  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
30/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Functional overview  
3.18.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal reset ON/OFF availability  
Package  
Regulator ON  
Regulator OFF Internal reset ON Internal reset OFF  
LQFP100  
Yes  
No  
Yes  
No  
LQFP144,  
LQFP208  
Yes  
Yes  
PDR_ON  
WLCSP143,  
LQFP176,  
UFBGA169,  
UFBGA176,  
TFBGA216  
PDR_ON set to  
VDD  
connected to an  
external power  
supply supervisor  
Yes  
Yes  
BYPASS_REGset BYPASS_REGset  
to VSS to VDD  
3.19  
Real-time clock (RTC), backup SRAM and backup registers  
The backup domain includes:  
The real-time clock (RTC)  
4 Kbytes of backup SRAM  
20 backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-  
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are  
performed automatically. The RTC provides a programmable alarm and programmable  
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is  
also available in binary format.  
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power  
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC  
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz  
output to compensate for any natural quartz deviation.  
Two alarm registers are used to generate an alarm at a specific time and calendar fields can  
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit  
programmable binary auto-reload downcounter with programmable resolution is available  
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.  
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a  
time base of 1 second from a clock at 32.768 kHz.  
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data  
which need to be retained in VBAT and standby mode. This memory area is disabled by  
default to minimize power consumption (see Section 3.20: Low-power modes). It can be  
enabled by software.  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. Backup registers are not reset by a system, a power reset,  
DD  
or when the device wakes up from the Standby mode (see Section 3.20: Low-power  
modes).  
DocID024030 Rev 9  
31/238  
43  
 
Functional overview  
STM32F427xx STM32F429xx  
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,  
hours, day, and date.  
Like backup SRAM, the RTC and backup registers are supplied through a switch that is  
powered either from the V supply when present or from the V  
pin.  
DD  
BAT  
3.20  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled.  
The voltage regulator can be put either in main regulator mode (MR) or in low-power  
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator  
modes in stop mode):  
Normal mode (default mode when MR or LPR is enabled)  
Under-drive mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /  
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup).  
Table 5. Voltage regulator modes in stop mode  
Voltage regulator  
Main regulator (MR)  
Low-power regulator (LPR)  
configuration  
Normal mode  
MR ON  
LPR ON  
Under-drive mode  
MR in under-drive mode  
LPR in under-drive mode  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain and the backup SRAM when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event  
occurs.  
The standby mode is not supported when the embedded voltage regulator is bypassed  
and the 1.2 V domain is controlled by an external power.  
32/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Functional overview  
3.21  
VBAT operation  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when no external battery and an external supercapacitor are  
DD  
present.  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
Note:  
When the microcontroller is supplied from V , external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is not connected to V (Internal Reset OFF), the V  
functionality is  
BAT  
DD  
no more available and V  
pin should be connected to VDD.  
BAT  
3.22  
Timers and watchdogs  
The devices include two advanced-control timers, eight general-purpose timers, two basic  
timers and two watchdog timers.  
All timer counters can be frozen in debug mode.  
Table 6 compares the features of the advanced-control, general-purpose and basic timers.  
DocID024030 Rev 9  
33/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
Table 6. Timer feature comparison  
Max  
Max  
DMA  
request  
generation channels  
Capture/  
compare  
timer  
Complementary interface  
clock  
Timer  
type  
Counter Counter Prescaler  
Timer  
resolution  
type  
factor  
output  
clock  
(MHz)  
(MHz)  
(1)  
Any  
Up,  
integer  
Advanced TIM1,  
16-bit  
Down, between1  
Up/down  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
0
Yes  
90  
45  
45  
90  
90  
45  
45  
45  
180  
-control  
TIM8  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM2,  
TIM5  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
No  
No  
No  
No  
90/180  
90/180  
180  
Up/down  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
Up/down  
and  
65536  
Any  
integer  
between1  
and  
TIM9  
Up  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM10  
,
TIM11  
Up  
Up  
Up  
Up  
No  
180  
65536  
Any  
integer  
between1  
and  
TIM12  
No  
90/180  
90/180  
90/180  
65536  
Any  
integer  
between1  
and  
TIM13  
,
TIM14  
No  
65536  
Any  
integer  
between1  
and  
TIM6,  
TIM7  
Basic  
Yes  
65536  
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.  
34/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Functional overview  
3.22.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
3.22.2  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32F42x devices  
(see Table 6 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F42x include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3,  
and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-  
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent  
channels for input capture/output compare, PWM or one-pulse mode output. This gives  
up to 16 input capture/output compare/PWMs on the largest packages.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9  
and TIM12 have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers. They can also be used as simple time bases.  
3.22.3  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
DocID024030 Rev 9  
35/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
3.22.4  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
3.22.5  
3.22.6  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
3.23  
Inter-integrated circuit interface ( I2C)  
Up to three I²C bus interfaces can operate in multimaster and slave modes. They can  
support the standard (up to 100 KHz), and fast (up to 400 KHz) modes. They support the  
7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC  
generation/verification is embedded.  
They can be served by DMA and they support SMBus 2.0/PMBus.  
The devices also include programmable analog and digital noise filters (see Table 7).  
Table 7. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
3.24  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed four universal synchronous/asynchronous receiver transmitters  
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver  
transmitters (UART4, UART5, UART7, and UART8).  
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to  
36/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Functional overview  
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate  
at up to 5.62 bit/s.  
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS  
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication  
capability. All interfaces can be served by the DMA controller.  
(1)  
Table 8. USART feature comparison  
Max. baud  
Smartcard rate in Mbit/s rate in Mbit/s  
(ISO 7816) (oversampling (oversampling mapping  
Max. baud  
USART Standard  
Modem  
SPI  
master  
APB  
LIN  
irDA  
name  
features (RTS/CTS)  
by 16)  
by 8)  
APB2  
(max.  
90 MHz)  
USART1  
USART2  
USART3  
UART4  
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
-
5.62  
11.25  
APB1  
(max.  
45 MHz)  
2.81  
2.81  
2.81  
2.81  
5.62  
2.81  
2.81  
5.62  
5.62  
5.62  
5.62  
11.25  
5.62  
5.62  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
APB1  
(max.  
45 MHz)  
UART5  
-
-
-
APB2  
(max.  
90 MHz)  
USART6  
UART7  
X
-
X
-
X
-
APB1  
(max.  
45 MHz)  
APB1  
(max.  
UART8  
-
-
-
45 MHz)  
1. X = feature supported.  
3.25  
Serial peripheral interface (SPI)  
The devices feature up to six SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, SPI4, SPI5, and SPI6 can communicate at up to 45 Mbits/s,  
SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master  
mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the  
DMA controller.  
The SPI interface can be configured to operate in TI mode for communications in master  
mode and slave mode.  
DocID024030 Rev 9  
37/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
3.26  
Inter-integrated sound (I2S)  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) are available. They can be  
operated in master or slave mode, in full duplex and simplex communication modes, and  
can be configured to operate with a 16-/32-bit resolution as an input or output channel.  
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of  
2
the I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
All I2Sx can be served by the DMA controller.  
Note:  
For I2S2 full-duplex mode, I2S2_CK and I2S2_WS signals can be used only on GPIO Port  
B and GPIO Port D.  
3.27  
Serial Audio interface (SAI1)  
The serial audio interface (SAI1) is based on two independent audio sub-blocks which can  
operate as transmitter or receiver with their FIFO. Many audio protocols are supported by  
each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks  
can be configured in master or in slave mode.  
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of  
the sampling frequency.  
The two sub-blocks can be configured in synchronous mode when full-duplex mode is  
required.  
SAI1 can be served by the DMA controller.  
3.28  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S and SAI applications. It allows  
2
to achieve error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
2
The PLLI2S configuration can be modified to manage an I S/SAI sample rate change  
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
In addition to the audio PLL, a master clock input pin can be used to synchronize the  
2
I S/SAI flow with an external PLL (or Codec output).  
3.29  
Audio and LCD PLL(PLLSAI)  
An additional PLL dedicated to audio and LCD-TFT is used for SAI1 peripheral in case the  
PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or  
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.  
The PLLSAI is also used to generate the LCD-TFT clock.  
38/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
3.30  
Secure digital input/output interface (SDIO)  
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System  
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDIO Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack  
of MMC4.1 or previous.  
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital  
protocol Rev1.1.  
3.31  
Ethernet MAC interface with dedicated DMA and IEEE 1588  
support  
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for  
ethernet LAN communications through an industry-standard medium-independent interface  
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an  
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,  
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals  
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.  
The devices include the following features:  
Supports 10 and 100 Mbit/s rates  
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM  
and the descriptors (see the STM32F4xx reference manual for details)  
Tagged MAC frame support (VLAN support)  
Half-duplex (CSMA/CD) and full-duplex operation  
MAC control sublayer (control frames) support  
32-bit CRC generation and removal  
Several address filtering modes for physical and multicast address (multicast and  
group addresses)  
32-bit status code for each transmitted or received frame  
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the  
receive FIFO are both 2 Kbytes.  
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008  
(PTP V2) with the time stamp comparator connected to the TIM2 input  
Triggers interrupt when system time becomes greater than target time  
3.32  
Controller area network (bxCAN)  
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1  
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive  
DocID024030 Rev 9  
39/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated for each CAN.  
3.33  
Universal serial bus on-the-go full-speed (OTG_FS)  
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator. The major features are:  
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
4 bidirectional endpoints  
8 host channels with periodic OUT support  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.34  
Universal serial bus on-the-go high-speed (OTG_HS)  
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.  
The USB OTG HS supports both full-speed and high-speed operations. It integrates the  
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)  
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an  
external PHY device connected to the ULPI is required.  
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG  
1.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock  
that is generated by a PLL connected to the HSE oscillator.  
The major features are:  
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
6 bidirectional endpoints  
12 host channels with periodic OUT support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is  
connected to the microcontroller ULPI port through 12 signals. It can be clocked using  
the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
for OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
40/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
3.35  
Digital camera interface (DCMI)  
The devices embed a camera interface that can connect with camera modules and CMOS  
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera  
interface can sustain a data transfer rate up to 54 Mbyte/s at 54 MHz. It features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports continuous mode or snapshot (a single frame) mode  
Capability to automatically crop the image  
3.36  
3.37  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.  
3.38  
Analog-to-digital converters (ADCs)  
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16  
external channels, performing conversions in the single-shot or scan mode. In scan mode,  
automatic conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.  
DocID024030 Rev 9  
41/238  
43  
Functional overview  
STM32F427xx STM32F429xx  
3.39  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with temperature. The  
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the same input channel as V , ADC1_IN18, which is used to convert the  
BAT  
sensor output voltage into a digital value. When the temperature sensor and V  
BAT  
conversion are enabled at the same time, only V  
conversion is performed.  
BAT  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.40  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 10-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
external triggers for conversion  
input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA streams.  
3.41  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
42/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Functional overview  
3.42  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F42x through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer that runs the debugger software. TPA  
hardware is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
DocID024030 Rev 9  
43/238  
43  
Pinouts and pin description  
STM32F427xx STM32F429xx  
4
Pinouts and pin description  
Figure 11. STM32F42x LQFP100 pinout  
0%ꢁ  
0%ꢍ  
0%ꢉ  
0%ꢆ  
0%ꢄ  
6"!4  
0#ꢃꢍ  
0#ꢃꢉ  
0#ꢃꢆ  
633  
6$$  
0(ꢈ  
0(ꢃ  
.234  
0#ꢈ  
0#ꢃ  
0#ꢁ  
ꢎꢆ  
ꢎꢉ  
ꢎꢍ  
ꢎꢁ  
ꢎꢃ  
ꢎꢈ  
ꢄꢒ  
ꢄꢅ  
ꢄꢎ  
ꢄꢄ  
ꢄꢆ  
ꢄꢉ  
ꢄꢍ  
ꢄꢁ  
ꢄꢃ  
ꢄꢈ  
ꢆꢒ  
ꢆꢅ  
ꢆꢎ  
ꢆꢄ  
ꢆꢆ  
ꢆꢉ  
ꢆꢍ  
ꢆꢁ  
ꢆꢃ  
6$$  
633  
6#!0?ꢁ  
0!ꢃꢍ  
0!ꢃꢁ  
0!   
0!ꢃꢈ  
0!  
0!  
0#ꢒ  
0#ꢅ  
0#ꢎ  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
ꢃꢉ  
ꢃꢆ  
ꢃꢄ  
ꢃꢎ  
ꢃꢅ  
ꢃꢒ  
ꢁꢈ  
ꢁꢃ  
ꢁꢁ  
ꢁꢍ  
ꢁꢉ  
ꢁꢆ  
0#ꢄ  
,1&0ꢃꢈꢈ  
0$ꢃꢆ  
0$ꢃꢉ  
0$ꢃꢍ  
0$ꢃꢁ  
0$ꢃꢃ  
0$ꢃꢈ  
0$ꢒ  
0#ꢍ  
6$$  
633!  
62%&ꢓ  
6$$!  
0!  
0$ꢅ  
0"ꢃꢆ  
0"ꢃꢉ  
0"ꢃꢍ  
0"ꢃꢁ  
0!  
0!  
AIꢃꢅꢉꢒꢆC  
1. The above figure shows the package top view.  
44/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Figure 12. STM32F42x WLCSP143 ballout  
ꢀꢀ  
ꢀꢄ  
3'5  
3(ꢀ  
3(ꢄ  
3(ꢉ  
3%ꢁ  
3%ꢅ  
3%ꢇ  
3%ꢈ  
3%ꢆ  
3*ꢀꢆ  
3%ꢉ  
3*ꢀꢃ  
3*ꢀꢀ  
3*ꢀꢄ  
3'ꢈ  
3'ꢂ  
9''  
3'ꢆ  
3'ꢉ  
3'ꢀ  
3'ꢃ  
3'ꢄ  
3&ꢀꢄ  
3&ꢀꢀ  
3$ꢀꢆ  
9''  
3$ꢀꢂ  
9''  
$
B21  
3(ꢂ  
%
%227  
9%$7  
3%ꢂ  
3&ꢀꢃ  
&
9&$3  
Bꢃ  
3&ꢀꢂ  
3&ꢀꢆ  
3&ꢀꢉ  
9''  
3(ꢆ  
3)ꢀ  
3(ꢃ  
3(ꢇ  
9''  
966  
3*ꢀꢉ  
9''  
3$ꢀꢄ  
3*ꢅ  
3$ꢀꢀ  
3&ꢁ  
3$ꢀꢉ  
3&ꢅ  
966  
3$ꢅ  
'
(
3$ꢀꢃ  
3$ꢁ  
3)ꢄ  
3)ꢃ  
3)ꢂ  
3)ꢆ  
3)ꢈ  
3*ꢀꢂ  
966  
3'ꢇ  
3&ꢈ  
3&ꢇ  
)
*
+
-
3)ꢉ  
3)ꢁ  
3)ꢇ  
3+ꢀ  
3)ꢀꢄ  
3)ꢅ  
3&ꢄ  
9''  
966  
3*ꢆ  
3*ꢂ  
3*ꢇ  
3*ꢉ  
966  
3*ꢁ  
966  
9''  
3*ꢈ  
1567  
3'ꢀꢃ  
3'ꢀꢉ  
3'ꢀꢄ  
3+ꢄ  
3&ꢀ  
3&ꢃ  
3&ꢉ  
3$ꢄ  
9''  
3$ꢀ  
9''  
3%ꢀ  
9''  
9''  
3*ꢀ  
3(ꢀꢄ  
3(ꢀꢀ  
3%ꢀꢆ  
3%ꢀꢂ  
3'ꢀꢂ  
3'ꢀꢀ  
3*ꢃ  
966$  
3)ꢀꢉ  
3'ꢀꢆ  
.
95()  
9''$  
3$ꢂ  
3$ꢃ  
3$ꢆ  
3&ꢆ  
3$ꢈ  
3&ꢂ  
3%ꢄ  
3%ꢃ  
3)ꢀꢀ  
3)ꢀꢃ  
3)ꢀꢂ  
3)ꢀꢆ  
3*ꢄ  
3(ꢈ  
3(ꢁ  
3(ꢅ  
3(ꢀꢃ  
3(ꢀꢂ  
3(ꢀꢉ  
3(ꢀꢆ  
3%ꢀꢄ  
3%ꢀꢀ  
3'ꢁ  
9''  
3'ꢅ  
/
0
3%ꢀꢃ  
3$ꢉ  
%<3$66B  
5(*  
9&$3  
Bꢀ  
3$ꢇ  
3%ꢀꢉ  
1
06ꢉꢀꢁꢆꢆ9ꢃ  
1. The above figure shows the package bump view.  
DocID024030 Rev 9  
45/238  
84  
 
Pinouts and pin description  
STM32F427xx STM32F429xx  
Figure 13. STM32F42x LQFP144 pinout  
0%ꢁ  
0%ꢍ  
0%ꢉ  
0%ꢆ  
0%ꢄ  
6"!4  
0#ꢃꢍ  
0#ꢃꢉ  
0#ꢃꢆ  
0&ꢈ  
0&ꢃ  
0&ꢁ  
0&ꢍ  
0&ꢉ  
0&ꢆ  
633  
6$$ ꢃꢎ  
0&ꢄ  
0&ꢎ  
ꢃꢈꢅ  
ꢃꢈꢎ  
ꢃꢈꢄ  
ꢃꢈꢆ  
ꢃꢈꢉ  
ꢃꢈꢍ  
ꢃꢈꢁ  
ꢃꢈꢃ  
ꢃꢈꢈ  
ꢒꢒ  
ꢒꢅ  
ꢒꢎ  
ꢒꢄ  
ꢒꢆ  
ꢒꢉ  
ꢒꢍ  
ꢒꢁ  
ꢒꢃ  
ꢒꢈ  
ꢅꢒ  
ꢅꢅ  
ꢅꢎ  
ꢅꢄ  
ꢅꢆ  
ꢅꢉ  
ꢅꢍ  
ꢅꢁ  
ꢅꢃ  
ꢅꢈ  
ꢎꢒ  
ꢎꢅ  
ꢎꢎ  
ꢎꢄ  
ꢎꢆ  
ꢎꢉ  
ꢎꢍ  
6$$  
633  
6#!0?ꢁ  
0!   
0!   
0!   
0!   
0!   
0!   
0#ꢒ  
0#ꢅ  
0#ꢎ  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
ꢃꢉ  
ꢃꢆ  
ꢃꢄ  
0#ꢄ  
6$$  
633  
0'ꢅ  
0'ꢎ  
0'ꢄ  
0'ꢆ  
0'ꢉ  
0'ꢍ  
0'ꢁ  
0$ꢃꢆ  
0$ꢃꢉ  
6$$  
ꢃꢅ  
ꢃꢒ  
ꢁꢈ  
ꢁꢃ  
ꢁꢁ  
ꢁꢍ  
ꢁꢉ  
ꢁꢆ  
ꢁꢄ  
ꢁꢎ  
ꢁꢅ  
ꢁꢒ  
ꢍꢈ  
ꢍꢃ  
ꢍꢁ  
ꢍꢍ  
ꢍꢉ  
ꢍꢆ  
ꢍꢄ  
,1&0ꢃꢉꢉ  
0&ꢅ  
0&ꢒ  
0&ꢃꢈ  
0(ꢈ  
0(ꢃ  
.234  
0#ꢈ  
0#ꢃ  
0#ꢁ  
0#ꢍ  
6$$  
633!  
62%&ꢓ  
6$$!  
0!   
633  
0$ꢃꢍ  
0$ꢃꢁ  
0$ꢃꢃ  
0$ꢃꢈ  
0$ꢒ  
0$ꢅ  
0"ꢃꢆ  
0"ꢃꢉ  
0"ꢃꢍ  
0"ꢃꢁ  
0!   
0!   
AIꢃꢅꢉꢒꢄB  
1. The above figure shows the package top view.  
46/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Figure 14. STM32F42x LQFP176 pinout  
0%ꢁ  
0%ꢍ  
0%ꢉ  
0%ꢆ  
0%ꢄ  
6"!4  
0)ꢅ  
0#ꢃꢍ  
0#ꢃꢉ  
0#ꢃꢆ  
0)ꢒ  
ꢃꢍꢁ  
ꢃꢍꢃ  
ꢃꢍꢈ  
ꢃꢁꢒ  
ꢃꢁꢅ  
ꢃꢁꢎ  
ꢃꢁꢄ  
ꢃꢁꢆ  
ꢃꢁꢉ  
ꢃꢁꢍ  
ꢃꢁꢁ  
ꢃꢁꢃ  
ꢃꢁꢈ  
ꢃꢃꢒ  
ꢃꢃꢅ  
ꢃꢃꢎ  
ꢃꢃꢄ  
ꢃꢃꢆ  
ꢃꢃꢉ  
ꢃꢃꢍ  
ꢃꢃꢁ  
ꢃꢃꢃ  
ꢃꢃꢈ  
ꢃꢈꢒ  
ꢃꢈꢅ  
0)ꢃ  
0)ꢈ  
0(ꢃꢆ  
0(ꢃꢉ  
0(ꢃꢍ  
6$$  
633  
6#!0?ꢁ  
0!ꢃꢍ  
0!ꢃꢁ  
0!ꢃꢃ  
0!ꢃꢈ  
0!  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
ꢃꢉ  
ꢃꢆ  
ꢃꢄ  
ꢃꢎ  
ꢃꢅ  
ꢃꢒ  
ꢁꢈ  
ꢁꢃ  
ꢁꢁ  
ꢁꢍ  
ꢁꢉ  
ꢁꢆ  
ꢁꢄ  
ꢁꢎ  
ꢁꢅ  
ꢁꢒ  
ꢍꢈ  
ꢍꢃ  
ꢍꢁ  
ꢍꢍ  
ꢍꢉ  
ꢍꢆ  
ꢍꢄ  
ꢍꢎ  
ꢍꢅ  
ꢍꢒ  
ꢉꢈ  
ꢉꢃ  
ꢉꢁ  
ꢉꢍ  
ꢉꢉ  
0)ꢃꢈ  
0)ꢃꢃ  
633  
6$$  
0&ꢈ  
0&ꢃ  
0&ꢁ  
0&ꢍ  
0&ꢉ  
0&ꢆ  
633  
6$$  
0&ꢄ  
0&ꢎ  
0&ꢅ  
0&ꢒ  
0&ꢃꢈ  
0(ꢈ  
0(ꢃ  
.234  
0#ꢈ  
0#ꢃ  
0#ꢁ  
0#ꢍ  
6$$  
0!  
0#ꢒ  
0#ꢅ  
0#ꢎ  
0#ꢄ  
6$$  
633  
0'ꢅ  
0'ꢎ  
0'ꢄ  
0'ꢆ  
0'ꢉ  
0'ꢍ  
0'ꢁ  
0$ꢃꢆ  
0$ꢃꢉ  
,1&0ꢃꢎꢄ  
ꢃꢈꢎ  
ꢃꢈꢄ  
ꢃꢈꢆ  
ꢃꢈꢉ  
ꢃꢈꢍ 6$$  
ꢃꢈꢁ  
ꢃꢈꢃ  
ꢃꢈꢈ  
ꢒꢒ 0$ꢃꢃ  
ꢒꢅ 0$ꢃꢈ  
ꢒꢎ 0$ꢒ  
633  
0$ꢃꢍ  
0$ꢃꢁ  
0$ꢅ  
633!  
62%&ꢓ  
6$$!  
0!  
0!  
0!  
0(ꢁ  
0(ꢍ  
ꢒꢄ  
0"ꢃꢆ  
0"ꢃꢉ  
0"ꢃꢍ  
0"ꢃꢁ  
6$$  
ꢒꢆ  
ꢒꢉ  
ꢒꢍ  
ꢒꢁ  
ꢒꢃ  
ꢒꢈ  
633  
ꢅꢒ 0(ꢃꢁ  
-3ꢍꢃꢅꢎꢅ6ꢃ  
1. The above figure shows the package top view.  
DocID024030 Rev 9  
47/238  
84  
Figure 15. STM32F42x LQFP208 pinout  
ꢃꢆꢄ 0)ꢁ  
ꢃꢆꢆ 0)ꢃ  
ꢃꢆꢉ 0)ꢈ  
0%ꢁ  
0%ꢍ  
0%ꢉ  
0%ꢆ  
0%ꢄ  
6"!4  
0)ꢅ  
0#ꢃꢍ  
0#ꢃꢉ  
0#ꢃꢆ ꢃꢈ  
0)ꢒ ꢃꢃ  
0)ꢃꢈ ꢃꢁ  
0)ꢃꢃ ꢃꢍ  
633 ꢃꢉ  
6$$ ꢃꢆ  
0&ꢈ ꢃꢄ  
0&ꢃ ꢃꢎ  
0&ꢁ ꢃꢅ  
0)ꢃꢁ ꢃꢒ  
0)ꢃꢍ ꢁꢈ  
0)ꢃꢉ ꢁꢃ  
ꢃꢆꢍ 0(ꢃꢆ  
ꢃꢆꢁ 0(ꢃꢉ  
ꢃꢆꢃ 0(ꢃꢍ  
ꢃꢆꢈ 6$$  
ꢃꢉꢒ 633  
ꢃꢉꢅ 6#!0ꢁ  
ꢃꢉꢎ 0!ꢃꢍ  
ꢃꢉꢄ 0!ꢃꢁ  
ꢃꢉꢆ 0!ꢃꢃ  
ꢃꢉꢉ 0!ꢃꢈ  
ꢃꢉꢍ 0!  
ꢃꢉꢁ 0!  
ꢃꢉꢃ 0#ꢒ  
ꢃꢉꢈ 0#ꢅ  
ꢃꢍꢒ 0#ꢎ  
ꢃꢍꢅ 0#ꢄ  
ꢃꢍꢎ 6$$  
ꢃꢍꢄ 633  
ꢃꢍꢆ 0'ꢅ  
ꢃꢍꢉ 0'ꢎ  
ꢃꢍꢍ 0'ꢄ  
0&ꢍ ꢁꢁ  
0&ꢉ ꢁꢍ  
0&ꢆ ꢁꢉ  
ꢃꢍꢁ 0'ꢆ  
ꢃꢍꢃ 0'ꢉ  
ꢃꢍꢈ 0'ꢍ  
ꢃꢁꢒ 0'ꢁ  
ꢃꢁꢅ 0+ꢁ  
ꢃꢁꢎ 0+ꢃ  
ꢃꢁꢄ 0+ꢈ  
ꢃꢁꢆ 633  
ꢃꢁꢉ 6$$  
ꢃꢁꢍ 0*ꢃꢃ  
ꢃꢁꢁ 0*ꢃꢈ  
ꢃꢁꢃ 0*ꢒ  
ꢃꢁꢈ 0*ꢅ  
633 ꢁꢆ  
6$$ ꢁꢄ  
0&ꢄ ꢁꢎ  
0&ꢎ ꢁꢅ  
0&ꢅ ꢁꢒ  
0&ꢒ ꢍꢈ  
0&ꢃꢈ ꢍꢃ  
0(ꢈ ꢍꢁ  
0(ꢃ ꢍꢍ  
.234 ꢍꢉ  
0#ꢈ ꢍꢆ  
0#ꢃ ꢍꢄ  
0#ꢁ ꢍꢎ  
,1&0ꢁꢈꢅ  
ꢃꢃꢒ 0*ꢎ  
ꢃꢃꢅ 0*ꢄ  
0#ꢍ ꢍꢅ  
6$$ ꢍꢒ  
ꢃꢃꢎ 0$ꢃꢆ  
ꢃꢃꢄ 0$ꢃꢉ  
ꢃꢃꢆ 6$$  
633! ꢉꢈ  
62%&ꢓ ꢉꢃ  
6$$! ꢉꢁ  
ꢃꢃꢉ 633  
ꢃꢃꢍ 0$ꢃꢍ  
ꢃꢃꢁ 0$ꢃꢁ  
ꢃꢃꢃ 0$ꢃꢃ  
ꢃꢃꢈ 0$ꢃꢈ  
ꢃꢈꢒ 0$ꢒ  
ꢃꢈꢅ 0$ꢅ  
ꢃꢈꢎ 0"ꢃꢆ  
ꢃꢈꢄ 0"ꢃꢉ  
ꢃꢈꢆ 0"ꢃꢍ  
0! ꢉꢍ  
0! ꢉꢉ  
0! ꢉꢆ  
0(ꢁ ꢉꢄ  
0(ꢍ ꢉꢎ  
0(ꢉ ꢉꢅ  
0(ꢆ ꢉꢒ  
0! ꢆꢈ  
633 ꢆꢃ  
6$$ ꢆꢁ  
-3ꢍꢈꢉꢁꢁ6ꢁ  
1. The above figure shows the package top view.  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Figure 16. STM32F42x UFBGA169 ballout  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
0)ꢄ  
0)ꢆ  
"//4ꢈ  
0"ꢉ  
0'ꢃꢁ  
0$ꢎ  
0$ꢍ  
0#ꢃꢁ  
0!ꢃꢉ  
0)ꢍ  
0%ꢃ  
!
"
0!ꢃꢆ  
0'ꢃꢃ  
0'ꢃꢈ  
633  
0#ꢃꢃ  
0#ꢃꢈ  
6$$  
0!ꢃꢃ  
0#ꢎ  
0%ꢁ  
0%ꢉ  
0%ꢄ  
0)ꢒ  
0)ꢉ  
0%ꢈ  
0"ꢒ  
0"ꢎ  
0"ꢄ  
0"ꢆ  
6"!4  
633  
0&ꢁ  
0$ꢄ  
0$ꢆ  
0$ꢉ  
0!  
0$ꢁ  
0$ꢃ  
0$ꢈ  
0!ꢃꢈ  
0)ꢁ  
0)ꢎ  
0%ꢍ  
0"ꢍ  
0'ꢃꢆ  
6$$  
6$$  
633  
0#ꢈ  
0)ꢈ  
0(ꢃꢉ  
0(ꢃꢍ  
0!  
0$2  
?/.  
0)ꢃ  
0(ꢃꢆ  
#
$
6#!0  
?ꢁ  
0%ꢆ  
0"ꢅ  
6$$  
0)ꢃꢈ  
0&ꢃ  
0&ꢉ  
0&ꢆ  
633  
0!ꢃꢁ  
0#ꢅ  
0#ꢃꢉ  
0#ꢃꢆ  
0(ꢃ  
0#ꢃꢍ  
6$$  
0!ꢃꢍ  
633  
%
&
0&ꢈ  
0(ꢈ  
.234  
6$$  
6$$  
6$$  
6$$  
0%ꢅ  
0#ꢄ  
633  
0%ꢃꢍ  
0#ꢒ  
0'ꢎ  
0'ꢅ  
0'ꢆ  
0'ꢁ  
0&ꢍ  
'
0'ꢄ  
0$ꢃꢉ  
6$$  
633  
0#ꢍ  
633  
6$$  
6$$  
0'ꢉ  
0&ꢃꢈ  
0#ꢃ  
0!  
0#ꢁ  
0$ꢃꢃ  
(
*
633! 62%&ꢑ 62%&ꢓ 6$$!  
633  
6$$  
6$$  
0&ꢃꢍ  
0'ꢈ  
0%ꢃꢉ  
0%ꢃꢆ  
0"ꢃꢈ  
0"ꢃꢃ  
0$ꢃꢆ  
0$ꢃꢍ  
0$ꢅ  
0$ꢃꢁ  
0$ꢒ  
633  
0(ꢒ  
+
,
0!  
0(ꢍ  
0!  
0(ꢁ  
0(ꢉ  
0!  
0!  
0(ꢆ  
0!  
0"ꢃ  
0"ꢁ  
0&ꢃꢃ  
0&ꢃꢁ  
0%ꢒ  
0!  
0#ꢉ  
0&ꢃꢉ  
0$ꢃꢈ  
0%ꢃꢈ  
0(ꢅ  
0(ꢎ  
0&ꢃꢆ  
0'ꢃ  
0(ꢃꢁ  
0(ꢃꢃ  
"90!33  
?2%'  
-
0#ꢆ  
0"ꢈ  
0%ꢃꢃ  
0%ꢃꢁ  
0"ꢃꢍ  
0"ꢃꢁ  
0"ꢃꢉ  
6#!0  
?ꢃ  
0(ꢄ  
0(ꢃꢈ  
0!  
0%ꢎ  
.
-3ꢍꢍꢎꢍꢁ6ꢃ  
1. The above figure shows the package top view.  
2. The 4 corners balls, A1,A13, N1 and N13, are not bonded internally and should be left not connected on the PCB.  
DocID024030 Rev 9  
49/238  
84  
 
