STM32F722IC [STMICROELECTRONICS]

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash;
STM32F722IC
型号: STM32F722IC
厂家: ST    ST
描述:

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

文件: 总229页 (文件大小:3297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F722xx  
STM32F723xx  
Arm® Cortex®-M7 32b MCU+FPU, 462DMIPS, up to 512KB Flash  
/256+16+4KB RAM, USB OTG HS/FS, 18 TIMs, 3 ADCs, 21 com IF  
Datasheet - production data  
Features  
FBGA  
®
®
Core: Arm 32-bit Cortex -M7 CPU with FPU,  
adaptive real-time accelerator (ART  
Accelerator) and L1-cache: 8 Kbytes of data  
cache and 8 Kbytes of instruction cache,  
allowing 0-wait state execution from embedded  
Flash memory and external memories,  
frequency up to 216 MHz, MPU,  
LQFP64 (10 × 10 mm)  
LQFP100 (14 × 14 mm)  
LQFP144 (20 × 20 mm)  
UFBGA144 (7 x 7 mm)  
WLCSP100  
(0.4 mm pitch)  
UFBGA176 (10 x 10 mm)  
LQFP176 (24 x 24 mm)  
462 DMIPS/2.14 DMIPS/MHz (Dhrystone 2.1)  
and DSP instructions.  
– V  
supply for RTC, 32×32 bit backup  
BAT  
registers + 4 Kbytes of backup SRAM  
Memories  
– Up to 512 Kbytes of Flash memory with  
protection mechanisms (read and write  
protections, proprietary code readout  
protection (PCROP))  
3×12-bit, 2.4 MSPS ADC: up to 24 channels  
and 7.2 MSPS in triple interleaved mode  
2×12-bit D/A converters  
Up to 18 timers: up to thirteen 16-bit (1x low-  
power 16-bit timer available in Stop mode) and  
two 32-bit timers, each with up to 4  
IC/OC/PWMs or pulse counter and quadrature  
(incremental) encoder inputs. All 15 timers  
running up to 216 MHz. 2x watchdogs, SysTick  
timer  
– 528 bytes of OTP memory  
– SRAM: 256 Kbytes (including 64 Kbytes of  
data TCM RAM for critical real-time data) +  
16 Kbytes of instruction TCM RAM (for  
critical real-time routines) + 4 Kbytes of  
backup SRAM (available in the lowest  
power modes)  
General-purpose DMA: 16-stream DMA  
– Flexible external memory controller with up  
to 32-bit data bus: SRAM, PSRAM,  
SDRAM/LPSDR SDRAM, NOR/NAND  
memories  
controller with FIFOs and burst support  
Debug mode  
– SWD and JTAG interfaces  
®
– Cortex -M7 Trace Macrocell™  
Dual mode Quad-SPI  
Up to 140 I/O ports with interrupt capability  
– Up to 136 fast I/Os up to 108 MHz  
– Up to 138 5 V-tolerant I/Os  
Clock, reset and supply management  
– 1.7 V to 3.6 V application supply and I/Os  
– POR, PDR, PVD and BOR  
– Dedicated USB power  
Up to 21 communication interfaces  
2
– 4-to-26 MHz crystal oscillator  
– Up to 3× I C interfaces (SMBus/PMBus)  
– Internal 16 MHz factory-trimmed RC (1%  
accuracy)  
– Up to 4 USARTs/4 UARTs (27 Mbit/s,  
ISO7816 interface, LIN, IrDA, modem  
control)  
– 32 kHz oscillator for RTC with calibration  
– Internal 32 kHz RC with calibration  
– Up to 5 SPIs (up to 54 Mbit/s), 3 with  
2
muxed simplex I Ss for audio class  
Low-power  
accuracy via internal audio PLL or external  
clock  
– Sleep, Stop and Standby modes  
– 2 x SAIs (serial audio interface)  
April 2020  
DS11853 Rev 6  
1/229  
This is information on a product in full production.  
www.st.com  
STM32F722xx STM32F723xx  
– 1 x CAN (2.0B active)  
– 2 x SDMMCs  
CRC calculation unit  
RTC: subsecond accuracy, hardware calendar  
96-bit unique ID  
Advanced connectivity  
– USB 2.0 full-speed device/host/OTG  
controller with on-chip PHY  
– USB 2.0 high-speed/full-speed  
device/host/OTG controller with dedicated  
DMA, on-chip full-speed PHY and on-chip  
Hi-speed PHY or ULPI depending on the  
part number  
True random number generator  
Table 1. Device summary  
Reference  
STM32F722xx  
STM32F723xx  
Part number  
STM32F722IC, STM32F722IE, STM32F722RC, STM32F722RE, STM32F722VC,  
STM32F722VE, STM32F722ZC, STM32F722ZE  
STM32F723IC, STM32F723IE, STM32F723VC, STM32F723VE, STM32F723ZC,  
STM32F723ZE  
2/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Contents  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
2.2  
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32F723xx versus STM32F722xx LQFP100/ LQFP144/  
LQFP176 packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 23  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AXI-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.10 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 27  
3.11 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.12 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.13 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.14 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.15.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.15.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.16 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.16.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.16.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.16.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 36  
3.17 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 36  
3.18 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.19  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DS11853 Rev 6  
3/229  
6
Contents  
STM32F722xx STM32F723xx  
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.20.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.20.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.20.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.20.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.21 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.22 Universal synchronous/asynchronous receiver transmitters (USART) . . 43  
3.23 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 44  
3.24 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.25 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.26 Audio PLL (PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.27 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . . . . 45  
3.28 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.29 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 46  
3.30 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 46  
3.31 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.32 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.33 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.34 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.35 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.36 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.37 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.1.1  
6.1.2  
6.1.3  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
4/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Contents  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Operating conditions at power-up / power-down (regulator ON) . . . . . 110  
Operating conditions at power-up / power-down (regulator OFF) . . . . 110  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . 110  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 140  
6.3.13 USB OTG HS PHY PLLs characteristics (on STM32F723xx devices) 142  
6.3.14 USB OTG HS PHY regulator characteristics . . . . . . . . . . . . . . . . . . . 142  
6.3.15 USB HS PHY external resistor characteristics  
(on STM32F723xx devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
6.3.16 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
6.3.17 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
6.3.18 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 146  
6.3.19 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
6.3.20 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
6.3.21 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
6.3.22 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.23 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.24 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.25 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
6.3.26  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
BAT  
6.3.27 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
6.3.28 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
6.3.29 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
6.3.30 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
DS11853 Rev 6  
5/229  
6
Contents  
STM32F722xx STM32F723xx  
6.3.31 Quad-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
6.3.32 SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . 199  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
LQFP64 – 10 x 10 mm, low-profile quad flat package information . . . . . 202  
LQFP100, 14 x 14 mm low-profile quad flat package information . . . . . 205  
LQFP144, 20 x 20 mm low-profile quad flat package information . . . . . 208  
LQFP176 24 x 24 mm low-profile quad flat package information . . . . . . .211  
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
UFBGA176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid  
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
7.7  
7.8  
WLCSP100 - 0.4 mm pitch wafer level chip scale package information 221  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Appendix A Recommendations when using internal reset OFF . . . . . . . . . . . 227  
A.1  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
6/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32F722xx and STM32F723xx features and peripheral counts . . . . . . . . . . . . . . . . . . 15  
Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 33  
Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 36  
Voltage regulator modes in stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
STM32F722xx and STM32F723xx pin and ball definition . . . . . . . . . . . . . . . . . . . . . . . . . 62  
FMC pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
STM32F722xx and STM32F723xx alternate function mapping. . . . . . . . . . . . . . . . . . . . . 89  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 108  
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
VCAP1 operating conditions in the LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . 110  
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . 110  
reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM RAM, regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART ON except prefetch / L1-cache ON)  
Table 25.  
or SRAM on AXI (L1-cache ON), regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON . . . . . 115  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory on ITCM interface (ART disabled), regulator ON . . . . . . . . 116  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART ON except prefetch / L1-cache ON)  
Table 26.  
Table 27.  
Table 28.  
or SRAM on AXI (L1-cache ON), regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Typical and maximum current consumption in Sleep mode, regulator ON. . . . . . . . . . . . 118  
Typical and maximum current consumption in Sleep mode, regulator OFF. . . . . . . . . . . 118  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . 119  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . 120  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Typical and maximum current consumptions in V  
mode. . . . . . . . . . . . . . . . . . . . . . . 121  
BAT  
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
USB OTG HS and USB OTG PHY HS current consumption . . . . . . . . . . . . . . . . . . . . . . 130  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
LSE  
DS11853 Rev 6  
7/229  
9
List of tables  
STM32F722xx STM32F723xx  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
PLLI2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
USB OTG HS PLL1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
USB OTG HS PLL2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
USB OTG HS PHY regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
USB HS PHY external resistor characteristics (on STM32F723xx devices). . . . . . . . . . . 143  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ADC static accuracy at f  
ADC static accuracy at f  
ADC static accuracy at f  
= 18 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
= 30 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
= 36 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
ADC  
ADC  
ADC  
ADC dynamic accuracy at f  
ADC dynamic accuracy at f  
= 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 158  
= 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 158  
ADC  
ADC  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
BAT  
internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
2
I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
USB OTG high speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
USB OTG high speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
USB FS PHY BCD electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 179  
8/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
List of tables  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings . . . . . . . . . . 179  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 180  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings. . . . . . . . . . 181  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 182  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 100. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 184  
Table 101. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 102. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 103. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 104. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Table 105. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 106. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 107. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 108. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 109. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Table 110. LPSDR SDRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 111. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 112. Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 113. Dynamic characteristics: SD / MMC characteristics, VDD=2.7V to 3.6V . . . . . . . . . . . . . 200  
Table 114. Dynamic characteristics: eMMC characteristics, VDD=1.71V to 1.9V . . . . . . . . . . . . . . . 201  
Table 115. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 116. LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 117. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 118. LQFP176 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 119. UFBGA144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 120. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 216  
Table 121. UFBGA176+25 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Table 122. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA) . . . . . . . . . . . . . 219  
Table 123. WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Table 124. WLCSP100 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . 223  
Table 125. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Table 126. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Table 127. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . 227  
Table 128. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
DS11853 Rev 6  
9/229  
9
List of figures  
STM32F722xx STM32F723xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Compatible board design for LQFP176 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STM32F722xx and STM32F723xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
(1)  
STM32F722xx and STM32F723xx AXI-AHB bus matrix architecture  
. . . . . . . . . . . . . . 24  
VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
VDDUSB connected to external power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 31  
Figure 11. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 12. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . . . 35  
CAP_1 CAP_2  
Figure 14. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization . . . . . . . . . . . . . . . . . . . . . . 35  
CAP_1 CAP_2  
Figure 15. STM32F722xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 16. STM32F722xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 17. STM32F723xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 18. STM32F723xx WLCSP100 ballout (with OTG PHY HS) . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 19. STM32F722xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 20. STM32F723xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 21. STM32F723xx UFBGA144 ballout (with OTG PHY HS). . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 22. STM32F722xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figure 23. STM32F723xx LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 24. STM32F723xx UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 25. STM32F723xx UFBGA176 ballout (with OTG PHY HS). . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 26. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 27. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 28. STM32F722xx power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 29. STM32F723xx power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 30. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 31. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
EXT  
Figure 32. Typical V  
current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in low drive mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 33. Typical V current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in medium low drive mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 34. Typical V current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in medium high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 35. Typical V current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in high drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 36. Typical V current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in high medium drive mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 37. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 38. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 39. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 40. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 41. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
10/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
List of figures  
Figure 42. LSI deviation versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 43. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 44. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 45. FT I/O input characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 46. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 47. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 48. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 49. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Figure 50. Power supply and reference decoupling (V  
Figure 51. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 160  
). . . . . . . . . . . . . . . . 160  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 52. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 53. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 54. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 55. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
2
(1)  
Figure 56. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
2
(1)  
Figure 57. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 58. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 59. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 60. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 174  
Figure 61. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 178  
Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 180  
Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 66. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 67. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 69. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Figure 70. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Figure 71. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Figure 72. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 192  
Figure 73. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 193  
Figure 74. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 75. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 76. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 77. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 78. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 79. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 80. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 81. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Figure 82. LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Figure 83. LQFP100 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 84. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 85. LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Figure 86. LQFP144 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 87. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 88. LQFP144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 89. LQFP176 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 90. LQFP176 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 91. LQFP176 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 92. UFBGA144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Figure 93. UFBGA144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
DS11853 Rev 6  
11/229  
12  
List of figures  
STM32F722xx STM32F723xx  
Figure 94. UFBGA144 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Figure 95. UFBGA176 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 96. UFBGA176+25 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 97. UFBGA176 top view example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 98. WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 99. WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 100. WLCSP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
12/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32F722xx and STM32F723xx microcontrollers.  
This document should be ready in conjunction with the STM32F72xxx and STM32F73xxx  
®
advanced Arm -based 32-bit MCUs reference manual (RM0431). The reference manual is  
available from the STMicroelectronics website www.st.com.  
®(a)  
®
®
For information on the Arm  
Cortex -M7 core, refer to the Cortex -M7 technical  
reference manual available from the http://www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS11853 Rev 6  
13/229  
49  
 
 
Description  
STM32F722xx STM32F723xx  
2
Description  
®
The STM32F722xx and STM32F723xx devices are based on the high-performance Arm  
®
®
Cortex -M7 32-bit RISC core operating at up to 216 MHz frequency. The Cortex -M7 core  
features a single floating point unit (SFPU) precision which supports Arm single-precision  
®
data-processing instructions and data types. It also implements a full set of DSP instructions  
and a memory protection unit (MPU) which enhances the application security.  
The STM32F722xx and STM32F723xx devices incorporate high-speed embedded  
memories with a Flash memory up to 512 Kbytes, 256 Kbytes of SRAM (including  
64 Kbytes of data TCM RAM for critical real-time data), 16 Kbytes of instruction TCM RAM  
(for critical real-time routines), 4 Kbytes of backup SRAM available in the lowest power  
modes, and an extensive range of enhanced I/Os and peripherals connected to two APB  
buses, two AHB buses, a 32-bit multi-AHB bus matrix and a multi layer AXI interconnect  
supporting internal and external memories access.  
All the devices offer three 12-bit ADCs, two DACs, a low-power RTC, thirteen general-  
purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-  
bit timers, a true random number generator (RNG). They also feature standard and  
advanced communication interfaces.  
2
Up to three I Cs  
2
2
Five SPIs, three I Ss in half duplex mode. To achieve the audio class accuracy, the I S  
peripherals can be clocked via a dedicated internal audio PLL or via an external clock  
to allow synchronization.  
Four USARTs plus four UARTs  
An USB OTG full-speed and a USB OTG high-speed with full-speed capability (with the  
ULPI only for the LQFP64 and LQFP100 packages and with the integrated HS PHY for  
the LQFP144 and UFBGA176 packages)  
One CAN  
Two SAI serial audio interfaces  
Two SDMMC host interfaces  
Advanced peripherals include two SDMMC interfaces, a flexible memory control (FMC)  
interface, a Quad-SPI Flash memory interface.  
The STM32F722xx and STM32F723xx devices operate in the –40 to +105 °C temperature  
range from a 1.7 to 3.6 V power supply. Dedicated supply inputs for the USB (OTG_FS and  
OTG_HS) and the SDMMC2 (clock, command and 4-bit data) are available on all the  
packages except LQFP100 and LQFP64 for a greater power supply choice.  
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor. A  
comprehensive set of power-saving mode allows the design of low-power applications.  
The STM32F722xx and STM32F723xx devices offer devices in 7 packages ranging from 64  
pins to 176 pins. The set of included peripherals changes with the device chosen.  
14/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Description  
These features make the STM32F722xx and STM32F723xx microcontrollers suitable for a  
wide range of applications:  
Motor drive and application control,  
Medical equipment,  
Industrial applications: PLC, inverters, circuit breakers,  
Printers, and scanners,  
Alarm systems, video intercom, and HVAC,  
Home audio appliances,  
Mobile applications, Internet of Things,  
Wearable devices: smartwatches.  
The following table lists the peripherals available on each part number.  
Table 2. STM32F722xx and STM32F723xx features and peripheral counts  
Peripherals  
STM32F72xRx  
STM32F72xVx  
STM32F72xZx  
STM32F72xIx  
Flash memory in Kbytes  
256 512  
256 512  
256 512  
256 512  
System  
Instruction  
Backup  
256(176+16+64)  
SRAM in Kbytes  
16  
4
(1)  
FMC memory controller  
Quad-SPI  
No  
Yes  
Yes  
(2)  
General-purpose  
Advanced-control  
Basic  
10  
2
2
Timers  
Low-power  
No  
1
Random number generator  
Yes  
(3)  
2
(3)  
(3)  
SPI / I S  
3/3 (simplex)  
4/2  
4/3 (simplex)  
5/3 (simplex)  
2
I C  
3
USART/UART  
USB OTG FS  
4/4  
Yes  
Yes  
(4)  
USB OTG HS  
Communication  
interfaces  
USB OTG PHY HS  
controller (USBPHYC)  
(10)  
No  
Yes  
CAN  
1
2
SAI  
SDMMC1  
SDMMC2  
Yes  
(5)(6)  
No  
50  
Yes  
82 in STM32F722xx  
79 in STM32F723xx  
114 in STM32F722xx 140 in STM32F722xx  
112 in STM32F723xx 138 in STM32F723xx  
GPIOs  
12-bit ADC  
3
16  
24  
Number of channels  
12-bit DAC  
Number of channels  
Yes  
2
(7)  
Maximum CPU frequency  
216 MHz  
DS11853 Rev 6  
15/229  
49  
 
 
Description  
STM32F722xx STM32F723xx  
Table 2. STM32F722xx and STM32F723xx features and peripheral counts (continued)  
Peripherals  
STM32F72xRx  
STM32F72xVx  
STM32F72xZx  
STM32F72xIx  
(8)  
Operating voltage  
1.7 to 3.6 V  
Ambient temperatures: –40 to +85 °C /–40 to +105 °C  
Junction temperature: –40 to + 125 °C  
LQFP100  
Operating temperatures  
Package  
LQFP144  
UFBGA176  
LQFP176  
(9)  
(10)  
LQFP64  
WLCSP100  
(10)  
UFBGA144  
1. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory  
using the NE1 Chip Select.  
2. On the STM32F723xx device packages, except the 176-pin ones, the TIM12 is not available, so there are 9 general-  
purpose timers.  
3. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio  
mode.  
4. USB OTG HS with the ULPI on the STM32F722xx devices and with integrated HS PHY on the STM32F723xx devices.  
5. The SDMMC2 supports a dedicated power rail for clock, command and data 0..4 lines, feature available starting from 144  
pin package.  
6. The SDMMC2 is not available on the STM32F723Vx devices.  
7. 216 MHz maximum frequency for - 40°C to + 85°C ambient temperature range (200 MHz maximum frequency for - 40°C to  
+ 105°C ambient temperature range).  
8. VDD/VDDA minimum value of 1.7 V is obtained when the internal reset is OFF (refer to Section 3.15.2: Internal reset OFF).  
9. Available only on the STM32F722xx devices.  
10. Available only on the STM32F723xx devices.  
16/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Description  
2.1  
Full compatibility throughout the family  
The STM32F722xx devices are fully pin-to-pin, compatible with the STM32F7x5xx,  
STM32F7x6xx, STM32F7x7xx devices.  
The STM32F722xx devices are fully pin-to-pin, compatible with the STM32F4xxxx devices,  
allowing the user to try different peripherals, and reaching higher performances (higher  
frequency) for a greater degree of freedom during the development cycle.  
Figure 1 and Figure 2 give compatible board designs between the STM32F722xx, with  
LQFP64 and LQFP100 packages, and STM32F4xx families.  
Figure 1. Compatible board design for LQFP100 package  
STM32F427xx / STM32F437xx  
STM32F429xx / STM32F439xx  
STM32F415xx / STM32F417xx  
PC3  
VDD  
18  
19  
20  
21  
22  
23  
24  
25  
STM32F405xx / STM32F407xx  
VSSA  
VREF+  
VDDA  
PA0-WKUP  
PA1  
PA2  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
PC3  
VSSA  
VREF+  
VDDA  
PA0-WKUP  
PA1  
18  
19  
20  
21  
22  
23  
24  
25  
STM32F72xxx  
Pins 19 to 49 are not compatible  
PA2  
PA3  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
MSv41001V2  
DS11853 Rev 6  
17/229  
49  
 
 
Description  
STM32F722xx STM32F723xx  
Figure 2. Compatible board design for LQFP64 package  
53 52 51 50 49  
48  
53 52 51 50 49  
48 VDD  
VDD  
VSS  
PA13  
PA12  
PA11  
PA10  
PA9  
VDD  
VDD  
47  
VCAP_2  
47  
46  
45  
44  
43  
42  
41  
46 PA13  
45 PA12  
44 PA11  
43 PA10  
42 PA9  
41 PA8  
40 PC9  
39 PC8  
38 PC7  
37 PC6  
VSS  
VSS  
PA8  
STM32F405/  
STM32F415 line  
STM32F4x1  
40 PC9  
39 PC8  
38 PC7  
37 PC6  
36 PB15  
35 PB14  
34 PB13  
33 PB12  
PB11 not available anymore  
36  
35  
34  
33  
PB15  
PB14  
PB13  
PB12  
Replaced by V  
CAP_1  
28 29 30 3132  
31  
28 29 30  
32  
V
increased to 4.7 μf  
CAP  
ESR 1 ohm or below 1 ohm  
VDD  
VSS  
VSS  
VDD  
VDD  
57 56 55 54 53 52 51 50 49  
48  
VDD  
VSS  
PA13  
PA12  
PA11  
47  
46  
45  
44  
43  
42  
PA10  
PA9  
VSS  
STM32F722xx  
41 PA8  
PC9  
40  
39  
38  
37  
36  
35  
34  
PC8  
PC7  
PC6  
PC5 not available anymore  
PB15  
PB14  
PB13  
Replaced by V  
CAP_1  
33 PB12  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Not compatible STM32F722xx pins with either  
STM32F4x1 or STM32F405/F415 or both  
V
increased to 4.7 μf  
CAP  
ESR between 0.1 ohm and 0.2 ohm  
VSS  
VDD  
MSv41007V3  
The STM32F722xx LQFP144, UFBGA176 and LQFP176 packages are fully pin to pin  
compatible with the STM32F4xx devices.  
18/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Description  
2.2  
STM32F723xx versus STM32F722xx LQFP100/ LQFP144/  
LQFP176 packages  
Figure 3. Compatible board design for LQFP100 package  
58 PD11  
57 PB15  
56  
58 PD11  
57 PD10  
56 PD9  
55 PD8  
54 PB15  
STM32F722xx  
STM32F723xx  
PB14  
55 VDD12OTGHS  
VDDPHYHS  
OTG_HS_REXT  
PB13  
PB12  
54  
53  
52  
51  
53  
52  
51  
PB14  
PB13  
PB12  
50  
50  
Not compatible pins  
MSv63473V1  
Figure 4. Compatible board design for LQFP144 package  
93  
92  
91  
90 PG3  
89 PG2  
PG8  
PG5  
PG4  
93  
92  
91  
90  
PG8  
PG7  
PG6  
PG5  
89 PG4  
88 PG3  
87 PG2  
86 PD15  
85 PD14  
84 VDD  
83  
82  
81  
80 PD11  
79 PD10  
78 PD9  
77 PD8  
76 PB15  
75  
74  
73  
88  
PD15  
87 PD14  
86 VDD  
85 VSS  
84 PD13  
83  
82  
81  
80 PD9  
79 PD8  
78  
PD12  
PD11  
PD10  
VSS  
PD13  
PD12  
STM32F722xx  
STM32F723xx  
PB15  
77 PB14  
VDD12OTGHS  
OTG_HS_REXT  
PB13  
PB12  
76  
75  
74  
73  
PB14  
PB13  
PB12  
72  
72  
PG6, PG7 removed on the STM32F723xx  
Not compatible pins  
MSv41098V1  
DS11853 Rev 6  
19/229  
49  
 
 
 
 
 
Description  
STM32F722xx STM32F723xx  
Figure 5. Compatible board design for LQFP176 package  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
PG8  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
PD9  
PD8  
PB15  
PB14  
VDD12OTGHS  
OTG_HS_REXT  
PB13  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
PD9  
98  
97  
96 PD8  
95 PB15  
94 PB14  
93 PB13  
92 PB12  
91  
90  
89  
STM32F722xx  
STM32F723xx  
PB12  
91 VDD  
90  
89  
VDD  
VSS  
PH12  
VSS  
PH12  
88  
88  
PG6, PG7 removed on the STM32F723xx  
Not compatible pins  
MSv41099V1  
Figure 6 shows the general block diagram of the device family.  
20/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Description  
Figure 6. STM32F722xx and STM32F723xx block diagram  
JTAG & SW  
ETM  
JTRST, JTDI,  
JTCK/SWCLK  
MPU FPU  
NVIC  
DTCM RAM 64KB  
ITCM RAM 16KB  
JTDO/SWD, JTDO  
DTCM  
ICTM  
TRACECK  
TRACED[3:0]  
Arm CPU  
Cortex-M7  
AXIM  
I-Cache  
ACCEL/  
CACHE  
FLASH 512KB  
8KB  
RNG  
D-Cache  
8KB  
216MHz  
AHBP  
AHBS  
DP  
SRAM1 176KB  
SRAM2 16KB  
USB  
DM  
SCL, SDA, INT, ID, VBUS  
OTG FS  
CLK, NE [3:0], A[23:0],  
D[31:0], NOEN, NWEN,  
NBL[3:0], SDCLKE[1:0]  
SDNE[1:0], SDNWE, NL  
NRAS, NCAS, NADV  
NWAIT, INTN  
LDO  
BGR  
(2)  
PLL1  
PLL2  
AHB2 216 MHz  
USB HS  
PHY  
EXT MEM CTL (FMC)  
SRAM, SDRAM, NOR-Flash,  
NAND-Flash, SDRAM  
USB OTG HS  
DP, DM  
ULPI:CK, D[7:0], DIR, STP, NXT  
SCL/SDA, INT, ID, VBUS  
Quad-SPI  
DMA/  
FIFO  
CLK, CS,D[7:0]  
@VDDA  
PLL  
LDO  
AHB1 216 MHz  
POR  
reset  
SUPPLY  
SUPERVISION  
POR/PDR  
Int  
8 Streams  
FIFO  
GP-DMA2  
BOR  
PVD  
VDDA, VSSA  
NRESET  
@VDDA  
RC HS  
8 Streams  
FIFO  
WKUP[4:0]  
GP-DMA1  
(3)  
@VDD33  
BBgen + POWER MNGT  
VDDPHYHS = 3.0 to 3.6V  
VDD12  
RC LS  
VDDMMC33 = 3.0 to 3.6V  
VDDUSB33 = 3.0 to 3.6 V  
VDD = 1.8 to 3.6 V  
VSS  
PA[15:0]  
PB[15:0]  
GPIO PORT A  
GPIO PORT B  
VOLT. REG  
3.3V TO 1.2V  
PLL1+PLL2+PLL3  
VCAP1  
@VDD33  
PC[15:0]  
GPIO PORT C  
XTAL OSC  
4- 16MHz  
OSC_IN  
PD[15:0]  
PE[15:0]  
GPIO PORT D  
GPIO PORT E  
GPIO PORT F  
OSC_OUT  
RCC  
WDG32K  
Reset & control  
Standby  
interface  
VBAT = 1.8 to 3.6 V  
PF[15:0]  
PG[15:0]  
@VSW  
GPIO PORT G  
GPIO PORT H  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
PH[15:0]  
PI[11:0]  
RTC  
RTC_TS  
RTC_TAMPx  
RTC_OUT  
AWU  
GPIO PORT I  
EXT IT. WKUP  
Backup register  
CRC  
4 KB BKPRAM  
168 AF  
TIM2  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
D[7:0]  
32b  
16b  
SDMMC1  
SDMMC2  
CMD, CK as AF  
TIM3  
TIM4  
D[7:0]  
CMD, CK as AF  
GPDMA1  
GPDMA2  
AHB/APB2  
16b  
32b  
16b  
16b  
16b  
4 compl. chan. (TIM1_CH1[1:4]N),  
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF  
4 compl. chan.(TIM8_CH1[1:4]N),  
16b  
AHB/  
APB1  
TIM1 / PWM  
TIM5  
TIM12  
TIM13  
TIM14  
4 channels  
TIM8 / PWM 16b  
4 chan. (TIM8_CH1[1:4], ETR, BKIN as AF  
2 channels as AF  
1 channel as AF  
1 channel as AF  
16b  
16b  
16b  
TIM9  
2 channels as AF  
1 channel as AF  
1 channel as AF  
TIM10  
TIM11  
smcard  
irDA  
RX, TX, SCK  
RX, TX, SCK,  
smcard  
irDA  
smcard  
irDA  
USART1  
USART2  
USART3  
CTS, RTS as AF  
CTS, RTS as AF  
WWDG  
RX, TX, SCK,  
smcard  
irDA  
RX, TX, SCK  
CTS, RTS as AF  
USART6  
CTS, RTS as AF  
RX, TX as AF  
RX, TX as AF  
RX, TX as AF  
UART4  
UART5  
UART7  
UART8  
SPI2/I2S2  
MOSI, MISO,  
SPI1/I2S1  
SPI4  
SCK, NSS as AF  
16b  
LPTIM1  
MOSI, MISO,  
SCK, NSS as AF  
MOSI, MISO,  
SCK, NSS as AF  
RX, TX as AF  
SPI5  
TIM6  
TIM7  
16b  
16b  
MOSI, MISO, SCK  
NSS as AF  
MOSI, MISO, SCK  
NSS as AF  
SCL, SDA, SMBAL as AF  
SD, SCK, FS, MCLK as AF  
SD, SCK, FS, MCLK as AF  
SAI1  
SAI2  
SPI3/I2S3  
I2C1/SMBUS  
I2C2/SMBUS  
I2C3/SMBUS  
(2)  
SCL, SDA, SMBAL as AF  
SCL, SDA, SMBAL as AF  
ULPI:CK, D[7:0], DIR, STP, NXT  
SCL, SDA, INT, ID, VBUS  
OTG HS PHY  
CONTROLLER  
SYSCFG  
@VDDA  
VDDREF_ADC  
Temperature sensor  
bxCAN1  
TX, RX  
8 analog inputs common  
to the 3 ADCs  
8 analog inputs common  
to the ADC1 & 2  
ADC1  
@VDDA  
DAC1  
ADC2  
IF  
ITF  
ADC3  
DAC2  
8 analog inputs for ADC3  
DAC1 DAC2  
as AF as AF  
MSv41012V4  
1. The timers connected to APB2 are clocked from TIMxCLK up to 216 MHz, while the timers connected to APB1 are clocked  
from TIMxCLK either up to 108 MHz or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.  
2. Available only on the STM32F723xx devices.  
3. Available only on the STM32F723xx LQFP100 package.  
DS11853 Rev 6  
21/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
3
Functional overview  
3.1  
Arm® Cortex®-M7 with FPU  
®
®
The Arm Cortex -M7 with FPU processor is the latest generation of Arm processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
MCU implementation, with a reduced pin count and low-power consumption, while  
delivering outstanding computational performance and low interrupt latency.  
®
The Cortex -M7 processor is a highly efficient high-performance featuring:  
Six-stage dual-issue pipeline  
Dynamic branch prediction  
Harvard caches (8 Kbytes of I-cache and 8 Kbytes of D-cache)  
64-bit AXI4 interface  
64-bit ITCM interface  
2x32-bit DTCM interfaces  
The processor supports the following memory interfaces:  
Tightly Coupled Memory (TCM) interface.  
Harvard instruction and data caches and AXI master (AXIM) interface.  
Dedicated low-latency AHB-Lite peripheral (AHBP) interface.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
It supports single precision FPU (floating point unit), speeds up software development by  
using metalanguage development tools, while avoiding saturation.  
Figure 6 shows the general block diagram of the STM32F722xx and STM32F723xx family.  
®
®
Note:  
Cortex -M7 with FPU core is binary compatible with the Cortex -M4 core.  
3.2  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
22/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.3  
Embedded Flash memory  
The STM32F722xx and STM32F723xx devices embed a Flash memory of up to 512 Kbytes  
available for storing programs and data.  
The flexible protections can be configured thanks to option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels are available:  
Level 0: no readout protection  
Level 1: No access (read, erase, program) to the Flash memory or backup SRAM  
can be performed while the debug feature is connected or while booting from RAM  
or system memory bootloader  
Level 2: debug/chip read protection disabled.  
Write protection (WRP): the protected area is protected against erasing and  
programming.  
Proprietary code readout protection (PCROP): Flash memory user sectors (0 to 7) can  
be protected against D-bus read accesses by using the proprietary readout protection  
(PCROP). The protected area is execute-only.  
3.4  
3.5  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
Embedded SRAM  
All the devices feature:  
System SRAM up to 256 Kbytes:  
SRAM1 on AHB bus Matrix: 176 Kbytes  
SRAM2 on AHB bus Matrix: 16 Kbytes  
DTCM-RAM on TCM interface (Tighly Coupled Memory interface): 64 Kbytes for  
critical real-time data.  
Instruction RAM (ITCM-RAM) 16 Kbytes:  
It is mapped on TCM interface and reserved only for CPU Execution/Instruction  
useful for critical real-time routines.  
The Data TCM RAM is accessible by the GP-DMAs and peripheral DMAs through the  
specific AHB slave of the CPU.The instruction TCM RAM is reserved only for CPU. It is  
accessed at CPU clock speed with 0 wait states.  
4 Kbytes of backup SRAM  
This area is accessible only from the CPU. Its content is protected against possible  
unwanted write accesses, and is retained in Standby or VBAT mode.  
DS11853 Rev 6  
23/229  
49  
 
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.6  
AXI-AHB bus matrix  
The STM32F722xx and STM32F723xx system architecture is based on 2 sub-systems:  
An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol:  
3x AXI to 32-bit AHB bridges connected to AHB bus matrix  
1x AXI to 64-bit AHB bridge connected to the embedded Flash memory  
A multi-AHB Bus-Matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB  
HS) and the slaves (Flash memory, RAM, FMC, Quad-SPI, AHB and APB  
peripherals) and ensures a seamless and efficient operation even when several  
high-speed peripherals work simultaneously.  
(1)  
Figure 7. STM32F722xx and STM32F723xx AXI-AHB bus matrix architecture  
GP  
USB OTG  
HS  
GP  
DMA1  
DMA2  
Arm Cortex-M7  
8KB  
DTCM RAM  
64KB  
I/D Cache  
ITCM RAM  
16KB  
AXI to  
multi-AHB  
ITCM  
FLASH  
512KB  
64-bit AHB  
64-bit BuS Matrix  
SRAM1  
176KB  
SRAM2  
16KB  
AHB  
Periph1  
APB1  
APB2  
AHB  
periph2  
FMC external  
MemCtl  
Quad-SPI  
32-bit Bus Matrix - S  
MSv41005V1  
1. The above figure has large wires for 64-bits bus and thin wires for 32-bits bus.  
24/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.7  
DMA controller (DMA)  
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8  
streams each. They are able to manage memory-to-memory, peripheral-to-memory and  
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,  
support burst transfer and are designed to provide the maximum peripheral bandwidth  
(AHB/APB).  
The two DMA controllers support a circular buffer management, so that no specific code is  
needed when the controller reaches the end of the buffer. The two DMA controllers also  
have a double buffering feature, which automates the use and switching of two memory  
buffers without requiring any special code.  
Each stream is connected to dedicated hardware DMA requests, with support for software  
trigger on each stream. The configuration is made by software and transfer sizes between  
source and destination are independent.  
The DMA can be used with the main peripherals:  
2
SPI and I S  
2
I C  
USART  
General-purpose, basic and advanced-control timers TIMx  
DAC  
SDMMC  
ADC  
SAI  
Quad-SPI  
DS11853 Rev 6  
25/229  
49  
 
Functional overview  
STM32F722xx STM32F723xx  
3.8  
Flexible memory controller (FMC)  
The Flexible memory controller (FMC) includes three memory controllers:  
The NOR/PSRAM memory controller  
The NAND/memory controller  
The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller  
The main features of the FMC controller are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM (4 memory banks)  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories  
8-, 16-, 32-bit data bus width  
Independent Chip Select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
Read FIFO for SDRAM controller  
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is  
HCLK/2  
LCD parallel interface  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
3.9  
Quad-SPI memory interface (QUADSPI)  
All the devices embed a Quad-SPI memory interface, which is a specialized communication  
interface targetting Single, Dual or Quad-SPI Flash memories. It can work in:  
Direct mode through registers  
External Flash status register polling mode  
Memory mapped mode.  
Up to 256 Mbytes of external Flash are memory mapped, supporting 8, 16 and 32-bit  
access. The code execution is supported.  
The opcode and the frame format are fully programmable. The communication can be either  
in Single Data Rate or Dual Data Rate.  
26/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.10  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
®
and handle up to 110 maskable interrupt channels plus the 16 interrupt lines of the Cortex -  
M7 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with a minimum  
interrupt latency.  
3.11  
3.12  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 24 edge-detector lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs in the  
STM32F722xx devices (138 GPIOs in the STM32F723xx devices) can be connected to the  
16 external interrupt lines.  
Clocks and startup  
On reset the 16 MHz internal HSI RC oscillator is selected as the default CPU clock. The  
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can  
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.  
This clock can be monitored for failure. If a failure is detected, the system automatically  
switches back to the internal RC oscillator and a software interrupt is generated (if enabled).  
This clock source is input to a PLL thus allowing to increase the frequency up to 216 MHz.  
Similarly, a full interrupt management of the PLL clock entry is available when necessary  
(for example if an indirectly used external oscillator fails).  
Several prescalers allow the configuration of the two AHB buses, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB  
buses is 216 MHz while the maximum frequency of the high-speed APB domains is  
108 MHz. The maximum allowed frequency of the low-speed APB domain is 54 MHz.  
The devices embed two dedicated PLLs (PLLI2S and PLLSAI) which allow to achieve audio  
2
class performance. In this case, the I S and SAI master clock can generate all standard  
sampling frequencies from 8 kHz to 192 kHz.  
The STM32F723xx devices embed two PLLs inside the PHY HS controller: PLL1 and PLL2.  
The PLL1 allows to output 60 MHz used as an input for PLL2 which itself allows to generate  
the 480 Mbps in the USB OTG High Speed mode.  
The PLL1 has as input HSE clock.  
DS11853 Rev 6  
27/229  
49  
 
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.13  
Boot modes  
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option  
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF  
which includes:  
All Flash address space mapped on ITCM or AXIM interface  
All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface  
The System memory bootloader  
The boot loader is located in system memory. It is used to reprogram the Flash memory  
through a serial interface.  
3.14  
Power supply schemes  
V
= 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when  
DD  
enabled), provided externally through V pins.  
DD  
V
, V  
= 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset  
DDA  
SSA  
blocks, RCs and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
Note:  
The V /V  
minimum value of 1.7 V is obtained when the internal reset is OFF (refer to  
DD DDA  
Section 3.15.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode  
versus device operating mode to identify the packages supporting this option.  
The V  
can be connected either to V or an external independent power  
DDSDMMC DD  
supply (1.8 to 3.6V) for the SDMMC2 pins (clock, command, and 4-bit data). For  
example, when the device is powered at 1.8V, an independent power supply 2.7V can  
be connected to V  
.When the V  
is connected to a separated power  
DDSDMMC  
DDSDMMC  
supply, it is independent from V or V  
but it must be the last supply to be provided  
DD  
DDA  
and the first to disappear. The following conditions V  
must be respected:  
DDSDMMC  
During the power-on phase (V < V  
), V  
DD_MIN  
should be always lower  
DD  
DDSDMMC  
than V  
DD  
During the power-down phase (V < V  
), V  
should be always  
DDSDMMC  
DD  
DD_MIN  
lower than V  
DD  
The V  
rising and falling time rate specifications must be respected  
DDSDMMC  
In the operating mode phase, V  
could be lower or higher than V  
DD:  
DDSDMMC  
All associated GPIOs powered by V  
are operating between  
DDSDMMC  
and V  
DDSDMMC_MAX.  
V
DDSDMMC_MIN  
The V  
can be connected either to V or an external independent power supply  
DDUSB DD  
(3.0 to 3.6V) for USB transceivers (refer to Figure 8 and Figure 9). For example, when  
the device is powered at 1.8V, an independent power supply 3.3V can be connected to  
the V  
. When the V  
is connected to a separated power supply, it is  
DDUSB  
DDUSB  
independent from V or V  
but it must be the last supply to be provided and the first  
DDA  
DD  
to disappear. The following conditions V  
must be respected:  
DDUSB  
During the power-on phase (V < V  
), V  
should be always lower  
DD  
DD_MIN  
DDUSB  
than V  
DD  
During the power-down phase (V < V  
), V  
should be always lower  
DDUSB  
DD  
DD_MIN  
than V  
DD  
28/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
The V  
rising and falling time rate specifications must be respected  
DDUSB  
In the operating mode phase, V  
could be lower or higher than V  
DD:  
DDUSB  
- If the USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by  
are operating between V and V  
V
.
DDUSB_MAX  
DDUSB  
DDUSB_MIN  
- The V  
supplies both USB transceiver (USB OTG_HS and USB OTG_FS).  
DDUSB  
If only one USB transceiver is used in the application, the GPIOs associated to the  
other USB transceiver are still supplied by V  
.
DDUSB  
- If the USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered  
by V  
are operating between V  
and V  
.
DDUSB  
DD_MIN  
DD_MAX  
Figure 8. V  
connected to V power supply  
DDUSB  
DD  
VDD  
VDD_MAX  
VDD= VDDA = VDDUSB  
VDD_MIN  
time  
Power-down  
Operating mode  
Power-on  
MS37591V1  
Figure 9. V  
connected to external power supply  
DDUSB  
VDDUSB_MAX  
USB functional area  
VDDUSB  
VDDUSB_MIN  
USB non  
functional  
area  
USB non  
functional  
area  
VDD = VDDA  
VDD_MIN  
time  
Power-down  
Operating mode  
Power-on  
MS37590V1  
DS11853 Rev 6  
29/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
On the STM32F7x3xx devices, the USB OTG HS sub-system uses one or two additional  
power supply pins depending on the package:  
The VDD12OTGHS pin is the output of PHY HS regulator (1.2V). An external capacitor  
of 2.2 µF must be connected on the VDD12OTGHS pin.  
On the LQFP100 only, a second power pin VDDPHYHS is used to supply the USB  
OTG PHY HS and associated GPIOs.The VDDPHYHS follows the same rules provided  
for the VDDUSB power pin.  
3.15  
Power supply supervisor  
3.15.1  
Internal reset ON  
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by  
holding PDR_ON high. On the other packages, the power supply supervisor is always  
enabled.  
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and  
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is  
reached, the option byte loading process starts, either to confirm or modify default BOR  
thresholds, or to disable BOR permanently. Three BOR thresholds are available through  
option bytes. The device remains in reset mode when V is below a specified threshold,  
DD  
V
or V  
, without the need for an external reset circuit.  
POR/PDR  
BOR  
The device also features an embedded programmable voltage detector (PVD) that monitors  
the V /V power supply and compares it to the V threshold. An interrupt can be  
DD DDA  
PVD  
generated when V /V  
drops below the V  
threshold and/or when V /V  
is  
DD DDA  
PVD  
DD DDA  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
3.15.2  
Internal reset OFF  
This feature is available only on packages featuring the PDR_ON pin. The internal power-on  
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.  
An external power supply supervisor should monitor V and NRST and should maintain  
DD  
the device in reset mode as long as V is below a specified threshold. PDR_ON should be  
DD  
connected to V . Refer to Figure 10: Power supply supervisor interconnection with internal  
SS  
reset OFF.  
30/229  
DS11853 Rev 6  
 
 
 
 
 
STM32F722xx STM32F723xx  
Functional overview  
Figure 10. Power supply supervisor interconnection with internal reset OFF  
VDD  
External VDD power supply supervisor  
Ext. reset controller active when  
VDD < 1.7 V  
Application reset  
NRST  
signal  
PDR_ON  
VDD  
VSS  
MS31383V4  
The V specified threshold, below which the device must be maintained under reset, is  
DD  
1.7 V (see Figure 11).  
A comprehensive set of power-saving mode allows to design low-power applications.  
When the internal reset is OFF, the following integrated features are no more supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled  
The brownout reset (BOR) circuitry must be disabled  
The embedded programmable voltage detector (PVD) is disabled  
V
functionality is no more available and V  
pin should be connected to V  
.
BAT  
BAT  
DD  
All packages, except for the LQFP100, allow to disable the internal reset through the  
PDR_ON signal when connected to V  
.
SS  
Figure 11. PDR_ON control with internal reset OFF  
V
DD  
PDR = 1.7 V  
time  
Reset by other source than  
power supply supervisor  
NRST  
time  
PDR_ON  
PDR_ON  
MS19009V7  
DS11853 Rev 6  
31/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.16  
Voltage regulator  
The regulator has four operating modes:  
Regulator ON  
Main regulator mode (MR)  
Low power regulator (LPR)  
Power-down  
Regulator OFF  
3.16.1  
Regulator ON  
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding  
BYPASS_REG low. On all other packages, the regulator is always enabled.  
There are three power modes configured by software when the regulator is ON:  
MR mode used in Run/sleep modes or in Stop modes  
In Run/Sleep modes  
The MR mode is used either in the normal mode (default mode) or the over-drive  
mode (enabled by software). A different voltage scaling is provided to reach the  
best compromise between maximum frequency and dynamic power consumption.  
The over-drive mode allows operating at a higher frequency than the normal mode  
for a given voltage scaling.  
In Stop modes  
The MR can be configured in two ways during stop mode:  
MR operates in normal mode (default mode of MR in stop mode)  
MR operates in under-drive mode (reduced leakage mode).  
LPR is used in the Stop modes:  
The LP regulator mode is configured by software when entering Stop mode.  
Like the MR mode, the LPR can be configured in two ways during stop mode:  
LPR operates in normal mode (default mode when LPR is ON)  
LPR operates in under-drive mode (reduced leakage mode).  
Power-down is used in Standby mode.  
The Power-down mode is activated only when entering in Standby mode. The regulator  
output is in high impedance and the kernel circuitry is powered down, inducing zero  
consumption. The contents of the registers and SRAM are lost.  
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.  
The V and V pins must be connected to 2*2.2 µF, ESR < 2 (or 1*4.7 µF, ESR  
CAP_1  
CAP_2  
between 0.1 and 0.2 if only the V  
pin is provided (on LQFP64 package)).  
CAP_1  
All the packages have the regulator ON feature.  
32/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
(1)  
Table 3. Voltage regulator configuration mode versus device operating mode  
Voltage regulator  
configuration  
Run mode  
Sleep mode  
Stop mode  
Standby mode  
Normal mode  
MR  
MR  
-
MR  
MR  
-
MR or LPR  
-
Over-drive  
mode(2)  
-
-
-
Under-drive mode  
MR or LPR  
-
Power-down  
mode  
-
-
Yes  
1. ‘-’ means that the corresponding configuration is not available.  
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.  
3.16.2  
Regulator OFF  
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is  
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply  
externally a V voltage source through V  
and V  
pins.  
12  
CAP_1  
CAP_2  
Since the internal voltage scaling is not managed internally, the external voltage value must  
be aligned with the targeted maximum frequency.The two 2.2 µF ceramic capacitors should  
be replaced by two 100 nF decoupling capacitors.  
When the regulator is OFF, there is no more internal monitoring on V . An external power  
12  
supply supervisor should be used to monitor the V of the logic power domain. The PA0 pin  
12  
should be used for this purpose, and act as power-on reset on V power domain.  
12  
In regulator OFF mode, the following features are no more supported:  
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V logic power  
domain which is not reset by the NRST pin.  
12  
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As  
a consequence, PA0 and NRST pins must be managed separately if the debug  
connection under reset or pre-reset is required.  
The over-drive and under-drive modes are not available.  
The Standby mode is not available.  
DS11853 Rev 6  
33/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
Figure 12. Regulator OFF  
V12  
External VCAP_1/2 power  
Application reset  
signal (optional)  
supply supervisor  
Ext. reset controller active  
when VCAP_1/2 < Min V12  
VDD  
PA0  
NRST  
VDD  
BYPASS_REG  
V12  
VCAP_1  
VCAP_2  
ai18498V3  
The following conditions must be respected:  
V
should always be higher than V  
and V  
to avoid current injection  
CAP_2  
DD  
CAP_1  
between power domains.  
If the time for V and V  
to reach V minimum value is faster than the time for  
CAP_1  
CAP_2  
12  
V
to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V  
DD  
CAP_1  
and V  
reach V minimum value and until V reaches 1.7 V (see Figure 13).  
12 DD  
CAP_2  
Otherwise, if the time for V  
and V  
to reach V minimum value is slower  
CAP_2 12  
CAP_1  
than the time for V to reach 1.7 V, then PA0 could be asserted low externally (see  
DD  
Figure 14).  
If V  
and V  
go below V minimum value and V is higher than 1.7 V, then a  
CAP_2 12 DD  
CAP_1  
reset must be asserted on PA0 pin.  
Note:  
Note:  
The minimum value of V depends on the maximum frequency targeted in the application.  
12  
On the LQFP64 pin package, the V  
is not available.  
CAP_2  
34/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Functional overview  
Figure 13. Startup in regulator OFF: slow V slope  
DD  
- power-down reset risen after V  
/V  
stabilization  
CAP_1 CAP_2  
VDD  
PDR = 1.7 V or 1.8 V  
VCAP_1 / VCAP_2  
V12  
Min V12  
time  
NRST  
time  
ai18491f  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
Figure 14. Startup in regulator OFF mode: fast V slope  
DD  
- power-down reset risen before V  
/V  
stabilization  
CAP_1 CAP_2  
VDD  
PDR = 1.7 V or 1.8 V  
VCAP_1 / VCAP_2  
V12  
Min V12  
time  
time  
NRST  
PA0 asserted externally  
ai18492e  
1. This figure is valid whatever the internal reset mode (ON or OFF).  
DS11853 Rev 6  
35/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.16.3  
Regulator ON/OFF and internal reset ON/OFF availability  
Table 4. Regulator ON/OFF and internal reset ON/OFF availability  
Package  
Regulator ON  
Regulator OFF  
Internal reset ON Internal reset OFF  
LQFP64,  
Yes  
No  
LQFP100  
LQFP144  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
LQFP176,  
UFBGA144,  
UFBGA176  
PDR_ON set to VDD PDR_ON set to VSS  
BYPASS_REG set BYPASS_REG set  
to VSS to VDD  
3.17  
Real-time clock (RTC), backup SRAM and backup registers  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Three anti-tamper detection pins with programmable filter.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
V
mode.  
BAT  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 32 backup registers are supplied through a switch that takes power either  
from the VDD supply when present or from the VBAT pin.  
The backup registers are 32-bit registers used to store 128 bytes of user application data  
when VDD power is not present. They are not reset by a system or power reset, or when the  
device wakes up from Standby mode.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator(LSE)  
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE) divided by 32  
The RTC is functional in V  
mode and in all low-power modes when it is clocked by the  
BAT  
LSE. When clocked by the LSI, the RTC is not functional in V  
all low-power modes.  
mode, but is functional in  
BAT  
36/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Functional overview  
All the RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt  
and wakeup the device from the low-power modes.  
3.18  
Low-power modes  
The devices support three low-power modes to achieve the best compromise between low  
power consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
The Stop mode achieves the lowest power consumption while retaining the contents of  
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC  
and the HSE crystal oscillators are disabled.  
The voltage regulator can be put either in main regulator mode (MR) or in low-power  
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator  
modes in stop mode):  
Normal mode (default mode when MR or LPR is enabled)  
Under-drive mode.  
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line  
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /  
tamper / time stamp events, the USB OTG FS/HS wakeup and the LPTIM1  
asynchronous interrupt).  
Table 5. Voltage regulator modes in stop mode  
Voltage regulator  
Main regulator (MR)  
Low-power regulator (LPR)  
configuration  
Normal mode  
MR ON  
LPR ON  
Under-drive mode  
MR in under-drive mode  
LPR in under-drive mode  
Standby mode  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The  
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering  
Standby mode, the SRAM and register contents are lost except for registers in the  
backup domain and the backup SRAM when selected.  
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,  
a rising or falling edge on one of the 6 WKUP pins (PA0, PA2, PC1, PC13, PI8, PI11),  
or an RTC alarm / wakeup / tamper /time stamp event occurs.  
The Standby mode is not supported when the embedded voltage regulator is bypassed  
and the 1.2 V domain is controlled by an external power.  
DS11853 Rev 6  
37/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.19  
VBAT operation  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when no external battery and an external supercapacitor are  
DD  
present.  
The V  
The V  
operation is activated when V is not present.  
BAT  
BAT  
DD  
pin supplies the RTC, the backup registers and the backup SRAM.  
Note:  
When the microcontroller is supplied from V  
, external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When the PDR_ON pin is connected to V (Internal Reset OFF), the V  
functionality is  
BAT  
SS  
no more available and the V  
pin should be connected to VDD.  
BAT  
3.20  
Timers and watchdogs  
The devices include two advanced-control timers, eight general-purpose timers, two basic  
timers and two watchdog timers.  
All timer counters can be frozen in debug mode.  
Table 6 compares the features of the advanced-control, general-purpose and basic timers.  
38/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
Table 6. Timer feature comparison  
Max  
Max  
DMA  
request  
generation channels  
Capture/ Complem  
Timer  
type  
Counter Counter Prescaler  
interface timer  
clock  
(MHz)  
Timer  
compare  
entary  
output  
resolution  
type  
factor  
clock  
(MHz)(1)  
Any  
integer  
between 1  
and 65536  
Up,  
Down,  
Up/down  
Advanced TIM1,  
16-bit  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
0
Yes  
No  
No  
No  
No  
No  
No  
No  
108  
54  
216  
-control  
TIM8  
Any  
integer  
between 1  
and 65536  
Up,  
Down,  
Up/down  
TIM2,  
TIM5  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
108/216  
108/216  
216  
Any  
integer  
between 1  
and 65536  
Up,  
Down,  
Up/down  
TIM3,  
TIM4  
54  
Any  
integer  
between 1  
and 65536  
TIM9  
Up  
Up  
Up  
Up  
Up  
108  
108  
54  
General  
purpose  
Any  
integer  
between 1  
and 65536  
TIM10,  
TIM11  
No  
216  
Any  
integer  
between 1  
and 65536  
TIM12  
No  
108/216  
108/216  
108/216  
Any  
integer  
between 1  
and 65536  
TIM13,  
TIM14  
No  
54  
Any  
integer  
between 1  
and 65536  
TIM6,  
TIM7  
Basic  
Yes  
54  
1. The maximum timer clock is either 108 or 216 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR  
register.  
DS11853 Rev 6  
39/229  
49  
 
Functional overview  
STM32F722xx STM32F723xx  
3.20.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge- or center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
The TIM1 and TIM8 support independent DMA request generation.  
3.20.2  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32F722xx and  
STM32F723xx devices (see Table 6 for differences).  
TIM2, TIM3, TIM4, TIM5  
The STM32F722xx and STM32F723xx include 4 full-featured general-purpose timers:  
TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-  
reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on  
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4  
independent channels for input capture/output compare, PWM or one-pulse mode  
output. This gives up to 16 input capture/output compare/PWMs on the largest  
packages.  
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the  
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the  
Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are  
capable of handling quadrature (incremental) encoder signals and the digital outputs  
from 1 to 4 hall-effect sensors.  
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9  
and TIM12 have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5  
full-featured general-purpose timers. They can also be used as simple time bases.  
3.20.3  
Basic timers TIM6 and TIM7  
These timers are mainly used for the DAC trigger and waveform generation. They can also  
be used as a generic 16-bit time base.  
The TIM6 and TIM7 support independent DMA request generation.  
40/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.20.4  
Low-power timer (LPTIM1)  
The low-power timer has an independent clock and is running also in Stop mode if it is  
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous / one-shot mode  
Selectable software / hardware input trigger  
Selectable clock source:  
Internal clock source: LSE, LSI, HSI or APB clock  
External clock source over LPTIM input (working even with no internal clock source  
running, used by the Pulse Counter Application)  
Programmable digital glitch filter  
Encoder mode  
3.20.5  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
3.20.6  
3.20.7  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
downcounter. It features:  
A 24-bit downcounter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source  
DS11853 Rev 6  
41/229  
49  
 
 
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.21  
Inter-integrated circuit interface (I2C)  
2
The devices embed 3 I Cs. Refer to Table 7: I2C implementation for the features  
implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
2
Independent clock: a choice of independent clock sources allowing the I C  
communication speed to be independent from the PCLK reprogramming.  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
2
Table 7. I C implementation  
I2C features(1)  
I2C1  
I2C2  
I2C3  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
Independent clock  
1. X: supported.  
42/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.22  
Universal synchronous/asynchronous receiver transmitters  
(USART)  
The devices embed USARTs. Refer to Table 8: USART implementation for the features  
implementation.  
The universal synchronous asynchronous receiver transmitter (USART) offers a flexible  
means of full-duplex data exchange with external equipment requiring an industry standard  
NRZ asynchronous serial data format.  
The USART peripheral supports:  
Full-duplex asynchronous communications  
Configurable oversampling method by 16 or 8 to give flexibility between speed and  
clock tolerance  
Dual clock domain allowing convenient baud rate programming independent from the  
PCLK reprogramming  
A common programmable transmit and receive baud rate of up to 27 Mbit/s when  
USART clock source is system clock frequency (max is 216 MHz) and oversampling by  
8 is used.  
Auto baud rate detection  
Programmable data word length (7 or 8 or 9 bits) word length  
Programmable data order with MSB-first or LSB-first shifting  
Progarmmable parity (odd, even, no parity)  
Configurable stop bits (1 or 1.5 or 2 stop bits)  
Synchronous mode and clock output for synchronous communications  
Single-wire half-duplex communications  
Separate signal polarity control for transmission and reception  
Swappable Tx/Rx pin configuration  
Hardware flow control for modem and RS-485 transceiver  
Multiprocessor communications  
LIN master synchronous break send capability and LIN slave break detection capability  
IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode  
Smartcard mode ( T=0 and T=1 asynchronous protocols for Smartcards as defined in  
the ISO/IEC 7816-3 standard)  
Support for Modbus communication  
Table 8 summarizes the implementation of all U(S)ARTs instances  
Table 8. USART implementation  
features(1)  
USART1/2/3/6  
UART4/5/7/8  
Data Length  
7, 8 and 9 bits  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
X
X
X
X
-
DS11853 Rev 6  
43/229  
49  
 
 
Functional overview  
STM32F722xx STM32F723xx  
Table 8. USART implementation (continued)  
features(1)  
USART1/2/3/6  
UART4/5/7/8  
Smartcard mode  
X
X
X
X
X
X
X
X
X
-
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
X
X
Dual clock domain  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
1. X: supported.  
3.23  
Serial peripheral interface (SPI)/inter- integrated sound  
interfaces (I2S)  
The devices feature up to five SPIs in slave and master modes in full-duplex and simplex  
communication modes. SPI1, SPI4, and SPI5 can communicate at up to 50 Mbit/s, SPI2  
and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable from 4 to 16 bits. The SPI interfaces support the  
NSS pulse mode, TI mode and Hardware CRC calculation. All the SPIs can be served by  
the DMA controller.  
2
Three standard I S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They  
can be operated in master or slave mode, in simplex communication modes, and can be  
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio  
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the  
2
I S interfaces is/are configured in master mode, the master clock can be output to the  
external DAC/CODEC at 256 times the sampling frequency.  
2
All I Sx can be served by the DMA controller.  
3.24  
Serial audio interface (SAI)  
The devices embed two serial audio interfaces.  
The serial audio interface is based on two independent audio subblocks which can operate  
as transmitter or receiver with their FIFO. Many audio protocols are supported by each  
2
block: I S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output,  
supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both subblocks can be  
configured in master or in slave mode.  
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of  
the sampling frequency.  
The two sub-blocks can be configured in synchronous mode when full-duplex mode is  
required.  
44/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
SAI1 and SAI2 can be served by the DMA controller  
3.25  
Audio PLL (PLLI2S)  
2
The devices feature an additional dedicated PLL for audio I S and SAI applications. It allows  
2
to achieve an error-free I S sampling clock accuracy without compromising on the CPU  
performance, while using USB peripherals.  
2
The PLLI2S configuration can be modified to manage an I S/SAI sample rate change  
without disabling the main PLL (PLL) used for CPU and USB interfaces.  
The audio PLL can be programmed with very low error to obtain sampling rates ranging  
from 8 KHz to 192 KHz.  
In addition to the audio PLL, a master clock input pin can be used to synchronize the  
2
I S/SAI flow with an external PLL (or Codec output).  
3.26  
3.27  
Audio PLL (PLLSAI)  
An additional PLL dedicated to audio is used for the SAI1 peripheral in case the PLLI2S is  
programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz)  
and the audio application requires both sampling frequencies simultaneously.  
SD/SDIO/MMC card host interface (SDMMC)  
SDMMC host interfaces are available, that support MultiMediaCard System Specification  
Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.  
The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory  
Card Specification Version 2.0.  
The SDMMC Card Specification Version 2.0 is also supported with two different databus  
modes: 1-bit (default) and 4-bit.  
The current version supports only one SD/SDMMC/MMC4.2 card at any one time and a  
stack of MMC4.1 or previous.  
The SDMMC can be served by the DMA controller  
3.28  
Controller area network (bxCAN)  
The CAN is compliant with the 2.0A and B (active) specifications with a bit rate up to 1  
Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as  
extended frames with 29-bit identifiers. The CAN has three transmit mailboxes, two receive  
FIFOs with 3 stages and 28 shared scalable filter banks (all of them can be used even if one  
CAN is used). 256 bytes of SRAM are allocated to the CAN.  
DS11853 Rev 6  
45/229  
49  
 
 
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.29  
Universal serial bus on-the-go full-speed (OTG_FS)  
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated  
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and  
with the OTG 2.0 specification. It has software-configurable endpoint setting and supports  
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
The major features are:  
Combined Rx and Tx FIFO size of 1.28 Kbytes with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints  
12 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
Internal FS OTG PHY support  
HNP/SNP/IP inside (no need for any external resistor)  
BCD support  
For the OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.30  
Universal serial bus on-the-go high-speed (OTG_HS)  
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG  
peripheral. The USB OTG HS supports both full-speed and high-speed operations. It  
integrates the transceivers for full-speed operation (12 Mbit/s).  
The STM32F722xx devices feature a UTMI low-pin interface (ULPI) for high-speed  
operation (480 Mbit/s). When using the USB OTG HS in HS mode, an external PHY device  
connected to the ULPI is required.  
The STM32F723xx devices feature an integrated PHY HS.  
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG  
2.0 specification. It has a software-configurable endpoint setting and supports  
suspend/resume. The USB OTG controller requires a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
The major features are:  
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
8 bidirectional endpoints  
16 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
For the STM32F722xx devices: External HS or HS OTG operation supporting ULPI in  
SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12  
signals. It can be clocked using the 60 MHz output.  
For the STM32F723xx devices: Internal HS OTG PHY support.  
46/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Functional overview  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
Universal Serial Bus controller on-the-go High-Speed PHY controller  
(USBPHYC) only on STM32F723xx devices.  
The USB HS PHY controller:  
Sets the PHYPLL1/2 values for the PHY HS  
Sets the other controls on the PHY HS  
Controls and monitors the USB PHY’s LDO  
3.31  
3.32  
Random number generator (RNG)  
All the devices embed an RNG that delivers 32-bit random numbers generated by an  
integrated analog circuit.  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
A Fast I/O handling allows a maximum I/O toggling up to 108 MHz.  
3.33  
Analog-to-digital converters (ADCs)  
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16  
external channels, performing conversions in the single-shot or scan mode. In the scan  
mode, an automatic conversion is performed on a selected group of analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
Simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller. An analog watchdog feature allows very  
precise monitoring of the converted voltage of one, some or all selected channels. An  
interrupt is generated when the converted voltage is outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,  
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.  
DS11853 Rev 6  
47/229  
49  
 
 
 
Functional overview  
STM32F722xx STM32F723xx  
3.34  
Temperature sensor  
The temperature sensor has to generate a voltage that varies linearly with the temperature.  
The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally  
connected to the same input channel as V  
, ADC1_IN18, which is used to convert the  
BAT  
sensor output voltage into a digital value. When the temperature sensor and V  
BAT  
conversion are enabled at the same time, only V  
conversion is performed.  
BAT  
As the offset of the temperature sensor varies from chip to chip due to process variation, the  
internal temperature sensor is mainly suitable for applications that detect temperature  
changes instead of absolute temperatures. If an accurate temperature reading is needed,  
then an external temperature sensor part should be used.  
3.35  
Digital-to-analog converter (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
Two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Input voltage reference V  
REF+  
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through  
the timer update outputs that are also connected to different DMA streams.  
3.36  
Serial wire JTAG debug port (SWJ-DP)  
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins  
could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared  
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
48/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Functional overview  
3.37  
Embedded Trace Macrocell™  
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32F722xx and STM32F723xx device through a small number of ETM pins to an  
external hardware trace port analyzer (TPA) device. The TPA is connected to a host  
computer using the USB or any other high-speed channel. The real-time instruction and  
data flow activity can be recorded and then formatted for display on the host computer that  
runs the debugger software. The TPA hardware is commercially available from common  
development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
DS11853 Rev 6  
49/229  
49  
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
4
Pinouts and pin description  
Figure 15. STM32F722xx LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
VDD  
VSS  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
PB15  
PB14  
PB13  
PB12  
1
2
3
4
5
6
7
8
VBAT  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PC0  
PC1  
PC2  
PC3  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
VSSA  
VDDA  
PA0-WKUP  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
MS40455V3  
1. The above figure shows the package top view.  
50/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Figure 16. STM32F722xx LQFP100 pinout  
PE2  
PE3  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
VDD  
2
VSS  
PE4  
3
VCAP_2  
PA13  
PE5  
4
PE6  
5
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
VBAT  
6
PC13  
7
PC14-OSC32_IN  
8
PC15-OSC32_OUT  
9
VSS  
VDD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PC8  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC7  
PC6  
LQFP100  
PD15  
PC0  
PD14  
PD13  
PD12  
PD11  
PC1  
PC2  
PC3  
VSSA  
PD10  
VREF+ 20  
PD9  
VDDA  
PA0-WKUP  
PA1  
21  
22  
23  
24  
25  
PD8  
PB15  
53 PB14  
52  
51  
PB13  
PB12  
PA2  
PA3  
MSv40457V1  
1. The above figure shows the package top view.  
DS11853 Rev 6  
51/229  
99  
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
Figure 17. STM32F723xx LQFP100 pinout  
PE2  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
VDD  
PE3  
2
VSS  
PE4  
3
VCAP_2  
PA13  
PA12  
PE5  
PE6  
4
5
VBAT  
6
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC13  
7
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS  
8
9
10  
VDD 11  
12  
13  
14  
15  
16  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC6  
LQFP100  
PD15  
PC0  
PC1  
PD14  
PD13  
PD12  
PD11  
PB15  
PB14  
PC2 17  
PC3  
18  
19  
V SSA  
VREF+ 20  
VDDA  
PA0-WKUP  
PA1  
21  
22  
23  
24  
25  
VDD12OTGHS  
VDDPHYHS  
53 OTG_HS_REXT  
52  
51  
PB13  
PB12  
PA2  
PA3  
MSv63474V1  
1. The above figure shows the package top view.  
52/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Figure 18. STM32F723xx WLCSP100 ballout (with OTG PHY HS)  
1
2
6
4
3
10  
5
7
8
9
A
VDD  
VSS  
PB3  
PE3  
PD1  
PC10  
PD5  
BOOT0 VSS  
VDD  
B
C
PA13  
PA11  
PA12  
PA10  
PC8  
PD4  
PD3  
PE6  
PA15  
PA14  
VCAP_2  
PA9  
PD0  
PB4  
PB5  
PB7  
PB8  
PE1  
PE2  
PC11  
VBAT  
PC13  
PC15  
VDD  
PH0  
D
E
F
PC9  
PC6  
PD14  
PA8  
PD6  
PD7  
PC7  
PC12  
PD2  
PB6  
PE0  
PC3  
PA4  
PB9  
PE5  
PC0  
PA0  
PE4  
PC14  
VSS  
PD15  
PD12  
PE10  
PD13  
PD11  
PB10  
PB11  
VCAP_1  
VSS  
PA5  
PA6  
PC4  
PC5  
PB2  
PE15  
PE11  
PE12  
PE13  
PE14  
PB0  
PB1  
PE8  
PE7  
PE9  
VDD12  
OTGHS  
OTG_HS  
_REXT  
G
H
NRST  
PC1  
PB15  
PB14  
PB13  
PB12  
VDD  
PH1  
PA3  
PA2  
PA1  
VSS  
J
VDD  
VREF+  
VDDA  
PC2  
VDD  
USB  
K
PA7  
VSSA  
MSv42002V2  
1. The above figure shows the package top view.  
DS11853 Rev 6  
53/229  
99  
 