 
Pinouts and pin description  
STM32F427xx STM32F429xx  
Figure 17. STM32F42x UFBGA176 ballout  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
ꢃꢉ  
ꢃꢆ  
!
"
0%ꢍ  
0%ꢁ  
0%ꢃ  
0%ꢈ  
0"ꢒ  
0"ꢅ  
0"ꢎ  
0"ꢆ  
0'ꢃꢉ  
0'ꢃꢆ  
0'ꢃꢍ  
0'ꢃꢁ  
0"ꢉ  
0'ꢃꢃ  
0"ꢍ  
0'ꢃꢈ  
0$ꢎ  
0$ꢄ  
0#ꢃꢁ  
0$ꢈ  
0!ꢃꢆ  
0#ꢃꢃ  
0!ꢃꢉ  
0#ꢃꢈ  
0!ꢃꢍ  
0!ꢃꢁ  
0%ꢄ  
0)ꢄ  
0"ꢄ  
0%ꢉ  
6"!4  
0#ꢃꢍ  
0%ꢆ  
0)ꢎ  
6$$  
633  
0)ꢆ  
0$2?/.  
"//4ꢈ  
6$$  
633  
6$$  
633  
6$$  
633  
0'ꢒ  
0$ꢉ  
0$ꢆ  
0$ꢍ  
0$ꢃ  
0$ꢁ  
0)ꢍ  
0)ꢁ  
0)ꢃ  
0!ꢃꢃ  
0!ꢃꢈ  
#
$
0(ꢃꢆ  
0)ꢅ  
0)ꢒ  
0)ꢉ  
0&ꢈ  
0)ꢃꢈ  
0)ꢃꢃ  
0(ꢃꢍ  
0(ꢃꢉ  
0)ꢈ  
0!  
0!  
0#ꢃꢉ  
0#ꢃꢆ  
0(ꢈ  
%
&
633  
633  
0&ꢁ  
0&ꢍ  
0&ꢄ  
0&ꢒ  
0#ꢈ  
0(ꢁ  
0(ꢍ  
0(ꢉ  
0(ꢆ  
6$$  
633  
633  
633  
633  
633  
633  
633  
633  
633  
633  
633  
633  
633 6#!0ꢁ 0#ꢒ  
6$$  
6$$  
0&ꢃ  
633  
633  
633  
633  
6$$  
6$$  
6$$  
6$$  
0#ꢅ  
0'ꢅ  
0'ꢎ  
0#ꢎ  
0#ꢄ  
0'ꢄ  
'
(
633  
633  
633  
0(ꢃ  
.234  
0&ꢉ  
0&ꢆ  
*
633  
633  
633  
633  
633  
633  
633  
633  
+
0&ꢎ  
0(ꢃꢁ  
0(ꢃꢃ  
0(ꢅ  
0'ꢆ  
0(ꢃꢈ  
0(ꢒ  
0'ꢉ  
0$ꢃꢆ  
0$ꢃꢉ  
0'ꢍ  
0'ꢁ  
"90!33?  
2%'  
,
0&ꢅ  
0#ꢃ  
0&ꢃꢈ  
633!  
62%&ꢑ  
0"ꢁ  
0'ꢃ  
0'ꢈ  
0&ꢃꢆ  
633  
6$$  
0%ꢅ  
633  
6$$  
0%ꢒ  
6#!0?ꢃ 0(ꢄ  
0$ꢃꢍ  
-
.
0#ꢁ  
0!ꢉ  
0!ꢆ  
0#ꢍ  
0#ꢉ  
0#ꢆ  
6$$  
0%ꢃꢍ  
0%ꢃꢉ  
0(ꢎ  
0$ꢃꢁ  
0"ꢃꢍ  
0$ꢃꢃ  
0$ꢒ  
0$ꢃꢈ  
0$ꢅ  
0&ꢃꢍ  
0&ꢃꢁ  
0!  
0!ꢁ  
0!  
0!  
0%ꢃꢃ  
0"ꢃꢁ  
0
2
62%&ꢓ  
6$$!  
0&ꢃꢉ  
0%ꢎ  
0%ꢃꢈ  
0%ꢃꢁ  
0%ꢃꢆ  
0"ꢃꢈ  
0"ꢃꢃ  
0"ꢃꢉ  
0"ꢃꢆ  
0!  
0!ꢎ  
0"ꢃ  
0"ꢈ  
0&ꢃꢃ  
AIꢃꢅꢉꢒꢎC  
1. The above figure shows the package top view.  
50/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Figure 18. STM32F42x TFBGA216 ballout  
ꢃꢈ  
ꢃꢃ  
ꢃꢁ  
ꢃꢍ  
ꢃꢉ  
ꢃꢆ  
0%ꢉ  
0%ꢍ  
0%ꢁ  
0'ꢃꢉ  
0%ꢃ  
0%ꢈ  
0"ꢅ  
0"ꢆ  
0"ꢉ  
0"ꢍ  
0$ꢎ  
0#ꢃꢁ  
0!ꢃꢆ  
0!ꢃꢉ 0!ꢃꢍ  
!
"
0'ꢃꢆ 0'ꢃꢃ 0*ꢃꢍ  
0'ꢃꢁ 0'ꢃꢈ 0*ꢃꢉ  
0%ꢆ  
6"!4  
0#ꢃꢍ  
0#ꢃꢉ  
0#ꢃꢆ  
0(ꢈ  
0%ꢄ  
0)ꢅ  
0'ꢃꢍ  
0)ꢉ  
0"ꢒ  
0+ꢎ  
0)ꢎ  
0"ꢎ  
0+ꢄ  
0)ꢃꢈ  
0"ꢄ  
0+ꢆ  
0)ꢄ  
0*ꢃꢁ  
0$ꢆ  
0$ꢄ  
0$ꢍ  
0$ꢉ  
0$ꢈ  
0$ꢃ  
0$ꢁ  
0#ꢃꢃ 0#ꢃꢈ 0!ꢃꢁ  
0)ꢍ  
0)ꢁ  
0)ꢃ  
0!ꢃꢃ  
0!ꢃꢈ  
0!  
#
$
%
&
0+ꢉ  
0+ꢍ  
0'ꢒ  
6$$  
0&ꢈ  
0&ꢃ  
633  
0&ꢁ  
0&ꢍ  
0&ꢉ  
0)ꢆ  
0*ꢃꢆ  
0(ꢃꢆ  
0(ꢃꢉ  
0+ꢁ  
0$2?  
/.  
"//4ꢈ 6$$  
6$$  
0)ꢃꢁ  
0)ꢃꢃ  
0)ꢃꢍ  
0)ꢃꢉ  
0(ꢆ  
0)ꢒ  
6$$ 6#!0ꢁ 0(ꢃꢍ  
0)ꢈ  
633  
633  
633  
6$$  
0)ꢃꢆ  
0(ꢉ  
0(ꢍ  
6$$  
6$$  
6$$  
6$$  
6$$  
633  
633  
633  
633  
633  
633  
633  
633  
633  
6$$  
6$$  
6$$  
6$$  
6$$  
0+ꢃ  
0*ꢃꢃ  
0*ꢅ  
0#ꢒ  
0#ꢅ  
0'ꢅ  
0'ꢎ  
0!  
'
0+ꢈ  
0#ꢎ  
0#ꢄ  
0'ꢄ  
(
*
0(ꢃ  
0*ꢃꢈ  
0*ꢒ  
.234  
0*ꢎ  
+
,
0&ꢎ  
0&ꢄ  
0&ꢒ  
0&ꢆ  
0&ꢅ  
0(ꢁ  
0#ꢍ  
633  
633  
0*ꢄ  
0$ꢃꢆ 0"ꢃꢍ 0$ꢃꢈ  
633  
6$$  
633  
6$$  
633  
6$$  
"90!33ꢑ  
2%'  
0&ꢃꢈ  
6$$ 6#!0ꢃ 0$ꢃꢉ  
0"ꢃꢁ  
0$ꢒ  
0$ꢅ  
633!  
0#ꢈ  
0!  
0#ꢃ  
0!  
0!  
0#ꢁ  
0!  
0!  
0"ꢁ  
0#ꢉ  
0#ꢆ  
0&ꢃꢁ 0'ꢃ  
0&ꢃꢍ 0'ꢈ  
0&ꢃꢉ 0*ꢁ  
0&ꢃꢆ  
0*ꢍ  
0*ꢉ  
0%ꢅ  
0%ꢒ  
0$ꢃꢁ 0$ꢃꢍ  
0'ꢍ  
0'ꢉ  
0'ꢁ  
0(ꢎ  
0(ꢄ  
0*ꢆ  
0(ꢒ  
0(ꢅ  
0(ꢃꢁ  
0(ꢃꢃ  
0(ꢃꢈ  
-
.
62%&ꢑ  
0$ꢃꢃ  
0'ꢆ  
0
2
62%&ꢓ 0!  
0&ꢃꢃ  
0%ꢃꢃ 0%ꢃꢉ  
0"ꢃꢈ  
6$$!  
0!  
0!  
0"ꢃ  
0"ꢈ  
0*ꢈ  
0*ꢃ  
0%ꢎ  
0%ꢃꢈ 0%ꢃꢁ 0%ꢃꢆ  
0%ꢃꢍ  
0"ꢃꢃ 0"ꢃꢉ 0"ꢃꢆ  
-3ꢍꢈꢉꢁꢍ6ꢁ  
1. The above figure shows the package top view.  
DocID024030 Rev 9  
51/238  
84  
 
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 9. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TTa  
B
Input / output pin  
5 V tolerant I/O  
3.3 V tolerant I/O directly connected to ADC  
Dedicated BOOT0 pin  
I/O structure  
Notes  
RST  
Bidirectional reset pin with weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions  
Pin number  
Pin name  
Additional  
functions  
(functionafter  
Alternate functions  
reset)(1)  
TRACECLK,  
SPI4_SCK,  
1
1
B2  
A2  
1
D8  
1
A3  
PE2  
I/O FT  
-
SAI1_MCLK_A,  
ETH_MII_TXD3,  
FMC_A23, EVENTOUT  
-
TRACED0,  
SAI1_SD_B, FMC_A19,  
EVENTOUT  
2
3
2
3
C1  
C2  
A1  
B1  
2
3
C10  
B11  
2
3
A2  
A1  
PE3  
PE4  
I/O FT  
I/O FT  
-
-
-
-
TRACED1, SPI4_NSS,  
SAI1_FS_A, FMC_A20,  
DCMI_D4, LCD_B0,  
EVENTOUT  
52/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TRACED2, TIM9_CH1,  
SPI4_MISO,  
4
5
4
5
D1  
D2  
B2  
B3  
4
5
D9  
E8  
4
5
B1  
B2  
PE5  
PE6  
I/O FT  
I/O FT  
-
-
SAI1_SCK_A,  
FMC_A21, DCMI_D6,  
LCD_G0, EVENTOUT  
-
-
TRACED3, TIM9_CH2,  
SPI4_MOSI,  
SAI1_SD_A, FMC_A22,  
DCMI_D7, LCD_G1,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G6  
F5  
C1  
VSS  
VDD  
VBAT  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
6
6
E5  
C1  
6
C11  
6
-
(3)  
(4)  
NC  
-
-
D2  
D1  
7
8
-
7
8
C2  
D1  
PI8  
I/O FT  
I/O FT  
EVENTOUT  
EVENTOUT  
TAMP_2  
TAMP_1  
(2)  
(3)  
(4)  
7
7
E4  
E1  
D10  
PC13  
PC14-  
OSC32_IN  
(3)  
(4)  
OSC32_IN  
8
8
E1  
9
D11  
9
E1  
I/O FT  
I/O FT  
EVENTOUT  
(5)  
(PC14)  
PC15-  
OSC32_OUT  
(3)  
(4)  
OSC32_  
OUT(5)  
9
-
9
-
F1  
-
F1  
-
10 E11 10  
F1  
G5  
E4  
EVENTOUT  
-
(PC15)  
-
-
-
-
VDD  
S
-
-
-
-
-
CAN1_RX, FMC_D30,  
LCD_VSYNC,  
-
-
E2  
D3  
11  
11  
PI9  
I/O FT  
EVENTOUT  
ETH_MII_RX_ER,  
FMC_D31,  
LCD_HSYNC,  
EVENTOUT  
-
-
-
-
E3  
E3  
E4  
12  
13  
-
-
12 D5  
PI10  
PI11  
I/O FT  
I/O FT  
-
-
-
-
NC  
OTG_HS_ULPI_DIR,  
EVENTOUT  
13  
F3  
(2)  
-
-
-
-
F6  
F4  
F2  
F3  
14 E7 14  
15 E10 15  
F2  
F4  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DocID024030 Rev 9  
53/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
I2C2_SDA, FMC_A0,  
-
-
-
-
-
10  
11  
F2  
F3  
E2  
H3  
H2  
-
16 F11 16 D2  
PF0  
PF1  
PF2  
PI12  
PI13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
EVENTOUT  
I2C2_SCL, FMC_A1,  
17 E9 17 E2  
18 F10 18 G2  
-
EVENTOUT  
I2C2_SMBA, FMC_A2,  
12 G5  
-
EVENTOUT  
LCD_HSYNC,  
EVENTOUT  
-
-
-
-
19 E3  
-
LCD_VSYNC,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
20 G3  
21 H3  
-
-
-
-
PI14  
PF3  
I/O FT  
I/O FT  
LCD_CLK, EVENTOUT  
-
(5)  
(5)  
13 G4  
14 G3  
J2  
19 G11 22 H2  
20 F9 23 J2  
21 F8 24 K3  
FMC_A3, EVENTOUT ADC3_IN9  
ADC3_  
FMC_A4, EVENTOUT  
IN14  
-
-
J3  
PF4  
PF5  
I/O FT  
I/O FT  
ADC3_  
FMC_A5, EVENTOUT  
IN15  
(5)  
15 H3  
K3  
10 16 G7  
11 17 G8  
G2 22 H7 25 H6  
G3 23 26 H5  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
-
TIM10_CH1,  
SPI5_NSS,  
NC  
SAI1_SD_B,  
UART7_Rx,  
FMC_NIORD,  
EVENTOUT  
(5)  
-
18  
K2  
24 G10 27 K2  
PF6  
I/O FT  
ADC3_IN4  
(2)  
TIM11_CH1,  
SPI5_SCK,  
NC  
SAI1_MCLK_B,  
UART7_Tx,  
FMC_NREG,  
EVENTOUT  
(5)  
(5)  
-
-
19  
20  
K1  
L3  
25 F7 28 K1  
PF7  
PF8  
I/O FT  
ADC3_IN5  
ADC3_IN6  
(2)  
SPI5_MISO,  
SAI1_SCK_B,  
TIM13_CH1,  
FMC_NIOWR,  
EVENTOUT  
NC  
26 H11 29  
L3  
I/O FT  
(2)  
54/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
SPI5_MOSI,  
NC  
SAI1_FS_B,  
TIM14_CH1, FMC_CD,  
(5)  
(5)  
-
-
21  
L2  
L1  
27 G8 30  
L2  
L1  
PF9  
I/O FT  
ADC3_IN7  
(2)  
EVENTOUT  
FMC_INTR,  
DCMI_D11, LCD_DE, ADC3_IN8  
EVENTOUT  
22 H1  
28 G9 31  
PF10  
I/O FT  
I/O FT  
I/O FT  
PH0-OSC_IN  
(PH0)  
12 23 G2  
G1 29 J11 32 G1  
-
-
EVENTOUT  
EVENTOUT  
-
OSC_IN(5)  
PH1-  
OSC_OUT  
OSC_OUT  
13 24 G1  
14 25 H2  
15 26 G6  
16 27 H5  
H1  
J1  
30 H10 33 H1  
(5)  
(PH1)  
RS  
31 H9 34  
J1  
NRST  
I/O  
T
-
-
OTG_HS_ULPI_STP,  
FMC_SDNWE,  
EVENTOUT  
ADC123_  
IN10  
(5)  
M2 32 H8 35 M2  
M3 33 K11 36 M3  
PC0  
PC1  
I/O FT  
I/O FT  
ETH_MDC,  
EVENTOUT  
ADC123_  
IN11  
(5)  
(5)  
SPI2_MISO,  
I2S2ext_SD,  
OTG_HS_ULPI_DIR,  
ETH_MII_TXD2,  
FMC_SDNE0,  
EVENTOUT  
ADC123_  
IN12  
17 28 H6  
M4 34 J10 37 M4  
PC2  
PC3  
I/O FT  
SPI2_MOSI/I2S2_SD,  
OTG_HS_ULPI_NXT,  
ETH_MII_TX_CLK,  
FMC_SDCKE0,  
ADC123_  
IN13  
(5)  
18 29 H7  
M5 35 J9 38  
L4  
I/O FT  
EVENTOUT  
19 30  
-
-
-
36 G7 39  
J5  
J6  
VDD  
VSS  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
20 31  
J1  
J2  
J3  
M1 37 K10 40 M1  
VSSA  
-
-
N1  
P1  
-
-
-
N1  
VREF  
21 32  
38 L11 41 P1  
VREF+  
DocID024030 Rev 9  
55/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
22 33  
23 34  
J4  
J5  
R1  
N3  
39 L10 42 R1  
VDDA  
S
-
-
-
-
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS,  
ADC123_  
PA0-WKUP  
(PA0)  
(6)  
40 K9 43 N3  
I/O FT  
IN0/WKUP  
UART4_TX,  
(5)  
ETH_MII_CRS,  
EVENTOUT  
TIM2_CH2, TIM5_CH2,  
USART2_RTS,  
UART4_RX,  
ADC123_  
IN1  
(5)  
(5)  
24 35  
K1  
K2  
N2  
41 K8 44 N2  
PA1  
PA2  
I/O FT  
ETH_MII_RX_CLK/ETH  
_RMII_REF_CLK,  
EVENTOUT  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1,  
ADC123_  
IN2  
25 36  
P2  
F4  
42 L9 45 P2  
I/O FT  
USART2_TX,  
ETH_MDIO,  
EVENTOUT  
ETH_MII_CRS,  
FMC_SDCKE0,  
LCD_R0, EVENTOUT  
-
-
-
-
-
-
-
-
L2  
L1  
M2  
L3  
43  
-
-
-
-
46 K4  
PH2  
PH3  
PH4  
PH5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
ETH_MII_COL,  
FMC_SDNE0,LCD_R1,  
EVENTOUT  
G4 44  
47  
J4  
I2C2_SCL,  
OTG_HS_ULPI_NXT,  
EVENTOUT  
H4  
J4  
45  
46  
48 H4  
I2C2_SDA, SPI5_NSS,  
FMC_SDNWE,  
49  
J3  
EVENTOUT  
TIM2_CH4, TIM5_CH4,  
TIM9_CH2,  
USART2_RX,  
OTG_HS_ULPI_D0,  
ETH_MII_COL,  
ADC123_  
IN3  
(5)  
26 37  
27 38  
K3  
-
R2  
-
47 M11 50 R2  
PA3  
VSS  
I/O FT  
LCD_B5, EVENTOUT  
-
51 K6  
S
-
-
-
-
56/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
BYPASS_  
REG  
-
-
M1  
L4  
48 N11  
-
L5  
I
FT  
-
-
-
-
-
-
-
28 39 J11 K4  
49 J8 52 K5  
VDD  
S
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
ADC12_  
IN4 /DAC_  
OUT1  
(5)  
(5)  
(5)  
29 40 N2  
30 41 M3  
31 42 N3  
N4  
P4  
P3  
50 M10 53 N4  
PA4  
I/O TTa  
I/O TTa  
I/O FT  
OTG_HS_SOF,  
DCMI_HSYNC,  
LCD_VSYNC,  
EVENTOUT  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK,  
OTG_HS_ULPI_CK,  
EVENTOUT  
ADC12_  
IN5/DAC_  
OUT2  
51 M9 54 P4  
PA5  
PA6  
TIM1_BKIN,  
TIM3_CH1,  
TIM8_BKIN,  
SPI1_MISO,  
TIM13_CH1,  
ADC12_  
IN6  
52 N10 55 P3  
DCMI_PIXCLK,  
LCD_G2, EVENTOUT  
TIM1_CH1N,  
TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI,  
TIM14_CH1,  
ETH_MII_RX_DV/ETH_  
RMII_CRS_DV,  
EVENTOUT  
ADC12_  
IN7  
(5)  
32 43  
K4  
L4  
R3  
53 L8 56 R3  
PA7  
I/O FT  
ETH_MII_RXD0/ETH_  
RMII_RXD0,  
ADC12_  
IN14  
(5)  
(5)  
33 44  
N5  
P5  
54 M8 57 N5  
55 N9 58 P5  
PC4  
PC5  
I/O FT  
I/O FT  
EVENTOUT  
ETH_MII_RXD1/ETH_  
RMII_RXD1,  
ADC12_  
IN15  
34 45 M4  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
J7 59  
60  
L7  
L6  
VDD  
VSS  
S
S
-
-
-
-
-
-
-
-
-
DocID024030 Rev 9  
57/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TIM1_CH2N,  
TIM3_CH3,  
TIM8_CH2N, LCD_R3,  
OTG_HS_ULPI_D1,  
ETH_MII_RXD2,  
EVENTOUT  
ADC12_  
IN8  
(5)  
35 46 N4  
R5  
R4  
56 N8 61 R5  
PB0  
PB1  
I/O FT  
TIM1_CH3N,  
TIM3_CH4,  
TIM8_CH3N, LCD_R6,  
OTG_HS_ULPI_D2,  
ETH_MII_RXD3,  
EVENTOUT  
ADC12_  
IN9  
(5)  
36 47  
37 48  
K5  
L5  
57 K7 62 R4  
I/O FT  
I/O FT  
PB2-BOOT1  
(PB2)  
M6 58 L7 63 M5  
-
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
64 G4  
65 R6  
66 R7  
67 P7  
68 N8  
69 M9  
PI15  
PJ0  
PJ1  
PJ2  
PJ3  
PJ4  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
LCD_R0, EVENTOUT  
LCD_R1, EVENTOUT  
LCD_R2, EVENTOUT  
LCD_R3, EVENTOUT  
LCD_R4, EVENTOUT  
LCD_R5, EVENTOUT  
-
-
-
-
-
-
SPI5_MOSI,  
FMC_SDNRAS,  
DCMI_D12,  
-
49 M5  
R6  
P6  
59 M7 70 P8  
60 N7 71 M6  
PF11  
I/O FT  
-
-
EVENTOUT  
-
-
-
-
-
-
-
-
50 N5  
51 G9  
PF12  
VSS  
I/O FT  
S
-
-
-
-
-
-
-
-
FMC_A6, EVENTOUT  
-
-
-
-
-
-
-
-
-
M8 61  
62  
-
-
72 K7  
73 L8  
52 D10 N8  
VDD  
S
-
53 M6  
N6  
R7  
P7  
N7  
63 K6 74 N6  
64 L6 75 P6  
65 M6 76 M8  
66 N6 77 N7  
PF13  
PF14  
PF15  
PG0  
PG1  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FMC_A7, EVENTOUT  
FMC_A8, EVENTOUT  
FMC_A9, EVENTOUT  
FMC_A10, EVENTOUT  
FMC_A11, EVENTOUT  
54  
55  
K7  
L7  
56 N6  
57 M7 M7 67 K5 78 M7  
58/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TIM1_ETR,UART7_Rx,  
FMC_D4, EVENTOUT  
38 58 N7  
R8  
P8  
P9  
68 L5 79 R8  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH1N,  
UART7_Tx, FMC_D5,  
EVENTOUT  
39 59  
40 60  
J8  
69 M5 80 N9  
70 N5 81 P9  
-
-
TIM1_CH1, FMC_D6,  
EVENTOUT  
K8  
J6  
-
-
61  
M9 71 H3 82 K8  
72 J5 83 L9  
VSS  
VDD  
S
S
-
-
-
-
62 G10 N9  
L8 R9  
TIM1_CH2N, FMC_D7,  
EVENTOUT  
41 63  
73 J4 84 R9  
PE10  
PE11  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH2, SPI4_NSS,  
FMC_D8, LCD_G3,  
EVENTOUT  
42 64 M8 P10 74 K4 85 P10  
43 65 N8 R10 75 L4 86 R10  
44 66 H9 N11 76 N4 87 R12  
TIM1_CH3N,  
SPI4_SCK, FMC_D9,  
LCD_B4, EVENTOUT  
PE12  
PE13  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH3,  
SPI4_MISO,FMC_D10,  
LCD_DE, EVENTOUT  
TIM1_CH4,  
45 67  
46 68  
J9 P11 77 M4 88 P11  
K9 R11 78 L3 89 R11  
PE14  
PE15  
I/O FT  
I/O FT  
-
-
SPI4_MOSI, FMC_D11,  
LCD_CLK, EVENTOUT  
-
-
TIM1_BKIN, FMC_D12,  
LCD_R7, EVENTOUT  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
USART3_TX,  
OTG_HS_ULPI_D3,  
ETH_MII_RX_ER,  
LCD_G4, EVENTOUT  
47 69  
L9 R12 79 M3 90 P12  
PB10  
PB11  
I/O FT  
-
-
-
TIM2_CH4, I2C2_SDA,  
USART3_RX,  
OTG_HS_ULPI_D4,  
ETH_MII_TX_EN/ETH_  
RMII_TX_EN, LCD_G5,  
EVENTOUT  
48 70 M9 R13 80 N3 91 R13  
I/O FT  
-
DocID024030 Rev 9  
59/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
49 71 N9 M10 81 N2 92 L11  
VCAP_1  
VSS  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H2 93 K9  
-
50 72  
F8 N10 82 J6 94 L10  
VDD  
S
-
-
-
-
-
-
-
-
95 M14  
96 P13  
PJ5  
I/O  
LCD_R6, EVENTOUT  
I2C2_SMBA,  
SPI5_SCK,  
TIM12_CH1,  
ETH_MII_RXD2,  
FMC_SDNE1,  
-
-
N10 M11 83  
PH6  
I/O FT  
-
-
DCMI_D8, EVENTOUT  
I2C3_SCL,SPI5_MISO,  
ETH_MII_RXD3,  
FMC_SDCKE1,  
DCMI_D9, EVENTOUT  
-
-
-
-
-
-
M10 N12 84  
L10 M12 85  
K10 M13 86  
-
-
-
97 N13  
98 P14  
99 N14  
PH7  
PH8  
PH9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
I2C3_SDA, FMC_D16,  
DCMI_HSYNC,  
LCD_R2, EVENTOUT  
I2C3_SMBA,  
TIM12_CH2,  
FMC_D17, DCMI_D0,  
LCD_R3, EVENTOUT  
TIM5_CH1, FMC_D18,  
DCMI_D1, LCD_R4,  
EVENTOUT  
-
-
-
-
-
-
N11 L13 87  
M11 L12 88  
L11 K12 89  
-
-
-
100 P15  
101 N15  
102 M15  
PH10  
PH11  
PH12  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM5_CH2, FMC_D19,  
DCMI_D2, LCD_R5,  
EVENTOUT  
TIM5_CH3, FMC_D20,  
DCMI_D3, LCD_R6,  
EVENTOUT  
-
-
-
-
E7 H12 90  
H8 J12 91  
-
-
-
K10  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
103 K11  
60/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TIM1_BKIN,  
I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
USART3_CK,  
CAN2_RX,  
OTG_HS_ULPI_D5,  
51 73 N12 P12 92 M2 104 L13  
PB12  
I/O FT  
-
-
ETH_MII_TXD0/ETH_R  
MII_TXD0,  
OTG_HS_ID,  
EVENTOUT  
TIM1_CH1N,  
SPI2_SCK/I2S2_CK,  
USART3_CTS,  
CAN2_TX,  
OTG_HS_ULPI_D6,  
OTG_HS_  
VBUS  
52 74 M12 P13 93 N1 105 K14  
53 75 M13 R14 94 K3 106 R14  
54 76 L13 R15 95 J3 107 R15  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
-
-
-
ETH_MII_TXD1/ETH_R  
MII_TXD1, EVENTOUT  
TIM1_CH2N,  
TIM8_CH2N,  
SPI2_MISO,  
I2S2ext_SD,  
USART3_RTS,  
TIM12_CH1,  
OTG_HS_DM,  
EVENTOUT  
-
RTC_REFIN,  
TIM1_CH3N,  
TIM8_CH3N,  
SPI2_MOSI/I2S2_SD,  
TIM12_CH2,  
-
OTG_HS_DP,  
EVENTOUT  
USART3_TX,  
FMC_D13, EVENTOUT  
55 77 L12 P15 96 L2 108 L15  
56 78 K13 P14 97 M1 109 L14  
PD8  
PD9  
I/O FT  
I/O FT  
-
-
-
-
USART3_RX,  
FMC_D14, EVENTOUT  
USART3_CK,  
FMC_D15, LCD_B3,  
EVENTOUT  
57 79 K11 N15 98 H4 110 K15  
PD10  
I/O FT  
-
-
DocID024030 Rev 9  
61/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
USART3_CTS,  
FMC_A16, EVENTOUT  
58 80 H10 N14 99 K2 111 N10  
59 81 J13 N13 100 H6 112 M10  
60 82 K12 M15 101 H5 113 M11  
PD11  
PD12  
PD13  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM4_CH1,  
USART3_RTS,  
FMC_A17, EVENTOUT  
-
-
TIM4_CH2, FMC_A18,  
EVENTOUT  
-
-
83  
84  
-
-
102  
-
114 J10  
VSS  
VDD  
S
S
-
-
-
-
-
-
F7 J13 103 L1 115 J11  
TIM4_CH3, FMC_D0,  
EVENTOUT  
61 85 H11 M14 104 J2 116 L12  
62 86 J12 L14 105 K1 117 K13  
PD14  
PD15  
I/O FT  
I/O FT  
-
-
-
-
TIM4_CH4, FMC_D1,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
118 K12  
119 J12  
120 H12  
121 J13  
122 H13  
123 G12  
124 H11  
125 H10  
126 G13  
127 F12  
128 F13  
PJ6  
PJ7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R7, EVENTOUT  
LCD_G0, EVENTOUT  
LCD_G1, EVENTOUT  
LCD_G2, EVENTOUT  
LCD_G3, EVENTOUT  
LCD_G4, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
PJ8  
PJ9  
PJ10  
PJ11  
VDD  
VSS  
PK0  
PK1  
PK2  
PG2  
-
LCD_G5, EVENTOUT  
LCD_G6, EVENTOUT  
LCD_G7, EVENTOUT  
FMC_A12, EVENTOUT  
87 H13 L15 106 J1 129 M13  
NC  
-
-
-
88  
K15 107 G3 130 M12  
PG3  
PG4  
PG5  
I/O FT  
I/O FT  
I/O FT  
-
-
-
FMC_A13, EVENTOUT  
-
-
-
(2)  
FMC_A14/FMC_BA0,  
EVENTOUT  
89 H12 K14 108 G5 131 N12  
90 G13 K13 109 G6 132 N11  
FMC_A15/FMC_BA1,  
EVENTOUT  
62/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
FMC_INT2, DCMI_D12,  
LCD_R7, EVENTOUT  
-
-
91 G11 J15 110 G4 133 J15  
92 G12 J14 111 H1 134 J14  
PG6  
PG7  
I/O FT  
I/O FT  
-
-
-
USART6_CK,  
FMC_INT3, DCMI_D13,  
LCD_CLK, EVENTOUT  
-
-
SPI6_NSS,  
USART6_RTS,  
ETH_PPS_OUT,  
FMC_SDCLK,  
EVENTOUT  
-
93 F13 H14 112 G2 135 H14  
PG8  
I/O FT  
-
-
-
94  
95  
J7 G12 113 D2 136 G10  
E6 H13 114 G1 137 G11  
VSS  
VDD  
S
S
-
-
-
-
-
-
TIM3_CH1, TIM8_CH1,  
I2S2_MCK,  
USART6_TX,  
SDIO_D6, DCMI_D0,  
LCD_HSYNC,  
63 96  
F9 H15 115 F2 138 H15  
PC6  
PC7  
I/O FT  
-
-
-
-
EVENTOUT  
TIM3_CH2, TIM8_CH2,  
I2S3_MCK,  
64 97 F10 G15 116 F3 139 G15  
I/O FT  
USART6_RX,  
SDIO_D7, DCMI_D1,  
LCD_G6, EVENTOUT  
TIM3_CH3, TIM8_CH3,  
USART6_CK,  
SDIO_D0, DCMI_D2,  
EVENTOUT  
65 98 F11 G14 117 E4 140 G14  
66 99 F12 F14 118 E3 141 F14  
PC8  
PC9  
I/O FT  
I/O FT  
-
-
-
-
MCO2, TIM3_CH4,  
TIM8_CH4, I2C3_SDA,  
I2S_CKIN, SDIO_D1,  
DCMI_D3, EVENTOUT  
MCO1, TIM1_CH1,  
I2C3_SCL,  
67 100 E13 F15 119 F1 142 F15  
PA8  
I/O FT  
-
USART1_CK,  
-
OTG_FS_SOF,  
LCD_R6, EVENTOUT  
DocID024030 Rev 9  
63/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TIM1_CH2,  
I2C3_SMBA,  
USART1_TX,  
DCMI_D0, EVENTOUT  
OTG_FS_  
VBUS  
68 101 E8 E15 120 E2 143 E15  
69 102 E9 D15 121 D5 144 D15  
PA9  
I/O FT  
I/O FT  
-
-
TIM1_CH3,  
USART1_RX,  
OTG_FS_ID,  
PA10  
-
-
DCMI_D1, EVENTOUT  
TIM1_CH4,  
USART1_CTS,  
CAN1_RX, LCD_R4,  
OTG_FS_DM,  
EVENTOUT  
70 103 E10 C15 122 D4 145 C15  
PA11  
I/O FT  
-
TIM1_ETR,  
USART1_RTS,  
CAN1_TX, LCD_R5,  
OTG_FS_DP,  
71 104 E11 B15 123 E1 146 B15  
72 105 E12 A15 124 D3 147 A15  
PA12  
PA13  
I/O FT  
I/O FT  
-
-
-
-
EVENTOUT  
JTMS-SWDIO,  
EVENTOUT  
(JTMS-  
SWDIO)  
73 106 D12 F13 125 D1 148 E11  
74 107 J10 F12 126 D2 149 F10  
75 108 H4 G13 127 C1 150 F11  
VCAP_2  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
VDD  
TIM8_CH1N,  
-
-
-
-
-
-
D13 E12 128  
C13 E13 129  
C12 D13 130  
-
-
-
151 E12  
152 E13  
153 D13  
PH13  
PH14  
PH15  
I/O FT  
I/O FT  
I/O FT  
-
-
-
CAN1_TX, FMC_D21,  
LCD_G2, EVENTOUT  
-
-
-
TIM8_CH2N,  
FMC_D22, DCMI_D4,  
LCD_G3, EVENTOUT  
TIM8_CH3N,  
FMC_D23, DCMI_D11,  
LCD_G4, EVENTOUT  
TIM5_CH4,  
SPI2_NSS/I2S2_WS(7)  
FMC_D24, DCMI_D13,  
LCD_G5, EVENTOUT  
,
-
-
B13 E14 131  
-
154 E14  
PI0  
I/O FT  
-
-
64/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
SPI2_SCK/I2S2_CK(7)  
FMC_D25, DCMI_D8,  
LCD_G6, EVENTOUT  
,
-
-
-
-
C11 D14 132  
B12 C14 133  
-
-
155 D14  
156 C14  
PI1  
PI2  
I/O FT  
I/O FT  
-
-
-
-
TIM8_CH4,  
SPI2_MISO,  
I2S2ext_SD,FMC_D26,  
DCMI_D9, LCD_G7,  
EVENTOUT  
TIM8_ETR,  
SPI2_MOSI/I2S2_SD,  
FMC_D27, DCMI_D10,  
EVENTOUT  
-
-
A12 C13 134  
-
157 C13  
PI3  
I/O FT  
-
-
-
-
-
-
D11 D9 135 F5  
-
F9  
VSS  
VDD  
S
S
-
-
-
-
-
-
D3 C9 136 A1 158 E10  
PA14  
JTCK-SWCLK/  
EVENTOUT  
76 109 A11 A14 137 B1 159 A14  
77 110 B11 A13 138 C2 160 A13  
I/O FT  
-
-
(JTCK-  
SWCLK)  
JTDI,  
TIM2_CH1/TIM2_ETR,  
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
EVENTOUT  
PA15  
I/O FT  
-
-
(JTDI)  
SPI3_SCK/I2S3_CK,  
USART3_TX,  
78 111 C10 B14 139 A2 161 B14  
PC10  
PC11  
I/O FT  
I/O FT  
-
-
UART4_TX, SDIO_D2,  
DCMI_D8, LCD_R2,  
EVENTOUT  
-
-
I2S3ext_SD,  
SPI3_MISO,  
USART3_RX,  
79 112 B10 B13 140 B2 162 B13  
UART4_RX, SDIO_D3,  
DCMI_D4, EVENTOUT  
SPI3_MOSI/I2S3_SD,  
USART3_CK,  
UART5_TX, SDIO_CK,  
DCMI_D9, EVENTOUT  
80 113 A10 A12 141 C3 163 A12  
81 114 D9 B12 142 B3 164 B12  
PC12  
PD0  
I/O FT  
I/O FT  
-
-
-
-
CAN1_RX, FMC_D2,  
EVENTOUT  
DocID024030 Rev 9  
65/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
CAN1_TX, FMC_D3,  
82 115 C9 C12 143 C4 165 C12  
83 116 B9 D12 144 A3 166 D12  
PD1  
PD2  
I/O FT  
I/O FT  
-
-
-
EVENTOUT  
TIM3_ETR,  
UART5_RX,  
SDIO_CMD,  
DCMI_D11,  
EVENTOUT  
-
-
SPI2_SCK/I2S2_CK,  
USART2_CTS,  
FMC_CLK, DCMI_D5,  
LCD_G7, EVENTOUT  
84 117 A9 D11 145 B4 167 C11  
PD3  
I/O FT  
-
USART2_RTS,  
FMC_NOE,  
EVENTOUT  
85 118 D8 D10 146 B5 168 D11  
86 119 C8 C11 147 A4 169 C10  
PD4  
PD5  
I/O FT  
I/O FT  
-
-
-
-
USART2_TX,  
FMC_NWE,  
EVENTOUT  
-
-
120  
-
D8 148  
-
170 F8  
VSS  
VDD  
S
S
-
-
-
-
-
-
121 D6  
C8 149 C5 171 E9  
SPI3_MOSI/I2S3_SD,  
SAI1_SD_A,  
USART2_RX,  
FMC_NWAIT,  
87 122 B8 B11 150 F4 172 B11  
PD6  
I/O FT  
-
-
DCMI_D10, LCD_B2,  
EVENTOUT  
USART2_CK,  
FMC_NE1/FMC_NCE2,  
EVENTOUT  
88 123 A8 A11 151 A5 173 A11  
PD7  
I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
174 B10  
175 B9  
176 C9  
177 D10  
PJ12  
PJ13  
PJ14  
PJ15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
LCD_B0, EVENTOUT  
LCD_B1, EVENTOUT  
LCD_B2, EVENTOUT  
LCD_B3, EVENTOUT  
-
-
-
-
USART6_RX,  
NC  
FMC_NE2/FMC_NCE3,  
-
124  
C10 152 E5 178 D9  
PG9  
I/O FT  
-
-
(2)  
DCMI_VSYNC(8)  
EVENTOUT  
,
66/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
LCD_G3,  
FMC_NCE4_1/FMC_N  
E3, DCMI_D2,  
LCD_B2, EVENTOUT  
-
-
-
-
125 C7 B10 153 C6 179 C8  
PG10  
PG11  
PG12  
PG13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
ETH_MII_TX_EN/ETH_  
RMII_TX_EN,  
FMC_NCE4_2,  
DCMI_D3, LCD_B3,  
EVENTOUT  
126 B7  
B9 154 B6 180 B8  
B8 155 A6 181 C7  
A8 156 D6 182 B3  
-
-
-
SPI6_MISO,  
USART6_RTS,  
LCD_B4, FMC_NE4,  
LCD_B1, EVENTOUT  
127 A7  
SPI6_SCK,  
USART6_CTS,  
ETH_MII_TXD0/ETH_R  
MII_TXD0, FMC_A24,  
EVENTOUT  
NC  
128  
129  
(2)  
SPI6_MOSI,  
USART6_TX,  
ETH_MII_TXD1/ETH_R  
MII_TXD1, FMC_A25,  
EVENTOUT  
NC  
-
A7 157 F6 183 A4  
PG14  
I/O FT  
-
-
(2)  
-
-
-
-
-
-
-
130 D7  
131 L6  
D7 158  
-
184 F7  
VSS  
VDD  
PK3  
PK4  
PK5  
PK6  
PK7  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C7 159 E6 185 E8  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
186 D8  
187 D7  
188 C6  
189 C5  
190 C4  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
LCD_B4, EVENTOUT  
LCD_B5, EVENTOUT  
LCD_B6, EVENTOUT  
LCD_B7, EVENTOUT  
LCD_DE, EVENTOUT  
USART6_CTS,  
FMC_SDNCAS,  
DCMI_D13,  
-
132 C6  
B7 160 A7 191 B7  
PG15  
I/O FT  
-
-
EVENTOUT  
DocID024030 Rev 9  
67/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
JTDO/TRACESWO,  
TIM2_CH2, SPI1_SCK,  
SPI3_SCK/I2S3_CK,  
PB3  
89 133 B6 A10 161 B7 192 A10  
I/O FT  
I/O FT  
-
-
-
(JTDO/TRACE  
SWO)  
EVENTOUT  
NJTRST, TIM3_CH1,  
SPI1_MISO,  
PB4  
90 134 A6  
91 135 D5  
92 136 C5  
A9 162 C7 193 A9  
A6 163 C8 194 A8  
B6 164 A8 195 B6  
SPI3_MISO,  
I2S3ext_SD,  
EVENTOUT  
-
-
-
(NJTRST)  
TIM3_CH2,  
I2C1_SMBA,  
SPI1_MOSI,  
SPI3_MOSI/I2S3_SD,  
CAN2_RX,  
OTG_HS_ULPI_D7,  
ETH_PPS_OUT,  
FMC_SDCKE1,  
DCMI_D10,  
PB5  
PB6  
I/O FT  
-
-
EVENTOUT  
TIM4_CH1, I2C1_SCL,  
USART1_TX,  
CAN2_TX,  
FMC_SDNE1,  
DCMI_D5, EVENTOUT  
I/O FT  
I/O FT  
TIM4_CH2, I2C1_SDA,  
USART1_RX,FMC_NL,  
DCMI_VSYNC,  
93 137 B5  
94 138 A5  
B5 165 B8 196 B5  
D6 166 C9 197 E6  
PB7  
-
-
-
EVENTOUT  
BOOT0  
I
B
VPP  
TIM4_CH3,  
TIM10_CH1,  
I2C1_SCL, CAN1_RX,  
ETH_MII_TXD3,  
95 139 D4  
A5 167 A9 198 A7  
PB8  
I/O FT  
-
-
SDIO_D4, DCMI_D6,  
LCD_B6, EVENTOUT  
68/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pinouts and pin description  
Table 10. STM32F427xx and STM32F429xx pin and ball definitions (continued)  
Pin number  
Pin name  
(functionafter  
reset)(1)  
Additional  
Alternate functions  
functions  
TIM4_CH4,  
TIM11_CH1,  
I2C1_SDA,  
96 140 C4  
B4 168 B9 199 B4  
PB9  
I/O FT  
-
SPI2_NSS/I2S2_WS,  
CAN1_TX, SDIO_D5,  
DCMI_D7, LCD_B7,  
EVENTOUT  
-
TIM4_ETR,  
UART8_RX,  
FMC_NBL0, DCMI_D2,  
EVENTOUT  
97 141 B4  
98 142 A4  
A4 169 B10 200 A6  
A3 170 A10 201 A5  
PE0  
PE1  
I/O FT  
I/O FT  
-
-
-
-
UART8_Tx,  
FMC_NBL1, DCMI_D3,  
EVENTOUT  
99  
-
-
F5  
D5  
-
-
202 F6  
VSS  
PDR_ON  
VDD  
S
S
S
-
-
-
-
-
-
143 C3  
C6 171 A11 203 E5  
C5 172 D7 204 E7  
100 144 K6  
TIM8_BKIN,  
-
-
-
-
B3  
A3  
D4 173  
C4 174  
-
-
205 C3  
206 D3  
PI4  
PI5  
I/O FT  
I/O FT  
-
-
FMC_NBL2, DCMI_D5,  
LCD_B4, EVENTOUT  
-
-
TIM8_CH1,  
FMC_NBL3,  
DCMI_VSYNC,  
LCD_B5, EVENTOUT  
TIM8_CH2, FMC_D28,  
DCMI_D6, LCD_B6,  
EVENTOUT  
-
-
-
-
A2  
B1  
C3 175  
C2 176  
-
-
207 D6  
208 D4  
PI6  
PI7  
I/O FT  
I/O FT  
-
-
-
-
TIM8_CH3, FMC_D29,  
DCMI_D7, LCD_B7,  
EVENTOUT  
1. Function availability depends on the chosen device.  
2. NC (not-connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the  
output data register to avoid extra current consumption in low power modes.  
3. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current  
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
DocID024030 Rev 9  
69/238  
84  
Pinouts and pin description  
STM32F427xx STM32F429xx  
4. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after  
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC  
register description sections in the STM32F4xx reference manual, available from the STMicroelectronics website:  
www.st.com.  
5. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).  
6. If the device is delivered in an WLCSP143, UFBGA169, UFBGA176, LQFP176 or TFBGA216 package, and the  
BYPASS_REG pin is set to VDD (Regulator OFF/internal reset ON mode), then PA0 is used as an internal Reset (active low).  
7. PI0 and PI1 cannot be used for I2S2 full-duplex mode.  
8. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.  
70/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Pin name  
Pinouts and pin description  
Table 11. FMC pin definition  
NOR/PSRAM/ NOR/PSRAM  
CF  
NAND16  
SDRAM  
SRAM  
Mux  
PF0  
PF1  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A0  
A1  
A0  
A1  
PF2  
A2  
A2  
PF3  
A3  
A3  
PF4  
A4  
A4  
PF5  
A5  
A5  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PD11  
PD12  
PD13  
PE3  
A6  
A6  
A7  
A7  
A8  
A8  
A9  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
D0  
A10  
A11  
A12  
BA0  
BA1  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
CLE  
ALE  
PE4  
PE5  
PE6  
PE2  
PG13  
PG14  
PD14  
PD15  
PD0  
PD1  
PE7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D3  
D4  
PE8  
D5  
PE9  
D6  
PE10  
D7  
DocID024030 Rev 9  
71/238  
84  
Pinouts and pin description  
Pin name  
STM32F427xx STM32F429xx  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/ NOR/PSRAM  
CF  
NAND16  
SDRAM  
SRAM  
Mux  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
PD9  
PD10  
PH8  
PH9  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PI0  
D8  
D8  
DA8  
DA9  
D8  
D8  
D9  
D9  
D9  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
NE1  
NE2  
NE3  
DA10  
DA11  
DA12  
DA13  
DA14  
DA15  
D10  
D11  
D12  
D13  
D14  
D15  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
PI1  
PI2  
PI3  
PI6  
PI7  
PI9  
PI10  
PD7  
PG9  
PG10  
PG11  
PG12  
PD3  
PD4  
PD5  
PD6  
PB7  
NE1  
NE2  
NE3  
NCE2  
NCE3  
NCE4_1  
NCE4_2  
NE4  
CLK  
NE4  
CLK  
NOE  
NWE  
NOE  
NOE  
NOE  
NWE  
NWE  
NWE  
NWAIT  
NWAIT  
NL(NADV)  
NWAIT  
NL(NADV)  
NWAIT  
72/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Pin name  
Pinouts and pin description  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/ NOR/PSRAM  
CF  
NAND16  
SDRAM  
SRAM  
Mux  
PF6  
PF7  
PF8  
PF9  
PF10  
PG6  
PG7  
PE0  
PE1  
PI4  
NIORD  
NREG  
NIOWR  
CD  
INTR  
INT2  
INT3  
NBL0  
NBL1  
NBL2  
NBL3  
NBL0  
NBL1  
NBL0  
NBL1  
NBL2  
PI5  
NBL3  
PG8  
PC0  
PF11  
PG15  
PH2  
PH3  
PH6  
PH7  
PH5  
PC2  
PC3  
PB5  
PB6  
SDCLK  
SDNWE  
SDNRAS  
SDNCAS  
SDCKE0  
SDNE0  
SDNE1  
SDCKE1  
SDNWE  
SDNE0  
SDCKE0  
SDCKE1  
SDNE1  
DocID024030 Rev 9  
73/238  
84  
Table 12. STM32F427xx and STM32F429xx alternate function mapping  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
TIM2_  
CH1/TIM2  
_ETR  
TIM5_  
CH1  
TIM8_  
ETR  
USART2_  
CTS  
ETH_MII_  
CRS  
EVEN  
TOUT  
PA0  
PA1  
-
-
-
-
-
-
UART4_TX  
-
-
-
-
-
-
-
-
ETH_MII_  
RX_CLK/E  
TH_RMII_  
REF_CLK  
TIM2_  
CH2  
TIM5_  
CH2  
USART2_  
RTS  
EVEN  
TOUT  
-
-
-
UART4_RX  
-
-
-
TIM2_  
CH3  
TIM5_  
CH3  
TIM9_  
CH1  
USART2_  
TX  
ETH_  
MDIO  
EVEN  
TOUT  
PA2  
PA3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM2_  
CH4  
TIM5_  
CH4  
TIM9_  
CH2  
USART2_  
RX  
OTG_HS_ ETH_MII_  
EVEN  
TOUT  
LCD_B5  
ULPI_D0  
COL  
SPI3_  
NSS/  
I2S3_WS  
SPI1_  
NSS  
USART2_  
CK  
OTG_HS_  
SOF  
DCMI_  
HSYNC  
LCD_  
VSYNC TOUT  
EVEN  
PA4  
-
-
-
-
-
-
-
-
-
-
TIM2_  
CH1/TIM2  
_ETR  
TIM8_  
CH1N  
SPI1_  
SCK  
OTG_HS_  
ULPI_CK  
EVEN  
TOUT  
PA5  
PA6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port A  
TIM1_  
BKIN  
TIM3_  
CH1  
TIM8_  
BKIN  
SPI1_  
MISO  
DCMI_  
PIXCLK  
EVEN  
LCD_G2  
TIM13_CH1  
-
-
TOUT  
ETH_MII_  
RX_DV/  
ETH_RMII  
_CRS_DV  
TIM1_  
CH1N  
TIM3_  
CH2  
TIM8_  
CH1N  
SPI1_  
MOSI  
EVEN  
TOUT  
PA7  
-
-
-
-
-
TIM14_CH1  
-
-
-
TIM1_  
CH1  
I2C3_  
SCL  
USART1_  
CK  
OTG_FS_  
SOF  
EVEN  
LCD_R6  
PA8  
PA9  
MCO1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TOUT  
TIM1_  
CH2  
I2C3_  
SMBA  
USART1_  
TX  
DCMI_  
D0  
EVEN  
TOUT  
-
-
-
-
-
-
-
TIM1_  
CH3  
USART1_  
RX  
OTG_FS_  
ID  
DCMI_  
D1  
EVEN  
TOUT  
PA10  
PA11  
PA12  
-
-
-
-
-
TIM1_  
CH4  
USART1_  
CTS  
OTG_FS_  
DM  
EVEN  
LCD_R4  
CAN1_RX  
CAN1_TX  
-
-
TOUT  
TIM1_  
ETR  
USART1_  
RTS  
OTG_FS_  
DP  
EVEN  
LCD_R5  
TOUT  
 
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
SYS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
JTMS-  
PA13 SWDI  
O
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JTCK-  
Port A PA14 SWCL  
K
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
TIM2_  
CH1/TIM2  
_ETR  
SPI3_  
NSS/  
I2S3_WS  
SPI1_  
NSS  
EVEN  
TOUT  
PA15  
JTDI  
TIM1_  
CH2N  
TIM3_  
CH3  
TIM8_  
CH2N  
OTG_HS_ ETH_MII_  
ULPI_D1 RXD2  
EVEN  
TOUT  
PB0  
PB1  
PB2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_R3  
LCD_R6  
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH3N  
TIM3_  
CH4  
TIM8_  
CH3N  
OTG_HS_ ETH_MII_  
EVEN  
TOUT  
ULPI_D2  
RXD3  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
JTDO/  
TRAC  
ESWO  
SPI3_  
SCK/  
I2S3_CK  
TIM2_  
CH2  
SPI1_  
SCK  
EVEN  
TOUT  
PB3  
PB4  
PB5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NJTR  
ST  
TIM3_  
CH1  
SPI1_  
MISO  
SPI3_  
MISO  
I2S3ext_  
SD  
EVEN  
TOUT  
-
-
-
SPI3_  
MOSI/  
I2S3_SD  
TIM3_  
CH2  
I2C1_  
SMBA  
SPI1_  
MOSI  
OTG_HS_ ETH_PPS  
FMC_  
SDCKE1  
DCMI_  
D10  
EVEN  
TOUT  
-
-
CAN2_RX  
Port B  
ULPI_D7  
_OUT  
TIM4_  
CH1  
I2C1_  
SCL  
USART1_  
TX  
FMC_  
SDNE1  
DCMI_  
D5  
EVEN  
TOUT  
PB6  
PB7  
PB8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN2_TX  
-
-
-
-
-
-
-
TIM4_  
CH2  
I2C1_  
SDA  
USART1_  
RX  
DCMI_  
VSYNC  
EVEN  
TOUT  
FMC_NL  
SDIO_D4  
-
TIM4_  
CH3  
TIM10_ I2C1_  
CH1 SCL  
ETH_MII_  
TXD3  
DCMI_  
D6  
EVEN  
TOUT  
-
-
CAN1_RX  
LCD_B6  
SPI2_  
NSS/I2  
S2_WS  
TIM4_  
CH4  
TIM11_ I2C1_  
DCMI_  
D7  
EVEN  
TOUT  
PB9  
-
-
-
-
-
-
-
CAN1_TX  
-
-
-
SDIO_D5  
-
LCD_B7  
LCD_G4  
CH1  
-
SDA  
SPI2_  
SCK/I2  
S2_CK  
TIM2_  
CH3  
I2C2_  
SCL  
USART3_  
TX  
OTG_HS_ ETH_MII_  
ULPI_D3 RX_ER  
EVEN  
TOUT  
PB10  
-
-
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
ETH_MII_  
TX_EN/  
ULPI_D4 ETH_RMII  
_TX_EN  
TIM2_  
CH4  
I2C2_  
SDA  
USART3_  
RX  
OTG_HS_  
EVEN  
TOUT  
PB11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G5  
ETH_MII_  
OTG_HS_ TXD0/ETH OTG_HS_  
SPI2_  
NSS/I2  
S2_WS  
TIM1_  
BKIN  
I2C2_  
SMBA  
USART3_  
CK  
EVEN  
TOUT  
PB12  
PB13  
-
-
-
-
CAN2_RX  
CAN2_TX  
-
-
ULPI_D5  
_RMII_  
TXD0  
ID  
Port B  
ETH_MII_  
OTG_HS_ TXD1/ETH  
SPI2_  
SCK/I2  
S2_CK  
TIM1_  
CH1N  
USART3_  
CTS  
EVEN  
TOUT  
-
-
-
-
ULPI_D6  
_RMII_TX  
D1  
TIM1_  
CH2N  
TIM8_  
CH2N  
SPI2_  
MISO  
I2S2ext_ USART3_  
OTG_HS_  
DM  
EVEN  
TOUT  
PB14  
PB15  
-
-
-
-
-
-
TIM12_CH1  
TIM12_CH2  
-
-
-
-
-
-
-
-
SD  
RTS  
SPI2_  
MOSI/I2  
S2_SD  
RTC_  
REFIN  
TIM1_  
CH3N  
TIM8_  
CH3N  
OTG_HS_  
DP  
EVEN  
TOUT  
-
-
OTG_HS_  
ULPI_STP  
FMC_SDN  
WE  
EVEN  
TOUT  
PC0  
PC1  
PC2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
ETH_MDC  
-
SPI2_  
MISO  
I2S2ext_  
SD  
OTG_HS_ ETH_MII_  
ULPI_DIR TXD2  
FMC_  
SDNE0  
EVEN  
TOUT  
SPI2_  
MOSI/I2  
S2_SD  
OTG_HS_ ETH_MII_  
FMC_  
SDCKE0  
EVEN  
TOUT  
PC3  
PC4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ULPI_NXT  
TX_CLK  
ETH_MII_  
RXD0/ETH  
_RMII_  
Port  
C
EVEN  
TOUT  
-
-
-
-
-
RXD0  
ETH_MII_  
RXD1/ETH  
_RMII_  
EVEN  
TOUT  
PC5  
-
-
-
-
-
-
-
-
-
-
-
-
-
RXD1  
TIM3_  
CH1  
TIM8_  
CH1  
I2S2_  
MCK  
USART6_  
TX  
DCMI_  
D0  
LCD_  
EVEN  
HSYNC TOUT  
PC6  
PC7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SDIO_D6  
SDIO_D7  
TIM3_  
CH2  
TIM8_  
CH2  
I2S3_  
MCK  
USART6_  
RX  
DCMI_  
D1  
EVEN  
LCD_G6  
-
TOUT  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
TIM3_  
CH3  
TIM8_  
CH3  
USART6_  
CK  
DCMI_  
D2  
EVEN  
TOUT  
PC8  
-
-
-
-
-
-
-
-
-
-
-
-
-
SDIO_D0  
SDIO_D1  
-
-
TIM3_  
CH4  
TIM8_  
CH4  
I2C3_  
SDA  
I2S_  
CKIN  
DCMI_  
D3  
EVEN  
TOUT  
PC9 MCO2  
-
-
-
-
-
-
SPI3_  
SCK/I2S  
3_CK  
USART3_  
TX  
DCMI_  
D8  
EVEN  
TOUT  
PC10  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART4_TX  
UART4_RX  
UART5_TX  
-
-
-
-
-
-
SDIO_D2  
SDIO_D3  
SDIO_CK  
LCD_R2  
I2S3ext  
_SD  
SPI3_  
MISO  
USART3_  
RX  
DCMI_  
D4  
EVEN  
TOUT  
-
-
Port  
C
SPI3_  
MOSI/I2  
S3_SD  
USART3_  
CK  
DCMI_  
D9  
EVEN  
TOUT  
-
EVEN  
TOUT  
PC13  
PC14  
PC15  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
-
-
EVEN  
TOUT  
-
-
-
EVEN  
TOUT  
-
CAN1_RX  
CAN1_TX  
-
FMC_D2  
FMC_D3  
EVEN  
TOUT  
PD1  
-
TIM3_  
ETR  
SDIO_  
CMD  
DCMI_  
D11  
EVEN  
TOUT  
PD2  
UART5_RX  
SPI2_S  
CK/I  
2S2_CK  
USART2_  
CTS  
DCMI_  
D5  
EVEN  
TOUT  
Port  
D
PD3  
-
-
-
-
-
-
-
-
-
-
FMC_CLK  
LCD_G7  
USART2_  
RTS  
EVEN  
TOUT  
PD4  
PD5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NOE  
FMC_NWE  
-
-
-
-
USART2_  
TX  
EVEN  
TOUT  
SPI3_  
MOSI/I2  
S3_SD  
SAI1_  
SD_A  
USART2_  
RX  
FMC_  
NWAIT  
DCMI_  
D10  
EVEN  
TOUT  
PD6  
-
-
-
-
-
-
-
-
-
LCD_B2  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
FMC_NE1/  
FMC_  
NCE2  
USART2_  
CK  
EVEN  
TOUT  
PD7  
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_  
TX  
EVEN  
TOUT  
PD8  
PD9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D13  
FMC_D14  
FMC_D15  
FMC_A16  
FMC_A17  
FMC_A18  
FMC_D0  
FMC_D1  
-
-
-
-
-
-
-
-
-
USART3_  
RX  
EVEN  
TOUT  
-
-
USART3_  
CK  
EVEN  
TOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PE0  
-
LCD_B3  
Port  
D
USART3_  
CTS  
EVEN  
TOUT  
-
-
TIM4_  
CH1  
USART3_  
RTS  
EVEN  
TOUT  
-
-
TIM4_  
CH2  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
TIM4_  
CH3  
EVEN  
TOUT  
-
-
TIM4_  
CH4  
EVEN  
TOUT  
-
-
TIM4_  
ETR  
FMC_  
NBL0  
DCMI_  
D2  
EVEN  
TOUT  
UART8_Rx  
-
FMC_  
NBL1  
DCMI_  
D3  
EVEN  
TOUT  
PE1  
-
-
-
-
-
-
UART8_Tx  
-
TRAC  
ECLK  
SPI4_  
SCK  
SAI1_  
MCLK_A  
ETH_MII_  
TXD3  
EVEN  
TOUT  
PE2  
-
-
-
-
-
FMC_A23  
FMC_A19  
FMC_A20  
FMC_A21  
FMC_A22  
-
-
-
TRAC  
ED0  
SAI1_  
SD_B  
EVEN  
TOUT  
Port E PE3  
PE4  
-
-
-
-
-
-
TRAC  
ED1  
SPI4_  
NSS  
SAI1_  
FS_A  
DCMI_  
D4  
EVEN  
TOUT  
LCD_B0  
LCD_G0  
LCD_G1  
TRAC  
ED2  
TIM9_  
CH1  
SPI4_M  
ISO  
SAI1_  
SCK_A  
DCMI_  
D6  
EVEN  
TOUT  
PE5  
TRAC  
ED3  
TIM9_  
CH2  
SPI4_  
MOSI  
SAI1_  
SD_A  
DCMI_  
D7  
EVEN  
TOUT  
PE6  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
TIM1_  
ETR  
EVEN  
TOUT  
PE7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART7_Rx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D4  
FMC_D5  
FMC_D6  
FMC_D7  
FMC_D8  
FMC_D9  
FMC_D10  
FMC_D11  
FMC_D12  
FMC_A0  
FMC_A1  
FMC_A2  
FMC_A3  
FMC_A4  
FMC_A5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH1N  
EVEN  
TOUT  
PE8  
PE9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART7_Tx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH1  
EVEN  
TOUT  
-
-
TIM1_  
CH2N  
EVEN  
TOUT  
PE10  
-
-
TIM1_  
CH2  
SPI4_  
NSS  
EVEN  
TOUT  
Port E PE11  
PE12  
-
LCD_G3  
LCD_B4  
LCD_DE  
TIM1_  
CH3N  
SPI4_  
SCK  
EVEN  
TOUT  
-
TIM1_  
CH3  
SPI4_  
MISO  
EVEN  
TOUT  
PE13  
-
TIM1_  
CH4  
SPI4_  
MOSI  
LCD_  
CLK  
EVEN  
TOUT  
PE14  
-
TIM1_  
BKIN  
EVEN  
TOUT  
PE15  
-
LCD_R7  
I2C2_  
SDA  
EVEN  
TOUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_  
SCL  
EVEN  
TOUT  
PF1  
-
I2C2_  
SMBA  
EVEN  
TOUT  
PF2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
PF3  
Port F  
-
EVEN  
TOUT  
PF4  
-
EVEN  
TOUT  
PF5  
PF6  
PF7  
-
TIM10_  
CH1  
SPI5_  
NSS  
SAI1_  
SD_B  
FMC_  
NIORD  
EVEN  
TOUT  
-
-
UART7_Rx  
UART7_Tx  
TIM11_  
CH1  
SPI5_  
SCK  
SAI1_  
MCLK_B  
FMC_  
NREG  
EVEN  
TOUT  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
SPI5_  
MISO  
SAI1_  
SCK_B  
FMC_  
NIOWR  
EVEN  
TOUT  
PF8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM13_CH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI5_  
MOSI  
SAI1_  
FS_B  
EVEN  
TOUT  
PF9  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM14_CH1  
FMC_CD  
-
DCMI_  
D11  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_INTR  
LCD_DE  
SPI5_  
MOSI  
FMC_  
SDNRAS  
DCMI_  
D12  
EVEN  
TOUT  
-
Port F  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A6  
FMC_A7  
FMC_A8  
FMC_A9  
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
Port  
G
FMC_A14/  
FMC_BA0  
EVEN  
TOUT  
-
FMC_A15/  
FMC_BA1  
EVEN  
TOUT  
-
DCMI_  
D12  
EVEN  
TOUT  
FMC_INT2  
FMC_INT3  
LCD_R7  
USART6_  
CK  
DCMI_  
D13  
LCD_  
CLK  
EVEN  
TOUT  
SPI6_  
NSS  
USART6_  
RTS  
ETH_PPS FMC_SDC  
_OUT LK  
EVEN  
TOUT  
-
-
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
FMC_NE2/ DCMI_  
USART6_  
RX  
EVEN  
TOUT  
PG9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_  
NCE3  
VSYNC  
-
(1)  
FMC_  
NCE4_1/  
FMC_NE3  
DCMI_  
D2  
EVEN  
TOUT  
PG10  
-
-
-
-
-
-
-
LCD_G3  
LCD_B2  
ETH_MII_  
TX_EN/  
ETH_RMII  
_TX_EN  
FMC_  
NCE4_2  
DCMI_  
D3  
EVEN  
TOUT  
PG11  
PG12  
PG13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B3  
LCD_B1  
-
Port  
G
SPI6_  
MISO  
USART6_  
RTS  
EVEN  
TOUT  
LCD_B4  
-
-
FMC_NE4  
FMC_A24  
-
-
ETH_MII_  
TXD0/  
ETH_RMII  
_TXD0  
SPI6_  
SCK  
USART6_  
CTS  
EVEN  
TOUT  
ETH_MII_  
TXD1/  
ETH_RMII  
_TXD1  
SPI6_  
MOSI  
USART6_  
TX  
EVEN  
TOUT  
PG14  
-
-
-
-
-
-
-
-
-
FMC_A25  
-
-
USART6_  
CTS  
FMC_  
SDNCAS  
DCMI_  
D13  
EVEN  
TOUT  
PG15  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
-
ETH_MII_  
CRS  
FMC_  
SDCKE0  
EVEN  
TOUT  
-
LCD_R0  
Port  
H
ETH_MII_ FMC_SDN  
EVEN  
TOUT  
-
LCD_R1  
COL  
E0  
I2C2_  
SCL  
OTG_HS_  
ULPI_NXT  
EVEN  
TOUT  
-
-
-
-
-
-
I2C2_ SPI5_N  
SDA  
FMC_SDN  
WE  
EVEN  
TOUT  
-
-
-
-
-
SS  
I2C2_  
SMBA  
SPI5_  
SCK  
FMC_  
SDNE1  
DCMI_  
D8  
TIM12_CH1  
-
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
DCMI_  
D9  
I2C3_  
SCL  
SPI5_  
MISO  
ETH_MII_  
RXD3  
FMC_  
SDCKE1  
PH7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_  
SDA  
DCMI_  
HSYNC  
EVEN  
TOUT  
PH8  
PH9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D16  
FMC_D17  
FMC_D18  
FMC_D19  
FMC_D20  
FMC_D21  
FMC_D22  
FMC_D23  
LCD_R2  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_G2  
LCD_G3  
LCD_G4  
I2C3_  
SMBA  
DCMI_  
D0  
EVEN  
TOUT  
TIM12_CH2  
TIM5_  
CH1  
DCMI_  
D1  
EVEN  
TOUT  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
-
-
-
-
-
-
-
Port  
H
TIM5_  
CH2  
DCMI_  
D2  
EVEN  
TOUT  
-
TIM5_  
CH3  
DCMI_  
D3  
EVEN  
TOUT  
-
TIM8_  
CH1N  
EVEN  
TOUT  
-
-
-
CAN1_TX  
-
TIM8_  
CH2N  
DCMI_  
D4  
EVEN  
TOUT  
-
-
TIM8_  
CH3N  
DCMI_  
D11  
EVEN  
TOUT  
SPI2_  
NSS/I2  
S2_WS  
TIM5_  
CH4  
DCMI_  
D13  
EVEN  
TOUT  
PI0  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D24  
LCD_G5  
SPI2_  
SCK/I2  
S2_CK  
DCMI_  
D8  
EVEN  
TOUT  
PI1  
PI2  
PI3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D25  
FMC_D26  
FMC_D27  
LCD_G6  
LCD_G7  
TIM8_  
CH4  
SPI2_  
MISO  
I2S2ext_  
SD  
DCMI_  
D9  
EVEN  
TOUT  
Port I  
SPI2_M  
OSI/I2S  
2_SD  
TIM8_  
ETR  
DCMI_D  
10  
EVEN  
TOUT  
TIM8_  
BKIN  
FMC_  
NBL2  
DCMI_D  
5
EVEN  
TOUT  
PI4  
PI5  
PI6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_B4  
LCD_B5  
LCD_B6  
TIM8_  
CH1  
FMC_  
NBL3  
DCMI_  
VSYNC  
EVEN  
TOUT  
TIM8_  
CH2  
DCMI_  
D6  
EVEN  
TOUT  
FMC_D28  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
TIM8_  
CH3  
DCMI_  
D7  
EVEN  
TOUT  
PI7  
PI8  
PI9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D29  
LCD_B7  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_  
EVEN  
VSYNC TOUT  
CAN1_RX  
FMC_D30  
ETH_MII_  
RX_ER  
LCD_ EVEN  
HSYNC TOUT  
PI10  
Port I PI11  
PI12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D31  
OTG_HS_  
ULPI_DIR  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_  
EVEN  
HSYNC TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
LCD_  
EVEN  
VSYNC TOUT  
PI13  
LCD_  
CLK  
EVEN  
TOUT  
PI14  
EVEN  
TOUT  
PI15  
LCD_R0  
LCD_R1  
LCD_R2  
LCD_R3  
LCD_R4  
LCD_R5  
LCD_R6  
LCD_R7  
LCD_G0  
EVEN  
TOUT  
PJ0  
EVEN  
TOUT  
PJ1  
EVEN  
TOUT  
PJ2  
EVEN  
TOUT  
PJ3  
Port J  
EVEN  
TOUT  
PJ4  
EVEN  
TOUT  
PJ5  
PJ6  
PJ7  
EVEN  
TOUT  
EVEN  
TOUT  
Table 12. STM32F427xx and STM32F429xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
DCMI  
AF14  
LCD  
AF15  
SYS  
Port  
SPI3/  
USART6/  
CAN1/2/  
OTG2_HS  
/OTG1_  
FS  
TIM8/9/ I2C1/ SPI1/2/  
10/11  
SPI2/3/  
SAI1  
FMC/SDIO  
/OTG2_FS  
TIM1/2  
TIM3/4/5  
USART1/ UART4/5/7 TIM12/13/14  
ETH  
2/3  
3/4/5/6  
2/3  
/8  
/LCD  
EVEN  
TOUT  
PJ8  
PJ9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_G1  
LCD_G2  
LCD_G3  
LCD_G4  
LCD_B0  
LCD_B1  
LCD_B2  
LCD_B3  
LCD_G5  
LCD_G6  
LCD_G7  
LCD_B4  
LCD_B5  
LCD_B6  
LCD_B7  
LCD_DE  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
PJ10  
PJ11  
PJ12  
PJ13  
PJ14  
PJ15  
PK0  
PK1  
PK2  
PK3  
PK4  
PK5  
PK6  
PK7  
EVEN  
TOUT  
Port J  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
Port K  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.  
STM32F427xx STM32F429xx  
Memory mapping  
5
Memory mapping  
The memory map is shown in Figure 19.  
Figure 19. Memory map  
5HVHUYHG  
ꢄ[(ꢄꢀꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[))))ꢊ))))  
&RUWH[ꢏ0ꢂꢊLQWHUQDOꢊ  
SHULSKHUDOV  
ꢄ[(ꢄꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[(ꢄꢄ)ꢊ))))  
ꢄ[ꢇꢄꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[')))ꢊ))))  
$+%ꢉ  
5HVHUYHG  
ꢄ[ꢆꢄꢄꢇꢊꢄ&ꢄꢄꢊꢏꢊꢄ[ꢆ)))ꢊ))))  
ꢄ[ꢆꢄꢄꢇꢊꢄ%))  
$+%ꢃ  
ꢄ[))))ꢊ))))  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢈ  
&RUWH[ꢏ0ꢂ  
,QWHUQDOꢊ  
ꢄ[ꢆꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢂꢄꢄꢁꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢂ)))ꢊ))))  
ꢄ[ꢂꢄꢄꢈꢊ))))  
5HVHUYHG  
SHULSKHUDOV  
ꢄ[(ꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[')))ꢊ))))  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢇ  
)0&  
ꢄ['ꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[&)))ꢊ))))  
$+%ꢀ  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢆ  
)0&  
ꢄ[$ꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢅ)))ꢊ))))  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢂ  
)0&ꢊEDQNꢊꢉꢊWRꢊ  
EDQNꢊꢂ  
ꢄ[ꢂꢄꢄꢃꢊꢄꢄꢄꢄ  
ꢄ[ꢂꢄꢄꢀꢊꢇ&ꢄꢄꢊꢏꢊꢄ[ꢂꢄꢄꢀꢊ))))  
5HVHUYHG  
ꢄ[ꢂꢄꢄꢀꢊꢇ%))  
ꢄ[ꢁꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢈ)))ꢊ))))  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢉ  
)0&ꢊEDQNꢊꢀꢊWRꢊ  
EDQNꢊꢃ  
ꢄ[ꢇꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢆ)))ꢊ))))  
$3%ꢃ  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢃ  
3HULSKHUDOV  
ꢄ[ꢂꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢉ)))ꢊ))))  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢀ  
65$0  
5HVHUYHG  
65$0ꢊꢌꢇꢂꢊ.%ꢊDOLDVHG  
%\ꢊELWꢏEDQGLQJ  
65$0ꢊꢌꢀꢇꢊ.%ꢊDOLDVHG  
%\ꢊELWꢏEDQGLQJ  
65$0ꢊꢌꢀꢀꢃꢊ.%ꢊDOLDVHG  
%\ꢊELWꢏEDQGLQJ  
ꢄ[ꢃꢄꢄꢉꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢉ)))ꢊ))))  
ꢄ[ꢃꢄꢄꢃꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢃꢄꢄꢃꢊ))))  
ꢄ[ꢃꢄꢄꢀꢊ&ꢄꢄꢄꢊꢏꢊꢄ[ꢃꢄꢄꢀꢊ))))  
ꢄ[ꢂꢄꢄꢀꢊꢄꢄꢄꢄ  
ꢄ[ꢂꢄꢄꢄꢊꢁꢄꢄꢄꢊꢏꢊꢄ[ꢂꢄꢄꢄꢊ))))  
ꢄ[ꢂꢄꢄꢄꢊꢈ)))  
ꢄ[ꢃꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢀ)))ꢊ))))  
5HVHUYHG  
ꢆꢀꢃꢏ0E\WH  
%ORFNꢊꢄ  
65$0  
ꢄ[ꢃꢄꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢃꢄꢄꢀꢊ%)))  
ꢄ[ꢄꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢀ)))ꢊ&ꢄꢄ)ꢊꢏꢊꢄ[ꢀ)))ꢊ))))  
ꢄ[ꢀ)))ꢊ&ꢄꢄꢄꢊꢏꢊꢄ[ꢀ)))ꢊ&ꢄꢄꢁ  
5HVHUYHG  
2SWLRQꢊ%\WHV  
5HVHUYHG  
ꢄ[ꢀ)))ꢊꢈ$ꢀꢄꢊꢏꢊꢄ[ꢀ)))ꢊꢈ)))  
ꢄ[ꢀ)))ꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢀ)))ꢊꢈ$ꢄ)  
ꢄ[ꢀ))(ꢊ&ꢄꢄ)ꢊꢏꢊꢄ[ꢀ))(ꢊ))))  
ꢄ[ꢀ))(ꢊ&ꢄꢄꢄꢊꢏꢊꢄ[ꢀ))(ꢊ&ꢄꢄꢁ  
6\VWHPꢊPHPRU\  
5HVHUYHG  
2SWLRQꢊE\WHV  
$3%ꢀ  
5HVHUYHG  
ꢄ[ꢀꢄꢄꢀꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢀ))(ꢊ%)))  
&&0ꢊGDWDꢊ5$0  
ꢊꢌꢇꢂꢊ.%ꢊGDWDꢊ65$0ꢍ  
5HVHUYHG  
ꢄ[ꢀꢄꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢀꢄꢄꢄꢊ))))  
ꢄ[ꢄꢁꢃꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢄ)))ꢊ))))  
ꢄ[ꢄꢁꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢄꢁꢀ)ꢊ))))ꢊꢊ  
ꢄ[ꢄꢄꢃꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢄꢈ))ꢊ))))  
)ODVKꢊPHPRU\  
5HVHUYHG  
$OLDVHGꢊWRꢊ)ODVKꢋꢊV\VWHP  
PHPRU\ꢊRUꢊ65$0ꢊGHSHQGLQJ  
RQꢊWKHꢊ%227ꢊSLQV  
ꢄ[ꢂꢄꢄꢄꢊꢄꢄꢄꢄ  
ꢄ[ꢄꢄꢄꢄꢊꢄꢄꢄꢄꢊꢏꢊꢄ[ꢄꢄꢀ)ꢊ))))  
06ꢉꢄꢂꢃꢂ9ꢂ  
DocID024030 Rev 9  
85/238  
89  
 