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
Figure 19. STM32F722xx LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
PC14  
PC15  
PF0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
2
VSS  
3
VCAP_2  
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
7
8
9
PA8  
10  
11  
12  
13  
14  
15  
16  
PC9  
PF1  
98  
PC8  
PF2  
97  
PC7  
PF3  
96  
PC6  
PF4  
95  
VDDUSB  
VSS  
PF5  
94  
VSS  
93  
PG8  
VDD 17  
92  
PG7  
PF6  
PF7  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
91  
PG6  
LQFP144  
90  
PG5  
PF8  
89  
PG4  
PF9  
88  
PG3  
PF10  
PH0  
87  
PG2  
86  
PD15  
PD14  
VDD  
85  
PH1  
NRST  
PC0  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
VSS  
PC1  
PD13  
PD12  
PD11  
PD10  
PD9  
PC2  
PC3  
VDD  
VSSA  
VREF+  
VDDA  
PA0  
PA1  
PA2  
PD8  
PB15  
PB14  
PB13  
PB12  
MS39132V1  
1. The above figure shows the package top view.  
54/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Figure 20. STM32F723xx LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
PC14  
PC15  
PF0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
2
VSS  
3
VCAP_2  
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
7
8
9
PA8  
10  
11  
12  
13  
14  
15  
16  
PC9  
PF1  
98  
PC8  
PF2  
97  
PC7  
PF3  
96  
PC6  
PF4  
95  
VDDUSB  
VSS  
PF5  
94  
VSS  
93  
PG8  
PG5  
PG4  
PG3  
PG2  
PD15  
VDD 17  
92  
PF6  
PF7  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
91  
LQFP144  
with HS PHY  
90  
PF8  
89  
PF9  
88  
PF10  
PH0  
87  
PD14  
86  
VDD  
85  
PH1  
NRST  
PC0  
VSS  
84  
PD13  
83 PD12  
PC1  
82  
81  
80  
79  
78  
77  
PD11  
PD10  
PD9  
PD8  
PB15  
PB14  
PC2  
PC3  
VDD  
VSSA  
VREF+  
VDDA  
PA0  
PA1  
PA2  
76 VDD12OTGHS  
75 OTG_HS_REXT  
74  
73  
PB13  
PB12  
MS41014V1  
1. The above figure shows the package top view.  
DS11853 Rev 6  
55/229  
99  
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
Figure 21. STM32F723xx UFBGA144 ballout (with OTG PHY HS)  
1
2
3
4
5
PE0  
6
7
PB3  
8
9
PD7  
10  
11  
PA14  
PC10  
VDDUSB  
PA10  
PC9  
12  
PC13  
PE3  
PE4  
VBAT  
VSS  
PF3  
PF7  
PF9  
PC1  
PA0  
PA1  
PA2  
PA3  
PE2  
PE5  
PF0  
VDD  
PF4  
PF6  
PF8  
PC2  
PA4  
PA5  
PA6  
PA7  
PE1  
PE6  
PF1  
PF2  
PF5  
VDD  
VSS  
PC3  
PC4  
PC5  
PB0  
PB1  
PB4  
PB5  
PB6  
PB7  
VSS  
VDD  
VDD  
VSS  
PG1  
PG0  
PF15  
PF14  
PD6  
PA15  
PC11  
PC12  
PD1  
PA13  
PA12  
PA11  
PA9  
A
B
C
D
E
F
PC14-  
OSC32_IN  
PB9  
PG15  
PG14  
PG13  
VSS  
PG12  
PG11  
PG10  
PG9  
PD5  
PC15-  
OSC32_OUT  
PB8  
PD4  
PH0 -  
OSC_IN  
BOOT0  
PDR_ON  
VDD  
PD3  
PH1 -  
OSC_OUT  
PD2  
PD0  
PA8  
NRST  
PF10  
VDD  
VDD  
VCAP_1  
PE10  
PE9  
VDD  
VSS  
VDD  
VCAP_2  
PD11  
PD10  
PD9  
VDD  
VSS  
PC8  
PC7  
VDD  
PG8  
PC6  
G
H
J
BYPASS_  
REG  
VDD12OTG  
HS  
OTG_HS  
_REXT  
PC0  
PE11  
PE12  
PE13  
PE14  
PE15  
PG5  
PG2  
PD15  
PB15  
PB13  
VSSA  
VREF-  
VREF+  
VDDA  
PB2  
PF13  
PF12  
PF11  
PG4  
PD13  
PD12  
PB11  
PG3  
PD14  
PB14  
PB12  
K
L
PE8  
PD8  
PE7  
PB10  
M
MSv42000V1  
1. The above figure shows the package top view.  
56/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Figure 22. STM32F722xx LQFP176 pinout  
PE2  
PE3  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
PI1  
2
PI0  
PE4  
3
PH15  
PH14  
PH13  
VDD  
VSS  
VCAP_2  
PE5  
PE6  
VBAT  
PI8  
PC13  
PC14  
PC15  
PI9  
PI10  
PI11  
VSS  
VDD  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
PF10  
PH0  
PH1  
NRST  
PC0  
PC1  
PC2  
PC3  
VDD  
4
5
6
7
8
9
PA13  
PA12  
PA11  
PA10  
PA9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PA8  
PC9  
PC8  
PC7  
PC6  
VDDUSB  
VSS  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PD15  
PD14  
LQFP176  
107  
106  
105  
104  
103 VDD  
102  
101  
100  
VSS  
PD13  
PD12  
99 PD11  
98 PD10  
97 PD9  
37  
38  
39  
40  
41  
42  
43  
44  
PD8  
96  
VSSA  
VREF+  
PB15  
PB14  
PB13  
PB12  
VDD  
95  
94  
93  
92  
91  
90  
VDDA  
PA0  
PA1  
PA2  
PH2  
PH3  
VSS  
89 PH12  
MS41015V1  
1. The above figure shows the package top view.  
DS11853 Rev 6  
57/229  
99  
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
Figure 23. STM32F723xx LQFP176 pinout  
PE2  
PE3  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99 PD9  
98 PD8  
97 PB15  
PB14  
96  
PI1  
2
PI0  
PE4  
3
PH15  
PH14  
PH13  
VDD  
VSS  
VCAP_2  
PE5  
PE6  
VBAT  
PI8  
PC13  
PC14  
PC15  
PI9  
PI10  
PI11  
VSS  
VDD  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
4
5
6
7
8
9
PA13  
PA12  
PA11  
PA10  
PA9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PA8  
PC9  
PC8  
PC7  
PC6  
VDDUSB  
VSS  
PG8  
LQFP176  
with HS PHY  
VSS  
VDD  
PF6  
PG5  
PG4  
PG3  
PF7  
PG2  
PD15  
PD14  
VDD  
PF8  
PF9  
PF10  
PH0  
PH1  
NRST  
PC0  
PC1  
PC2  
PC3  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
37  
38  
39  
40  
41  
42  
43  
44  
VSSA  
VREF+  
VDD12OTGHS  
OTG_HS_REXT  
95  
94  
93  
92  
91  
90  
VDDA  
PA0  
PA1  
PA2  
PH2  
PH3  
PB13  
PB12  
VDD  
VSS  
89 PH12  
MS41082V1  
1. The above figure shows the package top view.  
58/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Figure 24. STM32F723xx UFBGA176 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
PE3  
PE2  
PE1  
PE0  
PB9  
PB8  
PB7  
PB5  
PG14  
PG15  
PG13  
PG12  
PB4  
PG11  
PB3  
PG10  
PD7  
PD6  
PC12  
PD0  
PA15  
PC11  
PA14  
PC10  
PA13  
PA12  
PE6  
PI6  
PB6  
PE4  
VBAT  
PC13  
PE5  
PI7  
VDD  
SDMMC  
VDD  
VSS  
PI5  
PDR_ON  
BOOT0  
VDD  
VSS  
VDD  
VSS  
PG9  
PD4  
PD5  
PD3  
PD1  
PD2  
PI3  
PI2  
PI1  
PA11  
PA10  
C
D
VSS  
PH15  
PI8  
PI9  
PI4  
PF0  
PI10  
PI11  
PH13  
PH14  
PI0  
PA9  
PA8  
PC14  
PC15  
PH0  
E
F
VSS  
VSS  
PF2  
PF3  
PF6  
PF9  
PC0  
PH2  
PH3  
PH4  
PH5  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VCAP2 PC9  
VDD  
VDD  
PF1  
VSS  
VSS  
VSS  
VDD  
PC8  
PC7  
PC6  
PG6  
G
H
VSS  
VSS  
VSS  
VSS VDDUSB PG8  
PH1  
NRST  
PF4  
PF5  
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
PG7  
K
PF7  
PH12  
PH11  
PH8  
PG5  
PH10  
PH9  
PG4  
PD15  
PD14  
PG3  
PG2  
BYPASS_  
REG  
L
PF8  
PC1  
PF10  
VSSA  
VREF-  
PB2  
PG1  
PG0  
VSS  
VDD  
PE8  
VSS  
VDD  
PE9  
VCAP_1 PH6  
PD13  
M
N
PC2  
PA4  
PA5  
PC3  
PC4  
PC5  
VDD  
PE13  
PE14  
PH7  
PD12  
PB13  
PD11  
PD9  
PD10  
PD8  
PF13  
PF12  
PA1  
PA2  
PA0  
PA6  
PF15  
PE11  
PB12  
P
R
VREF+  
VDDA  
PF14  
PE7  
PE10  
PE12  
PE15  
PB10  
PB11  
PB14  
PB15  
PA3  
PA7  
PB1  
PB0  
PF11  
MS39130V1  
1. The above figure shows the package top view.  
DS11853 Rev 6  
59/229  
99  
 
Pinouts and pin description  
STM32F722xx STM32F723xx  
Figure 25. STM32F723xx UFBGA176 ballout (with OTG PHY HS)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
A
B
PE3  
PE2  
PE1  
PE0  
PB9  
PB8  
PB7  
PB5  
PG14  
PG15  
PG13  
PG12  
PB4  
PG11  
PB3  
PG10  
PD7  
PD6  
PC12  
PD0  
PA15  
PC11  
PA14  
PC10  
PA13  
PA12  
PE6  
PI6  
PB6  
PE4  
VBAT  
PC13  
PE5  
PI7  
VDD  
SDMMC  
VDD  
VSS  
PI5  
PDR_ON  
BOOT0  
VDD  
VSS  
VDD  
VSS  
PG9  
PD4  
PD5  
PD3  
PD1  
PD2  
PI3  
PI2  
PI1  
PA11  
PA10  
C
D
VSS  
PH15  
PI8  
PI9  
PI4  
PF0  
PI10  
PI11  
PH13  
PH14  
PI0  
PA9  
PA8  
PC14  
PC15  
PH0  
E
F
VSS  
VSS  
PF2  
PF3  
PF6  
PF9  
PC0  
PH2  
PH3  
PH4  
PH5  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VCAP2 PC9  
VDD  
VDD  
PF1  
VSS  
VSS  
VSS  
VDD  
PC8  
PC7  
PC6  
G
H
VSS  
VSS  
VSS  
VSS VDDUSB PG8  
PH1  
VDD12 OTG_HS  
OTGHS _REXT  
NRST  
PF4  
PF5  
J
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
K
PF7  
PH12  
PH11  
PH8  
PG5  
PH10  
PH9  
PG4  
PD15  
PD14  
PG3  
PG2  
BYPASS_  
REG  
L
PF8  
PC1  
PF10  
VSSA  
VREF-  
PB2  
PG1  
PG0  
VSS  
VDD  
PE8  
VSS  
VDD  
PE9  
VCAP_1 PH6  
PD13  
M
N
PC2  
PA4  
PA5  
PC3  
PC4  
PC5  
VDD  
PE13  
PE14  
PH7  
PD12  
PB13  
PD11  
PD9  
PD10  
PD8  
PF13  
PF12  
PA1  
PA2  
PA0  
PA6  
PF15  
PE11  
PB12  
P
R
VREF+  
VDDA  
PF14  
PE7  
PE10  
PE12  
PE15  
PB10  
PB11  
PB14  
PB15  
PA3  
PA7  
PB1  
PB0  
PF11  
MS42001V1  
1. The above figure shows the package top view.  
60/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Pinouts and pin description  
Table 9. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TTa  
B
Input / output pin  
5 V tolerant I/O  
5V tolerant I/O, I2C Fm+ option.  
3.3 V tolerant I/O directly connected to ADC  
Dedicated BOOT pin  
I/O structure  
Notes  
RST  
Bidirectional reset pin with weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
DS11853 Rev 6  
61/229  
99  
 
Table 10. STM32F722xx and STM32F723xx pin and ball definition  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TRACECLK, SPI4_SCK,  
SAI1_MCLK_A,  
QUADSPI_BK1_IO2, FMC_A23,  
EVENTOUT  
-
1
1
A2  
1
1
C9  
A2  
A3  
1
1
PE2  
I/O FT  
-
-
TRACED0, SAI1_SD_B,  
FMC_A19, EVENTOUT  
-
-
2
3
2
3
A1  
B1  
2
3
2
3
A10 A1  
A2  
B2  
2
3
2
3
PE3  
PE4  
I/O FT  
I/O FT  
-
-
-
-
TRACED1, SPI4_NSS,  
SAI1_FS_A, FMC_A20,  
EVENTOUT  
D9  
E8  
B1  
B2  
TRACED2, TIM9_CH1,  
SPI4_MISO, SAI1_SCK_A,  
FMC_A21, EVENTOUT  
-
4
4
B2  
4
4
B3  
4
4
PE5  
I/O FT  
I/O FT  
-
-
TRACED3, TIM1_BKIN2,  
TIM9_CH2, SPI4_MOSI,  
SAI1_SD_A, SAI2_MCK_B,  
FMC_A22, EVENTOUT  
-
5
6
5
6
B3  
C1  
5
6
5
6
B10 B3  
C10 C1  
B4  
C2  
5
6
5
6
PE6  
-
-
-
-
1
VBAT  
S
-
-
 
 
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
RTC_TAMP2/  
(2)  
(3)  
-
-
-
D2  
D1  
E1  
7
8
9
-
-
D2  
-
-
7
8
9
PI8  
I/O FT  
I/O FT  
EVENTOUT  
EVENTOUT  
RTC_TS,  
WKUP5  
RTC_TAMP1/  
(2)  
(3)  
RTC_TS/  
RTC_OUT,  
WKUP4  
2
3
7
8
7
8
7
8
D10 D1  
A1  
B1  
7
8
PC13  
(2)  
(3)  
(5)  
PC14-  
E9  
E1  
OSC32_IN(PC1 I/O FT  
4)  
EVENTOUT  
EVENTOUT  
OSC32_IN  
(2)  
(3)  
(5)  
PC15-  
4
-
9
-
9
-
F1  
D3  
10  
11  
9
-
E10 F1  
C1  
-
9
-
10 OSC32_OUT(P I/O FT  
C15)  
OSC32_OUT  
-
UART4_RX, CAN1_RX,  
FMC_D30, EVENTOUT  
-
D3  
11  
PI9  
I/O FT  
-
-
-
-
-
-
-
E3  
E4  
12  
13  
-
-
-
-
E3  
E4  
-
-
-
-
12  
13  
PI10  
PI11  
I/O FT  
I/O FT  
-
FMC_D31, EVENTOUT  
-
OTG_HS_ULPI_DIR,  
EVENTOUT  
(4)  
WKUP6  
-
-
-
-
-
-
F2  
F3  
14  
15  
-
-
-
-
F2  
F3  
-
-
-
-
14  
15  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
I2C2_SDA, FMC_A0,  
EVENTOUT  
-
-
-
-
-
-
10  
11  
12  
E2  
H3  
H2  
16  
17  
18  
-
-
-
-
-
-
E2  
H3  
H2  
C3  
C4  
D4  
10  
11  
12  
16  
17  
18  
PF0  
PF1  
PF2  
I/O FTf  
I/O FTf  
I/O FT  
-
-
-
-
-
-
I2C2_SCL, FMC_A1,  
EVENTOUT  
I2C2_SMBA, FMC_A2,  
EVENTOUT  
-
-
-
-
-
-
-
-
13  
14  
15  
J2  
J3  
K3  
19  
20  
21  
22  
23  
-
-
-
-
J2  
J3  
K3  
E2  
E3  
E4  
13  
14  
15  
16  
17  
19  
20  
21  
22  
23  
PF3  
PF4  
PF5  
VSS  
VDD  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
FMC_A3, EVENTOUT  
ADC3_IN9  
FMC_A4, EVENTOUT  
ADC3_IN14  
-
-
FMC_A5, EVENTOUT  
ADC3_IN15  
10 16 G2  
10  
11  
F9  
G2 D2  
S
S
-
-
-
-
-
-
11  
17 G3  
F10 G3 D3  
TIM10_CH1, SPI5_NSS,  
SAI1_SD_B, UART7_RX,  
QUADSPI_BK1_IO3,  
EVENTOUT  
-
-
-
18  
19  
K2  
K1  
24  
25  
-
-
-
-
K2  
K1  
F3  
F2  
18  
19  
24  
25  
PF6  
PF7  
I/O FT  
-
-
ADC3_IN4  
ADC3_IN5  
TIM11_CH1, SPI5_SCK,  
SAI1_MCLK_B, UART7_TX,  
QUADSPI_BK1_IO2,  
EVENTOUT  
-
I/O FT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
SPI5_MISO, SAI1_SCK_B,  
UART7_RTS, TIM13_CH1,  
QUADSPI_BK1_IO0,  
EVENTOUT  
-
-
-
20  
L3  
26  
27  
-
-
-
L3  
G3  
20  
21  
26  
27  
PF8  
PF9  
I/O FT  
-
-
ADC3_IN6  
ADC3_IN7  
SPI5_MOSI, SAI1_FS_B,  
UART7_CTS, TIM14_CH1,  
QUADSPI_BK1_IO1,  
EVENTOUT  
-
-
21  
22  
L2  
L1  
-
-
L2  
L1  
G2  
G1  
I/O FT  
-
28  
29  
30  
-
22  
23  
24  
28  
29  
PF10  
I/O FT  
I/O FT  
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
ADC3_IN8  
OSC_IN  
(5)  
5
6
12 23 G1  
12  
13  
G10 G1 D1  
PH0-OSC_IN  
(5)  
13 24  
14 25  
H1  
J1  
H10 H1  
E1  
F1  
30 PH1-OSC_OUT I/O FT  
RS  
OSC_OUT  
7
8
31  
14  
15  
G9  
F8  
J1  
25  
26  
31  
NRST  
I/O  
-
-
-
T
SAI2_FS_B,  
OTG_HS_ULPI_STP,  
FMC_SDNWE, EVENTOUT  
ADC1_IN10,  
ADC2_IN10,  
ADC3_IN10  
(4)  
15 26 M2 32  
M2 H1  
M3 H2  
32  
PC0  
I/O FT  
I/O FT  
ADC1_IN11,  
ADC2_IN11,  
ADC3_IN11,  
RTC_TAMP3,  
WKUP3  
TRACED0,  
SPI2_MOSI/I2S2_SD,  
SAI1_SD_A, EVENTOUT  
9
16 27 M3 33  
16  
H9  
27  
33  
PC1  
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
SPI2_MISO,  
OTG_HS_ULPI_DIR,  
FMC_SDNE0, EVENTOUT  
ADC1_IN12,  
ADC2_IN12,  
ADC3_IN12  
(4)  
(4)  
10 17 28 M4 34  
17  
18  
J10 M4 H3  
28  
29  
34  
35  
PC2  
PC3  
I/O FT  
SPI2_MOSI/I2S2_SD,  
OTG_HS_ULPI_NXT,  
FMC_SDCKE0, EVENTOUT  
ADC1_IN13,  
ADC2_IN13,  
ADC3_IN13  
11 18 29 M5 35  
F7  
J7  
M5 H4  
I/O FT  
-
-
30  
-
36  
-
-
F10 30  
36  
37  
-
VDD  
VSSA  
VREF-  
VREF+  
VDDA  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12 19 31 M1 37  
19  
-
K10 M1  
J1  
K1  
L1  
31  
-
-
-
-
N1  
P1  
R1  
-
-
N1  
P1  
13 20 32  
21 33  
38  
39  
20  
21  
J9  
K9  
32  
33  
38  
39  
-
R1 M1  
TIM2_CH1/TIM2_ETR,  
TIM5_CH1, TIM8_ETR,  
USART2_CTS, UART4_TX,  
SAI2_SD_B, EVENTOUT  
ADC1_IN0,  
ADC2_IN0,  
ADC3_IN0,  
WKUP1  
(5)  
14 22 34  
N3  
40  
22  
G8  
N3  
J2  
34  
40  
PA0-WKUP  
I/O FT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM2_CH2, TIM5_CH2,  
USART2_RTS, UART4_RX,  
QUADSPI_BK1_IO3,  
ADC1_IN1,  
ADC2_IN1,  
ADC3_IN1  
15 23 35  
N2  
P2  
41  
42  
23  
24  
J8  
N2  
P2  
K2  
L2  
35  
36  
41  
42  
PA1  
PA2  
I/O FT  
I/O FT  
-
SAI2_MCK_B, EVENTOUT  
ADC1_IN2,  
ADC2_IN2,  
ADC3_IN2,  
WKUP2  
TIM2_CH3, TIM5_CH3,  
TIM9_CH1, USART2_TX,  
SAI2_SCK_B, EVENTOUT  
16 24 36  
H8  
-
-
LPTIM1_IN2,  
QUADSPI_BK2_IO0,  
SAI2_SCK_B, FMC_SDCKE0,  
EVENTOUT  
-
-
-
-
-
-
F4  
43  
44  
-
-
-
-
F4  
-
-
-
-
43  
44  
PH2  
PH3  
I/O FT  
I/O FT  
-
-
QUADSPI_BK2_IO1,  
SAI2_MCK_B, FMC_SDNE0,  
EVENTOUT  
G4  
G4  
-
I2C2_SCL, OTG_HS_ULPI_NXT,  
EVENTOUT  
(4)  
-
-
-
-
-
-
H4  
J4  
45  
46  
-
-
-
-
H4  
J4  
-
-
-
-
45  
46  
PH4  
PH5  
I/O FTf  
I/O FTf  
-
-
I2C2_SDA, SPI5_NSS,  
FMC_SDNWE, EVENTOUT  
-
TIM2_CH4, TIM5_CH4,  
TIM9_CH2, USART2_RX,  
OTG_HS_ULPI_D0, EVENTOUT  
ADC1_IN3,  
ADC2_IN3,  
ADC3_IN3  
(4)  
17 25 37  
18 26 38  
R2  
47  
25  
H7  
R2 M2  
37  
47  
PA3  
I/O FT  
-
-
26  
-
K8  
-
-
G4  
H5  
38  
-
-
VSS  
S
I
-
-
-
-
-
-
-
-
-
-
L4  
48  
L4  
48  
BYPASS_REG  
FT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
19 27 39  
K4  
N4  
49  
50  
27  
28  
-
K4  
N4  
F4  
J3  
39  
40  
49  
50  
VDD  
PA4  
S
-
-
-
-
-
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
USART2_CK, OTG_HS_SOF,  
EVENTOUT  
ADC1_IN4,  
ADC2_IN4,  
DAC_OUT1  
20 28 40  
G7  
I/O TTa  
TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK/I2S1_CK,  
ADC1_IN5,  
ADC2_IN5,  
DAC_OUT2  
(4)  
21 29 41  
P4  
P3  
51  
52  
29  
30  
F6  
P4  
P3  
K3  
L3  
41  
42  
51  
52  
PA5  
PA6  
I/O TTa  
I/O FT  
OTG_HS_ULPI_CK, EVENTOUT  
TIM1_BKIN, TIM3_CH1,  
TIM8_BKIN, SPI1_MISO,  
TIM13_CH1, EVENTOUT  
ADC1_IN6,  
ADC2_IN6  
22 30 42  
G6  
-
TIM1_CH1N, TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI/I2S1_SD,  
TIM14_CH1, FMC_SDNWE,  
EVENTOUT  
ADC1_IN7,  
ADC2_IN7  
23 31 43  
R3  
53  
31  
K7  
R3 M3  
43  
53  
PA7  
I/O FT  
-
I2S1_MCK, FMC_SDNE0,  
EVENTOUT  
ADC1_IN14,  
ADC2_IN14  
24 32 44  
N5  
P5  
54  
55  
32  
33  
H6  
J6  
N5  
P5  
J4  
44  
45  
54  
55  
PC4  
PC5  
I/O FT  
I/O FT  
-
-
ADC1_IN15,  
ADC2_IN15  
-
33 45  
K4  
FMC_SDCKE0, EVENTOUT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_CH2N, TIM3_CH3,  
TIM8_CH2N, UART4_CTS,  
OTG_HS_ULPI_D1, EVENTOUT  
ADC1_IN8,  
ADC2_IN8  
(4)  
(4)  
25 34 46  
R5  
R4  
56  
57  
34  
F5  
R5  
L4  
46  
56  
PB0  
I/O FT  
TIM1_CH3N, TIM3_CH4,  
TIM8_CH3N,  
OTG_HS_ULPI_D2, EVENTOUT  
ADC1_IN9,  
ADC2_IN9  
26 35 47  
35  
36  
-
G5  
K6  
-
R4 M4  
47  
48  
49  
57  
58  
59  
PB1  
PB2  
I/O FT  
I/O FT  
SAI1_SD_A,  
SPI3_MOSI/I2S3_SD,  
QUADSPI_CLK, EVENTOUT  
27 36 48 M6 58  
M6  
J5  
-
-
-
-
SPI5_MOSI, SAI2_SD_B,  
FMC_SDNRAS, EVENTOUT  
-
-
49  
50  
R6  
P6  
59  
60  
R6 M5  
PF11  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
P6  
L5  
-
50  
51  
52  
53  
54  
55  
56  
57  
60  
61  
62  
63  
64  
65  
66  
67  
PF12  
VSS  
-
-
-
-
-
-
-
-
FMC_A6, EVENTOUT  
-
-
-
-
-
-
-
-
-
51 M8 61  
M8  
S
S
-
-
52  
53  
54  
55  
56  
N8  
N6  
R7  
P7  
N7  
62  
63  
64  
65  
66  
N8 G5  
N6 K5  
R7 M6  
VDD  
PF13  
PF14  
PF15  
PG0  
-
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
FMC_A7, EVENTOUT  
FMC_A8, EVENTOUT  
FMC_A9, EVENTOUT  
FMC_A10, EVENTOUT  
FMC_A11, EVENTOUT  
P7  
N7  
M7  
L6  
K6  
J6  
57 M7 67  
PG1  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_ETR, UART7_Rx,  
QUADSPI_BK2_IO0, FMC_D4,  
EVENTOUT  
-
-
-
37 58  
38 59  
39 60  
R8  
P8  
P9  
68  
69  
70  
37  
38  
39  
J5  
H5  
K5  
R8 M7  
58  
59  
60  
68  
69  
70  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM1_CH1N, UART7_Tx,  
QUADSPI_BK2_IO1, FMC_D5,  
EVENTOUT  
P8  
P9  
L7  
TIM1_CH1, UART7_RTS,  
QUADSPI_BK2_IO2, FMC_D6,  
EVENTOUT  
K7  
-
-
-
-
61 M9 71  
-
-
-
-
M9 H6  
N9 G6  
61  
62  
71  
72  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
62  
N9  
72  
TIM1_CH2N, UART7_CTS,  
QUADSPI_BK2_IO3, FMC_D7,  
EVENTOUT  
-
-
-
-
40 63  
R9  
73  
40  
41  
42  
43  
E4  
R9  
J7  
63  
64  
65  
66  
73  
74  
75  
76  
PE10  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
TIM1_CH2, SPI4_NSS,  
SAI2_SD_B, FMC_D8,  
EVENTOUT  
41 64 P10 74  
42 65 R10 75  
43 66 N11 76  
G4 P10 H8  
H4 R10 J8  
TIM1_CH3N, SPI4_SCK,  
SAI2_SCK_B, FMC_D9,  
EVENTOUT  
TIM1_CH3, SPI4_MISO,  
SAI2_FS_B, FMC_D10,  
EVENTOUT  
J4  
N11 K8  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_CH4, SPI4_MOSI,  
SAI2_MCK_B, FMC_D11,,  
EVENTOUT  
-
-
44 67 P11 77  
45 68 R11 78  
44  
45  
K4 P11 L8  
F4 R11 M8  
67  
68  
77  
78  
PE14  
PE15  
I/O FT  
I/O FT  
-
-
-
-
TIM1_BKIN, FMC_D12,  
EVENTOUT  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
USART3_TX,  
OTG_HS_ULPI_D3, EVENTOUT  
(4)  
(4)  
28 46 69 R12 79  
46  
47  
G3 R12 M9  
69  
79  
80  
PB10  
PB11  
I/O FTf  
I/O FTf  
-
-
TIM2_CH4, I2C2_SDA,  
USART3_RX,  
OTG_HS_ULPI_D4, EVENTOUT  
29 47 70 R13 80  
30 48 71 M10 81  
H3 R13 M10 70  
48  
49  
50  
J3 M10 H7  
K3  
K2 N10 G7  
71  
-
81  
-
VCAP_1  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
31 49  
-
-
-
-
-
32 50 72 N10 82  
72  
82  
VDD  
I2C2_SMBA, SPI5_SCK,  
TIM12_CH1, FMC_SDNE1,  
EVENTOUT  
-
-
-
M11 83  
-
-
M11  
-
-
83  
PH6  
I/O FT  
-
-
I2C3_SCL, SPI5_MISO,  
FMC_SDCKE1, EVENTOUT  
-
-
-
-
-
-
N12 84  
M12 85  
-
-
-
-
N12  
M12  
-
-
-
-
84  
85  
PH7  
PH8  
I/O FTf  
I/O FTf  
-
-
-
-
I2C3_SDA, FMC_D16,  
EVENTOUT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
I2C3_SMBA, TIM12_CH2,  
FMC_D17, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
M13 86  
L13 87  
L12 88  
K12 89  
-
-
-
-
-
-
-
M13  
L13  
L12  
-
-
-
-
-
-
-
-
86  
87  
88  
89  
PH9  
PH10  
PH11  
PH12  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
TIM5_CH1, FMC_D18,  
EVENTOUT  
TIM5_CH2, FMC_D19,  
EVENTOUT  
TIM5_CH3, FMC_D20,  
EVENTOUT  
-
-
K12  
H12  
-
-
-
-
-
-
H12 90  
J12 91  
-
-
-
-
-
-
90  
91  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
K2 J12  
TIM1_BKIN, I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
USART3_CK,  
OTG_HS_ULPI_D5,  
OTG_HS_ID, EVENTOUT  
(4)  
33 51 73 P12 92  
51  
52  
J2 P12 M11 73  
92  
93  
PB12  
PB13  
I/O FT  
-
TIM1_CH1N,  
SPI2_SCK/I2S2_CK,  
USART3_CTS,  
(4)  
34 52 74 P13 93  
H2 P13 M12 74  
G2 J15 H11 75  
I/O FT  
OTG_HS_VBUS  
OTG_HS_ULPI_D6, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
53  
54  
55  
94 OTG_HS_REXT  
-
-
-
-
-
-
-
-
-
USB HS OTG PHY calibration resistor  
-
-
-
-
-
VDDPHYHS  
-
-
-
-
G1 J14 H10 76  
95  
VDD12OTGHS  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM1_CH2N, TIM8_CH2N,  
SPI2_MISO, USART3_RTS,  
TIM12_CH1, SDMMC2_D0,  
OTG_HS_DM, EVENTOUT  
35 53 75 R14 94  
-
-
-
-
-
-
PB14  
PB14  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
56  
J1 R14 L11 77  
96  
OTG_HS_DM  
RTC_REFIN, TIM1_CH3N,  
TIM8_CH3N,  
36 54 76 R15 95  
-
-
-
-
-
-
PB15  
PB15  
I/O FT  
I/O FT  
-
-
SPI2_MOSI/I2S2_SD,  
TIM12_CH2, SDMMC2_D1,  
OTG_HS_DP, EVENTOUT  
-
-
-
-
-
-
-
57  
H1 R15 L12 78  
97  
OTG_HS_DP  
USART3_TX, FMC_D13,  
EVENTOUT  
-
-
-
55 77 P15 96  
56 78 P14 97  
57 79 N15 98  
-
-
-
-
-
-
P15 L9  
P14 K9  
N15 J9  
79  
80  
98  
99  
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
USART3_RX, FMC_D14,  
EVENTOUT  
USART3_CK, FMC_D15,  
EVENTOUT  
81 100  
PD10  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
USART3_CTS,  
QUADSPI_BK1_IO0,  
SAI2_SD_A,  
-
58 80 N14 99  
58  
F3 N14 H9  
82 101  
PD11  
I/O FT  
-
-
FMC_A16/FMC_CLE,  
EVENTOUT  
TIM4_CH1, LPTIM1_IN1,  
USART3_RTS,  
QUADSPI_BK1_IO1,  
SAI2_FS_A,  
FMC_A17/FMC_ALE,  
EVENTOUT  
-
-
59 81 N13 100 59  
F2 N13 L10 83 102  
PD12  
PD13  
I/O FT  
-
-
-
-
TIM4_CH2, LPTIM1_OUT,  
QUADSPI_BK1_IO3,  
SAI2_SCK_A, FMC_A18,  
EVENTOUT  
60 82 M15 101 60  
E3 M15 K10 84 103  
I/O FT  
-
-
-
-
83  
-
102  
-
-
-
-
-
G8  
85 104  
86 105  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
84 J13 103  
J13 F8  
TIM4_CH3, UART8_CTS,  
FMC_D0, EVENTOUT  
-
-
61 85 M14 104 61  
62 86 L14 105 62  
F1 M14 K11 87 106  
E2 L14 K12 88 107  
PD14  
PD15  
I/O FT  
I/O FT  
-
-
-
-
TIM4_CH4, UART8_RTS,  
FMC_D1, EVENTOUT  
-
-
-
-
87 L15 106  
88 K15 107  
-
-
-
-
L15 J12 89 108  
K15 J11 90 109  
PG2  
PG3  
I/O FT  
I/O FT  
-
-
FMC_A12, EVENTOUT  
FMC_A13, EVENTOUT  
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
FMC_A14/FMC_BA0,  
EVENTOUT  
-
-
89 K14 108  
-
-
K14 J10 91 110  
K13 H12 92 111  
PG4  
I/O FT  
-
-
FMC_A15/FMC_BA1,  
EVENTOUT  
-
-
-
-
-
-
90 K13 109  
91 J15 110  
92 J14 111  
-
-
-
-
-
-
PG5  
PG6  
PG7  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
USART6_CK, FMC_INT,  
EVENTOUT  
USART6_RTS, FMC_SDCLK,  
EVENTOUT  
-
-
93 H14 112  
94 G12 113  
-
-
H14 G11 93 112  
PG8  
I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
G12  
-
-
94 113  
VSS  
VDD  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F10  
-
-
95 H13 114  
K1 H13 C11 95 114  
VDDUSB  
S
TIM3_CH1, TIM8_CH1,  
I2S2_MCK, USART6_TX,  
SDMMC2_D6, SDMMC1_D6,  
EVENTOUT  
37 63 96 H15 115  
63  
64  
E1 H15 G12 96 115  
PC6  
PC7  
I/O FT  
I/O FT  
-
-
-
-
TIM3_CH2, TIM8_CH2,  
I2S3_MCK, USART6_RX,  
SDMMC2_D7, SDMMC1_D7,  
EVENTOUT  
38 64 97 G15 116  
D4 G15 F12 97 116  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TRACED1, TIM3_CH3,  
TIM8_CH3, UART5_RTS,  
USART6_CK, SDMMC1_D0,  
EVENTOUT  
39 65 98 G14 117  
65  
D2 G14 F11 98 117  
PC8  
I/O FT  
-
-
MCO2, TIM3_CH4, TIM8_CH4,  
I2C3_SDA, I2S_CKIN,  
UART5_CTS,  
QUADSPI_BK1_IO0,  
SDMMC1_D1, EVENTOUT  
40 66 99 F14 118  
66  
67  
D1 F14 E11 99 118  
D3 F15 E12 100 119  
PC9  
PA8  
I/O FTf  
I/O FTf  
-
-
-
-
MCO1, TIM1_CH1, TIM8_BKIN2,  
I2C3_SCL, USART1_CK,  
41 67 100 F15 119  
OTG_FS_SOF, EVENTOUT  
TIM1_CH2, I2C3_SMBA,  
SPI2_SCK/I2S2_CK,  
USART1_TX, EVENTOUT  
42 68 101 E15 120 68  
43 69 102 D15 121 69  
44 70 103 C15 122 70  
C3 E15 D12 101 120  
C2 D15 D11 102 121  
C1 C15 C12 103 122  
PA9  
PA10  
PA11  
I/O FT  
I/O FT  
I/O FT  
-
-
-
OTG_FS_VBUS  
TIM1_CH3, USART1_RX,  
OTG_FS_ID, EVENTOUT  
-
-
TIM1_CH4, USART1_CTS,  
CAN1_RX, OTG_FS_DM,  
EVENTOUT  
TIM1_ETR, USART1_RTS,  
SAI2_FS_B, CAN1_TX,  
OTG_FS_DP, EVENTOUT  
45 71 104 B15 123 71  
46 72 105 A15 124 72  
B2 B15 B12 104 123  
B1 A15 A12 105 124  
PA12  
I/O FT  
I/O FT  
-
-
-
-
PA13(JTMS-  
SWDIO)  
JTMS-SWDIO, EVENTOUT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
73 106 F13 125 73  
B3 F13 G9 106 125  
A2 F12 G10 107 126  
A1 G13 F9 108 127  
VCAP_2  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
47 74 107 F12 126 74  
48 75 108 G13 127 75  
VDD  
TIM8_CH1N, UART4_TX,  
CAN1_TX, FMC_D21,  
EVENTOUT  
-
-
-
E12 128  
-
-
E12  
-
-
128  
PH13  
I/O FT  
-
-
TIM8_CH2N, UART4_RX,  
CAN1_RX, FMC_D22,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
E13 129  
D13 130  
E14 131  
-
-
-
-
-
-
E13  
D13  
E14  
-
-
-
-
-
-
129  
130  
131  
PH14  
PH15  
PI0  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TIM8_CH3N, FMC_D23,  
EVENTOUT  
TIM5_CH4,SPI2_NSS/I2S2_WS,  
FMC_D24, EVENTOUT  
TIM8_BKIN2,  
SPI2_SCK/I2S2_CK, FMC_D25,  
EVENTOUT  
-
-
-
-
-
-
D14 132  
C14 133  
-
-
-
-
D14  
C14  
-
-
-
-
132  
133  
PI1  
PI2  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
TIM8_CH4, SPI2_MISO,  
FMC_D26, EVENTOUT  
TIM8_ETR,  
SPI2_MOSI/I2S2_SD,FMC_D27,  
EVENTOUT  
-
-
-
-
-
-
C13 134  
D9 135  
-
-
-
-
C13  
D9  
-
-
-
-
134  
135  
PI3  
-
-
-
-
VSS  
S
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
-
C9 136  
-
-
C9  
-
-
136  
VDD  
S
-
-
-
-
-
-
PA14(JTCK-  
SWCLK)  
49 76 109 A14 137 76  
C4 A14 A11 109 137  
I/O FT  
JTCK-SWCLK, EVENTOUT  
JTDI, TIM2_CH1/TIM2_ETR,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
UART4_RTS, EVENTOUT  
50 77 110 A13 138 77  
B4 A13 A10 110 138  
PA15(JTDI)  
PC10  
I/O FT  
-
-
-
-
-
-
-
-
SPI3_SCK/I2S3_CK,  
USART3_TX, UART4_TX,  
QUADSPI_BK1_IO1,  
51 78 111 B14 139 78  
52 79 112 B13 140 79  
53 80 113 A12 141 80  
A3 B14 B11 111 139  
C5 B13 B10 112 140  
D5 A12 C10 113 141  
I/O FT  
I/O FT  
I/O FT  
SDMMC1_D2, EVENTOUT  
SPI3_MISO, USART3_RX,  
UART4_RX,  
QUADSPI_BK2_NCS,  
SDMMC1_D3, EVENTOUT  
PC11  
TRACED3,  
SPI3_MOSI/I2S3_SD,  
USART3_CK, UART5_TX,  
SDMMC1_CK, EVENTOUT  
PC12  
CAN1_RX, FMC_D2,  
EVENTOUT  
-
-
81 114 B12 142 81  
82 115 C12 143 82  
B5 B12 E10 114 142  
A4 C12 D10 115 143  
PD0  
PD1  
I/O FT  
I/O FT  
-
-
-
-
CAN1_TX, FMC_D3,  
EVENTOUT  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TRACED2, TIM3_ETR,  
UART5_RX, SDMMC1_CMD,  
EVENTOUT  
54 83 116 D12 144 83  
E5 D12 E9 116 144  
C6 D11 D9 117 145  
PD2  
PD3  
I/O FT  
I/O FT  
-
-
-
-
SPI2_SCK/I2S2_CK,  
USART2_CTS, FMC_CLK,  
EVENTOUT  
-
84 117 D11 145 84  
USART2_RTS, FMC_NOE,  
EVENTOUT  
-
-
85 118 D10 146 85  
86 119 C11 147 86  
B6 D10 C9 118 146  
A5 C11 B9 119 147  
PD4  
PD5  
I/O FT  
I/O FT  
-
-
-
-
USART2_TX, FMC_NWE,  
EVENTOUT  
-
-
-
-
120 D8 148  
121 C8 149  
-
-
-
-
D8  
C8  
E7 120 148  
F7 121 149  
VSS  
S
S
-
-
-
-
-
-
-
-
VDDSDMMC  
SPI3_MOSI/I2S3_SD,  
SAI1_SD_A, USART2_RX,  
SDMMC2_CK, FMC_NWAIT,  
EVENTOUT  
-
-
87 122 B11 150 87  
88 123 A11 151 88  
D6 B11 A8 122 150  
E6 A11 A9 123 151  
PD6  
PD7  
I/O FT  
I/O FT  
-
-
-
-
USART2_CK SDMMC2_CMD,  
FMC_NE1, EVENTOUT  
USART6_RX,  
QUADSPI_BK2_IO2,  
SAI2_FS_B, SDMMC2_D0,  
FMC_NE2/FMC_NCE,  
EVENTOUT  
-
-
124 C10 152  
-
-
C10 E8 124 152  
PG9  
I/O FT  
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
SAI2_SD_B, SDMMC2_D1,  
FMC_NE3, EVENTOUT  
-
-
-
-
125 B10 153  
-
-
-
-
B10 D8 125 153  
PG10  
PG11  
I/O FT  
I/O FT  
-
-
-
-
SDMMC2_D2, FMC_INT,  
EVENTOUT  
126 B9 154  
B9  
C8 126 154  
LPTIM1_IN1, USART6_RTS,  
SDMMC2_D3, FMC_NE4,  
EVENTOUT  
-
-
-
-
127 B8 155  
-
-
-
-
B8  
A8  
B8 127 155  
PG12  
PG13  
I/O FT  
-
-
-
-
TRACED0, LPTIM1_OUT,  
USART6_CTS, FMC_A24,  
EVENTOUT  
128 A8 156  
D7 128 156  
I/O FT  
TRACED1, LPTIM1_ETR,  
USART6_TX,  
QUADSPI_BK2_IO3, FMC_A25,  
EVENTOUT  
-
-
-
-
129 A7 157  
130 D7 158  
-
-
-
-
A7  
D7  
C7 129 157  
PG14  
VSS  
I/O FT  
-
-
-
-
-
130 158  
S
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
-
-
131 C7 159  
132 B7 160  
-
-
-
-
C7  
B7  
F6 131 159  
B7 132 160  
VDD  
S
-
-
-
-
-
-
USART6_CTS, FMC_SDNCAS,  
EVENTOUT  
PG15  
I/O FT  
JTDO/TRACESWO, TIM2_CH2,  
SPI1_SCK/I2S1_CK,  
SPI3_SCK/I2S3_CK,  
SDMMC2_D2, EVENTOUT  
PB3(JTDO/TRA  
CESWO)  
55 89 133 A10 161 89  
A6 A10 A7 133 161  
I/O FT  
-
-
-
-
NJTRST, TIM3_CH1,  
SPI1_MISO, SPI3_MISO,  
SPI2_NSS/I2S2_WS,  
56 90 134 A9 162 90  
B7  
C7  
A9  
A6  
A6 134 162 PB4(NJTRST) I/O FT  
SDMMC2_D3, EVENTOUT  
TIM3_CH2, I2C1_SMBA,  
SPI1_MOSI/I2S1_SD,  
SPI3_MOSI/I2S3_SD,  
OTG_HS_ULPI_D7,  
(4)  
57 91 135 A6 163 91  
B6 135 163  
PB5  
PB6  
I/O FT  
-
-
FMC_SDCKE1, EVENTOUT  
TIM4_CH1, I2C1_SCL,  
USART1_TX,  
QUAD SPI_BK1_NCS,  
FMC_SDNE1, EVENTOUT  
58 92 136 B6 164 92  
D7  
B6  
C6 136 164  
I/O FTf  
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
TIM4_CH2, I2C1_SDA,  
USART1_RX, FMC_NL,  
EVENTOUT  
59 93 137 B5 165 93  
60 94 138 D6 166 94  
B8  
A7  
B5  
D6  
D6 137 165  
PB7  
I/O FTf  
-
-
-
D5 138 166  
C5 139 167  
BOOT  
I
B
-
VPP  
TIM4_CH3, TIM10_CH1,  
I2C1_SCL, CAN1_RX,  
SDMMC2_D4, SDMMC1_D4,  
EVENTOUT  
61 95 139 A5 167 95  
C8  
D8  
E7  
A5  
B4  
A4  
PB8  
PB9  
PE0  
I/O FTf  
-
-
-
-
-
-
TIM4_CH4, TIM11_CH1,  
I2C1_SDA, SPI2_NSS/I2S2_WS,  
CAN1_TX, SDMMC2_D5,  
62 96 140 B4 168 96  
B5 140 168  
I/O FTf  
SDMMC1_D5, EVENTOUT  
TIM4_ETR, LPTIM1_ETR,  
UART8_Rx, SAI2_MCK_A,  
FMC_NBL0, EVENTOUT  
-
-
97 141 A4 169 97  
A5 141 169  
A4 142 170  
I/O FT  
I/O FT  
LPTIM1_IN2, UART8_Tx,  
FMC_NBL1, EVENTOUT  
98 142 A3 170 98  
B9  
A8  
A3  
D5  
PE1  
VSS  
-
-
-
-
63 99  
-
D5  
-
99  
E6  
-
-
S
-
-
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
143 C6 171  
-
-
C6  
C5  
E5 143 171  
F5 144 172  
PDR_ON  
VDD  
S
S
-
-
-
-
-
-
-
-
64 100 144 C5 172 100  
A9  
TIM8_BKIN, SAI2_MCK_A,  
FMC_NBL2, EVENTOUT  
-
-
-
-
-
-
D4 173  
C4 174  
-
-
-
-
D4  
-
-
173  
PI4  
I/O FT  
-
-
TIM8_CH1, SAI2_SCK_A,  
FMC_NBL3, EVENTOUT  
C4  
-
-
174  
PI5  
I/O FT  
-
-
TIM8_CH2, SAI2_SD_A,  
FMC_D28, EVENTOUT  
-
-
-
-
-
-
C3 175  
C2 176  
-
-
-
-
C3  
C2  
-
-
-
-
175  
176  
PI6  
PI7  
I/O FT  
I/O FT  
-
-
-
-
TIM8_CH3, SAI2_FS_A,  
FMC_D29, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F6  
F7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F6  
F7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VSS  
VSS  
VSS  
VSS  
VSS  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F8  
F8  
F9  
F9  
F10  
F10  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G6  
G7  
G8  
G9  
G10  
H6  
H7  
H8  
H9  
H10  
J6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
G6  
G7  
G8  
G9  
G10  
H6  
H7  
H8  
H9  
H10  
J6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J7  
J7  
J8  
J8  
J9  
J9  
J10  
K6  
K7  
K8  
J10  
K6  
K7  
K8  
Table 10. STM32F722xx and STM32F723xx pin and ball definition (continued)  
Pin Number  
STM32F722xx  
STM32F723xx  
Pin name  
(function after  
reset)(1)  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
K9  
-
-
-
-
-
-
K9  
-
-
-
-
-
-
VSS  
VSS  
S
S
-
-
-
-
-
-
-
-
K10  
K10  
1. Function availability depends on the chosen device.  
2. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and  
PI8 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF.  
- These I/Os must not be used as a current source (e.g. to drive an LED).  
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by  
the main reset).  
4. ULPI signals not available on the STM32F723xx devices.  
5. If the device is in regulator OFF/internal reset ON mode (BYPASS_REG pin is set to VDD), then PA0 is used as an internal reset (active low).  
Pinouts and pin description  
STM32F722xx STM32F723xx  
Table 11. FMC pin definition  
NOR/PSRAM/SR  
NOR/PSRAM  
Mux  
Pin name  
NAND16  
SDRAM  
AM  
PF0  
PF1  
A0  
A1  
-
-
-
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
-
-
PF2  
A2  
-
-
PF3  
A3  
-
-
PF4  
A4  
-
-
PF5  
A5  
-
-
PF12  
PF13  
PF14  
PF15  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PD11  
PD12  
PD13  
PE3  
A6  
-
-
A7  
-
-
A8  
-
-
A9  
-
-
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
D0  
-
-
-
-
-
-
-
-
-
-
BA0  
BA1  
-
-
-
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
DA0  
DA1  
DA2  
DA3  
DA4  
DA5  
DA6  
DA7  
CLE  
ALE  
-
-
-
-
-
PE4  
-
-
PE5  
-
-
PE6  
-
-
PE2  
-
-
PG13  
PG14  
PD14  
PD15  
PD0  
PD1  
PE7  
-
-
-
-
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D1  
D2  
D3  
D4  
PE8  
D5  
PE9  
D6  
PE10  
D7  
86/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Pin name  
Pinouts and pin description  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/SR  
AM  
NOR/PSRAM  
Mux  
NAND16  
SDRAM  
PE11  
PE12  
PE13  
PE14  
PE15  
PD8  
PD9  
PD10  
PH8  
PH9  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PI0  
D8  
D9  
DA8  
D8  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
-
DA9  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
NE1  
NE2  
NE3  
-
DA10  
D10  
DA11  
D11  
DA12  
D12  
DA13  
D13  
DA14  
D14  
DA15  
D15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PI1  
-
-
PI2  
-
-
-
PI3  
-
PI6  
-
-
PI7  
-
-
PI9  
-
-
PI10  
PD7  
PG9  
PG10  
PG11  
PG12  
PD3  
PD4  
PD5  
PD6  
PB7  
-
-
NE1  
NE2  
NE3  
-
-
NCE  
-
-
-
-
-
NE4  
CLK  
NOE  
NWE  
NWAIT  
NADV  
NE4  
CLK  
NOE  
NWE  
NWAIT  
NADV  
-
-
-
-
NOE  
NWE  
NWAIT  
-
-
-
-
-
DS11853 Rev 6  
87/229  
99  
Pinouts and pin description  
Pin name  
STM32F722xx STM32F723xx  
Table 11. FMC pin definition (continued)  
NOR/PSRAM/SR  
AM  
NOR/PSRAM  
Mux  
NAND16  
SDRAM  
PF6  
PF7  
PF8  
PF9  
PF10  
PG6  
PG7  
PE0  
PE1  
PI4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INT  
-
NBL0  
NBL0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NBL0  
NBL1  
NBL2  
NBL3  
SDCLK  
SDNWE  
SDNRAS  
SDNCAS  
SDCKE0  
SDNE0  
SDNE1  
SDCKE1  
SDNWE  
SDNE0  
SDCKE0  
SDCKE1  
SDNE1  
NBL1  
NBL1  
NBL2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PI5  
NBL3  
PG8  
PC0  
PF11  
PG15  
PH2  
PH3  
PH6  
PH7  
PH5  
PC2  
PC3  
PB5  
PB6  
-
-
-
-
-
-
-
-
-
-
-
-
-
88/229  
DS11853 Rev 6  
Table 12. STM32F722xx and STM32F723xx alternate function mapping  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
TIM2_CH1  
/TIM2_ET TIM5_CH1 TIM8_ETR  
R
USART2_CT  
S
EVEN  
TOUT  
PA0  
PA1  
-
-
-
-
-
-
-
-
UART4_ TX  
UART4_RX  
-
SAI2_SD_B  
-
-
-
-
USART2_RT  
S
QUADSPI_ SAI2_MCK  
BK1_IO3  
EVEN  
TOUT  
TIM2_CH2 TIM5_CH2  
-
_B  
EVEN  
TOUT  
PA2  
PA3  
PA4  
-
-
-
TIM2_CH3 TIM5_CH3 TIM9_CH1  
TIM2_CH4 TIM5_CH4 TIM9_CH2  
-
-
-
-
-
-
-
USART2_TX SAI2_SCK_B  
-
-
-
-
-
-
-
-
-
OTG_HS_U  
LPI_D0  
EVEN  
TOUT  
USART2_RX  
USART2_CK  
-
-
SPI1_NSS SPI3_NSS  
/I2S1_WS /I2S3_WS  
OTG_HS_ EVEN  
-
-
-
-
-
SOF  
TOUT  
TIM2_CH1  
/TIM2_ET  
R
TIM8_CH1  
N
SPI1_SCK  
-
OTG_HS_U  
LPI_CK  
EVEN  
TOUT  
PA5  
PA6  
-
-
-
-
-
-
-
-
-
-
-
-
/I2S1_CK  
Port A  
TIM1_BKI  
N
SPI1_MIS  
EVEN  
TOUT  
TIM3_CH1 TIM8_BKIN  
-
TIM13_CH1  
-
-
-
O
SPI1_MO  
SI/I2S1_S  
D
TIM1_CH1  
N
TIM8_CH1  
FMC_SDN EVEN  
PA7  
-
TIM3_CH2  
N
-
-
-
-
TIM14_CH1  
-
WE  
TOUT  
TIM8_BKIN  
OTG_FS_S  
OF  
EVEN  
TOUT  
PA8  
PA9  
MCO1  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
-
I2C3_SCL  
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
-
-
-
-
-
-
-
-
-
-
-
-
-
2
I2C3_SMB SPI2_SCK  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
A
/I2S2_CK  
OTG_FS_I  
D
EVEN  
TOUT  
PA10  
PA11  
-
-
-
USART1_CT  
S
OTG_FS_D  
M
EVEN  
TOUT  
-
-
CAN1_RX  
 