 
Memory mapping  
STM32F427xx STM32F429xx  
Table 13. STM32F427xx and STM32F429xx register boundary addresses  
Bus  
Boundary address  
Peripheral  
0xE00F FFFF - 0xFFFF FFFF  
0xE000 0000 - 0xE00F FFFF  
0xD000 0000 - 0xDFFF FFFF  
0xC000 0000 - 0xCFFF FFFF  
0xA000 1000 - 0xBFFF FFFF  
0xA000 0000- 0xA000 0FFF  
0x9000 0000 - 0x9FFF FFFF  
0x8000 0000 - 0x8FFF FFFF  
0x7000 0000 - 0x7FFF FFFF  
0x6000 0000 - 0x6FFF FFFF  
0x5006 0C00- 0x5FFF FFFF  
0x5006 0800 - 0X5006 0BFF  
0x5005 0400 - X5006 07FF  
0x5005 0000 - 0X5005 03FF  
0x5004 0000- 0x5004 FFFF  
0x5000 0000 - 0X5003 FFFF  
Reserved  
Cortex-M4  
Cortex-M4 internal peripherals  
FMC bank 6  
FMC bank 5  
Reserved  
FMC control register  
FMC bank 4  
FMC bank 3  
FMC bank 2  
FMC bank 1  
Reserved  
AHB3  
RNG  
Reserved  
AHB2  
DCMI  
Reserved  
USB OTG FS  
86/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Memory mapping  
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4008 0000- 0x4FFF FFFF  
0x4004 0000 - 0x4007 FFFF  
0x4002 BC00- 0x4003 FFFF  
0x4002 B000 - 0x4002 BBFF  
0x4002 9400 - 0x4002 AFFF  
0x4002 9000 - 0x4002 93FF  
0x4002 8C00 - 0x4002 8FFF  
0x4002 8800 - 0x4002 8BFF  
0x4002 8400 - 0x4002 87FF  
0x4002 8000 - 0x4002 83FF  
0x4002 6800 - 0x4002 7FFF  
0x4002 6400 - 0x4002 67FF  
0x4002 6000 - 0x4002 63FF  
0X4002 5000 - 0X4002 5FFF  
0x4002 4000 - 0x4002 4FFF  
0x4002 3C00 - 0x4002 3FFF  
0x4002 3800 - 0x4002 3BFF  
0X4002 3400 - 0X4002 37FF  
0x4002 3000 - 0x4002 33FF  
0x4002 2C00 - 0x4002 2FFF  
0x4002 2800 - 0x4002 2BFF  
0x4002 2400 - 0x4002 27FF  
0x4002 2000 - 0x4002 23FF  
0x4002 1C00 - 0x4002 1FFF  
0x4002 1800 - 0x4002 1BFF  
0x4002 1400 - 0x4002 17FF  
0x4002 1000 - 0x4002 13FF  
0X4002 0C00 - 0x4002 0FFF  
0x4002 0800 - 0x4002 0BFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
Reserved  
USB OTG HS  
Reserved  
DMA2D  
Reserved  
ETHERNET MAC  
Reserved  
DMA2  
DMA1  
Reserved  
BKPSRAM  
Flash interface register  
RCC  
AHB1  
Reserved  
CRC  
Reserved  
GPIOK  
GPIOJ  
GPIOI  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
DocID024030 Rev 9  
87/238  
89  
Memory mapping  
STM32F427xx STM32F429xx  
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4001 6C00- 0x4001 FFFF  
0x4001 6800 - 0x4001 6BFF  
0x4001 5C00 - 0x4001 67FF  
0x4001 5800 - 0x4001 5BFF  
0x4001 5400 - 0x4001 57FF  
0x4001 5000 - 0x4001 53FF  
0x4001 5400 - 0x4001 57FF  
0x4001 5000 - 0x4001 53FF  
0x4001 4C00 - 0x4001 4FFF  
0x4001 4800 - 0x4001 4BFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2400 - 0x4001 2BFF  
0x4001 2000 - 0x4001 23FF  
0x4001 1800 - 0x4001 1FFF  
0x4001 1400 - 0x4001 17FF  
0x4001 1000 - 0x4001 13FF  
0x4001 0800 - 0x4001 0FFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0000 - 0x4001 03FF  
Reserved  
LCD-TFT  
Reserved  
SAI1  
SPI6  
SPI5  
SPI6  
SPI5  
Reserved  
TIM11  
TIM10  
TIM9  
EXTI  
APB2  
SYSCFG  
SPI4  
SPI1  
SDIO  
Reserved  
ADC1 - ADC2 - ADC3  
Reserved  
USART6  
USART1  
Reserved  
TIM8  
TIM1  
88/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Memory mapping  
Table 13. STM32F427xx and STM32F429xx register boundary addresses (continued)  
Bus  
Boundary address  
Peripheral  
0x4000 8000- 0x4000 FFFF  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00 - 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 5000 - 0x4000 53FF  
0x4000 4C00 - 0x4000 4FFF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 2400 - 0x4000 27FF  
0x4000 2000 - 0x4000 23FF  
0x4000 1C00 - 0x4000 1FFF  
0x4000 1800 - 0x4000 1BFF  
0x4000 1400 - 0x4000 17FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0C00 - 0x4000 0FFF  
0x4000 0800 - 0x4000 0BFF  
0x4000 0400 - 0x4000 07FF  
0x4000 0000 - 0x4000 03FF  
Reserved  
UART8  
UART7  
DAC  
PWR  
Reserved  
CAN2  
CAN1  
Reserved  
I2C3  
I2C2  
I2C1  
UART5  
UART4  
USART3  
USART2  
I2S3ext  
SPI3 / I2S3  
SPI2 / I2S2  
I2S2ext  
IWDG  
APB1  
WWDG  
RTC & BKP Registers  
Reserved  
TIM14  
TIM13  
TIM12  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
DocID024030 Rev 9  
89/238  
89  
Electrical characteristics  
STM32F427xx STM32F429xx  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 20.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 21.  
Figure 20. Pin loading conditions  
Figure 21. Pin input voltage  
-#5 PIN  
-#5 PIN  
6
#  ꢆꢈ P&  
).  
-3ꢃꢒꢈꢃꢃ6ꢁ  
-3ꢃꢒꢈꢃꢈ6ꢁ  
90/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 22. Power supply scheme  
9%$7  
%DFNXSꢊFLUFXLWU\  
9%$7ꢊ  
ꢀꢐꢇꢆꢊWRꢊꢉꢐꢇ9  
ꢌ26&ꢉꢃ.ꢋ57&ꢋ  
:DNHXSꢊORJLF  
3RZHUꢊ  
VZLWFK  
%DFNXSꢊUHJLVWHUVꢋ  
EDFNXSꢊ5$0ꢍ  
287  
,1  
,2  
/RJLF  
*3,2V  
9&$3Bꢀ  
9&$3Bꢃ  
.HUQHOꢊORJLFꢊ  
ꢌ&38ꢋꢊGLJLWDOꢊ  
ꢔꢊ5$0ꢍꢊꢊ  
ꢃꢊîꢊꢃꢐꢃꢊ—)  
9''  
9''  
ꢀꢒꢃꢒꢐꢐꢐꢀꢂꢒꢀꢆ  
966  
ꢀꢒꢃꢒꢐꢐꢐꢀꢂꢒꢀꢆ  
9ROWDJHꢊ  
UHJXODWRU  
ꢀꢆꢊîꢊꢀꢄꢄꢊQ)  
ꢓꢊꢀꢊîꢊꢂꢐꢈꢊ—)  
)ODVKꢊPHPRU\  
%<3$66B5(*  
3'5B21  
9''$  
5HVHWꢊ  
FRQWUROOHU  
9''  
95()  
95()ꢓ  
$QDORJꢎ  
5&Vꢋꢊ  
3//ꢋꢐꢐ  
ꢀꢄꢄꢊQ)  
ꢓꢊꢀꢊ—)  
ꢀꢄꢄꢊQ)  
ꢓꢊꢀꢊ—)  
$'&  
95()ꢏ  
966$  
06ꢀꢅꢅꢀꢀ9ꢉ  
1. To connect BYPASS_REG and PDR_ON pins, refer to Section 3.17: Power supply supervisor and Section 3.18: Voltage  
regulator  
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is  
OFF.  
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
4.  
VDDA=VDD and VSSA=VSS.  
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
DocID024030 Rev 9  
91/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.1.7  
Current consumption measurement  
Figure 23. Current consumption measurement scheme  
,
B9  
'' %$7  
9
%$7  
,
''  
9
''  
9
''$  
DLꢀꢂꢀꢃꢇ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,  
Table 15: Current characteristics, and Table 16: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Device mission profile (application conditions) is compliant with JEDEC JESD47  
Qualification Standard, extended mission profiles are available on demand.  
Table 14. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD and  
VBAT)(1)  
VDD–VSS  
0.3  
4.0  
Input voltage on FT pins(2)  
VSS 0.3 VDD+4.0  
V
Input voltage on TTa pins  
VSS 0.3  
VSS 0.3  
VSS  
4.0  
4.0  
9.0  
50  
VIN  
Input voltage on any other pin  
Input voltage on BOOT0 pin  
Variations between different VDD power pins  
|ΔVDDx  
|
-
mV  
Variations between all the different ground pins  
including VREF-  
|VSSX VSS  
|
-
50  
see Section 6.3.15:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed  
injected current.  
92/238  
DocID024030 Rev 9  
 
 
 
 
 
STM32F427xx STM32F429xx  
Symbol  
Electrical characteristics  
Table 15. Current characteristics  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
IVDD  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Maximum current into each VDD_x power line (source)(1)  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
270  
270  
100  
IVSS  
100  
25  
IIO  
Output current sourced by any I/Os and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT pins (4)  
25  
120  
mA  
ΣIIO  
120  
5/+0  
Injected current on NRST and BOOT0 pins (4)  
(3)  
IINJ(PIN)  
Injected current on TTa pins(5)  
±5  
Total injected current (sum of all I/O and control pins)(6)  
±25  
(5)  
ΣIINJ(PIN)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.21: 12-bit ADC characteristics.  
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 14 for the values of the maximum allowed input voltage.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 16. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to +150  
°C  
°C  
Maximum junction temperature  
125  
DocID024030 Rev 9  
93/238  
197  
 
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 17. General operating conditions  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max Unit  
Power Scale 3 (VOS[1:0] bits in  
PWR_CR register = 0x01), Regulator  
ON, over-drive OFF  
0
0
-
120  
Over-  
drive OFF  
-
-
-
-
144  
168  
Power Scale 2 (VOS[1:0] bits  
in PWR_CR register = 0x10),  
Regulator ON  
fHCLK Internal AHB clock frequency  
Over-  
drive ON  
Over-  
drive OFF  
168  
180  
MHz  
Power Scale 1 (VOS[1:0] bits  
in PWR_CR register= 0x11),  
Regulator ON  
0
Over-  
drive ON  
Over-drive OFF  
Over-drive ON  
Over-drive OFF  
Over-drive ON  
0
-
-
-
-
-
42  
45  
84  
90  
3.6  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
0
0
0
VDD  
Standard operating voltage  
1.7(2)  
Analog operating voltage  
1.7(2)  
-
2.4  
(ADC limited to 1.2 M samples)  
VDDA  
(5)  
Must be the same potential as VDD  
V
(3)(4)  
Analog operating voltage  
2.4  
-
-
3.6  
3.6  
(ADC limited to 2.4 M samples)  
VBAT  
Backup operating voltage  
1.65  
Power Scale 3 ((VOS[1:0] bits in  
PWR_CR register = 0x01), 120 MHz  
HCLK max frequency  
1.08 1.14 1.20  
1.20 1.26 1.32  
Power Scale 2 ((VOS[1:0] bits in  
PWR_CR register = 0x10), 144 MHz  
HCLK max frequency with over-drive  
OFF or 168 MHz with over-drive ON  
Regulator ON: 1.2 V internal  
voltage on VCAP_1/VCAP_2 pins  
V12  
V
Power Scale 1 ((VOS[1:0] bits in  
PWR_CR register = 0x11), 168 MHz  
HCLK max frequency with over-drive  
OFF or 180 MHz with over-drive ON  
1.26 1.32 1.40  
Max frequency 120 MHz  
Max frequency 144 MHz  
Max frequency 168 MHz  
1.10 1.14 1.20  
1.20 1.26 1.32  
1.26 1.32 1.38  
Regulator OFF: 1.2 V external  
voltage must be supplied from  
external regulator on  
VCAP_1/VCAP_2 pins(6)  
94/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 17. General operating conditions (continued)  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max Unit  
2 V VDD 3.6 V  
0.3  
0.3  
-
-
5.5  
Input voltage on RST and FT  
pins(7)  
VDD 2 V  
5.2  
VIN  
V
VDDA  
0.3  
+
Input voltage on TTa pins  
0.3  
-
Input voltage on BOOT0 pin  
0
-
-
-
-
-
-
-
-
-
9
LQFP100  
-
465  
641  
500  
385  
526  
513  
WLCSP143  
-
LQFP144  
-
-
Power dissipation at TA = 85 °C  
for suffix 6 or TA = 105 °C for  
suffix 7(8)  
UFBGA169  
PD  
mW  
LQFP176  
-
UFBGA176  
-
LQFP208  
-
1053  
690  
85  
TFBGA216  
-
Maximum power dissipation  
Low power dissipation(9)  
Maximum power dissipation  
Low power dissipation(9)  
6 suffix version  
7 suffix version  
40  
40  
40  
40  
40  
40  
Ambient temperature for 6 suffix  
version  
°C  
°C  
°C  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for 7 suffix  
version  
Junction temperature range  
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.  
2. DD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:  
V
Internal reset OFF).  
3. When the ADC is used, refer to Table 74: ADC characteristics.  
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA  
can be tolerated during power-up and power-down operation.  
6. The over-drive mode is not supported when the internal regulator is OFF.  
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
DocID024030 Rev 9  
95/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 18. Limitations depending on the operating power supply range  
Maximum Flash  
memory access  
powersupply ADC operation frequency with  
Maximum HCLK  
frequency vs Flash  
Operating  
Possible Flash  
memory  
operations  
I/O operation  
memory wait states  
range  
no wait states  
(fFlashmax  
(1)(2)  
)
168 MHz with 8 wait  
states and over-drive  
OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to Conversion time  
No I/O  
compensation  
20 MHz(4)  
22 MHz  
24 MHz  
30 MHz  
2.1 V(3)  
up to 1.2 Msps  
180 MHz with 8 wait  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.1 to Conversion time  
2.4 V up to 1.2 Msps  
No I/O  
compensation  
180 MHz with 7 wait  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.4 to Conversion time  
2.7 V up to 2.4 Msps  
I/O compensation  
works  
180 MHz with 5 wait  
states and over-drive  
ON  
32-bit erase and  
program  
operations  
VDD = 2.7 to Conversion time  
3.6 V(5)  
up to 2.4 Msps  
I/O compensation  
works  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the  
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state  
program execution.  
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:  
Internal reset OFF).  
4. Prefetch is not available.  
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+  
pins will be degraded between 2.7 and 3 V.  
6.3.2  
VCAP1/VCAP2 external capacitor  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the VCAP1/VCAP2 pins. C  
is specified in Table 19.  
EXT  
Figure 24. External capacitor C  
EXT  
&
(65  
5ꢊ/HDN  
06ꢀꢅꢄꢂꢂ9ꢃ  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 19. VCAP1/VCAP2 operating conditions  
Symbol  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF  
< 2 Ω  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
96/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.3  
Operating conditions at power-up / power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 20. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 21. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
DocID024030 Rev 9  
97/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.5  
Reset and power control block characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 22. reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
2.76 2.82  
2.66 2.71  
2.93 2.99  
2.84 2.92  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
V
V
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
V
V
(1)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
Falling edge  
Rising edge  
1.60  
1.64  
-
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
V
(1)  
VPDRhyst  
PDR hysteresis  
40  
-
mV  
V
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
VBOR2  
VBOR3  
V
V
Brownout level 2  
threshold  
V
V
Brownout level 3  
threshold  
V
(1)  
VBORhyst  
BOR hysteresis  
100  
1.5  
-
mV  
TRSTTEMPO  
POR reset temporization  
0.5  
3.0  
ms  
(1)(2)  
98/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 22. reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
InRush current on  
voltage regulator power-  
on (POR or wakeup  
from Standby)  
(1)  
IRUSH  
-
160  
-
200  
5.4  
mA  
µC  
InRush energy on  
voltage regulator power-  
on (POR or wakeup  
from Standby)  
VDD = 1.7 V, TA = 105 °C,  
IRUSH = 171 mA for 31 µs  
(1)  
ERUSH  
-
1. Guaranteed by design.  
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant  
when first instruction is read by the user application code.  
6.3.6  
Over-drive switching characteristics  
When the over-drive mode switches from enabled to disabled or disabled to enabled, the  
system clock is stalled during the internal voltage set-up.  
The over-drive switching characteristics are given in Table 23. They are sbject to general  
operating conditions for T .  
A
(1)  
Table 23. Over-drive switching characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HSI  
-
45  
-
HSE max for 4 MHz  
and min for 26 MHz  
Over_drive switch  
enable time  
45  
-
100  
Tod_swen  
External HSE  
50 MHz  
-
-
40  
20  
-
-
-
µs  
HSI  
HSE max for 4 MHz  
and min for 26 MHz.  
Over_drive switch  
disable time  
20  
80  
Tod_swdis  
External HSE  
50 MHz  
-
15  
-
1. Guaranteed by design.  
DocID024030 Rev 9  
99/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 23: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted both to f frequency and V range  
HCLK  
DD  
(see Table 18: Limitations depending on the operating power supply range).  
Regulator ON  
The voltage scaling and over-drive mode are adjusted to f  
frequency as follows:  
HCLK  
Scale 3 for f  
120 MHz  
HCLK  
Scale 2 for 120 MHz < f  
Scale 1 for 144 MHz < f  
144 MHz  
HCLK  
HCLK  
PCLK1  
180 MHz. The over-drive is only ON at 180 MHz.  
= f /4, and f = f /2.  
The system clock is HCLK, f  
HCLK  
PCLK2  
HCLK  
External clock frequency is 4 MHz and PLL is ON when f  
is higher than 25 MHz.  
HCLK  
The maximum values are obtained for V = 3.6 V and a maximum ambient  
DD  
temperature (T ), and the typical values for T = 25 °C and V = 3.3 V unless  
A
A
DD  
otherwise specified.  
100/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 24. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from Flash memory (ART accelerator enabled except prefetch) or RAM  
Max(2)  
Symbol  
Parameter Conditions fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
180  
168  
150  
144  
120  
98  
89  
75  
72  
54  
43  
29  
16  
13  
11  
5
104(5)  
98(5)  
84  
81  
58  
45  
30  
20  
16  
13  
9
123  
116  
100  
96  
72  
56  
38  
34  
30  
27  
23  
21  
20  
69  
66  
57  
56  
43  
32  
22  
12  
10  
22  
21  
20  
20  
141(5)  
133(5)  
115  
112  
85  
90  
66  
All  
Peripherals  
60  
30  
25  
16  
8
45  
enabled(3)(4)  
46  
43  
39  
36  
4
4
8
34  
Supply  
current in  
RUN mode  
2
2
7
33  
IDD  
mA  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
44  
41  
36  
33  
25  
20  
14  
8
47(5)  
45(5)  
39  
37  
29  
21  
15  
8
87(5)  
83(5)  
73  
72  
56  
41  
All  
Peripherals  
28  
disabled(3)  
26  
7
7
24  
7
9
35  
3
7
34  
4
3
6
33  
2
2
6
33  
1. Code and data processing running from SRAM1 using boot pins.  
2. Guaranteed by characterization.  
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC  
for the analog part.  
5. Guaranteed by test in production.  
DocID024030 Rev 9  
101/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 25. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART accelerator disabled)  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA=  
25 °C  
TA=85 °C TA=105 °C  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
103  
98  
87  
85  
66  
54  
37  
20  
17  
12  
7
112  
107  
95  
92  
71  
58  
39  
24  
21  
16  
11  
8
140  
126  
112  
108  
85  
69  
47  
39  
35  
30  
24  
22  
21  
87  
76  
70  
68  
56  
46  
33  
31  
28  
25  
23  
21  
20  
151  
144  
128  
124  
99  
80  
55  
51  
48  
42  
37  
35  
34  
106  
93  
86  
84  
69  
57  
41  
44  
41  
38  
35  
34  
33  
All Peripherals  
enabled(2)(3)  
4
5
Supply  
current in  
RUN mode  
2
3
7
IDD  
mA  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
57  
50  
46  
45  
36  
29  
21  
13  
11  
8
62  
54  
50  
49  
41  
34  
24  
17  
15  
12  
9
All Peripherals  
disabled(3)  
5
4
4
7
2
3
6.5  
1. Guaranteed by characterization unless otherwise specified.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for  
the analog part.  
102/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 26. Typical and maximum current consumption in Sleep mode  
Max(1)  
Symbol  
Parameter Conditions fHCLK (MHz)  
Typ  
Unit  
TA =  
TA =  
TA =  
25 °C  
85 °C  
105 °C  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
78  
66  
56  
54  
40  
32  
22  
10  
9
89(3)  
75(3)  
61  
58  
44  
34  
23  
16  
14  
12  
8
110  
93  
80  
78  
59  
46  
31  
30  
28  
25  
22  
21  
20  
54  
41  
36  
35  
28  
26  
17  
22  
21  
21  
20  
20  
20  
130(3)  
110(3)  
96  
94  
72  
56  
All  
Peripherals  
38  
enabled(2)  
43  
40  
5
40  
3
35  
4
3
7
34  
Supply  
current in  
Sleep mode  
2
2
6.5  
26(3)  
20(3)  
17  
16.5  
14  
13  
9
33  
IDD  
mA  
180  
168  
150  
144  
120  
90  
60  
30  
25  
16  
8
21  
16  
14  
13  
10  
8
76(3)  
58(3)  
52  
51  
41  
37  
All  
Peripherals  
disabled  
6
25  
5
8
35  
3
7
34  
3
7
34  
2
6
33  
4
2
6
33  
2
2
6
33  
1. Guaranteed by characterization unless otherwise specified.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. Based on characterization, tested in production.  
DocID024030 Rev 9  
103/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 27. Typical and maximum current consumptions in Stop mode  
Max(1)  
VDD = 3.6 V  
TA =  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C  
Flash memory in Stop mode, all  
oscillators OFF, no independent  
watchdog  
0.40  
0.35  
0.29  
0.23  
1.50  
1.50  
1.10  
1.10  
14.00 25.00  
14.00 25.00  
10.00 18.00  
10.00 18.00  
Supply current in Stop  
mode with voltage  
regulator in main  
regulator mode  
Flash memory in Deep power  
down mode, all oscillators OFF, no  
independent watchdog  
IDD_STOP_NM  
(normal mode)  
Flash memory in Stop mode, all  
oscillators OFF, no independent  
watchdog  
Supply current in Stop  
mode with voltage  
regulator in Low Power  
regulator mode  
Flash memory in Deep power  
down mode, all oscillators OFF, no  
independent watchdog  
mA  
Supply current in Stop  
mode with voltage  
regulator in main  
regulator and under-  
drive mode  
Flash memory in Deep power  
down mode, main regulator in  
under-drive mode, all oscillators  
OFF, no independent watchdog  
0.19  
0.10  
0.50  
0.40  
6.00  
4.00  
9.00  
7.00  
IDD_STOP_UDM  
(under-drive  
mode)  
Supply current in Stop  
mode with voltage  
regulator in Low Power  
regulator and under-  
drive mode  
Flash memory in Deep power  
down mode, Low Power regulator  
in under-drive mode, all oscillators  
OFF, no independent watchdog  
1. Data based on characterization, tested in production.  
104/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 28. Typical and maximum current consumptions in Standby mode  
Typ(1)  
Max(2)  
TA =  
TA =  
TA =  
TA = 25 °C  
Symbol  
Parameter  
Conditions  
25 °C 85 °C 105 °C Unit  
VDD  
1.7 V  
=
VDD  
2.4 V  
=
VDD =  
3.3 V  
VDD = 3.6 V  
Backup SRAM ON, low-speed  
oscillator (LSE) and RTC ON  
2.80  
3.00  
3.60  
7.00  
6.00  
19.00 36.00  
Backup SRAM OFF, low-  
speed oscillator (LSE) and  
RTC ON  
2.30  
2.60  
3.10  
16.00 31.00  
Supply current  
in Standby  
mode  
IDD_STBY  
µA  
Backup SRAM ON, RTC and  
LSE OFF  
2.30  
1.70  
2.50  
1.90  
2.90 6.00(3) 18.00(3) 35.00(3)  
2.20 5.00(3) 15.00(3) 30.00(3)  
Backup SRAM OFF, RTC and  
LSE OFF  
1. The typical current consumption values are given with PDR OFF (internal reset OFF). When the PDR is OFF (internal reset  
OFF), the typical current consumption is reduced by additional 1.2 µA.  
2. Based on characterization, not tested in production unless otherwise specified.  
3. Based on characterization, tested in production.  
Table 29. Typical and maximum current consumptions in V  
Typ  
mode  
Max(2)  
BAT  
TA =  
105 °C  
TA = 25 °C  
TA = 85 °C  
Symbol Parameter  
Conditions(1)  
Unit  
VBAT = VBAT= VBAT  
1.7 V 2.4 V 3.3 V  
=
VBAT = 3.6 V  
Backup SRAM ON, low-speed  
oscillator (LSE) and RTC ON  
1.28  
0.66  
0.70  
0.10  
1.40  
0.76  
0.72  
0.10  
1.62  
0.97  
0.74  
0.10  
6
3
5
2
11  
5
Backup SRAM OFF, low-speed  
oscillator (LSE) and RTC ON  
Backup  
IDD_VBAT domainsupply  
current  
µA  
Backup SRAM ON, RTC and  
LSE OFF  
10  
4
Backup SRAM OFF, RTC and  
LSE OFF  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed by characterization results.  
DocID024030 Rev 9  
105/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 25. Typical V  
current consumption (LSE and RTC ON/backup RAM OFF)  
BAT  
ꢁꢂꢆ  
ꢃꢂꢄꢆ6  
ꢃꢂꢎ6  
ꢃꢂꢅ6  
ꢁ6  
ꢁꢂꢉ6  
ꢁꢂꢎ6  
ꢍ6  
ꢃꢂꢆ  
ꢈꢂꢆ  
ꢍꢂꢍ6  
ꢍꢂꢄ6  
 #  
ꢁꢆ #  
ꢆꢆ #  
ꢅꢆ #  
ꢃꢈꢆ #  
4EMPERATURE  
-3ꢍꢈꢉꢒꢈ6ꢃ  
Figure 26. Typical V  
current consumption (LSE and RTC ON/backup RAM ON)  
BAT  
ꢃꢂꢄꢆ6  
ꢃꢂꢎ6  
ꢃꢂꢅ6  
ꢁ6  
ꢁꢂꢉ6  
ꢁꢂꢎ6  
ꢍ6  
ꢍꢂꢍ6  
ꢍꢂꢄ6  
 #  
ꢁꢆ #  
ꢆꢆ #  
ꢅꢆ #  
ꢃꢈꢆ #  
4EMPERATURE  
-3ꢍꢈꢉꢒꢃ6ꢃ  
106/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Additional current consumption  
The MCU is placed under the following conditions:  
All I/O pins are configured in analog mode.  
The Flash memory access time is adjusted to fHCLK frequency.  
The voltage scaling is adjusted to fHCLK frequency as follows:  
Scale 3 for f  
120 MHz,  
HCLK  
Scale 2 for 120 MHz < f  
Scale 1 for 144 MHz < f  
144 MHz  
HCLK  
HCLK  
PCLK1  
180 MHz. The over-drive is only ON at 180 MHz.  
The system clock is HCLK, f  
= f  
/4, and f  
= f  
/2.  
HCLK  
HCLK  
PCLK2  
HSE crystal clock frequency is 25 MHz.  
When the regulator is OFF, V12 is provided externally as described in Table 17:  
General operating conditions  
T = 25 °C .  
A
Table 30. Typical current consumption in Run mode, code with data processing running from  
Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch),  
(1)  
V
=1.7 V  
DD  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
168  
150  
144  
120  
90  
88.2  
74.3  
71.3  
52.9  
42.6  
28.6  
15.7  
12.3  
40.6  
30.6  
32.6  
24.7  
19.7  
13.6  
7.7  
All Peripheral  
enabled  
60  
30  
Supply current in  
RUN mode from  
VDD supply  
25  
IDD  
mA  
168  
150  
144  
120  
90  
All Peripheral  
disabled  
60  
30  
25  
6.7  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherls (such as ADC, or  
DAC) is not included.  
DocID024030 Rev 9  
107/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 31. Typical current consumption in Run mode, code with data processing running  
(1)  
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)  
VDD=3.3 V  
VDD=1.7 V  
fHCLK  
(MHz)  
Symbol  
Parameter  
Conditions  
Unit  
IDD12  
IDD  
IDD12  
IDD  
168  
150  
144  
120  
90  
77.8  
70.8  
64.5  
49.9  
39.2  
27.2  
15.6  
13.6  
38.2  
34.6  
31.3  
24.0  
18.1  
12.9  
7.2  
1.3  
1.3  
1.3  
1.2  
1.3  
1.2  
1.2  
1.2  
1.3  
1.3  
1.3  
1.2  
1.4  
1.2  
1.2  
1.2  
76.8  
69.8  
63.6  
49.3  
38.7  
26.8  
15.4  
13.5  
37.0  
33.4  
30.3  
23.2  
18.0  
12.5  
6.9  
1.0  
1.0  
1.0  
0.9  
1.0  
0.9  
0.9  
0.9  
1.0  
1.0  
1.0  
0.9  
1.0  
0.9  
0.9  
0.9  
All Peripherals  
enabled  
60  
30  
Supply current in  
RUN mode from  
V12 and VDD  
supply  
25  
IDD12 / IDD  
mA  
168  
150  
144  
120  
90  
All Peripherals  
disabled  
60  
30  
25  
6.3  
6.1  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
108/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)  
Table 32. Typical current consumption in Sleep mode, regulator ON, V =1.7 V  
DD  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
168  
150  
144  
120  
90  
65.5  
55.5  
53.5  
39.0  
31.6  
21.7  
9.8  
All Peripherals enabled  
60  
30  
25  
8.8  
Supply current in Sleep  
mode from VDD supply  
IDD  
mA  
168  
150  
144  
120  
90  
15.7  
13.7  
12.7  
9.7  
All Peripherals disabled  
7.7  
60  
5.7  
30  
4.7  
25  
2.8  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
DocID024030 Rev 9  
109/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
(1)  
Table 33. Tyical current consumption in Sleep mode, regulator OFF  
VDD=3.3 V  
VDD=1.7 V  
IDD12 IDD  
Unit  
Symbol  
Parameter  
Conditions  
fHCLK (MHz)  
IDD12  
IDD  
180  
168  
150  
144  
120  
90  
61.5  
59.4  
53.9  
49.0  
38.0  
29.3  
20.2  
11.9  
10.4  
14.9  
14.0  
12.6  
11.5  
8.7  
1.4  
1.3  
1.3  
1.3  
1.2  
1.4  
1.2  
1.2  
1.2  
1.4  
1.3  
1.3  
1.3  
1.2  
1.4  
1.2  
1.2  
1.2  
-
-
59.4  
53.9  
49.0  
38.0  
29.3  
20.2  
11.9  
10.4  
-
1.0  
1.0  
1.0  
0.9  
1.1  
0.9  
0.9  
0.9  
-
All Peripherals  
enabled  
60  
30  
Supply current  
in Sleep mode  
from V12 and  
VDD supply  
25  
IDD12/IDD  
mA  
180  
168  
150  
144  
120  
90  
14.0  
12.6  
11.5  
8.7  
1.0  
1.0  
1.0  
0.9  
1.1  
0.9  
0.9  
0.9  
All Peripherals  
disabled  
7.1  
7.1  
60  
5.0  
5.0  
30  
3.1  
3.1  
25  
2.8  
2.8  
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,  
or DAC) is not included.  
110/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 35: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DocID024030 Rev 9  
111/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
(1)  
Table 34. Switching output I/O current consumption  
I/O toggling  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
frequency  
(fsw)  
2 MHz  
8 MHz  
0.0  
0.2  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
0.6  
VDD = 3.3 V  
1.1  
(2)  
C= CINT  
1.3  
1.8  
1.9  
I/O switching  
Current  
IDDIO  
mA  
0.1  
8 MHz  
0.4  
VDD = 3.3 V  
CEXT = 0 pF  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
1.23  
2.43  
2.93  
3.86  
4.07  
0.18  
0.67  
2.09  
3.6  
C = CINT + CEXT  
+ CS  
8 MHz  
VDD = 3.3 V  
25 MHz  
50 MHz  
60 MHz  
84 MHz  
90 MHz  
2 MHz  
CEXT = 10 pF  
C = CINT + CEXT  
+ CS  
4.5  
7.8  
9.8  
0.26  
1.01  
3.14  
6.39  
10.68  
0.33  
1.29  
4.23  
11.02  
I/O switching  
Current  
IDDIO  
mA  
VDD = 3.3 V  
8 MHz  
CEXT = 22 pF  
25 MHz  
50 MHz  
60 MHz  
2 MHz  
C = CINT + CEXT  
+ CS  
VDD = 3.3 V  
8 MHz  
CEXT = 33 pF  
C = CINT + Cext  
+ CS  
25 MHz  
50 MHz  
1.  
CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).  
2. This test is performed by cutting the LQFP176 package pin (pad removal).  
112/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
I/O compensation cell enabled.  
The ART accelerator is ON.  
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.  
HCLK is the system clock. f  
= f  
/4, and f  
= f /2.  
HCLK  
PCLK1  
HCLK  
PCLK2  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
f
f
= 180 MHz (Scale1 + over-drive ON), f  
= 120 MHz (Scale 3)"  
= 144 MHz (Scale 2),  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
Table 35. Peripheral current consumption  
I
DD( Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
GPIOA  
2.50  
2.56  
2.44  
2.50  
2.44  
2.44  
2.39  
2.33  
2.39  
2.33  
2.33  
27.00  
0.44  
0.78  
25.33  
24.72  
28.50  
2.36  
2.36  
2.29  
2.36  
2.29  
2.29  
2.22  
2.15  
2.22  
2.15  
2.15  
24.86  
0.42  
0.69  
23.26  
22.71  
26.32  
2.08  
2.08  
2.00  
2.08  
2.00  
2.00  
2.00  
1.92  
2.00  
1.92  
1.92  
21.92  
0.33  
0.58  
20.50  
20.00  
23.33  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
GPIOH  
GPIOI  
AHB1  
(up to  
GPIOJ  
µA/MHz  
GPIOK  
180 MHz)  
OTG_HS+ULPI  
CRC  
BKPSRAM  
DMA1  
DMA2  
DMA2D  
ETH_MAC  
ETH_MAC_TX  
ETH_MAC_RX  
ETH_MAC_PTP  
21.56  
20.07  
17.75  
DocID024030 Rev 9  
113/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 35. Peripheral current consumption (continued)  
I
DD( Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
OTG_FS  
DCMI  
25.67  
3.72  
2.28  
26.67  
3.40  
2.36  
23.58  
AHB2  
3.00  
2.17  
µA/MHz  
(up to  
180 MHz)  
RNG  
AHB3  
FMC  
21.39  
19.79  
17.50  
µA/MHz  
µA/MHz  
(up to  
180 MHz)  
Bus matrix(2)  
14.06  
13.19  
11.75  
TIM2  
TIM3  
17.56  
14.22  
14.89  
17.33  
2.89  
3.11  
7.33  
4.89  
5.56  
11.11  
4.22  
4.44  
4.00  
4.00  
4.00  
3.78  
4.00  
4.00  
4.00  
3.11  
3.56  
2.89  
3.33  
6.89  
6.67  
2.89  
0.89  
16.42  
13.36  
13.64  
16.42  
2.53  
2.81  
6.97  
4.47  
5.31  
10.31  
3.92  
4.19  
3.92  
3.92  
3.92  
3.92  
3.92  
3.92  
3.92  
3.08  
3.36  
2.81  
3.08  
6.42  
6.14  
2.25  
0.86  
14.47  
11.80  
12.13  
14.47  
2.47  
2.47  
6.13  
4.13  
4.80  
9.13  
3.47  
3.80  
3.47  
3.47  
3.47  
3.47  
3.47  
3.47  
3.47  
2.80  
3.13  
2.47  
2.80  
5.80  
5.47  
2.13  
0.80  
TIM4  
TIM5  
TIM6  
TIM7  
TIM12  
TIM13  
TIM14  
PWR  
USART2  
USART3  
UART4  
UART5  
UART7  
UART8  
I2C1  
APB1  
µA/MHz  
(up to  
45 MHz)  
I2C2  
I2C3  
SPI2(3)  
SPI3(3)  
I2S2  
I2S3  
CAN1  
CAN2  
DAC(4)  
WWDG  
114/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 35. Peripheral current consumption (continued)  
I
DD( Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
SDIO  
8.11  
17.11  
17.33  
7.22  
4.56  
4.78  
4.67  
4.78  
4.56  
1.44  
4.00  
4.00  
1.44  
1.44  
1.44  
0.78  
39.89  
3.78  
8.75  
15.97  
16.11  
6.67  
4.31  
4.44  
4.31  
4.44  
4.17  
1.39  
3.75  
3.75  
1.39  
1.39  
1.39  
0.69  
37.22  
3.47  
7.83  
14.17  
14.33  
6.00  
3.83  
4.00  
3.83  
4.00  
TIM1  
TIM8  
TIM9  
TIM10  
TIM11  
ADC1(5)  
ADC2(5)  
ADC3(5)  
SPI1  
APB2  
3.67  
µA/MHz  
1.17  
(up to  
90 MHz)  
USART1  
USART6  
SPI4  
3.33  
3.33  
1.17  
1.17  
1.17  
0.67  
33.17  
3.17  
SPI5  
SPI6  
SYSCFG  
LCD_TFT  
SAI1  
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.  
2. The BusMatrix is automatically active when at least one master is ON.  
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.  
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of  
0.8 mA per DAC channel for the analog part.  
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of  
1.6 mA per ADC for the analog part.  
DocID024030 Rev 9  
115/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 36. Low-power mode wakeup timings  
Typ(1)  
Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
CPU  
clock  
cycle  
(2)  
tWUSLEEP  
Wakeup from Sleep  
-
6
-
-
Main regulator is ON  
13.6  
Main regulator is ON and Flash  
memory in Deep power down mode  
93  
111  
Wakeup from Stop mode  
with MR/LP regulator in  
normal mode  
(2)  
tWUSTOP  
Low power regulator is ON  
22  
32  
Low power regulator is ON and Flash  
memory in Deep power down mode  
103  
126  
µs  
Main regulator in under-drive mode  
(Flash memory in Deep power-down  
mode)  
105  
128  
Wakeup from Stop mode  
with MR/LP regulator in  
Under-drive mode  
(2)  
tWUSTOP  
Low power regulator in under-drive  
mode  
125  
318  
155  
412  
(Flash memory in Deep power-down  
mode )  
tWUSTDBY Wakeup from Standby  
(2)(3)  
mode  
1. Guaranteed by characterization results.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
3. WUSTDBY maximum value is given at –40 °C.  
t
116/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 27.  
The characteristics given in Table 37 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 17.  
Table 37. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
DocID024030 Rev 9  
117/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 56: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 28.  
The characteristics given in Table 38 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 17.  
Table 38. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
OSC32_IN input capacitance(1)  
-
-
50  
Cin(LSE)  
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
Figure 27. High-speed external clock source AC timing diagram  
6
(3%(  
 
ꢃꢈ   
(3%,  
6
T
T
T
7ꢊ(3%ꢋ  
T
T
7ꢊ(3%ꢋ  
Rꢊ(3%ꢋ  
Fꢊ(3%ꢋ  
4
(3%  
F
(3%?EXT  
%XTERNAL  
CLOCK SOURCE  
)
,
/3# ?) .  
34-ꢍꢁ&  
AIꢃꢎꢆꢁꢅ  
118/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 28. Low-speed external clock source AC timing diagram  
9
/6(+  
ꢅꢄꢕ  
 
9
/6(/  
W
W
W
:ꢌ/6(ꢍ  
W
W
:ꢌ/6(ꢍ  
Uꢌ/6(ꢍ  
Iꢌ/6(ꢍ  
7
/6(  
I
/6(BH[W  
([WHUQDO  
,
/
26&ꢉꢃB,1  
FORFNꢊVRXUFH  
670ꢉꢃ)  
DLꢀꢈꢆꢃꢅ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 39. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 39. HSE 4-26 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
4
-
-
26  
-
MHz  
200  
kΩ  
V
DD=3.3 V,  
ESR= 30 ,  
CL=5 pF@25 MHz  
-
-
450  
530  
-
-
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 ,  
CL=10 pF@25 MHz  
(2)  
ACCHSE  
500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is based on characterization and not tested in production. It is measured  
for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
DocID024030 Rev 9  
119/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 29). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 29. Typical application with an 8 MHz crystal  
5HVRQDWRUꢊZLWK  
LQWHJUDWHGꢊFDSDFLWRUV  
&
/ꢀ  
I
26&B,1  
+6(  
%LDVꢊ  
FRQWUROOHG  
JDLQ  
ꢁꢊ0+]  
UHVRQDWRU  
5
)
26&B287  
ꢌꢀꢍ  
670ꢉꢃ)  
5
(;7  
&
/ꢃ  
DLꢀꢈꢆꢉꢄ  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 40. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
Feedback resistor  
LSE current consumption  
LSE accuracy  
-
18.4  
-
1
MΩ  
µA  
IDD  
-
-
-
(2)  
ACCLSE  
500  
500  
ppm  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
-
0.56 µA/V  
(3)  
tSU(LSE)  
startup time  
VDD is stabilized  
2
-
s
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is based on characterization and not tested in production. It is  
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
120/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 30. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢊZLWK  
LQWHJUDWHGꢊFDSDFLWRUV  
&
/ꢀ  
I
26&ꢉꢃB,1  
/6(  
%LDVꢊ  
FRQWUROOHG  
JDLQ  
ꢉꢃꢐꢈꢇꢁꢊN+]  
UHVRQDWRU  
5
)
26&ꢉꢃB287  
670ꢉꢃ)  
&
/ꢃ  
DLꢀꢈꢆꢉꢀ  
6.3.10  
Internal clock source characteristics  
The parameters given in Table 41 and Table 42 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 17.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 41. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
fHSI  
Frequency  
-
-
-
-
16  
-
1
MHz  
%
HSI user-trimming step (2)  
Accuracy of the HSI oscillator  
HSI oscillator startup time  
-
-
TA = –40 to 105 °C(3) 8  
TA = –10 to 85 °C(3) 4  
4.5  
4
%
ACCHSI  
-
%
TA = 25 °C(4)  
1  
-
1
%
(2)  
tsu(HSI)  
-
-
2.2  
4
µs  
HSI oscillator power  
consumption  
(2)  
IDD(HSI)  
-
-
60  
80  
µA  
1.  
VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Factory calibrated, parts not soldered.  
DocID024030 Rev 9  
121/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 31. ACCHSI accuracy versus temperature  
ꢏꢂꢄ  
ꢃꢆ  
ꢆꢆ  
ꢁꢆ  
ꢀꢄꢆ  
ꢀꢃꢆ  
7$ꢀꢁƒ&ꢃ  
ꢏꢃ  
ꢏꢂ  
ꢏꢇ  
ꢏꢁ  
0LQ  
0D[  
7\SLFDO  
06Yꢂꢀꢅꢃꢆ9ꢀ  
1. Guaranteed by characterization results.  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 42. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
-
0.4  
0.6  
µA  
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Guaranteed by design.  
122/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 32. ACC  
versus temperature  
LSI  
-3ꢃꢒꢈꢃꢍ6ꢃ  
6.3.11  
PLL characteristics  
The parameters given in Table 43 and Table 44 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 43. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
0.95(2)  
24  
1
-
2.10  
180  
MHz  
MHz  
fPLL_OUT  
PLL multiplier output clock  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
48  
75  
MHz  
MHz  
PLL VCO output  
100  
75  
-
-
-
432  
200  
300  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
PLL lock time  
µs  
100  
DocID024030 Rev 9  
123/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 43. Main PLL characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RMS  
-
25  
-
peak  
to  
peak  
Cycle-to-cycle jitter  
Period Jitter  
-
-
-
150  
15  
-
-
-
System clock  
120 MHz  
RMS  
peak  
to  
200  
Jitter(3)  
ps  
peak  
Main clock output (MCO) for  
RMII Ethernet  
Cycle to cycle at 50 MHz  
on 1000 samples  
-
-
-
32  
40  
330  
-
-
-
-
Main clock output (MCO) for MII Cycle to cycle at 25 MHz  
Ethernet  
on 1000 samples  
Cycle to cycle at 1 MHz  
on 1000 samples  
Bit Time CAN jitter  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLL power consumption on  
VDDA  
(4)  
IDDA(PLL)  
-
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design.  
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed by characterization results.  
Table 44. PLLI2S (audio PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
fPLLI2S_OUT  
fVCO_OUT  
PLLI2S input clock(1)  
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
MHz  
MHz  
MHz  
PLLI2S multiplier output clock  
PLLI2S VCO output  
-
100  
75  
100  
-
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLI2S lock time  
µs  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
-
ps  
Master I2S clock jitter  
WS I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
90  
-
-
ps  
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
400  
124/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 44. PLLI2S (audio PLL) characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
-
mA  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed by characterization results.  
Table 45. PLLISAI (audio and LCD-TFT PLL) characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLSAI_IN  
fPLLSAI_OUT  
fVCO_OUT  
PLLSAI input clock(1)  
0.95(2)  
1
-
2.10  
216  
432  
200  
300  
-
MHz  
MHz  
MHz  
PLLSAI multiplier output clock  
PLLSAI VCO output  
-
100  
75  
100  
-
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
-
tLOCK  
PLLSAI lock time  
µs  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
90  
-
ps  
ps  
Main SAI clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
-
-
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
FS clock jitter  
400  
ps  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLSAI power consumption on  
VDD  
(4)  
IDD(PLLSAI)  
-
-
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLSAI power consumption on  
VDDA  
(4)  
IDDA(PLLSAI)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed by characterization results.  
DocID024030 Rev 9  
125/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.12  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.  
Table 46. SSCG parameters constraint  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
Peak modulation depth  
-
0.25  
-
-
-
-
10  
2
KHz  
%
MODEPER * INCSTEP  
1. Guaranteed by design.  
2
15 1  
-
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
PLL_IN  
MOD  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
126/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 33 and Figure 34 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 33. PLL output clock waveforms in center spread mode  
&REQUENCY ꢊ0,,?/54ꢋ  
MD  
&ꢈ  
MD  
4IME  
TMODE  
ꢁXTMODE  
AIꢃꢎꢁꢒꢃ  
Figure 34. PLL output clock waveforms in down spread mode  
)UHTXHQF\ꢊꢌ3//B287ꢍ  
)ꢄ  
ꢃ[PG  
7LPH  
WPRGH  
ꢃ[WPRGH  
DLꢀꢈꢃꢅꢃE  
DocID024030 Rev 9  
127/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.13  
Memory characteristics  
Flash memory  
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.  
The devices are shipped to customers with the Flash memory erased.  
Table 47. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
-
-
-
5
8
-
IDD  
Supply current Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
mA  
12  
Table 48. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
800  
Program/eraseparallelism  
(PSIZE) = x 8  
400  
300  
250  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
600  
500  
ms  
ms  
s
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1200 2400  
Program/eraseparallelism  
(PSIZE) = x 16  
700  
550  
2
1400  
1100  
4
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
Program/eraseparallelism  
(PSIZE) = x 16  
1.3  
1
2.6  
2
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
16  
11  
8
32  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
22  
s
Program/eraseparallelism  
(PSIZE) = x 32  
16  
128/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Symbol  
Electrical characteristics  
Table 48. Flash memory programming (continued)  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8  
-
-
-
16  
11  
8
32  
22  
16  
Program/eraseparallelism  
(PSIZE) = x 16  
tBE  
Bank erase time  
s
Program/eraseparallelism  
(PSIZE) = x 32  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed by characterization results.  
2. The maximum programming time is measured after 100K erase operations.  
Table 49. Flash memory programming with V  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
Double word programming  
-
-
16  
230  
490  
875  
6.9  
6.9  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
tBE  
Mass erase time  
Bank erase time  
-
-
s
s
-
-
Vprog  
VPP  
Programming voltage  
VPP voltage range  
2.7  
7
3.6  
9
V
V
-
Minimum current sunk on  
the VPP pin  
IPP  
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design.  
2. The maximum programming time is measured after 100K erase operations.  
3. VPP should only be connected during programming/erasing.  
DocID024030 Rev 9  
129/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 50. Flash memory endurance and data retention  
Value  
Min(1)  
Symbol  
Parameter  
Conditions  
Unit  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND Endurance  
kcycles  
10  
1 kcycle(2) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(2) at TA = 105 °C  
Years  
10 kcycles(2) at TA = 55 °C  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
6.3.14  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 51. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 51. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP176, TA =  
+25 °C, fHCLK = 168 MHz, conforms  
to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP176, TA =+25 °C,  
fHCLK = 168 MHz, conforms to  
IEC 61000-4-2  
VEFTB  
When the application is exposed to a noisy environment, it is recommended to avoid pin  
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,  
PA2, PH2, PH3, PH4, PH5, PA3, PA4, PA5, PA6, PA7, PC4, and PC5.  
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as  
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm  
on PCB).  
130/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
?
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 52. EMI characteristics  
Max vs.  
Max vs.  
Monitored  
frequency band  
[fHSE/fCPU  
]
[fHSE/fCPU]  
Symbol Parameter  
Conditions  
Unit  
25/168 MHz 25/180 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
16  
23  
19  
23  
VDD = 3.3 V, TA = 25 °C, LQFP176  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral  
clocks enabled, clock dithering  
disabled.  
dBµV  
130 MHz to  
1GHz  
25  
22  
SAE EMI Level  
0.1 to 30 MHz  
30 to 130 MHz  
4
17  
8
4
-
dBµV  
-
SEMI  
Peak level  
16  
10  
VDD = 3.3 V, TA = 25 °C, LQFP176  
package, conforming to SAE J1752/3  
EEMBC, ART ON, all peripheral  
clocks enabled, clock dithering  
enabled  
130 MHz to  
1GHz  
11  
16  
SAE EMI level  
3.5  
3.5  
DocID024030 Rev 9  
131/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.15  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESD S5.3.1 standards.  
Table 53. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
VESD(HBM) voltage (human body  
model)  
TA = +25 °C conforming to  
ANSI/ESDA/JEDEC JS-001  
2
2000  
TA = +25 °C conforming to ANSI/ESD S5.3.1,  
LQFP100/144/176, UFBGA169/176,  
TFBGA176 and WLCSP143 packages  
V
C3  
C3  
250  
250  
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C conforming to ANSI/ESD S5.3.1,  
LQFP208 package  
1. Guaranteed by characterization results.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 54. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
132/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.16  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –  
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 55.  
Table 55. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0 pin  
0  
0  
NA  
NA  
Injected current on NRST pin  
Injected current on PA0, PA1, PA2, PA3, PA6, PA7, PB0,  
PC0, PC1, PC2, PC3, PC4, PC5, PH1, PH2, PH3, PH4, PH5  
IINJ  
0  
NA  
mA  
Injected current on TTa pins: PA4 and PA5  
Injected current on any other FT pin  
0  
5  
+5  
NA  
1. NA = not applicable.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
DocID024030 Rev 9  
133/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.17  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are  
derived from tests performed under the conditions summarized in Table 17. All I/Os are  
CMOS and TTL compliant.  
Table 56. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.35VDD 0.04  
(1)  
FT, TTa and NRST I/O input  
low level voltage  
1.7 VVDD3.6 V  
-
-
(2)  
0.3VDD  
VIL  
V
1.75 VVDD 3.6 V, –  
40 °CTA 105 °C  
-
-
-
BOOT0 I/O input low level  
voltage  
0.1VDD+0.1(1)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
-
0.45VDD+0.3(1)  
FT, TTa and NRST I/O input  
high level voltage(5)  
1.7 VVDD3.6 V  
-
-
(2)  
0.7VDD  
1.75 VVDD 3.6 V, –  
40 °CTA 105 °C  
VIH  
V
BOOT0 I/O input high level  
voltage  
0.17VDD+0.7(1)  
-
-
-
-
-
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
FT, TTa and NRST I/O input  
hysteresis  
(3)  
1.7 VVDD3.6 V  
10%VDD  
1.75 VVDD 3.6 V, –  
40 °CTA 105 °C  
VHYS  
V
BOOT0 I/O input hysteresis  
0.1  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
I/O input leakage current (4)  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
µA  
I/O FT input leakage current (5)  
134/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 56. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
30  
40  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
VIN = VSS  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
7
10  
40  
14  
50  
kΩ  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
30  
Weak pull-  
down  
RPD  
VIN = VDD  
equivalent  
resistor(7)  
PA10/PB12  
(OTG_FS_ID,  
OTG_HS_ID)  
7
-
10  
5
14  
-
(8)  
CIO  
I/O pin capacitance  
-
pF  
1. Guaranteed by design.  
2. Tested in production.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O  
current injection susceptibility  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection  
susceptibility  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the  
series resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 35.  
DocID024030 Rev 9  
135/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 35. FT I/O input characteristics  
9,/ꢒ9,+ꢊꢌ9ꢍ  
ꢃꢐꢆꢃ  
77/ꢊUHTXLUHPHQWꢊ  
9,+PLQꢊ ꢊꢃ9  
ꢃꢐꢄ  
ꢀꢐꢅꢃ  
ꢀꢐꢈ  
ꢀꢐꢃꢃ  
ꢀꢐꢀꢅ  
$UHDꢊQRWꢊ  
GHWHUPLQHG  
ꢀꢐꢄꢇꢆ  
ꢄꢐꢁ  
77/ꢊUHTXLUHPHQWꢊ9,/PD[ꢊ  
 ꢊꢄꢐꢁ9  
7HVWHGꢀLQꢀSURGXFWLRQꢀꢀꢄꢀ&026ꢀUHTXLUHPHQWꢀ9,/PD[ꢀ ꢀꢅꢆꢈ9''  
ꢄꢐꢆꢆ  
ꢄꢐꢆꢀ  
9''ꢊꢌ9ꢍ  
ꢀꢐꢈ  
ꢃꢐꢄ  
ꢃꢐꢂ  
ꢃꢐꢈ  
ꢉꢐꢉ  
ꢉꢐꢇ  
06ꢉꢉꢈꢂꢇ9ꢀ  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14, PC15 and PI8 which  
OL OH  
can sink or source up to 3mA. When using the PC13 to PC15 and PI8 GPIOs in output  
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 15).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 15).  
VSS  
136/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 57 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 17. All I/Os are CMOS and TTL compliant.  
Table 57. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(1)  
VOL  
Output low level voltage for an I/O pin  
CMOS port(2)  
IIO = +8 mA  
-
0.4  
V
(3)  
VOH  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
VDD 0.4  
-
2.7 V VDD 3.6 V  
(1)  
VOL  
TTL port(2)  
IIO =+ 8mA  
-
0.4  
V
(3)  
VOH  
2.4  
-
2.7 V VDD 3.6 V  
(1)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3(4)  
IIO = +20 mA  
V
(3)  
VDD1.3(4)  
-
2.7 V VDD 3.6 V  
VOH  
VOL  
-
0.4(4)  
(1)  
IIO = +6 mA  
V
(3)  
VDD0.4(4)  
-
-
1.8 V VDD 3.6 V  
VOH  
VOL  
0.4(5)  
(1)  
IIO = +4 mA  
V
VOH  
VDD0.4(5)  
-
(3)  
1.7 V VDD 3.6V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data.  
5. Guaranteed by design.  
DocID024030 Rev 9  
137/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 36 and  
Table 58, respectively.  
Unless otherwise specified, the parameters given in Table 58 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17.  
(1)(2)  
Table 58. I/O AC characteristics  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
8
4
3
MHz  
ns  
00  
Output high to low level fall  
time and output low to high  
level rise time  
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V to  
3.6 V  
-
-
100  
tr(IO)out  
CL = 50 pF, VDD2.7 V  
CL = 50 pF, VDD1.8 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD1.8 V  
CL = 10 pF, VDD1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
10  
fmax(IO)out Maximum frequency(3)  
MHz  
50  
20  
01  
12.5  
10  
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
MHz  
ns  
20  
10  
50(4)  
100(4)  
25  
fmax(IO)out Maximum frequency(3)  
50  
10  
42.5  
6
Output high to low level fall  
time and output low to high  
level rise time  
4
tf(IO)out  
tr(IO)out  
/
10  
6
138/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)(2)  
Table 58. I/O AC characteristics  
Parameter  
(continued)  
OSPEEDRy  
[1:0] bit  
Symbol  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100(4)  
50  
42.5  
MHz  
fmax(IO)out Maximum frequency(3)  
180(4)  
100  
72.5  
4
11  
6
Output high to low level fall  
time and output low to high  
level rise time  
7
tf(IO)out  
/
ns  
2.5  
tr(IO)out  
3.5  
4
Pulse width of external signals  
-
tEXTIpw detected by the EXTI  
controller  
-
10  
-
-
ns  
1. Guaranteed by design.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of  
the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 36.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
Figure 36. I/O AC characteristics definition  
ꢅꢄꢕ  
ꢀꢄꢕ  
ꢆꢄꢕ  
ꢆꢄꢕ  
ꢅꢄꢕ  
W
ꢀꢄꢕ  
W
(;7(51$/  
287387  
21ꢊ&/  
Uꢌ,2ꢍRXW  
Iꢌ,2ꢍRXW  
7
0D[LPXPꢊIUHTXHQF\ꢊLVꢊDFKLHYHGꢊLIꢊꢌW ꢓꢊW ꢍꢊ”ꢊꢌꢃꢒꢉꢍ7ꢊDQGꢊLIꢊWKHꢊGXW\ꢊF\FOHꢊLVꢊꢌꢂꢆꢏꢆꢆꢕꢍꢊ  
Uꢊ  
I
ZKHQꢊORDGHGꢊE\ꢊ&  
/
ꢊVSHFLILHGꢊLQꢊWKHꢊWDEOHꢊ³ꢊ,ꢀ2ꢁ$&ꢁFKDUDFWHULVWLFV´ꢐꢊ  
DLꢀꢂꢀꢉꢀG  
DocID024030 Rev 9  
139/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.18  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 56: I/O static characteristics).  
PU  
Unless otherwise specified, the parameters given in Table 59 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 17.  
Table 59. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RPU  
Weak pull-up equivalent resistor(1)  
NRST Input filtered pulse  
VIN = VSS  
30  
-
40  
-
50  
kΩ  
ns  
ns  
µs  
(2)  
VF(NRST)  
100  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
300  
20  
-
-
-
TNRST_OUT Generated reset pulse duration  
Internal Reset source  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design.  
Figure 37. Recommended NRST pin protection  
9
''  
([WHUQDO  
UHVHWꢊFLUFXLW  
ꢌꢀꢍ  
5
38  
ꢌꢃꢍ  
,QWHUQDOꢊ5HVHW  
1567  
)LOWHU  
ꢄꢐꢀꢊ—)  
670ꢉꢃ)  
DLꢀꢂꢀꢉꢃF  
1. The reset network protects the device against parasitic resets.  
2. The external capacitor must be placed as close as possible to the device.  
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 59. Otherwise the reset is not taken into account by the device.  
140/238  
DocID024030 Rev 9  
 
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.19  
TIM timer characteristics  
The parameters given in Table 60 are guaranteed by design.  
Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 60. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
or 2 or 4, fTIMxCLK  
=
tTIMxCLK  
1
-
180 MHz  
tres(TIM)  
Timer resolution time  
AHB/APBx prescaler>4,  
fTIMxCLK = 90 MHz  
tTIMxCLK  
1
-
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK/2  
16/32  
0
-
MHz  
bit  
f
TIMxCLK = 180 MHz  
ResTIM  
Timer resolution  
Maximum possible count  
with 32-bit counter  
65536 ×  
65536  
tMAX_COUNT  
tTIMxCLK  
-
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the  
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK =  
4x PCLKx.  
6.3.20  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s.  
2
The I C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to RM0090 reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present. Refer to  
DD  
2
for more details on the I C I/O characteristics  
Section 6.3.17: I/O port characteristics  
.
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
DocID024030 Rev 9  
141/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
(1)  
Table 61. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 62 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 62. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode, SPI1/4/5/6,  
2.7 VVDD3.6 V  
45  
45  
Receiver  
-
-
Slave mode,  
SPI1/4/5/6,  
2.7 VVDD3.6 V  
Transmitter/  
full-duplex  
38(2)  
fSCK  
SPI clock frequency  
MHz  
1/tc(SCK)  
Master mode, SPI1/2/3/4/5/6,  
1.7 VVDD3.6 V  
22.5  
22.5  
70  
-
-
Slave mode, SPI1/2/3/4/5/6,  
1.7 VVDD3.6 V  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
142/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)  
Table 62. SPI dynamic characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode, SPI presc = 2,  
2.7 VVDD3.6 V  
TPCLK  
tw(SCKH)  
TPCLK 0.5  
TPCLK+0.5  
SCK high and low time  
Master mode, SPI presc = 2,  
1.7 VVDD3.6 V  
TPCLK  
tw(SCKL)  
TPCLK 2  
TPCLK+2  
tsu(NSS)  
th(NSS)  
tsu(MI)  
tsu(SI)  
th(MI)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
Master mode  
4TPCLK  
-
-
2TPCLK  
3
0
-
-
-
-
-
-
Data input setup time  
Data input hold time  
Slave mode  
-
ns  
Master mode  
0.5  
2
-
th(SI)  
Slave mode  
-
ta(SO  
)
Data output access time Slave mode, SPI presc = 2  
Slave mode, SPI1/4/5/6,  
2.7 VVDD3.6 V  
Data output disable time  
0
4TPCLK  
0
0
-
-
-
8.5  
16.5  
13  
tdis(SO)  
Slave mode, SPI1/2/3/4/5/6 and  
1.7 VVDD3.6 V  
Slave mode (after enable edge),  
SPI1/4/5/6 and 2.7V VDD 3.6V  
11  
14  
15.5  
15.5  
-
Slave mode (after enable edge),  
SPI2/3, 2.7 VVDD3.6 V  
-
15  
tv(SO)  
th(SO)  
Data output valid/hold  
time  
Slave mode (after enable edge),  
SPI1/4/5/6, 1.7 VVDD3.6 V  
-
19  
Slave mode (after enable edge),  
SPI2/3, 1.7 VVDD3.6 V  
ns  
-
17.5  
2.5  
Master mode (after enable edge),  
-
SPI1/4/5/6, 2.7 VVDD3.6 V  
Data output valid time  
tv(MO)  
Master mode (after enable edge),  
SPI1/2/3/4/5/6, 1.7 VVDD3.6 V  
-
-
-
4.5  
-
th(MO)  
Master mode (after enable edge)  
0
Data output hold time  
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%  
DocID024030 Rev 9  
143/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 38. SPI timing diagram - slave mode and CPHA = 0  
166ꢊLQSXW  
W
68ꢌ166ꢍ  
W
Kꢌ166ꢍ  
WFꢌ6&.ꢍ  
&3+$ ꢄ  
&32/ ꢄ  
W
Zꢌ6&.+ꢍ  
&3+$ ꢄ  
&32/ ꢀ  
WZꢌ6&./ꢍ  
W
WUI66&&..  
W
9ꢌ62ꢍ  
WKꢌ62ꢍ  
WGLVꢌ62ꢍ  
WDꢌ62ꢍ  
0,62  
06%ꢊ287  
%,7ꢇꢊ287  
%,7ꢀꢊ,1  
/6%ꢊ287  
287387  
WVXꢌ6,ꢍ  
026,  
,1387  
06%ꢊ,1  
/6%ꢊ,1  
WKꢌ6,ꢍ  
DLꢀꢂꢀꢉꢂF  
Figure 39. SPI timing diagram - slave mode and CPHA = 1  
166ꢊLQSXW  
W68ꢌ166ꢍ  
WKꢌ166ꢍ  
WFꢌ6&.ꢍ  
&3+$ ꢀ  
&32/ ꢄ  
&3+$ ꢀ  
&32/ ꢀ  
WZꢌ6&.+ꢍ  
WZꢌ6&./ꢍ  
WUꢌ6&.ꢍ  
WIꢌ6&.ꢍ  
WKꢌ62ꢍ  
WGLVꢌ62ꢍ  
WYꢌ62ꢍ  
WDꢌ62ꢍ  
0,62  
06%ꢊ287  
06%ꢊ,1  
%,7ꢇꢊ287  
/6%ꢊ287  
287387  
WKꢌ6,ꢍ  
WVXꢌ6,ꢍ  
026,  
,1387  
/6%ꢊ,1  
%,7ꢊꢀꢊ,1  
DLꢀꢂꢀꢉꢆE  
144/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 40. SPI timing diagram - master mode  
+LJK  
166ꢊLQSXW  
W
Fꢌ6&.ꢍ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢀ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢀ  
W
W
W
W
Zꢌ6&.+ꢍ  
Zꢌ6&./ꢍ  
Uꢌ6&.ꢍ  
W
VXꢌ0,ꢍ  
Iꢌ6&.ꢍ  
0,62  
,1387  
%,7ꢇꢊ,1  
/6%ꢊ,1  
06%ꢊ,1  
W
Kꢌ0,ꢍ  
026,  
287387  
%,7ꢀꢊ287  
/6%ꢊ287  
06%ꢊ287  
W
W
Kꢌ02ꢍ  
Yꢌ02ꢍ  
DLꢀꢂꢀꢉꢇF  
DocID024030 Rev 9  
145/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 63 for the I S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 63. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256x8K  
256xFs(2)  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64xFs  
fCK  
MHz  
%
64xFs  
DCK  
tv(WS)  
I2S clock frequency duty cycle Slave receiver  
30  
0
70  
6
-
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
th(WS)  
0
tsu(WS)  
1
-
th(WS)  
Slave mode  
0
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
7.5  
2
-
Data input setup time  
Data input hold time  
-
ns  
0
-
0
-
tv(SD_ST)  
th(SD_ST)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
-
27  
Data output valid time  
tv(SD_MT)  
20  
-
th(SD_MT) Data output hold time  
Master transmitter (after enable edge)  
2.5  
1. Guaranteed by characterization results.  
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).  
Note:  
Refer to the I2S section of RM0090 reference manual for more details on the sampling  
frequency (F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
146/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
2
(1)  
Figure 41. I S slave timing diagram (Philips protocol)  
W
Fꢌ&.ꢍ  
&32/ꢊ ꢊꢄ  
&32/ꢊ ꢊꢀ  
:6ꢊLQSXW  
W
W
W
W
Zꢌ&./ꢍ  
Kꢌ:6ꢍ  
Zꢌ&.+ꢍ  
W
W
W
Yꢌ6'B67ꢍ  
Kꢌ6'B67ꢍ  
VXꢌ:6ꢍ  
6'  
6'  
WUDQVPLW  
UHFHLYH  
ꢌꢃꢍ  
/6%ꢊWUDQVPLW  
06%ꢊWUDQVPLW  
06%ꢊUHFHLYH  
%LWQꢊWUDQVPLW  
/6%ꢊWUDQVPLW  
W
VXꢌ6'B65ꢍ  
ꢌꢃꢍ  
Kꢌ6'B65ꢍ  
/6%ꢊUHFHLYH  
%LWQꢊUHFHLYH  
/6%ꢊUHFHLYH  
DLꢀꢂꢁꢁꢀE  
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 42. I S master timing diagram (Philips protocol)  
T
T
Rꢊ#+ꢋ  
Fꢊ#+ꢋ  
T
Cꢊ#+ꢋ  
#0/,    
#0/,    
73 OUTPUT  
T
Wꢊ#+(ꢋ  
T
T
Hꢊ73ꢋ  
T
Vꢊ73ꢋ  
Wꢊ#+,ꢋ  
T
T
Vꢊ3$?-4ꢋ  
Hꢊ3$?-4ꢋ  
ꢊꢁꢋ  
3$  
TRANSMIT  
RECEIVE  
,3" TRANSMIT  
T
-3" TRANSMIT  
-3" RECEIVE  
"ITN TRANSMIT  
,3" TRANSMIT  
T
Hꢊ3$?-2ꢋ  
SUꢊ3$?-2ꢋ  
ꢊꢁꢋ  
3$  
,3" RECEIVE  
"ITN RECEIVE  
,3" RECEIVE  
AIꢃꢉꢅꢅꢉB  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID024030 Rev 9  
147/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 64 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are performed at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (SCK,SD,WS).  
(1)  
Table 64. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCKL  
SAI Main clock output  
-
256 x 8K 256xFs(2)  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64xFs  
64xFs  
FSCK  
SAI clock frequency  
MHz  
%
SAI clock frequency duty  
cycle  
DSCK  
Slave receiver  
30  
70  
tv(FS)  
FS valid time  
FS setup time  
Master mode  
Slave mode  
8
2
8
0
5
3
0
0
22  
-
tsu(FS)  
Master mode  
Slave mode  
-
th(FS)  
FS hold time  
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
-
Data input setup time  
Data input hold time  
-
-
ns  
-
tv(SD_ST)  
th(SD_ST)  
Slave transmitter (after enable  
edge)  
-
-
22  
20  
-
Data output valid time  
Data output hold time  
Master transmitter (after enable  
edge)  
tv(SD_MT)  
th(SD_MT)  
Master transmitter (after enable  
edge)  
8
1. Guaranteed by characterization results.  
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)  
148/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 43. SAI master timing waveforms  
ꢃꢀF  
3#+  
3!)?3#+?8  
3!)?&3?8  
T
Hꢊ&3ꢋ  
ꢊOUTPUTꢋ  
T
T
T
Hꢊ3$?-4ꢋ  
Vꢊ&3ꢋ  
Vꢊ3$?-4ꢋ  
3!)?3$?8  
ꢊTRANSMITꢋ  
3LOT N  
3LOT Nꢓꢁ  
T
T
Hꢊ3$?-2ꢋ  
SUꢊ3$?-2ꢋ  
3!)?3$?8  
ꢊRECEIVEꢋ  
3LOT N  
-3ꢍꢁꢎꢎꢃ6ꢃ  
Figure 44. SAI slave timing waveforms  
ꢃꢀF  
3#+  
3!)?3#+?8  
T
T
T
Hꢊ&3ꢋ  
Wꢊ#+(?8ꢋ  
Wꢊ#+,?8ꢋ  
3!)?&3?8  
ꢊINPUTꢋ  
T
T
T
Hꢊ3$?34ꢋ  
SUꢊ&3ꢋ  
Vꢊ3$?34ꢋ  
3!)?3$?8  
ꢊTRANSMITꢋ  
3LOT N  
3LOT Nꢓꢁ  
T
T
Hꢊ3$?32ꢋ  
SUꢊ3$?32ꢋ  
3!)?3$?8  
ꢊRECEIVEꢋ  
3LOT N  
-3ꢍꢁꢎꢎꢁ6ꢃ  
DocID024030 Rev 9  
149/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
USB OTG full speed (FS) characteristics  
This interface is present in both the USB OTG HS and USB OTG FS controllers.  
Table 65. USB OTG full speed startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB OTG full speed transceiver startup time  
1
µs  
1. Guaranteed by design.  
Table 66. USB OTG full speed DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1) Typ. Max.(1) Unit  
USB OTG full speed  
VDD transceiver operating  
voltage  
3.0(2)  
-
3.6  
V
I(USB_FS_DP/DM,  
USB_HS_DP/DM)  
(3)  
VDI  
Differential input sensitivity  
0.2  
0.8  
1.3  
-
-
-
-
Input  
levels  
Differential common mode  
range  
(3)  
VCM  
Includes VDI range  
2.5  
2.0  
V
V
Single ended receiver  
threshold  
(3)  
VSE  
VOL Static output level low  
VOH Static output level high  
RL of 1.5 kΩto 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
(4)  
RL of 15 kΩto VSS  
2.8  
PA11, PA12, PB14, PB15  
(USB_FS_DP/DM,  
17  
21  
24  
USB_HS_DP/DM)  
RPD  
VIN = VDD  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.65  
1.5  
1.1  
1.8  
2.0  
2.1  
kΩ  
PA12, PB15 (USB_FS_DP,  
USB_HS_DP)  
VIN = VSS  
VIN = VSS  
RPU  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.25 0.37 0.55  
1. All the voltages are measured from the local ground potential.  
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed  
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.  
3. Guaranteed by design.  
RL is the load connected on the USB OTG full speed drivers.  
4.  
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state  
(floating input), not as alternate function. A typical 200 µA current consumption of the  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 and PB13 when the feature is enabled.  
Note:  
150/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 45. USB OTG full speed timings: definition of data signal rise and fall time  
&URVVꢊRYHU  
SRLQWV  
'LIIHUHQWLDO  
GDWDꢊOLQHV  
9&56  
966  
WI  
WU  
DLꢀꢂꢀꢉꢈE  
Table 67. USB OTG full speed electrical characteristics(1)  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
Driving high or  
low  
ZDRV  
Output driver impedance(3)  
28  
44  
Ω
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching  
impedance is included in the embedded driver.  
USB high speed (HS) characteristics  
Unless otherwise specified, the parameters given in Table 70 for ULPI are derived from  
tests performed under the ambient temperature, fHCLK frequency summarized in Table 69  
and V supply voltage conditions summarized in Table 68, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified  
Capacitive load C = 30 pF, unless otherwise specified  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Table 68. USB HS DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
USB OTG HS operating voltage  
1.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
DocID024030 Rev 9  
151/238  
197  
 