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
USART1_RT  
S
OTG_FS_D  
EVEN  
TOUT  
PA12  
-
TIM1_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI2_FS_B  
CAN1_TX  
-
-
-
-
P
JTMS-  
SWDIO  
EVEN  
TOUT  
PA13  
PA14  
-
-
-
-
-
-
-
-
-
-
-
-
Port A  
JTCK-  
SWCLK  
EVEN  
TOUT  
TIM2_CH1  
/TIM2_ET  
R
SPI1_NSS SPI3_NSS  
/I2S1_WS /I2S3_WS  
EVEN  
TOUT  
PA15  
JTDI  
-
-
-
-
UART4_RTS  
-
-
-
-
TIM1_CH2  
N
TIM8_CH2  
N
OTG_HS_U  
LPI_D1  
EVEN  
TOUT  
PB0  
PB1  
PB2  
PB3  
PB4  
-
-
-
TIM3_CH3  
-
-
-
-
-
-
-
-
-
-
-
-
UART4_CTS  
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_CH3  
N
TIM8_CH3  
N
OTG_HS_U  
LPI_D2  
EVEN  
TOUT  
TIM3_CH4  
-
-
-
SAI1_SD_ SPI3_MOSI/I  
QUADSPI_  
CLK  
EVEN  
TOUT  
-
-
-
-
-
-
A
2S3_SD  
JTDO/TR  
ACESWO  
SPI1_SCK SPI3_SCK  
/I2S1_CK /I2S3_CK  
SDMMC2_  
D2  
EVEN  
TOUT  
TIM2_CH2  
-
-
-
-
-
SPI1_MIS SPI3_MIS SPI2_NSS/I2  
SDMMC2_  
D3  
EVEN  
TOUT  
NJTRST  
-
TIM3_CH1  
-
Port B  
O
O
S2_WS  
SPI1_MO SPI3_MO  
SI/I2S1_S SI/I2S3_S  
I2C1_SMB  
A
OTG_HS_U  
LPI_D7  
FMC_SDC EVEN  
KE1 TOUT  
PB5  
-
TIM3_CH2  
-
-
-
-
-
D
D
QUADSPI_  
BK1_NCS  
FMC_SDN EVEN  
PB6  
PB7  
PB8  
-
-
-
-
-
-
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
-
-
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
-
-
USART1_TX  
USART1_RX  
-
-
-
-
-
-
-
-
E1  
TOUT  
EVEN  
TOUT  
-
-
-
-
-
-
FMC_NL  
TIM10_CH  
1
SDMMC2_  
D4  
SDMMC1 EVEN  
_D4 TOUT  
CAN1_RX  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
SPI2_NSS  
/I2S2_WS  
SDMMC2_  
SDMMC1 EVEN  
PB9  
-
-
-
TIM4_CH4 TIM11_CH1 I2C1_SDA  
-
-
-
-
-
CAN1_TX  
-
-
D5  
_D5  
TOUT  
SPI2_SCK  
/I2S2_CK  
OTG_HS_U  
LPI_D3  
EVEN  
TOUT  
PB10  
PB11  
TIM2_CH3  
-
-
-
-
I2C2_SCL  
I2C2_SDA  
USART3_TX  
-
-
OTG_HS_U  
LPI_D4  
EVEN  
TOUT  
-
TIM2_CH4  
-
-
USART3_RX  
USART3_CK  
-
-
-
-
TIM1_BKI  
N
I2C2_SMB SPI2_NSS  
OTG_HS_U  
LPI_D5  
OTG_HS_ EVEN  
Port B  
PB12  
PB13  
PB14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
A
/I2S2_WS  
ID  
TOUT  
TIM1_CH1  
N
SPI2_SCK  
/I2S2_CK  
USART3_CT  
S
OTG_HS_U  
LPI_D6  
EVEN  
TOUT  
-
-
-
-
TIM1_CH2  
N
TIM8_CH2  
N
SPI2_MIS  
O
USART3_RT  
S
SDMMC2_  
OTG_HS_ EVEN  
DM TOUT  
-
-
-
-
-
-
TIM12_CH1  
-
D0  
SPI2_MO  
SI/I2S2_S  
D
RTC_REF TIM1_CH3  
TIM8_CH3  
N
SDMMC2_  
OTG_HS_ EVEN  
DP TOUT  
PB15  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM12_CH2  
-
IN  
N
D1  
OTG_HS_U  
LPI_STP  
FMC_SDN EVEN  
-
-
-
-
-
-
-
SAI2_FS_B  
-
-
-
-
-
WE  
TOUT  
SPI2_MO  
SI/I2S2_S  
D
SAI1_SD_  
A
EVEN  
TOUT  
PC1 TRACED0  
-
-
-
-
-
-
-
-
-
-
-
Port C  
SPI2_MIS  
O
OTG_HS_U  
LPI_DIR  
FMC_SDN EVEN  
E0 TOUT  
PC2  
PC3  
-
-
-
-
SPI2_MO  
SI/I2S2_S  
D
OTG_HS_U  
LPI_NXT  
FMC_SDC EVEN  
KE0 TOUT  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
FMC_SDN EVEN  
E0 TOUT  
PC4  
-
-
-
-
-
-
-
I2S1_MCK  
-
-
-
-
-
-
-
FMC_SDC EVEN  
KE0 TOUT  
PC5  
PC6  
PC7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SDMMC2_  
D6  
SDMMC1 EVEN  
_D6 TOUT  
TIM3_CH1 TIM8_CH1  
TIM3_CH2 TIM8_CH2  
TIM3_CH3 TIM8_CH3  
I2S2_MCK  
-
USART6_TX  
USART6_RX  
SDMMC2_  
D7  
SDMMC1 EVEN  
_D7 TOUT  
-
-
I2S3_MCK  
SDMMC1 EVEN  
_D0 TOUT  
PC8 TRACED1  
-
-
UART5_RTS USART6_CK  
-
-
-
-
QUADSPI_  
BK1_IO0  
SDMMC1 EVEN  
_D1 TOUT  
PC9  
MCO2  
TIM3_CH4 TIM8_CH4 I2C3_SDA I2S_CKIN  
UART5_CTS  
USART3_TX  
-
Port C  
SPI3_SCK  
/I2S3_CK  
QUADSPI_  
BK1_IO1  
SDMMC1 EVEN  
_D2 TOUT  
PC10  
PC11  
-
-
-
-
-
-
-
-
-
-
UART4_TX  
SPI3_MIS  
O
QUADSPI_  
BK2_NCS  
SDMMC1 EVEN  
_D3 TOUT  
USART3_RX UART4_RX  
SPI3_MO  
SI/I2S3_S USART3_CK  
D
SDMMC1 EVEN  
PC12 TRACED3  
-
-
-
-
-
UART5_TX  
-
-
-
_CK  
TOUT  
EVEN  
TOUT  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
EVEN  
TOUT  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
EVEN  
TOUT  
PD0  
PD1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAN1_RX  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D2  
FMC_D3  
EVEN  
TOUT  
-
-
CAN1_TX  
SDMMC1 EVEN  
PD2 TRACED2  
TIM3_ETR  
UART5_RX  
-
-
-
-
_CMD  
TOUT  
SPI2_SCK  
/I2S2_CK  
USART2_CT  
S
EVEN  
TOUT  
PD3  
PD4  
PD5  
-
-
-
-
-
-
-
-
-
FMC_CLK  
USART2_RT  
S
FMC_NO EVEN  
TOUT  
-
-
E
FMC_NW EVEN  
TOUT  
USART2_TX  
USART2_RX  
E
SPI3_MO  
SI/I2S3_S  
D
SAI1_SD_  
A
SDMMC2 FMC_NW EVEN  
PD6  
-
-
-
-
-
-
-
-
_CK  
AIT  
TOUT  
Port D  
SDMMC2  
_CMD  
EVEN  
TOUT  
PD7  
PD8  
PD9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_CK  
USART3_TX  
USART3_RX  
USART3_CK  
-
-
-
-
-
-
FMC_NE1  
FMC_D13  
FMC_D14  
FMC_D15  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
-
-
EVEN  
TOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
-
USART3_CT  
S
QUADSPI_  
BK1_IO0  
FMC_A16/ EVEN  
FMC_CLE TOUT  
-
-
SAI2_SD_A  
SAI2_FS_A  
LPTIM1_IN  
1
USART3_RT  
S
QUADSPI_  
BK1_IO1  
FMC_A17/ EVEN  
FMC_ALE TOUT  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
LPTIM1_O  
UT  
QUADSPI_ SAI2_SCK_  
BK1_IO3  
EVEN  
FMC_A18  
-
-
-
-
A
TOUT  
EVEN  
FMC_D0  
-
-
UART8_CTS  
UART8_RTS  
-
-
TOUT  
Port D  
EVEN  
FMC_D1  
-
-
TOUT  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
LPTIM1_ET  
R
SAI2_MCK  
FMC_NBL EVEN  
TOUT  
PE0  
PE1  
PE2  
-
-
-
-
-
-
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART8_Rx  
-
-
-
_A  
0
LPTIM1_IN  
2
FMC_NBL EVEN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
UART8_Tx  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
TOUT  
TRACECL  
K
SAI1_MCL  
K_A  
QUADSPI_  
BK1_IO2  
EVEN  
TOUT  
-
SPI4_SCK  
-
-
FMC_A23  
SAI1_SD_  
B
EVEN  
TOUT  
PE3 TRACED0  
PE4 TRACED1  
PE5 TRACED2  
PE6 TRACED3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A19  
FMC_A20  
FMC_A21  
FMC_A22  
FMC_D4  
FMC_D5  
FMC_D6  
FMC_D7  
FMC_D8  
FMC_D9  
FMC_D10  
FMC_D11  
FMC_D12  
SAI1_FS_  
A
EVEN  
TOUT  
-
SPI4_NSS  
-
SPI4_MIS SAI1_SCK  
_A  
EVEN  
TOUT  
TIM9_CH1  
-
O
TIM1_BKI  
N2  
SPI4_MO SAI1_SD_  
SAI2_MCK  
_B  
EVEN  
TOUT  
TIM9_CH2  
-
SI  
A
Port E  
QUADSPI_  
BK2_IO0  
EVEN  
TOUT  
PE7  
PE8  
PE9  
-
-
-
-
-
-
-
-
-
TIM1_ETR  
-
-
-
-
-
-
-
-
-
-
-
UART7_Rx  
TIM1_CH1  
N
QUADSPI_  
BK2_IO1  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
UART7_Tx  
QUADSPI_  
BK2_IO2  
EVEN  
TOUT  
TIM1_CH1  
-
UART7_RTS  
TIM1_CH2  
N
QUADSPI_  
BK2_IO3  
EVEN  
TOUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
UART7_CTS  
EVEN  
TOUT  
TIM1_CH2  
SPI4_NSS  
SPI4_SCK  
-
-
-
-
-
SAI2_SD_B  
TIM1_CH3  
N
SAI2_SCK_  
B
EVEN  
TOUT  
SPI4_MIS  
O
EVEN  
TOUT  
TIM1_CH3  
TIM1_CH4  
SAI2_FS_B  
SPI4_MO  
SI  
SAI2_MCK  
_B  
EVEN  
TOUT  
Port E  
TIM1_BKI  
N
EVEN  
TOUT  
-
-
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
EVEN  
TOUT  
PF0  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
PF8  
PF9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_SDA  
I2C2_SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
EVEN  
TOUT  
-
-
FMC_A1  
I2C2_SMB  
A
EVEN  
TOUT  
-
-
FMC_A2  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A3  
EVEN  
TOUT  
-
-
FMC_A4  
EVEN  
TOUT  
-
-
FMC_A5  
TIM10_CH  
1
SAI1_SD_  
B
QUADSPI_  
BK1_IO3  
EVEN  
TOUT  
Port F  
SPI5_NSS  
SPI5_SCK  
UART7_Rx  
UART7_Tx  
-
-
-
-
-
SAI1_MCL  
K_B  
QUADSPI_  
BK1_IO2  
EVEN  
TOUT  
TIM11_CH1  
SPI5_MIS SAI1_SCK  
_B  
QUADSPI_  
BK1_IO0  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
UART7_RTS TIM13_CH1  
UART7_CTS TIM14_CH1  
O
SPI5_MO SAI1_FS_  
QUADSPI_  
BK1_IO1  
EVEN  
TOUT  
SI  
B
EVEN  
TOUT  
PF10  
PF11  
PF12  
PF13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI5_MO  
SI  
FMC_SDN EVEN  
-
-
-
-
-
SAI2_SD_B  
RAS  
TOUT  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
FMC_A6  
EVEN  
TOUT  
FMC_A7  
FMC_A8  
FMC_A9  
EVEN  
TOUT  
Port F PF14  
PF15  
EVEN  
TOUT  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
EVEN  
TOUT  
PG0  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
EVEN  
TOUT  
-
EVEN  
TOUT  
-
EVEN  
TOUT  
-
FMC_A14/ EVEN  
FMC_BA0 TOUT  
-
FMC_A15/ EVEN  
FMC_BA1 TOUT  
-
Port G  
EVEN  
TOUT  
-
-
EVEN  
FMC_INT  
USART6_CK  
TOUT  
USART6_RT  
S
FMC_SDC EVEN  
LK  
TOUT  
FMC_NE2  
/FMC_NC  
E
QUADSPI_  
BK2_IO2  
SDMMC2  
_D0  
EVEN  
TOUT  
PG9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART6_RX  
-
SAI2_FS_B  
SAI2_SD_B  
SDMMC2  
_D1  
EVEN  
TOUT  
PG10  
-
FMC_NE3  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
SDMMC2_  
EVEN  
TOUT  
PG11  
-
-
-
-
-
-
-
-
-
-
-
-
-
D2  
LPTIM1_IN  
1
USART6_RT  
S
SDMMC2  
_D3  
EVEN  
TOUT  
PG12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NE4  
FMC_A24  
FMC_A25  
Port G  
LPTIM1_O  
UT  
USART6_CT  
S
EVEN  
TOUT  
PG13 TRACED0  
PG14 TRACED1  
-
-
LPTIM1_ET  
R
QUADSPI_  
BK2_IO3  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART6_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART6_CT  
S
FMC_SDN EVEN  
PG15  
PH0  
PH1  
PH2  
PH3  
PH4  
PH5  
PH6  
PH7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CAS  
TOUT  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
-
-
LPTIM1_IN  
2
QUADSPI_ SAI2_SCK_  
BK2_IO0  
FMC_SDC EVEN  
KE0 TOUT  
-
B
QUADSPI_ SAI2_MCK  
FMC_SDN EVEN  
-
-
-
-
-
-
BK2_IO1  
_B  
E0  
TOUT  
Port H  
OTG_HS_U  
LPI_NXT  
EVEN  
TOUT  
I2C2_SCL  
-
-
FMC_SDN EVEN  
WE TOUT  
I2C2_SDA SPI5_NSS  
-
-
-
-
I2C2_SMB  
SPI5_SCK  
A
FMC_SDN EVEN  
E1 TOUT  
TIM12_CH1  
-
SPI5_MIS  
FMC_SDC EVEN  
KE1 TOUT  
I2C3_SCL  
O
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
EVEN  
TOUT  
PH8  
PH9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D16  
FMC_D17  
FMC_D18  
FMC_D19  
FMC_D20  
FMC_D21  
FMC_D22  
FMC_D23  
FMC_D24  
FMC_D25  
FMC_D26  
I2C3_SMB  
A
EVEN  
TOUT  
-
-
TIM12_CH2  
EVEN  
TOUT  
PH10  
PH11  
PH12  
PH13  
PH14  
PH15  
PI0  
TIM5_CH1  
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
TIM5_CH2  
-
-
Port H  
EVEN  
TOUT  
TIM5_CH3  
-
-
TIM8_CH1  
N
EVEN  
TOUT  
-
UART4_TX  
CAN1_TX  
TIM8_CH2  
N
EVEN  
TOUT  
-
UART4_RX  
CAN1_RX  
TIM8_CH3  
N
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
SPI2_NSS  
/I2S2_WS  
EVEN  
TOUT  
TIM5_CH4  
-
TIM8_BKIN  
2
SPI2_SCK  
/I2S2_CK  
EVEN  
TOUT  
PI1  
-
-
SPI2_MIS  
O
EVEN  
TOUT  
PI2  
TIM8_CH4  
TIM8_ETR  
SPI2_MO  
SI/I2S2_S  
D
EVEN  
TOUT  
Port I  
PI3  
-
-
-
-
-
-
-
-
-
-
FMC_D27  
SAI2_MCK  
_A  
FMC_NBL EVEN  
TOUT  
PI4  
PI5  
PI6  
-
-
-
-
-
-
-
-
-
TIM8_BKIN  
TIM8_CH1  
TIM8_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
SAI2_SCK_  
A
FMC_NBL EVEN  
3
TOUT  
EVEN  
TOUT  
SAI2_SD_A  
FMC_D28  
Table 12. STM32F722xx and STM32F723xx alternate function mapping (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF15  
SYS  
SPI2/I2S2/  
SPI3/I2S3/  
SPI3/I2S3/  
SAI1/  
CAN1/TIM1 SAI2/QUAD  
SAI2/USART 2/13/14/QU SPI/SDMM  
6/UART4/5/7/  
8/OTG1_FS  
SPI1/I2S1/  
SPI2/I2S2/S  
PI3/I2S3/US  
ART1/2/3/UA  
RT5  
UART7/F  
MC/SDM  
MC1/  
Port  
TIM8/9/10/1 I2C1/2/3/U SPI2/I2S2/  
1/LPTIM1  
TIM1/2  
TIM3/4/5  
ADSPI/  
FMC/  
OTG2_HS  
C2/OTG2_ SDMMC2  
HS/OTG1_  
FS  
SART1  
SPI3/I2S3/  
SPI4/5  
OTG2_FS  
UART4  
EVEN  
TOUT  
PI7  
PI8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_CH3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI2_FS_A  
-
-
-
-
-
-
-
-
-
FMC_D29  
EVEN  
TOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVEN  
TOUT  
PI9  
UART4_RX  
CAN1_RX  
FMC_D30  
EVEN  
TOUT  
PI10  
PI11  
PI12  
PI13  
PI14  
PI15  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D31  
OTG_HS_U  
LPI_DIR  
EVEN  
TOUT  
Port I  
-
-
-
-
-
EVEN  
TOUT  
-
-
-
-
EVEN  
TOUT  
EVEN  
TOUT  
EVEN  
TOUT  
Memory mapping  
STM32F722xx STM32F723xx  
5
Memory mapping  
Refer to the product line reference manual for details on the memory mapping as well as the  
boundary addresses for all peripherals.  
100/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes. Based on characterization, the minimum and maximum  
values refer to sample tests and represent the mean value plus or minus three times the  
standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
1.7 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 26.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 27.  
Figure 26. Pin loading conditions  
Figure 27. Pin input voltage  
MCU pin  
MCU pin  
V
C =50 pF  
IN  
MS19011V2  
MS19010V2  
DS11853 Rev 6  
101/229  
201  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
6.1.6  
Power supply scheme  
Figure 28. STM32F722xx power supply scheme  
V
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wakeup logic  
Power switch  
VBAT =  
1.65 to 3.6V  
Backup registers,  
backup RAM)  
OUT  
IN  
IO  
Logic  
GP I/Os  
V
DDSDMMC  
V
DDSDMMC  
100 nF  
+ 1 μF  
OUT  
IN  
PG[9..12], PD[6,7]  
IO  
Logic  
Kernel logic  
(CPU,  
V
CAP_1  
digital  
V
CAP_2  
2 × 2.2 μF  
& RAM)  
V
DD  
V
DD  
Voltage  
1/2/...11/12  
regulator  
12 × 100 nF  
+ 1 × 4.7 μF  
V
SS  
1/2/...11/12  
Flash memory  
BYPASS_REG  
V
DDUSB  
V
DDUSB  
OTG FS  
PHY  
100 nF  
+ 1 μF  
Reset  
controller  
PDR_ON  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
100 nF  
+ 1 μF  
100 nF  
+ 1 μF  
V
ADC  
REF-  
V
SSA  
MSv42076V2  
1. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the  
voltage regulator is OFF.  
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
3. VDDA=VDD and VSSA=VSS  
.
102/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 29. STM32F723xx power supply scheme  
V
BAT  
Backup circuitry  
Power switch  
(OSC32K,RTC,  
Wakeup logic  
VBAT =  
1.65 to 3.6V  
Backup registers,  
backup RAM)  
OUT  
IN  
IO  
Logic  
GP I/Os  
V
DDSDMMC  
V
DDSDMMC  
100 nF  
+ 1 μF  
OUT  
IN  
PG[9..12], PD[6,7]  
IO  
Logic  
OUT  
IN  
PA[11,12], PB[14,15]  
IO  
Logic  
V
DDUSB  
V
DDUSB  
100 nF  
+ 1 μF  
OTG FS  
PHY  
Kernel logic  
(CPU,  
digital  
& RAM)  
V
V
CAP_1  
CAP_2  
2 × 2.2 μF  
V
DD  
V
DD  
1/2/...11/12  
Voltage  
regulator  
12 × 100 nF  
+ 1 × 4.7 μF  
V
SS  
1/2/...11/12  
Flash memory  
BYPASS_REG  
OTG HS PHY  
voltage  
regulator  
V
DD12OTGHS  
OTG HS PHY  
2.2 μF  
OTG_HS_REXT  
3 Kohm +/-1%  
PDR_ON  
Reset  
controller  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
100 nF  
+ 1 μF  
100 nF  
+ 1 μF  
V
ADC  
REF-  
V
SSA  
MSv42069V1  
1. In all the packages (except LQFP100), the VDDUSB allows supplying the PHY FS in PA11/PA12 and the  
PHY HS on PB14/PB15. In the LQFP100, the PHY HS on PB14/PB15 is supplied by VDDPHYHS  
.
DS11853 Rev 6  
103/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
2. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the  
voltage regulator is OFF.  
3. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.  
4. VDDA=VDD and VSSA=VSS  
.
Caution:  
Each power supply pair (V /V , V  
/V  
...) must be decoupled with filtering ceramic  
DD SS  
DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure good operation of the  
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.  
This might cause incorrect operation of the device.  
6.1.7  
Current consumption measurement  
Figure 30. Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,  
Table 14: Current characteristics, and Table 15: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. The device mission profile (application  
conditions) is compliant with JEDEC JESD47 Qualification Standard. Extended mission  
profiles are available on demand.  
Table 13. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDDA, VDD,  
VDD–VSS  
0.3  
4.0  
, V  
(1)  
VBAT, VDDUSB DDPHYHS and VDDSDMMC  
)
Input voltage on FT pins(2)  
Input voltage on TTa pins  
Input voltage on any other pin  
Input voltage on BOOT pin  
VSS 0.3 VDD+4.0  
V
VSS 0.3  
VSS 0.3  
VSS  
4.0  
4.0  
9.0  
VIN  
104/229  
DS11853 Rev 6  
 