 
Electrical characteristics  
Symbol  
STM32F427xx STM32F429xx  
(1)  
Table 69. USB HS clock timing parameters  
Parameter  
Min  
Typ  
Max  
Unit  
f
HCLK value to guarantee proper operation of  
30  
-
-
MHz  
USB HS interface  
FSTART_8BIT  
FSTEADY  
DSTART_8BIT  
DSTEADY  
Frequency (first transition)  
8-bit ±10%  
54  
59.97  
40  
60  
60  
50  
50  
66  
60.03  
60  
MHz  
MHz  
%
Frequency (steady state) ±500 ppm  
Duty cycle (first transition)  
8-bit ±10%  
Duty cycle (steady state) ±500 ppm  
49.975  
50.025  
%
Time to reach the steady state frequency and  
duty cycle after the first transition  
tSTEADY  
-
-
1.4  
ms  
ms  
µs  
tSTART_DEV  
Peripheral  
-
-
-
-
5.6  
-
Clock startup time after the  
de-assertion of SuspendM  
tSTART_HOST  
Host  
PHY preparation time after the first transition  
of the input clock  
tPREP  
-
-
-
1. Guaranteed by design.  
Figure 46. ULPI timing diagram  
#LOCK  
T
T
(#  
3#  
#ONTROL )N  
ꢊ5,0)?$)2ꢌ  
5,0)?.84ꢋ  
T
T
($  
3$  
DATA )N  
ꢊꢅꢑBITꢋ  
T
T
$#  
$#  
#ONTROL OUT  
ꢊ5,0)?340ꢋ  
T
$$  
DATA OUT  
ꢊꢅꢑBITꢋ  
AIꢃꢎꢍꢄꢃC  
152/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)  
Table 70. Dynamic characteristics: USB ULPI  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
tSC  
tHC  
tSD  
tHD  
Control in (ULPI_DIR, ULPI_NXT) setup time  
Control in (ULPI_DIR, ULPI_NXT) hold time  
Data in setup time  
2
-
-
-
-
-
-
-
-
0.5  
1.5  
2
Data in hold time  
2.7 V < VDD < 3.6 V,  
CL = 15 pF and  
OSPEEDRy[1:0] = 11  
-
-
-
9
9.5  
ns  
2.7 V < VDD < 3.6 V,  
tDC/tDD Data/control output delay  
CL = 20 pF and  
OSPEEDRy[1:0] = 10  
12  
15  
1.7 V < VDD < 3.6 V,  
CL = 15 pF and  
OSPEEDRy[1:0] = 11  
1. Guaranteed by characterization results.  
DocID024030 Rev 9  
153/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Ethernet characteristics  
Unless otherwise specified, the parameters given in Table 71, Table 72 and Table 73 for  
SMI, RMII and MII are derived from tests performed under the ambient temperature, fHCLK  
frequency summarized in Table 17 with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF for 2.7 V < V < 3.6 V  
DD  
Capacitive load C = 20 pF for 1.71 V < V < 3.6 V  
DD  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Table 71 gives the list of Ethernet MAC signals for the SMI (station management interface)  
and Figure 47 shows the corresponding timing diagram.  
Figure 47. Ethernet SMI timing diagram  
W0'&  
(7+B0'&  
WGꢌ0',2ꢍ  
(7+B0',2ꢌ2ꢍ  
WVXꢌ0',2ꢍ  
WKꢌ0',2ꢍ  
(7+B0',2ꢌ,ꢍ  
06ꢉꢀꢉꢁꢂ9ꢀ  
(1)  
Table 71. Dynamics characteristics: Ethernet MAC signals for SMI  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tMDC  
MDC cycle time(2.38 MHz)  
411  
6
420  
425  
Td(MDIO) Write data valid time  
tsu(MDIO) Read data setup time  
th(MDIO) Read data hold time  
1. Guaranteed by characterization results.  
10  
-
13  
-
ns  
12  
0
-
-
154/238  
DocID024030 Rev 9  
 
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 72 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the  
corresponding timing diagram.  
Figure 48. Ethernet RMII timing diagram  
50,,B5()B&/.  
W
W
Gꢌ7;(1ꢍ  
Gꢌ7;'ꢍ  
50,,B7;B(1  
50,,B7;'>ꢀꢎꢄ@  
W
W
W
W
VXꢌ5;'ꢍ  
VXꢌ&56ꢍ  
LKꢌ5;'ꢍ  
LKꢌ&56ꢍ  
50,,B5;'>ꢀꢎꢄ@  
50,,B&56B'9  
DLꢀꢆꢇꢇꢈE  
(1)  
Table 72. Dynamics characteristics: Ethernet MAC signals for RMII  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
tsu(RXD) Receive data setup time  
tih(RXD) Receive data hold time  
tsu(CRS) Carrier sense setup time  
tih(CRS) Carrier sense hold time  
1.5  
0
-
-
-
-
1.71 V < VDD < 3.6 V  
1
-
-
1
-
-
ns  
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
8
10.5  
10.5  
11  
11  
12  
14  
12.5  
14.5  
Transmit enable valid delay  
td(TXEN)  
time  
8
8
td(TXD)  
Transmit data valid delay time  
8
1. Guaranteed by characterization results.  
Table 73 gives the list of Ethernet MAC signals for MII and Figure 48 shows the  
corresponding timing diagram.  
DocID024030 Rev 9  
155/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 49. Ethernet MII timing diagram  
0,,B5;B&/.  
W
W
W
W
W
W
VXꢌ5;'ꢍ  
VXꢌ(5ꢍ  
VXꢌ'9ꢍ  
LKꢌ5;'ꢍ  
LKꢌ(5ꢍ  
LKꢌ'9ꢍ  
0,,B5;'>ꢉꢎꢄ@  
0,,B5;B'9  
0,,B5;B(5  
0,,B7;B&/.  
W
W
Gꢌ7;(1ꢍ  
Gꢌ7;'ꢍ  
0,,B7;B(1  
0,,B7;'>ꢉꢎꢄ@  
AIꢃꢆꢄꢄꢅB  
(1)  
Table 73. Dynamics characteristics: Ethernet MAC signals for MII  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
tsu(RXD) Receive data setup time  
tih(RXD) Receive data hold time  
9
10  
9
-
-
-
-
tsu(DV)  
tih(DV)  
tsu(ER)  
tih(ER)  
Data valid setup time  
Data valid hold time  
Error setup time  
-
-
1.71 V < VDD < 3.6 V  
8
-
-
6
-
-
ns  
Error hold time  
8
-
-
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
2.7 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
8
10  
10  
10  
10  
14  
16  
15  
17  
td(TXEN) Transmit enable valid delay time  
8
7.5  
7.5  
td(TXD)  
Transmit data valid delay time  
1. Guaranteed by characterization results.  
CAN (controller area network) interface  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANx_TX and CANx_RX).  
156/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.21  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 74 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 17.  
Table 74. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
-
-
-
3.6  
VDDA  
-
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
V
VREF-  
Negative reference voltage  
-
0
VDDA = 1.7(1) to 2.4 V  
0.6  
15  
30  
18  
MHz  
MHz  
fADC  
ADC clock frequency  
V
DDA = 2.4 to 3.6 V  
ADC = 30 MHz,  
12-bit resolution  
0.6  
36  
f
-
-
-
1764  
17  
kHz  
(2)  
fTRIG  
External trigger frequency  
Conversion voltage range(3)  
-
1/fADC  
0
VAIN  
-
VREF+  
V
(VSSA or VREF-  
tied to ground)  
See Equation 1 for  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
50  
6
kΩ  
kΩ  
pF  
details  
(2)(4)  
RADC  
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
f
f
ADC = 30 MHz  
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
2
fADC = 30 MHz  
12-bit resolution  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
f
ADC = 30 MHz  
10-bit resolution  
ADC = 30 MHz  
Total conversion time (including  
sampling time)  
f
(2)  
tCONV  
µs  
8-bit resolution  
fADC = 30 MHz  
6-bit resolution  
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
DocID024030 Rev 9  
157/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 74. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
12-bit resolution  
Single ADC  
-
-
2
Msps  
12-bit resolution  
Sampling rate  
-
-
3.75  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 30 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
-
-
6
Msps  
µA  
Interleave Triple ADC  
mode  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
300  
1.6  
500  
1.8  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
mA  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:  
Internal reset OFF).  
2. Guaranteed by characterization results.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
4. ADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 74.  
.
R
Equation 1: R  
max formula  
AIN  
(k 0.5)  
----------------------------------------------------------------  
RADC  
RAIN  
=
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
Table 75. ADC static accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(1)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
f
ADC =18 MHz  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Guaranteed by characterization results.  
158/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
a
Table 76. ADC static accuracy at f  
= 30 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(1)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±3  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
Gain error  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
LSB  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Guaranteed by characterization results.  
Table 77. ADC static accuracy at f  
= 36 MHz  
ADC  
Symbol  
Parameter  
Test conditions  
Typ  
Max(1)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Guaranteed by characterization results.  
(1)  
Table 78. ADC dynamic accuracy at f  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
10.4  
64.2  
65  
-
-
-
-
bits  
fADC =18 MHz  
VDDA = VREF+= 1.7 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
dB  
THD  
Total harmonic distortion  
67  
72  
1. Guaranteed by characterization results.  
(1)  
Table 79. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
10.8  
67  
-
-
-
-
bits  
f
ADC =36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
68  
dB  
THD  
Total harmonic distortion  
70  
72  
1. Guaranteed by characterization results.  
DocID024030 Rev 9  
159/238  
197  
 
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.17 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
Figure 50. ADC accuracy characteristics  
6
6
$$!  
2%&ꢓ  
;ꢃ,3"  
ꢊOR  
DEPENDING ON PACKAGEꢋ=  
)$%!,  
ꢉꢈꢒꢄ  
ꢉꢈꢒꢄ  
%
'
ꢉꢈꢒꢆ  
ꢉꢈꢒꢉ  
ꢉꢈꢒꢍ  
ꢊꢁꢋ  
%
4
ꢊꢍꢋ  
ꢊꢃꢋ  
%
%
/
,
%
$
ꢃ, 3"  
)$%!,  
ꢉꢆꢄ  
ꢉꢈꢒꢍ ꢉꢈꢒꢉ ꢉꢈꢒꢆ ꢉꢈꢒꢄ  
6
6
$$!  
33!  
AIꢀꢁꢂꢃꢄC  
1. See also Table 76.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
160/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 51. Typical connection diagram using the ADC  
670ꢉꢃ)  
9
''  
6DPSOHꢊDQGꢊKROGꢊ$'&ꢊ  
9
7
FRQYHUWHU  
ꢄꢐꢇꢊ9  
ꢌꢀꢍ  
5
ꢌꢀꢍ  
5
$,1  
$'&  
$,1[  
ꢀꢃꢏELW  
FRQYHUWHU  
9
ꢄꢐꢇꢊ9  
7
9
$,1  
&
ꢌꢀꢍ  
$'&  
&
SDUDVLWLF  
, “ꢀꢊ—$  
/
DLꢀꢈꢆꢉꢂ  
1. Refer to Table 74 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
fADC should be reduced.  
DocID024030 Rev 9  
161/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 52. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
670ꢉꢃ)  
95()ꢌꢀꢍ  
ꢀꢊ—)ꢊꢒꢒꢊꢀꢄꢊQ)  
9''$  
ꢀꢊ—)ꢊꢒꢒꢊꢀꢄꢊQ)  
ꢌꢀꢍ  
966$ꢒ95()ꢓ  
DLꢀꢈꢆꢉꢆE  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
162/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 53. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢉꢃ)  
ꢌꢀꢍ  
95()ꢓꢒ9''$  
ꢀꢊ—)ꢊꢒꢒꢊꢀꢄꢊQ)  
ꢌꢀꢍ  
95()ꢏꢒ966$  
DLꢀꢈꢆꢉꢇF  
1. VREF+ and VREF– inputs are both available on UFBGA176. VREF+ is also available on LQFP100, LQFP144,  
and LQFP176. When VREF+ and VREF– are not available, they are internally connected to VDDA and VSSA  
.
6.3.22  
Temperature sensor characteristics  
Table 80. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
(1)  
V25  
Voltage at 25 °C  
Startup time  
-
(2)  
tSTART  
-
10  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
Table 81. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
0x1FFF 7A2C - 0x1FFF 7A2D  
TS_CAL1  
TS_CAL2  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F  
DocID024030 Rev 9  
163/238  
197  
 
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.23  
V
monitoring characteristics  
BAT  
Table 82. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.24  
Reference voltage  
The parameters given in Table 83 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 17.  
DD  
Table 83. internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design, not tested in production  
Table 84. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B  
Symbol  
164/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.25  
DAC electrical characteristics  
Table 85. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Comments  
VDDA Analog supply voltage  
-
1.7(1)  
1.7(1)  
0
-
-
-
3.6  
3.6  
0
V
V
V
-
Reference supply  
voltage  
VREF+  
-
VREF+ VDDA  
VSSA Ground  
-
-
RLOAD  
connected  
to VSSA  
5
-
-
-
-
DAC output  
buffer ON  
(2)  
RLOAD Resistive load  
kΩ  
RLOAD  
connected  
to VDDA  
25  
When the buffer is OFF, the  
Minimum resistive load  
kΩ between DAC_OUT and VSS  
to have a 1% accuracy is  
1.5 MΩ  
Impedance output with  
buffer OFF  
(2)  
RO  
-
-
-
15  
Maximum capacitive load at  
pF DAC_OUT pin (when the  
buffer is ON).  
(2)  
CLOAD Capacitive load  
-
-
-
-
-
50  
-
DAC_O  
It gives the maximum output  
excursion of the DAC.  
Lower DAC_OUT  
UT  
0.2  
V
voltage with buffer ON  
min(2)  
It corresponds to 12-bit input  
code (0x0E0) to (0xF1C) at  
VREF+ = 3.6 V and (0x1C7) to  
(0xE38) at VREF+ = 1.7 V  
DAC_O  
Higher DAC_OUT  
UT  
VDDA  
0.2  
-
-
-
-
-
-
-
0.5  
-
V
mV  
V
voltage with buffer ON  
max(2)  
DAC_O Lower DAC_OUT  
UT  
voltage with buffer  
-
min(2) OFF  
It gives the maximum output  
excursion of the DAC.  
DAC_O Higher DAC_OUT  
VREF+  
1LSB  
UT  
voltage with buffer  
max(2) OFF  
With no load, worst code  
(0x800) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
-
-
-
-
170 240  
DAC DC VREF current  
consumption in  
quiescent mode  
(Standby mode)  
(4)  
IVREF+  
µA  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
50  
75  
DocID024030 Rev 9  
165/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 85. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Comments  
With no load, middle code  
(0x800) on the inputs  
-
-
280 380 µA  
DAC DC VDDA  
(4)  
With no load, worst code  
(0xF1C) at VREF+ = 3.6 V in  
terms of DC consumption on  
the inputs  
IDDA  
current consumption in  
quiescent mode(3)  
-
-
-
475 625 µA  
Differential non  
linearity Difference  
Given for the DAC in 10-bit  
configuration.  
-
-
±0.5 LSB  
DNL(4) between two  
consecutive code-  
1LSB)  
Given for the DAC in 12-bit  
configuration.  
-
-
-
-
-
-
±2 LSB  
±1 LSB  
Integral non linearity  
(difference between  
Given for the DAC in 10-bit  
configuration.  
measured value at  
INL(4) Code i and the value  
at Code i on a line  
Given for the DAC in 12-bit  
configuration.  
-
-
-
±4 LSB  
drawn between Code  
0 and last Code 1023)  
Given for the DAC in 12-bit  
configuration  
-
-
-
-
-
-
-
-
-
-
-
-
±10 mV  
±3 LSB  
±12 LSB  
Offset error  
(difference between  
measured value at  
Code (0x800) and the  
ideal value = VREF+/2)  
Given for the DAC in 10-bit at  
VREF+ = 3.6 V  
Offset(4)  
Given for the DAC in 12-bit at  
VREF+ = 3.6 V  
Gain  
Given for the DAC in 12-bit  
configuration  
Gain error  
error(4)  
±0.5  
%
Settling time (full  
scale: for a 10-bit input  
code transition  
tSETTLIN between the lowest  
CLOAD 50 pF,  
RLOAD 5 kΩ  
-
-
3
6
µs  
(4)  
and the highest input  
G
codes when  
DAC_OUT reaches  
final value ±4LSB  
Total Harmonic  
Distortion  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
-
-
-
-
-
-
-
dB  
Buffer ON  
Max frequency for a  
correct DAC_OUT  
Update change when small  
rate(2) variation in the input  
code (from code i to  
MS/ CLOAD 50 pF,  
RLOAD 5 kΩ  
1
s
i+1LSB)  
166/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Table 85. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Comments  
Wakeup time from off  
tWAKEUP state (Setting the ENx  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest and  
highest possible ones.  
(
-
-
-
6.5  
10  
µs  
4)  
bit in the DAC Control  
register)  
Power supply rejection  
PSRR+  
ratio (to VDDA) (static  
DC measurement)  
-
–67 –40 dB No RLOAD, CLOAD = 50 pF  
(2)  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2:  
Internal reset OFF).  
2. Guaranteed by design.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed by characterization.  
Figure 54. 12-bit buffered /non-buffered DAC  
%XIIHUHGꢒQRQꢏEXIIHUHGꢊ'$&  
%XIIHUꢌꢀꢍ  
5/2$'  
ꢀꢃꢏELW  
'$&[B287  
GLJLWDOꢊWRꢊ  
DQDORJ  
FRQYHUWHU  
&/2$'  
DLꢀꢈꢀꢆꢈD  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
DocID024030 Rev 9  
167/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.26  
FMC characteristics  
Unless otherwise specified, the parameters given in Table 86 to Table 101 for the FMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 17, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 10 except at V range 1.7 to 2.1V where  
OSPEEDRy[1:0] = 11  
DD  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 55 through Figure 58 represent asynchronous waveforms and Table 86 through  
Table 93 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
For SDRAM memories, V ranges from 2.7 to 3.6 V and maximum frequency  
FMC_SDCLK = 90 MHz  
DD  
For Mobile LPSDR SDRAM memories, V ranges from 1.7 to 1.95 V and maximum  
frequency FMC_SDCLK = 84 MHz  
DD  
168/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
T
Wꢊ.%ꢋ  
&-#?.%  
T
T
T
Hꢊ.%?./%ꢋ  
Wꢊ./%ꢋ  
Vꢊ./%?.%ꢋ  
&-#?./%  
&-#?.7%  
TVꢊ!?.%ꢋ  
T
Hꢊ!?./%ꢋ  
&-#?!;ꢁꢆꢇꢈ=  
!DDRESS  
TVꢊ",?.%ꢋ  
T
Hꢊ",?./%ꢋ  
&-#?.",;ꢃꢇꢈ=  
T
Hꢊ$ATA?.%ꢋ  
T
T
SUꢊ$ATA?./%ꢋ  
Hꢊ$ATA?./%ꢋ  
T
SUꢊ$ATA?.%ꢋ  
$ATA  
&-#?$;ꢃꢆꢇꢈ=  
T
Vꢊ.!$6?.%ꢋ  
T
Wꢊ.!$6ꢋ  
ꢊꢃꢋ  
&-#?.!$6  
&-#?.7!)4  
THꢊ.%?.7!)4ꢋ  
TSUꢊ.7!)4?.%ꢋ  
-3ꢍꢁꢎꢆꢍ6ꢃ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
(1)(2)  
read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
2THCLK 0.5 2 THCLK+0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
0
1
2THCLK  
2THCLK+ 0.5  
th(NE_NOE)  
tv(A_NE)  
th(A_NOE)  
tv(BL_NE)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
0
-
2
-
-
Address hold time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NOE high  
Data to FMC_NEx high setup time  
Data to FMC_NOEx high setup time  
0
-
2
-
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
0
THCLK + 2.5  
THCLK +2  
-
-
DocID024030 Rev 9  
169/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -  
(1)(2)  
read timings  
(continued)  
Symbol  
Parameter  
Min  
Max  
Unit  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
Data hold time after FMC_NOE high  
Data hold time after FMC_NEx high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
0
-
-
ns  
ns  
ns  
ns  
-
0
-
THCLK +1  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
7THCLK+0.5  
7THCLK+1  
tw(NOE)  
FMC_NWE low time  
5THCLK 1.5 5THCLK +2  
ns  
tsu(NWAIT_NE)  
FMC_NWAIT valid before FMC_NEx high  
5THCLK+1.5  
-
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK+1  
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
170/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
T
Wꢊ.%ꢋ  
&-#?.%X  
&-#?./%  
&-#?.7%  
T
T
Wꢊ.7%ꢋ  
T
Hꢊ.%?.7%ꢋ  
Vꢊ.7%?.%ꢋ  
T
THꢊ!?.7%ꢋ  
Vꢊ!?.%ꢋ  
&-#?!;ꢁꢆꢇꢈ=  
!DDRESS  
T
T
Vꢊ",?.%ꢋ  
Hꢊ",?.7%ꢋ  
&-#?.",;ꢃꢇꢈ=  
.",  
T
T
Vꢊ$ATA?.%ꢋ  
Hꢊ$ATA?.7%ꢋ  
$ATA  
&-#?$;ꢃꢆꢇꢈ=  
T
Vꢊ.!$6?.%ꢋ  
T
Wꢊ.!$6ꢋ  
ꢊꢃꢋ  
&-#?.!$6  
&-#?.7!)4  
THꢊ.%?.7!)4ꢋ  
TSUꢊ.7!)4?.%ꢋ  
-3ꢍꢁꢎꢆꢉ6ꢃ  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
(1)(2)  
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
tw(NE)  
Parameter  
Min  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FMC_NE low time  
3THCLK  
3THCLK+1  
tv(NWE_NE)  
tw(NWE)  
th(NE_NWE)  
tv(A_NE)  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
THCLK 0.5 THCLK+ 0.5  
THCLK  
THCLK+ 0.5  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
THCLK +1.5  
-
-
0
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Address hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NWE high  
Data to FMC_NEx low to Data valid  
THCLK+0.5  
-
-
1.5  
THCLK+0.5  
-
THCLK+ 2  
-
-
th(Data_NWE) Data hold time after FMC_NWE high  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK+0.5  
-
-
0.5  
tw(NADV)  
FMC_NADV low time  
THCLK+ 0.5  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID024030 Rev 9  
171/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -  
(1)(2)  
NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK+1  
8THCLK+2  
ns  
tw(NWE)  
6THCLK 1  
6THCLK+2  
-
ns  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
6THCLK+1.5  
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
4THCLK+1  
ns  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms  
T
Wꢊ.%ꢋ  
&-#? .%  
&-#?./%  
T
T
Hꢊ.%?./%ꢋ  
Vꢊ./%?.%ꢋ  
T
Wꢊ./%ꢋ  
T
&-#?.7%  
T
Hꢊ!?./%ꢋ  
Vꢊ!?.%ꢋ  
&-#? !;ꢁꢆꢇꢃꢄ=  
!DDRESS  
.",  
T
T
Vꢊ",?.%ꢋ  
Hꢊ",?./%ꢋ  
&-#? .",;ꢃꢇꢈ=  
T
Hꢊ$ATA?.%ꢋ  
T
SUꢊ$ATA?.%ꢋ  
T
T
T
Hꢊ$ATA?./%ꢋ  
Vꢊ!?.%ꢋ  
!DDRESS  
SUꢊ$ATA?./%ꢋ  
$ATA  
&-#? !$;ꢃꢆꢇꢈ=  
T
T
Hꢊ!$?.!$6ꢋ  
Vꢊ.!$6?.%ꢋ  
T
Wꢊ.!$6ꢋ  
&-#?.!$6  
&-#?.7!)4  
THꢊ.%?.7!)4ꢋ  
TSUꢊ.7!)4?.%ꢋ  
-3ꢍꢁꢎꢆꢆ6ꢃ  
172/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)(2)  
Table 90. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
ttw(NOE)  
3THCLK 1 3THCLK+0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2THCLK 0.5  
2THCLK  
THCLK 1  
THCLK+1  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
1
-
-
2
2
0
THCLK 0.5 THCLK+0.5  
FMC_AD(address) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
0
-
ns  
th(A_NOE)  
th(BL_NOE)  
Address hold time after FMC_NOE high  
FMC_BL time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
THCLK 0.5  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
tv(BL_NE)  
-
2
-
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NE)  
Data to FMC_NEx high setup time  
Data to FMC_NOE high setup time  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
THCLK+1.5  
THCLK+1  
-
0
0
-
th(Data_NOE)  
1. CL = 30 pF.  
-
2. Guaranteed by characterization results.  
(1)(2)  
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8THCLK+0.5  
8THCLK+2  
ns  
tw(NOE)  
5THCLK 1  
5THCLK +1.5  
-
ns  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK +1.5  
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4THCLK+1  
ns  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID024030 Rev 9  
173/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms  
T
Wꢊ.%ꢋ  
&-#? .%X  
&-#?./%  
T
T
Wꢊ.7%ꢋ  
T
Hꢊ.%?.7%ꢋ  
Vꢊ.7%?.%ꢋ  
&-#?.7%  
T
T
Hꢊ!?.7%ꢋ  
Vꢊ!?.%ꢋ  
&-#? !;ꢁꢆꢇꢃꢄ=  
!DDRESS  
T
T
Vꢊ",?.%ꢋ  
Hꢊ",?.7%ꢋ  
&-#? .",;ꢃꢇꢈ=  
.",  
T
T
Hꢊ$ATA?.7%ꢋ  
T
Vꢊ!?.%ꢋ  
!DDRESS  
Vꢊ$ATA?.!$6ꢋ  
$ATA  
&-#? !$;ꢃꢆꢇꢈ=  
T
T
Hꢊ!$?.!$6ꢋ  
Vꢊ.!$6?.%ꢋ  
T
Wꢊ.!$6ꢋ  
&-#?.!$6  
&-#?.7!)4  
THꢊ.%?.7!)4ꢋ  
TSUꢊ.7!)4?.%ꢋ  
-3ꢍꢁꢎꢆꢄ6ꢃ  
(1)(2)  
Table 92. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
4THCLK  
THCLK 1  
2THCLK  
THCLK  
-
4THCLK+0.5 ns  
THCLK+0.5 ns  
2THCLK+0.5 ns  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
th(NE_NWE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
th(AD_NADV)  
th(A_NWE)  
th(BL_NWE)  
tv(BL_NE)  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
1
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0.5  
THCLK 0.5 THCLK+ 0.5  
FMC_AD(adress) valid hold time after FMC_NADV high)  
Address hold time after FMC_NWE high  
FMC_BL hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
FMC_NADV high to Data valid  
THCLK 2  
-
-
THCLK  
THCLK 2  
-
-
2
tv(Data_NADV)  
th(Data_NWE)  
1. CL = 30 pF.  
-
THCLK +1.5 ns  
ns  
Data hold time after FMC_NWE high  
THCLK +0.5  
-
2. Guaranteed by characterization results.  
174/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)(2)  
Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
9THCLK  
9THCLK+0.5  
ns  
tw(NWE)  
7THCLK  
7THCLK+2  
-
ns  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
6THCLK+1.5  
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
4THCLK–1  
-
ns  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Synchronous waveforms and timings  
Figure 59 through Figure 62 represent synchronous waveforms and Table 94 through  
Table 97 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable;  
MemoryType = FMC_MemoryType_CRAM;  
WriteBurst = FMC_WriteBurst_Enable;  
CLKDivision = 1; (0 is not supported, see the STM32F4xx reference manual : RM0090)  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
In all timing tables, the THCLK is the HCLK clock period (with maximum  
FMC_CLK = 90 MHz).  
DocID024030 Rev 9  
175/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings  
"53452.    
T
T
Wꢊ#,+ꢋ  
Wꢊ#,+ꢋ  
&-#?#,+  
$ATA LATENCY    
Dꢊ#,+,ꢑ.%X,ꢋ  
T
TDꢊ#,+(ꢑ.%X(ꢋ  
&-#?.%X  
T
T
Dꢊ#,+,ꢑ.!$6,ꢋ  
Dꢊ#,+,ꢑ.!$6(ꢋ  
&-#?.!$6  
T
TDꢊ#,+(ꢑ!)6ꢋ  
Dꢊ#,+,ꢑ!6ꢋ  
&-#?!;ꢁꢆꢇꢃꢄ=  
T
TDꢊ#,+(ꢑ./%(ꢋ  
Dꢊ#,+,ꢑ./%,ꢋ  
&-#?./%  
T
T
T
Hꢊ#,+(ꢑ!$6ꢋ  
Dꢊ#,+,ꢑ!$)6ꢋ  
T
T
T
SUꢊ!$6ꢑ#,+(ꢋ  
SUꢊ!$6ꢑ#,+(ꢋ  
Dꢊ#,+,ꢑ!$6ꢋ  
Hꢊ#,+(ꢑ!$6ꢋ  
&-#?!$;ꢃꢆꢇꢈ=  
!$;ꢃꢆꢇꢈ=  
T
$ꢃ  
$ꢁ  
T
SUꢊ.7!)46ꢑ#,+(ꢋ  
Hꢊ#,+(ꢑ.7!)46ꢋ  
&-#?.7!)4  
ꢊ7!)4#&'  ꢃBꢌ  
7!)40/,  ꢈBꢋ  
T
T
SUꢊ.7!)46ꢑ#,+(ꢋ  
Hꢊ#,+(ꢑ.7!)46ꢋ  
&-#?.7!)4  
ꢊ7!)4#&'  ꢈBꢌ  
7!)40/,  ꢈBꢋ  
T
T
Hꢊ#,+(ꢑ.7!)46ꢋ  
SUꢊ.7!)46ꢑ#,+(ꢋ  
-3ꢍꢁꢎꢆꢎ6ꢃ  
(1)(2)  
Max  
Table 94. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK 1  
-
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL)  
td(CLKH_NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
THCLK  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
0
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NOE low  
-
0
-
0
-
THCLK+0.5  
ns  
ns  
ns  
ns  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
THCLK 0.5  
-
0.5  
-
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
0
176/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Symbol  
Electrical characteristics  
(1)(2)  
Table 94. Synchronous multiplexed NOR/PSRAM read timings  
(continued)  
Parameter  
Min  
Max  
Unit  
FMC_A/D[15:0] valid data before FMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
5
-
ns  
FMC_A/D[15:0] valid data after FMC_CLK high  
0
4
0
-
-
ns  
ns  
ns  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Figure 60. Synchronous multiplexed PSRAM write timings  
"53452.    
T
T
Wꢊ#,+ꢋ  
Wꢊ#,+ꢋ  
&-#?#,+  
$ATA LATENCY    
Dꢊ#,+,ꢑ.%X,ꢋ  
T
T
Dꢊ#,+(ꢑ.%X(ꢋ  
&-#?.%X  
T
T
Dꢊ#,+,ꢑ.!$6,ꢋ  
Dꢊ#,+,ꢑ.!$6(ꢋ  
&-#?.!$6  
T
Dꢊ#,+(ꢑ!)6ꢋ  
T
T
Dꢊ#,+,ꢑ!6ꢋ  
&-#?!;ꢁꢆꢇꢃꢄ=  
T
Dꢊ#,+(ꢑ.7%(ꢋ  
Dꢊ#,+,ꢑ.7%,ꢋ  
&-#?.7%  
T
T
T
Dꢊ#,+,ꢑ!$)6ꢋ  
T
Dꢊ#,+,ꢑ$ATAꢋ  
Dꢊ#,+,ꢑ$ATAꢋ  
Dꢊ#,+,ꢑ!$6ꢋ  
&-#?!$;ꢃꢆꢇꢈ=  
!$;ꢃꢆꢇꢈ=  
$ꢃ  
$ꢁ  
&-#?.7!)4  
ꢊ7!)4#&'  ꢈBꢌ  
7!)40/,  ꢈBꢋ  
T
T
Hꢊ#,+(ꢑ.7!)46ꢋ  
SUꢊ.7!)46ꢑ#,+(ꢋ  
T
Dꢊ#,+(ꢑ.",(ꢋ  
&-#?.",  
-3ꢍꢁꢎꢆꢅ6ꢃ  
DocID024030 Rev 9  
177/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
(1)(2)  
Table 95. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period, VDD range= 2.7 to 3.6 V  
2THCLK 1  
-
1.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK  
-
0
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
0
-
THCLK  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
-
0
-
THCLK0.5  
-
3
-
0
-
3
-
0
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
THCLK0.5  
-
4
0
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
178/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings  
T
T
Wꢊ#,+ꢋ  
Wꢊ#,+ꢋ  
&-#?#,+  
T
T
Dꢊ#,+(ꢑ.%X(ꢋ  
Dꢊ#,+,ꢑ.%X,ꢋ  
$ATA LATENCY    
Dꢊ#,+,ꢑ.!$6(ꢋ  
&-#?.%X  
T
T
Dꢊ#,+,ꢑ.!$6,ꢋ  
&-#?.!$6  
&-#?!;ꢁꢆꢇꢈ=  
T
T
Dꢊ#,+(ꢑ!)6ꢋ  
Dꢊ#,+,ꢑ!6ꢋ  
T
T
Dꢊ#,+,ꢑ./%,ꢋ  
Dꢊ#,+(ꢑ./%(ꢋ  
&-#?./%  
T
T
SUꢊ$6ꢑ#,+(ꢋ  
Hꢊ#,+(ꢑ$6ꢋ  
T
T
Hꢊ#,+(ꢑ$6ꢋ  
SUꢊ$6ꢑ#,+(ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
&-#?.7!)4  
$ꢃ  
$ꢁ  
T
T
T
SUꢊ.7!)46ꢑ#,+(ꢋ  
Hꢊ#,+(ꢑ.7!)46ꢋ  
ꢊ7!)4#&'  ꢃBꢌ  
7!)40/,  ꢈBꢋ  
T
T
Hꢊ#,+(ꢑ.7!)46ꢋ  
SUꢊ.7!)46ꢑ#,+(ꢋ  
&-#?.7!)4  
ꢊ7!)4#&'  ꢈBꢌ  
7!)40/,  ꢈBꢋ  
T
SUꢊ.7!)46ꢑ#,+(ꢋ  
Hꢊ#,+(ꢑ.7!)46ꢋ  
-3ꢍꢁꢎꢆꢒ6ꢃ  
(1)(2)  
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2THCLK 1  
-
ns  
ns  
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
-
0.5  
td(CLKH-  
FMC_CLK high to FMC_NEx high (x= 0…2)  
THCLK  
-
0
-
ns  
ns  
ns  
NExH)  
td(CLKL-  
FMC_CLK low to FMC_NADV low  
-
NADVL)  
td(CLKL-  
FMC_CLK low to FMC_NADV high  
0
NADVH)  
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25)  
-
0
ns  
ns  
ns  
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25)  
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
THCLK 0.5  
-
-
THCLK+2  
td(CLKH-  
FMC_CLK high to FMC_NOE high  
THCLK 0.5  
-
-
ns  
ns  
NOEH)  
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high  
5
DocID024030 Rev 9  
179/238  
197  
Electrical characteristics  
Symbol  
STM32F427xx STM32F429xx  
(1)(2)  
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings  
(continued)  
Parameter  
Min  
Max  
Unit  
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high  
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
0
4
-
ns  
th(CLKH-  
FMC_NWAIT valid after FMC_CLK high  
0
NWAIT)  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Figure 62. Synchronous non-multiplexed PSRAM write timings  
T
T
Wꢊ#,+ꢋ  
Wꢊ#,+ꢋ  
&-#?#,+  
T
T
Dꢊ#,+,ꢑ.%X,ꢋ  
&-#?.%X  
Dꢊ#,+(ꢑ.%X(ꢋ  
$ATA LATENCY    
Dꢊ#,+,ꢑ.!$6(ꢋ  
T
T
Dꢊ#,+,ꢑ.!$6,ꢋ  
&-#?.!$6  
&-#?!;ꢁꢆꢇꢈ=  
&-#?.7%  
T
Dꢊ#,+(ꢑ!)6ꢋ  
T
T
Dꢊ#,+,ꢑ!6ꢋ  
TDꢊ#,+(ꢑ.7%(ꢋ  
Dꢊ#,+,ꢑ.7%,ꢋ  
T
T
Dꢊ#,+,ꢑ$ATAꢋ  
Dꢊ#,+,ꢑ$ATAꢋ  
&-#?$;ꢃꢆꢇꢈ=  
$ꢃ  
$ꢁ  
&-#?.7!)4  
ꢊ7!)4#&'  ꢈBꢌ 7!)40/,  ꢈBꢋ  
&-#?.",  
T
T
Dꢊ#,+(ꢑ.",(ꢋ  
SUꢊ.7!)46ꢑ#,+(ꢋ  
T
Hꢊ#,+(ꢑ.7!)46ꢋ  
-3ꢍꢁꢎꢄꢈ6ꢃ  
(1)(2)  
Max  
Table 97. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Unit  
t(CLK)  
FMC_CLK period  
2THCLK 1  
-
0.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
THCLK  
-
0
-
0
-
td(CLKL-AV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
0
180/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Symbol  
Electrical characteristics  
(1)(2)  
Table 97. Synchronous non-multiplexed PSRAM write timings  
(continued)  
Parameter  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
Min  
Max  
Unit  
td(CLKH-AIV)  
0
-
0
ns  
ns  
ns  
ns  
ns  
ns  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
-
THCLK0.5  
-
-
2.5  
-
0
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
THCLK0.5  
-
4
0
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
PC Card/CompactFlash controller waveforms and timings  
Figure 63 through Figure 68 represent synchronous waveforms, and Table 98 and Table 99  
provide the corresponding timings. The results shown in this table are obtained with the  
following FMC configuration:  
COM.FMC_SetupTime = 0x04;  
COM.FMC_WaitSetupTime = 0x07;  
COM.FMC_HoldSetupTime = 0x04;  
COM.FMC_HiZSetupTime = 0x00;  
ATT.FMC_SetupTime = 0x04;  
ATT.FMC_WaitSetupTime = 0x07;  
ATT.FMC_HoldSetupTime = 0x04;  
ATT.FMC_HiZSetupTime = 0x00;  
IO.FMC_SetupTime = 0x04;  
IO.FMC_WaitSetupTime = 0x07;  
IO.FMC_HoldSetupTime = 0x04;  
IO.FMC_HiZSetupTime = 0x00;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the THCLK is the HCLK clock period.  
DocID024030 Rev 9  
181/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 63. PC Card/CompactFlash controller waveforms for common memory read  
access  
ꢊꢃꢋ  
&-#?.#%ꢉ?ꢁ  
&-#?.#%ꢉ?ꢃ  
T
Hꢊ.#%Xꢑ!)ꢋ  
T
Vꢊ.#%Xꢑ!ꢋ  
&-#?!;ꢃꢈꢇꢈ=  
T
T
T
Hꢊ.#%Xꢑ.2%'ꢋ  
Hꢊ.#%Xꢑ.)/2$ꢋ  
T
T
Dꢊ.2%'ꢑ.#%Xꢋ  
Dꢊ.)/2$ꢑ.#%Xꢋ  
Hꢊ.#%Xꢑ.)/72  
&-#?.2%'  
&-#?.)/72  
&-#?.)/2$  
&-#?.7%  
T
T
Wꢊ./%ꢋ  
Dꢊ.#%ꢉ?ꢃꢑ./%ꢋ  
&-#?./%  
T
T
Hꢊ./%ꢑ$ꢋ  
SUꢊ$ꢑ./%ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢃ6ꢃ  
1. FMC_NCE4_2 remains high (inactive during 8-bit access.  
Figure 64. PC Card/CompactFlash controller waveforms for common memory write  
access  
&-#?.#%ꢉ?ꢃ  
&-#?.#%ꢉ?ꢁ  
&-#?!;ꢃꢈꢇꢈ=  
(IGH  
T
T
Hꢊ.#%ꢉ?ꢃꢑ!)ꢋ  
Vꢊ.#%ꢉ?ꢃꢑ!ꢋ  
T
T
T
Hꢊ.#%ꢉ?ꢃꢑ.2%'ꢋ  
Hꢊ.#%ꢉ?ꢃꢑ.)/2$ꢋ  
Hꢊ.#%ꢉ?ꢃꢑ.)/72ꢋ  
T
T
Dꢊ.2%'ꢑ.#%ꢉ?ꢃꢋ  
Dꢊ.)/2$ꢑ.#%ꢉ?ꢃꢋ  
&-#?.2%'  
&-#?.)/72  
&-#?.)/2$  
T
T
T
Dꢊ.#%ꢉ?ꢃꢑ.7%ꢋ  
Wꢊ.7%ꢋ  
Dꢊ.7%ꢑ.#%ꢉ?ꢃꢋ  
&-#?.7%  
&-#?./%  
-%-X(): ꢏꢃ  
T
Dꢊ$ꢑ.7%ꢋ  
T
T
Vꢊ.7%ꢑ$ꢋ  
Hꢊ.7%ꢑ$ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢁ6ꢃ  
182/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory  
read access  
&-#?.#%ꢉ?ꢃ  
T
T
Hꢊ.#%ꢉ?ꢃꢑ!)ꢋ  
Vꢊ.#%ꢉ?ꢃꢑ!ꢋ  
&-#?.#%ꢉ?ꢁ  
&-#?!;ꢃꢈꢇꢈ=  
(IGH  
&-#?.)/72  
&-#?.)/2$  
T
T
Hꢊ.#%ꢉ?ꢃꢑ.2%'ꢋ  
Dꢊ.2%'ꢑ.#%ꢉ?ꢃꢋ  
&-#?.2%'  
&-#?.7%  
T
T
T
Dꢊ./%ꢑ.#%ꢉ?ꢃꢋ  
Dꢊ.#%ꢉ?ꢃꢑ./%ꢋ  
Wꢊ./%ꢋ  
&-#?./%  
T
T
Hꢊ./%ꢑ$ꢋ  
SUꢊ$ꢑ./%ꢋ  
ꢊꢃꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢍ6ꢃ  
1. Only data bits 0...7 are read (bits 8...15 are disregarded).  
DocID024030 Rev 9  
183/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory  
write access  
&-#?.#%ꢉ?ꢃ  
(IGH  
&-#?.#%ꢉ?ꢁ  
&-#?!;ꢃꢈꢇꢈ=  
T
T
Hꢊ.#%ꢉ?ꢃꢑ!)ꢋ  
Vꢊ.#%ꢉ?ꢃꢑ!ꢋ  
&-#?.)/72  
&-#?.)/2$  
T
T
Dꢊ.2%'ꢑ.#%ꢉ?ꢃꢋ  
Hꢊ.#%ꢉ?ꢃꢑ.2%'ꢋ  
&-#?.2%'  
T
T
Wꢊ.7%ꢋ  
Dꢊ.#%ꢉ?ꢃꢑ.7%ꢋ  
&-#?.7%  
T
Dꢊ.7%ꢑ.#%ꢉ?ꢃꢋ  
&-#?./%  
T
Vꢊ.7%ꢑ$ꢋ  
&-#?$;ꢎꢇꢈ=ꢊꢃꢋ  
-3ꢍꢁꢎꢄꢉ6ꢃ  
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).  
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access  
&-#?.#%ꢉ?ꢃ  
&-#?.#%ꢉ?ꢁ  
T
T
Hꢊ.#%ꢉ?ꢃꢑ!)ꢋ  
Vꢊ.#%Xꢑ!ꢋ  
&-#?!;ꢃꢈꢇꢈ=  
&-#?.2%'  
&-#?.7%  
&-#?./%  
&-#?.)/72  
T
T
Wꢊ.)/2$ꢋ  
Dꢊ.)/2$ꢑ.#%ꢉ?ꢃꢋ  
&-#?.)/2$  
T
T
Dꢊ.)/2$ꢑ$ꢋ  
SUꢊ$ꢑ.)/2$ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢆ6ꢃ  
184/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access  
&-#?.#%ꢉ?ꢃ  
&-#?.#%ꢉ?ꢁ  
T
T
Hꢊ.#%ꢉ?ꢃꢑ!)ꢋ  
Vꢊ.#%Xꢑ!ꢋ  
&-#?!;ꢃꢈꢇꢈ=  
&-#?.2%'  
&-#?.7%  
&-#?./%  
&-#?.)/2$  
T
T
Wꢊ.)/72ꢋ  
Dꢊ.#%ꢉ?ꢃꢑ.)/72ꢋ  
&-#?.)/72  
!44X(): ꢏꢃ  
T
Hꢊ.)/72ꢑ$ꢋ  
T
Vꢊ.)/72ꢑ$ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢄ6ꢃ  
Table 98. Switching characteristics for PC Card/CF read and write cycles  
(1)(2)  
in attribute/common space  
Symbol  
Parameter  
Min  
Max  
Unit  
tv(NCEx-A)  
th(NCEx_AI)  
td(NREG-NCEx)  
th(NCEx-NREG)  
td(NCEx-NWE)  
tw(NWE)  
FMC_Ncex low to FMC_Ay valid  
FMC_NCEx high to FMC_Ax invalid  
FMC_NCEx low to FMC_NREG valid  
FMC_NCEx high to FMC_NREG invalid  
FMC_NCEx low to FMC_NWE low  
FMC_NWE low width  
-
0
ns  
ns  
ns  
ns  
ns  
0
-
-
1
THCLK 2  
-
-
5THCLK  
8THCLK 0.5  
5THCLK+1  
-
8THCLK+0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(NWE_NCEx)  
tV(NWE-D)  
FMC_NWE high to FMC_NCEx high  
FMC_NWE low to FMC_D[15:0] valid  
FMC_NWE high to FMC_D[15:0] invalid  
FMC_D[15:0] valid before FMC_NWE high  
FMC_NCEx low to FMC_NOE low  
FMC_NOE low width  
-
0
-
th(NWE-D)  
9THCLK 0.5  
13THCLK 3  
-
td(D-NWE)  
td(NCEx-NOE)  
tw(NOE)  
5THCLK  
8 THCLK 0.5 8 THCLK+0.5  
td(NOE_NCEx)  
tsu (D-NOE)  
th(NOE-D)  
FMC_NOE high to FMC_NCEx high  
FMC_D[15:0] valid data before FMC_NOE high  
FMC_NOE high to FMC_D[15:0] invalid  
5THCLK 1  
-
-
-
THCLK  
0
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DocID024030 Rev 9  
185/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Table 99. Switching characteristics for PC Card/CF read and write cycles  
(1)(2)  
in I/O space  
Parameter  
FMC_NIOWR low width  
Symbol  
Min  
Max  
Unit  
tw(NIOWR)  
tv(NIOWR-D)  
th(NIOWR-D)  
8THCLK 0.5  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FMC_NIOWR low to FMC_D[15:0] valid  
FMC_NIOWR high to FMC_D[15:0] invalid  
-
0
9THCLK 2  
-
td(NCE4_1-NIOWR) FMC_NCE4_1 low to FMC_NIOWR valid  
th(NCEx-NIOWR) FMC_NCEx high to FMC_NIOWR invalid  
td(NIORD-NCEx) FMC_NCEx low to FMC_NIORD valid  
th(NCEx-NIORD) FMC_NCEx high to FMC_NIORD) valid  
-
5THCLK  
-
5THCLK  
-
5THCLK  
6THCLK+2  
8THCLK 0.5  
THCLK  
0
-
tw(NIORD)  
tsu(D-NIORD)  
td(NIORD-D)  
FMC_NIORD low width  
8THCLK+0.5  
FMC_D[15:0] valid before FMC_NIORD high  
FMC_D[15:0] valid after FMC_NIORD high  
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
NAND controller waveforms and timings  
Figure 69 through Figure 72 represent synchronous waveforms, and Table 100 and  
Table 101 provide the corresponding timings. The results shown in this table are obtained  
with the following FMC configuration:  
COM.FMC_SetupTime = 0x01;  
COM.FMC_WaitSetupTime = 0x03;  
COM.FMC_HoldSetupTime = 0x02;  
COM.FMC_HiZSetupTime = 0x01;  
ATT.FMC_SetupTime = 0x01;  
ATT.FMC_WaitSetupTime = 0x03;  
ATT.FMC_HoldSetupTime = 0x02;  
ATT.FMC_HiZSetupTime = 0x01;  
Bank = FMC_Bank_NAND;  
MemoryDataWidth = FMC_MemoryDataWidth_16b;  
ECC = FMC_ECC_Enable;  
ECCPageSize = FMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the THCLK is the HCLK clock period.  
186/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 69. NAND controller waveforms for read access  
&-#?.#%X  
!,% ꢊ&-#?!ꢃꢎꢋ  
#,% ꢊ&-#?!ꢃꢄꢋ  
&-#?.7%  
T
THꢊ./%ꢑ!,%ꢋ  
Dꢊ!,%ꢑ./%ꢋ  
&-#?./% ꢊ.2%ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
T
T
Hꢊ./%ꢑ$ꢋ  
SUꢊ$ꢑ./%ꢋ  
-3ꢍꢁꢎꢄꢎ6ꢃ  
Figure 70. NAND controller waveforms for write access  
&-#?.#%X  
!,% ꢊ&-#?!ꢃꢎꢋ  
#,% ꢊ&-#?!ꢃꢄꢋ  
T
T
Hꢊ.7%ꢑ!,%ꢋ  
Dꢊ!,%ꢑ.7%ꢋ  
&-#?.7%  
&-#?./% ꢊ.2%ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
T
T
Hꢊ.7%ꢑ$ꢋ  
Vꢊ.7%ꢑ$ꢋ  
-3ꢍꢁꢎꢄꢅ6ꢃ  
DocID024030 Rev 9  
187/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
Figure 71. NAND controller waveforms for common memory read access  
&-#?.#%X  
!,% ꢊ&-#?!ꢃꢎꢋ  
#,% ꢊ&-#?!ꢃꢄꢋ  
T
T
Hꢊ./%ꢑ!,%ꢋ  
Dꢊ!,%ꢑ./%ꢋ  
&-#?.7%  
&-#?./%  
T
Wꢊ./%ꢋ  
T
T
Hꢊ./%ꢑ$ꢋ  
SUꢊ$ꢑ./%ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢄꢒ6ꢃ  
Figure 72. NAND controller waveforms for common memory write access  
&-#?.#%X  
!,% ꢊ&-#?!ꢃꢎꢋ  
#,% ꢊ&-#?!ꢃꢄꢋ  
T
T
T
Hꢊ./%ꢑ!,%ꢋ  
Dꢊ!,%ꢑ./%ꢋ  
Wꢊ.7%ꢋ  
&-#?.7%  
&-#?. /%  
T
Dꢊ$ꢑ.7%ꢋ  
T
T
Vꢊ.7%ꢑ$ꢋ  
Hꢊ.7%ꢑ$ꢋ  
&-#?$;ꢃꢆꢇꢈ=  
-3ꢍꢁꢎꢎꢈ6ꢃ  
(1)  
Table 100. Switching characteristics for NAND Flash read cycles  
Parameter Min Max  
FMC_NOE low width 4THCLK 0.5 4THCLK+0.5  
Symbol  
Unit  
tw(N0E)  
ns  
ns  
ns  
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high  
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high  
9
-
-
0
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
1. CL = 30 pF.  
-
3THCLK 0.5 ns  
ns  
3THCLK 2  
-
188/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)  
Table 101. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
FMC_NWE low width  
Min  
Max  
Unit  
tw(NWE)  
tv(NWE-D)  
4THCLK  
0
4THCLK+1  
ns  
ns  
ns  
ns  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
FMC_D[15-0] valid before FMC_NWE high  
FMC_ALE valid before FMC_NWE low  
FMC_NWE high to FMC_ALE invalid  
-
-
-
th(NWE-D)  
3THCLK 1  
5THCLK 3  
-
td(D-NWE)  
td(ALE-NWE)  
th(NWE-ALE)  
1. CL = 30 pF.  
3THCLK0.5 ns  
ns  
3THCLK 1  
-
SDRAM waveforms and timings  
Figure 73. SDRAM read access waveforms (CL = 1)  
&-#?3$#,+  
TDꢊ3$#,+,?!DD#ꢋ  
THꢊ3$#,+,?!DD2ꢋ  
TDꢊ3$#,+,?!DD2ꢋ  
2OW N  
#OLꢃ  
#OLꢁ  
#OLI  
#OLN  
&-#?!>ꢀꢃꢎꢄ@  
THꢊ3$#,+,?!DD#ꢋ  
THꢊ3$#,+,?3.$%ꢋ  
THꢊ3$#,+,?.#!3ꢋ  
TDꢊ3$#,+,?3.$%ꢋ  
&-#?3$.%;ꢃꢇꢈ=  
TDꢊ3$#,+,?.2!3ꢋ  
THꢊ3$#,+,?.2!3ꢋ  
&-#?3$.2!3  
&-#?3$.#!3  
TDꢊ3$#,+,?.#!3ꢋ  
&-#?3$.7%  
&-#?$;ꢍꢃꢇꢈ=  
TSUꢊ3$#,+(?$ATAꢋ  
THꢊ3$#,+(?$ATAꢋ  
$ATAꢃ $ATAꢁ $ATAI  
$ATAN  
-3ꢍꢁꢎꢆꢃ6ꢁ  
DocID024030 Rev 9  
189/238  
197  
 