 
 
 
 
STM32F722xx STM32F723xx  
Symbol  
Electrical characteristics  
Table 13. Voltage characteristics (continued)  
Ratings  
Min  
Max  
Unit  
|ΔVDDx  
|
Variations between different VDD power pins  
-
-
50  
50  
mV  
|VSSX VSS  
|
Variations between all the different ground pins(3)  
see Section 6.3.18:  
Absolute maximum  
ratings (electrical  
sensitivity)  
VESD(HBM)  
Electrostatic discharge voltage (human body model)  
-
1. All main power (VDD, VDDA, VDDSDMMC, VDDPHYHS, VDDUSB) and ground (VSS, VSSA) pins must always be  
connected to the external power supply, in the permitted range.  
2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed  
injected current.  
3. Include VREF- pin.  
Table 14. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
ΣIVDD  
Σ IVSS  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Total current into VDDUSB power line (source)  
300  
300  
25  
Σ IVDDUSB  
Σ IVDDSDMMC Total current into VDDSDMMC power line (source)  
60  
IVDD  
IVDDSDMMC  
IVSS  
Maximum current into each VDD_x power line (source)(1)  
Maximum current into VDDSDMMC power line (source): PG[12:9], PD[7:6]  
Maximum current out of each VSS_x ground line (sink)(1)  
Output current sunk by any I/O and control pin  
100  
100  
100  
25  
mA  
IIO  
Output current sourced by any I/Os and control pin  
Total output current sunk by sum of all I/O and control pins (2)  
Total output current sunk by sum of all USB I/Os  
25  
120  
25  
ΣIIO  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT, FTf, RST and B pins (3)  
120  
5/+0  
±5  
IINJ(PIN)  
Injected current on TTa pins(4)  
(4)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
±25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum  
value.  
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 13: Voltage characteristics for the values of the maximum allowed input voltage.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
DS11853 Rev 6  
105/229  
201  
 
Electrical characteristics  
Symbol  
STM32F722xx STM32F723xx  
Table 15. Thermal characteristics  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to +150  
°C  
Maximum junction temperature  
125  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 16. General operating conditions  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max Unit  
Power Scale 3 (VOS[1:0] bits in  
PWR_CR register = 0x01), Regulator  
ON, over-drive OFF  
0
-
-
-
-
-
144  
Over-  
drive  
OFF  
168  
Power Scale 2 (VOS[1:0] bits  
in PWR_CR register = 0x10),  
Regulator ON  
0
Over-  
drive  
ON  
fHCLK  
Internal AHB clock frequency  
180  
Over-  
drive  
OFF  
MH  
z
180  
Power Scale 1 (VOS[1:0] bits  
in PWR_CR register= 0x11),  
Regulator ON  
0
Over-  
drive  
ON  
216(2)  
Over-drive OFF  
Over-drive ON  
Over-drive OFF  
Over-drive ON  
0
0
0
0
-
-
-
-
45  
54  
fPCLK1  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
90  
fPCLK2  
108  
106/229  
DS11853 Rev 6  
 
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 16. General operating conditions (continued)  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max Unit  
VDD  
Standard operating voltage  
-
1.7(3)  
1.7(3)  
-
-
3.6  
Analog operating voltage  
2.4  
(ADC limited to 1.2 M samples)  
(4)(5)  
(6)  
VDDA  
Must be the same potential as VDD  
Analog operating voltage  
2.4  
-
3.6  
3.6  
(ADC limited to 2.4 M samples)  
USB supply voltage (supply  
USB not used  
USB used  
1.7  
3.0  
3.3  
VDDUSB voltage for PA11,PA12, PB14 and  
PB15 pins)  
-
3.3  
-
3.6  
3.6  
3.6  
3.6  
V
USB PHY HS supply voltage in  
VDDSPHYHS the STM32F723 LQFP100 (supply  
voltage for PB14 and PB15)  
USB PHY HS not used  
USB PHY HS used  
-
1.7  
3.0  
VBAT  
Backup operating voltage  
1.65  
-
SDMMC2 supply voltage (supply  
VDDSDMMC voltage for PG[12:9] and PD6  
pins)  
It can be different from VDD  
1.7  
-
3.6  
Power Scale 3 ((VOS[1:0] bits in  
PWR_CR register = 0x01), 144 MHz 1.08 1.14 1.20  
HCLK max frequency  
Power Scale 2 ((VOS[1:0] bits in  
PWR_CR register = 0x10), 168 MHz  
HCLK max frequency with over-drive  
OFF or 180 MHz with over-drive ON  
Regulator ON: 1.2 V internal  
voltage on VCAP_1/VCAP_2 pins  
1.20 1.26 1.32  
V12  
Power Scale 1 ((VOS[1:0] bits in  
PWR_CR register = 0x11), 180 MHz  
1.26 1.32 1.40  
HCLK max frequency with over-drive  
OFF or 216 MHz with over-drive ON  
V
Max frequency 144 MHz  
Max frequency 168MHz  
Max frequency 180 MHz  
2 V VDD 3.6 V  
1.10 1.14 1.20  
1.20 1.26 1.32  
1.26 1.32 1.38  
Regulator OFF: 1.2 V external  
voltage must be supplied from  
external regulator on  
VCAP_1/VCAP_2 pins(7)  
0.3  
0.3  
-
-
5.5  
5.2  
Input voltage on RST and FT  
pins(8)  
VDD 2 V  
VIN  
VDDA  
0.3  
+
Input voltage on TTa pins  
-
-
0.3  
-
-
Input voltage on BOOT pin  
0
9
DS11853 Rev 6  
107/229  
201  
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 16. General operating conditions (continued)  
Symbol  
Parameter  
Conditions(1)  
Min Typ  
Max Unit  
LQFP64  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
881  
LQFP100  
WLCSP100  
LQFP144  
LQFP176  
UFBGA144  
UFBGA176  
-
-
1117  
558  
Power dissipation at TA = 85 °C for  
suffix 6 or TA = 105 °C for suffix  
7(9)  
PD  
-
1587 mW  
1869  
476  
-
-
-
485  
Maximum power dissipation  
Low power dissipation(10)  
Maximum power dissipation  
Low power dissipation(10)  
6 suffix version  
40  
40  
40  
40  
40  
40  
85  
°C  
105  
Ambient temperature for 6 suffix  
version  
TA  
TJ  
105  
°C  
125  
Ambient temperature for 7 suffix  
version  
105  
°C  
125  
Junction temperature range  
7 suffix version  
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.  
2. 216 MHz maximum frequency for 6 suffix version (200 MHz maximum frequency for 7 suffix version).  
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:  
Internal reset OFF).  
4. When the ADC is used, refer to Table 67: ADC characteristics.  
5. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.  
6. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA  
can be tolerated during power-up and power-down operation.  
7. The over-drive mode is not supported when the internal regulator is OFF.  
8. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled  
9. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax  
.
10. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax  
.
Table 17. Limitations depending on the operating power supply range  
Maximum Flash  
Maximum HCLK  
memory access  
frequency vs Flash  
Operating  
Possible Flash  
memory  
operations  
powersupply ADC operation frequency with  
I/O operation  
memory wait states  
range  
no wait states  
(1)(2)  
(fFlashmax  
)
180 MHz with 8 wait  
states and over-drive  
OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to Conversion time  
No I/O  
compensation  
20 MHz  
2.1 V(3)  
up to 1.2 Msps  
216 MHz with 9 wait  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.1 to Conversion time  
2.4 V up to 1.2 Msps  
No I/O  
compensation  
22 MHz  
108/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 17. Limitations depending on the operating power supply range (continued)  
Maximum Flash  
memory access  
powersupply ADC operation frequency with  
Maximum HCLK  
frequency vs Flash  
Operating  
Possible Flash  
memory  
operations  
I/O operation  
memory wait states  
range  
no wait states  
(1)(2)  
(fFlashmax  
)
216 MHz with 8 wait  
states and over-drive  
ON  
16-bit erase and  
program  
operations  
VDD = 2.4 to Conversion time  
I/O compensation  
works  
24 MHz  
2.7 V  
up to 2.4 Msps  
216 MHz with 7 wait  
states and over-drive  
ON  
32-bit erase and  
program  
operations  
VDD = 2.7 to Conversion time  
3.6 V(4)  
up to 2.4 Msps  
I/O compensation  
works  
30 MHz  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is  
required.  
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states given here  
does not impact the execution speed from Flash memory since the ART accelerator or L1-cache allows to achieve a  
performance equivalent to 0-wait state program execution.  
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:  
Internal reset OFF).  
4. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+  
pins will be degraded between 2.7 and 3 V.  
6.3.2  
VCAP1/VCAP2 external capacitor  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the VCAP1/VCAP2 pins. C  
is specified in Table 18.  
EXT  
Note:  
The VCAP2 pin is not available on the LQFP64 package.  
Figure 31. External capacitor C  
EXT  
C
ESR  
R Leak  
MS19044V2  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 18. VCAP1/VCAP2 operating conditions  
Symbol  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF  
< 2 Ω  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
DS11853 Rev 6  
109/229  
201  
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 19. VCAP1 operating conditions in the LQFP64 package  
Symbol  
Parameter  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
4.7 µF  
between 0.1 Ω and 0.2 Ω  
1. When bypassing the voltage regulator, the 4.7 µF VCAP capacitor is not required and should be replaced  
by two 100 nF decoupling capacitors.  
6.3.3  
Operating conditions at power-up / power-down (regulator ON)  
Subject to general operating conditions for T .  
A
Table 20. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
VDD fall time rate  
Min  
Max  
Unit  
20  
20  
tVDD  
µs/V  
6.3.4  
Operating conditions at power-up / power-down (regulator OFF)  
Subject to general operating conditions for T .  
A
(1)  
Table 21. Operating conditions at power-up / power-down (regulator OFF)  
Symbol  
Parameter  
VDD rise time rate  
DD fall time rate  
Conditions  
Power-up  
Power-down  
Min  
Max  
Unit  
20  
20  
20  
20  
tVDD  
V
µs/V  
VCAP_1 and VCAP_2 rise time rate Power-up  
VCAP_1 and VCAP_2 fall time rate Power-down  
tVCAP  
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below  
1.08 V.  
6.3.5  
Reset and power control block characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
110/229  
DS11853 Rev 6  
 
 
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 22. reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
-
2.09  
1.98  
2.23  
2.13  
2.39  
2.29  
2.54  
2.44  
2.70  
2.59  
2.86  
2.65  
2.96  
2.85  
3.07  
2.95  
-
2.14 2.19  
2.04 2.08  
2.30 2.37  
2.19 2.25  
2.45 2.51  
2.35 2.39  
2.60 2.65  
2.51 2.56  
2.76 2.82  
2.66 2.71  
2.93 2.99  
2.84 2.92  
3.03 3.10  
2.93 2.99  
3.14 3.21  
3.03 3.09  
V
V
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
V
V
(1)  
VPVDhyst  
PVD hysteresis  
100  
-
mV  
V
Falling edge  
1.60  
1.64  
-
1.68 1.76  
1.72 1.80  
Power-on/power-down  
reset threshold  
VPOR/PDR  
Rising edge  
V
(1)  
VPDRhyst  
PDR hysteresis  
-
40  
-
mV  
V
Falling edge  
2.13  
2.23  
2.44  
2.53  
2.75  
2.85  
-
2.19 2.24  
2.29 2.33  
2.50 2.56  
2.59 2.63  
2.83 2.88  
2.92 2.97  
Brownout level 1  
threshold  
VBOR1  
VBOR2  
VBOR3  
Rising edge  
V
Falling edge  
V
Brownout level 2  
threshold  
Rising edge  
V
Falling edge  
V
Brownout level 3  
threshold  
Rising edge  
V
(1)  
VBORhyst  
BOR hysteresis  
-
100  
1.5  
-
mV  
TRSTTEMPO  
POR reset temporization  
-
0.5  
3.0  
ms  
(1)(2)  
InRush current on  
voltage regulator power-  
on (POR or wakeup  
from Standby)  
(1)  
IRUSH  
-
-
160  
-
250  
5.4  
mA  
InRush energy on  
voltage regulator power-  
on (POR or wakeup  
from Standby)  
VDD = 1.7 V, TA = 105 °C,  
IRUSH = 171 mA for 31 µs  
(1)  
ERUSH  
-
µC  
DS11853 Rev 6  
111/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
1. Guaranteed by design.  
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant  
when first instruction is read by the user application code.  
6.3.6  
6.3.7  
112/229  
Over-drive switching characteristics  
When the over-drive mode switches from enabled to disabled or disabled to enabled, the  
system clock is stalled during the internal voltage set-up.  
The over-drive switching characteristics are given in Table 23. They are sbject to general  
operating conditions for T .  
A
(1)  
Table 23. Over-drive switching characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HSI  
-
45  
-
HSE max for 4 MHz  
and min for 26 MHz  
Over_drive switch  
enable time  
45  
-
100  
Tod_swen  
External HSE  
50 MHz  
-
-
40  
20  
-
-
-
µs  
HSI  
HSE max for 4 MHz  
and min for 26 MHz.  
Over_drive switch  
disable time  
20  
80  
Tod_swdis  
External HSE  
50 MHz  
-
15  
-
1. Guaranteed by design.  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 30: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a reduced code that gives a consumption equivalent to CoreMark code.  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load).  
DD SS  
All peripherals are disabled except if it is explicitly mentioned.  
The Flash memory access time is adjusted both to f frequency and V range  
HCLK  
DD  
(see Table 17: Limitations depending on the operating power supply range).  
When the regulator is ON, the voltage scaling and over-drive mode are adjusted to  
f
frequency as follows:  
HCLK  
Scale 3 for f  
144 MHz  
HCLK  
Scale 2 for 144 MHz < f  
Scale 1 for 168 MHz < f  
168 MHz  
HCLK  
216 MHz. The over-drive is only ON at 216 MHz.  
HCLK  
When the regulator is OFF, the V12 is provided externally as described in Table 16:  
General operating conditions:  
The system clock is HCLK, f  
= f  
/4, and f  
= f  
/2.  
PCLK1  
HCLK  
PCLK2  
HCLK  
External clock frequency is 25 MHz and PLL is ON when f  
is higher than 25 MHz.  
HCLK  
The typical current consumption values are obtained for 1.7 V V 3.6 V voltage  
DD  
range and for T = 25 °C unless otherwise specified.  
A
The maximum values are obtained for 1.7 V V 3.6 V voltage range and a  
DD  
maximum ambient temperature (T ) unless otherwise specified.  
A
For the voltage range 1.7 V V 3.6 V, the maximum frequency is 180 MHz.  
DD  
Table 24. Typical and maximum current consumption in Run mode, code with data processing  
running from ITCM RAM, regulator ON  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA = 25 °C TA = 85 °C TA = 105 °C  
216  
200  
180  
168  
144  
60  
156  
144  
127  
113  
86  
170(4)  
154  
134(4)  
119  
96  
180(4)  
164.6  
143(4)  
127.4  
112.6  
52.8  
200  
183  
158(4)  
All peripherals  
enabled(2)(3)  
141  
126  
41  
44  
65  
Supply cur-  
rent in RUN  
mode  
25  
22  
24  
33.5  
45  
IDD  
mA  
216  
200  
180  
168  
144  
60  
99  
110(4)  
102  
90(4)  
78  
119.6(4)  
113.1  
96.7(4)  
86.5  
138.5  
92  
132  
81  
125(4)  
100.1  
90.8  
50.3  
38.1  
All peripherals  
disabled(3)  
72  
55  
61  
77.1  
24  
25  
38.5  
25  
12  
13  
26.3  
1. Guaranteed by characterization results.  
DS11853 Rev 6  
113/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC  
for the analog part.  
4. Guaranteed by test in production.  
Table 25. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART ON except prefetch / L1-cache ON)  
or SRAM on AXI (L1-cache ON), regulator ON  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA = 25 °C TA = 85 °C TA = 105 °C  
216  
200  
180  
168  
144  
60  
155.3  
144.7  
127.3  
113.1  
86.9  
41.2  
21.7  
90  
164  
153.6  
135  
119.1  
91.6  
43.6  
24  
175.8  
165.2  
143.5  
127.8  
99.5  
53.1  
33.6  
120.4  
113.8  
97.3  
87  
185  
176  
154  
138  
110  
64  
All peripherals  
enabled(2)(3)  
Supply cur-  
25  
43.8  
130  
124  
107  
97  
IDD  
rent in RUN  
mode  
mA  
216  
200  
180  
168  
144  
60  
106  
99  
84  
74  
86.6  
76  
All peripherals  
disabled(3)  
66  
51  
59  
68.2  
38.8  
26.4  
78  
23  
27  
49  
25  
11  
13.6  
36.8  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC  
for the analog part.  
114/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 26. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory or SRAM on AXI (L1-cache disabled), regulator ON  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA= 25 °C TA=85 °C TA=105 °C  
216  
200  
180  
168  
144  
60  
129.3  
122  
108  
99  
137.6  
128  
117  
104.5  
84.7  
45  
162.8  
153.2  
136.4  
122.3  
99.3  
173  
163.3  
146  
132  
109.2  
70  
All peripherals  
enabled(2)(3)  
80  
42  
59.5  
Supply cur-  
rent in RUN  
mode  
25  
23  
23.4  
82.3  
77  
37.8  
48  
IDD  
mA  
216  
200  
180  
168  
144  
60  
73.3  
70  
107.4  
101.8  
90.2  
119  
113.5  
101  
92.1  
79  
62  
71  
All peripherals  
disabled(3)  
59  
63.6  
53.3  
31  
81.4  
49  
67.9  
26  
45.1  
56  
25  
14  
16  
30.6  
41.2  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC  
for the analog part.  
DS11853 Rev 6  
115/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 27. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory on ITCM interface (ART disabled), regulator ON  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA= 25 °C TA=85 °C TA=105 °C  
216  
200  
180  
168  
144  
60  
138  
133  
110  
99  
151  
141  
131  
117  
98  
174.7  
164.3  
149.2  
134  
184  
174  
159  
144  
121  
75  
All peripherals  
enabled(2)(3)  
79  
111.7  
64  
49  
53  
Supply cur-  
rent in  
RUN mode  
25  
27  
30  
38.3  
119.5  
113.1  
103.1  
93.2  
80.4  
49.7  
31.1  
48  
IDD  
mA  
216  
200  
180  
168  
144  
60  
82  
96  
131  
124  
114  
104  
91  
81  
89  
65  
85  
All peripherals  
disabled(3)  
58  
76  
48  
67  
33  
36  
60  
25  
18  
21  
41  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC  
for the analog part.  
116/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 28. Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory (ART ON except prefetch / L1-cache ON)  
or SRAM on AXI (L1-cache ON), regulator OFF  
Max(1)  
TA= 85 °C  
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD  
Typ  
Unit  
fHCLK  
(MHz)  
Symbol Parameter Conditions  
TA= 25 °C  
TA= 105 °C  
180  
168  
144  
60  
112  
110  
78  
37  
19  
74  
64  
51  
22  
10  
1.4  
1.4  
1.3  
1.1  
1.1  
1.4  
1.4  
1.3  
1.1  
1.2  
120  
106.4  
82.5  
37.6  
18.5  
78  
2
2
2
2
2
2
2
2
2
2
132.7  
118.7  
93.6  
49.3  
30.4  
89.3  
80.1  
63.5  
35.2  
23.2  
2
2
2
2
2
2
2
2
2
2
142  
130  
103  
60  
2
2
2
2
2
2
2
2
2
2
All Peripher-  
als  
Enabled(2)(3)  
Supply cur-  
rent in RUN  
25  
40  
IDD12/  
mode from  
IDD  
mA  
180  
168  
144  
60  
99  
V12 and  
VDD supply  
All Peripher-  
68  
90  
als Dis-  
54  
74  
abled(3)  
24  
45  
25  
12  
35  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.73 mA per ADC  
for the analog part.  
DS11853 Rev 6  
117/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 29. Typical and maximum current consumption in Sleep mode, regulator ON  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK (MHz)  
Typ  
Unit  
TA= 25 °C TA=85 °C TA=105 °C  
216  
200  
180  
168  
144  
60  
82  
77  
67  
60  
46  
24  
14  
24  
22  
19  
17  
13  
7
96(3)  
109.3(3)  
103.4  
88.3(3)  
78.9  
128.3  
122.6  
120(3)  
92.7  
73.6  
49  
84  
72(3)  
64  
All peripherals  
enabled(2)  
49  
61.8  
26  
37.2  
Supply cur-  
rent in  
SLEEP  
25  
16  
27  
38.8  
62.2  
61.2  
48(3)  
43.9  
36.3  
32.3  
30.6  
IDD  
mA  
216  
200  
180  
168  
144  
60  
28(3)  
42.9(3)  
mode  
26  
41.9  
21(3)  
19  
33.2(3)  
30.1  
All peripherals  
disabled  
15  
24.6  
9
20.5  
25  
5
7
18.8  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
3. Guaranteed by test in production.  
Table 30. Typical and maximum current consumption in Sleep mode, regulator OFF  
Max(1)  
Typ  
Unit  
fHCLK  
(MHz)  
Symbol Parameter Conditions  
TA= 25 °C  
TA= 85 °C  
TA= 105 °C  
IDD12 IDD IDD12 IDD IDD12 IDD IDD12 IDD  
180  
168  
144  
60  
62  
55  
43  
22  
13  
17  
15  
12  
5
1.3  
1.3  
1.3  
1
67.5  
59.8  
46.3  
24  
2
2
2
2
2
2
2
2
2
2
84.4  
75.4  
59.6  
35.8  
25.8  
31.4  
28.4  
23.2  
19.3  
17.6  
2
2
2
2
2
2
2
2
2
2
95  
86  
70  
46  
36  
42  
40  
33  
29  
28  
2
2
2
2
2
2
2
2
2
2
All Periph-  
erals  
Enabled(2)  
Supply cur-  
rent in RUN  
25  
1
15  
IDD12/  
mode from  
IDD  
mA  
180  
168  
144  
60  
1.3  
1.3  
1.2  
1
19  
V12 and VDD  
supply  
17  
All Periph-  
erals Dis-  
abled  
14  
6
25  
3
1
4
118/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
1. Guaranteed by characterization results.  
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption  
should be considered.  
Table 31. Typical and maximum current consumptions in Stop mode  
Max(1)  
Typ  
VDD = 3.6 V  
Symbol  
Parameter  
Conditions  
Unit  
TA =  
TA =  
TA =  
TA =  
25 °C  
25 °C 85 °C 105 °C  
Flash memory in Stop mode,  
all oscillators OFF, no IWDG  
0.45  
0.4  
2
2
12  
12  
10  
22  
22  
18  
Supply current in Stop  
mode, main regulator in  
Run mode  
Flash memory in Deep power  
down mode, all oscillators OFF  
IDD_STOP_NM  
(normal mode)  
Flash memory in Stop mode, all  
oscillators OFF, no IWDG  
0.32  
1.5  
Supply current in Stop  
mode, main regulator in  
Low-power mode  
Flash memory in Deep power  
down mode, all oscillators OFF, no  
IWDG  
0.27  
0.15  
1.5  
0.8  
10  
5
18  
7
mA  
Regulator in Run mode, Flash  
memory in Deep power down  
mode, all oscillators OFF, no  
IWDG  
Supply current in Stop  
mode, main regulator in  
Low voltage and under-  
drive modes  
IDD_STOP_UDM  
(under-drive  
mode)  
Regulator in Low-power mode,  
Flash memory in Deep power  
down mode, all oscillators OFF, no  
IWDG  
0.1  
0.7  
4
7
1. Data based on characterization, tested in production.  
DS11853 Rev 6  
119/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 32. Typical and maximum current consumptions in Standby mode  
Typ(1)  
Max(2)  
TA =  
TA =  
TA =  
TA = 25 °C  
Symbol  
Parameter  
Conditions  
25 °C 85 °C 105 °C Unit  
VDD  
= VDD= VDD =  
VDD = 3.3 V  
1.7 V 2.4 V 3.3 V  
Backup SRAM OFF, RTC and  
LSE OFF  
1.09  
1.85  
1.65  
1.13  
1.88  
1.86  
1.4  
4
5
7
27  
30  
47  
55  
60  
Backup SRAM ON, RTC and  
LSE OFF  
2.17  
2.43  
Backup SRAM OFF, RTC ON  
and LSE in low drive mode  
95.5  
Backup SRAM OFF, RTC ON  
and LSE in medium low drive 1.67  
mode  
1.88  
2.01  
2.46  
2.61  
7
47.5  
50.5  
97  
Backup SRAM OFF, RTC ON  
and LSE in medium high drive 1.8  
mode  
7.5  
102.5  
Supply current  
in Standby  
mode  
IDD_STBY  
µA  
Backup SRAM OFF, RTC ON  
1.92  
2.13  
2.6  
2.73  
3.23  
8
9
53  
62  
107  
127  
and LSE in high drive mode  
Backup SRAM ON, RTC ON  
2.39  
and LSE in low drive mode  
Backup SRAM ON, RTC ON  
and LSE in Medium low drive 2.41  
mode  
2.64  
3.25  
9
63  
128  
Backup SRAM ON, RTC ON  
and LSE in Medium high drive 2.67  
mode  
2.89  
2.9  
2.53  
3.51  
10  
10  
68  
68  
139  
138  
Backup SRAM ON, RTC ON  
2.68  
and LSE in High drive mode  
1. PDR is OFF for VDD=1.7V. When the PDR is OFF (internal reset OFF), the typical current consumption is reduced by  
additional 1.2 µA.  
2. Guaranteed by characterization results.  
120/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 33. Typical and maximum current consumptions in V  
mode  
Max(2)  
BAT  
Typ  
TA =25 °C  
TA =85 °C TA =105 °C  
Symbol Parameter  
Conditions(1)  
Unit  
VBAT = VBAT  
1.7 V 2.4 V 3.3 V  
= VBAT=  
VBAT = 3.6 V  
Backup SRAM OFF, RTC and  
LSE OFF  
0.035 0.037 0.043  
4
9
10  
Backup SRAM ON, RTC and  
LSE OFF  
0.69  
0.57  
0.71  
0.74  
0.73  
1.05  
20  
Backup SRAM OFF, RTC ON  
and LSE in low drive mode  
98  
244  
Backup SRAM OFF, RTC ON  
and LSE in medium low drive  
mode  
0.59  
0.69  
0.76  
0.86  
1.08  
1.19  
101  
111  
251  
277  
Backup SRAM OFF, RTC ON  
and LSE in medium high drive  
mode  
Supplycurrent  
I
µA  
DD_VBAT in VBAT mode  
Backup SRAM OFF, RTC ON  
and LSE in high drive mode  
0.8  
0.98  
1.41  
1.43  
1.65  
1.65  
1.31  
1.74  
1.78  
2.01  
2.01  
122  
162  
166  
187  
187  
305  
405  
414  
468  
468  
Backup SRAM ON, RTC ON and  
LSE in low drive mode  
1.22  
1.25  
1.46  
1.46  
Backup SRAM ON, RTC ON and  
LSE in Medium low drive mode  
Backup SRAM ON, RTC ON and  
LSE in Medium high drive mode  
Backup SRAM ON, RTC ON and  
LSE in High drive mode  
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.  
2. Guaranteed by characterization results.  
DS11853 Rev 6  
121/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 32. Typical V  
current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in low drive mode)  
4
3.5  
3
1.65 V  
1.7 V  
1.8 V  
2 V  
2.5  
2
2.4 V  
2.7 V  
3 V  
1.5  
1
3.3 V  
3.6 V  
0.5  
0
0
20  
40  
60  
80  
100  
120  
Temperature °C  
MS37585V1  
Figure 33. Typical V  
current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in medium low drive mode)  
4.5  
4
3.5  
3
1.65 V  
1.7 V  
1.8 V  
2 V  
2.5  
2
2.4 V  
2.7 V  
3 V  
1.5  
1
3.3 V  
3.6 V  
0.5  
0
0
20  
40  
60  
80  
100  
120  
MS37586V1  
Temperature °C  
122/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Figure 34. Typical V  
Electrical characteristics  
current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in medium high drive mode)  
4.5  
4
3.5  
3
1.65 V  
1.7 V  
1.8 V  
2 V  
2.5  
2
2.4 V  
2.7 V  
3 V  
1.5  
1
3.3 V  
3.6 V  
0.5  
0
0
20  
40  
60  
80  
100  
120  
Temperature °C  
MS37587V1  
Figure 35. Typical V  
current consumption (RTC ON/BKP SRAM OFF and  
LSE in high drive mode)  
BAT  
4.5  
4
3.5  
3
1.65 V  
1.7 V  
1.8 V  
2 V  
2.5  
2
2.4 V  
2.7 V  
3 V  
1.5  
1
3.3 V  
3.6 V  
0.5  
0
0
20  
40  
60  
80  
100  
120  
Temperature °C  
MS37588V1  
DS11853 Rev 6  
123/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 36. Typical V  
current consumption (RTC ON/BKP SRAM OFF and  
BAT  
LSE in high medium drive mode)  
9
8
7
6
5
4
3
2
1
0
1.65 V  
1.7 V  
1.8 V  
2 V  
2.4 V  
2.7 V  
3 V  
3.3 V  
3.6 V  
0
20  
40  
60  
80  
100  
120  
Temperature( °C)  
MS37589V1  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 61: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption (see Table 35: Peripheral current  
consumption), the I/Os used by an application also contribute to the current consumption.  
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O  
124/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to  
the pin:  
ISW = VDD × fSW × C  
Where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the MCU supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
INT  
EXT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
(1)  
Table 34. Switching output I/O current consumption  
I/O toggling  
Typ  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
frequency (fsw)  
MHz  
V
DD = 3.3 V VDD = 1.8 V  
2
8
0.1  
0.4  
0.1  
0.2  
0.7  
1.3  
1.6  
2.4  
2.6  
2.8  
-
25  
50  
60  
84  
90  
100  
108  
2
1.1  
2.4  
CEXT = 0 pF  
3.1  
C = CINT + CS + CEXT  
4.3  
4.9  
5.4  
5.6  
I/O switching  
Current  
IDDIO  
mA  
0.2  
0.1  
0.3  
1.1  
2.3  
3.4  
3.6  
5.2  
5.4  
-
8
0.6  
25  
50  
60  
84  
90  
100  
108  
1.8  
3.1  
CEXT = 10 pF  
C = CINT + CS + CEXT  
4.6  
9.7  
10.12  
14.92  
18.11  
DS11853 Rev 6  
125/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 34. Switching output I/O current consumption (continued)  
I/O toggling  
Typ  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
frequency (fsw)  
MHz  
VDD = 3.3 V VDD = 1.8 V  
2
0.3  
1.0  
0.1  
0.5  
1.6  
4.2  
4.4  
5.8  
-
8
25  
50  
60  
84  
90  
2
3.5  
CEXT = 22 pF  
5.9  
C = CINT + CS + CEXT  
10.0  
19.12  
19.6  
0.3  
I/O switching  
Current  
IDDIO  
mA  
0.2  
0.7  
2.3  
5.19  
-
8
1.3  
CEXT = 33 pF  
25  
50  
60  
3.5  
C = CINT + CS + CEXT  
10.26  
16.53  
1. CINT + CS, PCB board capacitance including the pad pin is estimated to15 pF.  
On-chip peripheral current consumption  
The MCU is placed under the following conditions:  
At startup, all I/O pins are in analog input configuration.  
All peripherals are disabled unless otherwise mentioned.  
I/O compensation cell enabled.  
The ART/L1-cache is ON.  
Scale 1 mode selected, internal digital voltage V12 = 1.32 V.  
HCLK is the system clock. f = f /4, and f = f /2.  
HCLK  
PCLK1  
HCLK  
PCLK2  
The given value is calculated by measuring the difference of current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
f
f
= 216 MHz (Scale 1 + over-drive ON), f  
= 144 MHz (Scale 3)  
= 168 MHz (Scale 2),  
HCLK  
HCLK  
HCLK  
Ambient operating temperature is 25 °C and V =3.3 V.  
DD  
126/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 35. Peripheral current consumption  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
GPIOA  
3.6  
3.4  
3.6  
3.4  
3.6  
3.4  
3.4  
3.3  
3.4  
3.3  
1.1  
0.7  
2.9  
3.1  
3.0  
3.0  
2.9  
2.9  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
3.7  
3.7  
3.7  
3.6  
3.5  
AHB1  
GPIOG  
GPIOH  
GPIOI  
3.5  
2.8  
µA/MHz  
2.9  
(up to  
216 MHz)  
3.5  
3.5  
1.2  
2.9  
CRC  
0.9  
0.6  
BKPSRAM  
DMA1  
0.8  
3.07 x N + 8.7  
2.98 x N + 8.4  
2.52 x N + 7.02  
DMA2  
3.01 x N + 7.98 2.95 x N + 7.95 2.48 x N + 6.69  
OTG_HS+ULPI  
RNG  
54.4  
1.9  
53.2  
1.8  
44.6  
1.6  
AHB2  
(up to  
216 MHz)  
USB_OTG_FS  
28.7  
27.9  
23.5  
µA/MHz  
16.2  
15.8  
13.3  
FMC  
QSPI  
AHB3  
µA/MHz  
µA/MHz  
(up to  
216 MHz)  
16.9  
16.3  
13.8  
Bus matrix(2)  
15.8  
12.8  
8.5  
DS11853 Rev 6  
127/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 35. Peripheral current consumption (continued)  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
TIM2  
19.3  
15  
18.2  
14  
15.6  
12.2  
12.8  
14.4  
2.8  
TIM3  
TIM4  
15.7  
18  
15.1  
16.9  
3.1  
2.9  
7.8  
5.1  
5.6  
9.8  
1.3  
6
TIM5  
TIM6  
3.7  
TIM7  
3.5  
2.5  
TIM12  
TIM13  
TIM14  
LPTIM1  
WWDG  
SPI2/I2S2(3)  
SPI3/I2S3(3)  
USART2  
USART3  
UART4  
UART5  
I2C1  
8.1  
6.4  
6.1  
4.7  
6.3  
4.7  
9.4  
8.3  
2.4  
1.4  
6.7  
5.3  
APB1  
4.8  
3.8  
12  
3.3  
10.6  
10.3  
9.2  
µA/MHz  
(up to  
54 MHz)  
13.3  
12.8  
11.7  
11.7  
10.6  
10.6  
10.7  
8.9  
12  
10.7  
10.2  
9.6  
9.6  
9.8  
8
8.9  
8.3  
I2C2  
8.3  
I2C3  
8.3  
CAN1  
6.9  
PWR  
11.3  
6.1  
11.3  
5.1  
12  
8.9  
DAC(4)  
UART7  
UART8  
4.4  
13.3  
12.6  
10.3  
9.7  
11.6  
128/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 35. Peripheral current consumption (continued)  
I
DD(Typ)(1)  
Peripheral  
Unit  
Scale 1  
Scale 2  
Scale 3  
TIM1  
24.9  
24.5  
12.4  
12.3  
6.3  
6.3  
6.4  
9.1  
7
23.8  
23.7  
11.6  
11.7  
5.8  
5.6  
5.8  
8.3  
7.2  
3.2  
2.9  
1
20  
20  
10  
10  
4.9  
4.9  
5
TIM8  
USART1  
USART6  
ADC1(5)  
ADC2(5)  
ADC3(5)  
SDMMC1  
SDMMC2  
SPI1/I2S1(3)  
SPI4  
7.1  
6
APB2  
3.2  
2.9  
1
2.6  
µA/MHz  
(up to  
2.2  
0.7  
7.8  
5.6  
5.7  
3.6  
4.2  
4
108 MHz)  
SYSCFG  
TIM9  
9.9  
7
9.1  
6.4  
6.8  
4.1  
4.9  
4.7  
TIM10  
TIM11  
7.2  
4.8  
5.6  
5.4  
SPI5  
SAI1  
SAI2  
USB PHY HS  
Controller  
8.3  
7.9  
6.7  
1. When the I/O compensation cell is ON, IDD typical value increases by 0.22 mA.  
2. The BusMatrix is automatically active when at least one master is ON.  
3. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.  
4. When the DAC is ON and EN1/2 bits are set in DAC_CR register, add an additional power consumption of  
0.75 mA per DAC channel for the analog part.  
5. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of  
1.73 mA per ADC for the analog part.  
DS11853 Rev 6  
129/229  
201  
Electrical characteristics  
STM32F722xx STM32F723xx  
USB OTG HS and USB OTG HS PHY current consumption (on STM32F723xx  
devices)  
The MCU is placed under the following conditions:  
STM32 MCU is enumerated as a HID device.  
f
f
= 216 MHz (Scale 1 + over-drive ON), f  
= 144 MHz (Scale 3)  
= 168 MHz (Scale 2),  
HCLK  
HCLK  
HCLK  
The given value is calculated by measuring the difference of current consumption in  
case:  
USB is configured but no transfer is done.  
USB is configured and there is a transmission on going.  
Ambient operating temperature is 25 °C, V = V  
= 3.3 V.  
DDUSB  
DD  
Table 36. USB OTG HS and USB OTG PHY HS current consumption  
IDD (Typ)  
-
Unit  
Scale 1  
Scale 2  
Scale 3  
USB OTG HS and USB OTG HS PHY  
current consumption  
50.16  
44.92  
38.98  
mA  
6.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 37. Low-power mode wakeup timings  
Typ(1)  
Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
CPU  
clock  
cycles  
(2)  
tWUSLEEP  
Wakeup from Sleep  
-
13  
14  
13  
Main regulator is ON  
14.9  
Main regulator is ON and Flash  
memory in Deep power down mode  
104.1  
107.6  
Wakeup from Stop mode  
with MR/LP regulator in  
normal mode  
(2)  
tWUSTOP  
µs  
Low power regulator is ON  
21.4  
24.2  
Low power regulator is ON and Flash  
memory in Deep power down mode  
111.5  
116.5  
130/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 37. Low-power mode wakeup timings (continued)  
Typ(1)  
Max(1)  
Symbol  
Parameter  
Conditions  
Unit  
Main regulator in under-drive mode  
(Flash memory in Deep power-down  
mode)  
107.4  
113.2  
Wakeup from Stop mode  
with MR/LP regulator in  
Under-drive mode  
(2)  
µs  
tWUSTOP  
Low power regulator in under-drive  
mode  
112.7  
120  
(Flash memory in Deep power-down  
mode)  
Exit Standby mode on rising edge  
Exit Standby mode on falling edge  
308  
307  
313  
313  
Wakeup from Standby  
mode  
tWUSTDBY(2)  
µs  
1. Guaranteed by characterization results.  
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
6.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 61: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 37.  
The characteristics given in Table 38 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 16.  
Table 38. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External user clock source  
frequency(1)  
fHSE_ext  
1
-
50  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
-
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
5
-
-
-
-
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
10  
Cin(HSE) OSC_IN input capacitance(1)  
-
-
45  
-
5
-
-
pF  
%
DuCy(HSE) Duty cycle  
-
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
DS11853 Rev 6  
131/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 61: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 38.  
The characteristics given in Table 39 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 16.  
Table 39. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User External clock source  
frequency(1)  
fLSE_ext  
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level voltage  
OSC32_IN high or low time(1)  
-
450  
tf(LSE)  
ns  
tr(LSE)  
tf(LSE)  
OSC32_IN rise or fall time(1)  
-
-
50  
Cin(LSE)  
OSC32_IN input capacitance(1)  
-
-
30  
-
5
-
-
pF  
%
DuCy(LSE) Duty cycle  
-
70  
±1  
IL  
OSC32_IN Input leakage current  
VSS VIN VDD  
-
µA  
1. Guaranteed by design.  
Figure 37. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10 %  
HSEL  
V
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
I
L
OSC _I N  
clock source  
STM32F  
ai17528  
132/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 38. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
I
L
OSC32_IN  
clock source  
STM32F  
ai17529  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 40. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 40. HSE 4-26 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
-
-
4
-
-
26  
-
MHz  
200  
kΩ  
VDD=3.3 V,  
ESR= 30 Ω,  
CL=5 pF@25 MHz  
-
-
450  
530  
-
-
IDD  
HSE current consumption  
HSE accuracy  
µA  
VDD=3.3 V,  
ESR= 30 Ω,  
CL=10 pF@25 MHz  
(2)  
ACCHSE  
-
500  
-
-
500  
ppm  
mA/V  
ms  
Gm_crit_max Maximum critical crystal gm  
Startup  
-
-
1
-
(3)  
tSU(HSE  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. This parameter depends on the crystal used in the application. The minimum and maximum values must  
be respected to comply with USB standard specifications.  
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is based on characterization results. It is measured for a standard crystal  
resonator and it can vary significantly with the crystal manufacturer.  
DS11853 Rev 6  
133/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 39). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 39. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
OSC_OUT  
(1)  
STM32F  
R
EXT  
C
L2  
ai17530  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 41. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
LSEDRV[1:0]=00  
-
-
-
-
250  
300  
370  
480  
-
-
-
-
Low drive capability  
LSEDRV[1:0]=10  
Medium low drive capability  
IDD  
LSE current consumption  
nA  
LSEDRV[1:0]=01  
Medium high drive capability  
LSEDRV[1:0]=11  
High drive capability  
134/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Symbol  
Electrical characteristics  
(1)  
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)  
(continued)  
Parameter  
Conditions  
Min Typ Max Unit  
LSEDRV[1:0]=00  
-
-
-
-
-
-
0.48  
0.75  
1.7  
Low drive capability  
LSEDRV[1:0]=10  
Medium low drive capability  
Gm_crit_max Maximum critical crystal gm  
µA/V  
LSEDRV[1:0]=01  
Medium high drive capability  
LSEDRV[1:0]=11  
-
-
-
2.7  
-
High drive capability  
(2)  
tSU  
start-up time  
VDD is stabilized  
2
s
1. Guaranteed by design.  
2. Guaranteed by characterization results. tSU is the start-up time measured from the moment it is enabled  
(by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard  
crystal resonator and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST Microelectronics website  
www.st.com.  
Figure 40. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_ IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
OSC32_ OU T  
STM32F  
C
L2  
ai17531a  
DS11853 Rev 6  
135/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
6.3.10  
Internal clock source characteristics  
The parameters given in Table 42 and Table 43 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 16.  
DD  
High-speed internal (HSI) RC oscillator  
(1)  
Table 42. HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI  
Frequency  
-
-
-
-
16  
-
-
1
MHz  
%
HSI user trimming step(2)  
TA = –40 to 105 °C(3) 8  
-
4.5  
4
%
ACCHSI  
Accuracy of the HSI oscillator  
TA = –10 to 85 °C(3)  
4  
1  
-
-
%
TA = 25 °C(4)  
-
1
%
(2)  
tsu(HSI)  
HSI oscillator startup time  
-
-
2.2  
60  
4
µs  
µA  
(2)  
IDD(HSI)  
HSI oscillator power consumption  
-
80  
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Factory calibrated, parts not soldered.  
Figure 41. ACCHSI versus temperature  
6
4
2
0
-40  
0
25  
55  
85  
105  
125  
°
TA ( C)  
-2  
-4  
-6  
-8  
Min  
Max  
Typical  
MSv41055V1  
1. Guaranteed by characterization results.  
136/229  
DS11853 Rev 6  
 