Electrical characteristics  
Symbol  
STM32F427xx STM32F429xx  
(1)(2)  
Table 102. SDRAM read timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2THCLK 0.5  
2THCLK+0.5  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
2
0
-
-
-
1.5  
0.5  
-
td(SDCLKL- SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0
-
0.5  
-
0
-
0.5  
-
0
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 103. LPSDR SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tW(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2THCLK 0.5  
2THCLK+0.5  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
2.5  
0
-
-
-
1
1
-
td(SDCLKL_SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
1
-
1
-
1
-
1
-
1
1. CL = 10 pF.  
2. Guaranteed by characterization results.  
190/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 74. SDRAM write access waveforms  
&-#?3$#,+  
TDꢊ3$#,+,?!DD#ꢋ  
THꢊ3$#,+,?!DD2ꢋ  
TDꢊ3$#,+,?!DD2ꢋ  
2OW N  
#OLꢃ  
#OLꢁ  
#OLI  
#OLN  
&-#?!>ꢀꢃꢎꢄ@  
THꢊ3$#,+,?!DD#ꢋ  
THꢊ3$#,+,?3.$%ꢋ  
TDꢊ3$#,+,?3.$%ꢋ  
&-#?3$.%;ꢃꢇꢈ=  
TDꢊ3$#,+,?.2!3ꢋ  
THꢊ3$#,+,?.2!3ꢋ  
&-#?3$.2!3  
&-#?3$.#!3  
&-#?3$.7%  
THꢊ3$#,+,?.#!3ꢋ  
THꢊ3$#,+,?.7%ꢋ  
TDꢊ3$#,+,?.#!3ꢋ  
TDꢊ3$#,+,?.7%ꢋ  
TDꢊ3$#,+,?$ATAꢋ  
$ATAꢃ  
$ATAꢁ  
$ATAI  
$ATAN  
&-#?$;ꢍꢃꢇꢈ=  
TDꢊ3$#,+,?.",ꢋ  
&-#?.",;ꢍꢇꢈ=  
THꢊ3$#,+,?$ATAꢋ  
-3ꢍꢁꢎꢆꢁ6ꢁ  
DocID024030 Rev 9  
191/238  
197  
 
Electrical characteristics  
Symbol  
STM32F427xx STM32F429xx  
(1)(2)  
Table 104. SDRAM write timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
NBL valid time  
2THCLK 0.5  
2THCLK+0.5  
td(SDCLKL _Data  
)
-
0
-
3.5  
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
1.5  
1
td(SDCLKL_SDNWE)  
th(SDCLKL_SDNWE)  
td(SDCLKL_ SDNE)  
th(SDCLKL-_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_NBL)  
-
0
-
-
0.5  
-
ns  
0
-
2
0
-
-
0.5  
-
0
-
0.5  
-
th(SDCLKL_NBL)  
NBLoutput time  
0
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 105. LPSDR SDRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
NBL valid time  
2THCLK 0.5  
2THCLK+0.5  
td(SDCLKL _Data  
)
-
2
5
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
-
2.8  
2
td(SDCLKL-SDNWE)  
th(SDCLKL-SDNWE)  
td(SDCLKL- SDNE)  
th(SDCLKL- SDNE)  
td(SDCLKL-SDNRAS)  
th(SDCLKL-SDNRAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL_NBL)  
-
1
-
-
1.5  
-
ns  
1
-
1.5  
-
1.5  
-
1.5  
-
1.5  
-
1.5  
-
th(SDCLKL-NBL)  
NBL output time  
1.5  
1. CL = 10 pF.  
2. Guaranteed by characterization results.  
192/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Electrical characteristics  
6.3.27  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 106 for DCMI are derived  
from tests performed under the ambient temperature, fHCLK frequency and VDD supply  
voltage summarized in Table 17, with the following configuration:  
DCMI_PIXCLK polarity: falling  
DCMI_VSYNC and DCMI_HSYNC polarity: high  
Data formats: 14 bits  
Table 106. DCMI characteristics  
Parameter  
Frequency ratio DCMI_PIXCLK/f  
Symbol  
Min  
Max  
Unit  
-
-
0.4  
54  
70  
-
HCLK  
DCMI_PIXCLK Pixel clock input  
MHz  
%
DPixel  
tsu(DATA)  
th(DATA)  
Pixel clock input duty cycle  
30  
2
Data input setup time  
Data input hold time  
2.5  
-
tsu(HSYNC)  
tsu(VSYNC)  
th(HSYNC)  
th(VSYNC)  
ns  
DCMI_HSYNC/DCMI_VSYNC input setup time  
DCMI_HSYNC/DCMI_VSYNC input hold time  
0.5  
1
-
-
Figure 75. DCMI timing diagram  
ꢀꢒ'&0,B3,;&/.  
'&0,B3,;&/.  
WKꢌ+6<1&ꢍ  
WVXꢌ+6<1&ꢍ  
'&0,B+6<1&  
WKꢌ+6<1&ꢍ  
WVXꢌ96<1&ꢍ  
'&0,B96<1&  
'$7$>ꢄꢎꢀꢉ@  
WVXꢌ'$7$ꢍ WKꢌ'$7$ꢍ  
06ꢉꢃꢂꢀꢂ9ꢃ  
DocID024030 Rev 9  
193/238  
197  
 
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.28  
LCD-TFT controller (LTDC) characteristics  
Unless otherwise specified, the parameters given in Table 107 for LCD-TFT are derived  
from tests performed under the ambient temperature, fHCLK frequency and VDD supply  
voltage summarized in Table 17, with the following configuration:  
LCD_CLK polarity: high  
LCD_DE polarity : low  
LCD_VSYNC and LCD_HSYNC polarity: high  
Pixel formats: 24 bits  
Table 107. LTDC characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
fCLK  
DCLK  
tw(CLKH)  
LTDC clock output frequency  
LTDC clock output duty cycle  
-
42  
55  
MHz  
%
45  
Clock High time, low time  
Data output valid time  
Data output hold time  
tw(CLK)/2 0.5 tw(CLK)/2+0.5  
tw(CLKL)  
tv(DATA)  
-
3.5  
-
th(DATA)  
1.5  
tv(HSYNC)  
tv(VSYNC)  
tv(DE)  
ns  
HSYNC/VSYNC/DE output valid  
time  
-
2.5  
th(HSYNC)  
HSYNC/VSYNC/DE output hold  
time  
th(VSYNC)  
2
-
th(DE)  
194/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Electrical characteristics  
Figure 76. LCD-TFT horizontal timing diagram  
W&/.  
/&'B&/.  
/&'B96<1&  
WYꢌ+6<1&ꢍ  
WYꢌ+6<1&ꢍ  
/&'B+6<1&  
WKꢌ'(ꢍ  
WYꢌ'(ꢍ  
/&'B'(  
WYꢌ'$7$ꢍ  
/&'B5>ꢄꢎꢈ@  
/&'B*>ꢄꢎꢈ@  
/&'B%>ꢄꢎꢈ@  
1JYFM 1JYFM  
1JYFM  
/
WKꢌ'$7$ꢍ  
$FWLYHꢊZLGWK  
+6<1& +RUL]RQWDO  
ZLGWK EDFNꢊSRUFK  
+RUL]RQWDO  
EDFNꢊSRUFK  
2QHꢊOLQH  
06ꢉꢃꢈꢂꢅ9ꢀ  
Figure 77. LCD-TFT vertical timing diagram  
W&/.  
/&'B&/.  
WYꢌ96<1&ꢍ  
WYꢌ96<1&ꢍ  
/&'B96<1&  
/&'B5>ꢄꢎꢈ@  
/&'B*>ꢄꢎꢈ@  
/&'B%>ꢄꢎꢈ@  
- LINES DATA  
96<1& 9HUWLFDO  
ZLGWK EDFNꢊSRUFK  
$FWLYHꢊZLGWK  
2QHꢊIUDPH  
9HUWLFDO  
EDFNꢊSRUFK  
06ꢉꢃꢈꢆꢄ9ꢀ  
DocID024030 Rev 9  
195/238  
197  
Electrical characteristics  
STM32F427xx STM32F429xx  
6.3.29  
SD/SDIO MMC card host interface (SDIO) characteristics  
Unless otherwise specified, the parameters given in Table 108 for the SDIO/MMC interface  
are derived from tests performed under the ambient temperature, f  
frequency and V  
PCLK2  
DD  
supply voltage conditions summarized in Table 17, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
characteristics.  
Figure 78. SDIO high-speed mode  
T
T
R
F
T
#
T
T
7ꢊ#+(ꢋ  
7ꢊ#+,ꢋ  
#+  
T
T
/6  
/(  
$ꢌ #-$  
ꢊOUTPUTꢋ  
T
T
)(  
)35  
$ꢌ #-$  
ꢊINPUTꢋ  
AIꢃꢉꢅꢅꢎ  
Figure 79. SD default mode  
#+  
T
T
/6$  
/($  
$ꢌ #-$  
ꢊOUTPUTꢋ  
AIꢃꢉꢅꢅꢅ  
196/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Electrical characteristics  
(1)(2)  
Table 108. Dynamic characteristics: SD / MMC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
0
-
48  
8/3  
-
MHz  
-
-
9
fpp =48 MHz  
fpp =48 MHz  
8.5  
8.3  
ns  
ns  
ns  
Clock high time  
10  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =48 MHz  
fpp =48 MHz  
3.5  
0
-
-
-
-
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =48 MHz  
fpp =48 MHz  
-
4.5  
-
7
-
3
CMD, D inputs (referenced to CK) in SD default mode  
1.5  
0.5  
-
-
-
-
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp =24 MHz  
fpp =24 MHz  
ns  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
-
4.5  
-
6.5  
-
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =24 MHz  
fpp =24 MHz  
3.5  
1. Guaranteed by characterization results.  
2. VDD = 2.7 to 3.6 V.  
6.3.30  
RTC characteristics  
Table 109. RTC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
f
PCLK1/RTCCLK frequency ratio  
4
-
DocID024030 Rev 9  
197/238  
197  
 
 
STM32F427xx STM32F429xx  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP100 package information  
Figure 80. LQFP100 -100-pin, 14 x 14 mm low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢈꢂꢁꢆ MM  
'!5'% 0,!.%  
CCC  
ꢎꢆ  
#
$
,
$ꢃ  
$ꢍ  
,ꢃ  
ꢆꢃ  
ꢆꢈ  
ꢎꢄ  
ꢃꢈꢈ  
ꢁꢄ  
0).   
)$%.4)&)#!4)/.  
ꢁꢆ  
E
ꢃ,?-%?6ꢆ  
1. Drawing is not to scale.  
DocID024030 Rev 9  
197/238  
231  
Package information  
STM32F427xx STM32F429xx  
Table 110. LQPF100 100-pin, 14 x 14 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
-
16.200  
14.200  
-
0.6220  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0.0°  
-
7.0°  
0.0°  
7.0°  
ccc  
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
198/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Package information  
Figure 81. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint  
ꢎꢆ  
ꢆꢃ  
ꢎꢄ  
ꢆꢈ  
ꢈꢂꢆ  
ꢈꢂꢍ  
ꢃꢄꢂꢎ ꢃꢉꢂꢍ  
ꢃꢈꢈ  
ꢁꢄ  
ꢃꢂꢁ  
ꢁꢆ  
ꢃꢁꢂꢍ  
ꢃꢄꢂꢎ  
AIꢃꢉꢒꢈꢄC  
1. Dimensions are expressed in millimeters.  
DocID024030 Rev 9  
199/238  
231  
Package information  
STM32F427xx STM32F429xx  
Device marking for LQFP100  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 82. LQFP100 marking example (package top view)  
ꢌꢀꢍ  
3URGXFWꢊLGHQWLILFDWLRQ  
45.ꢀꢁ'ꢂꢁꢃ  
7*5ꢄꢅꢅꢅ3  
5HYLVLRQꢊFRGH  
'DWHꢊFRGHꢊ ꢊ\HDUꢊꢓꢊZHHN  
:88  
3LQꢊꢀ  
LGHQWLILHU  
DLꢀꢂꢅꢅꢁG  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
200/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
7.2  
WLCSP143 package information  
Figure 83. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package outline  
$ꢀꢊEDOOꢊORFDWLRQ  
EEE  
Hꢀ  
)
*
'HWDLOꢊ$  
Hꢃ  
H
$ꢉ  
$ꢃ  
$
H
%RWWRPꢊYLHZ  
%XPSꢊVLGH  
6LGHꢊYLHZ  
'
%XPS  
HHH  
$ꢉ  
$ꢀ  
(
E
FFF  
GGG  
= ; <  
=
$ꢀꢊRULHQWDWLRQ  
UHIHUHQFH  
6HDWLQJꢊ  
SODQH  
'HWDLOꢊ$  
5RWDWHGꢊꢅꢄƒ  
DDD  
7RSꢊYLHZ  
:DIHUꢊEDFNꢊVLGH  
$ꢄ:(B0(B9ꢃ  
1. Drawing is not to scale.  
DocID024030 Rev 9  
201/238  
231  
 
Package information  
STM32F427xx STM32F429xx  
Table 111. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
0.555  
0.175  
0.380  
0.025  
0.250  
4.521  
5.547  
0.400  
4.000  
4.800  
0.2605  
0.3735  
-
Max  
0.585  
0.195  
-
Min  
Typ  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.1780  
0.2184  
0.0157  
0.1575  
0.1890  
0.0103  
0.0147  
-
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
0.525  
0.0207  
0.0230  
0.155  
-
-
-
-
-
-
-
-
-
0.220  
0.280  
4.556  
5.582  
-
0.0087  
0.0110  
0.1794  
0.2198  
-
4.486  
0.1766  
E
5.512  
0.2170  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 84. WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint  
'SDG  
'VP  
06ꢀꢁꢅꢇꢆ9ꢃ  
202/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
Table 112. WLCSP143 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
0.4  
Pitch  
260 µm max. (circular)  
220 µm recommended  
Dpad  
Dsm  
300 µm min. (for 260 µm diameter pad)  
PCB pad design  
Non-solder mask defined via underbump allowed.  
Device marking for WLCSP143  
The following figure gives an example of topside marking orientation versus ball A 1  
identifier location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 85. WLCSP143 marking example (package top view)  
EDOOꢊ$ꢀ  
3URGXFWꢊ  
LGHQWLILFDWLRQꢌꢀꢍ  
67ꢀꢁ)ꢂꢁꢃ=,<ꢄ  
'DWHꢊFRGHꢊ ꢊ<HDUꢓ:HHN  
5HYLVLRQꢊFRGH  
< :: 5  
06Yꢉꢃꢈꢁꢇ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
203/238  
231  
 
 
 
Package information  
STM32F427xx STM32F429xx  
7.3  
LQFP144 package information  
Figure 86. LQFP144-144-pin, 20 x 20 mm low-profile quad flat package outline  
6($7,1*  
3/$1(  
&
ꢄꢐꢃꢆꢊPP  
*$8*(ꢊ3/$1(  
FFF  
&
'
/
'ꢀ  
'ꢉ  
/ꢀ  
ꢀꢄꢁ  
ꢈꢉ  
ꢀꢄꢅ  
ꢈꢃ  
ꢉꢈ  
ꢀꢂꢂ  
ꢉꢇ  
3,1ꢊꢀ  
,'(17,),&$7,21  
H
ꢀ$B0(B9ꢂ  
1. Drawing is not to scale.  
204/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Package information  
Table 113. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.689  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID024030 Rev 9  
205/238  
231  
Package information  
STM32F427xx STM32F429xx  
Figure 87. LQPF144- 144-pin,20 x 20 mm low-profile quad flat package  
recommended footprint  
ꢀꢐꢉꢆ  
ꢀꢄꢁ  
ꢈꢉ  
ꢀꢄꢅ  
ꢈꢃ  
ꢄꢐꢉꢆ  
ꢄꢐꢆ  
ꢀꢅꢐꢅ  
ꢀꢈꢐꢁꢆ  
ꢃꢃꢐꢇ  
ꢀꢂꢂ  
ꢉꢈ  
ꢉꢇ  
ꢀꢅꢐꢅ  
ꢃꢃꢐꢇ  
DLꢀꢂꢅꢄꢆH  
1. Dimensions are expressed in millimeters.  
206/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Package information  
Device marking for LQFP144  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 88. LQFP144 marking example (package top view)  
5HYLVLRQꢊFRGH  
3URGXFWꢊ  
LGHQWLILFDWLRQ  
5
ꢌꢀꢍ  
ꢀꢁ)ꢂꢁꢃ=(7ꢄ  
'DWHꢊFRGHꢊ ꢊ<HDUꢓ:HHN  
<::  
3LQꢊꢀ  
DLꢀꢆꢀꢄꢀH  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
207/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
7.4  
LQFP176 package information  
Figure 89. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package outline  
3EATING PLANE  
#
ꢈꢂꢁꢆ MM  
GAUGE PLANE  
K
!ꢃ  
,
($  
,ꢃ  
0).   
$
)$%.4)&)#!4)/.  
:%  
%
(%  
E
:$  
B
ꢃ4?-%?6ꢁ  
1. Drawing is not to scale.  
Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
-
-
-
-
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
26.100  
-
-
-
-
-
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.9488  
1.0276  
0.050  
1.350  
0.170  
0.090  
23.900  
25.900  
0.0020  
0.0531  
0.0067  
0.0035  
0.9409  
1.0197  
c
D
HD  
208/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Package information  
Table 114. LQFP176 - 176-pin, 24 x 24 mm low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
ZD  
E
-
1.250  
-
-
0.0492  
-
23.900  
-
24.100  
0.9409  
-
0.9488  
HE  
ZE  
e
25.900  
-
26.100  
1.0197  
-
1.0276  
-
1.250  
-
-
0.0492  
-
-
0.500  
-
0.750  
-
-
0.0197  
-
0.0295  
-
L(2)  
L1  
k
0.450  
-
0.0177  
-
-
0°  
-
1.000  
-
0°  
-
0.0394  
-
-
7°  
-
-
7°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.  
DocID024030 Rev 9  
209/238  
231  
Package information  
STM32F427xx STM32F429xx  
Figure 90. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat recommended  
footprint  
ꢃꢂꢁ  
ꢃꢎꢄ  
ꢃꢍꢍ  
ꢃꢍꢁ  
ꢈꢂꢆ  
ꢈꢂꢍ  
ꢉꢉ  
ꢉꢆ  
ꢅꢒ  
ꢅꢅ  
ꢃꢂꢁ  
ꢁꢃꢂꢅ  
ꢁꢄꢂꢎ  
ꢃ4?&0?6ꢃ  
1. Dimensions are expressed in millimeters.  
210/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Package information  
Device marking for LQFP176  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 91. LQFP176 marking (package top view)  
3URGXFWꢊꢊ  
ꢌꢀꢍ  
LGHQWLILFDWLRQ  
670ꢀꢁ)ꢂꢁꢅ,,7ꢄ  
'DWHꢊFRGHꢊ ꢊ  
<HDUꢊꢓꢊZHHN  
5HYLVLRQꢊFRGH  
<::  
5
3LQꢊꢀ  
LGHQWLILHU  
DLꢀꢈꢈꢂꢄG  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
211/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
7.5  
LQFP208 package information  
Figure 92. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package outline  
6($7,1*  
3/$1(  
&
FFF  
&
ꢄꢐꢃꢆꢊPP  
*$8*(ꢊ3/$1(  
.
/
'
/ꢀ  
'ꢀ  
'ꢉ  
ꢀꢄꢆ  
ꢀꢆꢇ  
ꢀꢄꢂ  
ꢀꢆꢈ  
ꢃꢄꢁ  
ꢆꢉ  
3,1ꢊꢀ  
,'(17,),&$7,21  
ꢆꢃ  
H
6)@.&@7ꢁ  
1. Drawing is not to scale.  
212/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Package information  
Table 115. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
29.800  
27.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
30.200  
28.200  
-
--  
0.0020  
0.0531  
0.0067  
0.0035  
1.1732  
1.0945  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
1.1890  
1.1102  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
30.000  
28.000  
25.500  
30.000  
28.000  
25.500  
0.500  
0.600  
1.000  
3.5°  
1.1811  
1.1024  
1.0039  
1.1811  
1.1024  
1.0039  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
29.800  
27.800  
-
30.200  
28.200  
-
1.1732  
1.0945  
-
1.1890  
1.1102  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7.0°  
0°  
7.0°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID024030 Rev 9  
213/238  
231  
Package information  
STM32F427xx STM32F429xx  
Figure 93. LQFP208 - 208-pin, 28 x 28 mm low-profile quad flat package  
recommended footprint  
ꢃꢄꢁ  
ꢀꢆꢈ  
ꢄꢐꢆ  
ꢀꢆꢇ  
ꢆꢃ  
ꢀꢄꢆ  
ꢀꢐꢃ  
ꢆꢉ  
ꢀꢄꢂ  
ꢃꢆꢐꢁ  
ꢉꢄꢐꢈ  
8+B)3B9ꢃ  
1. Dimensions are expressed in millimeters.  
214/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Package information  
Device marking for LQFP208  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 94. LQFP208 marking example (package top view)  
5HYLVLRQꢊFRGH  
ꢌꢀꢍ  
3URGXFWꢊLGHQWLILFDWLRQ  
5
670ꢀꢁ)ꢂꢁꢃ%,7ꢄ  
3LQꢊꢀ  
LGHQWLILHU  
'DWHꢊFRGHꢊ ꢊ\HDUꢊꢓꢊZHHN  
<::  
06ꢉꢀꢁꢀꢇ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
215/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
7.6  
UFBGA169 package information  
Figure 95. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array  
package outline  
=
6HDWLQJꢊSODQH  
$ꢂ  
$ꢃ  
GGG  
=
$
$ꢉ  
$ꢀ  
E
6,'(ꢊ9,(:  
$ꢀꢊEDOOꢊ  
LQGH[ꢊDUHD  
$ꢀꢊEDOOꢊ  
LGHQWLILHU  
;
(
(ꢀ  
H
)
$
)
'
'ꢀ  
H
<
1
ꢀꢉ  
‘EꢊꢌꢅꢊE OOVꢍꢊ  
%27720ꢊ9,(:  
723ꢊ9,(:  
‘ HHH 0  
‘ III  
=
=
; <  
0
$ꢄ<9B0(B9ꢃ  
1. Drawing is not to scale.  
Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
6.000  
7.000  
6.000  
0.500  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2362  
0.2756  
0.2362  
0.0197  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.950  
6.950  
5.950  
-
0.370  
0.330  
7.050  
6.050  
7.050  
6.050  
-
0.0106  
0.0091  
0.2736  
0.2343  
0.2736  
0.2343  
-
0.0146  
0.0130  
0.2776  
0.2382  
0.2776  
0.2382  
-
D
D1  
E
E1  
e
216/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
Table 116. UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
F
0.450  
0.500  
0.550  
0.100  
0.150  
0.050  
0.0177  
0.0197  
0.0217  
0.0039  
0.0059  
0.0020  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 96. UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch  
ball grid array recommended footprint  
'SDG  
'VP  
06ꢀꢁꢅꢇꢆ9ꢃ  
Table 117. UFBGA169 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.27 mm  
0.35 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter.  
Note:  
Non-solder mask defined (NSMD) pads are recommended.  
4 to 6 mils solder paste screen printing process.  
DocID024030 Rev 9  
217/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
Device marking for UFBGA169  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 97. UFBGA169 marking example (package top view)  
%DOOꢊ$ꢀ  
LGHQWLILHU  
670ꢀꢁ)  
3URGXFWꢊ  
LGHQWLILFDWLRQ  
ꢌꢀꢍ  
ꢂꢁꢃ$,+ꢄ  
'DWHꢊFRGHꢊ ꢊ<HDUꢊꢓꢊZHHN  
< ::  
5HYLVLRQ  
ꢊFRGH  
5
06ꢀꢅꢄꢂꢇ9ꢉ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
218/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
7.7  
UFBGA176+25 package information  
Figure 98. UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch ultra thin fine pitch  
ball grid array package outline  
^ĞĂƚŝŶŐꢀƉůĂŶĞ  
&
ꢁϰ  
ĚĚĚ  
ꢁϯ  
ꢁϭ  

$ꢃ  
ď
$ꢀꢊEDOOꢊ  
LQGH[ꢊ  
DUHD  
$
$ꢀꢊEDOOꢊ  
LGHQWLILHU  
(ꢀ  
Ğ

'ꢀ  
Ğ
Z
ϭϱ  
ϭ
‘EꢊꢌꢀꢈꢇꢊꢓꢊꢃꢆꢊꢊEDOOVꢍ  
ꢃKddKDꢀs/ꢄt  
dKWꢀs/ꢄt  
‘ HHH 0  
‘ III  
&
&
$ ꢃ  
0
$ꢄ(ꢈB0(B9ꢁ  
1. Drawing is not to scale.  
Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
-
-
0.600  
-
-
0.0236  
-
-
0.110  
-
-
0.0043  
-
0.130  
0.450  
0.320  
0.290  
10.000  
9.100  
10.000  
9.100  
0.650  
0.450  
-
-
-
0.0051  
0.0177  
0.0126  
0.0114  
0.3937  
0.3583  
0.3937  
0.3583  
0.0256  
0.0177  
-
-
-
-
-
-
-
-
-
-
0.240  
0.340  
0.0094  
0.0134  
D
9.850  
10.150  
0.3878  
0.3996  
D1  
E
-
-
-
-
9.850  
10.150  
0.3878  
0.3996  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
Z
-
ddd  
0.080  
0.0031  
DocID024030 Rev 9  
219/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
Table 118. UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
eee  
fff  
-
-
-
-
0.150  
0.050  
-
-
-
-
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 99. UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch  
ball grid array package recommended footprint  
'SDG  
'VP  
ꢁϬꢄϳͺ&Wͺsϭ  
Table 119. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.65 mm  
0.300 mm  
0.400 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.300 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
220/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
Device marking for UFBGA176+25  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 100. UFBGA176+25 marking example (package top view)  
3URGXFWꢊLGHQWLILFDWLRQꢌꢀꢍ  
5HYLVLRQꢊFRGH  
5
670ꢀꢁ)ꢂꢁꢃ  
,,+ꢄ8  
'DWHꢊFRGHꢊ ꢊ\HDUꢊꢓꢊZHHN  
< ::  
%DOOꢊꢀꢊ  
LQGHQWLILHU  
06ꢉꢂꢈꢈꢃ9ꢃ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
221/238  
231  
 
 
Package information  
STM32F427xx STM32F429xx  
7.8  
TFBGA216 package information  
Figure 101. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch  
ball grid array package outline  
=
6HDWLQJꢊSODQH  
GGG =  
$ꢃ  
$ꢀ  
$
'ꢀ  
;
$ꢀꢊEDOOꢊ  
$ꢀꢊEDOOꢊ  
'
LGHQWLILHU LQGH[ꢊDUHD  
H
)
$
*
(ꢀ  
(
H
<
5
ꢀꢆ  
‘EꢊꢌꢃꢀꢇꢊEDOOVꢍ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢊ9,(:  
723ꢊ9,(:  
$ꢄ/ꢃB0(B9ꢉ  
1. Drawing is not to scale.  
Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.100  
-
-
0.0433  
0.150  
-
-
0.0059  
-
-
-
0.760  
0.400  
13.000  
11.200  
13.000  
11.200  
0.800  
0.900  
-
-
-
0.0299  
0.0157  
0.5118  
0.4409  
0.5118  
0.4409  
0.0315  
0.0354  
-
-
0.350  
0.450  
0.0138  
0.0177  
D
12.850  
13.150  
0.5118  
0.5177  
D1  
E
-
-
-
-
12.850  
13.150  
0.5118  
0.5177  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
ddd  
0.100  
0.0039  
222/238  
DocID024030 Rev 9  
 
 
STM32F427xx STM32F429xx  
Package information  
Table 120. TFBGA216 - 216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array  
package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
eee  
fff  
-
-
-
-
0.150  
0.080  
-
-
-
-
0.0059  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Device marking for TFBGA176  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Other optional marking or inset/upset marks, which depends assembly location, are not  
indicated below.  
Figure 102. TFBGA176 marking example (package top view)  
3URGXFWꢊLGHQWLILFDWLRQꢌꢀꢍ  
670ꢀꢁ)ꢂꢁꢃ  
5HYLVLRQꢊFRGH  
1,+ꢄ  
5
'DWHꢊFRGHꢊ ꢊ\HDUꢊꢓꢊZHHN  
%DOOꢊ$ꢀꢊLGHQWLILHU  
< ::  
06ꢉꢀꢁꢀꢈ9ꢉ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID024030 Rev 9  
223/238  
231  
 
Package information  
STM32F427xx STM32F429xx  
7.9  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 121. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm / 0.5 mm pitch  
43  
31.2  
40  
Thermal resistance junction-ambient  
WLCSP143  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP176 - 24 × 24 mm / 0.5 mm pitch  
38  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP208 - 28 × 28 mm / 0.5 mm pitch  
19  
Thermal resistance junction-ambient  
UFBGA169 - 7 × 7mm / 0.5 mm pitch  
52  
Thermal resistance junction-ambient  
UFBGA176 - 10× 10 mm / 0.5 mm pitch  
39  
Thermal resistance junction-ambient  
TFBGA216 - 13 × 13 mm / 0.8 mm pitch  
29  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
224/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Part numbering  
8
Part numbering  
Table 122. Ordering information scheme  
STM32  
Example:  
F
429 V  
I
T
6
xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
427= STM32F427xx, USB OTG FS/HS, camera interface,  
Ethernet  
429= STM32F429xx, USB OTG FS/HS, camera interface,  
Ethernet, LCD-TFT  
Pin count  
V = 100 pins  
Z = 143 and 144 pins  
A = 169 pins  
I = 176 pins  
B = 208 pins  
N = 216 pins  
Flash memory size  
E = 512 Kbytes of Flash memory  
G = 1024 Kbytes of Flash memory  
I = 2048 Kbytes of Flash memory  
Package  
T = LQFP  
H = BGA  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID024030 Rev 9  
225/238  
231  
 
Recommendations when using internal reset OFF  
STM32F427xx STM32F429xx  
Appendix A  
Recommendations when using internal reset  
OFF  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
The over-drive mode is not supported.  
A.1  
Operating conditions  
Table 123. Limitations depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
PossibleFlash  
memory  
operations  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
Conversion  
time up to  
1.2 Msps  
168 MHz with 8  
wait states and  
over-drive OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to  
2.1 V(3)  
– No I/O  
compensation  
20 MHz(4)  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no  
wait state is required.  
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does  
not impact the execution speed from Flash memory since the ART accelerator allows to achieve a  
performance equivalent to 0 wait state program execution.  
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to  
Section 3.17.1: Internal reset ON).  
4. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and  
power.  
226/238  
DocID024030 Rev 9  
 
STM32F427xx STM32F429xx  
Application block diagrams  
Appendix B  
Application block diagrams  
B.1  
USB OTG full speed (FS) interface solutions  
Figure 103. USB controller configured as peripheral-only and used  
in Full speed mode  
6$$  
ꢆ6 TO 6$$  
6OLATGE REGULATOR  
ꢊꢃꢋ  
34-ꢂꢅ&ꢁXX  
6"53  
$-  
$0  
0!ꢃꢃꢀꢀ0"ꢃꢉ  
0!ꢃꢁꢀ0"ꢃꢆ  
/3#?).  
6
33  
/3#?/54  
-3ꢃꢒꢈꢈꢈ6ꢆ  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
Figure 104. USB controller configured as host-only and used in full speed mode  
6$$  
%.  
'0)/  
#URRENT LIMITER  
 6 0WR  
ꢊꢃꢋ  
POWER SWITCH  
/VERCURRENT  
'0)/ꢓ)21  
34-ꢂꢅ&ꢁXX  
6"53  
$-  
0!ꢃꢃꢀꢀ0"ꢃꢉ  
/3#?).  
$0  
0!ꢃꢁꢀ0"ꢃꢆ  
633  
/3#?/54  
-3ꢃꢒꢈꢈꢃ6ꢉ  
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
DocID024030 Rev 9  
227/238  
231  
Application block diagrams  
STM32F427xx STM32F429xx  
Figure 105. USB controller configured in dual mode and used in full speed mode  
6$$  
 6 TO 6$$  
VOLTAGE REGULATOR  
ꢊꢃꢋ  
6$$  
%.  
'0)/  
 6 0WR  
#URRENT LIMITER  
POWER SWITCH  
ꢊꢁꢋ  
/VERCURRENT  
'0)/ꢓ)21  
34-ꢂꢅ&ꢁXX  
6"53  
0!ꢒꢀ0"ꢃꢍ  
$-  
0!ꢃꢃꢀ0"ꢃꢉ  
/3#?).  
$0  
ꢊꢍꢋ  
0!ꢃꢁꢀ0"ꢃꢆ  
0!ꢃꢈꢀ0"ꢃꢁ  
)$  
/3#?/54  
6
33  
-3ꢃꢒꢈꢈꢁ6ꢍ  
1. External voltage regulator only needed when building a VBUS powered device.  
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power  
switch can be used if 5 V are available on the application board.  
3. The ID pin is required in dual role only.  
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance  
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.  
228/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Application block diagrams  
B.2  
USB OTG high speed (HS) interface solutions  
Figure 106. USB controller configured as peripheral, host, or dual-mode  
and used in high speed mode  
34-ꢂꢅ&ꢁXX  
$0  
&3 0(9  
NOT CONNECTED  
$-  
53" (3  
/4' #TRL  
$0  
5,0)?#,+  
$-  
5,0)?$;ꢎꢇꢈ=  
ꢊꢁꢋ  
)$  
53"  
5,0)?$)2  
5,0)?340  
CONNECTOR  
6"53  
633  
5,0)  
5,0)?.84  
(IGH SPEED  
/4' 0(9  
84ꢃ  
0,,  
ꢁꢉ OR ꢁꢄ -(Z 84ꢊꢃꢋ  
-#/ꢃ OR -#/ꢁ  
8)  
-3ꢃꢒꢈꢈꢆ6ꢁ  
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F42x  
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible  
connection.  
2. The ID pin is required in dual role only.  
DocID024030 Rev 9  
229/238  
231  
Application block diagrams  
STM32F427xx STM32F429xx  
B.3  
Ethernet interface solutions  
Figure 107. MII mode using a 25 MHz crystal  
34-ꢍꢁ  
-))?48?#,+  
-))?48?%.  
-))?48$;ꢍꢇꢈ=  
-))?#23  
-#5  
%THERNET  
-!# ꢃꢈꢀꢃꢈꢈ  
%THERNET  
0(9 ꢃꢈꢀꢃꢈꢈ  
-))  
 ꢃꢆ PINS  
-))?#/,  
ꢊꢃꢋ  
(#,+  
-))?28?#,+  
-))?28$;ꢍꢇꢈ=  
-))?28?$6  
-))?28?%2  
-))  -$#  
 ꢃꢎ PINS  
)%%%ꢃꢆꢅꢅ 040  
4IMER  
INPUT  
TRIGGER  
4IMESTAMP  
COMPARATOR  
-$)/  
-$#  
4)-ꢁ  
ꢊꢁꢋ  
003?/54  
(#,+  
-#/ꢃꢀ-#/ꢁ  
0,,  
84!,  
ꢁꢆ -(Z  
/3#  
0(9?#,+ ꢁꢆ -(Z  
84ꢃ  
-3ꢃꢒꢒꢄꢅ6ꢃ  
1. fHCLK must be greater than 25 MHz.  
2. Pulse per second when using IEEE1588 PTP optional signal.  
Figure 108. RMII with a 50 MHz oscillator  
34-ꢍꢁ  
%THERNET  
0(9 ꢃꢈꢀꢃꢈꢈ  
-#5  
2-))?48?%.  
%THERNET  
2-))?48$;ꢃꢇꢈ=  
2-))?28$;ꢃꢇꢈ=  
2-))?#28?$6  
2-))?2%&?#,+  
-!# ꢃꢈꢀꢃꢈꢈ  
2-))  
  PINS  
ꢊꢃꢋ  
(#,+  
2-))  -$#  
  PINS  
)%%%ꢃꢆꢅꢅ 040  
-$)/  
-$#  
4IMER  
INPUT  
TRIGGER  
4IMESTAMP  
COMPARATOR  
4)-ꢁ  
ꢀꢁ OR ꢀꢁꢈ  
ꢁꢂꢆ OR ꢁꢆ -(Z  
ꢆꢈ -(Z  
SYNCHRONOUS  
(#,+  
0,,  
/3#  
ꢆꢈ -(Z  
0(9?#,+ ꢆꢈ -(Z 84ꢃ  
ꢆꢈ -(Z  
-3ꢃꢒꢒꢄꢒ6ꢃ  
1. fHCLK must be greater than 25 MHz.  
230/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Application block diagrams  
Figure 109. RMII with a 25 MHz crystal and PHY with PLL  
34-ꢍꢁ&  
%THERNET  
0(9 ꢃꢈꢀꢃꢈꢈ  
-#5  
2-))?48?%.  
%THERNET  
2-))?48$;ꢃꢇꢈ=  
2-))?28$;ꢃꢇꢈ=  
2-))?#28?$6  
2-))?2%&?#,+  
-!# ꢃꢈꢀꢃꢈꢈ  
2-))  
ꢊꢃꢋ  
(#,+  
  PINS  
2%&?#,+  
2-))  -$#  
  PINS  
)%%%ꢃꢆꢅꢅ 040  
-$)/  
-$#  
4IMER  
INPUT  
TRIGGER  
4IMESTAMP  
COMPARATOR  
4)-ꢁ  
ꢀꢁ OR ꢀꢁꢈ  
SYNCHRONOUS  
ꢁꢂꢆ OR ꢁꢆ -(Z  
ꢆꢈ -(Z  
0,,  
84ꢃ  
(#,+  
-#/ꢃꢀ-#/ꢁ  
84!,  
ꢁꢆ -(Z  
0,,  
/3#  
0(9?#,+ ꢁꢆ -(Z  
-3ꢃꢒꢒꢎꢈ6ꢃ  
1. fHCLK must be greater than 25 MHz.  
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.  
DocID024030 Rev 9  
231/238  
231  
Revision history  
STM32F427xx STM32F429xx  
9
Revision history  
Table 124. Document revision history  
Changes  
Date  
Revision  
19-Mar-2013  
1
Initial release.  
Added STM32F429xx part numbers and related informations.  
STM32F427xx part numbers:  
Replaced FSMC by FMC added Chrom-ART Accelerator and SAI  
interface.  
Increased core, timer, GPIOs, SPI maximum frequencies  
Updated Figure 8.Updated Figure 9.  
Removed note in Section ·: Standby mode.  
Updated Figure 18.  
Updated Table 10: STM32F427xx and STM32F429xx pin and ball  
definitions and Table 12: STM32F427xx and STM32F429xx alternate  
function mapping..  
Modified Figure 19: Memory map.  
Updated Table 17: General operating conditions, Table 18: Limitations  
depending on the operating power supply range. Removed note 1 in  
Table 22: reset and power control block characteristics. Added  
Table 23: Over-drive switching characteristics.  
Updated Section : Typical and maximum current consumption,  
Table 34: Switching output I/O current consumption, Table 35:  
Peripheral current consumption and Section : On-chip peripheral  
current consumption.  
10-Sep-2013  
2
Updated Table 36: Low-power mode wakeup timings.  
Modified Section : High-speed external user clock generated from an  
external source, Section : Low-speed external user clock generated  
from an external source, and Section 6.3.10: Internal clock source  
characteristics.  
Updated Table 43: Main PLL characteristics and Table 45: PLLISAI  
(audio and LCD-TFT PLL) characteristics.  
Updated Table 52: EMI characteristics.  
Updated Table 57: Output voltage characteristics and Table 58: I/O AC  
characteristics.  
Updated Table 60: TIMx characteristics, Table 61: I2C characteristics,  
Table 62: SPI dynamic characteristics, Section : SAI characteristics.  
Updated Table 102: SDRAM read timings and Table 104: SDRAM write  
timings.  
232/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Revision history  
Table 124. Document revision history  
Revision Changes  
Date  
Added STM32F429xE part numbers featuring 512 Mbytes of Flash  
memory and UFBGA169 package.  
Added LPSDR SDRAM.  
Changed INTN into INTR in Figure 4: STM32F427xx and  
STM32F429xx block diagram.  
Added note 4 in Table 2: STM32F427xx and STM32F429xx features  
and peripheral counts.  
Updated Section 3.15: Boot modes.  
Updated for PA4 and PA5 in Table 10: STM32F427xx and  
STM32F429xx pin and ball definitions.  
Added VIN for BOOT0 pins in Table 14: Voltage characteristics.  
Updated Note 6., added Note 1.,and updated maximum VIN for B pins  
in Table 17: General operating conditions.  
Updated maximum Flash memory access frequency with wait states  
for VDD =1.8 to 2.1 V in Table 18: Limitations depending on the  
operating power supply range.  
Updated Table 24: Typical and maximum current consumption in Run  
mode, code with data processing running from Flash memory (ART  
accelerator enabled except prefetch) or RAM and Table 25: Typical  
and maximum current consumption in Run mode, code with data  
processing running from Flash memory (ART accelerator disabled).  
24-Jan-2014  
3
Updated Table 30: Typical current consumption in Run mode, code  
with data processing running from Flash memory or RAM, regulator  
ON (ART accelerator enabled except prefetch), VDD=1.7 V, Table 31:  
Typical current consumption in Run mode, code with data processing  
running from Flash memory, regulator OFF (ART accelerator enabled  
except prefetch), and Table 32: Typical current consumption in Sleep  
mode, regulator ON, VDD=1.7 V.  
Updated Table 57: Output voltage characteristics.  
Updated Table 58: I/O AC characteristics. Added Figure 35.  
Updated th(SDA), tr(SDA) and tr(SCL) and added tSP in Table 61: I2C  
characteristics.  
Updated fSCK in Table 62: SPI dynamic characteristics.  
Updated Table 70: Dynamic characteristics: USB ULPI.  
Updated Section 6.3.26: FMC characteristics conditions. Updated  
Figure 73: SDRAM read access waveforms (CL = 1) and Figure 74:  
SDRAM write access waveforms. Added Table 103: LPSDR SDRAM  
read timings and Table 105: LPSDR SDRAM write timings. Updated  
Table 102: SDRAM read timings and Table 104: SDRAM write timings  
and added note 2.Table 108: Dynamic characteristics: SD / MMC  
characteristics.  
DocID024030 Rev 9  
233/238  
237  
Revision history  
STM32F427xx STM32F429xx  
Table 124. Document revision history  
Date  
Revision  
Changes  
In the whole document, minimum supply voltage changed to 1.7 V  
when external power supply supervisor is used.  
Added DCMI_VSYNC alternate function on PG9 and updated note 6.  
in Table 10: STM32F427xx and STM32F429xx pin and ball definitions  
and Table 12: STM32F427xx and STM32F429xx alternate function  
mapping. Added note 2.belowFigure 16: STM32F42x UFBGA169  
ballout.  
Changed SVGA (800x600) into XGA1024x768) on cover page and in  
Section 3.10: LCD-TFT controller (available only on STM32F429xx).  
Updated Section 3.18.2: Regulator OFF.  
Updated signal corresponding to pin L5 in Figure 12: STM32F42x  
WLCSP143 ballout.  
Added ACCHSE in Table 39: HSE 4-26 MHz oscillator characteristics  
and ACCLSE in Table 40: LSE oscillator characteristics (fLSE = 32.768  
kHz).  
24-Apr-2014  
4
Updated Table 53: ESD absolute maximum ratings.  
Updated VIH in Table 56: I/O static characteristics. Added condition  
VDD>1.7 V in Table 58: I/O AC characteristics.  
Updated conditions in Table 62: SPI dynamic characteristics.  
Added ZDRV in Table 67: USB OTG full speed electrical characteristics  
Removed note 3 in Table 80: Temperature sensor characteristics.  
Added Figure 82: LQFP100 marking example (package top view),  
Figure 85: WLCSP143 marking example (package top view),  
Figure 88: LQFP144 marking example (package top view), Figure 91:  
LQFP176 marking (package top view), Figure 94: LQFP208 marking  
example (package top view), Figure 97: UFBGA169 marking example  
(package top view) and Figure 100: UFBGA176+25 marking example  
(package top view).  
Added Appendix A: Recommendations when using internal reset OFF.  
Removed Internal reset OFF hardware connection appendix.  
234/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Revision history  
Table 124. Document revision history  
Revision Changes  
Date  
Update SPI/IS2 in Table 2: STM32F427xx and STM32F429xx features  
and peripheral counts.  
Updated LQFP208 in Table 4: Regulator ON/OFF and internal reset  
ON/OFF availability.  
Updated Figure 19: Memory map.  
Changed PLS[2:0]=101 (falling edge) maximum value in Table 22:  
reset and power control block characteristics.  
Updated current consumption with all peripherals disabled in Table 24:  
Typical and maximum current consumption in Run mode, code with  
data processing running from Flash memory (ART accelerator  
enabled except prefetch) or RAM. Updated note 1. in Table 28: Typical  
and maximum current consumptions in Standby mode.  
Updated tWUSTOP in Table 36: Low-power mode wakeup timings.  
Updated ESD standards and Table 53: ESD absolute maximum  
ratings.  
Updated Table 56: I/O static characteristics.  
Section : I2C interface characteristics: updated section introduction,  
removed Table I2C characteristics, Figure I2C bus AC waveforms and  
measurement circuit and Table SCL frequency; added Table 61: I2C  
analog filter characteristics.  
Updated measurement conditions in Table 62: SPI dynamic  
characteristics.  
Updated Figure 51: Typical connection diagram using the ADC.  
Updated Section : Device marking for LQFP100.  
19-Feb-2015  
5
Updated Figure 83: WLCSP143 - 143-ball, 4.521x 5.547 mm, 0.4 mm  
pitch wafer level chip scale package outline and Table 111: WLCSP143  
- 143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data; added Figure 84: WLCSP143 - 143-ball,  
4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale recommended  
footprint and Table 112: WLCSP143 recommended PCB design rules  
(0.4 mm pitch). Updated Figure 85: WLCSP143 marking example  
(package top view) and related note. Updated Section : Device  
marking for WLCSP143.  
Updated Section : Device marking for LQFP144.  
Updated Section : Device marking for LQFP176.  
Updated Figure 92: LQFP208 - 208-pin, 28 x 28 mm low-profile quad  
flat package outline; Updated Section : Device marking for LQFP208.  
Modified UFBGA169 pitch, updated Figure 95: UFBGA169 - 169-ball 7  
x 7 mm 0.50 mm pitch, ultra fine pitch ball grid array package outline  
and Table 116: UFBGA169 - 169-ball 7 x 7 mm 0.50 mm pitch, ultra  
fine pitch ball grid array package mechanical data; updated Section :  
Device marking for LQFP208.  
updated Section : Device marking for UFBGA169, Section : Device  
marking for UFBGA176+25 and Section : Device marking for  
TFBGA176.  
Updated Z pin count in Table 122: Ordering information scheme.  
DocID024030 Rev 9  
235/238  
237  
Revision history  
STM32F427xx STM32F429xx  
Table 124. Document revision history  
Date  
Revision  
Changes  
Updated notes related to the minimum and maximum values  
guaranteed by design, characterization or test in production.  
Updated IDD_STOP_UDM in Table 27: Typical and maximum current  
consumptions in Stop mode.  
Removed note related to tests in production in Table 24: Typical and  
maximum current consumption in Run mode, code with data  
processing running from Flash memory (ART accelerator enabled  
except prefetch) or RAM and Table 26: Typical and maximum current  
consumption in Sleep mode.  
Updated Table 41: HSI oscillator characteristics. Figure 31 renamed  
ACCHSI accuracy versus temperature and updated.  
Updated Figure 38: SPI timing diagram - slave mode and CPHA = 0.  
Updated Section : Ethernet characteristics.  
Updated Table 43: Main PLL characteristics, Table 44: PLLI2S (audio  
PLL) characteristics and Table 45: PLLISAI (audio and LCD-TFT PLL)  
characteristics.  
17-Sep-2015  
6
Removed note 1 in Table 75: ADC static accuracy at fADC = 18 MHz,  
Table 76: ADC static accuracy at fADC = 30 MHz and Table 77: ADC  
static accuracy at fADC = 36 MHz.  
Updated td(SDCLKL _Data) and th(SDCLKL _Data) in Table 104: SDRAM  
write timings.  
Added Figure 96: UFBGA169 - 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra  
fine pitch ball grid array recommended footprint and Table 117:  
UFBGA169 recommended PCB design rules (0.5 mm pitch BGA).  
Added Figure 99: UFBGA176+25-ball, 10 x 10 mm, 0.65 mm pitch,  
ultra fine pitch ball grid array package recommended footprint and  
Table 119: UFBGA176+25 recommended PCB design rules (0.65 mm  
pitch BGA).  
Updated |VSSX VSS| in Table 14: Voltage characteristics to add VREF-  
.
Updated td(TXEN) and td(TXD) minimum value in Table 72: Dynamics  
characteristics: Ethernet MAC signals for RMII and Table 73: Dynamics  
characteristics: Ethernet MAC signals for MII.  
Added VREF- in Table 74: ADC characteristics.  
Added A1 minimum and maximum values in Table 111: WLCSP143 -  
143-ball, 4.521x 5.547 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data. Updated Figure 86: LQFP144-144-pin, 20 x  
20 mm low-profile quad flat package outline.  
30-Nov-2015  
7
Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch  
ultra thin fine pitch ball grid array package outline and Table 118:  
UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball  
grid array package mechanical data. Updated Figure 101: TFBGA216 -  
216 ball 13 × 13 mm 0.8 mm pitch thin fine pitch ball grid array  
package outline and Table 120: TFBGA216 - 216 ball 13 × 13 mm  
0.8 mm pitch thin fine pitch ball grid array package mechanical data.  
236/238  
DocID024030 Rev 9  
STM32F427xx STM32F429xx  
Revision history  
Table 124. Document revision history  
Revision Changes  
Date  
Updated Figure 22: Power supply scheme.  
21-Jan-2016  
8
Added td(TXD) values corresponding to 1.71 V < VDD < 3.6 V in  
Table 72: Dynamics characteristics: Ethernet MAC signals for RMII.  
Updated Figure 1: Compatible board design  
STM32F10xx/STM32F2xx/STM32F4xx for LQFP100 package.  
Added mission profile compliance with JEDEC JESD47 in  
Section 6.2: Absolute maximum ratings.  
Changed Figure 31 HSI deviation versus temperature to ACCHSI  
versus temperature.  
Updated RLOAD in Table 85: DAC characteristics.  
Added note 2. related to the position of the 0.1 µF capacitor below  
Figure 37: Recommended NRST pin protection.  
Updated Figure 40: SPI timing diagram - master mode.  
18-Jul-2016  
9
Added reference to optional marking or inset/upset marks in all  
package device marking sections. Updated Figure 85: WLCSP143  
marking example (package top view), Figure 88: LQFP144  
marking example (package top view), Figure 91: LQFP176  
marking (package top view), Figure 94: LQFP208 marking  
example (package top view).  
Updated Figure 98: UFBGA176+25 - ball 10 x 10 mm, 0.65 mm pitch  
ultra thin fine pitch ball grid array package outline and Table 118:  
UFBGA176+25 - ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball  
grid array package mechanical data.  
DocID024030 Rev 9  
237/238  
237  
STM32F427xx STM32F429xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
238/238  
DocID024030 Rev 9  

相关型号:

STM32F429I-DISC1

USB OTG with micro-AB connector
STMICROELECTR

STM32F429I-DISCO

USB OTG with micro-AB connector
STMICROELECTR

STM32F429IE

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429IG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429IGT6

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429II

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429NE

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429NG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429NI

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429VE

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429VG

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR

STM32F429VGT6

ARM Cortex-M4 32b MCUFPU, 225DMIPS, up to 2MB Flash/2564KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 20 comm. interfaces, camera & LCD-TFT
STMICROELECTR