 
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 43. LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
fLSI  
Frequency  
17  
-
32  
15  
47  
40  
kHz  
µs  
(3)  
tsu(LSI)  
LSI oscillator startup time  
LSI oscillator power consumption  
(3)  
IDD(LSI)  
-
0.4  
0.6  
µA  
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Guaranteed by design.  
Figure 42. LSI deviation versus temperature  
8.0%  
6.0%  
4.0%  
2.0%  
0.0%  
-2.0%  
-4.0%  
-6.0%  
-8.0%  
Min  
Max  
-40°C  
0°C  
25°C  
85°C  
105°C  
125°C  
Typical  
Temperature (°C)  
MS37554V1  
6.3.11  
PLL characteristics  
The parameters given in Table 44 and Table 45 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
Table 44. Main PLL characteristics  
Symbol  
Parameter  
PLL input clock(1)  
Conditions  
Min  
Typ  
Max  
Unit  
fPLL_IN  
-
-
0.95(2)  
24  
1
-
2.10  
216  
fPLL_OUT  
PLL multiplier output clock  
MHz  
48 MHz PLL multiplier output  
clock  
fPLL48_OUT  
fVCO_OUT  
-
-
-
48  
-
75  
PLL VCO output  
100  
432  
DS11853 Rev 6  
137/229  
201  
 
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 44. Main PLL characteristics (continued)  
Symbol  
tLOCK  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
75  
100  
-
-
-
200  
300  
-
PLL lock time  
µs  
RMS  
25  
peak  
to  
peak  
Cycle-to-cycle jitter  
-
-
-
150  
15  
-
-
-
System clock  
216 MHz  
RMS  
peak  
to  
Period Jitter  
200  
Jitter(3)  
ps  
peak  
Main clock output (MCO) for  
RMII Ethernet  
Cycle to cycle at 50 MHz  
on 1000 samples  
-
-
-
32  
40  
330  
-
-
-
-
Main clock output (MCO) for MII Cycle to cycle at 25 MHz  
Ethernet  
on 1000 samples  
Cycle to cycle at 1 MHz  
on 1000 samples  
Bit Time CAN jitter  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
(4)  
IDD(PLL)  
PLL power consumption on VDD  
PLL power consumption on VDDA  
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
(4)  
IDDA(PLL)  
-
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between PLL and PLLI2S.  
2. Guaranteed by design.  
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.  
4. Guaranteed by characterization results.  
Table 45. PLLI2S characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLI2S_IN  
PLLI2S input clock(1)  
-
0.95(2)  
1
2.10  
PLLI2S multiplier output clock for  
SAI  
fPLLI2SQ_OUT  
-
-
-
-
-
-
216  
216  
MHz  
PLLI2S multiplier output clock for  
I2S  
fPLLI2SR_OUT  
fVCO_OUT  
PLLI2S VCO output  
-
100  
75  
-
-
-
432  
200  
300  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
PLLI2S lock time  
µs  
100  
138/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 45. PLLI2S characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RMS  
-
90  
-
ps  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
-
ps  
Master I2S clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
90  
-
-
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
WS I2S clock jitter  
400  
ps  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLI2S power consumption on  
VDD  
(4)  
IDD(PLLI2S)  
-
-
mA  
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLI2S power consumption on  
VDDA  
(4)  
IDDA(PLLI2S)  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed by characterization results.  
Table 46. PLLISAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPLLSAI_IN  
PLLSAI input clock(1)  
-
0.95(2)  
1
2.10  
PLLSAI multiplier output clock  
for 48 MHz  
fPLLSAIP_OUT  
-
-
-
-
48  
-
75  
MHz  
PLLSAI multiplier output clock  
for SAI  
fPLLSAIQ_OUT  
fVCO_OUT  
216  
PLLSAI VCO output  
-
100  
75  
100  
-
-
-
432  
200  
300  
-
VCO freq = 100 MHz  
VCO freq = 432 MHz  
tLOCK  
PLLSAI lock time  
µs  
ps  
-
RMS  
90  
Cycle to cycle at  
12.288 MHz on  
48KHz period,  
N=432, R=5  
peak  
to  
peak  
-
280  
-
ps  
Master SAI clock jitter  
Average frequency of  
12.288 MHz  
Jitter(3)  
-
-
90  
-
-
ps  
ps  
N = 432, R = 5  
on 1000 samples  
Cycle to cycle at 48 KHz  
on 1000 samples  
FS clock jitter  
400  
DS11853 Rev 6  
139/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 46. PLLISAI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.15  
0.45  
0.40  
0.75  
PLLSAI power consumption on  
VDD  
(4)  
IDD(PLLSAI)  
-
mA  
VCO freq = 100 MHz  
VCO freq = 432 MHz  
0.30  
0.55  
0.40  
0.85  
PLLSAI power consumption on  
VDDA  
(4)  
IDDA(PLLSAI)  
-
mA  
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.  
2. Guaranteed by design.  
3. Value given with main PLL running.  
4. Guaranteed by characterization results.  
6.3.12  
PLL spread spectrum clock generation (SSCG) characteristics  
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic  
interferences (see Table 57: EMI characteristics). It is available only on the main PLL.  
Table 47. SSCG parameters constraint  
Symbol  
Parameter  
Min  
Typ  
Max(1)  
Unit  
fMod  
md  
Modulation frequency  
-
0.25  
-
-
-
-
10  
2
KHz  
%
Peak modulation depth  
-
MODEPER * INCSTEP  
1. Guaranteed by design.  
2
15 1  
-
Equation 1  
The frequency modulation period (MODEPER) is given by the equation below:  
MODEPER = round[fPLL_IN ⁄ (4 × fMod)]  
f
and f  
must be expressed in Hz.  
PLL_IN  
Mod  
As an example:  
If f = 1 MHz, and f  
= 1 kHz, the modulation depth (MODEPER) is given by  
MOD  
PLL_IN  
equation 1:  
MODEPER = round[106 ⁄ (4 × 103)] = 250  
Equation 2  
Equation 2 allows to calculate the increment step (INCSTEP):  
INCSTEP = round[((215 1) × md × PLLN) ⁄ (100 × 5 × MODEPER)]  
f
must be expressed in MHz.  
VCO_OUT  
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):  
INCSTEP = round[((215 1) × 2 × 240) ⁄ (100 × 5 × 250)] = 126md(quantitazed)%  
140/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
An amplitude quantization error may be generated because the linear modulation profile is  
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and  
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage  
quantized modulation depth is given by the following formula:  
mdquantized% = (MODEPER × INCSTEP × 100 × 5) ⁄ ((215 1) × PLLN)  
As a result:  
mdquantized% = (250 × 126 × 100 × 5) ⁄ ((215 1) × 240) = 2.002%(peak)  
Figure 43 and Figure 44 show the main PLL output clock waveforms in center spread and  
down spread modes, where:  
F0 is f  
nominal.  
PLL_OUT  
T
is the modulation period.  
mode  
md is the modulation depth.  
Figure 43. PLL output clock waveforms in center spread mode  
Frequency (PLL_OUT)  
md  
F0  
md  
Time  
tmode  
2xtmode  
ai17291  
Figure 44. PLL output clock waveforms in down spread mode  
Frequency (PLL_OUT)  
F0  
2xmd  
Time  
tmode  
2xtmode  
ai17292b  
DS11853 Rev 6  
141/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
6.3.13  
USB OTG HS PHY PLLs characteristics (on STM32F723xx devices)  
The parameters given in Table 48 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 16.  
DD  
(1)  
Table 48. USB OTG HS PLL1 characteristics  
Symbol  
fPLL1_IN  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
PLL1 input clock  
-
-
-
-
-
-
12, 12.5, 16, 24, 25  
fPLL1_OUT PLL1 output clock(2)  
-
60  
-
-
MHz  
fVCO_OUT PLL1 VCO output  
600  
720  
22  
tLOCK  
PLL1 lock time(2)  
-
-
-
-
µs  
IDD(PLL1) PLL1 digital power consumption  
IDDA(PLL1) PLL1 analog power consumption  
-
1.8  
2.75  
mA  
-
1. Guaranteed by design.  
2. Based on test during characterization.  
(1)  
Table 49. USB OTG HS PLL2 characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fPLL2_IN  
PLL2 input clock  
-
-
-
-
-
-
-
-
-
-
-
-
60  
-
fPLL2_OUT PLL2 output clock(2)  
480  
-
MHz  
fVCO_OUT PLL2 VCO output  
480  
-
tLOCK  
PLL2 lock time(2)  
-
-
-
91  
2.1  
1.5  
µs  
IDD(PLL2) PLL2 digital power consumption  
IDDA(PLL2) PLL2 analog power consumption  
mA  
1. Guaranteed by design.  
2. Based on test during characterization.  
6.3.14  
USB OTG HS PHY regulator characteristics  
The parameters given in Table 50 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 16.  
DD  
(1)  
Table 50. USB OTG HS PHY regulator characteristics  
Symbol  
Parameter  
Conditions Min Typ Max Unit  
VDD12OTGHS  
CEXT  
1.2 V internal voltage on VDD12OTGHS  
External capacitor on VDD12OTGHS  
Regulator power consumption  
-
-
-
1.18 1.2 1.24  
1.1 2.2 3.3  
100 120 125  
V
µF  
µA  
IDDPHYHSREG  
1. Based on test during characterization.  
142/229  
DS11853 Rev 6  
 
 
 
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
6.3.15  
USB HS PHY external resistor characteristics  
(on STM32F723xx devices)  
Table 51. USB HS PHY external resistor characteristics (on STM32F723xx devices)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
External calibration resistor connected Required if using  
(to GND) from OTG_HS_REXT USB HS PHY  
REXT  
2.97 3.00 3.03 kΩ  
6.3.16  
Memory characteristics  
Flash memory  
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.  
The devices are shipped to customers with the Flash memory erased.  
Table 52. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Write / Erase 8-bit mode, VDD = 1.7 V  
-
-
-
6.7  
9.2  
-
IDD  
Supply current Write / Erase 16-bit mode, VDD = 2.1 V  
Write / Erase 32-bit mode, VDD = 3.3 V  
-
-
mA  
12.6  
Table 53. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8/16/32  
tprog  
Word programming time  
-
-
-
-
-
-
-
-
-
-
16  
100(2) µs  
418  
Program/eraseparallelism  
(PSIZE) = x 8  
346  
252  
208  
Program/eraseparallelism  
(PSIZE) = x 16  
tERASE16KB Sector (16 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
312  
265  
ms  
ms  
Program/eraseparallelism  
(PSIZE) = x 32  
Program/eraseparallelism  
(PSIZE) = x 8  
1953 2500  
1252 1639  
Program/eraseparallelism  
(PSIZE) = x 16  
Program/eraseparallelism  
(PSIZE) = x 32  
927  
1322  
Program/eraseparallelism  
(PSIZE) = x 8  
1027 1298  
Program/eraseparallelism  
(PSIZE) = x 16  
675  
505  
840  
682  
ms  
Program/eraseparallelism  
(PSIZE) = x 32  
DS11853 Rev 6  
143/229  
201  
 
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32F722xx STM32F723xx  
Table 53. Flash memory programming (continued)  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
Program/eraseparallelism  
(PSIZE) = x 8  
-
-
-
7718 9883  
4869 6379  
3503 5180  
Program/eraseparallelism  
(PSIZE) = x 16  
tME  
Mass erase time  
ms  
Program/eraseparallelism  
(PSIZE) = x 32  
32-bit program operation  
16-bit program operation  
8-bit program operation  
2.7  
2.1  
1.7  
-
-
-
3.6  
3.6  
3.6  
V
V
V
Vprog  
Programming voltage  
1. Guaranteed by characterization results.  
2. The maximum programming time is measured after 10 K erase operations.  
Table 54. Flash memory programming with V  
PP  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
tprog  
Double word programming  
-
-
16  
180  
900  
450  
6.9  
-
100(2)  
µs  
tERASE16KB Sector (16 KB) erase time  
tERASE128KB Sector (128 KB) erase time  
tERASE64KB Sector (64 KB) erase time  
-
-
TA = 0 to +40 °C  
VDD = 3.3 V  
-
ms  
VPP = 8.5 V  
-
-
tME  
Vprog  
VPP  
Mass erase time  
-
-
s
V
V
Programming voltage  
VPP voltage range  
-
-
2.7  
7
3.6  
9
-
Minimum current sunk on  
the VPP pin  
IPP  
-
-
10  
-
-
-
-
mA  
Cumulative time during  
which VPP is applied  
(3)  
tVPP  
1
hour  
1. Guaranteed by design.  
2. The maximum programming time is measured after 10 K erase operations.  
3. VPP should only be connected during programming/erasing.  
Table 55. Flash memory endurance and data retention  
Value  
Symbol  
Parameter  
Conditions(1)  
Unit  
Min(2)  
TA = –40 to +85 °C (6 suffix versions)  
TA = –40 to +105 °C (7 suffix versions)  
NEND  
Endurance  
10  
kcycles  
Years  
1 kcycle(3) at TA = 85 °C  
30  
10  
20  
tRET  
Data retention 1 kcycle(3) at TA = 105 °C  
10 kcycles(3) at TA = 55 °C  
144/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
1. Tj can not go above 125°C (current consumption limitation).  
2. Guaranteed by characterization results.  
3. Cycling performed over the whole temperature range.  
6.3.17  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 56. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 56. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 216 MHz,  
Voltage limits to be applied on any I/O  
pin to induce a functional disturbance  
VFESD  
2B  
5A  
conforms to IEC 61000-4-2  
VDD = 3.3 V, TA =+25 °C,  
Fast transient voltage burst limits to be  
VEFTB  
applied through 100 pF on VDD and VSS fHCLK = 216 MHz,  
pins to induce a functional disturbance  
conforms to IEC 61000-4-2  
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as  
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm  
on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
DS11853 Rev 6  
145/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 57. EMI characteristics  
Max vs.  
Monitored  
frequency band  
[fHSE/fCPU  
]
Symbol Parameter  
Conditions  
Unit  
25/200 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
23  
20  
34  
24  
4
VDD = 3.6 V, TA = 25 °C, conforming to  
IEC61967-2 ART/L1-cache OFF, over-drive ON,  
all peripheral clocks enabled, clock dithering  
disabled.  
dBµV  
-
SEMI  
Peak level  
6.3.18  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/ESDA/JEDEC JS-001-2012 and ANSI/ESD S5.3.1-2009 standards.  
146/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Maximum  
Table 58. ESD absolute maximum ratings  
Conditions  
Symbol  
Ratings  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) ANSI/ESDA/JEDEC JS-001-2012  
TA = +25 °C conforming to  
VESD(HBM)  
2
2000  
V
TA = +25 °C conforming to ANSI/ESD  
Electrostatic discharge  
VESD(CDM)  
STM5.3.1-2009, all the packages  
voltage (charge device model)  
3
250  
excepted WLCSP100  
1. Guaranteed by characterization results.  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latchup standard.  
Table 59. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.19  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibilty to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5  
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –  
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current by positive injection.  
The test results are given in Table 60.  
DS11853 Rev 6  
147/229  
201  
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 60. I/O current injection susceptibility  
Functionalsusceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0, PDR_ON, BYPASS_REG,  
OTG_HS_REXT  
-0  
-0  
-0  
0
Injected current on NRST  
NA(1)  
NA(1)  
IINJ  
Injected current on PF9, PF10, PH0_OSCIN, PH1_OSCOUT, PC0,  
PC1, PC2, PC3, PB14(2), PB15(2)  
mA  
Injected current on any other FT or FTf pins  
Injected current on any other pins  
-5  
-5  
NA(1)  
+5  
1. Injection is not possible.  
2. PB14 and PB15 in the STM32F723xx devices.  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
6.3.20  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 61: I/O static characteristics are  
derived from tests performed under the conditions summarized in Table 16. All I/Os are  
CMOS and TTL compliant.  
Table 61. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.35VDD0.04(1)  
FT, TTa and NRST I/O input  
low level voltage  
1.7 VVDD3.6 V  
-
-
(2)  
0.3VDD  
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VIL  
V
-
-
-
BOOT I/O input low level  
voltage  
0.1VDD+0.1(1)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
-
0.45VDD+0.3(1)  
FT, TTa and NRST I/O input  
high level voltage(5)  
1.7 VVDD3.6 V  
-
-
-
-
(2)  
0.7VDD  
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VIH  
V
BOOT I/O input high level  
voltage  
0.17VDD+0.7(1)  
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
148/229  
DS11853 Rev 6  
 
 
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 61. I/O static characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
FT, TTa and NRST I/O input  
hysteresis  
(3)  
1.7 VVDD3.6 V  
10%VDD  
-
-
1.75 VVDD 3.6 V,  
–40 °CTA 105 °C  
VHYS  
V
BOOT I/O input hysteresis  
0.1  
-
-
1.7 VVDD 3.6 V,  
0 °CTA 105 °C  
I/O input leakage current (4)  
VSS VIN VDD  
VIN = 5 V  
-
-
-
-
1
3
Ilkg  
µA  
I/O FT input leakage current (5)  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID  
,OTG_HS_ID  
)
30  
7
40  
10  
40  
50  
14  
50  
Weak pull-up  
equivalent  
resistor(6)  
RPU  
VIN = VSS  
PA10/PB12  
(OTG_FS_ID  
,OTG_HS_ID  
)
kΩ  
All pins  
except for  
PA10/PB12  
(OTG_FS_ID  
,OTG_HS_ID  
)
30  
Weak pull-  
down  
RPD  
VIN = VDD  
equivalent  
resistor(7)  
PA10/PB12  
(OTG_FS_ID  
,OTG_HS_ID  
)
7
-
10  
5
14  
-
(8)  
CIO  
I/O pin capacitance  
-
pF  
1. Guaranteed by design.  
2. Tested in production.  
3. With a minimum of 200 mV.  
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 60: I/O  
current injection susceptibility  
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be  
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 60: I/O current injection  
susceptibility  
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the  
series resistance is minimum (~10% order).  
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the  
series resistance is minimum (~10% order).  
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 45.  
DS11853 Rev 6  
149/229  
201  
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 45. FT I/O input characteristics  
VIL/VIH (V)  
2.52  
TTL requirement  
VIHmin = 2V  
2.0  
1.92  
1.7  
1.22  
1.19  
Area not determined  
1.065  
0.8  
TTL requirement  
VILmax = 0.8V  
Tested in production - CMOS requirement VILmax = 0.3VDD  
0.55  
0.51  
VDD (V)  
1.7  
2.0  
2.4  
3.3  
3.6  
2.7  
MS33746V2  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with a relaxed V /V ) except PC13, PC14, PC15 and PI8 which  
OL OH  
can sink or source up to 3mA. When using the PC13 to PC15 and PI8 GPIOs in output  
mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 14).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 14).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 62 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 16. All I/Os are CMOS and TTL compliant.  
150/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 62. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
CMOS port(2)  
IIO = +8 mA  
(1)  
VOL  
Output low level voltage for an I/O pin  
-
0.4  
2.7 V VDD 3.6 V  
CMOS port(2)  
Output high level voltage for an I/O pin  
except PC14  
(3)  
VOH  
VDD 0.4  
VDD 0.4  
-
-
IIO = -8 mA  
V
2.7 V VDD 3.6 V  
CMOS port(2)  
(3)  
VOH  
Output high level voltage for PC14  
Output low level voltage for an I/O pin  
IIO = -2 mA  
2.7 V VDD 3.6 V  
TTL port(2)  
IIO =+8mA  
(1)  
(3)  
VOL  
-
0.4  
-
2.7 V VDD 3.6 V  
V
TTL port(2)  
IIO =-8mA  
Output high level voltage for an I/O pin  
except PC14  
VOH  
2.4  
2.7 V VDD 3.6 V  
I
IO = +20 mA  
(1)  
(3)  
VOL  
Output low level voltage for an I/O pin  
-
1.3(4)  
2.7 V VDD 3.6 V  
V
V
IIO = -20 mA  
Output high level voltage for an I/O pin  
except PC14  
VOH  
VDD1.3(4)  
-
2.7 V VDD 3.6 V  
I
IO = +6 mA  
(1)  
VOL  
Output low level voltage for an I/O pin  
-
VDD0.4(4)  
0.4(4)  
1.8 V VDD 3.6 V  
IIO = -6 mA  
Output high level voltage for an I/O pin  
except PC14  
(3)  
VOH  
-
1.8 V VDD 3.6 V  
I
IO = +4 mA  
(1)  
VOL  
Output low level voltage for an I/O pin  
-
0.4(5)  
1.7 V VDD 3.6V  
IIO = -4 mA  
Output high level voltage for an I/O pin  
except PC14  
(3)  
VOH  
VDD0.4(5)  
VDD0.4(5)  
-
-
V
1.7 V VDD 3.6V  
IIO = -1 mA  
(3)  
VOH  
Output high level voltage for PC14  
1.7 V VDD 3.6V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14.  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 14 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data.  
5. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 46 and  
Table 63, respectively.  
DS11853 Rev 6  
151/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Unless otherwise specified, the parameters given in Table 63 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 16.  
(1)(2)  
Table 63. I/O AC characteristics  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 50 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
4
2
fmax(IO)out Maximum frequency(3)  
8
4
3
MHz  
ns  
00  
Output high to low level fall  
time and output low to high  
level rise time  
tf(IO)out  
/
CL = 50 pF, VDD = 1.7 V to  
3.6 V  
-
-
100  
tr(IO)out  
CL = 50 pF, VDD2.7 V  
CL = 50 pF, VDD1.8 V  
CL = 50 pF, VDD1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD1.8 V  
CL = 10 pF, VDD1.7 V  
CL = 50 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 50 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 40 pF, VDD 2.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 40 pF, VDD 1.7 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
12.5  
10  
fmax(IO)out Maximum frequency(3)  
MHz  
50  
20  
01  
12.5  
10  
Output high to low level fall  
time and output low to high  
level rise time  
6
tf(IO)out  
tr(IO)out  
/
ns  
MHz  
ns  
20  
10  
50(4)  
100(4)  
25  
fmax(IO)out Maximum frequency(3)  
50  
10  
42.5  
6
Output high to low level fall  
time and output low to high  
level rise time  
4
tf(IO)out  
tr(IO)out  
/
10  
6
152/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
(1)(2)  
Table 63. I/O AC characteristics  
(continued)  
OSPEEDRy  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
value(1)  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
CL = 30 pF, VDD 2.7 V  
CL = 30 pF, VDD 1.8 V  
CL = 30 pF, VDD 1.7 V  
CL = 10 pF, VDD 2.7 V  
CL = 10 pF, VDD 1.8 V  
CL = 10 pF, VDD 1.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
100(4)  
50  
42.5  
MHz  
fmax(IO)out Maximum frequency(3)  
180(4)  
100  
72.5  
4
11  
6
Output high to low level fall  
time and output low to high  
level rise time  
7
tf(IO)out  
/
ns  
2.5  
tr(IO)out  
3.5  
4
Pulse width of external signals  
-
tEXTIpw detected by the EXTI  
controller  
-
10  
-
-
ns  
1. Guaranteed by design.  
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F72xxx and STM32F73xxx reference  
manual for a description of the GPIOx_SPEEDR GPIO port output speed register.  
3. The maximum frequency is defined in Figure 46.  
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.  
Figure 46. I/O AC characteristics definition  
90%  
10%  
50%  
50%  
90%  
t
10%  
t
EXTERNAL  
OUTPUT  
ON CL  
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t ) ≤ (2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by CL specified in the table “ I/O AC characteristics”.  
ai14131d  
DS11853 Rev 6  
153/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
6.3.21  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 61: I/O static characteristics).  
PU  
Unless otherwise specified, the parameters given in Table 64 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 16.  
Table 64. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RPU  
Weak pull-up equivalent resistor(1)  
NRST Input filtered pulse  
VIN = VSS  
-
30  
-
40  
-
50  
kΩ  
ns  
ns  
µs  
(2)  
VF(NRST)  
100  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
VDD > 2.7 V  
Internal Reset source  
300  
20  
-
-
-
TNRST_OUT Generated reset pulse duration  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance must be minimum (~10% order).  
2. Guaranteed by design.  
Figure 47. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 μF  
STM32F  
ai14132c  
1. The reset network protects the device against parasitic resets. 0.1 uF capacitor must be placed as close as  
possible to the chip.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 64. Otherwise the reset is not taken into account by the device.  
154/229  
DS11853 Rev 6  
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
6.3.22  
TIM timer characteristics  
The parameters given in Table 65 are guaranteed by design.  
Refer to Section 6.3.20: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 65. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
or 2 or 4, fTIMxCLK  
=
tTIMxCLK  
1
-
216 MHz  
tres(TIM)  
Timer resolution time  
AHB/APBx  
prescaler>4, fTIMxCLK  
=
tTIMxCLK  
1
-
108 MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK/2  
16/32  
0
-
MHz  
bit  
f
TIMxCLK = 216 MHz  
ResTIM  
Timer resolution  
Maximum possible count  
with 32-bit counter  
65536 ×  
65536  
tMAX_COUNT  
tTIMxCLK  
-
-
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 216 MHz, by setting the TIMPRE bit in the  
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK =  
4x PCLKx.  
6.3.23  
6.3.24  
RTC characteristics  
Table 66. RTC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Any read/write operation  
from/to an RTC register  
-
fPCLK1/RTCCLK frequency ratio  
4
-
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 67 are derived from tests  
performed under the ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 16.  
Table 67. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
1.7(1)  
1.7(1)  
-
-
-
3.6  
VDDA  
-
V
V
V
VDDA VREF+ < 1.2 V  
VREF+ Positive reference voltage  
VREF- Negative reference voltage  
-
0
DS11853 Rev 6  
155/229  
201  
 
 
 
 
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 67. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA = 1.7(1) to 2.4 V  
0.6  
0.6  
15  
30  
18  
36  
MHz  
MHz  
fADC  
ADC clock frequency  
VDDA = 2.4 to 3.6 V  
f
ADC = 30 MHz,  
-
-
-
1764  
17  
kHz  
(2)  
12-bit resolution  
fTRIG  
External trigger frequency  
-
-
1/fADC  
0
VAIN  
Conversion voltage range(3)  
-
-
VREF+  
V
(VSSA or VREF-  
tied to ground)  
See Equation 1 for  
(2)  
RAIN  
External input impedance  
Sampling switch resistance  
-
1.5  
-
-
-
50  
6
kΩ  
kΩ  
pF  
details  
(2)(4)  
RADC  
-
-
Internal sample and hold  
capacitor  
(2)  
CADC  
4
7
f
f
ADC = 30 MHz  
-
-
-
0.100  
3(5)  
0.067  
2(5)  
16  
µs  
1/fADC  
µs  
Injection trigger conversion  
latency  
(2)  
tlat  
-
-
ADC = 30 MHz  
-
-
-
Regular trigger conversion  
latency  
(2)  
tlatr  
-
-
1/fADC  
µs  
fADC = 30 MHz  
-
0.100  
-
(2)  
tS  
Sampling time  
Power-up time  
3
-
-
480  
3
1/fADC  
µs  
(2)  
tSTAB  
-
2
fADC = 30 MHz  
12-bit resolution  
0.50  
0.43  
0.37  
0.30  
-
-
-
-
16.40  
16.34  
16.27  
16.20  
µs  
µs  
f
ADC = 30 MHz  
10-bit resolution  
ADC = 30 MHz  
8-bit resolution  
ADC = 30 MHz  
6-bit resolution  
Total conversion time (including  
sampling time)  
f
(2)  
tCONV  
µs  
f
µs  
9 to 492 (tS for sampling +n-bit resolution for successive  
approximation)  
1/fADC  
Msps  
12-bit resolution  
-
-
-
-
2.4  
4.5  
Single ADC  
12-bit resolution  
Sampling rate  
Msps  
Msps  
Interleave Dual ADC  
mode  
(2)  
fS  
(fADC = 36 MHz, and  
tS = 3 ADC cycles)  
12-bit resolution  
-
-
7.2  
Interleave Triple ADC  
mode  
156/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 67. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ADC VREF DC current  
consumption in conversion  
mode  
(2)  
IVREF+  
-
-
300  
500  
µA  
ADC VDDA DC current  
consumption in conversion  
mode  
(2)  
IVDDA  
-
-
1.6  
1.8  
mA  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:  
Internal reset OFF).  
2. Guaranteed by characterization results.  
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA  
.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.  
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 67.  
Equation 1: R  
max formula  
AIN  
(k 0.5)  
RAIN = -------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The formula above (Equation 1) is used to determine the maximum external impedance  
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of  
sampling periods defined in the ADC_SMPR1 register.  
Table 68. ADC static accuracy at f  
= 18 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(1)  
Unit  
ET  
Total unadjusted error  
±3  
±4  
fADC =18 MHz  
VDDA = 1.7 to 3.6 V  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
EO  
EG  
ED  
EL  
Offset error  
±2  
±1  
±1  
±2  
±3  
±3  
±2  
±3  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Guaranteed by characterization results.  
Table 69. ADC static accuracy at f  
= 30 MHz  
Typ  
ADC  
Symbol  
Parameter  
Test conditions  
Max(1)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
±2  
±5  
±2.5  
±4  
f
ADC = 30 MHz,  
±1.5  
±1.5  
±1  
RAIN < 10 kΩ,  
DDA = 2.4 to 3.6 V,  
Gain error  
V
LSB  
VREF = 1.7 to 3.6 V,  
VDDA VREF < 1.2 V  
Differential linearity error  
Integral linearity error  
±2  
±1.5  
±3  
1. Guaranteed by characterization results.  
DS11853 Rev 6  
157/229  
201  
 
 
Electrical characteristics  
Symbol  
STM32F722xx STM32F723xx  
= 36 MHz  
Table 70. ADC static accuracy at f  
ADC  
Parameter  
Test conditions  
Typ  
Max(1)  
Unit  
ET  
Total unadjusted error  
±4  
±7  
f
ADC =36 MHz,  
EO  
EG  
ED  
EL  
Offset error  
±2  
±3  
±2  
±3  
±3  
±6  
±3  
±6  
VDDA = 2.4 to 3.6 V,  
VREF = 1.7 to 3.6 V  
VDDA VREF < 1.2 V  
LSB  
Gain error  
Differential linearity error  
Integral linearity error  
1. Guaranteed by characterization results.  
(1)  
Table 71. ADC dynamic accuracy at f  
Parameter  
= 18 MHz - limited test conditions  
ADC  
Symbol  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to-noise and distortion ratio  
Signal-to-noise ratio  
10.3  
64  
10.4  
64.2  
65  
-
-
-
-
bits  
fADC =18 MHz  
V
DDA = VREF+= 1.7 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
dB  
THD  
Total harmonic distortion  
67  
72  
1. Guaranteed by characterization results.  
(1)  
Table 72. ADC dynamic accuracy at f  
= 36 MHz - limited test conditions  
ADC  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max Unit  
ENOB  
SINAD  
SNR  
Effective number of bits  
Signal-to noise and distortion ratio  
Signal-to noise ratio  
10.6  
66  
10.8  
67  
-
-
-
-
bits  
fADC =36 MHz  
VDDA = VREF+ = 3.3 V  
Input Frequency = 20 KHz  
Temperature = 25 °C  
64  
68  
dB  
THD  
Total harmonic distortion  
70  
72  
1. Guaranteed by characterization results.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
Section 6.3.20 does not affect the ADC accuracy.  
and ΣI  
in  
INJ(PIN)  
INJ(PIN)  
158/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 48. ADC accuracy characteristics  
V
V
DDA  
4096  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
E
G
4095  
4094  
4093  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
E
O
L
E
D
1L SB  
IDEAL  
7
0
V
1
2
3
456  
4093 4094 4095 4096  
V
DDA  
SSA  
ai14395c  
1. See also Table 69.  
2. Example of an actual transfer curve.  
3. Ideal transfer curve.  
4. End point correlation line.  
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 49. Typical connection diagram using the ADC  
STM32F  
V
DD  
Sample and hold ADC  
V
T
converter  
0.6 V  
(1)  
AIN  
(1)  
R
R
ADC  
AINx  
12-bit  
converter  
V
0.6 V  
T
V
AIN  
C
(1)  
ADC  
C
parasitic  
I
1 μA  
L
ai17534  
1. Refer to Table 67 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
DS11853 Rev 6  
159/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 50 or Figure 51,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 50. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32  
(1)  
VREF+  
1 μF // 10 nF  
V
V
DDA  
1 μF // 10 nF  
(1)  
SSA/VREF+  
ai17535c  
1. VREF+ input is available on all the packages except LQFP64, whereas the VREF– is available only on  
UFBGA176 and UFBGA144. When VREF- is not available, it is internally connected to VSSA  
.
Figure 51. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32F  
(1)  
VREF+/VDDA  
1 μF // 10 nF  
(1)  
VREF-/VSSA  
ai17536c  
1. VREF+ input is available on all the packages except LQFP64, whereas the VREF– is available only on  
UFBGA176 and UFBGA144. When VREF- is not available, it is internally connected to VSSA  
.
160/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
6.3.25  
Temperature sensor characteristics  
Table 73. Temperature sensor characteristics  
Parameter  
Symbol  
Min  
Typ Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
1
2.5  
0.76  
6
2
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
-
(1)  
V25  
Voltage at 25 °C  
-
-
10  
-
(2)  
tSTART  
Startup time  
-
µs  
(2)  
TS_temp  
ADC sampling time when reading the temperature (1 °C accuracy)  
10  
-
µs  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
Table 74. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
0x1FF0 7A2C - 0x1FF0 7A2D  
TS_CAL1  
TS_CAL2  
TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V  
TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FF0 7A2E - 0x1FF0 7A2F  
6.3.26  
V
monitoring characteristics  
BAT  
Table 75. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
50  
4
-
-
KΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
–1  
-
+1  
%
ADC sampling time when reading the VBAT  
1 mV accuracy  
(2)(2)  
TS_vbat  
5
-
-
µs  
1. Guaranteed by design.  
2. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.27  
Reference voltage  
The parameters given in Table 76 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 16.  
DD  
Table 76. internal reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Internal reference voltage  
–40 °C < TA < +105 °C 1.18 1.21  
1.24  
V
ADC sampling time when reading the  
internal reference voltage  
(1)  
TS_vrefint  
-
10  
-
-
-
µs  
Internal reference voltage spread over the  
temperature range  
(2)  
VRERINT_s  
VDD = 3V 10mV  
3
5
mV  
DS11853 Rev 6  
161/229  
201  
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 76. internal reference voltage (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
(2)  
TCoeff  
Temperature coefficient  
Startup time  
-
-
-
-
30  
6
50  
10  
ppm/°C  
µs  
(2)  
tSTART  
1. Shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
Table 77. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V  
Symbol  
0x1FF0 7A2A - 0x1FF0 7A2B  
6.3.28  
DAC electrical characteristics  
Table 78. DAC characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
VDDA  
Analog supply voltage  
1.7(1)  
-
3.6  
V
-
VREF+  
VSSA  
Reference supply voltage  
Ground  
1.7(1)  
0
-
-
3.6  
0
V
V
VREF+ VDDA  
-
-
Connected to  
5
-
-
-
-
kΩ  
kΩ  
VSSA  
Resistive load  
(2)  
RLOAD  
with buffer ON  
Connected to  
25  
-
VDDA  
When the buffer is OFF, the Minimum  
Impedance output with buffer  
OFF  
(2)  
RO  
-
-
-
-
15  
50  
kΩ resistive load between DAC_OUT and  
SS to have a 1% accuracy is 1.5 MΩ  
V
Maximum capacitive load at DAC_OUT  
pin (when the buffer is ON).  
(2)  
CLOAD  
Capacitive load  
pF  
It gives the maximum output excursion of  
the DAC.  
DAC_OUT Lower DAC_OUT voltage  
min(2)  
with buffer ON  
0.2  
-
-
V
It corresponds to 12-bit input code  
(0x0E0) to (0xF1C) at VREF+ = 3.6 V and  
(0x1C7) to (0xE38) at VREF+ = 1.7 V  
DAC_OUT Higher DAC_OUT voltage  
max(2)  
with buffer ON  
VDDA  
0.2  
-
-
-
-
0.5  
-
V
mV  
V
DAC_OUT Lower DAC_OUT voltage  
min(2)  
with buffer OFF  
-
It gives the maximum output excursion of  
the DAC.  
DAC_OUT Higher DAC_OUT voltage  
max(2)  
with buffer OFF  
VREF+  
1LSB  
162/229  
DS11853 Rev 6  
 
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Comments  
Table 78. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
With no load, worst code (0x800) at  
VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
170  
240  
DAC DC VREF current  
consumption in quiescent  
mode (Standby mode)  
(4)  
IVREF+  
µA  
With no load, worst code (0xF1C) at  
VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
-
-
-
50  
75  
With no load, middle code (0x800) on the  
inputs  
280  
475  
380  
625  
µA  
DAC DC VDDA current  
consumption in quiescent  
mode(3)  
(4)  
IDDA  
With no load, worst code (0xF1C) at  
µA VREF+ = 3.6 V in terms of DC  
consumption on the inputs  
Differential non linearity  
Difference between two  
consecutive code-1LSB)  
-
-
±0.5  
LSB Given for the DAC in 10-bit configuration.  
DNL(4)  
-
-
-
-
±2  
±1  
LSB Given for the DAC in 12-bit configuration.  
LSB Given for the DAC in 10-bit configuration.  
Integral non linearity  
(difference between  
measured value at Code i  
and the value at Code i on a  
line drawn between Code 0  
and last Code 1023)  
INL(4)  
-
-
±4  
LSB Given for the DAC in 12-bit configuration.  
mV Given for the DAC in 12-bit configuration  
-
-
-
-
±10  
±3  
Offset error  
Given for the DAC in 10-bit at VREF+  
3.6 V  
=
(difference between  
measured value at Code  
(0x800) and the ideal value =  
VREF+/2)  
LSB  
LSB  
%
Offset(4)  
Given for the DAC in 12-bit at VREF+  
3.6 V  
=
-
-
-
-
±12  
Gain  
Gain error  
±0.5  
Given for the DAC in 12-bit configuration  
error(4)  
Settling time (full scale: for a  
10-bit input code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value ±4LSB  
CLOAD 50 pF,  
RLOAD 5 kΩ  
(4)  
tSETTLING  
-
3
6
µs  
Total Harmonic Distortion  
Buffer ON  
CLOAD 50 pF,  
RLOAD 5 kΩ  
THD(4)  
-
-
-
-
-
dB  
Max frequency for a correct  
Update DAC_OUT change when  
CLOAD 50 pF,  
RLOAD 5 kΩ  
1
MS/s  
rate(2)  
small variation in the input  
code (from code i to i+1LSB)  
DS11853 Rev 6  
163/229  
201  
Electrical characteristics  
STM32F722xx STM32F723xx  
Table 78. DAC characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Comments  
CLOAD 50 pF, RLOAD 5 kΩ  
input code between lowest and highest  
possible ones.  
Wakeup time from off state  
(Setting the ENx bit in the  
DAC Control register)  
(4)  
tWAKEUP  
-
6.5  
10  
µs  
Power supply rejection ratio  
PSRR+ (2) (to VDDA) (static DC  
measurement)  
-
–67  
–40  
dB No RLOAD, CLOAD = 50 pF  
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.15.2:  
Internal reset OFF).  
2. Guaranteed by design.  
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic  
consumption occurs.  
4. Guaranteed by characterization results.  
Figure 52. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
L
DAC_OUTx  
12-bit  
digital to  
analog  
converter  
C
L
ai17157V3  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
6.3.29  
Communications interfaces  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s.  
Fast-mode Plus (Fm+): with a bit rate up to 1Mbit/s.  
2
The I C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to RM0431 reference manual) and when the I2CCLK frequency is greater  
than the minimum shown in the table below:  
164/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 79. Minimum I2CCLK frequency in all I2C modes  
Symbol  
Parameter  
Condition  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
Analog Filter ON  
DNF=0  
10  
9
Analog Filter OFF  
DNF=1  
I2CCLK  
frequency  
f(I2CCLK)  
MHz  
Analog Filter ON  
DNF=0  
22.5  
16  
Fast-mode Plus  
Analog Filter OFF  
DNF=1  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present.  
DD  
The 20mA output drive requirement in Fast-mode Plus is not supported. This limits the  
maximum load Cload supported in Fm+, which is given by these formulas:  
Tr(SDA/SCL)=0.8473xR xC  
p load  
R (min)= (VDD-V (max))/I (max)  
p
OL  
OL  
Where Rp is the I2C lines pull-up. Refer to Section 6.3.20: I/O port characteristics for the  
I2C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
(1)  
Table 80. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes  
that are suppressed by the analog  
filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by characterization results.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
DS11853 Rev 6  
165/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 81 for the SPI interface are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 81. SPI dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
SPI1,4,5  
-
-
54(2)  
2.7VDD3.6  
Master mode  
SPI1,4,5  
-
-
-
-
-
-
-
-
-
-
-
-
27  
54  
1.71VDD3.6  
Master transmitter mode  
SPI1,4,5  
1.71VDD3.6  
Slave receiver mode  
SPI1,4,5  
fSCK  
SPI clock frequency  
54  
MHz  
1/tc(SCK)  
1.71VDD3.6  
Slave mode transmitter/full duplex  
SPI1,4,5  
50(3)  
37(3)  
27  
2.7VDD3.6  
Slave mode transmitter/full duplex  
SPI1,4,5  
1.71VDD3.6  
Master & Slave mode  
SPI2,3  
1.71VDD3.6  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
4xTpclk  
2xTpclk  
-
-
-
-
ns  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Master mode  
Tpclk-1  
Tpclk  
Tpclk+1  
166/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
(1)  
Table 81. SPI dynamic characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsu(MI)  
tsu(SI)  
th(MI)  
th(SI)  
Master mode  
Slave mode  
4
3.5  
3
-
-
-
-
Data input setup time  
Master mode  
-
-
Data input hold time  
Slave mode  
1
-
-
ta(SO)  
Data output access time  
Slave mode  
7
9
21  
12  
10  
13.5  
3
tdis(SO) Data output disable time  
Slave mode  
5
7
ns  
Slave mode 2.7VDD3.6V  
Slave mode 1.71VDD3.6V  
Master mode  
-
6.5  
6.5  
2
tv(SO)  
Data output valid time  
-
tv(MO)  
-
Slave mode  
4.5  
0
-
-
-
-
th(SO)  
th(MO)  
1.71VDD3.6V  
Data output hold time  
Master mode  
1. Guaranteed by characterization results.  
2. Excepting SPI1 with SCK IO=PA5. In this configuration, the maximum achievable frequency is 40 MHz.  
3. Maximum frequency of the slave transmitter is determined by sum of Tv(SO) and Tsu(MI) intervals which has to fit into SCK  
level phase preceding the SCK sampling edge.This value can be achieved when it communicates with a Master having  
Tsu(MI)=0 while signal Duty(SCK)=50%.  
Figure 53. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
DS11853 Rev 6  
167/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 54. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
Figure 55. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
168/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
I2S interface characteristics  
2
Unless otherwise specified, the parameters given in Table 82 for the I S interface are  
derived from tests performed under the ambient temperature, f  
frequency and V  
PCLKx  
DD  
supply voltage conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK, SD, WS).  
2
(1)  
Table 82. I S dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
Master data: 32 bits  
Slave data: 32 bits  
256 x 8K 256xFs(2)  
MHz  
-
-
64xFs  
fCK  
MHz  
%
64xFs  
DCK  
I2S clock frequency duty cycle Slave receiver  
30  
-
70  
3
-
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
th(WS)  
0
tsu(WS)  
5
-
th(WS)  
Slave mode  
2
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
2.5  
2.5  
3.5  
2
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
-
ns  
-
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
12  
3
-
-
5
0
-
1. Guaranteed by characterization results.  
2. 256xFs maximum is 49.152 MHz (APB1 Maximum frequency).  
Note:  
Refer to RM0431 reference manual I2S section for more details on the sampling frequency  
(F ).  
S
f
, f , and D values reflect only the digital peripheral behavior. The values of these  
CK  
MCK CK  
parameters might be slightly impacted by the source clock precision. D depends mainly  
CK  
on the value of ODD bit. The digital contribution leads to a minimum value of  
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F  
maximum value is supported for each mode/condition.  
S
DS11853 Rev 6  
169/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
2
(1)  
Figure 56. I S slave timing diagram (Philips protocol)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS input  
t
t
t
t
w(CKL)  
h(WS)  
w(CKH)  
t
t
t
v(SD_ST)  
h(SD_ST)  
su(WS)  
SD  
SD  
transmit  
receive  
LSB transmit(1)  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
su(SD_SR)  
LSB receive(1)  
h(SD_SR)  
Bitn receive  
LSB receive  
MS46528V1  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 57. I S master timing diagram (Philips protocol)  
t
t
r(CK)  
f(CK)  
t
c(CK)  
CPOL = 0  
CPOL = 1  
WS output  
t
w(CKH)  
t
t
h(WS)  
t
v(WS)  
w(CKL)  
t
t
v(SD_MT)  
h(SD_MT)  
SD  
transmit  
receive  
LSB transmit(1)  
MSB transmit  
MSB receive  
Bitn transmit  
LSB transmit  
t
t
h(SD_MR)  
su(SD_MR)  
LSB receive(1)  
Bitn receive  
LSB receive  
SD  
MS46529V1  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
170/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
SAI characteristics  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 83 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are performed at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate  
function characteristics (SCK,SD,WS).  
(1)  
Table 83. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCKL  
SAI Main clock output  
-
256x8K  
256xFs  
128xFs(3)  
128xFs(3)  
Master data: 32 bits  
Slave data: 32 bits  
-
-
MHz  
FCK  
SAI clock frequency(2)  
FS valid time  
Master mode  
-
-
18  
20  
2.7VDD3.6V  
tv(FS)  
Master mode  
1.71VDD3.6V  
tsu(FS)  
th(FS)  
FS setup time  
FS hold time  
Slave mode  
Master mode  
Slave mode  
1
-
-
-
-
-
-
-
7
0.5  
1
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
2.5  
3.5  
0.5  
ns  
Slave transmitter (after enable edge)  
-
11  
2.7VDD3.6V  
tv(SD_B_MT)  
th(SD_B_ST)  
tv(SD_A_MT)  
th(SD_A_MT)  
Data output valid time  
Slave transmitter (after enable edge)  
-
5
-
18  
-
1.71VDD3.6V  
Slave transmitter (after enable edge)  
Data output hold time  
Data output valid time  
Master transmitter (after enable edge)  
16  
2.7VDD3.6V  
Master transmitter (after enable edge)  
-
18.5  
-
1.71VDD3.6V  
Data output hold time Master transmitter (after enable edge)  
7.5  
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
3. With Fs = 192 KHz.  
DS11853 Rev 6  
171/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 58. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
h(FS)  
SAI_FS_X  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
Figure 59. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
172/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
USB OTG full speed (FS) characteristics  
This interface is present in both the USB OTG HS and USB OTG FS controllers.  
Table 84. USB OTG full speed startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB OTG full speed transceiver startup time  
1
µs  
1. Guaranteed by design.  
Table 85. USB OTG full speed DC electrical characteristics  
Min.  
Max.(  
Symbol  
Parameter  
Conditions  
Typ.  
Unit  
(1)  
1)  
USB OTG full speed  
VDDUSB transceiver operating  
voltage  
-
3.0(2)  
-
3.6  
V
I(USB_FS_DP/DM,  
USB_HS_DP/DM)  
(3)  
VDI  
Differential input sensitivity  
0.2  
0.8  
1.3  
-
-
-
-
Input  
levels  
Differential common mode  
range  
(3)  
VCM  
Includes VDI range  
2.5  
2.0  
V
V
Single ended receiver  
threshold  
(3)  
VSE  
-
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(4)  
-
-
-
0.3  
3.6  
Output  
levels  
(4)  
RL of 15 kΩ to VSS  
2.8  
PA11, PA12  
(USB_FS_DP/DM)  
VIN = VDD  
VIN = VDD  
14.25  
-
24.8  
RPD  
PA9, PB13  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
2.4  
0.9  
5.2  
8
kΩ  
PA12 (USB_FS_DP)  
VIN = VSS, during idle  
1.25 1.575  
PA9, PB13  
RPU  
VIN = VSS, during  
reception  
(OTG_FS_VBUS,  
OTG_HS_VBUS)  
0.55 0.95 1.35  
1. All the voltages are measured from the local ground potential.  
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed  
electrical characteristics which are degraded in the 2.7-to-3.0 V VDDUSB voltage range.  
3. Guaranteed by design.  
RL is the load connected on the USB OTG full speed drivers.  
4.  
When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state  
(floating input), not as alternate function. A typical 200 µA current consumption of the  
sensing block (current to voltage conversion to determine the different sessions) can be  
observed on PA9 and PB13 when the feature is enabled.  
Note:  
DS11853 Rev 6  
173/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 60. USB OTG full speed timings: definition of data signal rise and fall time  
Cross over  
points  
Differential  
data lines  
VCRS  
VSS  
tf  
tr  
ai14137b  
(1)  
Table 86. USB OTG full speed electrical characteristics  
Driver characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall time(2)  
CL = 50 pF  
4
4
20  
20  
ns  
ns  
%
V
CL = 50 pF  
trfm  
VCRS  
Rise/ fall time matching  
tr/tf  
-
90  
1.3  
111  
2.0  
Output signal crossover voltage  
Driving high or  
low  
ZDRV  
Output driver impedance(3)  
28  
44  
Ω
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching  
impedance is included in the embedded driver.  
USB high speed (HS) characteristics (through ULPI in STM32F722xx devices)  
Unless otherwise specified, the parameters given in Table 89 for ULPI are derived from  
tests performed under the ambient temperature, fHCLK frequency summarized in Table 88  
and V supply voltage conditions summarized in Table 87, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 11, unless otherwise specified  
Capacitive load C = 20 pF, unless otherwise specified  
Measurement points are done at CMOS levels: 0.5V  
.
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output  
characteristics.  
Table 87. USB HS DC electrical characteristics  
Symbol  
Input level  
Parameter  
Min.(1)  
Max.(1)  
Unit  
VDD  
USB OTG HS operating voltage  
1.7  
3.6  
V
1. All the voltages are measured from the local ground potential.  
174/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Symbol  
Electrical characteristics  
(1)  
Table 88. USB HS clock timing parameters  
Parameter  
Min  
Typ  
Max  
Unit  
f
HCLK value to guarantee proper operation of  
-
30  
-
-
MHz  
USB HS interface  
FSTART_8BIT  
FSTEADY  
DSTART_8BIT  
DSTEADY  
Frequency (first transition)  
8-bit ±10%  
54  
59.97  
40  
60  
60  
50  
50  
66  
60.03  
60  
MHz  
MHz  
%
Frequency (steady state) ±500 ppm  
Duty cycle (first transition)  
8-bit ±10%  
Duty cycle (steady state) ±500 ppm  
49.975  
50.025  
%
Time to reach the steady state frequency and  
duty cycle after the first transition  
tSTEADY  
-
-
1.4  
ms  
ms  
µs  
tSTART_DEV  
Peripheral  
-
-
-
-
5.6  
-
Clock startup time after the  
de-assertion of SuspendM  
tSTART_HOST  
Host  
PHY preparation time after the first transition  
of the input clock  
tPREP  
-
-
-
1. Guaranteed by design.  
Figure 61. ULPI timing diagram  
Clock  
t
t
HC  
SC  
Control In  
(ULPI_DIR,  
ULPI_NXT)  
t
t
HD  
SD  
data In  
(8-bit)  
t
t
DC  
DC  
Control out  
(ULPI_STP)  
t
DD  
data out  
(8-bit)  
ai17361c  
DS11853 Rev 6  
175/229  
201  
 
 
Electrical characteristics  
Symbol  
STM32F722xx STM32F723xx  
(1)  
Table 89. Dynamic characteristics: USB ULPI  
Parameter  
Conditions  
Min.  
Typ.  
Max. Unit  
tSC  
tHC  
tSD  
tHD  
Control in (ULPI_DIR, ULPI_NXT) setup time  
Control in (ULPI_DIR, ULPI_NXT) hold time  
Data in setup time  
-
-
-
-
1.5  
1
-
-
-
-
-
-
-
-
1.5  
1
Data in hold time  
2.7 V < VDD < 3.6 V,  
CL = 20 pF and  
OSPEEDRy[1:0] = 11  
ns  
-
-
-
6
7.5  
-
t
DC/tDD Data/control output delay  
1.7 V < VDD < 3.6 V,  
9.5  
11  
CL = 15 pF and  
OSPEEDRy[1:0] = 11  
1. Guaranteed by characterization results.  
USB high speed (HS) characteristics (embedded PHY High speed on  
STM32F723xx devices)  
Table 90. USB OTG high speed DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Vhssq  
Vhsdsc  
Vhsdif  
High speed squelch detection threshold  
High speed disconnect detection threshold  
High speed differential detection threshold  
-
-
-
100  
525  
100  
-
150 mV  
625 mV  
-
-
-
mV  
High speed data signalling common mode voltage  
range  
Vhscm  
-
-50  
-
500 mV  
Vhsoi  
Vhsoh  
Vhsol  
High speed idle level  
High speed data signaling high  
High speed data signaling low  
Chirp J level  
-
-
-
-
-
-10  
360  
-10  
-
-
-
10  
440 mV  
10 mV  
mV  
Vchirpj  
Vchirpk  
700  
-900  
-
1100 mV  
-500 mV  
Chirp K level  
-
Table 91. USB OTG high speed electrical characteristics  
Parameter  
Comments  
Conditions  
Min Typ Max Unit  
tlr  
tlf  
Rise time  
Fall time  
-
-
0.5  
0.5  
-
-
-
ns  
ns  
-
Setup time from INHSDRIVERENABLE=1 to the  
transition on INHSDATAP/INHSDATAN  
tlrfm  
Zdrv  
-
-
10  
-
-
ns  
Driver output impedance  
40.5  
-
49.5  
Ω
176/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 92. USB FS PHY BCD electrical characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Primary detection mode consumption  
Secondary detection mode consumption  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
300  
300  
-
IDDUSB  
µA  
RDAT_LKG Data line leakage resistance  
300  
0.0  
-
kΩ  
V
VDAT_LKG Data line leakage voltage  
3.6  
200  
3.6  
0.8  
2.0  
3.6  
3.6  
3.6  
175  
175  
30  
RDCP_DAT Dedicated charging port resistance across D+/D-  
Ω
VLGC_HI  
Logic high  
2.0  
-
VLGC_LOW Logic low  
VLGC  
Logic threshold  
0.8  
0.25  
0.5  
0.5  
25  
25  
7
V
VDAT_REF Data detect voltage  
VDP_SRC  
VDM_SRC  
IDM_SINK  
IDP_SINK  
IDP_SRC  
D+ source voltage  
D- source voltage  
D- sink current  
D+ sink current  
µA  
Data contact detect current source  
CAN (controller area network) interface  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate  
function characteristics (CANx_TX and CANx_RX).  
6.3.30  
FMC characteristics  
Unless otherwise specified, the parameters given in Table 93 to Table 106 for the FMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 16, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 62 through Figure 65 represent asynchronous waveforms and Table 93 through  
Table 100 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
Capcitive load CL = 30 pF  
In all timing tables, the T  
is the HCLK clock period  
DS11853 Rev 6  
HCLK  
177/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 62. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FMC_NOE  
FMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32753V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
178/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
(1)  
Table 93. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
2Thclk -1  
2Thclk +1  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
0
0.5  
2Thclk -1  
2Thclk +1  
th(NE_NOE)  
tv(A_NE)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
0
-
-
0.5  
th(A_NOE)  
Address hold time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NOE high  
Data to FMC_NEx high setup time  
Data to FMC_NOEx high setup time  
Data hold time after FMC_NOE high  
Data hold time after FMC_NEx high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
-
tv(BL_NE)  
-
0.5  
ns  
th(BL_NOE)  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
0
-
Thclk -1.5  
-
Thclk -1.5  
-
0
0
-
-
-
0
-
Thclk -0.5  
1. CL = 30 pF.  
Table 94. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT  
(1)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
7Thclk +1 7Thclk +1  
tw(NOE)  
FMC_NWE low time  
FMC_NWAIT low time  
5Thclk -1  
Thclk -0.5  
5Thclk +1.5  
5Thclk +1  
ns  
tw(NWAIT)  
-
-
-
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
th(NE_NWAIT)  
FMC_NEx hold time after FMC_NWAIT invalid 4Thclk +1  
1. Guaranteed by characterization results.  
DS11853 Rev 6  
179/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 63. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FMC_NEx  
FMC_NOE  
FMC_NWE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
t
th(A_NWE)  
v(A_NE)  
FMC_A[25:0]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32754V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
(1)  
Table 95. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
3Thclk +1  
3Thclk +1  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
Thclk - 0.5  
Thclk +0.5  
Thclk - 1.5  
Thclk +0.5  
th(NE_NWE)  
tv(A_NE)  
th(A_NWE)  
tv(BL_NE)  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
Address hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
FMC_BL hold time after FMC_NWE high  
Data to FMC_NEx low to Data valid  
Data hold time after FMC_NWE high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
Thclk  
-
-
0
Thclk - 0.5  
-
ns  
-
0.5  
th(BL_NWE)  
tv(Data_NE)  
th(Data_NWE)  
tv(NADV_NE)  
tw(NADV)  
Thclk - 0.5  
-
-
Thclk +1.5  
Thclk +0.5  
-
-
-
0
Thclk - 0.5  
1. Guaranteed by characterization results.  
180/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Table 96. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT  
(1)  
timings  
Symbol  
Parameter  
FMC_NE low time  
FMC_NWE low time  
Min  
Max  
Unit  
tw(NE)  
8Thclk -1  
8Thclk +1  
tw(NWE)  
6Thclk -1.5  
6Thclk -1  
6Thclk +0.5  
-
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
4Thclk + 2  
-
1. Guaranteed by characterization results.  
Figure 64. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FMC_ NE  
FMC_NOE  
t
t
h(NE_NOE)  
v(NOE_NE)  
t
w(NOE)  
t
FMC_NWE  
t
h(A_NOE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
NBL  
t
t
v(BL_NE)  
h(BL_NOE)  
FMC_ NBL[1:0]  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
Address  
su(Data_NOE)  
Data  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32755V1  
DS11853 Rev 6  
181/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 97. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
ttw(NOE)  
3Thclk -1  
3Thclk +1  
2Thclk +0.5  
Thclk +1  
-
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2Thclk  
Thclk -1  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
0
-
0
0.5  
0.5  
Thclk -0.5  
Thclk +1  
FMC_AD(address) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
Thclk +0.5  
-
ns  
th(A_NOE)  
th(BL_NOE)  
tv(BL_NE)  
Address hold time after FMC_NOE high  
FMC_BL time after FMC_NOE high  
FMC_NEx low to FMC_BL valid  
Thclk -0.5  
-
0
-
-
0.5  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NE)  
th(Data_NOE)  
Data to FMC_NEx high setup time  
Data to FMC_NOE high setup time  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
Thclk -1.5  
-
-
-
-
Thclk -1.5  
0
0
1. Guaranteed by characterization results.  
(1)  
Table 98. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
8Thclk -1  
8Thclk +1  
tw(NOE)  
5Thclk -1.5  
8Thclk +0.5  
-
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5Thclk +1.5  
FMC_NEx hold time after FMC_NWAIT  
invalid  
th(NE_NWAIT)  
4Thclk +1  
-
1. Guaranteed by characterization results.  
182/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 65. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FMC_ NEx  
FMC_NOE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
FMC_NWE  
t
t
h(A_NWE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_ NBL[1:0]  
NBL  
v(Data_NADV)  
Data  
t
t
h(Data_NWE)  
t
v(A_NE)  
Address  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32756V1  
(1)  
Table 99. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
4Thclk -1  
Thclk -0.5  
4Thclk +1  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
Thclk +0.5  
2Thclk -0.5 2Thclk +0.5  
th(NE_NWE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
Thclk -0.5  
-
0
-
0
0.5  
Thclk  
Thclk +1  
ns  
FMC_AD(adress) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
Thclk +0.5  
-
th(A_NWE)  
th(BL_NWE)  
tv(BL_NE)  
Address hold time after FMC_NWE high  
FMC_BL hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
Thclk +0.5  
-
Thclk -0.5  
-
-
0.5  
tv(Data_NADV)  
th(Data_NWE)  
FMC_NADV high to Data valid  
-
Thclk +1.5  
-
Data hold time after FMC_NWE high  
Thclk +0.5  
DS11853 Rev 6  
183/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
1. Guaranteed by characterization results.  
(1)  
Table 100. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NWE low time  
9Thclk - 1  
9Thclk + 1  
tw(NWE)  
7Thclk -0.5 7Thclk + 0.5  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
6Thclk + 2  
4Thclk - 1  
-
-
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
1. Guaranteed by characterization results.  
Synchronous waveforms and timings  
Figure 66 through Figure 69 represent synchronous waveforms and Table 101 through  
Table 104 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable;  
MemoryType = FMC_MemoryType_CRAM;  
WriteBurst = FMC_WriteBurst_Enable;  
CLKDivision = 1;  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
CL = 30 pF on data and address lines. CL = 10 pF on FMC_CLK unless otherwise  
specified.  
In all timing tables, the THCLK is the HCLK clock period.  
For 2.7 VVDD3.6 V, maximum FMC_CLK = 108 MHz at CL=20 pF or 90 MHz at  
CL=30 pF (on FMC_CLK).  
For 1.71 VVDD<2.7 V, maximum FMC_CLK = 70 MHz at CL=10 pF (on FMC_CLK).  
184/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 66. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
td(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
td(CLKH-AIV)  
d(CLKL-AV)  
FMC_A[25:16]  
t
td(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
MS32757V1  
DS11853 Rev 6  
185/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 101. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Thclk - 0.5  
-
2
-
td(CLKL-NExL)  
td(CLKH_NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
Thclk + 0.5  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
1
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NOE low  
-
3
-
Thclk  
-
2
-
ns  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
Thclk - 0.5  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
2
-
0
FMC_A/D[15:0] valid data before FMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
0.5  
-
FMC_A/D[15:0] valid data after FMC_CLK high  
4
2
3
-
-
-
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Guaranteed by characterization results.  
186/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 67. Synchronous multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
t
d(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
FMC_A[25:16]  
t
d(CLKH-NWEH)  
d(CLKL-NWEL)  
FMC_NWE  
t
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
d(CLKL-Data)  
d(CLKL-ADV)  
FMC_AD[15:0]  
AD[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
t
d(CLKH-NBLH)  
FMC_NBL  
MS32758V1  
DS11853 Rev 6  
187/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 102. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Thclk - 0.5  
-
2
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
Thclk +0.5  
-
1
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
3
-
Thclk  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Guaranteed by characterization results.  
-
1.5  
-
ns  
Thclk +0.5  
-
3
-
0
-
3
2
-
-
Thclk +0.5  
2
3
-
-
188/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 68. Synchronous non-multiplexed NOR/PSRAM read timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
FMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
t
t
h(CLKH-DV)  
su(DV-CLKH)  
FMC_D[15:0]  
FMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
MS32759V1  
(1)  
Table 103. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Thclk - 0.5  
-
2
-
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
Thclk +0.5  
-
0.5  
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
3
-
Thclk  
ns  
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
-
2
-
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high  
Thclk -0.5  
0.5  
4
-
th(CLKH-DV)  
FMC_D[15:0] valid data after FMC_CLK high  
-
t(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
2
-
3
-
DS11853 Rev 6  
189/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
1. Guaranteed by characterization results.  
Figure 69. Synchronous non-multiplexed PSRAM write timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKL-NExL)  
FMC_NEx  
d(CLKH-NExH)  
Data latency = 0  
d(CLKL-NADVH)  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
FMC_NWE  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
td(CLKH-NWEH)  
d(CLKL-NWEL)  
t
t
d(CLKL-Data)  
d(CLKL-Data)  
FMC_D[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FMC_NBL  
t
t
d(CLKH-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
MS32760V1  
190/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
(1)  
Table 104. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
t(CLK)  
FMC_CLK period  
2Thclk - 0.5  
-
2
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
t(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
Thclk +0.5  
-
0.5  
-
0
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
3
-
Thclk  
ns  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1. Guaranteed by characterization results.  
-
1.5  
-
Thclk +1  
-
3
2
-
-
Thclk +1  
2
-
3.5  
-
NAND controller waveforms and timings  
Figure 70 through Figure 73 represent synchronous waveforms, and Table 105 and  
Table 106 provide the corresponding timings. The results shown in this table are obtained  
with the following FMC configuration:  
COM.FMC_SetupTime = 0x01;  
COM.FMC_WaitSetupTime = 0x03;  
COM.FMC_HoldSetupTime = 0x02;  
COM.FMC_HiZSetupTime = 0x01;  
ATT.FMC_SetupTime = 0x01;  
ATT.FMC_WaitSetupTime = 0x03;  
ATT.FMC_HoldSetupTime = 0x02;  
ATT.FMC_HiZSetupTime = 0x01;  
Bank = FMC_Bank_NAND;  
MemoryDataWidth = FMC_MemoryDataWidth_16b;  
ECC = FMC_ECC_Enable;  
ECCPageSize = FMC_ECCPageSize_512Bytes;  
TCLRSetupTime = 0;  
TARSetupTime = 0.  
In all timing tables, the THCLK is the HCLK clock period.  
DS11853 Rev 6  
191/229  
201  
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 70. NAND controller waveforms for read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
FMC_NWE  
t
th(NOE-ALE)  
d(ALE-NOE)  
FMC_NOE (NRE)  
FMC_D[15:0]  
t
t
h(NOE-D)  
su(D-NOE)  
MS32767V1  
Figure 71. NAND controller waveforms for write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NWE-ALE)  
d(ALE-NWE)  
FMC_NWE  
FMC_NOE (NRE)  
FMC_D[15:0]  
t
t
h(NWE-D)  
v(NWE-D)  
MS32768V1  
Figure 72. NAND controller waveforms for common memory read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NOE-ALE)  
d(ALE-NOE)  
FMC_NWE  
FMC_NOE  
t
w(NOE)  
t
t
h(NOE-D)  
su(D-NOE)  
FMC_D[15:0]  
MS32769V1  
192/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 73. NAND controller waveforms for common memory write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
t
h(NOE-ALE)  
d(ALE-NOE)  
w(NWE)  
FMC_NWE  
FMC_N OE  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FMC_D[15:0]  
MS32770V1  
(1)  
Table 105. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
FMC_NOE low width  
Min  
Max  
Unit  
tw(N0E)  
4Thclk -0.5 4Thclk +0.5  
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high  
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high  
11  
-
0
-
ns  
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
1. Guaranteed by characterization results.  
-
3Thclk +1.5  
-
4Thclk - 2  
(1)  
Table 106. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
FMC_NWE low width  
Min  
Max  
Unit  
tw(NWE)  
tv(NWE-D)  
th(NWE-D)  
td(D-NWE)  
td(ALE-NWE)  
th(NWE-ALE)  
4Thclk -0.5 4Thclk +0.5  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
FMC_D[15-0] valid before FMC_NWE high  
FMC_ALE valid before FMC_NWE low  
FMC_NWE high to FMC_ALE invalid  
0
-
2Thclk - 1  
5Thclk - 1  
-
-
ns  
-
3Thclk +1.5  
-
2Thclk - 2  
1. Guaranteed by characterization results.  
DS11853 Rev 6  
193/229  
201  
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
SDRAM waveforms and timings  
CL = 30 pF on data and address lines. CL = 10 pF on FMC_SDCLK unless otherwise  
specified.  
In all timing tables, the THCLK is the HCLK clock period.  
For 3.0 VV 3.6 V, maximum FMC_SDCLK= 100 MHz at CL=20 pF (on  
DD  
FMC_SDCLK).  
For 2.7 VV 3.6 V, maximum FMC_SDCLK = 90 MHz at CL=30 pF (on  
DD  
FMC_SDCLK).  
For 1.71 VV <1.9 V, maximum FMC_SDCLK = 70 MHz at CL=10 pF (on  
DD  
FMC_SDCLK).  
Figure 74. SDRAM read access waveforms (CL = 1)  
FMC_SDCLK  
td(SDCLKL_AddC)  
td(SDCLKL_AddR)  
th(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
th(SDCLKL_NCAS)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
td(SDCLKL_NCAS)  
FMC_SDNWE  
FMC_D[31:0]  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
Data1 Data2 Datai  
Datan  
MS32751V2  
194/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Symbol  
Electrical characteristics  
(1)  
Table 107. SDRAM read timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2Thclk -0.5  
2Thclk +0.5  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
1.5  
2
-
-
-
1.5  
1.5  
-
td(SDCLKL- SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0.5  
-
1
0.5  
-
-
1.5  
-
0
1. Guaranteed by characterization results.  
(1)  
Table 108. LPSDR SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tW(SDCLK)  
FMC_SDCLK period  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2Thclk -0.5  
2Thclk +0.5  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
td(SDCLKL_Add)  
0
4.5  
-
-
-
1.5  
1.5  
-
td(SDCLKL_SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
ns  
0
-
0.5  
-
0
-
1.5  
-
0
1. Guaranteed by characterization results.  
DS11853 Rev 6  
195/229  
201  
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 75. SDRAM write access waveforms  
FMC_SDCLK  
td(SDCLKL_AddC)  
th(SDCLKL_AddR)  
td(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
FMC_SDNWE  
th(SDCLKL_NCAS)  
th(SDCLKL_NWE)  
td(SDCLKL_NCAS)  
td(SDCLKL_NWE)  
td(SDCLKL_Data)  
Data1  
Data2  
Datai  
Datan  
FMC_D[31:0]  
td(SDCLKL_NBL)  
FMC_NBL[3:0]  
th(SDCLKL_Data)  
MS32752V2  
(1)  
Table 109. SDRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
2Thclk -0.5  
2Thclk +0.5  
td(SDCLKL _Data  
th(SDCLKL _Data)  
td(SDCLKL_Add)  
)
-
0
1.5  
-
-
1.5  
1.5  
-
td(SDCLKL_SDNWE)  
th(SDCLKL_SDNWE)  
td(SDCLKL_ SDNE)  
th(SDCLKL-_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_SDNCAS)  
-
0.5  
-
ns  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
1.5  
-
0.5  
-
1
0.5  
-
-
1.5  
-
0.5  
1. Guaranteed by characterization results.  
196/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Symbol  
Electrical characteristics  
(1)  
Table 110. LPSDR SDRAM write timings  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
2Thclk -0.5  
2Thclk +0.5  
td(SDCLKL _Data  
)
-
0
-
2
-
th(SDCLKL _Data)  
td(SDCLKL_Add)  
1.5  
1.5  
-
td(SDCLKL-SDNWE)  
th(SDCLKL-SDNWE)  
td(SDCLKL- SDNE)  
th(SDCLKL- SDNE)  
td(SDCLKL-SDNRAS)  
th(SDCLKL-SDNRAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL-SDNCAS)  
-
0
-
ns  
0.5  
-
0.  
-
2
0
-
-
2
0
-
1. Guaranteed by characterization results.  
6.3.31  
Quad-SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 111 and Table 112 for Quad-SPI  
are derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 16: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 20 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 111. Quad-SPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 VVDD<3.6 V  
-
-
108  
CL=20 pF  
Quad-SPI clock  
frequency  
Fck1/t(CK)  
MHz  
1.71 V<VDD<3.6 V  
CL=15 pF  
-
-
100  
DS11853 Rev 6  
197/229  
201  
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
(1)  
Table 111. Quad-SPI characteristics (continued)in SDR mode (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(CKH)  
tw(CKL)  
ts(IN)  
t(CK)/2 - 0.5  
-
t(CK)/2 + 0.5  
Quad-SPI clock high  
and low time  
-
t(CK)/2 - 0.5  
-
-
t(CK)/2 + 0.5  
Data input setup time  
Data input hold time  
3
1
-
-
-
th(IN)  
-
ns  
2.7 V<VDD<3.6 V  
-
1.5  
1.5  
-
3
tv(OUT) Data output valid time  
th(OUT) Data output hold time  
1.71 V<VDD<3.6 V  
-
-
2.5  
-
0.5  
1. Guaranteed by characterization results.  
(1)  
Table 112. Quad-SPI characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V<VDD<3.6 V  
CL=20 pF  
-
-
80  
1.8 V<VDD<3.6 V  
CL=15 pF  
Fck1/t(CK) Quad-SPI clock frequency  
-
-
-
80  
80  
MHz  
1.71 V<VDD<3.6 V  
CL=10 pF  
-
-
-
t(CK)/2 -  
0.5  
t(CK)/2 +  
0.5  
tw(CKH)  
Quad-SPI clock high and  
-
low time  
tw(CKL)  
t(CK)/2 -  
0.5  
t(CK)/2 +  
0.5  
2.7 V<VDD<3.6 V  
1.71 V<VDD<2 V  
2.7 V<VDD<3.6 V  
1.71 V<VDD<2 V  
2.7 V<VDD<3.6 V  
1
0.5  
2.25  
2.75  
-
-
-
ts(IN),  
Data input setup time  
tsf(IN)  
-
-
-
-
-
thr(IN),  
Data input hold time  
thf(IN)  
-
ns  
9.5  
11.5  
1.71 V<VDD<3.6 V  
DHHC=0  
-
9.5  
12.25  
tvr(OUT),  
Data output valid time  
tvf(OUT)  
DHHC=1  
Thclk/2 Thclk/2  
-
+2  
+2.5  
Pres=1, 2...  
DHHC=0  
5.5  
-
-
thr(OUT),  
Data output hold time  
thf(OUT)  
DHHC=1  
Thclk/2  
+0.75  
-
-
Pres=1, 2...  
1. Guaranteed by characterization results.  
198/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Electrical characteristics  
Figure 76. Quad-SPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
Figure 77. Quad-SPI timing diagram - DDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tvf(OUT) thr(OUT)  
D0  
tvr(OUT)  
thf(OUT)  
D3  
Data output  
D1  
D2  
D4  
tsr(IN)thr(IN)  
D5  
tsf(IN) thf(IN)  
Data input  
D0  
D1  
D2  
D3  
D4  
D5  
MSv36879V1  
6.3.32  
SD/SDIO MMC card host interface (SDMMC) characteristics  
Unless otherwise specified, the parameters given in Table 113 for the SDIO/MMC interface  
are derived from tests performed under the ambient temperature, f  
frequency and V  
PCLK2  
DD  
supply voltage conditions summarized in Table 16, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 6.3.20: I/O port characteristics for more details on the input/output  
characteristics.  
DS11853 Rev 6  
199/229  
201  
 
 
 
Electrical characteristics  
STM32F722xx STM32F723xx  
Figure 78. SDIO high-speed mode  
Figure 79. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
(1)  
Table 113. Dynamic characteristics: SD / MMC characteristics, V =2.7V to 3.6V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDMMC_CK/fPCLK2 frequency ratio  
Clock low time  
-
0
-
-
50  
8/3  
-
MHz  
-
-
-
fpp =50 MHz  
fpp =50 MHz  
9
9
10  
10  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in MMC and SD HS mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50 MHz  
fpp =50 MHz  
1
3
-
-
-
-
CMD, D outputs (referenced to CK) in MMC and SD HS mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50 MHz  
fpp =50 MHz  
-
11  
-
12  
-
9
200/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Electrical characteristics  
(1)  
Table 113. Dynamic characteristics: SD / MMC characteristics, V =2.7V to 3.6V (continued)  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CMD, D inputs (referenced to CK) in SD default mode  
1
3
-
-
-
-
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
fpp =25 MHz  
fpp =25 MHz  
ns  
CMD, D outputs (referenced to CK) in SD default mode  
-
2
-
2.5  
-
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
fpp =25 MHz  
fpp =25 MHz  
ns  
0.5  
1. Guaranteed by characterization results,.  
(1)(2)  
Table 114. Dynamic characteristics: eMMC characteristics, V =1.71V to 1.9V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fPP  
-
tW(CKL)  
tW(CKH)  
Clock frequency in data transfer mode  
SDMMC_CK/fPCLK2 frequency ratio  
Clock low time  
-
0
-
-
-
50  
8/3  
-
MHz  
-
-
fpp =50 MHz  
fpp =50 MHz  
9.5  
8.5  
10.5  
9.5  
ns  
ns  
ns  
Clock high time  
-
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
fpp =50 MHz  
fpp =50 MHz  
0
-
-
-
-
4.5  
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
fpp =50 MHz  
fpp =50 MHz  
-
12  
-
14  
-
10.5  
1. Guaranteed by characterization results.  
2. Cload = 20 pF.  
DS11853 Rev 6  
201/229  
201  
 
Package information  
STM32F722xx STM32F723xx  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
7.1  
LQFP64 – 10 x 10 mm, low-profile quad flat package  
information  
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 80. LQFP64 outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 115. LQFP64 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
-
-
-
1.60  
0.15  
1.45  
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.05  
1.350  
0.0020  
0.0531  
-
1.40  
0.0551  
202/229  
DS11853 Rev 6  
 
 
 
 
 
STM32F722xx STM32F723xx  
Package information  
Table 115. LQFP64 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
b
c
0.17  
0.22  
-
0.27  
0.0067  
0.0087  
-
0.0106  
0.09  
0.20  
0.0035  
0.0079  
D
-
12.00  
10.00  
7.50  
12.00  
10.00  
7.50  
0.50  
3.5°  
0.60  
1.00  
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
3.5°  
-
D1  
D3  
E
-
-
-
-
-
-
-
-
-
-
-
-
E1  
E3  
e
-
-
-
-
-
-
-
-
-
-
0°  
0.45  
-
-
-
7°  
K
7°  
0°  
L
0.75  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
0.08  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 81. LQFP64 recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are in millimeters.  
DS11853 Rev 6  
203/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
LQFP64 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 82. LQFP64 top view example  
Product identification(1)  
Revision code  
R
STM32F722  
RET6  
Date code  
Y WW  
Pin 1  
indentifier  
MSv42090V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
204/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
7.2  
LQFP100, 14 x 14 mm low-profile quad flat package  
information  
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.  
Figure 83. LQFP100 outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
75  
C
D
D1  
D3  
L
L1  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V5  
1. Drawing is not to scale.  
Table 116. LQPF100 mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
DS11853 Rev 6  
205/229  
225  
 
 
 
Package information  
Symbol  
STM32F722xx STM32F723xx  
Table 116. LQPF100 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 84. LQFP100 recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906c  
1. Dimensions are expressed in millimeters.  
206/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
LQFP100 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 85. LQFP100 top view example  
(1)  
Product identification  
STM32F722  
Revision code  
VET6  
R
Date code  
Y WW  
Pin 1 identifier  
MS42091V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS11853 Rev 6  
207/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
7.3  
LQFP144, 20 x 20 mm low-profile quad flat package  
information  
LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.  
Figure 86. LQFP144 outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
108  
73  
109  
72  
37  
144  
1
36  
PIN 1  
IDENTIFICATION  
e
1A_ME_V3  
1. Drawing is not to scale.  
Table 117. LQFP144 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.874  
0.050  
1.350  
0.170  
0.090  
21.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
0.8661  
208/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Package information  
Table 117. LQFP144 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
D1  
D3  
E
19.800  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
20.200  
0.7795  
0.7874  
0.689  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
0.7953  
-
-
-
-
21.800  
22.200  
0.8583  
0.8740  
E1  
E3  
e
19.800  
20.200  
0.7795  
0.7953  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 87. LQFP144 recommended footprint  
1.35  
108  
73  
109  
72  
0.35  
0.5  
19.9  
17.85  
22.6  
144  
37  
1
36  
19.9  
22.6  
ai14905e  
1. Dimensions are expressed in millimeters.  
DS11853 Rev 6  
209/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
LQP144 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 88. LQFP144 top view example  
Revision code  
(1)  
Product identification  
R
STM32F722ZET6  
YWW  
Date code  
Pin 1  
identifier  
MS42092V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
210/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
7.4  
LQFP176 24 x 24 mm low-profile quad flat package  
information  
LQFP176 is a 176-pin, 24 x 24 mm low-profile quad flat package.  
Figure 89. LQFP176 outline  
Seating plane  
C
0.25 mm  
gauge plane  
k
A1  
L
HD  
L1  
PIN 1  
IDENTIFICATION  
D
ZE  
E
HE  
e
ZD  
b
1T_ME_V2  
1. Drawing is not to scale.  
Table 118. LQFP176 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
-
-
-
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
24.100  
-
-
-
-
-
-
-
0.0630  
0.0059  
0.0060  
0.0106  
0.0079  
0.9488  
0.050  
1.350  
0.170  
0.090  
23.900  
0.0020  
0.0531  
0.0067  
0.0035  
0.9409  
C
D
DS11853 Rev 6  
211/229  
225  
 
 
 
Package information  
STM32F722xx STM32F723xx  
Table 118. LQFP176 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E
e
23.900  
-
24.100  
0.9409  
-
0.9488  
-
0.500  
-
-
0.0197  
-
HD  
HE  
L
25.900  
-
26.100  
1.0200  
-
1.0276  
25.900  
-
26.100  
1.0200  
-
1.0276  
0.450  
-
0.750  
0.0177  
-
0.0295  
L1  
ZD  
ZE  
ccc  
k
-
-
1.000  
1.250  
1.250  
-
-
-
-
0.0394  
0.0492  
0.0492  
-
-
-
-
-
-
-
-
-
0.080  
7 °  
-
0.0031  
7 °  
0 °  
-
0 °  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
212/229  
DS11853 Rev 6  
STM32F722xx STM32F723xx  
Package information  
Figure 90. LQFP176 recommended footprint  
1.2  
176  
133  
132  
0.5  
1
0.3  
44  
45  
89  
88  
1.2  
21.8  
26.7  
1T_FP_V1  
1. Dimensions are expressed in millimeters.  
DS11853 Rev 6  
213/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
LQFP176 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 91. LQFP176 top view example  
(1)  
Product identification  
STM32F722IET6  
Revision code  
Date code  
Y WW  
R
Pin 1  
identifier  
MS44207V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
214/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
7.5  
UFBGA144 package information  
UFBGA144 is a 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.  
Figure 92. UFBGA144 outline  
Z Seating plane  
ddd Z  
A4  
A2  
A
A3  
A1  
A
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
e
F
F
D1  
D
e
Y
M
12  
1
Øb (144 balls)  
Øeee M Z Y X  
Øfff M Z  
BOTTOM VIEW  
TOP VIEW  
A0AS_ME_V2  
1. Drawing is not to scale.  
Table 119. UFBGA144 mechanical data  
millimeters  
inches(1)  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.450  
6.950  
5.450  
-
0.370  
0.320  
7.050  
5.550  
7.050  
5.550  
-
0.0106  
0.0091  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0146  
0.0126  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
DS11853 Rev 6  
215/229  
225  
 
 
 
Package information  
STM32F722xx STM32F723xx  
Table 119. UFBGA144 mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 93. UFBGA144 recommended footprint  
Dpad  
Dsm  
A0AS_FP_V1  
Table 120. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.50 mm  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.120 mm  
216/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Package information  
UFBGA144 device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 94. UFBGA144 top view example  
Product  
STM32F  
identification(1)  
723ZEI6  
Date code  
Standard ST logo  
Y WW  
Revision code  
Ball 1 identifier  
R
MS44251V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS11853 Rev 6  
217/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
7.6  
UFBGA176+25, 10 x 10, 0.65 mm ultra thin-pitch ball grid  
array package information  
UFBGA176+25 is a 176+25-ball, 10 × 10 × 0.65 mm ultra thin fine-pitch ball grid array  
package  
Figure 95. UFBGA176 outline  
C
Seating plane  
A2 A4  
ddd  
C
A
A1  
b
A1 ball  
index  
area  
A
A1 ball  
identifier  
E
e
F
A
R
F
D
e
B
15  
1
Øb (176 + 25 balls)  
BOTTOM VIEW  
TOP VIEW  
Ø eee M  
Ø fff  
C
C
A B  
M
A0E7_ME_V6  
1. Drawing is not to scale.  
Table 121. UFBGA176+25 mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
0.460  
0.050  
0.400  
0.230  
9.950  
9.950  
-
0.530  
0.080  
0.450  
0.280  
10.000  
10.000  
0.650  
0.450  
-
0.600  
0.110  
0.500  
0.330  
10.050  
10.050  
-
0.0181  
0.002  
0.0157  
0.0091  
0.3917  
0.3917  
-
0.0209  
0.0031  
0.0177  
0.0110  
0.3937  
0.3937  
0.0256  
0.0177  
-
0.0236  
0.0043  
0.0197  
0.0130  
0.3957  
0.3957  
-
D
E
e
F
0.400  
-
0.500  
0.080  
0.150  
0.080  
0.0157  
-
0.0197  
0.0031  
0.0059  
0.0031  
ddd  
eee  
fff  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
218/229  
DS11853 Rev 6  
 
 
 
STM32F722xx STM32F723xx  
Package information  
Figure 96. UFBGA176+25 recommended footprint  
Dpad  
Dsm  
A0E7_FP_V1  
Table 122. UFBGA176+25 recommended PCB design rules (0.65 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.65 mm  
0.300 mm  
0.400 mm typ. (depends on the soldermask reg-  
istration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.300 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
DS11853 Rev 6  
219/229  
225  
 
 
Package information  
STM32F722xx STM32F723xx  
UFBGA176+25 device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 97. UFBGA176 top view example  
Revision code  
Product identification(1)  
R
STM32F722  
IEK6  
Date code  
Ball A1  
indentifier  
Y WW  
MS44208V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
220/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
7.7  
WLCSP100 - 0.4 mm pitch wafer level chip scale package  
information  
WLCSP100 is a 100-ball, 4.166 x 4.628 mm, 0.4 mm pitch wafer level chip scale package.  
Figure 98. WLCSP100 outline  
A1 BALL LOCATION  
A
DETAIL A  
K
BOTTOM VIEW  
SIDE VIEW  
FRONT VIEW  
DETAIL A  
ROTATED 90°  
A1 ORIENTATION  
REFERENCE  
aaa  
(4X)  
TOP VIEW  
WAFER BACK SIDE  
WLCSP100L_A01Q_ME_V1  
1. Drawing is not to scale.  
DS11853 Rev 6  
221/229  
225  
 
 
Package information  
STM32F722xx STM32F723xx  
Table 123. WLCSP100 mechanical data  
millimeters  
Typ  
inches(1)  
Min  
Symbol  
Min  
Max  
Typ  
Max  
A
A1  
A2  
A3(2)  
Ø b(3)  
D
0.525  
0.555  
0.17  
0.38  
0.025  
0.25  
4.201  
4.663  
0.4  
0.585  
0.0207  
0.0219  
0.0067  
0.0150  
0.0010  
0.0098  
0.1654  
0.1836  
0.0157  
0.1417  
0.1417  
0.0118  
0.0209  
3.9370  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.22  
0.28  
0.0110  
4.166  
4.236  
0.1668  
E
4.628  
4.698  
0.1850  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
3.6  
e2  
3.6  
F
0.3005  
0.5315  
100  
G
N
aaa  
bbb  
ccc  
ddd  
eee  
0.1  
0.1  
0.1  
0.05  
0.05  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating.  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 99. WLCSP100 recommended footprint  
Dpad  
Dsm  
WLCSP100L_A01Q_FP_V1  
222/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Package information  
Table 124. WLCSP100 recommended PCB design rules (0.4 mm pitch)  
Dimension Recommended values  
Pitch  
0.4 mm  
Dpad  
0.225 mm  
0.290 mm  
0.1 mm  
Dsm  
Stencil thickness  
DS11853 Rev 6  
223/229  
225  
 
Package information  
STM32F722xx STM32F723xx  
WLCSP100 device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 100. WLCSP100 top view example  
Ball A1 identifier  
Product identification(1)  
32F723VEY6  
Revision code  
Y WW  
R
MSv44209V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
224/229  
DS11853 Rev 6  
 
STM32F722xx STM32F723xx  
Package information  
7.8  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 125. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
48.5  
47.1  
35.85  
45.6  
43.9  
42  
Thermal resistance junction-ambient  
LQFP100 - 14× 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
WLCSP100 - 0.4 mm pitch  
Thermal resistance junction-ambient  
LQFP144 - 20 × 20 mm / 0.5 mm pitch  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
LQFP176 - 24 × 24 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA144 - 7 × 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA176 - 10× 10 mm / 0.65 mm pitch  
41.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DS11853 Rev 6  
225/229  
225  
 
 
 
Ordering information  
STM32F722xx STM32F723xx  
8
Ordering information  
Table 126. Ordering information scheme  
Example:  
Device family  
STM32  
F
722 V C  
T
6 xxx  
STM32 = Arm-based 32-bit microcontroller  
Product type  
F = general-purpose  
Device subfamily  
722 = STM32F722xx, no OTG PHY HS  
723 = STM32F723xx, with OTG PHY HS  
Pin count  
R = 64 pins  
V = 100 pins  
Z = 144 pins  
I = 176 pins  
Flash memory size  
C = 256 Kbytes of Flash memory  
E = 512 Kbytes of Flash memory  
Package  
T = LQFP  
K = UFBGA (10 x 10 mm)  
I = UFBGA (7 x 7 mm)  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C.  
7 = Industrial temperature range, –40 to 105 °C.  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, contact the nearest ST sales office.  
226/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
Recommendations when using internal reset OFF  
Appendix A  
Recommendations when using internal reset  
OFF  
When the internal reset is OFF, the following integrated features are no longer supported:  
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.  
The brownout reset (BOR) circuitry must be disabled.  
The embedded programmable voltage detector (PVD) is disabled.  
V
functionality is no more available and VBAT pin should be connected to V  
.
BAT  
DD  
The over-drive mode is not supported.  
A.1  
Operating conditions  
Table 127. Limitations depending on the operating power supply range  
Maximum  
Flash  
Operating  
power  
supply  
range  
memory  
access  
frequency  
Maximum Flash  
memory access  
frequency with  
PossibleFlash  
memory  
operations  
ADC  
operation  
I/O operation  
with no wait wait states (1)(2)  
states  
(fFlashmax  
)
Conversion  
time up to  
1.2 Msps  
180 MHz with 8  
wait states and  
over-drive OFF  
8-bit erase and  
program  
operations only  
VDD =1.7 to  
2.1 V(3)  
– No I/O  
compensation  
20 MHz  
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no  
wait state is required.  
2. Thanks to the ART accelerator on ITCM interface and L1-cache on AXI interface, the number of wait states  
given here does not impact the execution speed from the Flash memory since the ART accelerator or L1-  
cache allows to achieve a performance equivalent to 0-wait state program execution.  
3. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to  
Section 3.15.1: Internal reset ON).  
DS11853 Rev 6  
227/229  
228  
 
 
 
Revision history  
STM32F722xx STM32F723xx  
Revision history  
Table 128. Document revision history  
Changes  
Date  
Revision  
03-Feb-2017  
1
Initial release.  
Updated cover with the maximum SPI speed at 54 Mbit/s.  
30-Mar-2017  
2
Updated Figure 15: STM32F722xx LQFP64 pinout.  
Updated Figure 18: STM32F723xx WLCSP100 ballout (with OTG PHY  
HS).  
Updated note 1 below all the package device marking figures.  
Updated Section 1: Introduction.  
Updated Table 60: I/O current injection susceptibility note by ‘injection  
is not possible’.  
01-Jun-2017  
3
Updated Table 67: ADC characteristics RADC min at 1.5 Kohm.  
Updated Figure 47: Recommended NRST pin protection note about the  
0.1uF capacitor.  
Updated Table 78: DAC characteristics RLOAD feature.  
Updated Figure 41: ACCHSI versus temperature.  
Added Section 1: Introduction.  
Removed memory mapping, transferred in the reference manual  
(RM0431).  
10-Apr-2018  
4
Updated Table 10: STM32F722xx and STM32F723xx pin and ball  
definition footnote 5 only for PC14, PC15, PH0, PH1.  
Updated Table 125: Package thermal characteristics thermal values for  
LQFP packages.  
Updated Table 1: Device summary adding STM32F723VC.  
Added LQFP100 package for STM32F723xx devices:  
– Updated Table 2: STM32F722xx and STM32F723xx features and  
peripheral counts.  
– Updated Section 2.2: STM32F723xx versus STM32F722xx  
LQFP100/ LQFP144/ LQFP176 packages.  
– Added Figure 3: Compatible board design for LQFP100 package.  
– Added Figure 17: STM32F723xx LQFP100 pinout.  
23-Mar-2020  
5
– Updated Table 10: STM32F722xx and STM32F723xx pin and ball  
definition  
Added VDDPHYS  
– Updated Figure 6: STM32F722xx and STM32F723xx block diagram.  
– Updated Figure 29: STM32F723xx power supply scheme.  
– Updated Table 13: Voltage characteristics  
– Updated Table 16: General operating conditions  
Updated Section 7: Package information.  
Updated Table 53: Flash memory programming maximum  
programming voltage (Vprog) for 32-bit Flash program operation at 3.6V  
(instead of 3V).  
06-Apr-2020  
6
228/229  
DS11853 Rev 6  
 
 
STM32F722xx STM32F723xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS11853 Rev 6  
229/229  
229  
 
 

相关型号:

STM32F722ICI6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICI7TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICK6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICK7TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICT6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICT7TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICY6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722ICY7TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722IE

带DSP和FPU的高性能ARM Cortex-M7 MCU,具有512 KB Flash、216 MHz CPU、ART加速器、一级缓存和SDRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722IEI6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722IEI7TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32F722IEK6TR

Arm Cortex-M7 32b MCUFPU, 462DMIPS, up to 512KB Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR