STM32G474VET6XXX [STMICROELECTRONICS]

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer;
STM32G474VET6XXX
型号: STM32G474VET6XXX
厂家: ST    ST
描述:

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

静态存储器
文件: 总236页 (文件大小:3039K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32G474xB STM32G474xC  
STM32G474xE  
Arm® Cortex®-M4 32-bit MCU+FPU, 170 MHz / 213 DMIPS,  
128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer  
Datasheet - production data  
Features  
®
®
Core: Arm 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
Accelerator) allowing 0-wait-state execution  
from Flash memory, frequency up to 170 MHz  
with 213 DMIPS, MPU, DSP instructions  
LQFP48 (7 x 7 mm)  
WLCSP81  
(4.02 x 4.27 mm)  
UFQFPN48  
(7 x 7 mm)  
LQFP64 (10 x 10 mm)  
LQFP80 (12 x 12 mm)  
LQFP100 (14 x 14 mm)  
LQFP128 (14 x 14 mm)  
Operating conditions:  
– V , V  
voltage range:  
DD  
DDA  
UFBGA121  
(6 x 6 mm)  
TFBGA100  
(8 x 8 mm)  
1.71 V to 3.6 V  
Mathematical hardware accelerators  
– CORDIC for trigonometric functions  
acceleration  
Internal 32 kHz RC oscillator (± 5%)  
Up to 107 fast I/Os  
– FMAC: filter mathematical accelerator  
– All mappable on external interrupt vectors  
Memories  
– Several I/Os with 5 V tolerant capability  
– 512 Kbytes of Flash memory with ECC  
support, two banks read-while-write,  
proprietary code readout protection  
(PCROP), securable memory area, 1 Kbyte  
OTP  
Interconnect matrix  
16-channel DMA controller  
5 x 12-bit ADCs 0.25 µs, up to 42 channels.  
Resolution up to 16-bit with hardware  
– 96 Kbytes of SRAM, with hardware parity  
check implemented on the first 32 Kbytes  
oversampling, 0 to 3.6 V conversion range  
7 x 12-bit DAC channels  
– Routine booster: 32 Kbytes of SRAM on  
instruction and data bus, with hardware  
parity check (CCM SRAM)  
– 3 x buffered external channels 1 MSPS  
– 4 x unbuffered internal channels 15 MSPS  
– External memory interface for static  
memories FSMC supporting SRAM,  
PSRAM, NOR and NAND memories  
7 x ultra-fast rail-to-rail analog comparators  
6 x operational amplifiers that can be used in  
PGA mode, all terminals accessible  
– Quad-SPI memory interface  
Internal voltage reference buffer (VREFBUF)  
supporting three output voltages (2.048 V,  
2.5 V, 2.95 V)  
Reset and supply management  
– Power-on/power-down reset  
(POR/PDR/BOR)  
17 timers:  
– Programmable voltage detector (PVD)  
– HRTIM (Hi-Resolution and complex  
waveform builder): 6 x16-bit counters,  
184 ps resolution, 12 PWM  
– Low-power modes: sleep, stop, standby  
and shutdown  
– V  
supply for RTC and backup registers  
BAT  
– 2 x 32-bit timer and 2 x 16-bit timers with  
up to four IC/OC/PWM or pulse counter  
and quadrature (incremental) encoder input  
Clock management  
– 4 to 48 MHz crystal oscillator  
– 32 kHz oscillator with calibration  
– Internal 16 MHz RC with PLL option (± 1%)  
– 3 x 16-bit 8-channel advanced motor  
control timers, with up to 8 x PWM  
October 2020  
DS12288 Rev 5  
1/236  
This is information on a product in full production.  
www.st.com  
STM32G474xB STM32G474xC STM32G474xE  
channels, dead time generation and  
emergency stop  
– 5 x USART/UARTs (ISO 7816 interface,  
LIN, IrDA, modem control)  
– 1 x 16-bit timer with 2 x IC/OCs, one  
OCN/PWM, dead time generation and  
emergency stop  
– 1 x LPUART  
– 4 x SPIs, 4 to 16 programmable bit frames,  
2
2 x with multiplexed half duplex I S  
– 2 x 16-bit timers with IC/OC/OCN/PWM,  
dead time generation and emergency stop  
interface  
– 1 x SAI (serial audio interface)  
– 2 x watchdog timers (independent, window)  
– 1 x SysTick timer: 24-bit downcounter  
– 2 x 16-bit basic timers  
– USB 2.0 full-speed interface with LPM and  
BCD support  
– IRTIM (infrared interface)  
– 1 x low-power timer  
– USB Type-C™ /USB power delivery  
controller (UCPD)  
Calendar RTC with alarm, periodic wakeup  
from stop/standby  
True random number generator (RNG)  
CRC calculation unit, 96-bit unique ID  
Communication interfaces  
– 3 x FDCAN controller supporting flexible  
data rate  
Development support: serial wire debug  
(SWD), JTAG, Embedded Trace Macrocell™  
2
– 4 x I C Fast mode plus (1 Mbit/s) with  
20 mA current sink, SMBus/PMBus,  
wakeup from stop  
Table 1. Device summary  
Reference  
Part number  
STM32G474CB, STM32G474MB, STM32G474RB,  
STM32G474VB, STM32G474QB, STM32G474PB  
STM32G474xB  
STM32G474xC  
STM32G474xE  
STM32G474CC, STM32G474MC, STM32G474RC,  
STM32G474VC, STM32G474QC, STM32G474PC  
STM32G474CE, STM32G474ME, STM32G474RE,  
STM32G474VE, STM32G474QE, STM32G474PE  
2/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Adaptive real-time memory accelerator (ART accelerator) . . . . . . . . . . . 18  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CORDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 23  
3.11 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.11.1  
3.11.2  
3.11.3  
3.11.4  
3.11.5  
3.11.6  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.12 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.14 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.16 DMA request router (DMAMux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 31  
3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 31  
3.18 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.18.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DS12288 Rev 5  
3/236  
7
Contents  
STM32G474xB STM32G474xC STM32G474xE  
3.18.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.18.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.18.4 Operational amplifier internal output (OPAMPxINT): . . . . . . . . . . . . . . . 33  
3.19 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.20 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.21 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.22 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.24.1 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.24.2 Advanced motor control timer (TIM1, TIM8, TIM20) . . . . . . . . . . . . . . . 36  
3.24.3 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,  
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.24.4 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.24.5 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.24.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.24.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.24.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.25 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 39  
3.26 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.27 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.28 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.29 Universal synchronous/asynchronous receiver transmitter (USART) . . . 42  
3.30 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 43  
3.31 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.32 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.33 Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 45  
3.34 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.35 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 45  
3.36 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.37 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.38 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.39 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.39.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.39.2 Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Contents  
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
LQFP48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
LQFP80 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
LQFP128 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
TFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
UFBGA121 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.10 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
4.11 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 86  
Embedded reset and power control block characteristics . . . . . . . . . . . 86  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Wakeup time from low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
5.3.7  
5.3.8  
5.3.9  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
DS12288 Rev 5  
5/236  
7
Contents  
STM32G474xB STM32G474xC STM32G474xE  
5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
5.3.16 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
5.3.17 Extended interrupt and event controller input (EXTI) characteristics . . 137  
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 139  
5.3.20 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 154  
5.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 161  
5.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
5.3.23 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 165  
5.3.24 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
5.3.25  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
BAT  
5.3.26 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
5.3.27 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 171  
5.3.28 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
5.3.29 QUADSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
5.3.30 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
LQFP128 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
UFBGA121 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
6.10 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
6.10.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
6.10.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 231  
7
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
6/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Contents  
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
DS12288 Rev 5  
7/236  
7
List of tables  
STM32G474xB STM32G474xC STM32G474xE  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32G474xB/xC/xE features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
STM32G474xB/xC/xE peripherals interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
SAI implementation for the features implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
STM32G474xB/xC/xE pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) . . 90  
Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) . . . . 92  
Current consumption in Run and Low-power run modes,  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Typical current consumption in Run and Low-power run modes, with different codes  
running from CCMSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Current consumption in Sleep and Low-power sleep mode Flash ON . . . . . . . . . . . . . . . 101  
Current consumption in low-power sleep modes, Flash in power-down. . . . . . . . . . . . . . 102  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
8/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
List of tables  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
LSE  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
I/O (except FT_c) AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
I/O FT_c AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
HRTIM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
HRTIM output response to fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
HRTIM output response to external events 1 to 5  
(Low-Latency mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
HRTIM output response to external events 1 to 10 (Synchronous mode ). . . . . . . . . . . . 137  
HRTIM synchronization input / output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
ADC accuracy (Multiple ADCs operation) - limited test conditions 1 . . . . . . . . . . . . . . . . 150  
ADC accuracy (Multiple ADCs operation) - limited test conditions 2 . . . . . . . . . . . . . . . . 151  
ADC accuracy (Multiple ADCs operation) - limited test conditions 3 . . . . . . . . . . . . . . . . 152  
DAC 1MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
DAC 1MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
DAC 15MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
DAC 15MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
BAT  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
WWDG min/max timeout value at 170 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
DS12288 Rev 5  
9/236  
10  
List of tables  
STM32G474xB STM32G474xC STM32G474xE  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
USART electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 183  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 183  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 184  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 185  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 186  
Table 100. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 101. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 188  
Table 102. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 103. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Table 104. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 193  
Table 105. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 106. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 107. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 108. Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 109. QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Table 110. UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Table 111. WLCSP81 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Table 112. WLCSP81 - recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 113. UFQFPN48 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 114. LQFP48 - mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 115. LQFP64 - mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Table 116. LQFP80 - mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Table 117. TFBGA100 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Table 118. TFBGA100 - recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Table 119. LQPF100 - mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Table 120. LQFP128 - mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Table 121. UFBGA121 - mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
Table 122. UFBGA121 - recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Table 123. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Table 124. Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Table 125. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
10/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32G474xB/xC/xE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
STM32G474xB/xC/xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
STM32G474xB/xC/xE LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
STM32G474xB/xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
STM32G474xB/xC/xE LQFP80 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
STM32G474xB/xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 10. STM32G474xB/xC/xE LQFP128 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 11. STM32G474xB/xC/xE WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 12. STM32G474xB/xC/xE TFBGA100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 13. STM32G474xB/xC/xE UFBGA121 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 14. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 15. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 16. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 17. Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 18. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 19. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 20. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 21. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 23. HSI16 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 24. HSI48 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 25. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
(1)  
Figure 26. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 27. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 28. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 29. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 30. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 31. VREFOUT_TEMP in case VRS = 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 32. VREFOUT_TEMP in case VRS = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 33. VREFOUT_TEMP in case VRS = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Figure 34. OPAMP noise density @ 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 35. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 36. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 37. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 38. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 39. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 40. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 182  
Figure 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 184  
Figure 42. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 43. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 44. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Figure 45. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Figure 46. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 193  
Figure 47. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Figure 48. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
DS12288 Rev 5  
11/236  
12  
List of figures  
STM32G474xB STM32G474xC STM32G474xE  
Figure 49. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 50. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 196  
Figure 51. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 197  
Figure 52. Quad SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 53. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 54. WLCSP81 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Figure 55. WLCSP81 - recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 56. UFQFPN48 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Figure 57. UFQFPN48 - recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 58. UFQFPN48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 59. LQFP48 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Figure 60. LQFP48 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 61. LQFP48 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Figure 62. LQFP64 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 63. LQFP64 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Figure 64. LQFP64 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 65. LQFP80 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 66. LQFP80 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Figure 67. LQFP80 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 68. TFBGA100 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Figure 69. TFBGA100 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 70. TFBGA100 - 8 x 8 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 219  
Figure 71. LQFP100 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 72. LQFP100 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 73. LQFP100 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 74. LQFP128 - outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Figure 75. LQFP128 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 76. LQFP128 top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Figure 77. UFBGA121 - outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Figure 78. UFBGA121 - recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
12/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32G474xB/xC/xE microcontrollers.  
This document should be read in conjunction with the reference manual RM0440  
®
“STM32G4 Series advanced Arm 32-bit MCUs”. The reference manual is available from  
the STMicroelectronics website www.st.com.  
®(a)  
®
®
For information on the Arm  
Cortex -M4 core, refer to the Cortex -M4 technical  
reference manual, available from the www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS12288 Rev 5  
13/236  
48  
 
Description  
STM32G474xB STM32G474xC STM32G474xE  
2
Description  
®
®
The STM32G474xB/xC/xE devices are based on the high-performance Arm Cortex -M4  
32-bit RISC core. They operate at a frequency of up to 170 MHz.  
The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all  
the Arm single-precision data-processing instructions and all the data types. It also  
implements a full set of DSP (digital signal processing) instructions and a memory protection  
unit (MPU) which enhances the application’s security.  
These devices embed high-speed memories (512 Kbytes of Flash memory, and 128 Kbytes  
of SRAM), a flexible external memory controller (FSMC) for static memories (for devices  
with packages of 100 pins and more), a Quad SPI Flash memory interface, and an  
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB  
buses and a 32-bit multi-AHB bus matrix.  
The devices also embed several protection mechanisms for embedded Flash memory and  
SRAM: readout protection, write protection, securable memory area and proprietary code  
readout protection.  
The devices embed peripherals allowing mathematical/arithmetic function acceleration  
(CORDIC for trigonometric functions and FMAC unit for filter functions).  
They offer five fast 12-bit ADCs (5 Msps), seven comparators, six operational amplifiers,  
seven DAC channels (3 external and 4 internal), an internal voltage reference buffer, a low-  
power RTC, two general-purpose 32-bit timers, three 16-bit PWM timers dedicated to motor  
control, seven general-purpose 16-bit timers, and one 16-bit low-power timer, and high  
resolution timer with 184 ps resolution.  
They also feature standard and advanced communication interfaces such as:  
Four I2Cs  
Four SPIs multiplexed with two half duplex I2Ss  
Three USARTs, two UARTs and one low-power UART.  
Three FDCANs  
One SAI  
USB device  
UCPD  
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C  
junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of  
power-saving modes allows the design of low-power applications.  
Some independent power supplies are supported including an analog independent supply  
input for ADC, DAC, OPAMPs and comparators. A V  
the registers.  
input allows backup of the RTC and  
BAT  
The STM32G474xB/xC/xE family offers 9 packages from 48-pin to 128-pin.  
14/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Description  
Table 2. STM32G474xB/xC/xE features and peripheral counts  
Peripheral  
128 256 512 128 256 512 128 256 512 128 256 512 128 256 512 128 256 512  
Flash memory  
KB  
KB  
KB KB KB KB KB KB KB KB KB KB KB KB KB KB KB KB  
SRAM  
128 (80 + 16+ 32) KB  
External memory controller for  
static memories (FSMC)  
No  
No  
No  
Yes(1)  
Yes(2)  
Yes  
QUADSPI  
1
3 (16-bit)  
1
Advanced motor  
control  
HRTIM  
5 (16-bit)  
2 (32-bit)  
General purpose  
Timers  
Basic  
2 (16-bit)  
1 (16-bit)  
1
Low power  
SysTick timer  
Watchdog timers  
(independent,  
window)  
2
SPI(I2S)(3)  
I2C  
3 (2)  
4 (2)  
4
3
USART  
UART  
0
2
Comm.  
interfaces  
LPUART  
FDCANs  
USB device  
UCPD  
1
3
Yes  
Yes  
Yes  
Yes  
SAI  
RTC  
Tamper pins  
2
3
Random number generator  
Yes  
Yes  
Yes  
CORDIC  
FMAC  
DS12288 Rev 5  
15/236  
48  
 
 
Description  
STM32G474xB STM32G474xC STM32G474xE  
Table 2. STM32G474xB/xC/xE features and peripheral counts (continued)  
Peripheral  
38 in  
LQFP48  
42 in  
UFQFPN48  
3
67 in  
WLCSP81  
66 in  
LQFP80  
4
GPIOs  
52  
4
86  
5
102  
5
107  
5
Wakeup pins  
5
4
20 in  
LQFP48  
21 in  
42 in  
WLCSP81  
41 in  
12-bit ADCs  
Number of channels  
26  
42  
42  
42  
UFQFPN48  
LQFP80  
12-bit DAC  
Number of channels  
7 (3 external + 4 internal)  
Internal voltage reference  
buffer  
Yes  
PWM channels (all)  
33  
28  
41  
30  
42  
32  
48  
33  
48  
33  
48  
33  
PWM channels  
(except complementary)  
Analog comparator  
Operational amplifiers  
Max. CPU frequency  
Operating voltage  
7
6
170 MHz  
1.71 V to 3.6 V  
Ambient operating temperature: -40 to 85 °C /-40 to 125 °C  
Operating temperature  
LQFP48/  
UFQFPN48  
WLCSP81  
LQFP80  
LQFP100/  
TFBGA100  
Packages  
LQFP64  
UFBGA121 LQFP128  
1. For the LQFP100 package, only FMC bank1 and NAND bank are available. Bank1 can only support a multiplexed  
NOR/PSRAM memory using the NE1 chip select.  
2. For the UFBGA121 package, only FMC bank1/bank4 and NAND bank are available. Bank1/Bank4 can only support a  
multiplexed NOR/PSRAM memory using the NE1/NE4 chip select.  
3. The SPI2/3 interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode.  
16/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Description  
Figure 1. STM32G474xB/xC/xE block diagram  
CLK, E(3:0), A(23:0)  
JTRST, JTDI,  
JTCK/SWCLK  
D(31:0), OEN, WEN,  
FSMC  
JTAG & SW  
ETM  
MPU  
NVIC  
FPU  
BL(3:0), L, WAIT/IORDY,  
IORD, IOWD,IS16 as AF  
JTDO/SWD, JTDO  
TRACECK  
TRACED(3:0)  
QUADSPI  
CLK, NCS, BK1_IO[3:0]  
ARM®  
CORTEX-M4  
170MHz  
D-BUS  
I-BUS  
S-BUS  
FLASH 2 x 256 KB  
CCM SRAM 32 KB  
@VDDA  
CH1  
DAC1  
DAC2  
DAC3  
OUT1/OUT2  
OUT1  
GP-DMA2  
GP-DMA1  
8 Chan  
8 Chan  
CH2  
SRAM2 16 KB  
CH1  
SRAM1 80 KB  
AHB2  
CH1  
CH2  
DMAMUX  
CH1  
CH2  
RNG  
@VDDA  
SAR ADC1  
SAR ADC2  
DAC4  
RNB1  
analog  
IF  
Ain ADC  
POWER MNGT  
VOLT. REG.  
3.3V TO 1.2V  
CORDIC  
FMAC  
VDD = 1.71 to 3.6V  
VSS  
SAR ADC3  
SAR ADC4  
SAR ADC5  
VDD12  
IF  
@VDD  
SUPPLY  
SUPERVISION  
@VDD  
PA(15:0)  
PB(15:0)  
PC(15:0)  
GPIO PORT A  
LSI  
PLL  
POR  
Reset  
Int  
POR / BOR  
GPIO PORT B  
VDD, VSS,  
VDDA, VSSA,  
RESET  
HSI  
PVD, PWM  
GPIO PORT C  
HSI48  
PD(15:0)  
PE(15:0)  
PF(15:0)  
GPIO PORT D  
GPIO PORT E  
XTAL OSC  
4-48MHz  
OSC_IN  
OSC_OUT  
GPIO PORT F  
PG(10:0)  
GPIO PORT G  
RESET&  
IWDG  
FS, SCK, SD,  
MCLK as AF  
CLOCKCTRL  
Standby Interface  
@VBAT  
VBAT = 1.55 to 3.6V  
SAI1  
6 Fault inputs as AF  
10 ext. event inputs  
1 synchro. input  
1 synchro. Output  
12 PWM outputs  
OSC32_IN  
OSC_OUT  
peripheralclocks  
and system  
XTAL 32kHz  
16b PWM  
HRTimer  
RTC AWU  
BKPREG  
RTC_OUT  
RTC_TS  
RTC_TAMPx  
CRC  
EXT IT. WKUP  
107 AF  
RTC Interface  
4 PWM,4PWM,  
ETR,BKIN as F  
4 PWM,4PWM,  
ETR,BKIN as F  
16b PWM  
TIMER1  
TIMER8  
AHB/APB2 AHB/APB1  
16b PWM  
TIMER2&5  
TIMER3&4  
4 CH, ETR as AF  
4 CH, ETR as AF  
16b  
CH as AF  
CH as AF  
TIMER15  
PWRCTRL  
WinWATCHDOG  
LP timer1  
16b  
16b  
TIMER16  
LP_UART1  
RX, TX as AF  
CH as AF16b  
TIMER17  
SCL, SDA, SMBAL as AF  
I2C1&2&3&4  
4 PWM,4PWM,  
ETR,BKIN as F  
16b PWM  
TIMER20  
RX, TX, SCK,  
CTS, RTS as AF  
RX, TX, CTS,  
RTS as AF  
Smcard  
USART2&3  
UART4&5  
SPI2&3  
RX, TX, SCK,CTS,  
16b trigg  
irDA  
TIMER6  
TIMER7  
USART 1  
RTS as AF  
16b trigg  
MOSI, MISO  
SCK, NSS as AF  
irDA  
SPI 1  
I2S half  
duplex  
MOSI, MISO, SCK  
NSS, as AF  
CRS  
MOSI, MISO  
SCK, NSS as AF  
SPI 4  
RX,TX as AF  
CAN1 & 2 & 3  
SysCfg  
@VDDA  
OPAMP  
UCPD  
USB  
Device  
D+  
D-  
COMP  
Vref_Buf  
1,2,3,4,5,6,7 1,2,3,4,5,6  
CC1  
CC2  
MSv42693V4  
1. AF: alternate function on I/O pins.  
DS12288 Rev 5  
17/236  
48  
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3
Functional overview  
3.1  
Arm® Cortex®-M4 core with FPU  
®
®
The Arm Cortex -M4 with FPU processor is the latest generation of Arm processors for  
embedded systems. It was developed to provide a low-cost platform that meets the needs of  
the MCU implementation, with a reduced pin count and with low-power consumption, while  
delivering outstanding computational performance and an advanced response to interrupts.  
®
®
The Arm Cortex -M4 with FPU 32-bit RISC processor features an exceptional code-  
efficiency, delivering the expected high-performance from an Arm core in a memory size  
usually associated with 8-bit and 16-bit devices.  
The processor supports a set of DSP instructions which allows an efficient signal processing  
and a complex algorithm execution. Its single precision FPU speeds up the software  
development by using metalanguage development tools to avoid saturation.  
With its embedded Arm core, the STM32G474xB/xC/xE family is compatible with all Arm  
tools and software.  
Figure 1 shows the general block diagram of the STM32G474xB/xC/xE devices.  
3.2  
3.3  
Adaptive real-time memory accelerator (ART accelerator)  
The ART accelerator is a memory accelerator that is optimized for the STM32 industry-  
®
®
standard Arm Cortex -M4 processors. It balances the inherent performance advantage of  
®
®
the Arm Cortex -M4 over Flash memory technologies, which normally requires the  
processor to wait for the Flash memory at higher frequencies.  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to the memory  
and to prevent one task to accidentally corrupt the memory or the resources used by any  
other active task. This memory area is organized into up to 8 protected areas, which can be  
divided in up into 8 subareas each. The protection area sizes range between 32 bytes and  
the whole 4 gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
18/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.4  
Embedded Flash memory  
The STM32G474xB/xC/xE devices feature 512 kbytes of embedded Flash memory which is  
available for storing programs and data.  
The Flash interface features:  
Single or dual bank operating modes  
Read-while-write (RWW) in dual bank mode  
This feature allows to perform a read operation from one bank while an erase or program  
operation is performed to the other bank. The dual bank boot is also supported.  
Flexible protections can be configured thanks to the option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels of protection are  
available:  
– Level 0: no readout protection  
– Level 1: memory readout protection; the Flash memory cannot be read from or written  
to if either the debug features are connected or the boot in RAM or bootloader are  
selected  
– Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial  
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This  
selection is irreversible.  
Write protection (WRP): the protected area is protected against erasing and  
programming.  
Proprietary code readout protection (PCROP): a part of the Flash memory can be  
protected against read and write from third parties. The protected area is execute-only  
and it can only be reached by the STM32 CPU as an instruction code, while all other  
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An  
additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not  
when the RDP protection is changed from Level 1 to Level 0.  
Securable memory area: a part of Flash memory can be configured by option bytes to  
be securable. After reset this securable memory area is not secured and it behaves like  
the remainder of main Flash memory (execute, read, write access). When secured, any  
access to this securable memory area generates corresponding read/write error.  
Purpose of the Securable memory area is to protect sensitive code and data (secure  
keys storage) which can be executed only once at boot, and never again unless a new  
reset occurs.  
The Flash memory embeds the error correction code (ECC) feature supporting:  
Single error detection and correction  
Double error detection  
The address of the ECC fail can be read in the ECC register  
1 Kbyte (128 double word) OTP (one-time programmable) bytes for user data. The  
OTP area is available in Bank 1 only. The OTP data cannot be erased and can be  
written only once.  
DS12288 Rev 5  
19/236  
48  
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.5  
Embedded SRAM  
STM32G474xB/xC/xE devices feature 128 Kbytes of embedded SRAM. This SRAM is split  
into three blocks:  
80 Kbytes mapped at address 0x2000 0000 (SRAM1). The CM4 can access the  
SRAM1 through the System Bus (or through the I-Code/D-Code buses when boot from  
SRAM1 is selected or when physical remap is selected by SYSCFG_MEMRMP  
register). The first 32 Kbyte of SRAM1 support hardware parity check.  
16 Kbytes mapped at address 0x2001 4000 (SRAM2). The CM4 can access the  
SRAM2 through the System bus. SRAM2 can be retained in standby modes.  
32 Kbytes mapped at address 0x1000 0000 (CCM SRAM). It is accessed by the CPU  
through I-Code/D-Code bus for maximum performance.  
It is also aliased at 0x2001 8000 address to be accessed by all masters (CPU, DMA1,  
DMA2) through SBUS contiguously to SRAM1 and SRAM2. The CCM SRAM supports  
hardware parity check and can be write-protected with 1 Kbyte granularity.  
The memory can be accessed in read/write at max CPU clock speed with 0 wait states.  
20/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.6  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves  
(Flash memory, RAM, FSMC, QUADSPI, AHB and APB peripherals). It also ensures a  
seamless and efficient operation even when several high-speed peripherals work  
simultaneously.  
Figure 2. Multi-AHB bus matrix  
Cortex®-M4  
with FPU  
DMA1  
DMA2  
ICode  
FLASH  
512 KB  
DCode  
SRAM1  
CCM  
SRAM  
SRAM2  
AHB1  
peripherals  
AHB2  
peripherals  
FSMC  
QUADSPI  
BusMatrix-S  
MSv42663V1  
3.7  
Boot modes  
At startup, a BOOT0 pin (or nBOOT0 option bit) and an nBOOT1 option bit are used to  
select one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The BOOT0 value may come from the PB8-BOOT0 pin or from an nBOOT0 option bit  
depending on the value of a user nBOOT_SEL option bit to free the GPIO pad if needed.  
The boot loader is located in the system memory. It is used to reprogram the Flash memory  
by using USART, I2C, SPI, and USB through the DFU (device firmware upgrade).  
DS12288 Rev 5  
21/236  
48  
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.8  
CORDIC  
The CORDIC provides hardware acceleration of certain mathematical functions, notably  
trigonometric, commonly used in motor control, metering, signal processing and many other  
applications.  
It speeds up the calculation of these functions compared to a software implementation,  
allowing a lower operating frequency, or freeing up processor cycles in order to perform  
other tasks.  
Cordic features  
24-bit CORDIC rotation engine  
Circular and Hyperbolic modes  
Rotation and Vectoring modes  
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,  
Natural logarithm  
Programmable precision up to 20-bit  
Fast convergence: 4 bits per clock cycle  
Supports 16-bit and 32-bit fixed point input and output formats  
Low latency AHB slave interface  
Results can be read as soon as ready without polling or interrupt  
DMA read and write channels  
3.9  
Filter mathematical accelerator (FMAC)  
The filter mathematical accelerator unit performs arithmetic operations on vectors. It  
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,  
which allows it to index vector elements held in local memory.  
The unit includes support for circular buffers on input and output, which allows digital filters  
to be implemented. Both finite and infinite impulse response filters can be realized.  
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing  
up the processor for other tasks. In many cases it can accelerate such calculations  
compared to a software implementation, resulting in a speed-up of time critical tasks.  
22/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
FMAC features  
Functional overview  
16 x 16-bit multiplier  
24+2-bit accumulator with addition and subtraction  
16-bit input and output data  
256 x 16-bit local memory  
Up to three areas can be defined in memory for data buffers (two input, one output),  
defined by programmable base address pointers and associated size registers  
Input and output sample buffers can be circular  
Buffer “watermark” feature reduces overhead in interrupt mode  
Filter functions: FIR, IIR (direct form 1)  
AHB slave interface  
DMA read and write data channels  
3.10  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator with polynomial value and size.  
Among other applications, the CRC-based techniques are used to verify data transmission  
or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify  
the Flash memory integrity.  
The CRC calculation unit helps to compute a signature of the software during runtime, which  
can be ulteriorly compared with a reference signature generated at link-time and which can  
be stored at a given memory location.  
3.11  
Power supply management  
3.11.1  
Power supply schemes  
The STM32G474xB/xC/xE devices require a 1.71 V to 3.6 V V operating voltage supply.  
DD  
Several independent supplies, can be provided for specific peripherals:  
V
= 1.71 V to 3.6 V  
DD  
V
is the external power supply for the I/Os, the internal regulator and the system  
DD  
analog such as reset, power management and internal clocks. It is provided externally  
through the VDD pins.  
V
= 1.62 V to 3.6 V (see Section 5: Electrical characteristics for the minimum V  
DDA  
DDA  
voltage required for ADC, DAC, COMP, OPAMP, VREFBUF operation).  
is the external analog power supply for A/D converters, D/A converters, voltage  
V
DDA  
reference buffer, operational amplifiers and comparators. The V  
voltage level is  
DDA  
independent from the V voltage and should preferably be connected to V when  
DD  
DD  
these peripherals are not used.  
DS12288 Rev 5  
23/236  
48  
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
V
V
= 1.55 V to 3.6 V  
BAT  
BAT  
is the power supply for RTC, external clock 32 kHz oscillator and backup registers  
(through power switch) when V is not present.  
DD  
VREF-, VREF+  
V
is the input reference voltage for ADCs and DACs. It is also the output of the  
REF+  
internal voltage reference buffer when enabled.  
When V  
When V  
< 2 V V  
must be equal to V  
.
DDA  
DDA  
DDA  
REF+  
REF+  
2 V V  
must be between 2 V and V  
.
DDA  
The internal voltage reference buffer supports three output voltages, which are  
configured with VRS bits in the VREFBUF_CSR register:  
V
V
V
V
= 2.048 V  
= 2.5 V  
REF+  
REF+  
REF+  
= 2.95 V  
is double bonded with V  
.
SSA  
REF-  
3.11.2  
Power supply supervisor  
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes  
(except for Shutdown mode). The BOR ensures proper operation of the device after power-  
on and during power down. The device remains in reset mode when the monitored supply  
voltage V is below a specified threshold, without the need for an external reset circuit.  
DD  
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected  
through option bytes.The device features an embedded programmable voltage detector  
(PVD) that monitors the V power supply and compares it to the VPVD threshold. An  
DD  
interrupt can be generated when V drops below the VPVD threshold and/or when V is  
DD  
DD  
higher than the VPVD threshold. The interrupt service routine can then generate a warning  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
In addition, the device embeds a peripheral voltage monitor which compares the  
independent supply voltages V  
, with a fixed threshold in order to ensure that the  
DDA  
peripheral is in its functional supply range.  
3.11.3  
Voltage regulator  
Two embedded linear voltage regulators, main regulator (MR) and low-power regulator  
(LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep  
modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby  
and Shutdown modes, both regulators are powered down and their outputs set in high-  
impedance state, such as to bring their current consumption close to zero.  
The device supports dynamic voltage scaling to optimize its power consumption in Run  
mode. the voltage from the main regulator that supplies the logic (VCORE) can be adjusted  
according to the system’s maximum operating frequency.  
The main regulator (MR) operates in the following ranges:  
Range 1 boost mode with the CPU running at up to 170 MHz.  
Range 1 normal mode with CPU running at up to 150 MHz.  
Range 2 with a maximum CPU frequency of 26 MHz.  
24/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.11.4  
Low-power modes  
By default, the microcontroller is in Run mode after system or power Reset. It is up to the  
user to select one of the low-power modes described below:  
Sleep mode: In Sleep mode, only the CPU is stopped. All peripherals continue to  
operate and can wake up the CPU when an interrupt/event occurs.  
Low-power run mode: This mode is achieved with VCORE supplied by the low-power  
regulator to minimize the regulator's operating current. The code can be executed from  
SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with  
independent clock can be clocked by HSI16.  
Low-power sleep mode: This mode is entered from the low-power run mode. Only the  
CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the  
system reverts to the Low power run mode.  
Stop mode: In Stop mode, the device achieves the lowest power consumption while  
retaining the SRAM and register contents. All clocks in the VCORE domain are  
stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are  
disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with  
RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable  
the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event.  
Standby mode: The Standby mode is used to achieve the lowest power consumption  
with brown-out reset, BOR. The internal regulator is switched off to power down the  
VCORE domain. The PLL, as well as the HSI16 RC oscillator and the HSE crystal  
oscillator are also powered down. The RTC can remain active (Standby mode with  
RTC, Standby mode without RTC). The BOR always remains active in Standby mode.  
For each I/O, the software can determine whether a pull-up, a pull-down or no resistor  
shall be applied to that I/O during Standby mode. Upon entering Standby mode, SRAM  
and register contents are lost except for registers in the RTC domain and standby  
circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG  
reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC  
event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on  
LSE (CSS on LSE).  
Shutdown mode: The Shutdown mode allows to achieve the lowest power  
consumption. The internal regulator is switched off to power down the VCORE domain.  
The PLL, as well as the HSI16 and LSI RC-oscillators and HSE crystal oscillator are  
also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown  
mode without RTC). The BOR is not available in Shutdown mode. No power voltage  
monitoring is possible in this mode. Therefore, switching to RTC domain is not  
supported. SRAM and register contents are lost except for registers in the RTC  
domain. The device exits Shutdown mode upon external reset event (NRST pin),  
IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or  
RTC event (alarm, periodic wakeup, timestamp, tamper).  
3.11.5  
Reset mode  
In order to improve the consumption under reset, the I/Os state under and after reset is  
“analog state” (the I/O schmitt trigger is disabled). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
DS12288 Rev 5  
25/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.11.6  
V
operation  
BAT  
The V  
pin allows to power the device V  
domain from an external battery, an external  
BAT  
BAT  
supercapacitor, or from V when there is no external battery and when an external  
DD  
supercapacitor is present. The V  
pin supplies the RTC with LSE and the backup  
BAT  
registers. Three anti-tamper detection pins are available in V  
mode.  
BAT  
The V  
operation is automatically activated when V is not present. An internal V  
DD BAT  
BAT  
battery charging circuit is embedded and can be activated when V is present.  
DD  
Note:  
When the microcontroller is supplied from V  
, neither external interrupts nor RTC  
BAT  
alarm/events exit the microcontroller from the V  
operation.  
BAT  
26/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.12  
Interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU resources thus power supply  
consumption. In addition, these hardware connections allow fast and predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep and Stop  
modes.  
Table 3. STM32G474xB/xC/xE peripherals interconnect matrix  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIMx  
Timers synchronization or chaining  
Conversion triggers  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
ADCx  
DACx  
TIMx  
DMA  
Memory to memory transfer trigger  
Comparator output blanking  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
COMPx  
IRTIM  
TIM16/TIM17  
Infrared interface output generation  
TIM1, 8, 20  
TIM2, 3, 4, 5  
Timer input channel, trigger, break from  
analog signals comparison  
Y
Y
Y
Y
Y
Y
Y
Y
-
Low-power timer triggered by analog  
signals comparison  
COMPx  
LPTIMER1  
Y
COMPx Output is an input event or a  
fault input for HRTIM  
HRTIM  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
TIM1, 8, 20  
HRTIM  
Timer triggered by analog watchdog  
ADCx  
RTC  
HRTIM external event source can be  
ADCx analog watchdog  
-
TIM16  
Timer input channel from RTC events  
-
Low-power timer triggered by RTC  
alarms or tampers  
LPTIMER1  
Y
All clocks sources (internal and TIM5,  
Clock source used as input channel for  
Y
Y
Y
Y
Y
-
Y
-
-
-
external)  
TIM15, 16, 17 RC measurement and trimming  
USB  
TIM2  
Timer triggered by USB SOF  
CSS  
RAM (parity error)  
Flash memory (ECC error)  
COMPx  
TIM1,8, 20  
TIM15,16,17  
HRTIM  
Timer break  
Y
Y
Y
Y
-
HRTIM SYSFLT  
PVD  
DS12288 Rev 5  
27/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
Table 3. STM32G474xB/xC/xE peripherals interconnect matrix (continued)  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIM1,8,20  
TIM15/16/17  
HRTIM  
Timer break  
CPU (hard fault)  
Y
Y
Y
Y
-
HRTIM SYSFLT  
External trigger  
External trigger  
TIMx  
Y
Y
Y
Y
Y
Y
Y
Y
-
LPTIMER1  
Y
External fault/event/Synchro inputs for  
HRTIM  
GPIO  
HRTIM  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
ADCx  
DACx  
Conversion external trigger  
DACx/ADCx  
GPIO  
Conversion trigger  
Y
Y
Y
Y
-
-
HRTIM  
Synchro output for HRTIM  
Y
Y
Y
Y
28/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.13  
Clocks and startup  
The clock controller distributes the clocks coming from different oscillators to the core and  
the peripherals. It also manages clock gating for low-power modes and ensures clock  
robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption,  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock source: three different sources can deliver SYSCLK system clock:  
4 - 48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE).  
It can supply clock to system PLL. The HSE can also be configured in bypass  
mode for an external clock.  
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can  
supply clock to system PLL.  
System PLL with maximum output frequency of 170 MHz. It can be fed with HSE  
or HSI16 clocks.  
RC48 with clock recovery system (HSI48): internal HSIRC48 MHz clock source can  
be used to drive the USB or the RNG peripherals.  
Auxiliary clock source: two ultra-low-power clock sources for the real-time clock  
(RTC):  
32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive  
capability modes. The LSE can also be configured in bypass mode for using an  
external clock.  
32 kHz low-speed internal RC oscillator (LSI) with ±5% accuracy, also used to  
clock an independent watchdog.  
Peripheral clock sources: several peripherals (I2S, USART, I2C, LPTimer, ADC, SAI,  
RNG) have their own clock independent of the system clock.  
Clock security system (CSS): in the event of HSE clock failure, the system clock is  
automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE  
clock failure can also be detected and generate an interrupt.  
Clock-out capability:  
MCO: microcontroller clock output: it outputs one of the internal clocks for external  
use by the application  
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes.  
Several prescalers allow to configure the AHB frequency, the High-speed APB (APB2) and  
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB  
domains is 170 MHz.  
DS12288 Rev 5  
29/236  
48  
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.14  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be  
achieved thanks to their mapping on the AHB2 bus.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
3.15  
Direct memory access controller (DMA)  
The device embeds 2 DMAs. Refer to Table 4: DMA implementation for the features  
implementation.  
Direct memory access (DMA) is used in order to provide a high-speed data transfer  
between peripherals and memory as well as from memory to memory. Data can be quickly  
moved by DMA without any CPU actions. This keeps the CPU resources free for other  
operations.  
The two DMA controllers have 16 channels in total, each one dedicated to manage memory  
access requests from one or more peripherals. Each controller has an arbiter for handling  
the priority between DMA requests.  
The DMA supports:  
16 independently configurable channels (requests)  
Each channel is connected to a dedicated hardware DMA request, a software  
trigger is also supported on each channel. This configuration is done by software.  
Priorities between requests from channels of one DMA are both software  
programmable (4 levels: very high, high, medium, low) or hardware programmable in  
case of equality (request 1 has priority over request 2, etc.)  
Independent source and destination transfer size (byte, half word, word), emulating  
packing and unpacking. Source/destination addresses must be aligned on the data  
size.  
Support for circular buffer management  
3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error)  
logically ORed together in a single interrupt request for each channel  
Memory-to-memory transfer  
Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers  
Access to Flash, SRAM, APB and AHB peripherals as source and destination  
Programmable number of data to be transferred: up to 65536.  
Table 4. DMA implementation  
DMA features  
DMA1  
8
DMA2  
8
Number of regular channels  
30/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.16  
DMA request router (DMAMux)  
When a peripheral indicates a request for DMA transfer by setting its DMA request line, the  
DMA request is pending until it is served and the corresponding DMA request line is reset.  
The DMA request router allows to route the DMA control lines between the peripherals and  
the DMA controllers of the product.  
An embedded multi-channel DMA request generator can be considered as one of such  
peripherals. The routing function is ensured by a multi-channel DMA request line  
multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or  
synchronously with events on synchronization inputs.  
For simplicity, the functional description is limited to DMA request lines. The other DMA  
control lines are not shown in figures or described in the text. The DMA request generator  
produces DMA requests following events on DMA request trigger inputs.  
3.17  
Interrupts and events  
3.17.1  
Nested vectored interrupt controller (NVIC)  
The STM32G474xB/xC/xE devices embed a nested vectored interrupt controller which is  
able to manage 16 priority levels, and to handle up to 102 maskable interrupt channels plus  
®
the 16 interrupt lines of the Cortex -M4.  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.17.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 44 edge detector lines used to generate  
interrupt/event requests and to wake-up the system from the Stop mode. Each external line  
can be independently configured to select the trigger event (rising edge, falling edge, both)  
and can be masked independently.  
A pending register maintains the status of the interrupt requests. The internal lines are  
connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an  
external line with a pulse width shorter than the internal clock period. Up to 107 GPIOs can  
be connected to the 16 external interrupt lines.  
DS12288 Rev 5  
31/236  
48  
 
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.18  
Analog-to-digital converter (ADC)  
The device embeds five successive approximation analog-to-digital converters with the  
following features:  
12-bit native resolution, with built-in calibration  
4 Msps maximum conversion rate with full resolution  
Down to 41.67 ns sampling time  
Increased conversion rate for lower resolution (up to 6.66 Msps for 6-bit  
resolution)  
One external reference pin is available on all packages, allowing the input voltage  
range to be independent from the power supply  
Single-ended and differential mode inputs  
Low-power design  
Capable of low-current operation at low conversion rate (consumption decreases  
linearly with speed)  
Dual clock domain architecture: ADC speed independent from CPU frequency  
Highly versatile digital interface  
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups  
of analog signals conversions can be programmed to differentiate background and  
high-priority real-time conversions  
Each ADC support multiple trigger inputs for synchronization with on-chip timers  
and external signals  
Results stored into a data register or in RAM with DMA controller support  
Data pre-processing: left/right alignment and per channel offset compensation  
Built-in oversampling unit for enhanced SNR  
Channel-wise programmable sampling time  
Analog watchdog for automatic voltage monitoring, generating interrupts and  
trigger for selected timers  
Hardware assistant to prepare the context of the injected channels to allow fast  
context switching  
Flexible sample time control  
Hardware gain and offset compensation  
3.18.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADCs input channels which is used to  
convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
32/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
Table 5. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
TS_CAL1  
0x1FFF 75A8 - 0x1FFF 75A9  
VDDA = VREF+ = 3.0 V (± 10 mV)  
TS ADC raw data acquired at a  
temperature of 110 °C (± 5 °C),  
TS_CAL2  
0x1FFF 75CA - 0x1FFF 75CB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.18.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for  
the ADC and the comparators. The VREFINT is internally connected to the ADCx_IN18,  
x = 1,3,4,5 input channel. The precise voltage of VREFINT is individually measured for each  
part by ST during production test and stored in the system memory area. It is accessible in  
read-only mode.  
Table 6. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT  
temperature of 30 °C (± 5 °C),  
0x1FFF 75AA - 0x1FFF 75AB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.18.3  
3.18.4  
3.19  
VBAT battery voltage monitoring  
This embedded hardware enables the application to measure the V  
the internal ADC1_IN17 channel. As the V  
thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by  
3. As a consequence, the converted digital value is one third of the V  
battery voltage using  
BAT  
voltage may be higher than the V  
, and  
BAT  
DDA  
voltage.  
BAT  
Operational amplifier internal output (OPAMPxINT):  
The OPAMPx (x = 1...6) output OPAMPxINT can be sampled using an ADCx (x = 1...5)  
internal input channel. In this case, the I/O on which the OPAMPx output is mapped can be  
used as GPIO.  
Digital to analog converter (DAC)  
Seven 12 bit DAC channels (3 external buffered and 4 internal unbuffered) can be used to  
convert digital signals into analog voltage signal outputs. The chosen design structure is  
composed of integrated resistor strings and an amplifier in inverting configuration.  
DS12288 Rev 5  
33/236  
48  
 
 
 
 
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
This digital interface supports the following features:  
Up to two DAC output channels  
8-bit or 12-bit output mode  
Buffer offset calibration (factory and user trimming)  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Saw tooth wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Sample and hold low-power mode, with internal or external capacitor  
Up to 1 Msps for external output and 15 Msps for internal output  
The DAC channels are triggered through the timer update outputs that are also connected  
to different DMA channels.  
3.20  
Voltage reference buffer (VREFBUF)  
The STM32G474xB/xC/xE devices embed a voltage reference buffer which can be used as  
voltage reference for ADC, DACs and also as voltage reference for external components  
through the VREF+ pin.  
The internal voltage reference buffer supports three voltages:  
2.048 V  
2.5 V  
2.9 V  
An external voltage reference can be provided through the VREF+ pin when the internal  
voltage reference buffer is off.  
The VREF+ pin is double-bonded with V  
on some packages. In these packages the  
DDA  
internal voltage reference buffer is not available.  
Figure 3. Voltage reference buffer  
VREFBUF  
Bandgap  
VDDA DAC, ADC  
+
-
VREF+  
Low frequency  
cut-off capacitor  
100 nF  
MSv40197V1  
34/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.21  
Comparators (COMP)  
The STM32G474xB/xC/xE devices embed seven rail-to-rail comparators with  
programmable reference voltage (internal or external), hysteresis.  
The reference voltage can be one of the following:  
External I/O  
DAC output channels  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers.  
3.22  
Operational amplifier (OPAMP)  
The STM32G474xB/xC/xE devices embed six operational amplifiers with external or internal  
follower routing and PGA capability.  
The operational amplifier features:  
13 MHz bandwidth  
Rail-to-rail input/output  
PGA with a non-inverting gain ranging of 2, 4, 8, 16, 32 or 64 or inverting gain ranging  
of -1, -3, -7, -15, -31 or -63  
3.23  
3.24  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
Timers and watchdogs  
The STM32G474xB/xC/xE devices include One High Resolution time, three advanced  
motor control timers, up to nine general-purpose timers, two basic timers, one low-power  
timer, two watchdog timers and a SysTick timer. The table below compares the features of  
the advanced motor control, general purpose and basic timers.  
Table 7. Timer feature comparison  
DMA  
request  
generation channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
High  
resolution  
timer  
/1 /2 /4  
(x2 x4 x8 x16  
x32, with DLL)  
HRTIM  
16-bit  
16-bit  
32-bit  
Up  
Yes  
Yes  
Yes  
12  
4
Yes  
4
Advanced  
motor  
control  
Up,  
Any integer  
down, between 1 and  
TIM1, TIM8,  
TIM20  
Up/down  
65536  
Up,  
Any integer  
down, between 1 and  
Up/down 65536  
General-  
purpose  
TIM2, TIM5  
4
No  
DS12288 Rev 5  
35/236  
48  
 
 
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
Table 7. Timer feature comparison (continued)  
DMA  
request  
generation channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
Up,  
Any integer  
General-  
purpose  
TIM3, TIM4  
TIM15  
16-bit  
16-bit  
16-bit  
16-bit  
down, between 1 and  
Up/down  
Yes  
Yes  
Yes  
Yes  
4
2
1
0
No  
1
65536  
Any integer  
between 1 and  
65536  
General-  
purpose  
Up  
Any integer  
between 1 and  
65536  
General-  
purpose  
TIM16, TIM17  
TIM6, TIM7  
Up  
Up  
1
Any integer  
between 1 and  
65536  
Basic  
No  
3.24.1  
High-resolution timer (HRTIM)  
The high-resolution timer (HRTIM) allows generating digital signals with high-accuracy  
timings, such as PWM or phase-shifted pulses.  
It consists of 7 timers, 1 master and 6 slaves, totaling 12 high-resolution outputs, which can  
be coupled by pairs for deadtime insertion. It also features 6 fault inputs for protection  
purposes and 10 inputs to handle external events such as current limitation, zero voltage or  
zero current switching.  
HRTIM timer is made of a digital kernel clocked at 170 MHz followed by delay lines. Delay  
lines with closed loop control guarantee a 184 ps resolution whatever the voltage,  
temperature or chip-to-chip manufacturing process deviation. The high-resolution is  
available on the 12 outputs in all operating modes: variable duty cycle, variable frequency,  
and constant ON time.  
The slave timers can be combined to control multiswitch complex converters or operate  
independently to manage multiple independent converters.  
The waveforms are defined by a combination of user-defined timings and external events  
such as analog or digital feedbacks signals.  
HRTIM timer includes options for blanking and filtering out spurious events or faults. It also  
offers specific modes and features to offload the CPU: DMA requests, burst mode controller,  
push-pull and resonant mode.  
It supports many topologies including LLC, Full bridge phase shifted, buck or boost  
converters, either in voltage or current mode, as well as lighting application (fluorescent or  
LED). It can also be used as a general purpose timer, for instance to achieve high-resolution  
PWM-emulated DAC.  
In debug mode, the HRTIM counters can be frozen and the PWM outputs enter safe state.  
3.24.2  
Advanced motor control timer (TIM1, TIM8, TIM20)  
The advanced motor control timers can each be seen as a four-phase  
PWM multiplexed on 8 channels. They have complementary PWM outputs with  
36/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
programmable inserted dead-times. They can also be seen as complete general-purpose  
timers.  
The 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability  
(0-100%)  
One-pulse mode output  
In debug mode, the advanced motor control timer counter can be frozen and the PWM  
outputs disabled in order to turn off any power switches driven by these outputs.  
Many features are shared with the general-purpose TIMx timers (described in  
Section 3.24.3) using the same architecture, so the advanced motor control timers can work  
together with the TIMx timers via the Timer Link feature for synchronization or event  
chaining.  
3.24.3  
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,  
TIM17)  
There are up to seven synchronizable general-purpose timers embedded in the  
STM32G474xB/xC/xE devices (see Table 7 for differences). Each general-purpose timer  
can be used to generate PWM outputs, or act as a simple time base.  
TIM2, TIM3, TIM4 and TIM5  
They are full-featured general-purpose timers:  
TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler  
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.  
These timers feature 4 independent channels for input capture/output compare, PWM  
or one-pulse mode output. They can work together, or with the other general-purpose  
timers via the Timer Link feature for synchronization or event chaining.  
The counters can be frozen in debug mode.  
All have independent DMA request generation and support quadrature encoders.  
TIM15, 16 and 17  
They are general-purpose timers with mid-range features:  
They have 16-bit auto-reload upcounters and 16-bit prescalers.  
TIM15 has 2 channels and 1 complementary channel  
TIM16 and TIM17 have 1 channel and 1 complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse mode  
output.  
The timers can work together via the Timer Link feature for synchronization or event  
chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.24.4  
Basic timers (TIM6 and TIM7)  
The basic timers are mainly used for DAC trigger generation. They can also be used as  
generic 16-bit timebases.  
DS12288 Rev 5  
37/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.24.5  
Low-power timer (LPTIM1)  
The devices embed a low-power timer. This timer has an independent clock and are running  
in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the system  
from Stop mode.  
LPTIM1 is active in Stop mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous/ one shot mode  
Selectable software/hardware input trigger  
Selectable clock source  
Internal clock sources: LSE, LSI, HSI16 or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by pulse counter application).  
Programmable digital glitch filter  
Encoder mode  
3.24.6  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently  
from the main clock, it can operate in Stop and Standby modes. It can be used either as a  
watchdog to reset the device when a problem occurs, or as a free running timer for  
application timeout management. It is hardware or software configurable through the option  
bytes. The counter can be frozen in debug mode.  
3.24.7  
3.24.8  
System window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
38/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.25  
Real-time clock (RTC) and backup registers  
The RTC supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
V
mode.  
BAT  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC is supplied through a switch that takes power either from the V supply when  
DD  
present or from the VBAT pin.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE) divided by 32.  
The RTC is functional in V  
mode and in all low-power modes when it is clocked by the  
BAT  
LSE. When clocked by the LSI, the RTC is not functional in V  
all low-power modes except Shutdown mode.  
mode, but is functional in  
BAT  
All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup  
the device from the low-power modes.  
3.26  
Tamper and backup registers (TAMP)  
32 32-bit backup registers, retained in all low-power modes and also in V  
mode.  
BAT  
They can be used to store sensitive data as their content is protected by an tamper  
detection circuit. They are not reset by a system or power reset, or when the device  
wakes up from Standby or Shutdown mode.  
Up to three tamper pins for external tamper detection events. The external tamper pins  
can be configured for edge detection, edge and level, level detection with filtering.  
Five internal tampers events.  
Any tamper detection can generate a RTC timestamp event.  
Any tamper detection erases the backup registers.  
Any tamper detection can generate an interrupt and wake-up the device from all low-  
power modes.  
DS12288 Rev 5  
39/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.27  
Infrared transmitter  
The STM32G474xB/xC/xE devices provide an infrared transmitter solution. The solution is  
based on internal connections between TIM16 and TIM17 as shown in the figure below.  
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be  
sent. The infrared output signal is available on PB9 or PA13.  
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must  
be properly configured to generate correct waveforms. All standard IR pulse modulation  
modes can be obtained by programming the two timers output compare channels.  
Figure 4. Infrared transmitter  
TIM17_CH1  
IR_OUT  
IRTIM  
TIM16_CH1  
MS30474V2  
40/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
3.28  
Inter-integrated circuit interface (I2C)  
The device embeds four I2Cs. Refer to Table 8: I2C implementation for the features  
implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System management bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (packet error checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power system management protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 8. I2C implementation  
I2C features(1)  
I2C1  
I2C2  
I2C3  
I2C4  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
Independent clock  
Wakeup from Stop mode on address match  
1. X: supported  
DS12288 Rev 5  
41/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.29  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The STM32G474xB/xC/xE devices have three embedded universal synchronous receiver  
transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver  
transmitters (UART4, USART5).  
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN master/slave capability. They provide hardware management of the CTS and RTS  
signals, and RS485 driver enable.  
The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant)  
and an SPI-like communication capability.  
The USART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO  
mode is enabled by software and is disabled by default.  
All USART have a clock domain independent from the CPU clock, allowing the U(S)ARTx  
(x=1,2,3,4,5) to wake up the MCU from Stop mode. The wakeup from Stop mode can be  
done on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled  
All USART interfaces can be served by the DMA controller.  
Table 9. USART/UART/LPUART features  
USART modes/features(1)  
USART1 USART2 USART3 UART4 UART5 LPUART1  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
-
X
X
X
-
X
X
X
Smartcard mode  
X
-
-
-
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
X
X
-
Dual clock domain  
X
X
X
-
Wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
X
X
X
X (4 modes)  
X
-
-
X
X
X
X
X
LPUART/USART data length  
7, 8 and 9 bits  
42/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
Table 9. USART/UART/LPUART features (continued)  
USART modes/features(1)  
USART1 USART2 USART3 UART4 UART5 LPUART1  
Tx/Rx FIFO  
X
8
Tx/Rx FIFO size  
1. X = supported.  
3.30  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The STM32G474xB/xC/xE devices embed one Low-Power UART. The LPUART supports  
asynchronous serial communication with minimum power consumption. It supports half-  
duplex single-wire communication and modem operations (CTS/RTS). It allows  
multiprocessor communication.  
The LPUART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO  
mode is enabled by software and is disabled by default. It has a clock domain independent  
from the CPU clock, and can wakeup the system from Stop mode. The wake up from Stop  
mode can be done on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600  
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while  
having an extremely low energy consumption. Higher speed clock can be used to reach  
higher baudrates.  
The LPUART interface can be served by the DMA controller.  
3.31  
Serial peripheral interface (SPI)  
Four SPI interfaces allow communication up to 75 Mbits/s in master and up to 41 Mbits/s in  
slave, half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces  
support NSS pulse mode, TI mode and hardware CRC calculation.  
2
Two standard I S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio  
standards can operate as master or slave at half-duplex communication modes. They can  
be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and  
synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can  
be set by 8-bit programmable linear prescaler. When operating in master mode it can output  
a clock for an external audio component at 256 times the sampling frequency.  
All SPI interfaces can be served by the DMA controller.  
DS12288 Rev 5  
43/236  
48  
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.32  
Serial audio interfaces (SAI)  
The device embeds 1 SAI. The SAI bus interface handles communications between the  
microcontroller and the serial audio protocol.  
SAI peripheral supports:  
Two independent audio sub-blocks which can be transmitters or receivers with their  
respective FIFO.  
8-word integrated FIFOs for each audio sub-block.  
Synchronous or asynchronous mode between the audio sub-blocks.  
Master or slave configuration independent for both audio sub-blocks.  
Clock generator for each audio block to target independent audio frequency sampling  
when both audio sub-blocks are configured in master mode.  
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.  
Peripheral with large configurability and flexibility allowing to target as example the  
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
out.  
Up to 16 slots available with configurable size and with the possibility to select which  
ones are active in the audio frame.  
Number of bits by frame may be configurable.  
Frame synchronization active level configurable (offset, bit length, level).  
First active bit position in the slot is configurable.  
LSB first or MSB first for data transfer.  
Mute mode.  
Stereo/Mono audio frame capability.  
Communication clock strobing edge configurable (SCK).  
Error flags with associated interrupts if enabled respectively.  
Overrun and underrun detection.  
Anticipated frame synchronization signal detection in slave mode.  
Late frame synchronization signal detection in slave mode.  
Codec not ready for the AC’97 mode in reception.  
Interruption sources when enabled:  
Errors.  
FIFO requests.  
DMA interface with 2 dedicated channels to handle access to the dedicated integrated  
FIFO of each SAI audio sub-block.  
Table 10. SAI implementation for the features implementation  
SAI features  
Support(1)  
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97  
X
X
X
X
Mute mode  
Stereo/Mono audio frame capability  
16 slots  
44/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Functional overview  
Table 10. SAI implementation for the features implementation (continued)  
SAI features  
Support(1)  
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit  
X
X (8 word)  
X
FIFO size  
SPDIF  
1. X: supported.  
3.33  
Controller area network (FDCAN1, FDCAN2, FDCAN3)  
The controller area network (CAN) subsystem consists of three CAN modules and a shared  
message RAM memory.  
The three CAN modules (FDCAN1, FDCAN2 and FDCAN3) are compliant with ISO 11898-1  
(CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification  
version 1.0.  
A 3-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,  
transmit event FIFOs, transmit buffers. This message RAM is shared between the three  
FDCAN modules.  
3.34  
Universal serial bus (USB)  
The STM32G474xB/xC/xE devices embed a full-speed USB device peripheral compliant  
with the USB specification version 2.0. The internal USB PHY supports USB FS signaling,  
embedded DP pull-up and also battery charging detection according to Battery Charging  
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function  
interface with added support for USB 2.0 Link Power Management. It has software-  
configurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume  
support. It requires a precise 48 MHz clock which can be generated from the internal main  
PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator  
in automatic trimming mode. The synchronization for this oscillator can be taken from the  
USB data stream itself (SOF signalization) which allows crystal less operation.  
3.35  
USB Type-C™ / USB Power Delivery controller (UCPD)  
The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB  
Power Delivery Rev. 3.0 specifications.  
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery  
requirements, featuring:  
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors  
“Dead battery” support  
USB Power Delivery message transmission and reception  
FRS (fast role swap) support  
DS12288 Rev 5  
45/236  
48  
 
 
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
The digital controller handles notably:  
USB Type-C level detection with de-bounce, generating interrupts  
FRS detection, generating an interrupt  
Byte-level interface for USB Power Delivery payload, generating interrupts (DMA  
compatible)  
USB Power Delivery timing dividers (including a clock pre-scaler)  
CRC generation/checking  
4b5b encode/decode  
Ordered sets (with a programmable ordered set mask at receive)  
Frequency recovery in receiver during preamble  
The interface offers low-power operation compatible with Stop mode, maintaining the  
capacity to detect incoming USB Power Delivery messages and FRS signaling.  
3.36  
3.37  
Clock recovery system (CRS)  
The devices embed a special block which allows automatic trimming of the internal 48 MHz  
oscillator to guarantee its optimal accuracy over the whole device operational range. This  
automatic trimming is based on the external synchronization signal, which could be either  
derived from USB SOF signalization, from LSE oscillator, from an external signal on  
CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also  
possible to combine automatic trimming with manual trimming action.  
Flexible static memory controller (FSMC)  
The Flexible static memory controller (FSMC) includes two memory controllers:  
The NOR/PSRAM memory controller  
The NAND/memory controller  
This memory controller is also named Flexible memory controller (FMC).  
The main features of the FMC controller are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM (4 memory banks)  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Ferroelectric RAM (FRAM)  
8-,16- bit data bus width  
Independent Chip Select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.  
46/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
LCD parallel interface  
Functional overview  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost  
effective graphic applications using LCD modules with embedded controllers or high  
performance solutions using external controllers with dedicated acceleration.  
3.38  
Quad SPI memory interface (QUADSPI)  
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI  
flash memories. It can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the QUADSPI registers  
Status polling mode: the external flash status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external Flash is memory mapped and is seen by the  
system as if it were an internal memory.  
Both throughput and capacity can be increased two-fold using dual-flash mode, where two  
quad SPI flash memories are accessed simultaneously.  
The Quad SPI interface supports:  
Indirect mode: all the operations are performed using the QUADSPI registers  
Status polling mode: the external flash status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external Flash is memory mapped and is seen by the  
system as if it were an internal memory  
Three functional modes: indirect, status-polling, and memory-mapped  
SDR and DDR support  
Fully programmable opcode for both indirect and memory mapped mode  
Fully programmable frame format for both indirect and memory mapped mode  
Each of the 5 following phases can be configured independently (enable, length,  
single/dual/quad communication)  
Instruction phase  
Address phase  
Alternate bytes phase  
Dummy cycles phase  
Data phase  
Integrated FIFO for reception and transmission  
8, 16, and 32-bit data accesses are allowed  
DMA channel for indirect mode operations  
Programmable masking for external flash flag management  
Timeout management  
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and  
access error  
DS12288 Rev 5  
47/236  
48  
 
Functional overview  
STM32G474xB STM32G474xC STM32G474xE  
3.39  
Development support  
3.39.1  
Serial wire JTAG debug port (SWJ-DP)  
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could  
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with  
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
3.39.2  
Embedded trace macrocell™  
The Arm embedded trace macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32G474xB/xC/xE devices through a small number of ETM pins to an external hardware  
trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded  
and then formatted for display on the host computer that runs the debugger software. TPA  
hardware is commercially available from common development tool vendors.  
The Embedded trace macrocell operates with third party debugger software tools.  
48/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
4
Pinouts and pin description  
4.1  
UFQFPN48 pinout description  
Figure 5. STM32G474xB/xC/xE UFQFPN48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PA13  
VDD  
PA12  
PA11  
PA10  
PA9  
2
PC14-OSC32_IN  
PC15-OSC32_OUT  
PF0-OSC_IN  
PF1-OSC_OUT  
PG10-NRST  
PA0  
3
4
5
6
UFQFPN48  
7
PA8  
8
PC6  
PA1  
9
PB15  
PB14  
PB13  
PB12  
PA2  
10  
11  
12  
PA3  
Exposed pad  
PA4  
VSS  
MS60210V1  
1. The above figure shows the package top view.  
2. VSS pads are connected to the exposed pad.  
DS12288 Rev 5  
49/236  
79  
 
 
 
 
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
4.2  
LQFP48 pinout description  
Figure 6. STM32G474xB/xC/xE LQFP48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
2
PC14 - OSC32_IN  
PC15 - OSC32_OUT  
PF0 - OSC_IN  
PF1 - OSC_OUT  
PG10 - NRST  
PA0  
3
PA12  
PA11  
PA10  
PA9  
4
5
6
LQFP48  
7
PA8  
8
PB15  
PB14  
PB13  
PB12  
PB11  
PA1  
9
PA2  
10  
11  
12  
PA3  
PA4  
MSv42659V2  
1. The above figure shows the package top view.  
4.3  
LQFP64 pinout description  
Figure 7. STM32G474xB/xC/xE LQFP64 pinout  
VBAT  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
VSS  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PF0-OSC_IN  
PF1-OSC_OUT  
PG10-NRST  
PC0  
LQFP64  
PC1  
PC2  
PC3  
PA0  
PA1  
PA2  
VSS  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
PB15  
PB14  
PB13  
PB12  
PB11  
MSv42658V2  
1. The above figure shows the package top view.  
50/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
4.4  
LQFP80 pinout description  
Figure 8. STM32G474xB/xC/xE LQFP80 pinout  
VBAT  
1
60  
59  
PA12  
PA11  
PA10  
PA9  
PC13  
2
PC14-OSC32_IN  
3
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PC15-OSC32_OUT  
4
PF0-OSC_IN  
5
PA8  
PF1-OSC_OUT  
PG10-NRST  
PC0  
6
PC9  
7
PC8  
8
PC7  
PC1  
9
PC6  
PC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
VSS  
PD10  
PD9  
LQFP80  
PC3  
PA0  
PA1  
PA2  
PD8  
VSS  
PB15  
PB14  
PB13  
PB12  
PB11  
VDD  
VDD  
PA3  
PA4  
PA5  
PA6  
MSv60826V1  
1. The above figure shows the package top view.  
DS12288 Rev 5  
51/236  
79  
 
 
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
4.5  
LQFP100 pinout description  
Figure 9. STM32G474xB/xC/xE LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
VSS  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC6  
VDD  
VSS  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC14-OSC32_IN  
PC15-OSC32_OUT  
9
PF9  
PF10  
PF0-OSC_IN  
PF1-OSC_OUT  
PG10-NRST  
PC0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
LQFP100  
PC1  
PC2  
PC3  
PF2  
PA0  
PA1  
PA2  
VSS  
PD8  
PB15  
PB14  
PB13  
PB12  
VDD  
PA3  
MSv42661V3  
1. The above figure shows the package top view.  
52/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
4.6  
LQFP128 pinout description  
Figure 10. STM32G474xB/xC/xE LQFP128 pinout  
PE2  
1
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
PA13  
VDD  
VSS  
PA12  
PA11  
PA10  
PA9  
PE3  
2
PE4  
PE5  
3
4
PE6  
5
VBAT  
6
PC13  
7
PC14-OSC32_IN  
8
PA8  
PC15-OSC32_OUT  
9
PC9  
PF3  
PF4  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PC8  
PG4  
PG3  
PG2  
PG1  
PG0  
PC7  
VSS  
VDD  
PF5  
PF7  
PF8  
LQFP128  
PF9  
PC6  
PF10  
VDD  
VSS  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PF0-OSC_IN  
PF1-OSC_OUT  
PG10-NRST  
PC0  
PC1  
PC2  
PC3  
PF2  
PA0  
PD8  
PA1  
PB15  
PB14  
PB13  
PB12  
PB11  
PA2  
VSS  
VDD  
PA3  
MSv42664V3  
1. The above figure shows the package top view.  
DS12288 Rev 5  
53/236  
79  
 
 
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
4.7  
WLCSP81 pinout description  
Figure 11. STM32G474xB/xC/xE WLCSP81 pinout  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VDD  
VSS  
PA12  
PA8  
VDD  
VSS  
PD8  
PB13  
VDD  
PA15  
PA13  
PA11  
PC9  
PC12  
PC10  
PA14  
PA10  
PC6  
PD1  
PB3  
PD2  
PC8  
PC7  
PE12  
PE9  
PE8  
PE7  
VDDA  
PB5  
PB6  
PB4  
PA4  
PB9  
VSS  
VDD  
VBAT  
PD0  
PB8-BOOT0  
PB7  
PC13  
PC1  
PC14-  
OSC32_IN  
PC11  
PA9  
PC15-  
OSC32_OUT  
PA0  
PG10-NRST  
PC0  
PD11  
PD10  
PB14  
PB11  
VSS  
PB15  
PE15  
PE13  
PE11  
PE10  
PC4  
PB0  
PB1  
VSSA  
VREF+  
PA1  
PF0-OSC_IN  
PF1-  
OSC_OUT  
PD9  
PA5  
PC2  
G
H
J
PB12  
PB10  
PE14  
PA6  
PA2  
PC3  
VSS  
VDD  
PC5  
PA3  
PB2  
PA7  
MSv48046V1  
1. The above figure shows the package top view.  
4.8  
TFBGA100 pinout description  
Figure 12. STM32G474xB/xC/xE TFBGA100 pinout  
1
2
3
PB8-BOOT0  
PE1  
4
5
6
7
8
9
10  
A
B
C
D
E
F
PE4  
PE5  
PB9  
PE3  
PE6  
VSS  
PB6  
PB7  
PE0  
PC13  
PF10  
PC1  
PA0  
PB3  
PD6  
PD7  
PD3  
VSS  
VSS  
VSS  
PE12  
PE9  
PE11  
PE10  
PD5  
PD4  
PD1  
PC12  
PA14  
PA11  
PA9  
PB5  
PD2  
PD0  
PA15  
PA12  
PA10  
PC9  
PC14-  
OSC32_IN  
PE2  
PB4  
PC11  
VDD  
VSS  
VDD  
PD10  
PE15  
PE14  
PE13  
PC10  
PA13  
PC8  
PC15-  
OSC32_OUT  
VBAT  
PF9  
VDD  
VSS  
VDD  
PE7  
PF1-  
OSC_OUT  
PF0-OSC_IN  
PC2  
PA8  
PC0  
PA1  
PA4  
PA6  
PC4  
PG10-NRST  
PF2  
PD14  
PD9  
PC6  
PC7  
G
H
J
PC3  
PD13  
PB14  
PB13  
PB15  
PD15  
PD11  
PD12  
PD8  
PA2  
PA3  
PB0  
PB2  
VSSA  
PE8  
PB11  
PB10  
PB12  
PA5  
PC5  
VDDA  
VREF+  
K
PA7  
PB1  
MS48951V1  
1. The above figure shows the package top view.  
54/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
4.9  
UFBGA121 pinout description  
Figure 13. STM32G474xB/xC/xE UFBGA121 pinout  
1
2
3
4
PB9  
PE0  
PE1  
PF4  
5
PB6  
6
7
8
9
10  
11  
A
B
C
D
E
F
PE4  
PE5  
PC13  
PE2  
PE3  
VBAT  
VDD  
VSS  
PE6  
PF3  
PF5  
PF9  
PC2  
PA1  
PA2  
PA7  
PC4  
PB3  
PD7  
PB4  
PD6  
PD5  
PD15  
PF15  
PF14  
PF13  
VSS  
VDD  
PD4  
PD3  
PD2  
PC12  
PA8  
PG2  
PD11  
PE10  
PE9  
PE8  
PE7  
VDD  
VSS  
PC11  
PA9  
PD1  
PA15  
PA14  
VSS  
PF6  
PB5  
PD0  
PA13  
VDD  
PA11  
PG3  
PC7  
PB7  
PC10  
PA10  
PC8  
PC14-  
OSC32_IN  
PC15-  
OSC32_OUT  
PB8-BOOT0  
PF8  
PA12  
PG4  
VDD  
PF0-OSC_IN  
PC1  
VSS  
PF7  
PC9  
PF1-  
OSC_OUT  
PF10  
PA0  
PC5  
PB0  
PB2  
VREF+  
PG10-NRST  
PB1  
PG1  
PD12  
PB15  
PE13  
PE12  
PE11  
PG0  
PD13  
PD8  
PC6  
G
H
J
PC0  
PF2  
VSS  
PA5  
PA6  
PD14  
PD9  
VDD  
PD10  
PB13  
VDD  
PB11  
PC3  
PF12  
VDD  
PF11  
PB12  
PE14  
PE15  
PB14  
VSS  
K
L
PA3  
VSSA  
VDDA  
PA4  
PB10  
MS52876V1  
1. The above figure shows the package top view.  
DS12288 Rev 5  
55/236  
79  
 
 
 
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
4.10  
Pin definition  
Table 11. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Definition  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
TT  
B
Input / output pin  
5 V tolerant I/O  
3.6 V tolerant I/O  
Dedicated BOOT0 pin  
NRST  
Bidirectional reset pin with embedded weak pull-up resistor  
Option for TT or FT I/Os  
I/O, with Analog switch function supplied by VDDA  
I/O, USB Type-C PD capable  
I/O, USB Type-C PD Dead Battery function  
I/O, Fm+ capable  
I/O structure  
_a(1)  
_c  
_d  
_f(2)  
_u(3)  
I/O, with USB function  
Notes  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset  
Alternate  
Functions selected through GPIOx_AFR registers  
functions  
Pin functions  
Additional  
Functions directly selected/enabled through peripheral registers  
functions  
1. The related I/O structures in Table 12 are: FT_a, FT_fa, TT_a.  
2. The related I/O structures in Table 12 are: FT_f, FT_fa.  
3. The related I/O structures in Table 12 are FT_u.  
56/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition  
Pin Number  
Alternate  
functions  
Additional  
functions  
TRACECK,  
TIM3_CH1,  
SAI1_CK1,  
SPI4_SCK,  
TIM20_CH1,  
FMC_A23,  
-
-
-
-
-
C3  
1
A2  
1
PE2  
I/O  
FT  
-
-
SAI1_MCLK_A,  
EVENTOUT  
TRACED0,  
TIM3_CH2,  
SPI4_NSS,  
TIM20_CH2,  
FMC_A19,  
-
-
-
-
-
-
-
-
-
-
B2  
A1  
2
3
B2  
A1  
2
3
PE3  
PE4  
I/O  
I/O  
FT  
FT  
-
-
-
-
SAI1_SD_B,  
EVENTOUT  
TRACED1,  
TIM3_CH3, SAI1_D2,  
SPI4_NSS,  
TIM20_CH1N,  
FMC_A20,  
SAI1_FS_A,  
EVENTOUT  
TRACED2,  
TIM3_CH4,  
SAI1_CK2,  
SPI4_MISO,  
TIM20_CH2N,  
FMC_A21,  
SAI1_SCK_A,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
B1  
C2  
4
5
B1  
C3  
4
5
PE5  
PE6  
I/O  
I/O  
FT  
FT  
-
-
TRACED3, SAI1_D1,  
SPI4_MOSI,  
TIM20_CH3N,  
FMC_A22,  
SAI1_SD_A,  
WKUP3,  
RTC_TAMP3  
-
-
EVENTOUT  
B9  
B8  
1
2
1
2
1
2
1
2
D3  
D4  
6
7
C2  
C1  
6
7
VBAT  
PC13  
PC14-  
S
-
-
-
TIM1_BKIN,  
TIM1_CH1N,  
TIM8_CH4N,  
EVENTOUT  
WKUP2,  
RTC_TAMP1,  
RTC_TS,  
(2)  
(3)  
I/O  
FT  
RTC_OUT1  
(2)  
(3)  
C9  
D9  
3
4
3
4
3
4
3
4
C1  
D1  
8
9
D1  
D2  
8
9
OSC32_I I/O  
N
FT  
FT  
EVENTOUT  
EVENTOUT  
OSC32_IN  
PC15-  
OSC32_ I/O  
OUT  
(2)  
(3)  
OSC32_OUT  
DS12288 Rev 5  
57/236  
79  
 
 
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM20_CH4,  
I2C3_SCL,  
FMC_A3,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D3  
D4  
10  
11  
PF3  
PF4  
I/O  
I/O  
FT_f  
FT_f  
-
-
-
-
EVENTOUT  
COMP1_OUT,  
TIM20_CH1N,  
I2C3_SDA, FMC_A4,  
EVENTOUT  
F1  
A9  
-
-
-
-
-
-
-
-
D2  
D5  
-
-
E2  
E1  
12  
13  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM20_CH2N,  
FMC_A5,  
-
-
-
-
-
-
-
E3  
14  
PF5  
I/O  
FT  
-
-
EVENTOUT  
TIM20_BKIN,  
TIM5_CH2,  
QUADSPI1_BK1_IO2  
, FMC_A1,  
-
-
-
-
-
-
-
E4  
15  
PF7  
I/O  
FT  
-
-
SAI1_MCLK_B,  
EVENTOUT  
TIM20_BKIN2,  
TIM5_CH3,  
QUADSPI1_BK1_IO0  
, FMC_A24,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E5  
F3  
F4  
16  
17  
PF8  
PF9  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
-
-
SAI1_SCK_B,  
EVENTOUT  
TIM20_BKIN,  
TIM15_CH1,  
SPI2_SCK,  
TIM5_CH4,  
QUADSPI1_BK1_IO1  
, FMC_A25,  
E3  
E4  
10  
11  
SAI1_FS_B,  
EVENTOUT  
TIM20_BKIN2,  
TIM15_CH2,  
SPI2_SCK,  
QUADSPI1_CLK,  
FMC_A0, SAI1_D3,  
EVENTOUT  
18  
19  
PF10  
I2C2_SDA,  
SPI2_NSS/I2S2_WS,  
TIM1_CH3N,  
PF0-  
OSC_IN  
ADC1_IN10,  
OSC_IN  
E9  
F9  
5
6
5
6
5
6
5
6
E1  
E2  
12  
13  
F1  
F2  
I/O FT_fa  
-
-
EVENTOUT  
PF1-  
ADC2_IN10,  
COMP3_INM,  
OSC_OUT  
SPI2_SCK/I2S2_CK,  
EVENTOUT  
20 OSC_OU I/O FT_a  
T
58/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
PG10-  
NRST  
D8  
E8  
7
-
7
-
7
8
7
8
F3  
F2  
14  
15  
F5  
21  
22  
I/O  
FT  
-
-
MCO, EVENTOUT  
NRST  
LPTIM1_IN1,  
TIM1_CH1,  
LPUART1_RX,  
EVENTOUT  
ADC12_IN6,  
COMP3_INM  
G2  
PC0  
I/O FT_a  
LPTIM1_OUT,  
TIM1_CH2,  
LPUART1_TX,  
QUADSPI1_BK2_IO0  
, SAI1_SD_A,  
ADC12_IN7,  
COMP3_INP  
C8  
F8  
-
-
-
-
9
9
F4  
F1  
16  
17  
G1  
G3  
23  
24  
PC1  
I/O TT_a  
-
-
EVENTOUT  
LPTIM1_IN2,  
TIM1_CH3,  
COMP3_OUT,  
TIM20_CH2,  
10 10  
PC2  
I/O FT_a  
ADC12_IN8  
ADC12_IN9,  
QUADSPI1_BK2_IO1  
, EVENTOUT  
LPTIM1_ETR,  
TIM1_CH4, SAI1_D1,  
TIM1_BKIN2,  
QUADSPI1_BK2_IO2 OPAMP5_VINP  
, SAI1_SD_A,  
G9  
-
-
-
-
11 11  
G1  
G3  
18  
19  
H1  
H2  
25  
26  
PC3  
PF2  
I/O TT_a  
-
-
EVENTOUT  
TIM20_CH3,  
I2C2_SMBA,  
FMC_A2,  
-
-
-
I/O  
FT  
-
EVENTOUT  
TIM2_CH1,  
TIM5_CH1,  
ADC12_IN1,  
USART2_CTS,  
COMP1_INM,  
COMP1_OUT,  
COMP3_INP,  
TIM8_BKIN,  
RTC_TAMP2,W  
TIM8_ETR,  
D7  
E7  
8
9
8
9
12 12  
G4  
G2  
20  
21  
G4  
H3  
27  
28  
PA0  
PA1  
I/O TT_a  
-
-
KUP1  
TIM2_ETR,  
EVENTOUT  
RTC_REFIN,  
ADC12_IN2,  
TIM2_CH2,  
TIM5_CH2,  
COMP1_INP,  
13 13  
I/O TT_a  
OPAMP1_VINP,  
USART2_RTS_DE,  
OPAMP3_VINP,  
TIM15_CH1N,  
OPAMP6_VINM  
EVENTOUT  
DS12288 Rev 5  
59/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM2_CH3,  
TIM5_CH3,  
USART2_TX,  
COMP2_OUT,  
TIM15_CH1,  
ADC1_IN3,  
COMP2_INM,  
OPAMP1_VOUT  
, WKUP4/LSCO  
G8 10  
10  
14 14  
H1  
22  
J3  
29  
PA2  
I/O FT_a  
-
QUADSPI1_BK1_NC  
S, LPUART1_TX,  
UCPD1_FRSTX,  
EVENTOUT  
H9  
J9  
-
-
-
-
15 15  
16 16  
D6  
D7  
23  
24  
J2  
J1  
30  
31  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM2_CH4,  
TIM5_CH4,  
SAI1_CK1,  
ADC1_IN4,  
COMP2_INP,  
OPAMP1_VINM/  
OPAMP  
1_VINP,  
OPAMP5_VINM  
USART2_RX,  
TIM15_CH2,  
QUADSPI1_CLK,  
LPUART1_RX,  
SAI1_MCLK_A,  
EVENTOUT  
H8  
11  
11  
17 17  
H3  
25  
K1  
32  
PA3  
I/O TT_a  
-
TIM3_CH2,  
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
USART2_CK,  
SAI1_FS_B,  
ADC2_IN17,  
DAC1_OUT1,  
COMP1_INM  
D6  
F7  
12  
13  
12  
13  
18 18  
H2  
J1  
26  
27  
L1  
33  
34  
PA4  
PA5  
I/O TT_a  
-
-
EVENTOUT  
TIM2_CH1,  
TIM2_ETR,  
SPI1_SCK,  
UCPD1_FRSTX,  
EVENTOUT  
ADC2_IN13,  
DAC1_OUT2,  
COMP2_INM,  
OPAMP2_VINM  
19 19  
K2  
I/O TT_a  
TIM16_CH1,  
TIM3_CH1,  
TIM8_BKIN,  
SPI1_MISO,  
TIM1_BKIN,  
COMP1_OUT,  
QUADSPI1_BK1_IO3  
, LPUART1_CTS,  
EVENTOUT  
ADC2_IN3,  
DAC2_OUT1,  
OPAMP2_VOUT  
G7 14  
14  
20 20  
J2  
28  
L2  
35  
PA6  
I/O TT_a  
-
TIM17_CH1,  
TIM3_CH2,  
TIM8_CH1N,  
SPI1_MOSI,  
TIM1_CH1N,  
ADC2_IN4,  
COMP2_INP,  
OPAMP1_VINP,  
OPAMP2_VINP  
J8  
15  
15  
21 21  
K1  
29  
K3  
36  
PA7  
I/O TT_a  
-
COMP2_OUT,  
QUADSPI1_BK1_IO2  
, UCPD1_FRSTX,  
EVENTOUT  
60/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM1_ETR,  
I2C2_SCL,  
E6  
H7  
16  
-
-
22 22  
K2  
J3  
30  
31  
L3  
37  
38  
PC4  
PC5  
I/O FT_fa  
-
-
USART1_TX,  
QUADSPI1_BK2_IO3  
, EVENTOUT  
ADC2_IN5  
TIM15_BKIN,  
SAI1_D3,  
TIM1_CH4N,  
USART1_RX,  
HRTIM1_EEV10,  
EVENTOUT  
ADC2_IN11,  
OPAMP1_VINM,  
OPAMP2_VINM,  
WKUP5  
-
23 23  
H4  
I/O TT_a  
TIM3_CH3,  
TIM8_CH2N,  
TIM1_CH2N,  
ADC3_IN12/AD  
C1_IN15,  
F6  
17  
16  
24 24  
H4  
32  
J4  
39  
PB0  
I/O TT_a  
-
QUADSPI1_BK1_IO1  
, HRTIM1_FLT5,  
UCPD1_FRSTX,  
EVENTOUT  
COMP4_INP,  
OPAMP2_VINP,  
OPAMP3_VINP  
TIM3_CH4,  
TIM8_CH3N,  
TIM1_CH3N,  
ADC3_IN1/ADC  
1_IN12,  
COMP1_INP,  
OPAMP3_VOUT  
,
COMP4_OUT,  
QUADSPI1_BK1_IO0  
,
LPUART1_RTS_DE,  
HRTIM1_SCOUT,  
EVENTOUT  
G6 18  
17  
25 25  
K3  
33  
G5  
40  
PB1  
I/O TT_a  
-
OPAMP6_VINM  
RTC_OUT2,  
LPTIM1_OUT,  
TIM5_CH1,  
TIM20_CH1,  
I2C3_SMBA,  
ADC2_IN12,  
COMP4_INM,  
OPAMP3_VINM  
J7  
19  
18  
26 26  
J4  
34  
K4  
41  
PB2  
I/O TT_a  
-
QUADSPI1_BK2_IO1  
, HRTIM1_SCIN,  
EVENTOUT  
H6  
J6  
-
-
20  
-
19  
20  
-
27 27  
28 28  
K4  
K5  
-
35  
36  
-
K5  
L4  
-
42  
43  
44  
45  
46  
47  
VSSA  
VREF+  
VREF+  
VDDA  
VSS  
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREFBUF_OUT  
-
-
VREFBUF_OUT  
J5  
H9  
J1  
21  
-
21  
-
29 29  
J5  
E5  
F5  
37  
-
L5  
K6  
L6  
-
-
-
-
-
-
-
-
-
-
VDD  
TIM20_ETR,  
FMC_NE4,  
EVENTOUT  
-
-
-
-
-
-
-
J5  
48  
PF11  
I/O  
FT  
-
-
DS12288 Rev 5  
61/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM20_CH1,  
FMC_A6,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H5  
J6  
49  
50  
PF12  
PF13  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM20_CH2,  
I2C4_SMBA,  
FMC_A7,  
EVENTOUT  
TIM20_CH3,  
I2C4_SCL, FMC_A8,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H6  
G6  
L7  
51  
52  
53  
PF14  
PF15  
PE7  
I/O  
I/O  
FT_f  
FT_f  
-
-
-
-
-
TIM20_CH4,  
I2C4_SDA, FMC_A9,  
EVENTOUT  
TIM1_ETR, FMC_D4,  
SAI1_SD_B,  
ADC3_IN4,  
COMP4_INP  
H5  
30  
G5  
38  
I/O TT_a  
I/O FT_a  
EVENTOUT  
TIM5_CH3,  
TIM1_CH1N,  
FMC_D5,  
SAI1_SCK_B,  
EVENTOUT  
ADC345_IN6,  
COMP4_INM  
G5  
F5  
J4  
-
-
-
-
-
-
-
-
-
31  
32  
33  
H5  
H6  
K6  
39  
40  
41  
K7  
J7  
54  
55  
56  
PE8  
PE9  
-
-
-
TIM5_CH4,  
TIM1_CH1, FMC_D6,  
SAI1_FS_B,  
I/O FT_a  
I/O FT_a  
ADC3_IN2  
EVENTOUT  
TIM1_CH2N,  
QUADSPI1_CLK,  
FMC_D7,  
H7  
PE10  
ADC345_IN14  
SAI1_MCLK_B,  
EVENTOUT  
TIM1_CH2,  
SPI4_NSS,  
H4  
E5  
G4  
-
-
-
-
-
-
-
-
-
34  
35  
36  
J6  
G6  
K7  
42  
43  
44  
L8  
K8  
J8  
57  
58  
59  
PE11  
PE12  
PE13  
I/O FT_a  
I/O FT_a  
I/O FT_a  
-
-
-
QUADSPI1_BK1_NC ADC345_IN15  
S, FMC_D8,  
EVENTOUT  
TIM1_CH3N,  
SPI4_SCK,  
QUADSPI1_BK1_IO0 ADC345_IN16  
, FMC_D9,  
EVENTOUT  
TIM1_CH3,  
SPI4_MISO,  
QUADSPI1_BK1_IO1  
, FMC_D10,  
ADC3_IN3  
EVENTOUT  
62/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM1_CH4,  
SPI4_MOSI,  
TIM1_BKIN2,  
QUADSPI1_BK1_IO2  
, FMC_D11,  
J3  
F4  
-
-
-
-
-
-
37  
38  
J7  
45  
46  
K9  
L9  
60  
61  
PE14  
PE15  
I/O FT_a  
-
-
ADC4_IN1  
ADC4_IN2  
EVENTOUT  
TIM1_BKIN,  
TIM1_CH4N,  
USART3_RX,  
QUADSPI1_BK1_IO3  
, FMC_D12,  
H7  
I/O FT_a  
EVENTOUT  
TIM2_CH3,  
USART3_TX,  
LPUART1_RX,  
QUADSPI1_CLK,  
TIM1_BKIN,  
HRTIM1_FLT3,  
SAI1_SCK_A,  
EVENTOUT  
COMP5_INM,  
OPAMP3_VINM,  
OPAMP4_VINM  
H3  
22  
22  
30 39  
J8  
47  
L10  
62  
PB10  
I/O TT_a  
-
J2  
J1  
-
23  
24  
31 40  
32 41  
E6  
F7  
48 K10  
63  
64  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
23  
49  
K11  
TIM2_CH4,  
USART3_RX,  
LPUART1_TX,  
ADC12_IN14,  
COMP6_INP,  
H2  
24  
25  
33 42  
H8  
50  
L11  
65  
PB11  
I/O TT_a  
-
QUADSPI1_BK1_NC OPAMP4_VINP,  
S, HRTIM1_FLT4,  
EVENTOUT  
OPAMP6_VOUT  
TIM5_ETR,  
I2C2_SMBA,  
SPI2_NSS/I2S2_WS,  
TIM1_BKIN,  
USART3_CK,  
LPUART1_RTS_DE,  
FDCAN2_RX,  
ADC4_IN3/ADC  
1_IN11,  
COMP7_INM,  
OPAMP4_VOUT  
,
G3 25  
26  
34 43  
K8  
51  
J9  
66  
PB12  
I/O TT_a  
-
OPAMP6_VINP  
HRTIM1_CHC1,  
EVENTOUT  
SPI2_SCK/I2S2_CK,  
TIM1_CH1N,  
USART3_CTS,  
LPUART1_CTS,  
FDCAN2_TX,  
ADC3_IN5,  
COMP5_INP,  
OPAMP3_VINP,  
OPAMP4_VINP,  
OPAMP6_VINP  
H1  
26  
27  
35 44  
J9  
52  
J11  
67  
PB13  
I/O TT_a  
-
HRTIM1_CHC2,  
EVENTOUT  
DS12288 Rev 5  
63/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM15_CH1,  
SPI2_MISO,  
TIM1_CH2N,  
ADC4_IN4/ADC  
1_IN5,  
G2 27  
28  
36 45  
H9  
53  
J10  
68  
PB14  
I/O TT_a  
-
USART3_RTS_DE,  
COMP4_OUT,  
HRTIM1_CHD1,  
EVENTOUT  
COMP7_INP,  
OPAMP2_VINP,  
OPAMP5_VINP  
RTC_REFIN,  
TIM15_CH2,  
TIM15_CH1N,  
COMP3_OUT,  
TIM1_CH3N,  
ADC4_IN5/ADC  
2_IN15,  
COMP6_INM,  
E4  
28  
29  
37 46  
K9  
54  
55  
H8  
H9  
69  
70  
PB15  
I/O TT_a  
-
SPI2_MOSI/I2S2_SD OPAMP5_VINM  
, HRTIM1_CHD2,  
EVENTOUT  
USART3_TX,  
FMC_D13,  
EVENTOUT  
ADC4_IN12/AD  
C5_IN12,  
OPAMP4_VINM  
G1  
F3  
F2  
-
-
-
-
-
-
-
-
-
47 K10  
PD8  
PD9  
I/O TT_a  
I/O TT_a  
I/O FT_a  
-
-
-
USART3_RX,  
FMC_D14,  
EVENTOUT  
ADC4_IN13/AD  
C5_IN13,  
OPAMP6_VINP  
48  
49  
G8  
G7  
56 H10 71  
USART3_CK,  
FMC_D15,  
EVENTOUT  
ADC345_IN7,  
COMP6_INM  
57 H11  
72  
73  
PD10  
TIM5_ETR,  
I2C4_SMBA,  
USART3_CTS,  
FMC_A16,  
ADC345_IN8,  
COMP6_INP,  
OPAMP4_VINP  
E2  
-
-
-
-
-
-
-
-
H10  
J10  
58  
G7  
PD11  
PD12  
I/O TT_a  
I/O TT_a  
-
-
EVENTOUT  
TIM4_CH1,  
USART3_RTS_DE,  
FMC_A17,  
ADC345_IN9,  
COMP5_INP,  
OPAMP5_VINP  
-
59  
60  
G8  
G9  
74  
75  
EVENTOUT  
TIM4_CH2,  
FMC_A18,  
EVENTOUT  
ADC345_IN10,  
COMP5_INM  
-
-
-
-
-
-
-
-
-
-
G9  
F8  
PD13  
PD14  
I/O FT_a  
I/O TT_a  
-
-
TIM4_CH3,  
FMC_D0,  
ADC345_IN11,  
COMP7_INP,  
61 G10 76  
EVENTOUT  
OPAMP2_VINP  
TIM4_CH4,  
SPI2_NSS,  
FMC_D1,  
-
-
-
-
-
G10  
62  
63  
F6  
-
77  
78  
PD15  
I/O FT_a  
-
COMP7_INM  
EVENTOUT  
B1  
E1  
-
-
-
-
-
-
50  
51  
E7  
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
64 G11 79  
64/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM3_CH1,  
HRTIM1_EEV10,  
TIM8_CH1,  
I2S2_MCK,  
COMP6_OUT,  
I2C4_SCL,  
E3  
29  
-
38 52  
F9  
65  
F10  
80  
PC6  
I/O  
FT_f  
-
-
HRTIM1_CHF1,  
EVENTOUT  
TIM3_CH2,  
HRTIM1_FLT5,  
TIM8_CH2,  
I2S3_MCK,  
COMP5_OUT,  
I2C4_SDA,  
D5  
-
-
39 53 F10  
66  
F11  
81  
PC7  
I/O  
FT_f  
-
-
HRTIM1_CHF2,  
EVENTOUT  
TIM20_CH1N,  
FMC_A10,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F9  
F8  
82  
83  
PG0  
PG1  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM20_CH2N,  
FMC_A11,  
EVENTOUT  
TIM20_CH3N,  
SPI1_SCK,  
FMC_A12,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F7  
84  
85  
PG2  
PG3  
I/O  
I/O  
FT  
-
-
-
-
EVENTOUT  
TIM20_BKIN,  
I2C4_SCL,  
SPI1_MISO,  
TIM20_CH4N,  
FMC_A13,  
E11  
FT_f  
EVENTOUT  
TIM20_BKIN2,  
I2C4_SDA,  
SPI1_MOSI,  
FMC_A14,  
-
-
-
-
-
-
-
-
-
E10  
E9  
86  
87  
PG4  
PC8  
I/O  
I/O  
FT_f  
FT_f  
-
-
-
-
EVENTOUT  
TIM3_CH3,  
HRTIM1_CHE1,  
TIM8_CH3,  
TIM20_CH3,  
COMP7_OUT,  
I2C3_SCL,  
C5  
40 54  
E8  
67  
EVENTOUT  
DS12288 Rev 5  
65/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM3_CH4,  
HRTIM1_CHE2,  
TIM8_CH4, I2SCKIN,  
TIM8_BKIN2,  
D2  
-
-
41 55  
E9  
68  
E8  
88  
PC9  
I/O  
FT_f  
-
-
I2C3_SDA,  
EVENTOUT  
MCO, I2C3_SCL,  
I2C2_SDA,  
I2S2_MCK,  
TIM1_CH1,  
USART1_CK,  
COMP7_OUT,  
TIM4_ETR,  
ADC5_IN1,  
OPAMP5_VOUT  
D1  
30  
30  
42 56 E10  
69  
E7  
89  
PA8  
I/O FT_a  
-
FDCAN3_RX,  
SAI1_CK2,  
HRTIM1_CHA1,  
SAI1_SCK_A,  
EVENTOUT  
I2C3_SMBA,  
I2C2_SCL,  
I2S3_MCK,  
TIM1_CH2,  
USART1_TX,  
OMP5_OUT,  
TIM15_BKIN,  
TIM2_CH3,  
FT_fd  
ADC5_IN2,  
UCPD1_DBCC1  
D4  
31  
31  
43 57 D10  
70  
D8  
90  
PA9  
I/O  
a
-
HRTIM1_CHA2,  
SAI1_FS_A,  
EVENTOUT  
TIM17_BKIN,  
USB_CRS_SYNC,  
I2C2_SMBA,  
SPI2_MISO,  
TIM1_CH3,  
USART1_RX,  
COMP6_OUT,  
TIM2_CH4,  
FT_fd  
D3  
32  
32  
44 58  
D9  
71  
D9  
91  
PA10  
I/O  
a
-
UCPD1_DBCC2  
TIM8_BKIN,  
SAI1_D1,  
HRTIM1_CHB1,  
SAI1_SD_A,  
EVENTOUT  
66/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
SPI2_MOSI/I2S2_SD  
, TIM1_CH1N,  
USART1_CTS,  
COMP1_OUT,  
FDCAN1_RX,  
TIM4_CH1,  
C2  
33  
33  
45 59 C10  
72 D11  
92  
PA11  
I/O FT_u  
-
USB_DM  
TIM1_CH4,  
TIM1_BKIN2,  
HRTIM1_CHB2,  
EVENTOUT  
TIM16_CH1,  
I2SCKIN,  
TIM1_CH2N,  
USART1_RTS_DE,  
COMP2_OUT,  
FDCAN1_TX,  
TIM4_CH2,  
C1  
34  
34  
46 60  
C9  
73 D10 93  
PA12  
I/O FT_u  
-
USB_DP  
TIM1_ETR,  
HRTIM1_FLT1,  
EVENTOUT  
A8  
A1  
-
35  
36  
47 61  
48 62  
F6  
-
74 C10 94  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
35  
75 C11  
95  
SWDIO-JTMS,  
TIM16_CH1N,  
I2C4_SCL,  
I2C1_SCL, IR_OUT,  
USART3_CTS,  
TIM4_CH3,  
(4)  
B2  
36  
37  
49 63  
D8  
76  
B11  
96  
PA13  
I/O  
FT_f  
-
SAI1_SD_B,  
EVENTOUT  
TIM5_ETR,  
TIM4_CH4,  
SAI1_SD_B,  
I2C2_SCL,  
TIM5_CH1,  
-
-
-
-
-
-
-
A11  
97  
PF6  
I/O  
FT_f  
-
-
USART3_RTS,  
QUADSPI1_BK1_IO3  
, EVENTOUT  
SWCLK-JTCK,  
LPTIM1_OUT,  
I2C4_SMBA,  
I2C1_SDA,  
(4)  
C3  
37  
38  
50 64 B10  
77 B10  
98  
PA14  
I/O  
FT_f  
TIM8_CH2,  
-
TIM1_BKIN,  
USART2_TX,  
SAI1_FS_B,  
EVENTOUT  
DS12288 Rev 5  
67/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
JTDI, TIM2_CH1,  
TIM8_CH1,  
I2C1_SCL,  
SPI1_NSS,  
SPI3_NSS/I2S3_WS,  
USART2_RX,  
UART4_RTS_DE,  
TIM1_BKIN,  
(4)  
A2  
38  
39  
51 65  
B9  
78 A10  
99  
PA15  
I/O  
FT_f  
-
FDCAN3_TX,  
HRTIM1_FLT2,  
TIM2_ETR,  
EVENTOUT  
TIM8_CH1N,  
UART4_TX,  
SPI3_SCK/I2S3_CK,  
USART3_TX,  
B3  
C4  
39  
40  
-
-
52 66  
C8  
C7  
79  
80  
C9 100  
PC10  
PC11  
I/O  
I/O  
FT  
-
-
-
-
HRTIM1_FLT6,  
EVENTOUT  
HRTIM1_EEV2,  
TIM8_CH2N,  
UART4_RX,  
SPI3_MISO,  
USART3_RX,  
I2C3_SDA,  
53 67  
C8 101  
FT_f  
EVENTOUT  
TIM5_CH2,  
HRTIM1_EEV1,  
TIM8_CH3N,  
UART5_TX,  
A3  
-
-
54 68 A10  
81  
D7 102  
PC12  
I/O  
FT  
-
-
SPI3_MOSI/I2S3_SD  
, USART3_CK,  
UCPD1_FRSTX,  
EVENTOUT  
TIM20_ETR,  
SPI1_NSS,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
103  
104  
PG5  
PG6  
I/O  
I/O  
FT  
FT  
-
-
LPUART1_CTS,  
FMC_A15,  
EVENTOUT  
-
-
TIM20_BKIN,  
I2C3_SMBA,  
LPUART1_RTS_DE,  
FMC_INT,  
EVENTOUT  
SAI1_CK1,  
I2C3_SCL,  
LPUART1_TX,  
FMC_INT,  
-
-
-
-
-
-
-
-
105  
PG7  
I/O  
FT_f  
-
-
SAI1_MCLK_A,  
EVENTOUT  
68/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
I2C3_SDA,  
LPUART1_RX,  
FMC_NE3,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
106  
107  
108  
109  
PG8  
PG9  
PD0  
PD1  
I/O  
I/O  
I/O  
I/O  
FT_f  
FT  
-
-
-
-
-
-
-
-
EVENTOUT  
SPI3_SCK,  
USART1_TX,  
FMC_NCE/FMC_NE  
2, TIM15_CH1N,  
EVENTOUT  
-
-
-
-
-
TIM8_CH4N,  
FDCAN1_RX,  
FMC_D2,  
B4  
A4  
69  
70  
B8  
A9  
82  
83  
B9  
A9  
FT  
EVENTOUT  
TIM8_CH4,  
TIM8_BKIN2,  
FDCAN1_TX,  
FMC_D3,  
FT  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
B8  
A8  
110  
111  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
A1  
TIM3_ETR,  
TIM8_BKIN,  
UART5_RX,  
EVENTOUT  
B5  
-
-
55 71  
B7  
84  
C7  
112  
PD2  
I/O  
FT  
-
-
TIM2_CH1/  
TIM2_ETR,  
USART2_CTS,  
QUADSPI1_BK2_NC  
S, FMC_CLK,  
EVENTOUT  
-
-
-
-
-
C6  
85  
B7  
113  
PD3  
I/O  
FT  
-
-
TIM2_CH2,  
USART2_RTS_DE,  
QUADSPI1_BK2_IO0  
, FMC_NOE,  
-
-
-
-
-
-
-
-
-
-
A8  
A7  
86  
87  
A7  
E6  
114  
115  
PD4  
PD5  
I/O  
I/O  
FT  
FT  
-
-
-
-
EVENTOUT  
USART2_TX,  
QUADSPI1_BK2_IO1  
, FMC_NWE,  
EVENTOUT  
TIM2_CH4, SAI1_D1,  
USART2_RX,  
QUADSPI1_BK2_IO2  
, FMC_NWAIT,  
SAI1_SD_A,  
-
-
-
-
-
A6  
88  
D6  
116  
PD6  
I/O  
FT  
-
-
EVENTOUT  
DS12288 Rev 5  
69/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM2_CH3,  
USART2_CK,  
QUADSPI1_BK2_IO3  
,
-
-
-
-
-
B6  
89  
B6  
117  
PD7  
I/O  
FT  
-
-
FMC_NCE/FMC_NE  
1, EVENTOUT  
JTDO-TRACESWO,  
TIM2_CH2,  
TIM4_ETR,  
UCPD1_CRS_SYNC,  
TIM8_CH1N,  
SPI1_SCK,  
SPI3_SCK/I2S3_CK,  
USART2_TX,  
(4)  
A5  
41  
40  
56 72  
A5  
90  
A6  
118  
PB3  
I/O  
FT  
-
TIM3_ETR,  
FDCAN3_RX,  
HRTIM1_SCOUT,  
HRTIM1_EEV9,  
SAI1_SCK_B,  
EVENTOUT  
JTRST, TIM16_CH1,  
TIM3_CH1,  
TIM8_CH2N,  
SPI1_MISO,  
SPI3_MISO,  
(4)  
(5)  
USART2_RX,  
UART5_RTS_DE,  
TIM17_BKIN,  
FDCAN3_TX,  
HRTIM1_EEV7,  
SAI1_MCLK_B,  
EVENTOUT  
C6  
42  
41  
57 73  
C5  
91  
C6  
119  
PB4  
I/O FT_c  
UCPD1_CC2  
TIM16_BKIN,  
TIM3_CH2,  
TIM8_CH3N,  
I2C1_SMBA,  
SPI1_MOSI,  
SPI3_MOSI/I2S3_SD  
, USART2_CK,  
I2C3_SDA,  
A6  
43  
42  
58 74  
B5  
92  
B5  
120  
PB5  
I/O  
FT_f  
-
-
FDCAN2_RX,  
TIM17_CH1,  
LPTIM1_IN1,  
SAI1_SD_B,  
HRTIM1_EEV6,  
UART5_CTS,  
EVENTOUT  
70/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Pinouts and pin description  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM16_CH1N,  
TIM4_CH1,  
TIM8_CH1,  
TIM8_ETR,  
USART1_TX,  
COMP4_OUT,  
FDCAN2_TX,  
TIM8_BKIN2,  
LPTIM1_ETR,  
HRTIM1_SCIN,  
HRTIM1_EEV4,  
SAI1_FS_B,  
EVENTOUT  
-
B6  
44  
43  
59 75  
A4  
93  
A5  
121  
PB6  
I/O FT_c  
UCPD1_CC1  
(5)  
TIM17_CH1N,  
TIM4_CH2,  
I2C4_SDA,  
I2C1_SDA,  
TIM8_BKIN,  
USART1_RX,  
COMP3_OUT,  
TIM3_CH4,  
LPTIM1_IN2,  
FMC_NL,  
HRTIM1_EEV3,  
UART4_CTS,  
EVENTOUT  
C7  
B7  
A7  
45  
46  
47  
44  
45  
46  
60 76  
61 77  
62 78  
B4  
A3  
A2  
94  
95  
96  
C5 122  
PB7  
I/O  
I/O  
I/O  
FT_f  
FT_f  
FT_f  
-
PVD_IN  
TIM16_CH1,  
TIM4_CH3,  
SAI1_CK1,  
I2C1_SCL,  
USART3_RX,  
COMP1_OUT,  
FDCAN1_RX,  
TIM8_CH2,  
TIM1_BKIN,  
HRTIM1_EEV8,  
SAI1_MCLK_A,  
EVENTOUT  
PB8-  
BOOT0  
(6)  
D5 123  
-
TIM17_CH1,  
TIM4_CH4,  
SAI1_D2,  
I2C1_SDA,  
IR_OUT,  
USART3_TX,  
COMP2_OUT,  
FDCAN1_TX,  
TIM8_CH3,  
TIM1_CH3N,  
HRTIM1_EEV5,  
SAI1_FS_A,  
EVENTOUT  
A4  
124  
PB9  
-
-
DS12288 Rev 5  
71/236  
79  
Pinouts and pin description  
STM32G474xB STM32G474xC STM32G474xE  
Table 12. STM32G474xB/xC/xE pin definition (continued)  
Pin Number  
Alternate  
functions  
Additional  
functions  
TIM4_ETR,  
TIM20_CH4N,  
TIM16_CH1,  
TIM20_ETR,  
USART1_TX,  
FMC_NBL0,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
C4  
B3  
97  
B4  
125  
PE0  
PE1  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM17_CH1,  
TIM20_CH4,  
USART1_RX,  
FMC_NBL1,  
EVENTOUT  
98  
99  
C4 126  
-
-
47  
48  
63 79  
64 80  
-
-
B3  
127  
128  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
A9  
48  
100 A3  
1. Function availability depends on the chosen device.  
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3  
mA), the use of GPIOs PC13 to PC15 in output mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- These GPIOs must not be used as current sources (e.g. to drive an LED).  
3. After a backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of  
the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup  
domain and RTC register descriptions in the reference manual RM0440 "STM32G4 Series advanced Arm®-based 32-bit  
MCUs".  
4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4  
pins and the internal pull-down on PA14 pin are activated.  
5. After reset, a pull-down resistor (Rd = 5.1kfrom UCPD peripheral) can be activated on PB6, PB4 (UCPD1_CC1,  
UCPD1_CC2). The pull-down on PB6 (UCPD1_CC1) is activated by high level on PA9 (UCPD1_DBCC1). The pull-down  
on PB4 (UCPD1_CC2) is activated by high level on PA10 (UCPD1_DBCC2). This pull-down control (dead battery support  
on UCPD peripheral) can be disabled by setting bit UCPD1_DBDIS=1 in the PWR_CR3 register. PB4, PB6 have  
UCPD_CC functionality which implements an internal pull-down resistor (5.1k) which is controlled by the voltage on the  
UCPD_DBCC pin (PA10, PA9). A high level on the UCPD_DBCC pin activates the pull-down on the UCPD_CC pin. The  
pull-down effect on the CC lines can be removed by using the bit UCPD1_DBDIS =1 (USB Type-C and power delivery dead  
battery disable) in the PWR_CR3 register.  
6. It is recommended to set PB8 in another mode than analog mode after startup to limit consumption if the pin is left  
unconnected.  
72/236  
DS12288 Rev 5  
4.11  
Alternate functions  
Table 13. Alternate function  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
USART2_  
CTS  
COMP1  
_OUT  
TIM8_  
BKIN  
TIM2_  
ETR  
EVENT  
OUT  
PA0  
PA1  
-
TIM2_CH1  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
-
TIM5_CH1  
TIM5_CH2  
TIM5_CH3  
TIM5_CH4  
TIM3_CH2  
TIM2_ETR  
TIM3_CH1  
TIM3_CH2  
I2C3_SCL  
I2C3_SMBA  
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC_  
REFIN  
USART2_  
RTS_DE  
TIM15_  
CH1N  
EVENT  
OUT  
-
-
-
-
-
USART2_  
TX  
COMP2  
_OUT  
TIM15_  
CH1  
QUADSPI1_  
BK1_NCS  
UCPD1_ EVENT  
FRSTX  
PA2  
-
-
-
LPUART1_TX  
OUT  
USART2_  
RX  
TIM15_  
CH2  
QUADSPI1_  
CLK  
SAI1_MCLK_  
A
EVENT  
OUT  
PA3  
-
SAI1_CK1  
-
-
-
-
LPUART1_RX  
-
SPI3_NSS/  
I2S3_WS  
USART2_  
CK  
EVENT  
OUT  
PA4  
-
-
-
-
-
-
-
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
I2S2_MCK  
I2S3_MCK  
SPI2_MISO  
-
-
-
-
-
-
-
-
-
SAI1_FS_B  
-
UCPD1_ EVENT  
FRSTX  
PA5  
-
TIM2_CH1  
TIM16_CH1  
TIM17_CH1  
-
-
-
-
-
-
-
-
OUT  
TIM8_  
BKIN  
COMP1  
_OUT  
QUADSPI1_  
BK1_IO3  
LPUART1_  
CTS  
EVENT  
OUT  
PA6  
-
TIM1_BKIN  
-
TIM8_  
CH1N  
TIM1_  
CH1N  
COMP2_  
OUT  
QUADSPI1_  
BK1_IO2  
UCPD1_ EVENT  
FRSTX OUT  
PA7  
-
-
I2C2_  
SDA  
USART1_  
CK  
COMP7  
_OUT  
FDCAN3  
_RX  
HRTIM1_  
CHA1  
SAI1_SC EVENT  
K_A OUT  
PA8  
MCO  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM4_ETR  
TIM2_CH3  
TIM2_CH4  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
-
SAI1_CK2  
I2C2_  
SCL  
USART1_  
TX  
COMP5  
_OUT  
TIM15_  
BKIN  
HRTIM1_  
CHA2  
SAI1_FS EVENT  
_A OUT  
PA9  
-
-
-
-
-
-
-
USB_  
CRS_SYNC  
I2C2_  
SMBA  
USART1_  
RX  
COMP6  
_OUT  
TIM8_  
BKIN  
HRTIM1_  
CHB1  
SAI1_SD EVENT  
_A  
PA10  
PA11  
PA12  
PA13  
PA14  
TIM17_BKIN  
-
-
SAI1_D1  
OUT  
SPI2_MOSI/  
I2S2_SD  
TIM1_  
CH1N  
USART1_  
CTS  
COMP1  
_OUT  
FDCAN1  
_RX  
TIM1_  
CH4  
HRTIM1_  
CHB2  
EVENT  
OUT  
-
-
-
-
TIM1_BKIN2  
-
TIM1_  
CH2N  
USART1_  
RTS_DE  
COMP2  
_OUT  
FDCAN1  
_TX  
TIM1_  
ETR  
HRTIM1_  
FLT1  
EVENT  
OUT  
TIM16_CH1  
TIM16_CH1N  
LPTIM1_OUT  
-
-
I2SCKIN  
IR_OUT  
-
-
-
-
-
-
SWDIO-  
JTMS  
I2C1_  
SCL  
USART3_  
CTS  
EVENT  
OUT  
-
I2C4_SCL  
I2C4_SMBA  
-
-
-
-
-
-
-
SAI1_SD_B  
SAI1_FS_B  
SWCLK-  
JTCK  
I2C1_  
SDA  
TIM1_  
BKIN  
USART2_  
TX  
EVENT  
OUT  
-
TIM8_CH2  
FDCAN3  
_
TX  
I2C1_  
SCL  
SPI3_NSS/  
I2S3_WS  
USART2_  
RX  
UART4  
_RTS_DE  
TIM1_  
BKIN  
HRTIM1_  
FLT2  
TIM2_  
ETR  
EVENT  
OUT  
PA15  
JTDI  
TIM2_CH1  
TIM8_CH1  
-
SPI1_NSS  
-
-
 
 
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
TIM8_  
CH2N  
TIM1_  
CH2N  
QUADSPI1_  
BK1_IO1  
HRTIM1_  
FLT5  
UCPD1_ EVENT  
PB0  
-
-
TIM3_CH3  
TIM3_CH4  
TIM5_CH1  
TIM4_ETR  
TIM3_CH1  
TIM3_CH2  
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FRSTX  
OUT  
TIM8_  
CH3N  
TIM1_  
CH3N  
COMP4_  
OUT  
QUADSPI1_  
BK1_IO0  
LPUART1_  
RTS_DE  
HRTIM1_  
SCOUT  
EVENT  
OUT  
PB1  
PB2  
-
-
-
-
-
I2C3_  
SMBA  
QUADSPI1_  
BK2_IO1  
HRTIM1_  
SCIN  
EVENT  
OUT  
RTC_OUT2  
LPTIM1_OUT  
TIM2_CH2  
TIM16_CH1  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
TIM2_CH3  
TIM2_CH4  
-
TIM20_CH1  
-
-
-
-
-
-
JTDO-  
TRACESWO  
USB_CRS_  
SYNC  
TIM8_  
CH1N  
SPI3_SCK/  
I2S3_CK  
USART2_  
TX  
FDCAN3  
_RX  
HRTIM1_  
SCOUT  
HRTIM1_  
EEV9  
SAI1_  
SCK_B  
EVENT  
OUT  
PB3  
SPI1_SCK  
TIM3_ETR  
TIM17_BKIN  
TIM17_CH1  
TIM8_BKIN2  
TIM3_CH4  
TIM8_CH2  
TIM8_CH3  
TIM8_  
CH2N  
USART2_  
RX  
UART5_  
RTS_DE  
FDCAN3  
_TX  
HRTIM1_  
EEV7  
SAI1_  
MCLK_B  
EVENT  
OUT  
PB4  
JTRST  
-
SPI1_MISO  
SPI3_MISO  
-
I2C1_  
SMBA  
SPI3_MOSI  
/I2S3_SD  
USART2_  
CK  
FDCAN2  
_RX  
LPTIM1_  
IN1  
HRTIM1_  
EEV6  
UART5_ EVENT  
CTS OUT  
PB5  
-
TIM8_CH3N  
SPI1_MOSI  
I2C3_SDA  
SAI1_SD_B  
USART1_  
TX  
COMP4_  
OUT  
FDCAN2  
_TX  
LPTIM1_  
ETR  
HRTIM1_  
EEV4  
SAI1_FS EVENT  
_B OUT  
PB6  
-
-
-
TIM8_CH1  
TIM8_ETR  
HRTIM1_SCIN  
I2C1_  
SDA  
USART1_  
RX  
COMP3_  
OUT  
LPTIM1_  
IN2  
HRTIM1_  
EEV3  
UART4_ EVENT  
PB7  
-
I2C4_SDA  
TIM8_BKIN  
-
-
FMC_NL  
CTS  
OUT  
I2C1_  
SCL  
USART3_  
RX  
COMP1_  
OUT  
FDCAN1  
_RX  
HRTIM1_  
EEV8  
SAI1_  
MCLK_A  
EVENT  
OUT  
PB8  
-
SAI1_CK1  
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_BKIN  
I2C1_  
SDA  
USART3_  
TX  
COMP2_  
OUT  
FDCAN1  
_TX  
HRTIM1_  
EEV5  
SAI1_FS EVENT  
_A OUT  
PB9  
-
SAI1_D2  
IR_OUT  
TIM1_CH3N  
USART3_  
TX  
LPUART1_  
RX  
QUADSPI1_  
CLK  
HRTIM1_  
FLT3  
SAI1_SC EVENT  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
-
-
-
-
-
-
-
TIM1_BKIN  
K_A  
OUT  
USART3_  
RX  
LPUART1_  
TX  
QUADSPI1_  
BK1_NCS  
HRTIM1_  
FLT4  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
I2C2_  
SMBA  
SPI2_NSS/  
I2S2_WS  
USART3_  
CK  
LPUART1_  
RTS_DE  
FDCAN2  
_RX  
HRTIM1_  
CHC1  
EVENT  
OUT  
-
TIM5_ETR  
-
-
TIM1_BKIN  
-
-
-
-
-
-
-
-
SPI2_SCK/  
I2S2_CK  
TIM1_  
CH1N  
USART3_  
CTS  
LPUART1_  
CTS  
FDCAN2  
_TX  
HRTIM1_  
CHC2  
EVENT  
OUT  
-
-
-
-
-
TIM1_  
CH2N  
USART3_  
RTS_DE  
COMP4_  
OUT  
HRTIM1_  
CHD1  
EVENT  
OUT  
-
TIM15_CH1  
TIM15_CH2  
-
-
SPI2_MISO  
-
-
TIM1_  
CH3N  
SPI2_MOSI/  
I2S2_SD  
HRTIM1_  
CHD2  
EVENT  
OUT  
RTC_REFIN  
TIM15_CH1N  
COMP3_OUT  
-
-
-
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
LPUART1_  
RX  
EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM1_IN1  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM1_ETR  
TIM15_BKIN  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPUART1_  
TX  
QUADSPI1_  
BK2_IO0  
EVENT  
OUT  
PC1  
PC2  
LPTIM1_OUT  
-
-
-
SAI1_SD_A  
QUADSPI1_  
BK2_IO1  
EVENT  
OUT  
LPTIM1_IN2  
COMP3_OUT  
-
TIM20_CH2  
-
-
TIM1_  
BKIN2  
QUADSPI1_  
BK2_IO2  
EVENT  
OUT  
PC3  
LPTIM1_ETR  
SAI1_D1  
-
-
SAI1_SD_A  
-
I2C2_  
SCL  
USART1_  
TX  
QUADSPI1_  
BK2_IO3  
EVENT  
OUT  
PC4  
-
-
-
-
-
TIM1_  
CH4N  
USART1_  
RX  
HRTIM1_  
EEV10  
EVENT  
OUT  
PC5  
-
SAI1_D3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_  
CH1  
COMP6_  
OUT  
HRTIM1_  
CHF1  
EVENT  
OUT  
PC6  
-
HRTIM1_EEV10  
-
I2S2_MCK  
I2S3_MCK  
TIM20_CH3  
I2C4_SCL  
TIM8_  
CH2  
COMP5_  
OUT  
HRTIM1_  
CHF2  
EVENT  
OUT  
PC7  
-
HRTIM1_FLT5  
-
I2C4_SDA  
TIM8_  
CH3  
COMP7_  
OUT  
EVENT  
OUT  
PC8  
-
HRTIM1_CHE1  
-
I2C3_SCL  
-
-
TIM8_  
CH4  
TIM8_  
BKIN2  
EVENT  
OUT  
PC9  
-
HRTIM1_CHE2  
I2SCKIN  
-
I2C3_SDA  
TIM8_  
CH1N  
SPI3_SCK/  
I2S3_CK  
USART3_  
TX  
HRTIM1_  
FLT6  
EVENT  
OUT  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
-
-
UART4_TX  
-
TIM8_  
CH2N  
USART3_  
RX  
EVENT  
OUT  
-
-
HRTIM1_EEV2  
UART4_RX  
SPI3_MISO  
I2C3_SDA  
-
-
-
-
-
TIM8_  
CH3N  
SPI3_MOSI  
/I2S3_SD  
USART3_  
CK  
UCPD1_ EVENT  
TIM5_CH2  
-
HRTIM1_EEV1  
UART5_TX  
-
-
-
-
FRSTX  
OUT  
TIM1_  
CH1N  
TIM8_  
CH4N  
EVENT  
OUT  
-
-
-
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
-
-
EVENT  
OUT  
-
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
TIM8_  
CH4N  
FDCAN1  
_RX  
EVENT  
OUT  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D2  
FMC_D3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_  
CH4  
TIM8_  
BKIN2  
FDCAN1  
_TX  
EVENT  
OUT  
PD1  
PD2  
-
-
-
-
-
TIM8_  
BKIN  
EVENT  
OUT  
-
TIM3_ETR  
-
UART5_RX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM2_CH1/  
TIM2_ETR  
USART2_  
CTS  
QUADSPI1  
_BK2_NCS  
EVENT  
OUT  
PD3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_CLK  
FMC_NOE  
FMC_NWE  
FMC_NWAIT  
-
USART2_  
RTS_DE  
QUADSPI1_  
BK2_IO0  
EVENT  
OUT  
PD4  
-
TIM2_CH2  
-
-
-
USART2_  
TX  
QUADSPI1_  
BK2_IO1  
EVENT  
OUT  
PD5  
-
-
-
-
-
USART2_  
RX  
QUADSPI1_  
BK2_IO2  
EVENT  
OUT  
PD6  
-
TIM2_CH4  
SAI1_D1  
-
SAI1_SD_A  
USART2_  
CK  
QUADSPI1_  
BK2_IO3  
FMC_NCE/  
FMC_NE1  
EVENT  
OUT  
PD7  
-
TIM2_CH3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_  
TX  
EVENT  
OUT  
PD8  
-
-
-
-
-
-
-
-
-
-
-
FMC_D13  
FMC_D14  
FMC_D15  
FMC_A16  
FMC_A17  
FMC_A18  
FMC_D0  
FMC_D1  
USART3_  
RX  
EVENT  
OUT  
PD9  
-
-
-
USART3_  
CK  
EVENT  
OUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
-
-
-
I2C4_  
SMBA  
USART3_  
CTS  
EVENT  
OUT  
TIM5_ETR  
-
-
USART3_  
RTS_DE  
EVENT  
OUT  
-
-
-
-
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
EVENT  
OUT  
-
-
-
-
EVENT  
OUT  
-
EVENT  
OUT  
SPI2_NSS  
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
TIM16_  
CH1  
USART1_  
TX  
FDCAN1  
_RXFD  
EVENT  
OUT  
PE0  
-
-
TIM4_ETR  
-
TIM20_CH4N  
-
TIM20_ETR  
TIM20_CH4  
TIM20_CH1  
TIM20_CH2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NBL0  
FMC_NBL1  
FMC_A23  
FMC_A19  
FMC_A20  
FMC_A21  
FMC_A22  
FMC_D4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM17_  
CH1  
USART1_  
RX  
EVENT  
OUT  
PE1  
PE2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_MCLK_  
A
EVENT  
OUT  
TRACECK  
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
-
SAI1_CK1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI4_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PE3  
TRACED0  
-
-
SPI4_NSS  
SAI1_SD_B  
SAI1_FS_A  
SAI1_SCK_A  
SAI1_SD_A  
SAI1_SD_B  
SAI1_SCK_B  
SAI1_FS_B  
TIM20_  
CH1N  
EVENT  
OUT  
PE4  
TRACED1  
-
SAI1_D2  
SPI4_NSS  
TIM20_  
CH2N  
EVENT  
OUT  
PE5  
TRACED2  
-
SAI1_CK2  
SPI4_MISO  
TIM20_  
CH3N  
EVENT  
OUT  
PE6  
TRACED3  
-
SAI1_D1  
SPI4_MOSI  
EVENT  
OUT  
PE7  
-
-
-
-
-
-
-
-
-
-
TIM1_ETR  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PE8  
TIM5_CH3  
-
FMC_D5  
EVENT  
OUT  
PE9  
TIM5_CH4  
-
FMC_D6  
QUADSPI1_  
CLK  
SAI1_MCLK_  
B
EVENT  
OUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
-
-
-
-
-
-
FMC_D7  
QUADSPI1_  
BK1_NCS  
EVENT  
OUT  
SPI4_NSS  
SPI4_SCK  
SPI4_MISO  
SPI4_MOSI  
-
FMC_D8  
-
-
-
-
-
QUADSPI1_  
BK1_IO0  
EVENT  
OUT  
FMC_D9  
QUADSPI1_  
BK1_IO1  
EVENT  
OUT  
FMC_D10  
FMC_D11  
FMC_D12  
TIM1_  
BKIN2  
QUADSPI1_  
BK1_IO2  
EVENT  
OUT  
TIM1_  
CH4N  
USART3_  
RX  
QUADSPI1_  
BK1_IO3  
EVENT  
OUT  
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
I2C2_  
SDA  
SPI2_NSS/  
I2S2_WS  
TIM1_  
CH3N  
EVENT  
OUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_SCK/  
I2S2_CK  
EVENT  
OUT  
PF1  
PF2  
-
-
-
-
-
-
I2C2_  
SMBA  
EVENT  
OUT  
-
TIM20_CH3  
TIM20_CH4  
COMP1_OUT  
TIM20_CH2N  
TIM4_CH4  
TIM20_BKIN  
TIM20_BKIN2  
TIM20_BKIN  
TIM20_BKIN2  
TIM20_ETR  
TIM20_CH1  
TIM20_CH2  
TIM20_CH3  
TIM20_CH4  
-
-
-
FMC_A2  
FMC_A3  
FMC_A4  
FMC_A5  
-
I2C3_  
SCL  
EVENT  
OUT  
PF3  
-
-
-
-
I2C3_  
SDA  
EVENT  
OUT  
PF4  
-
TIM20_CH1N  
-
-
EVENT  
OUT  
PF5  
-
-
-
-
-
I2C2_  
SCL  
USART3_  
RTS  
QUADSPI1_  
BK1_IO3  
EVENT  
OUT  
PF6  
TIM5_ETR  
SAI1_SD_B  
-
TIM5_CH1  
QUADSPI1_  
BK1_IO2  
SAI1_MCLK_  
B
EVENT  
OUT  
PF7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM5_CH2  
-
-
-
-
-
-
-
-
-
FMC_A1  
FMC_A24  
FMC_A25  
FMC_A0  
FMC_NE4  
FMC_A6  
FMC_A7  
FMC_A8  
FMC_A9  
QUADSPI1_  
BK1_IO0  
EVENT  
OUT  
PF8  
-
-
TIM5_CH3  
SAI1_SCK_B  
QUADSPI1_  
BK1_IO1  
EVENT  
OUT  
PF9  
TIM15_CH1  
SPI2_SCK  
TIM5_CH4  
SAI1_FS_B  
QUADSPI1_  
CLK  
EVENT  
OUT  
PF10  
PF11  
PF12  
PF13  
PF14  
PF15  
TIM15_CH2  
SPI2_SCK  
-
-
-
-
-
-
SAI1_D3  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
I2C4_  
SMBA  
EVENT  
OUT  
I2C4_  
SCL  
EVENT  
OUT  
I2C4_  
SDA  
EVENT  
OUT  
Table 13. Alternate function (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
QUADSPI1  
/SPI1/2/3/4/  
I2S2/3/I2C4/  
UART4/5/  
TIM8/  
QUADSPI1/  
I2C3/4/SAI1/US  
B/HRTIM1/  
TIM8/20/15/  
COMP3  
I2C3/4/UAR  
USART1/2/3 T4/5/LPUA  
/FDCAN/CO RT1/COMP  
I2C1/3/  
TIM1/2/3/4/5/8/  
20/15/  
QUADSPI1/  
SPI2/3/I2S2  
/3/TIM1/5/8/  
20/Infrared  
FDCAN/T  
IM1/8/15/  
FDCAN1/  
2
UART4/5/  
SAI1/TIM  
2/15/  
Port  
LPTIM1/  
TIM2/5/  
15/16/17  
I2C1/2/3/  
4/TIM1/8/  
16/17  
QUADSPI1/  
LPTIM1/ FMC/LPUART1 SAI1SAI1/HR  
I2C4/  
SYS_AF  
TIM2/3/4/8/1 TIM1/8/F /SAI1/HRTIM1/ TIM1/OPAMP  
EVENT  
MP7/5/6  
1/2/7/4/5/6/  
3
7
DCAN1/3  
TIM1  
2
COMP1  
UCPD1  
Infrared  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
TIM20_CH1N  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A10  
FMC_A11  
FMC_A12  
FMC_A13  
FMC_A14  
FMC_A15  
FMC_INT  
FMC_INT  
FMC_NE3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
PG7  
PG8  
PG9  
PG10  
-
TIM20_CH2N  
-
-
-
EVENT  
OUT  
-
TIM20_CH3N  
-
SPI1_SCK  
-
I2C4_  
SCL  
TIM20_  
CH4N  
EVENT  
OUT  
-
TIM20_BKIN  
-
SPI1_MISO  
-
I2C4_  
SDA  
EVENT  
OUT  
-
TIM20_BKIN2  
-
SPI1_MOSI  
-
-
LPUART1_  
CTS  
EVENT  
OUT  
-
TIM20_ETR  
-
-
SPI1_NSS  
-
-
I2C3_  
SMBA  
LPUART1_  
RTS_DE  
EVENT  
OUT  
-
TIM20_BKIN  
-
-
-
-
-
-
-
-
I2C3_  
SCL  
LPUART1_  
TX  
SAI1_MCLK_  
A
EVENT  
OUT  
-
-
-
-
-
SAI1_CK1  
-
-
I2C3_  
SDA  
LPUART1_  
RX  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
FMC_NCE/  
FMC_NE2  
TIM15_  
CH1N  
EVENT  
OUT  
-
-
SPI3_SCK  
-
USART1_TX  
-
-
-
EVENT  
OUT  
MCO  
-
-
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 14.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 15.  
Figure 14. Pin loading conditions  
Figure 15. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19210V1  
MS19211V1  
80/236  
DS12288 Rev 5  
 
 
 
 
 
 
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.1.6  
Power supply scheme  
Figure 16. Power supply scheme  
VBAT  
Backup circuitry  
(LSE, RTC,  
Backup registers)  
1.55 – 3.6 V  
Power switch  
VDD  
VCORE  
n x VDD  
Regulator  
VDDIO  
OUT  
Kernel logic  
IO  
logic  
n x 100 nF  
+1 x 4.7 μF  
(CPU, Digital  
GPIOs  
& Memories)  
IN  
n x VSS  
Reset block  
Temp. sensor  
PLL, HSI16, HSI48  
VDDA  
VDDA  
VREF+  
VREF  
ADCs/  
VREF+  
Standby circuitry  
(Wakeup logic,  
IWDG)  
DACs/  
10 nF  
+1 μF  
OPAMPs/  
VREF-  
COMPs/  
100 nF +1 μF  
VREFBUF  
VSSA  
MS60206V1  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
DS12288 Rev 5  
81/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.1.7  
Current consumption measurement  
Figure 17. Current consumption measurement  
IDD_VBAT  
VBAT  
IDD  
VDD  
IDDA  
VDDA  
MS60200V1  
The I  
parameters given in Table 21 to Table 25 represent the total MCU consumption  
DD_ALL  
including the current supplying V , V  
and V  
.
DD  
DDA  
BAT  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics,  
Table 15: Current characteristics and Table 16: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Device mission profile (application conditions)  
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are  
available on demand.  
(1)  
Table 14. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDD  
,
VDD - VSS  
-0.3  
4.0  
VDDA, VBAT and VREF+  
)
min (VDD, VDDA  
)
Input voltage on FT_xxx pins except FT_c pins  
VSS-0.3  
+ 4.0(3)(4)  
V
(2)  
Input voltage on FT_c pins  
Input voltage on TT_xx pins  
Input voltage on any other pins  
VSS-0.3  
VSS-0.3  
VSS-0.3  
5.5  
4.0  
4.0  
VIN  
Variations between different VDDX power pins of  
the same domain  
|VDDx  
|
-
50  
mV  
V
|VSSx-VSS  
|
Variations between all the different ground pins(5)  
-
-
50  
V
REF+-VDDA Allowed voltage difference for VREF+ > VDDA  
0.4  
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external  
power supply, in the permitted range.  
82/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
2. VIN maximum must always be respected. Refer to Table 15: Current characteristics for the maximum  
allowed injected current values.  
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin  
definition table.  
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 15. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
150  
150  
100  
100  
20  
IVDD(PIN) Maximum current into each VDD power pin (source)(1)  
IVSS(PIN)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin except FT_f  
Output current sunk by any FT_f pin  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT_xxx, TT_xx, NRST pins  
20  
100  
100  
-5/0(4)  
±25  
IIO(PIN)  
(3)  
IINJ(PIN)  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(5)  
1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external  
power supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
LQFP packages.  
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages  
lower than the specified maximum value.  
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 14:  
Voltage characteristics for the minimum allowed input voltage values.  
5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of  
the negative injected currents (instantaneous values).  
Table 16. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
DS12288 Rev 5  
83/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 17. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
Internal AHB clock frequency  
-
-
-
0
0
0
170  
170  
170  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
MHz  
VDD  
Standard operating voltage  
Analog supply voltage  
-
1.71(1)  
1.62  
1.8  
3.6  
V
V
ADC  
3.6  
3.6  
3.6  
DAC 1 MSPS or DAC 15 MSPS  
or OPAMP  
VDDA  
COMP used  
1.8  
2.4  
VREFBUF used  
ADC, DAC, OPAMP, COMP,  
VREFBUF not used  
0
VBAT  
Backup operating voltage  
I/O input voltage  
-
1.55  
-0.3  
-0.3  
3.6  
VDD+0.3  
5
V
V
TT_xx  
FT_c  
VIN  
MIN(MIN(VDD  
VDDA)+3.6 V,  
5.5 V)(2)(3)  
,
All I/O except TT_xx and FT_c  
-0.3  
See Section 6.10: Thermal characteristics for application  
appropriate thermal resistance and package.  
PD  
Power dissipation  
mW  
mW  
Power dissipation is then calculated according ambient  
temperature (TA) and maximum junction temperature (TJ) and  
selected thermal resistance.  
See Section 6.10: Thermal characteristics for application  
appropriate thermal resistance and package. Power dissipation  
is then calculated according to ambient temperature (TA),  
maximum junction temperature (TJ) and selected thermal  
resistance.  
PD  
Power dissipation  
Maximum power dissipation  
Low-power dissipation(4)  
Maximum power dissipation  
Low-power dissipation(4)  
Suffix 6 version  
-40  
-40  
-40  
-40  
-40  
-40  
85  
Ambient temperature for the  
suffix 6 version  
105  
125  
130  
105  
130  
TA  
°C  
°C  
Ambient temperature for the  
suffix 3 version  
TJ  
Junction temperature range  
Suffix 3 version  
1. When RESET is released functionality is guaranteed down to VBOR0 Min.  
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.  
Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA)+3.6 V and 5.5V.  
84/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
3. For operation with voltage higher than Min (VDD, VDDA) +0.3 V, the internal Pull-up and Pull-Down resistors must be  
disabled.  
4. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 6.10:  
Thermal characteristics).  
DS12288 Rev 5  
85/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 18 are derived from tests performed under the ambient  
temperature condition summarized in Table 17.  
Table 18. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
0
10  
0
tVDD  
-
µs/V  
tVDDA  
-
µs/V  
10  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 19 are derived from tests performed under the ambient  
temperature conditions summarized in Table 17: General operating conditions.  
Table 19. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Reset temporization after  
BOR0 is detected  
(2)  
tRSTTEMPO  
VDD rising  
-
250  
400  
μs  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
1.62  
1.6  
1.66  
1.64  
2.1  
1.7  
(2)  
VBOR0  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
V
V
V
V
V
V
V
V
V
1.69  
2.14  
2.04  
2.35  
2.24  
2.66  
2.57  
2.95  
2.86  
2.19  
2.1  
2.06  
1.96  
2.26  
2.16  
2.56  
2.47  
2.85  
2.76  
2.1  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
2
2.31  
2.20  
2.61  
2.52  
2.90  
2.81  
2.15  
2.05  
2.31  
2.20  
2.46  
2.36  
2.61  
2.52  
Programmable voltage  
detector threshold 0  
2
2.26  
2.15  
2.41  
2.31  
2.56  
2.47  
2.36  
2.25  
2.51  
2.41  
2.66  
2.57  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
86/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Table 19. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.69  
2.59  
2.85  
2.75  
2.92  
2.84  
2.74  
2.64  
2.91  
2.81  
2.98  
2.90  
2.79  
2.69  
2.96  
2.86  
3.04  
2.96  
VPVD4  
PVD threshold 4  
V
VPVD5  
PVD threshold 5  
PVD threshold 6  
V
V
VPVD6  
Hysteresis in  
continuous  
mode  
-
20  
-
Vhyst_BORH0 Hysteresis voltage of BORH0  
mV  
Hysteresis in  
other mode  
-
-
-
30  
100  
1.1  
-
-
Hysteresis voltage of BORH  
Vhyst_BOR_PVD  
-
-
mV  
µA  
(except BORH0) and PVD  
IDD  
BOR(3) (except BOR0) and  
1.6  
(BOR_PVD)(2) PVD consumption from VDD  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
-
1.61  
1.6  
1.78  
1.77  
-
1.65  
1.64  
1.82  
1.81  
10  
1.69  
1.68  
1.86  
1.85  
-
VDDA peripheral voltage  
VPVM1  
V
V
monitoring (COMP/ADC)  
VDDA peripheral voltage  
VPVM2  
monitoring (OPAMP/DAC)  
Vhyst_PVM1  
Vhyst_PVM2  
IDD  
PVM1 hysteresis  
PVM2 hysteresis  
mV  
mV  
-
-
10  
-
PVM1 and PVM2  
consumption from VDD  
(PVM1/PVM2)  
-
-
2
-
µA  
(2)  
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power  
sleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply  
current characteristics tables.  
DS12288 Rev 5  
87/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.4  
Embedded voltage reference  
The parameters given in Table 20 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 17: General operating  
conditions.  
Table 20. Embedded internal voltage reference  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference  
voltage  
VREFINT  
–40 °C < TA < +130 °C 1.182 1.212 1.232  
V
ADC sampling time  
when reading the  
internal reference  
voltage  
(1)  
tS_vrefint  
-
-
-
4(2)  
-
8
-
µs  
µs  
Start time of reference  
voltage buffer when  
ADC is enable  
tstart_vrefint  
-
-
-
12(2)  
20(2)  
7.5(2)  
VREFINT buffer  
consumption from VDD  
DD(VREFINTBUF) when converted by  
ADC  
12.5  
µA  
mV  
I
Internal reference  
voltage spread over  
VREFINT  
VDD = 3 V  
5
the temperature range  
Average temperature  
coefficient  
TCoeff  
ACoeff  
–40°C < TA < +130°C  
1000 hours, T = 25°C  
3.0 V < VDD < 3.6 V  
-
-
-
30  
50(2) ppm/°C  
Long term stability  
300 1000(2)  
ppm  
Average voltage  
coefficient  
VDDCoeff  
250 1200(2) ppm/V  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
-
VREFINT  
1. The shortest sampling time is determined in the application by multiple iterations.  
2. Guaranteed by design.  
88/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Figure 18. V  
Electrical characteristics  
versus temperature  
REFINT  
V
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
°C  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120  
Min  
Max  
MSv40169V2  
5.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code  
The current consumption is measured as described in Figure 17: Current consumption  
measurement.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the f  
frequency (refer to the table “number of wait states according  
HCLK  
to CPU clock (HCLK) frequency” available in the reference manual RM0440  
®
"STM32G4 Series advanced Arm -based 32-bit MCUs").  
When the peripherals are enabled f  
= f  
PCLK HCLK  
The voltage scaling Range 1 is adjusted to f  
frequency as follows:  
HCLK  
Voltage Range 1 Boost mode for 150 MHz < f  
170 MHz  
150 MHz  
HCLK  
Voltage Range 1 Normal mode for 26 MHz < f  
HCLK  
The parameters given in Table 21 to Table 25 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 17: General  
operating conditions.  
DS12288 Rev 5  
89/236  
200  
 
 
Table 21. Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF)  
Condition  
Typ  
Max  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
3.65  
2.30  
1.25  
3.85 4.45  
2.55 3.1  
1.50 2.05  
5.1  
3.8  
2.8  
2.3  
2
6.45 4.40 6.60 11.0  
16.0  
22.0  
21.0  
19.0  
19.0  
19.0  
18.0  
18.0  
5.15 3.00 5.00 9.00 14.9  
4.1  
3.6  
2.00  
3.6  
7.70 13.0  
Range 2 4 MHz  
2 MHz  
0.75 0.955 1.5  
1.40 3.00 7.00 12.0  
0.47  
0.34  
0.22  
0.69 1.25  
0.55 1.1  
3.35 0.990 2.60 6.70 12.0  
3.2 0.830 2.50 6.50 12.0  
1 MHz  
1.9  
100 KHz  
0.43 0.98 1.75  
3.1 0.690 2.30 6.30  
11.0  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode PLL  
ON above 48  
MHz all  
Range 1  
Boost  
mode  
170 MHz 29.50 29.5  
31  
32  
34.5 31.0 35.0 42.0 48.0  
56.0  
Supply current  
in Run mode  
IDD (Run)  
mA  
150 MHz 24.50  
120 MHz 19.50  
26  
20  
27  
28  
30  
23.5 21.0 23.0 32.0 38.0  
17 15.0 17.0 25.0 30.0  
26.0 28.0 34.0 44.0  
47.0  
43.0  
37.0  
36.0  
34.0  
32.0  
29.0  
28.0  
26.0  
peripherals  
disable  
20.5 21.5  
80 MHz 13.00 13.5  
14  
13  
15.5  
14  
72 MHz 12.00  
Range 1 64 MHz 10.50  
12  
11  
15.5 13.0 16.0 23.0 29.0  
14.5 12.0 14.0 21.0 27.0  
11.5  
9
12.5  
9.7  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
7.90  
5.40  
4.10  
2.80  
8.2  
11.5  
9.10 13.0 19.0 25.0  
5.65  
4.35  
3.1  
6.4  
5.1  
3.8  
7.2  
8.85 6.50 9.60 15.0 21.0  
5.95  
4.7  
7.6  
6.3  
5.20 8.00 14.0 20.0  
4.30 6.40 12.0 18.0  
 
 
 
Table 21. Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) (continued)  
Condition  
Typ  
Max  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
2 MHz  
455  
280  
160  
130  
920  
780  
725  
720  
725 1350 2250 3800 1200 3200 8100 14000 22000  
545 1200 2100 3600 1100 3000 7900 14000 22000  
435 1100 2000 3500 840 2800 7700 14000 22000  
405 1050 1950 3500 810 2700 7600 14000 22000  
1200 1850 2750 4250 1900 3800 8700 15000 22000  
1100 1700 2650 4150 1700 3700 8600 14000 22000  
980 1600 2500 4050 1600 3600 8400 14000 22000  
955 1600 2500 4000 1500 3500 8400 14000 22000  
SYSCLK source is HSE  
in bypass mode  
all peripherals disable  
1 MHz  
250 KHz  
62.5 KHz  
2 MHz  
Supply current  
IDD (LPRun) in Low-power  
run mode  
µA  
1 MHz  
SYSCLK source is HSI16  
all peripherals disable  
250 KHz  
62.5 KHz  
Table 22. Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
scaling  
26 MHz  
16 MHz  
8 MHz  
3.70  
2.35  
1.25  
0.75  
0.47  
0.34  
0.22  
3.9  
2.55  
1.5  
4.45  
3.1  
5.15  
3.85  
2.8  
6.45  
5.15  
4.15  
3.6  
4.40  
3.00  
2.00  
1.40  
6.60  
5.00  
3.60  
3.00  
11.0  
9.00  
7.70  
7.00  
6.70  
6.50  
6.30  
16.0  
14.0  
13.0  
12.0  
12.0  
12.0  
11.0  
22.0  
21.0  
19.0  
19.0  
19.0  
18.0  
18.0  
2.05  
1.5  
Range 2  
4 MHz  
0.97  
0.7  
2.3  
2 MHz  
1.25  
1.1  
2.05  
1.9  
3.35 0.990 2.60  
1 MHz  
0.56  
3.2  
3.1  
0.830 2.50  
0.690 2.30  
fHCLK = fHSE  
up to 48MHz  
included,  
bypass mode  
PLL ON  
above 48  
MHz all  
peripherals  
disable  
100 KHz  
0.44 0.975  
1.8  
Range 1  
Boost mode  
170 MHz 29.50  
30  
31  
32  
34.5  
31.0  
35.0  
42.0  
48.0  
56.0  
Supply  
current in  
Run mode  
IDD  
(Run)  
mA  
150 MHz 24.50  
120 MHz 19.50  
24.5  
20  
25.5  
20.5  
14.5  
13  
26.5  
22  
28.5  
23.5  
17  
26.0  
21.0  
15.0  
13.0  
12.0  
9.10  
6.50  
5.20  
4.30  
28.0  
23.0  
17.0  
16.0  
14.0  
13.0  
9.60  
8.00  
6.40  
34.0  
32.0  
25.0  
23.0  
21.0  
19.0  
15.0  
14.0  
12.0  
44.0  
38.0  
30.0  
29.0  
27.0  
25.0  
21.0  
20.0  
18.0  
47.0  
43.0  
37.0  
36.0  
34.0  
32.0  
29.0  
28.0  
26.0  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
13.00  
12.00  
10.50  
7.95  
13.5  
12.5  
11  
15.5  
14  
15.5  
14.5  
11.5  
8.9  
Range 1  
11.5  
9
13  
8.3  
10  
5.40  
5.7  
6.45  
5.1  
7.25  
6
4.10  
4.4  
7.65  
6.35  
2.85  
3.15  
3.8  
4.75  
 
 
Table 22. Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
2 MHz  
450  
270  
185  
130  
970  
800  
680  
695  
725  
575  
460  
430  
1350 2250 3800 1200 3200 8100 14000 22000  
SYSCLK source is HSE  
in bypass mode  
1 MHz  
1200 2150 3650  
1050 2000 3550  
1050 2000 3500  
1100  
840  
810  
3000 7900 14000 22000  
2800 7700 14000 22000  
2700 7600 14000 22000  
250 KHz  
62.5 KHz  
2 MHz  
all peripherals disable  
Supply  
IDD  
(LPRun)  
current in  
Low-power  
run mode  
µA  
1200 1850 2750 4300 1900 3800 8700 15000 22000  
1100 1700 2650 4150 1700 3700 8600 14000 22000  
1 MHz  
SYSCLK source is HSI16  
all peripherals disable  
250 KHz  
62.5 KHz  
990  
965  
1600 2550 4050 1600 3600 8400 14000 22000  
1600 2500 4050 1500 3500 8400 14000 22000  
1. Guaranteed by characterization results, unless otherwise specified.  
Table 23. Current consumption in Run and Low-power run modes,  
code with data processing running from SRAM1  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
3.35  
2.15  
1.15  
0.69  
0.43  
0.30  
0.19  
3.55  
2.35  
4.1  
2.9  
1.9  
1.4  
4.95  
3.7  
6.45  
5.25  
4.2  
4.00  
3.10  
1.90  
1.30  
6.20  
4.70  
3.50  
2.90  
11.0  
8.70  
7.50  
6.90  
6.60  
6.40  
6.30  
15.0  
14.0  
13.0  
12.0  
12.0  
12.0  
11.0  
22.0  
20.0  
19.0  
19.0  
18.0  
18.0  
18.0  
1.35  
2.7  
Range 2  
4 MHz  
0.855  
2.2  
3.7  
2 MHz  
0.595 1.15  
0.47  
0.355 0.89  
1.95  
1.8  
3.45 0.960 2.60  
1 MHz  
1
3.3  
3.2  
0.810 2.40  
0.680 2.30  
100 KHz  
1.7  
fHCLK = fHSE  
up to 48MHz  
included,  
bypass mode  
PLL ON  
Range 1  
Boost  
mode  
170 MHz  
150 MHz  
26.00  
21.50  
26.5  
22  
27.5  
22.5  
28.5  
23.5  
30.5  
25.5  
28.0  
23.0  
32.0  
25.0  
39.0  
31.0  
45.0 53.0(2)  
Supply  
IDD(Run) current in  
Run mode  
mA  
above 48  
MHz all  
41.0  
46.0(2)  
peripherals  
disable  
120 MHz  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
17.50  
11.50  
10.50  
9.45  
17.5  
12  
18.5  
12.5  
11.5  
10.5  
8.2  
19.5  
13.5  
12.5  
11.5  
9.25  
6.9  
21.5  
15.5  
14.5  
13.5  
11  
19.0  
13.0  
12.0  
11.0  
8.10  
6.00  
4.80  
4.00  
21.0  
15.0  
14.0  
13.0  
12.0  
8.90  
7.50  
6.10  
30.0  
23.0  
21.0  
20.0  
17.0  
15.0  
13.0  
12.0  
36.0  
29.0  
27.0  
26.0  
23.0  
21.0  
19.0  
18.0  
41.0  
35.0  
34.0  
33.0  
31.0  
29.0  
27.0  
26.0  
11  
Range 1  
9.7  
7.5  
5.15  
4
7.25  
4.90  
5.85  
4.7  
8.7  
3.75  
5.7  
7.5  
2.60  
2.85  
3.5  
4.5  
6.3  
 
 
 
Table 23. Current consumption in Run and Low-power run modes,  
code with data processing running from SRAM1 (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
2 MHz  
365  
240  
135  
105  
835  
775  
640  
640  
570  
425  
315  
285  
1200 2150 3850 1200 3100 7900 14000 22000  
SYSCLK source is HSE  
in bypass mode  
1 MHz  
1050 2000 3650  
960  
840  
780  
2900 7700 14000 22000  
2800 7600 13000 22000  
2700 7600 13000 22000  
250 KHz  
62.5 KHz  
2 MHz  
945  
915  
1850 3550  
1850 3550  
all peripherals disable  
Supply  
IDD  
(LPRun)  
current in  
Low-power  
run mode  
µA  
1050 1650 2600 4300 1800 3700 8600 14000 22000  
1 MHz  
940  
860  
830  
1550 2500 4150 1700 3600 8500 14000 22000  
1450 2400 4100 1500 3500 8400 14000 22000  
1450 2350 4050 1600 3500 8400 14000 22000  
SYSCLK source is HSI16  
all peripherals disable  
250 KHz  
62.5 KHz  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Guaranteed by test in production.  
Table 24. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF)  
TYP  
TYP  
TYP  
TYP  
Conditions  
Single Bank  
Mode  
Dual Bank  
Mode  
SingleBank Dual Bank  
Symbol Parameter  
Code  
Unit  
Unit  
Mode  
25°C  
Mode  
25°C  
-
Voltage scaling  
25°C  
25°C  
Reduced  
code(1)  
3.65  
3.7  
140  
142  
Coremark  
Dhrystone2.1  
Fibonacci  
3.65  
3.65  
4.55  
2.90  
3.7  
3.7  
4.2  
3
140  
140  
175  
112  
142  
142  
162  
115  
Range2  
fHCLK=26MHz  
mA  
µA/MHz  
While(1)  
Reduced  
code(1)  
24.5  
24.5  
163  
163  
fHCLK=fHSE  
up to 48 MHZ  
included, bypass  
mode PLL ON  
above 48 MHz all  
peripherals  
Coremark  
Dhrystone2.1  
Fibonacci  
24  
24  
24.5  
28  
160  
163  
150  
130  
160  
163  
187  
133  
Supply  
IDD  
Range 1  
fHCLK= 150 MHz  
current in  
(Run)  
mA  
µA/MHz  
24.5  
22.5  
19.5  
Run mode  
disable  
While(1)  
20  
Reduced  
code(1)  
29.5  
29.5  
174  
174  
Coremark  
Dhrystone2.1  
Fibonacci  
29  
29.5  
38  
29  
29.5  
35  
171  
174  
224  
138  
171  
174  
206  
141  
Range 1  
Boost mode  
fHCLK= 170 MHz  
mA  
µA/MHz  
While(1)  
23.5  
24  
 
Table 24. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF) (continued)  
TYP  
TYP  
TYP  
TYP  
Conditions  
Single Bank  
Mode  
Dual Bank  
Mode  
SingleBank Dual Bank  
Symbol Parameter  
Code  
Unit  
Unit  
Mode  
25°C  
Mode  
25°C  
-
Voltage scaling  
25°C  
25°C  
Reduced  
code(1)  
920  
970  
460  
485  
Supply  
current in  
(LPRun) Low-power  
run  
Coremark  
Dhrystone2.1  
Fibonacci  
905  
915  
985  
915  
950  
875  
453  
458  
525  
465  
493  
458  
475  
438  
SYSCLK source is HSI16  
fHCLK = 2 MHz  
all peripherals disable  
IDD  
µA  
µA/MHz  
1,050  
930  
While(1)  
1. Reduced code used for characterization results provided in Table 21, Table 23.  
 
Table 25. Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM1  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Code  
Unit  
Unit  
Voltage  
scaling  
-
25°C  
25°C  
Reduced code(1)  
Coremark  
3.25  
3.35  
125  
129  
127  
127  
131  
143  
150  
143  
150  
133  
153  
159  
153  
162  
144  
478  
445  
458  
440  
453  
Range2  
fHCLK=26 M  
Hz  
Dhrystone2.1  
Fibonacci  
µA/MHz  
3.30  
mA  
3.30  
While(1)  
3.40  
Reduced code(1)  
Coremark  
21.50  
22.50  
21.50  
22.50  
20.00  
26.00  
27.00  
26.00  
27.50  
24.50  
955  
fHCLK = fHSE up to 48 MHZ  
Range 1  
Supply current in included, bypass mode  
IDD (Run)  
f
HCLK= 150  
Dhrystone2.1  
Fibonacci  
µA/MHz  
µA/MHz  
µA/MHz  
mA  
mA  
µA  
Run mode  
PLL ON above 48 MHz all  
peripherals disable  
MHz  
While(1)  
Reduced code(1)  
Coremark  
Range 1  
Boost mode  
Dhrystone2.1  
Fibonacci  
fHCLK  
=
170 MHz  
While(1)  
Reduced code(1)  
Coremark  
890  
IDD  
Supply current in fHCLK = fHSE = 2 MHz  
Low-power run all peripherals disable  
Dhrystone2.1  
Fibonacci  
915  
(LPRun)  
880  
While(1)  
905  
1. Reduced code used for characterization results provided in Table 21, Table 23.  
 
Table 26. Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM2  
Conditions  
TYP  
TYP  
Single  
bank  
mode  
Symbol  
Parameter  
fHCLK  
Unit  
Unit  
Voltage  
scaling  
Single bank  
mode  
-
Reduced code(1)  
Coremark  
2.65  
2.80  
2.65  
2.60  
2.45  
17.50  
18.00  
17.50  
17.00  
16  
102  
108  
102  
100  
94  
Range2  
fHCLK=26 M  
Hz  
Dhrystone2.1  
Fibonacci  
µA/MHz  
mA  
While(1)  
Reduced code(1)  
117  
120  
117  
113  
107  
124  
129  
124  
121  
115  
445  
415  
413  
415  
408  
fHCLK = fHSE up to 48 MHZ  
Coremark  
Range 1  
fHCLK= 150  
MHz  
Supply current in included, bypass mode  
IDD (Run)  
Dhrystone2.1  
Fibonacci  
µA/MHz  
µA/MHz  
µA/MHz  
mA  
mA  
µA  
Run mode  
PLL ON above 48 MHz all  
peripherals disable  
While(1)  
Reduced code(1)  
21.00  
22.00  
21.00  
20.50  
19.50  
890  
Range 1  
Boost mode  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK  
=
170 MHz  
While(1)  
Reduced code(1)  
Coremark  
830  
SYSCLK source is HSI16  
FHCLK = 2MHz  
IDD  
Supply current in  
Low-power run  
Dhrystone2.1  
Fibonacci  
825  
(LPRun)  
all peripherals disable  
830  
While(1)  
815  
1. Reduced code used for characterization results provided in Table 21, Table 23.  
 
Table 27. Typical current consumption in Run and Low-power run modes, with different codes  
running from CCMSRAM  
Conditions  
TYP  
TYP  
Single  
bank  
mode  
Symbol  
Parameter  
fHCLK  
Unit  
Unit  
Voltage  
scaling  
Single bank  
mode  
-
Reduced code(1)  
Coremark  
2.75  
2.85  
106  
110  
106  
113  
100  
120  
123  
120  
127  
113  
129  
132  
129  
138  
121  
450  
425  
435  
425  
405  
Range2  
fHCLK=26 M  
Hz  
Dhrystone2.1  
Fibonacci  
µA/MHz  
2.75  
mA  
2.95  
While(1)  
2.60  
Reduced code(1)  
Coremark  
18.00  
18.50  
18.00  
19.00  
17.00  
22.00  
22.50  
22.00  
23.50  
20.50  
900  
fHCLK = fHSE up to 48 MHZ  
Range 1  
fHCLK= 150  
MHz  
Supply current in included, bypass mode  
IDD (Run)  
Dhrystone2.1  
Fibonacci  
µA/MHz  
µA/MHz  
µA/MHz  
mA  
mA  
µA  
Run mode  
PLL ON above 48 MHz all  
peripherals disable  
While(1)  
Reduced code(1)  
Coremark  
Range 1  
Boost mode  
Dhrystone2.1  
Fibonacci  
fHCLK  
=
170 MHz  
While(1)  
Reduced code(1)  
Coremark  
850  
SYSCLK source is HSI16  
FHCLK = 2MHz  
IDD  
Supply current in  
Low-power run  
Dhrystone2.1  
Fibonacci  
870  
(LPRun)  
all peripherals disable  
850  
While(1)  
810  
 
1. Reduced code used for characterization results provided in Table 21, Table 23.  
Table 28. Current consumption in Sleep and Low-power sleep mode Flash ON  
Condition Typ  
Max  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
0.98  
0.67  
0.44  
0.33  
0.27  
0.24  
0.21  
1.1  
1.75  
2.4  
3.75 1.90 3.50 7.60 13.0  
3.5 1.50 3.00 7.10 12.0  
19.0  
19.0  
19.0  
18.0  
18.0  
18.0  
18.0  
0.835 1.45 2.15  
0.605 1.25  
0.5 1.1  
2
3.35 1.10 2.70 6.70 12.0  
3.25 0.860 2.50 6.50 12.0  
3.2 0.760 2.40 6.40 11.0  
3.15 0.720 2.30 6.40 11.0  
3.1 0.670 2.30 6.30 11.0  
Range 2 4 MHz  
2 MHz  
1.9  
0.445 1.05 1.85  
0.415 1.05 1.8  
0.385 0.995 1.8  
1 MHz  
100 KHz  
Range 1  
f
HCLK = fHSE  
Boost  
mode  
170 MHz  
up to 48 MHz  
6.60  
6.95  
7.8  
8.9  
10.5 8.00 12.0 18.0 24.0  
9.25 6.40 9.50 15.0 21.0  
33.0  
Supply current included, bypass  
in sleep mode mode PLL ON  
above 48 MHz all  
IDD (Sleep)  
mA  
150 MHz  
120 MHz  
80 MHz  
72 MHz  
5.50  
4.50  
3.15  
2.85  
2.60  
1.90  
1.40  
1.10  
0.83  
5.8  
4.75  
3.45  
3.15  
2.9  
6.55 7.55  
29.0  
28.0  
26.0  
26.0  
26.0  
25.0  
25.0  
25.0  
24.0  
peripherals disable  
5.5  
4.2  
3.9  
3.65  
3
6.55  
5.15  
4.9  
4.6  
3.65  
3.2  
3
8.2  
6.8  
5.40 8.20 14.0 20.0  
4.50 6.60 12.0 18.0  
6.55 4.20 6.30 12.0 18.0  
Range 1 64 MHz  
48 MHz  
6.3  
5.3  
3.50 6.00 12.0 18.0  
3.20 5.30 11.0 17.0  
2.2  
32 MHz  
1.65  
1.35  
1.1  
2.4  
2.1  
4.85 2.70 4.80 11.0 17.0  
4.65 2.30 4.50 9.80 16.0  
4.35 1.90 4.10 9.40 16.0  
24 MHz  
16 MHz  
1.85 2.75  
 
 
Table 28. Current consumption in Sleep and Low-power sleep mode Flash ON (continued)  
Condition Typ Max  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
2 MHz  
205  
165  
145  
140  
700  
710  
670  
685  
430 1150 2050 3600 1600 2900 7800 14000 22000  
400 1100 2000 3550 1100 2900 7700 14000 22000  
370 1100 2000 3550 820 2800 7700 13000 22000  
365 1050 2000 3550 810 2800 7700 13000 22000  
925 1650 2550 4100 1600 3600 8400 14000 22000  
925 1600 2550 4100 1600 3600 8400 14000 22000  
910 1600 2500 4050 1600 3600 8400 14000 22000  
910 1600 2500 4050 1600 3600 8400 14000 22000  
SYSCLK source is HSE  
in bypass mode  
1 MHz  
μA  
250 KHz  
62.5 KHz  
2 MHz  
all peripherals disable  
Supply current  
in Low-power  
sleep mode  
IDD  
(LPSleep)  
1 MHz  
SYSCLK source is HSI16  
all peripherals disable  
μA  
250 KHz  
62.5 KHz  
Table 29. Current consumption in low-power sleep modes, Flash in power-down  
Condition Typ  
Max  
Symbol  
Parameter  
fHCLK  
Unit  
Voltage  
scaling  
-
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
2 MHz  
210  
150  
120  
110  
675  
695  
640  
690  
385 1150 2050 3550 910 2900 7800 14000 22000  
360 1100 2000 3550 860 2900 7700 14000 22000  
330 1050 2000 3500 820 2700 7600 13000 21000  
330 1050 1950 3500 810 2700 7600 13000 21000  
900 1600 2500 4050 1600 3600 8500 14000 22000  
890 1600 2500 4050 1600 3600 8400 14000 22000  
885 1600 2500 4050 1600 3600 8500 14000 22000  
880 1600 2500 4050 1400 3000 7000 12000 19000  
SYSCLK source is HSE  
in bypass mode  
all peripherals disable  
1 MHz  
250 KHz  
62.5 KHz  
2 MHz  
Supply current  
in low-power  
sleep mode  
IDD  
(LPSleep)  
μA  
1 MHz  
SYSCLK source is HSI16  
all peripherals disable  
250 KHz  
62.5 KHz  
 
 
Table 30. Current consumption in Stop 1 mode  
TYP  
Conditions  
-
MAX(1)  
85°C  
Symbol  
Parameter  
Unit  
VDD  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C 125°C  
1.8 V  
2.4 V  
3.0 V  
3.6 V  
1.8 V  
2.4 V  
3.0 V  
80  
80  
250  
250  
255  
255  
255  
255  
255  
830  
835  
840  
845  
830  
835  
835  
1550  
1600  
1600  
1600  
1550  
1600  
1600  
2850  
2850  
2900  
2900  
2850  
2850  
2850  
630  
640  
640  
640  
640  
640  
640  
2100  
2100  
2200  
2200  
2100  
2200  
2200  
5900  
5900  
6000  
6000  
5900  
5900  
6000  
11000 18000  
11000 18000  
11000 18000  
11000 18000  
11000 18000  
11000 18000  
11000 18000  
18000  
Supplycurrent  
in Stop 1  
(Stop 1) mode, RTC  
disabled  
IDD  
RTC disabled  
80.5  
81.5  
80.5  
81  
RTC clocked by LSI  
81.5  
3.6 V  
82  
255  
845  
1600  
2900  
650  
2200  
6000  
11000  
(2)  
µA  
1.8 V  
2.4 V  
3.0 V  
3.6 V  
1.8 V  
2.4 V  
3.0 V  
3.6 V  
80  
80.5  
81.5  
83  
255  
255  
255  
260  
220  
220  
220  
220  
830  
830  
835  
845  
655  
660  
660  
660  
1550  
1600  
1600  
1600  
1300  
1300  
1300  
1300  
2850  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IDD  
(Stop 1  
with  
Supplycurrent  
in Stop 1  
mode, RTC  
enabled  
2850  
RTC clocked by LSE  
bypassed at 32768 Hz  
RTC)  
2900  
2900  
83.5  
84  
-
-
-
-
RTC clocked by LSE  
quartz in low drive mode  
at 32768 Hz  
84.5  
87  
Wakeup clock is HSI6,  
voltage Range 1  
3.0 V  
1.73  
-
-
-
-
-
-
-
-
-
Supplycurrent  
duringwakeup  
from  
IDD  
(wakeu  
p from  
Stop 1  
Wakeup clock is  
HSI6 = 4 MHz,  
(HPRE = 4),  
mA  
3.0 V  
1.29  
-
-
-
-
-
-
-
-
-
Stop 1 mode  
voltage Range 2  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Guaranteed by test in production  
 
 
Table 31. Current consumption in Stop 0 mode  
TYP  
Conditions  
VDD  
MAX(1)  
85°C  
Symbol  
Parameter  
Unit  
-
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C 125°C  
1.8 V  
2.4 V  
3 V  
190  
190  
190  
380  
380  
380  
980  
985  
985  
1750  
1750  
1750  
3100  
3100  
3100  
790  
790  
800  
2400  
2400  
2400  
6500  
6400  
6500  
11000 19000  
11000 19000  
Supply current  
in Stop 0 mode,  
IDD(Stop 0)  
-
µA  
12000 19000  
12000  
RTC disabled  
3.6 V  
190  
380  
985  
1750  
3100  
800  
2500  
6500  
12000  
(2)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Guaranteed by test in production.  
Table 32. Current consumption in Standby mode  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
1.8 V  
2.4 V  
3 V  
100  
110  
130  
275  
325  
385  
1350 3450 8450  
200 1100 4100 9700 27000  
1600 4100 10000 220 1200 4800 12000 31000  
1900 4850 12000 240 1400 5500 13000 35000  
40000  
No  
independent  
watchdog  
Supply current in Standby  
mode (backup registers  
retained),  
3.6 V  
180  
530  
2400 6050 14500 360 1700 6300 15000  
IDD  
(Standby)  
(2)  
nA  
1.8 V  
2.4 V  
3 V  
300  
365  
435  
545  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC disabled  
With  
independent  
watchdog  
3.6 V  
 
 
 
 
Table 32. Current consumption in Standby mode (continued)  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
1.8 V  
2.4 V  
3 V  
540  
700  
885  
1100  
580  
760  
960  
1200  
410  
545  
830  
2200  
370  
495  
655  
875  
300  
305  
305  
310  
725  
920  
1800 3850 8850  
660 1500 4600 11000 27000  
RTCclocked  
by LSI, no  
independent  
watchdog  
2150 4650 10500 860 1900 5300 12000 31000  
1150 2650 5550 12500 1100 2200 6300 14000 36000  
1450 3350 7000 15500 1400 2700 7400 16000 41000  
3.6 V  
1.8 V  
2.4 V  
3 V  
nA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTCclocked  
by LSI, with  
independent  
watchdog  
-
-
Supply current in Standby  
mode (backup registers  
retained),  
IDD  
(Standby with  
RTC)  
3.6 V  
1.8 V  
2.4 V  
3 V  
-
580  
750  
1600 3650 8600  
1950 4450 10500  
RTC enabled  
RTCclocked  
by LSE  
bypassed at  
32768 Hz  
1150 2750 5800 13000  
3050 5550 9550 18000  
3.6 V  
1.8 V  
2.4 V  
3 V  
nA  
570  
715  
915  
1350 3150 7100  
1650 3800 8350  
2100 4550 9850  
RTCclocked  
by LSE  
quartz(3) in  
low drive  
mode  
3.6 V  
1.8 V  
2.4 V  
3 V  
1350 2800 5750 12000  
825  
875  
865  
870  
2950 6300 12550  
2900 6400 12500  
2950 6150 12500  
3000 6450 13000  
Supply current to be added in  
Standby mode when SRAM2  
is retained  
IDD  
(SRAM2)(4)  
-
nA  
3.6 V  
Table 32. Current consumption in Standby mode (continued)  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
Wakeup  
IDD (wakeup Supply current during wakeup clock is  
3 V  
mA  
2.46  
-
-
-
-
-
-
-
-
-
from Standby) from Standby mode  
HSI16 =  
16 MHz(5)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Guaranteed by test in production  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is:  
IIDD_ALL(Standby + RTC) + IDD_ALL(SRAM2).  
5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 36: Low-power mode wakeup timings.  
Table 33. Current consumption in Shutdown mode  
Conditions  
VDD  
TYP  
MAX(1)  
85°C  
Symbol  
Parameter  
Unit  
-
25°C  
55°C  
85°C  
105°C  
125°C  
25°C  
55°C  
105°C 125°C  
Supply current  
in Shutdown  
mode (backup  
registers  
retained) RTC  
disabled  
1.8 V  
2.4 V  
3 V  
19  
28  
43  
87  
140  
180  
230  
360  
885  
2500  
2950  
3600  
4700  
6600  
7800  
9300  
12000  
78.0  
94.0  
130  
190  
490  
570  
680  
870  
3100  
3600  
4100  
4900  
8100  
9300  
24000  
27000  
1050  
1300  
1750  
IDD  
(Shutdown)  
-
nA  
11000 31000  
13000 35000  
3.6 V  
 
Table 33. Current consumption in Shutdown mode (continued)  
Conditions  
VDD  
TYP  
MAX(1)  
85°C  
Symbol  
Parameter  
Unit  
-
25°C  
55°C  
85°C  
105°C  
125°C  
25°C  
55°C  
105°C 125°C  
RTC  
clocked by  
LSE  
bypassed  
at 32768  
Hz  
1.8 V  
2.4 V  
3 V  
330  
460  
745  
2100  
285  
410  
565  
780  
445  
605  
1150  
1450  
2200  
4900  
1050  
1300  
1750  
2400  
2700  
3350  
4550  
8150  
2500  
3050  
3750  
4850  
6800  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
8150  
Supply current  
in Shutdown  
mode (backup  
registers  
retained) RTC  
enabled  
1000  
2850  
450  
10500  
IDD  
3.6 V  
1.8 V  
2.4 V  
3 V  
15500  
nA  
(Shutdownwith  
RTC)  
RTC  
-
-
-
-
clocked by  
LSE  
585  
quartz(2) in  
low drive  
mode  
770  
3.6 V  
1200  
Supply current  
during wakeup  
from Shutdown HSI16 =  
Wakeup  
clock is  
IDD(wakeup  
from  
Shutdown)  
3 V  
mA  
1.6  
-
-
-
-
-
-
-
-
-
mode  
16 MHz(3)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 36: Low-power mode wakeup timings.  
Table 34. Current consumption in V  
mode  
BAT  
Conditions  
TYP  
MAX(1)  
85°C  
Symbol  
Parameter  
Unit  
-
V
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C 125°C  
BAT  
1.8 V  
2.4 V  
3 V  
4
5
17  
20  
92  
105  
125  
260  
350  
500  
1050  
3400  
455  
650  
910  
1250  
245  
280  
600  
690  
805  
1650  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC  
disabled  
6
24  
330  
3.6 V  
1.8 V  
2.4 V  
3 V  
16  
54  
675  
RTC  
310  
435  
720  
2150  
270  
385  
525  
710  
315  
440  
815  
2600  
345  
455  
600  
995  
470  
enabled and  
clocked by  
LSE  
bypassed at  
32768 Hz  
665  
-
Backup domain  
supply current  
IDD(V  
)
nA  
BAT  
1350  
4050  
715  
-
3.6 V  
1.8 V  
2.4 V  
3 V  
-
835  
910  
1000  
1900  
RTC  
enabled and  
clocked by  
LSE  
910  
1150  
1700  
quartz(2)  
3.6 V  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
 
STM32G474xB STM32G474xC STM32G474xE  
IO system current consumption  
Electrical characteristics  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC, OPAMP, COMP input pins  
which should be configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This is done either by using pull-up/down resistors or by configuring the pins in  
output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 36: Low-power mode wakeup timings), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the I/O supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
C
S
INT  
EXT +  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DS12288 Rev 5  
109/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 35. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 14:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 35. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 35. Peripheral current consumption  
Range 1 Range 1  
Low-power  
run and  
sleep  
Bus  
Peripheral  
Boost  
mode  
Normal Range 2  
mode  
Unit  
Bus Matrix  
6.12  
0.26  
0.39  
10.21  
3.51  
1.28  
0.74  
2.83  
3.11  
6.71  
0.58  
6.46  
4.59  
5.69  
0.25  
0.37  
9.52  
3.27  
1.19  
0.68  
2.64  
2.90  
6.26  
0.54  
6.01  
4.29  
4.70  
0.22  
0.32  
7.87  
2.69  
0.98  
0.57  
2.17  
2.39  
5.17  
0.44  
4.95  
3.57  
6.11  
0.03  
0.03  
10.28  
3.51  
0.78  
0.63  
2.75  
2.43  
6.68  
0.54  
6.15  
3.83  
AHB1 to APB1 bridge  
AHB1 to APB2 bridge  
FSMC  
-
µA/MHz  
QUADSPI  
CORDIC  
CRC  
DMA 1  
DMA 2  
AHB1  
µA/MHz  
DMAMUX  
SRAM1  
FLASH  
FMAC  
110/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Table 35. Peripheral current consumption (continued)  
Range 1 Range 1  
Low-power  
run and  
sleep  
Bus  
Peripheral  
Boost  
mode  
Normal Range 2  
Unit  
mode  
ADC1/ADC2  
6.24  
8.21  
4.70  
2.51  
4.62  
4.31  
0.09  
0.10  
0.10  
0.06  
0.23  
0.07  
0.25  
0.39  
0.29  
2.09  
5.80  
7.64  
4.38  
2.34  
4.31  
4.01  
0.08  
0.09  
0.09  
0.06  
0.22  
0.07  
0.24  
0.37  
0.27  
1.95  
4.77  
6.29  
3.63  
1.93  
3.57  
3.32  
0.07  
0.07  
0.08  
0.03  
0.18  
0.05  
0.20  
0.29  
0.23  
NA  
5.88  
8.14  
4.40  
2.14  
4.15  
3.90  
0.14  
0.03  
0.03  
0.05  
0.10  
0.02  
0.24  
0.28  
0.22  
NA  
ADC3/ADC4/ADC5  
DAC1  
DAC2  
DAC3  
DAC4  
GPIOA  
GPIOB  
AHB2  
µA/MHz  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
SRAM2  
CCM SRAM  
RNG  
DS12288 Rev 5  
111/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Table 35. Peripheral current consumption (continued)  
Range 1 Range 1  
Low-power  
run and  
sleep  
Bus  
Peripheral  
Boost Normal Range 2  
mode mode  
Unit  
CRS  
0.74  
22.20  
1.29  
1.29  
1.25  
1.25  
1.11  
1.91  
0.71  
2.64  
4.05  
4.08  
7.97  
6.37  
6.43  
8.28  
1.22  
1.28  
2.51  
2.79  
2.75  
2.71  
0.46  
2.46  
0.42  
0.68  
0.57  
17.10  
0.99  
0.99  
0.96  
0.96  
0.85  
1.47  
0.53  
2.07  
3.11  
3.13  
6.16  
4.92  
4.97  
6.38  
0.94  
0.98  
1.92  
2.14  
2.12  
2.08  
NA  
0.51  
21.15  
1.28  
1.28  
1.56  
1.97  
1.42  
2.03  
0.53  
3.26  
4.16  
4.49  
8.29  
6.81  
6.50  
8.11  
1.45  
1.56  
3.14  
3.34  
3.11  
2.47  
NA  
FDCAN1/FDCAN2/FDCAN3  
I2C1  
20.68  
1.20  
1.20  
1.17  
1.16  
1.03  
1.78  
0.65  
2.46  
3.77  
3.81  
7.42  
5.93  
5.98  
7.71  
1.13  
1.18  
2.33  
2.60  
2.56  
2.52  
0.43  
2.28  
0.39  
I2C2  
I2C3  
I2C4  
LPTIM1  
LPUART1  
PWR  
RTC  
SPI2/I2S2  
SPI3/I2S3  
TIM2  
APB1  
µA/MHz  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
UART4  
UART5  
USART2  
USART3  
USB  
UCPD  
1.89  
0.31  
NA  
WWDG  
0.42  
112/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Table 35. Peripheral current consumption (continued)  
Range 1 Range 1  
Low-power  
run and  
sleep  
Bus  
Peripheral  
Boost  
mode  
Normal Range 2  
Unit  
mode  
HRTIM  
SAI1  
69.98  
2.67  
1.99  
1.99  
10.85  
10.67  
4.81  
3.71  
3.66  
10.71  
2.49  
1.63  
65.11  
2.48  
1.86  
1.86  
10.13  
9.96  
4.48  
3.45  
3.41  
9.99  
2.31  
1.52  
53.68  
2.05  
1.54  
1.54  
8.40  
8.25  
3.71  
2.88  
2.83  
8.29  
1.91  
1.25  
60.95  
2.64  
2.02  
2.02  
9.93  
9.82  
4.57  
3.45  
3.81  
10.00  
2.49  
0.91  
SPI1  
SPI4  
TIM1  
TIM8  
APB2  
µA/MHz  
TIM15  
TIM16  
TIM17  
TIM20  
USART1  
SYSCFG/COMP/OPAMP/VREFBUF  
DS12288 Rev 5  
113/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Table 35. Peripheral current consumption (continued)  
Range 1 Range 1  
Low-power  
run and  
sleep  
Bus  
Peripheral  
Boost Normal Range 2  
mode mode  
Unit  
ADC1/  
ADC2  
independent clock domain  
independent clock domain  
0.72  
0.67  
0.67  
0.53  
0.50  
0.63  
0.22  
ADC3/  
ADC4/  
ADC5  
0.62  
FDCAN1/  
FDCAN2/  
FDCAN3  
independent clock domain  
11.62  
10.84  
8.95  
10.24  
I2C1  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
independent clock domain  
4.03  
3.78  
2.72  
3.95  
1.49  
1.52  
4.00  
4.43  
0.54  
0.83  
1.10  
3.36  
6.60  
6.60  
7.62  
7.37  
7.98  
369.00  
3.76  
3.52  
2.55  
3.67  
1.40  
1.43  
3.71  
4.13  
0.51  
0.87  
1.17  
3.14  
6.17  
6.16  
7.12  
6.86  
7.44  
316.04  
3.12  
2.93  
2.11  
3.04  
1.15  
1.16  
3.08  
3.45  
0.44  
NA  
4.15  
3.23  
2.65  
2.81  
1.63  
2.15  
3.57  
4.02  
0.75  
NA  
I2C2  
I2C3  
I2C4  
I2S2  
Independent  
clock domain  
I2S3  
µA/MHz  
LPTIM1  
LPUART1  
QUADSPI  
RNG  
USB  
NA  
NA  
SAI1  
2.58  
5.14  
5.12  
5.89  
5.70  
6.17  
266.18  
3.25  
6.02  
6.12  
6.90  
6.72  
8.21  
325.00  
UART4  
UART5  
USART1  
USART2  
USART3  
-
All  
µA/MHz  
114/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.6  
Wakeup time from low-power modes and voltage scaling  
transition times  
The wakeup times given in Table 36 are the latency between the event and the execution of  
the first user instruction.  
The device goes in low-power mode after the WFE (Wait For Event) instruction.  
(1)  
Table 36. Low-power mode wakeup timings  
Symbol  
tWUSLEEP  
Parameter  
Conditions  
Typ  
Max  
Unit  
Wakeup time from Sleep  
mode to Run mode  
-
11  
12  
Nb of  
CPU  
Wakeup time from Low-  
cycles  
tWULPSLEEP power sleep mode to Low-  
power run mode  
-
10  
11  
Range 1  
Range 2  
Range 1  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
5.8  
18.4  
2.8  
6
19.1  
3
Wake up time from Stop 0  
mode to Run mode in Flash  
tWUSTOP0  
Wake up time from Stop 0  
mode to Run mode in  
SRAM1  
Range 2  
Wakeup clock HSI16 = 16 MHz  
2.9  
3
Range 1  
Range 2  
Range 1  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
9.5  
21.9  
6.6  
9.8  
22.7  
6.9  
Wake up time from Stop 1  
mode to Run in Flash  
Wake up time from Stop 1  
mode to Run mode in  
SRAM1  
Range 2  
Wakeup clock HSI16 = 16 MHz  
6.4  
6.6  
tWUSTOP1  
Wake up time from Stop 1  
27.1(2)  
mode to Low-power run  
mode in Flash  
26.1  
Regulator in  
low-power  
Wakeup clock  
HSI16 = 16 MHz,  
with HPRE = 8  
µs  
mode (LPR=1  
in PWR_CR1)  
Wake up time from Stop 1  
mode to Low-power run  
mode in SRAM1  
15(2)  
14.4  
Wakeup time from Standby  
tWUSTBY  
Range 1  
Range 1  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
29.7  
29.7  
33.8  
33.5  
mode to Run mode  
tWUSTBY  
Wakeup time from Standby  
with SRAM2 to Run mode  
SRAM2  
Wakeup time from  
tWUSHDN Shutdown mode to Run  
mode  
274.6(2)  
Range 1  
Wakeup clock HSI16 = 16 MHz  
267.9  
5
Wakeup time from Low-  
Wakeup clock HSI16 = 16 MHz  
with HPRE = 8  
tWULPRUN  
power run mode to Run  
7
mode(3)  
1. Guaranteed by characterization results.  
2. Characterization results for temperature range from 0°C to 125°C  
3. Time until REGLPF flag is cleared in PWR_SR2.  
DS12288 Rev 5  
115/236  
200  
 
 
 
Electrical characteristics  
Symbol  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 37. Regulator modes transition times  
Parameter  
Conditions  
Typ  
Max Unit  
Regulator transition time from Range  
2 to Range 1 or  
Wakeup clock HSI16 = 16 MHz  
with HPRE = 8  
tVOST  
20  
40  
μs  
Range 1 to Range 2(2)  
1. Guaranteed by characterization results.  
2. Time until VOSF flag is cleared in PWR_SR2.  
(1)  
Table 38. Wakeup time using USART/LPUART  
Symbol  
Parameter  
Conditions  
Stop 0 mode  
Typ  
Max  
Unit  
Wakeup time needed to calculate the  
maximum USART/LPUART baudrate  
allowing to wakeup up from stop mode  
when USART/LPUART clock source is  
HSI16  
-
1.7  
tWUUSART  
μs  
tWULPUART  
Stop 1 mode  
-
8.5  
1. Guaranteed by design.  
5.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 5.3.14. However,  
the recommended clock input waveform is shown in Figure 19: High-speed external clock  
source AC timing diagram.  
(1)  
Table 39. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Voltage scaling  
Range 1  
-
8
48  
User external clock  
source frequency  
fHSE_ext  
MHz  
Voltage scaling  
Range 2  
-
0.7 VDD  
VSS  
7
8
-
26  
OSC_IN input pin high  
level voltage  
VHSEH  
VHSEL  
-
-
VDD  
V
OSC_IN input pin low  
level voltage  
-
0.3 VDD  
Voltage scaling  
Range 1  
-
-
-
tw(HSEH)  
tw(HSEL)  
OSC_IN high or low time  
ns  
Voltage scaling  
Range 2  
18  
-
1. Guaranteed by design.  
116/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 19. High-speed external clock source AC timing diagram  
t
w(HSEH)  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
t
r(HSE)  
f(HSE)  
w(HSEL)  
T
HSE  
MS19214V2  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 5.3.14. However,  
the recommended clock input waveform is shown in Figure 20.  
(1)  
Table 40. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
-
-
32.768  
1000  
kHz  
OSC32_IN input pin high  
level voltage  
VLSEH  
VLSEL  
tw(LSEH)  
-
-
-
0.7 VDD  
VSS  
-
-
-
VDD  
0.3 VDD  
-
V
OSC32_IN input pin low level  
voltage  
OSC32_IN high or low time  
250  
ns  
tw(LSEL)  
1. Guaranteed by design.  
Figure 20. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
DS12288 Rev 5  
117/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 41. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 41. HSE oscillator characteristics  
Symbol  
fOSC_IN Oscillator frequency  
RF Feedback resistor  
Parameter  
Conditions(2)  
Min  
Typ  
Max  
Unit  
-
4
-
8
200  
-
48  
-
MHz  
-
kΩ  
During startup(3)  
-
5.5  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.44  
0.45  
0.68  
0.94  
1.77  
-
-
-
-
-
VDD = 3 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 3 V,  
IDD(HSE) HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 20 pF@48 MHz  
Maximum critical crystal  
transconductance  
Gm  
Startup  
-
-
-
1.5  
-
mA/V  
ms  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 21). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
118/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 21. Typical application with an 8 MHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 42. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
DS12288 Rev 5  
119/236  
200  
 
Electrical characteristics  
Symbol  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 42. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Parameter  
Conditions(2)  
Min  
Typ  
Max Unit  
LSEDRV[1:0] = 00  
Low drive capability  
-
250  
-
LSEDRV[1:0] = 01  
Medium low drive capability  
-
-
-
-
-
-
315  
-
IDD(LSE) LSE current consumption  
nA  
LSEDRV[1:0] = 10  
Medium high drive capability  
500  
-
LSEDRV[1:0] = 11  
High drive capability  
630  
-
LSEDRV[1:0] = 00  
Low drive capability  
-
-
-
0.5  
LSEDRV[1:0] = 01  
Medium low drive capability  
0.75  
µA/V  
1.7  
Maximum critical crystal  
Gmcritmax  
gm  
LSEDRV[1:0] = 10  
Medium high drive capability  
LSEDRV[1:0] = 11  
High drive capability  
-
-
-
2.7  
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
-
s
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly  
with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 22. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
120/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.8  
Internal clock source characteristics  
The parameters given in Table 43 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 17: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 43. HSI16 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI16  
HSI16 Frequency  
VDD=3.0 V, TA=30 °C  
15.88  
-
16.08 MHz  
Trimming code is not a  
multiple of 64  
0.2  
-4  
0.3  
-6  
0.4  
%
TRIM  
HSI16 user trimming step  
Trimming code is a  
multiple of 64  
-8  
DuCy(HSI16)(2) Duty Cycle  
-
45  
-1  
-2  
-
-
-
55  
1
%
%
TA= 0 to 85 °C  
TA= -40 to 125 °C  
HSI16 oscillator frequency  
drift over temperature  
Temp(HSI16)  
1.5  
%
%
HSI16 oscillator frequency  
drift over VDD  
VDD(HSI16)  
tsu(HSI16)(2)  
tstab(HSI16)(2)  
IDD(HSI16)(2)  
VDD=1.62 V to 3.6 V  
-0.1  
-
0.05  
1.2  
5
HSI16 oscillator start-up  
time  
-
-
-
-
-
-
0.8  
3
μs  
μs  
μA  
HSI16 oscillator  
stabilization time  
HSI16 oscillator power  
consumption  
155  
190  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS12288 Rev 5  
121/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Figure 23. HSI16 frequency versus temperature  
MHz  
16.4  
+2 %  
+1.5 %  
+1 %  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
-1 %  
-1.5 %  
-2 %  
15.6  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
Mean  
min  
max  
MSv39299V2  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 44. HSI48 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI48  
TRIM  
HSI48 Frequency  
VDD=3.0V, TA=30°C  
-
-
-
48  
-
MHz  
%
HSI48 user trimming step  
0.11(2) 0.18(2)  
USER TRIM HSI48 user trimming  
COVERAGE coverage  
±32 steps  
-
±3(3)  
45(2)  
-
±3.5(3)  
-
%
%
DuCy(HSI48) Duty Cycle  
-
-
55(2)  
±3(3)  
VDD = 3.0 V to 3.6 V,  
TA = –15 to 85 °C  
Accuracy of the HSI48  
ACCHSI48_REL oscillator over temperature  
(factory calibrated)  
%
VDD = 1.65 V to 3.6 V,  
TA = –40 to 125 °C  
-
-
±4.5(3)  
VDD = 3 V to 3.6 V  
-
-
0.025(3) 0.05(3)  
HSI48 oscillator frequency  
DVDD(HSI48)  
%
0.05(3)  
0.1(3)  
drift with VDD  
VDD = 1.65 V to 3.6 V  
HSI48 oscillator start-up  
tsu(HSI48)  
time  
-
-
-
-
2.5(2)  
6(2)  
μs  
HSI48 oscillator power  
consumption  
IDD(HSI48)  
340(2)  
380(2) μA  
122/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 44. HSI48 oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Next transition jitter  
Accumulated jitter on 28  
cycles(4)  
NT jitter  
-
-
+/-0.15(2)  
-
-
ns  
ns  
Paired transition jitter  
Accumulated jitter on 56  
cycles(4)  
PT jitter  
-
-
+/-0.25(2)  
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Jitter measurement are performed without clock source activated in parallel.  
Figure 24. HSI48 frequency versus temperature  
%
6
4
2
0
-2  
-4  
-6  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
°C  
Avg  
min  
max  
MSv40989V1  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 45. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
DD = 3.0 V,  
31.04  
-
32.96  
34  
TA = 30 °C  
fLSI  
LSI Frequency  
kHz  
VDD = 1.62 to 3.6 V,  
29.5  
-
-
TA = -40 to 125 °C  
LSI oscillator start-up  
time  
tSU(LSI)(2)  
-
80  
130  
μs  
DS12288 Rev 5  
123/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 45. LSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LSI oscillator stabilization  
time  
tSTAB(LSI)(2)  
5% of final frequency  
-
125  
180  
μs  
LSI oscillator power  
consumption  
IDD(LSI)(2)  
-
-
110  
180  
nA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
5.3.9  
PLL characteristics  
The parameters given in Table 46 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 17: General operating conditions.  
DD  
(1)  
Table 46. PLL characteristics  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLL input clock(2)  
-
-
2.66  
45  
-
-
16  
55  
MHz  
%
PLL input clock duty cycle  
Voltage scaling Range 1  
Boost mode  
2.0645  
-
170  
fPLL_P_OUT PLL multiplier output clock P  
Voltage scaling Range 1 2.0645  
Voltage scaling Range 2 2.0645  
-
-
150  
26  
Voltage scaling Range 1  
Boost mode  
8
-
170  
fPLL_Q_OUT PLL multiplier output clock Q  
Voltage scaling Range 1  
Voltage scaling Range 2  
8
8
-
-
150  
26  
MHz  
Voltage scaling Range 1  
Boost mode  
8
-
170  
fPLL_R_OUT PLL multiplier output clock R  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
-
8
8
96  
96  
-
-
-
150  
26  
-
344  
128  
40  
fVCO_OUT PLL VCO output  
-
tLOCK  
Jitter  
PLL lock time  
15  
28.6  
21.4  
200  
300  
520  
μs  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
-
System clock 150 MHz  
±ps  
-
-
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
260  
380  
650  
PLL power consumption on  
VDD  
I
DD(PLL)  
-
μA  
(1)  
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock  
values.  
124/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.10  
Flash memory characteristics  
(1)  
Table 47. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
tprog  
64-bit programming time  
-
81.7  
2.61  
83.35  
2.7  
µs  
Normal programming  
Fast programming  
Normal programming  
Fast programming  
One row (32 double  
word) programming time  
tprog_row  
1.91  
1.95  
21.34  
15.6  
20.91  
15.29  
One page (2 Kbytes)  
programming time  
ms  
tprog_page  
tERASE  
tprog_bank  
tME  
Page (2 Kbytes) erase  
time  
-
22.02  
24.47  
Normal programming  
Fast programming  
2.68  
1.96  
2.73  
2
One bank (256 Kbyte)  
programming time  
s
Mass erase time  
(one or two banks)  
-
22.13  
24.6  
ms  
Write mode  
Erase mode  
Write mode  
Erase mode  
3.5  
-
-
-
-
Average consumption  
from VDD  
3.5  
IDD  
mA  
7 (for 6 µs)  
7 (for 67 µs)  
Maximum current (peak)  
1. Guaranteed by design.  
Table 48. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = -40 to +105 °C  
10  
30  
15  
7
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
tRET  
Data retention  
Years  
30  
15  
10  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
DS12288 Rev 5  
125/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 49. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 49. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 170 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
3B  
5A  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 170 MHz,  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
126/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 50. EMI characteristics  
Max vs. [fHSE/fHCLK  
8 MHz / 170 MHz  
]
Monitored  
frequency band  
Symbol  
Parameter  
Conditions  
Unit  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
4
0
VDD = 3.6 V, TA = 25 °C,  
Peak level LQFP128 package  
compliant with IEC 61967-2  
dBµV  
-
SEMI  
16  
11  
3.5  
5.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 51. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) ANSI/ESDA/JEDEC JS-001  
TA = +25 °C, conforming to  
VESD(HBM)  
2
2000  
V
LQFP100 and  
LQFP128  
C1  
250  
500  
TA = +25 °C, conforming to  
Electrostatic discharge  
voltage (charge device model)  
002  
VESD(CDM)  
ANSI/ESDA/JEDEC JS-  
V
Other  
packages  
C2a  
1. Guaranteed by characterization results.  
DS12288 Rev 5  
127/236  
200  
 
 
 
 
Electrical characteristics  
Static latch-up  
STM32G474xB STM32G474xC STM32G474xE  
Two complementary static tests are required on three parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78E IC latch-up standard.  
Table 52. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +125 °C conforming to JESD78E  
Class II level A  
5.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3.3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 53.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
Table 53. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
All except TT_a, PF10, PB8-BOOT0, PC10  
PF10, PB8-BOOT0, PC10  
TT_a pins  
-5  
-0  
-5  
NA  
NA  
0
(1)  
IINJ  
Injected current on pin  
mA  
1. Guaranteed by characterization.  
128/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 54 are derived from tests  
performed under the conditions summarized in Table 17: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 54. I/O static characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
0.3xVDD  
All except  
FT_c  
1.62 V<VDD<3.6 V  
-
-
0.39xVDD-0.06(3)  
I/O input  
low level  
voltage  
(1)(2)  
VIL  
V
0.3xVDD  
FT_c  
1.62 V<VDD<3.6 V  
-
-
0.25xVDD  
0.7xVDD  
0.49xVDD +0.26(3)  
0.7xVDD  
-
-
-
-
-
-
All except  
FT_c  
I/O input  
high level  
voltage  
1.62 V<VDD<3.6 V  
1.62 V<VDD<3.6 V  
(1)(2)  
(3)  
VIH  
V
FT_c  
TT_xx,  
FT_xxx,  
NRST  
Input  
hysteresis  
VHYS  
1.62 V<VDD<3.6 V  
-
200  
-
mV  
0 < VIN VDD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±100  
650(4)  
200(4)  
2000  
FT_xx  
except  
FT_c  
V
DD VIN VDD+1 V  
VDD+1 V < VIN 5.5 V  
0 VIN VDDMAX  
FT_c  
V
DD VIN <0.5 V  
3000  
Input  
0 VIN VDD  
±150  
Ileak  
leakage  
nA  
current(3)  
FT_u, PC3  
VDD VIN VDD+ 1 V  
±2500  
±250  
V
DD VIN 5.5 V  
0 VIN VDD  
±4500  
±9000  
±150  
FT_d  
VDD + 1V VIN 5.5 V  
0 VIN VDD  
TT_xx  
VDD VIN 3.6 V  
2000  
Weak pull-  
up  
RPU  
VIN = VSS  
25  
40  
55  
equivalent  
resistor(5)  
kΩ  
Weak pull-  
down  
RPD  
VIN = VDD  
25  
-
40  
5
55  
-
equivalent  
resistor(5)  
I/O pin  
capacitance capacitance  
I/O pin  
CIO  
-
pF  
1. Refer to Figure 25: I/O input characteristics  
DS12288 Rev 5  
129/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
2. Data based on characterization results, not tested in production  
3. Guaranteed by design.  
4. This value represents the pad leakage of the I/O itself. The total product pad leakage is provided by this formula:  
ITotal_Ileak_max = 10 μA + [number of I/Os where VIN is applied on the pad] Ilkg(Max).  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 25 for standard I/Os, and in Figure 25 for  
5 V tolerant I/Os.  
Figure 25. I/O input characteristics  
TTL requirement Vih min = 2V  
TTL requirement Vil max = 0.8V  
MSv37613V1  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ± 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 14: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 14: Voltage characteristics).  
130/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Output voltage levels  
Electrical characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 17: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT  
unless otherwise specified).  
(1)(2)  
Table 55. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
(3)  
VOL  
Output low level voltage for an I/O pin CMOS port  
-
0.4  
|IIO| = 2 mA for FT_c  
(3)  
I/Os = 8 mA for other I/Os VDD  
2.7 V  
VOH  
Output high level voltage for an I/O pin  
VDD-0.4  
-
0.4  
-
(3)  
VOL  
Output low level voltage for an I/O pin TTL port  
|IIO| = 2 mA for FT_c  
-
(3)  
I/Os = 8 mA for other I/Os  
VDD 2.7 V  
VOH  
Output high level voltage for an I/O pin  
2.4  
(3)  
VOL  
Output low level voltage for an I/O pin All I/Os except FT_c  
|IIO| = 20 mA  
-
1.3  
-
V
(3)  
VOH  
Output high level voltage for an I/O pin  
VDD-1.3  
-
VDD 2.7 V  
(3)  
VOL  
Output low level voltage for an I/O pin |IIO| = 1 mA for FT_c  
I/Os = 4 mA for other I/Os  
0.4  
-
(3)  
VOH  
Output high level voltage for an I/O pin  
VDD-0.45  
VDD 1.62 V  
|IIO| = 20 mA  
VDD 2.7 V  
-
-
0.4  
0.4  
Output low level voltage for an FT I/O  
pin in FM+ mode (FT I/O with “f”  
option)  
VOLFM+  
(3)  
|IIO| = 10 mA  
VDD 1.62 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 14:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 26 and  
Table 56, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 17: General  
operating conditions.  
DS12288 Rev 5  
131/236  
200  
 
Electrical characteristics  
Speed Symbol  
STM32G474xB STM32G474xC STM32G474xE  
(1) (2)  
Table 56. I/O (except FT_c) AC characteristics  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
1
Maximum  
frequency  
Fmax  
MHz  
10  
1.5  
25  
00  
52  
Output rise and  
fall time  
Tr/Tf  
ns  
MHz  
ns  
17  
37  
25  
10  
Maximum  
frequency  
Fmax  
50  
15  
01  
9
16  
Output rise and  
fall time  
Tr/Tf  
4.5  
9
50  
25  
Maximum  
frequency  
Fmax  
MHz  
100(3)  
37.5  
5.8  
11  
10  
Output rise and  
fall time  
Tr/Tf  
ns  
2.5  
5
120(3)  
50  
Maximum  
frequency  
Fmax  
MHz  
180(3)  
75  
11  
3.3  
6
Output rise and  
fall time(4)  
Tr/Tf  
ns  
1.7  
3.3  
132/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1) (2)  
Table 56. I/O (except FT_c) AC characteristics  
(continued)  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Maximum  
frequency  
Fmax(5)  
-
1
5
MHz  
FM+  
C=50 pF, 1.6 VVDD3.6 V  
Output high to  
low level fall  
time  
Tr/TF(4)  
-
ns  
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the  
SYSCFG_CFGR1 register. Refer to the reference manual RM0440 "STM32G4 Series advanced Arm®-  
based 32-bit MCUs" for a description of GPIO Port configuration register.  
2. Guaranteed by design.  
3. This value represented the I/O capability but maximum system frequency is 170 MHz.  
4. The fall time is defined between 70% and 30% of the output waveform accordingly to I2C specification.  
5. The maximum frequency is defined with the following conditions:  
- (Tr+ Tf) 2/3 T.  
- 45%<Duty cycle<55%  
(1) (2)  
Table 57. I/O FT_c AC characteristics  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.6 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
-
-
-
2
1
Maximum  
frequency  
Fmax  
MHz  
0
Output H/L to  
170  
Tr/Tf L/H level fall  
time  
ns  
MHz  
ns  
C=50 pF, 1.6 VVDD2.7 V  
-
330  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.6 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
-
-
-
10  
5
Maximum  
Fmax  
frequency  
1
Output H/L to  
Tr/Tf L/H level fall  
time  
35  
C=50 pF, 1.6 VVDD2.7 V  
-
65  
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the  
SYSCFG_CFGR1 register. Refer to the reference manual RM0440 "STM32G4 Series advanced Arm®-  
based 32-bit MCUs" for a description of GPIO Port configuration register.  
2. Guaranteed by design.  
DS12288 Rev 5  
133/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Figure 26. I/O AC characteristics definition  
10%  
90%  
50%  
50%  
10%  
90%  
t
t
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t (≤ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by the specified capacitance.  
MS32132V2  
1. Refer to Table 56: I/O (except FT_c) AC characteristics.  
5.3.15  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 17: General operating conditions.  
(1)  
Table 58. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input low level  
voltage  
VIL(NRST)  
-
-
-
0.3VDD  
V
NRST input high level  
voltage  
VIH(NRST)  
Vhys(NRST)  
RPU  
-
0.7VDD  
-
200  
40  
-
-
-
NRST Schmitt trigger  
voltage hysteresis  
-
-
25  
-
mV  
kΩ  
ns  
Weak pull-up equivalent  
resistor(2)  
VIN = VSS  
-
55  
70  
-
NRST input filtered  
pulse  
VF(NRST)  
VNF(NRST)  
NRST input not filtered  
pulse  
1.71 V VDD  
3.6 V  
350  
-
ns  
1. Guaranteed by design.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is minimal (~10% order).  
134/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 27. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF  
MS19878V3  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 58: NRST pin characteristics. Otherwise the reset is not taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
5.3.16  
High-resolution timer (HRTIM)  
The parameters given in Table 59 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 17.  
(1)  
Table 59. HRTIM characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Timer ambient  
temperature range  
TA  
fHRTIM=170 MHz  
-40  
-
125  
°C  
fHRTIM  
tHRTIM  
-
-
-
170  
-
MHz  
ns  
HRTIM input clock  
for DLL calibration  
As per TA conditions  
5.88  
high-resolution  
step size  
fHRTIM=170 MHz,  
TA from -40 to 105°C  
tRES(HRTIM)  
-
184  
-
ps  
ResHRTIM Timer resolution  
Dead time  
-
-
-
-
-
16  
16  
bit  
0.125  
tHRTIM  
tDTG  
generator clock  
period  
fHRTIM=170 MHz  
0.735  
-
94.1  
ns  
-
-
-
-
-
-
-
-
511  
48.09  
1/16  
tDTG  
µs  
|tDTR| / |tDTF| Dead time range  
(absolute value)  
fHRTIM=170 MHz  
-
max  
-
fHRTIM=170 MHz  
-
1/256  
0.664  
16  
fHRTIM  
MHz  
tHRTIM  
µs  
Chopper stage  
fCHPFRQ  
clock frequency  
10.625  
256  
Chopper first  
t1STPW  
pulse length  
fHRTIM=170 MHz  
0.094  
1.506  
1. Data based on characterization results, not tested in production.  
DS12288 Rev 5  
135/236  
200  
 
 
 
Electrical characteristics  
Symbol  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 60. HRTIM output response to fault protection  
Parameter  
Conditions  
Min. Typ. Max.(2) Unit  
Propagation delay from  
HRTIM1_FLTx digital input to  
HRTIM_CHxy output pin  
Digital fault response  
latency  
tLAT(DF)  
tW(FLT)  
tLAT(AF)  
-
7
-
9
-
20  
-
Minimum Fault pulse  
width  
-
ns  
Propagation delay from  
comparator COMPx_INP input  
pin to HRTIM_CHxy output pin  
Analog fault response  
latency  
16  
31  
1. Refer to Fault paragraph in HRTIM section of RM0440.  
2. Data based on characterization results, not tested in production.  
Table 61. HRTIM output response to external events 1 to 5  
(1)  
(Low-Latency mode  
)
Symbol  
Parameter  
Conditions  
Min Typ(2) Max(2)  
Unit  
Propagation delay from  
Digital external event HRTIM1_EEVx digital input to  
tLAT(DEEV)  
-
7
-
12  
-
23  
-
response latency  
HRTIM_CHxy output pin (30pF  
load)  
Minimum external  
event pulse width  
tW(EEV)  
-
ns  
Propagation delay from  
Analog external event comparator COMPx_INP input  
tLAT(AEEV)  
19  
31  
response latency  
pin to HRTIM_CHxy output pin  
(30pF load)  
1. EExFAST bit in HRTIM_EECR1 register is set (Low Latency mode). This functionality is available on  
external events channels 1 to 5. Refer to Latency to external events paragraph in HRTIM section of  
RM0440.  
2. Data based on characterization results, not tested in production.  
136/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 62. HRTIM output response to external events 1 to 10 (Synchronous mode  
)
Symbol  
Parameter  
Conditions  
Min. Typ. Max.(2)  
Unit  
Propagation delay from HRTIM1_EEVx  
digital input to HRTIM_CHxy output pin  
(30pF load) (3)  
Digital external event  
response latency  
tLAT(DEEV)  
-
56  
66  
ns  
Propagation delay from COMPx_INP  
input pin to HRTIM_CHxy output pin  
(30pF load) (3)  
Analog external event  
response latency  
tLAT(AEEV)  
-
7
-
62  
-
76  
-
ns  
ns  
Minimum external event  
pulse width  
tW(EEV)  
-
Jitter of the delay from HRTIM1_EEVx  
digital input or COMPx_INP to  
HRTIM_CHxy output pin  
External event response  
jitter  
(4)  
TJIT(EEV)  
-
1
tHRTIM  
1. EExFAST bit in HRTIM_EECR1 or HRTIM_EECR2 register is cleared (synchronous mode). External event filtering is  
disabled, i.e. EExF[3:0]=0000 in HRTIM_EECR2 register. Refer to Latency to external events paragraph in HRTIM section  
of RM0440.  
2. Data based on characterization results, not tested in production.  
3. This parameter is given for fHRTIM = 170 MHz.  
4. THRTIM = 1 / fHRTIM with fHRTIM= 170 MHz.  
(1)  
Table 63. HRTIM synchronization input / output  
Symbol  
Parameter  
Conditions  
Min. Typ. Max.  
Unit  
Minimum pulse width on  
tW(SYNCIN) SYNCIN inputs, including  
HRTIM_SCIN  
-
2
-
-
-
-
tHRTIM  
Response time to external  
tRES(ESR)  
-
-
3
tHRTIM  
synchronization request  
-
-
16  
-
-
tHRTIM  
ns  
Pulse width on  
tW(SYNCOUT)  
HRTIM_SCOUT output  
fHRTIM=170 MHz  
94.1  
1. Guaranteed by design, not tested in production.  
5.3.17  
Extended interrupt and event controller input (EXTI) characteristics  
The pulse on the interrupt input must have a minimal length in order to guarantee that it is  
detected by the event controller.  
(1)  
Table 64. EXTI input characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pulse length to event  
controller  
PLEC  
-
20  
-
-
ns  
1. Guaranteed by design.  
DS12288 Rev 5  
137/236  
200  
 
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.18  
Analog switches booster  
(1)  
Table 65. Analog switches booster characteristics  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
Max  
Unit  
VDD  
1.62  
-
-
-
3.6  
V
tSU(BOOST)  
Booster startup time  
240  
µs  
Booster consumption for  
-
-
-
-
-
-
250  
500  
900  
1.62 V VDD 2.0 V  
Booster consumption for  
IDD(BOOST)  
µA  
2.0 V VDD 2.7 V  
Booster consumption for  
2.7 V VDD 3.6 V  
1. Guaranteed by design.  
138/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.19  
Analog-to-digital converter characteristics  
Unless otherwise specified, the parameters given in Table 66 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 17: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1) (2)  
Table 66. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage  
VDDA  
-
1.62  
2
-
3.6  
V
Positive  
reference  
voltage  
V
DDA 2 V  
-
VDDA  
V
V
VREF+  
VDDA < 2 V  
VDDA  
Negative  
reference  
voltage  
VREF-  
-
VSSA  
V
Input common  
mode  
(VREF++VREF-)/2 (VREF+  
+
(VREF+ + VREF-)/2  
+ 0.18  
VCMIN  
Differential  
V
- 0.18  
0.14  
-
VREF-)/2  
Range 1, single  
ADC operation  
-
-
60  
26  
Range 2  
Range 1, all ADCs  
operation, single  
ended mode  
0.14  
0.14  
-
-
-
52  
42  
56  
VDDA 2.7 V  
ADC clock  
frequency  
fADC  
MHz  
Range 1, all ADCs  
operation, single  
ended mode  
VDDA 1.62 V  
Range 1, all ADCs  
operation,  
differential mode  
VDDA 1.62 V  
0.14  
For given  
Sampling rate,  
continuous mode sampling time  
cycles (ts)  
resolution and  
fADC / (sampling time [cycles] +  
resolution [bits] + 0.5)  
fs  
0.001  
Msps  
Considering trigger  
conversion latency  
time (tLATR or  
-
-
External trigger  
period  
tLATRINJ  
)
TTRIG  
1ms  
-
Resolution =  
12 bits,  
fADC=60 MHz  
tconv + [tLATR or  
-
tLATRINJ  
]
Conversion  
voltage range  
(3)  
VAIN  
-
0
-
VREF+  
V
DS12288 Rev 5  
139/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1) (2)  
Table 66. ADC characteristics  
(continued)  
Typ  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
External input  
impedance  
(4)  
RAIN  
-
-
-
50  
kΩ  
Internal sample  
and hold  
capacitor  
CADC  
-
-
-
5
1
-
pF  
conversi  
on cycle  
tSTAB  
Power-up time  
Calibration time  
f
ADC = 60 MHz  
-
1.93  
µs  
tCAL  
116  
1/fADC  
Trigger  
conversion  
latency Regular  
and injected  
channels without  
conversion abort  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
1.5  
2
-
2.5  
2.0  
-
-
tLATR  
1/fADC  
-
2.25  
CKMODE = 11  
-
-
2.125  
Trigger  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
2.5  
3
-
3.5  
3.0  
conversion  
latency Injected  
channels  
-
-
tLATRINJ  
1/fADC  
-
3.25  
aborting a  
regular  
conversion  
CKMODE = 11  
-
-
3.125  
f
ADC = 60 MHz  
-
0.0416  
2.5  
-
-
10.675  
640.5  
µs  
ts  
Sampling time  
1/fADC  
tADCVREG_S ADC voltage  
regulator start-up  
-
-
-
-
20  
µs  
TUP  
time  
fADC = 60 MHz  
Resolution =  
12 bits  
Total conversion  
time  
(including  
0.25  
10.883  
µs  
tCONV  
sampling time)  
-
ts[cycles] + resolution [bits] +0.5 = 15 to 653  
1/fADC  
fs = 4 Msps  
fs = 1 Msps  
fs = 10 ksps  
fs = 4 Msps  
fs = 1 Msps  
-
-
-
-
-
590  
160  
16  
730  
220  
50  
ADC  
consumption  
from the VDDA  
supply  
IDDA(ADC)  
µA  
µA  
µA  
ADC  
110  
30  
140  
40  
consumption  
from the VREF+  
single ended  
mode  
IDDV_S(ADC  
)
fs = 10 ksps  
-
0.6  
2
fs = 4 Msps  
fs = 1 Msps  
fs = 10 ksps  
-
-
-
220  
60  
270  
70  
3
ADC  
IDDV_D(ADC consumption  
)
from the VREF+  
differential mode  
1.3  
1. Guaranteed by design  
140/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4V). It is disabled when VDDA 2.4 V.  
3. VREF+ can be internally connected to VDDA, depending on the package.  
Refer to Section 4: Pinouts and pin description for further details.  
4. The maximum value of RAIN can be found in Table 67: Maximum ADC RAIN.  
DS12288 Rev 5  
141/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
The maximum value of R  
can be found in Table 67: Maximum ADC RAIN.  
AIN  
(1)(2)  
Table 67. Maximum ADC R  
AIN  
RAIN max ()  
Fast channels(3) Slow channels(4)  
Sampling cycle  
@60 MHz  
Sampling time  
[ns]  
Resolution  
2.5  
6.5  
41.67  
108.33  
208.33  
408.33  
791.67  
1541.67  
4125  
100  
330  
N/A  
100  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
680  
470  
1500  
2200  
4700  
12000  
39000  
120  
1200  
1800  
3900  
10000  
33000  
N/A  
12 bits  
10 bits  
8 bits  
10675  
41.67  
6.5  
108.33  
208.33  
408.33  
791.67  
1541.67  
4125  
390  
180  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
820  
560  
1500  
2200  
5600  
12000  
47000  
180  
1200  
1800  
4700  
10000  
39000  
N/A  
10675  
41.67  
6.5  
108.33  
208.33  
408.33  
791.67  
1541.67  
4125  
470  
270  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
1000  
1800  
2700  
6800  
15000  
50000  
220  
680  
1500  
2200  
5600  
12000  
50000  
N/A  
10675  
41.67  
6.5  
108.33  
208.33  
408.33  
791.67  
1541.67  
4125  
560  
330  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
1200  
2700  
3900  
8200  
18000  
50000  
1000  
2200  
3300  
6800  
15000  
50000  
6 bits  
10675  
142/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
1. Guaranteed by design.  
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the  
SYSCFG_CFGR1 when VDDA < 2.4V). It is disabled when VDDA 2.4 V.  
3. Fast channels are: ADCx_IN1 to ADCx_IN5.  
4. Slow channels are: all ADC inputs except the fast channels.  
DS12288 Rev 5  
143/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 68. ADC accuracy - limited test conditions 1  
(4)  
Symbol Parameter  
Conditions  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.9 6.9  
5.5 6.9  
4.6 5.6  
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
Differential  
4
5.6  
4
2.5  
1.9  
Single  
ended  
4
Offset error  
Gain error  
1.8 2.8  
1.1 2.8  
4.6 6.6  
4.5 6.6  
3.6 4.6  
3.3 4.6  
1.1 1.9  
1.3 1.9  
1.3 1.6  
1.4 1.6  
2.3 3.4  
2.4 3.4  
2.1 3.2  
2.2 3.2  
Differential  
Single  
ended  
LSB  
Differential  
Single  
ended  
Differential  
linearity  
error  
Single ADC operation ADC clock  
frequency 60 MHz,  
Differential  
V
= VREF+ = 3 V, TA =  
DDA  
25 °C  
Continuous mode, sampling  
rate:  
Fast channels@4Msps  
Slow channels@2Msps  
Single  
ended  
Integral  
linearity  
error  
Differential  
Fast channel (max speed) 10.4 10.6  
Slow channel (max speed) 10.4 10.6  
Fast channel (max speed) 10.8 10.9  
Slow channel (max speed) 10.8 10.9  
Fast channel (max speed) 64.4 65.6  
Slow channel (max speed) 64.4 65.6  
Fast channel (max speed) 66.8 67.5  
Slow channel (max speed) 66.8 67.5  
Fast channel (max speed) 65 66.9  
Slow channel (max speed) 65 66.9  
-
-
-
-
-
-
-
-
-
-
-
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
dB  
Single  
ended  
Signal-to-  
SNR  
Fast channel (max speed) 67  
Slow channel (max speed) 67  
69  
69  
noise ratio  
Differential  
-
144/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)(2)(3)  
Table 68. ADC accuracy - limited test conditions 1  
(continued)  
(4)  
Symbol Parameter  
Conditions  
Min Typ Max Unit  
Single ADC operation ADC clock  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-73 -72  
-73 -72  
-73 -72  
Single  
ended  
frequency 60 MHz,  
= VREF+ = 3 V, TA =  
V
DDA  
Total  
25 °C  
THD  
harmonic  
distortion  
dB  
Continuous mode, sampling  
rate:  
Fast channels@4Msps  
Slow channels@2Msps  
Differential  
Slow channel (max speed)  
-
-73 -72  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disabled when VDDA 2.4 V. No oversampling.  
DS12288 Rev 5  
145/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 69. ADC accuracy - limited test conditions 2  
Sym-  
bol  
(4)  
Parameter  
Conditions  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
5.9  
5.5  
4.6  
4
8.4  
8
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
-
6.6  
6
Differential  
-
-
2.5  
1.9  
1.8  
1.1  
4.6  
4.5  
3.6  
3.3  
1.1  
1.3  
1.3  
1.4  
2.3  
2.4  
2.1  
2.2  
10.6  
10.6  
6
Single  
ended  
-
6.9  
3.3  
3.3  
8.1  
8.1  
4.6  
4.6  
1.8  
1.8  
1.6  
1.6  
4.4  
4.4  
4.1  
3.7  
-
Offset error  
Gain error  
-
Differential  
-
-
Single  
ended  
-
LSB  
-
Differential  
-
-
Single  
ended  
Differential  
linearity  
error  
-
Single ADC operation  
ADC clock frequency  
-
Differential  
60 MHz, 2 V V  
DDA  
-
Continuous mode, sampling  
rate:  
Fast channels@4Msps  
Slow channels@2Msps  
-
Single  
ended  
Integral  
linearity  
error  
-
-
Differential  
-
10  
10  
Single  
ended  
Effective  
ENOB number of  
bits  
-
bits  
Fast channel (max speed) 10.7 10.9  
Slow channel (max speed) 10.7 10.9  
-
Differential  
-
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
62  
62  
65  
65  
64  
64  
65.6  
65.6  
67.5  
67.5  
66.9  
66.9  
69  
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
SINAD  
-
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
SNR  
noise ratio  
Fast channel (max speed) 66.5  
Slow channel (max speed) 66.5  
-
Differential  
69  
-
146/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)(2)(3)  
Table 69. ADC accuracy - limited test conditions 2  
(continued)  
Sym-  
bol  
(4)  
Parameter  
Conditions  
Min Typ Max Unit  
Single ADC operation  
ADC clock frequency  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-73  
-73  
-73  
-65  
-67  
-70  
Single  
ended  
60 MHz, 2 V V  
Total  
DDA  
THD harmonic  
distortion  
Continuous mode, sampling  
rate:  
Fast channels@4Msps  
Slow channels@2Msps  
dB  
Differential  
Slow channel (max speed)  
-
-73  
-71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when V  
< 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA  
V
< 2.4 V). It is disabled when V  
2.4 V. No oversampling.  
DDA  
DDA  
DS12288 Rev 5  
147/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 70. ADC accuracy - limited test conditions 3  
Sym-  
bol  
(4)  
Parameter  
Conditions  
Min  
Typ Max Unit  
Fast channel (max speed)  
-
5.9  
5.5  
7.9  
7.5  
7.6  
5.5  
5.5  
5.5  
3.5  
3
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
ET  
EO  
EG  
ED  
EL  
unadjusted  
error  
-
4.6  
Differential  
-
4
-
2.5  
Single  
ended  
-
-
1.9  
Offset error  
Gain error  
1.8  
Differential  
-
1.1  
-
4.6  
7.1  
7
Single  
ended  
-
4.5  
LSB  
-
3.6  
4.1  
4.8  
1.9  
1.9  
1.6  
1.6  
4.4  
4.4  
3.7  
3.7  
-
Differential  
-
3.3  
-
1.1  
Single  
ended  
Single ADC operation  
ADC clock frequency ≤  
60 MHz,  
Differential  
linearity  
error  
-
1.3  
-
1.3  
Differential  
1.62 V V  
3.6 V,  
= V  
REF+  
DDA  
-
1.4  
-
2.3  
Continuous mode,  
sampling rate:  
Fast channels@4Msps  
Slow channels@2Msps  
Single  
ended  
Integral  
linearity  
error  
-
2.4  
-
2.1  
Differential  
-
2.2  
10  
10  
10.6  
10.6  
62  
62  
65  
65  
63  
63  
66  
66  
10.6  
10.6  
10.9  
10.9  
65.6  
65.6  
67.5  
67.5  
66.9  
66.9  
69  
Single  
ended  
Effective  
-
ENOB number of  
bits  
bits  
-
Differential  
-
-
Single  
ended  
Signal-to-  
-
noise and  
distortion  
SINAD  
-
ratio  
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
SNR  
noise ratio  
-
Differential  
69  
-
148/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(continued)  
(1)(2)(3)  
Table 70. ADC accuracy - limited test conditions 3  
Sym-  
bol  
(4)  
Parameter  
Conditions  
Min  
Typ Max Unit  
Single ADC operation  
ADC clock frequency ≤  
60 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-73  
-73  
-73  
-67  
-67  
-71  
Single  
ended  
1.62 V V  
3.6 V,  
= V  
REF+  
Total  
DDA  
THD harmonic  
distortion  
dB  
Continuous mode,  
sampling rate:  
Fast channels@4Msps  
Slow channels@2Msps  
Differential  
Slow channel (max speed)  
-
-73  
-71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided  
as this significantly reduces the accuracy of the conversion being performed on another analog input. It is  
recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when V  
< 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA  
V
< 2.4 V). It is disabled when V  
2.4 V. No oversampling.  
DDA  
DDA  
DS12288 Rev 5  
149/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 71. ADC accuracy (Multiple ADCs operation) - limited test conditions 1  
(4)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Single ended  
Differential  
-
-
-
-
-
-
-
-
-
-
-
-
-
4.5  
4.1  
-
-
-
-
-
-
-
-
-
-
-
-
-
Totalunadjusted  
error  
ET  
Single ended  
Differential  
1.3  
EO  
EG  
Offset error  
Gain error  
0.4  
Single ended  
Differential  
3.9  
LSB  
3.4  
Multiple ADC operation  
ADC clock frequency:  
single ended 52 MHz,  
differential 56 MHz,  
Single ended  
Differential  
1.5  
Differential  
linearity error  
ED  
1.2  
V
25°C,  
= VREF= 3.3 V,  
Single ended  
Differential  
1.7  
DDA  
Integral linearity  
error  
EL  
2.1  
Continuous mode,  
sampling time:  
Fast channels: 2.5 cycles  
Slow channels: 6.5 cycles  
LQFP100 package  
Single ended  
Differential  
10.7  
10.9  
66.3  
Effective  
number of bits  
ENOB  
bits  
dB  
dB  
Signal-to-noise  
and distortion  
ratio  
Single ended  
SINAD  
Differential  
-
67.2  
-
Single ended  
Differential  
-
-
-
-
67.3  
68.6  
-73.5  
-73  
-
-
-
-
Signal-to-noise  
ratio  
SNR  
THD  
Single ended  
Differential  
Total harmonic  
distortion  
1. Data based on characterization result, not tested in production.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided  
as this significantly reduces the accuracy of the conversion being performed on another analog input. It is  
recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when V  
< 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA  
V
< 2.4 V). It is disabled when V  
2.4 V. No oversampling.  
DDA  
DDA  
150/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)(2)(3)  
Table 72. ADC accuracy (Multiple ADCs operation) - limited test conditions 2  
(4)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Single ended  
Differential  
-
-
-
-
-
-
-
-
-
-
-
-
-
7.1  
4.6  
-
-
-
-
-
-
-
-
-
-
-
-
-
Totalunadjusted  
error  
ET  
Single ended  
Differential  
4.2  
EO  
EG  
Offset error  
Gain error  
2.8  
Single ended  
Differential  
6.8  
LSB  
4.3  
Multiple ADC operation  
ADC clock frequency:  
single ended 52 MHz,  
differential 56 MHz,  
Single ended  
Differential  
1.5  
Differential  
linearity error  
ED  
1.7  
V
DDA 2.7 V, VREF1.62 V,  
Single ended  
Differential  
3.1  
Integral linearity  
error  
EL  
-40 to 125°C,  
Continuous mode,  
sampling time:  
Fast channels: 2.5 cycles  
Slow channels: 6.5 cycles  
LQFP100 package  
2.4  
Single ended  
Differential  
10.2  
10.6  
62.9  
Effective  
number of bits  
ENOB  
bits  
dB  
dB  
Signal-to-noise  
and distortion  
ratio  
Single ended  
SINAD  
Differential  
-
65.3  
-
Single ended  
Differential  
-
-
-
-
63.6  
66.3  
-
-
-
-
Signal-to-noise  
ratio  
SNR  
THD  
Single ended  
Differential  
-70.9  
-71.8  
Total harmonic  
distortion  
1. Data based on characterization result, not tested in production.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided  
as this significantly reduces the accuracy of the conversion being performed on another analog input. It is  
recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when V  
< 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA  
V
< 2.4 V). It is disabled when V  
2.4 V. No oversampling.  
DDA  
DDA  
DS12288 Rev 5  
151/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 73. ADC accuracy (Multiple ADCs operation) - limited test conditions 3  
(4)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Single ended  
Differential  
-
-
-
-
-
-
-
-
-
-
-
-
-
7.4  
4.6  
4
-
-
-
-
-
-
-
-
-
-
-
-
-
Totalunadjusted  
error  
ET  
Single ended  
Differential  
EO  
EG  
Offset error  
Gain error  
2.8  
7.2  
4.3  
1.8  
1.7  
3.1  
2.4  
10.1  
10.6  
62.6  
Single ended  
Differential  
LSB  
Multiple ADC operation  
ADC clock frequency:  
single ended 42 MHz,  
differential 56 MHz,  
Single ended  
Differential  
Differential  
linearity error  
ED  
V
= VREF1.62 V,  
Single ended  
Differential  
DDA  
Integral linearity  
error  
EL  
-40 to 125°C,  
Continuous mode,  
sampling time:  
Fast channels: 2.5 cycles  
Slow channels: 6.5 cycles  
LQFP100 package  
Single ended  
Differential  
Effective  
number of bits  
ENOB  
bits  
dB  
dB  
Signal-to-noise  
and distortion  
ratio  
Single ended  
SINAD  
Differential  
-
65.3  
-
Single ended  
Differential  
-
-
-
-
63.2  
66.3  
-
-
-
-
Signal-to-noise  
ratio  
SNR  
THD  
Single ended  
Differential  
-70.6  
-71.8  
Total harmonic  
distortion  
1. Data based on characterization result, not tested in production.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided  
as this significantly reduces the accuracy of the conversion being performed on another analog input. It is  
recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when V  
< 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA  
V
< 2.4 V). It is disabled when V  
2.4 V. No oversampling.  
DDA  
DDA  
152/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 28. ADC accuracy characteristics  
ADC code  
4095  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
4094  
4093  
(2)  
ET  
= total unajusted error: maximum deviation  
between the actual and ideal transfer curves.  
ET  
(3)  
EO  
= offset error: maximum deviation between the  
first actual transition and the first ideal one.  
7
(1)  
6
5
4
3
2
1
EG  
ED  
EL  
= gain error: deviation between the last  
ideal transition and the last actual one.  
EO  
EL  
= differential linearity error: maximum deviation  
between actual steps and the ideal ones.  
ED  
= integral linearity error: maximum deviation  
between any actual transition and the end  
point correlation line.  
1 LSB IDEAL  
0
Vin/VREF*4096  
1
2
3
4
5
6
7
4093 4094 4095 4096  
MS60205V1  
Figure 29. Typical connection diagram using the ADC  
VDDA  
Sample and hold ADC converter  
(1)  
RAIN  
RADC  
AINx  
12-bit  
converter  
(2)  
(3)  
Cparasitic  
CADC  
Ilkg  
VAIN  
MS33900V6  
1. Refer to Table 66: ADC characteristics for the values of RAIN and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (refer to Table 54: I/O static characteristics for the value of the pad capacitance). A high  
C
parasitic value downgrades conversion accuracy. To remedy this, fADC should be reduced.  
3. Refer to Table 54: I/O static characteristics for the values of Ilkg  
.
General PCB design guidelines  
Power supply decoupling must be performed as shown in Figure 16: Power supply scheme.  
The decoupling capacitor on V  
close as possible to the chip.  
must be ceramic (good quality) and it must be placed as  
DDA  
DS12288 Rev 5  
153/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.20  
Digital-to-Analog converter characteristics  
(1)  
Table 74. DAC 1MSPS characteristics  
Symbol  
Parameter  
Conditions  
Min  
1.71  
1.80  
1.71  
1.80  
Typ  
Max  
Unit  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
-
-
-
-
Analog supply voltage for  
DAC ON  
VDDA  
3.6  
Other modes  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
V
VREF+  
Positive reference voltage  
Negative reference voltage  
VDDA  
Other modes  
-
VREF-  
VSSA  
connected to VSSA  
DAC output  
5
25  
9.6  
-
-
-
-
RL  
Resistive load  
kΩ  
kΩ  
buffer ON  
connected to VDDA  
-
11.7  
-
RO  
Output Impedance  
DAC output buffer OFF  
13.8  
2
Output impedance sample VDD = 2.7 V  
and hold mode, output  
RBON  
kΩ  
kΩ  
VDD = 2.0 V  
-
-
-
-
-
-
3.5  
buffer ON  
Output impedance sample VDD = 2.7 V  
and hold mode, output  
16.5  
18.0  
RBOFF  
VDD = 2.0 V  
buffer OFF  
CL  
DAC output buffer ON  
Sample and hold mode  
-
-
-
50  
1
pF  
µF  
Capacitive load  
CSH  
0.1  
VREF+  
– 0.2  
DAC output buffer ON  
0.2  
-
Voltage on DAC_OUT  
output  
VDAC_OUT  
V
DAC output buffer OFF  
±0.5 LSB  
0
-
-
VREF+  
3
1.7  
Normal mode  
DAC output  
buffer ON  
CL 50 pF,  
RL 5 kΩ  
±1 LSB  
-
1.6  
2.9  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value)  
±2 LSB  
±4 LSB  
±8 LSB  
-
1.55  
1.48  
1.4  
2.85  
2.8  
tSETTLING  
µs  
-
-
2.75  
Normal mode DAC output buffer  
OFF, ±1LSB, CL = 10 pF  
-
-
-
-
2
2.5  
7.5  
5
Normal mode DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
Wakeup time from off state  
(setting the ENx bit in the  
DAC Control register) until  
final value ±1 LSB  
4.2  
2
(2)  
tWAKEUP  
µs  
Normal mode DAC output buffer  
OFF, CL 10 pF  
Normal mode DAC output buffer ON  
CL 50 pF, RL = 5 k, DC  
PSRR  
VDDA supply rejection ratio  
-80  
-28  
dB  
154/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 74. DAC 1MSPS characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Minimal time between two  
consecutive writes into the  
DAC_DORx register to  
guarantee a correct  
DAC_OUT for a small  
variation of the input code  
(1 LSB)  
TW_to_W  
-
-
µs  
DAC_MCR:MODEx[2:0] =  
000 or 001  
DAC_MCR:MODEx[2:0] =  
010 or 011  
CL 50 pF, RL 5 kΩ  
CL 10 pF  
1
1.4  
-
DAC output buffer  
0.7  
3.5  
18  
ON, CSH = 100 nF  
DAC_OUT  
ms  
Sampling time in sample  
and hold mode (code  
transition between the  
lowest input code and the  
highest input code when  
DACOUT reaches final  
value ±1LSB)  
pin connected  
DAC output buffer  
OFF, CSH = 100 nF  
-
10.5  
tSAMP  
DAC_OUT  
pin not  
connected  
(internal  
connection  
only)  
DAC output buffer  
OFF  
-
2
3.5  
µs  
Sample and hold mode,  
DAC_OUT pin connected  
(3)  
Ileak  
Output leakage current  
-
-
-
nA  
Internal sample and hold  
capacitor  
CIint  
-
5.2  
7
8.8  
pF  
µs  
tTRIM  
Middle code offset trim time DAC output buffer ON  
50  
-
-
-
-
-
VREF+ = 3.6 V  
1500  
750  
Middle code offset for 1 trim  
code step  
Voffset  
µV  
µA  
VREF+ = 1.8 V  
-
No load, middle  
code (0x800)  
-
-
-
315  
450  
500  
670  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
DAC consumption from  
VDDA  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
I
DDA(DAC)  
-
0.2  
315 ₓ  
670 ₓ  
Sample and hold mode, CSH  
100 nF  
=
Ton/(Ton Ton/(Ton  
+Toff) +Toff)  
-
(4)  
(4)  
DS12288 Rev 5  
155/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 74. DAC 1MSPS characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
No load, middle  
code (0x800)  
-
185  
240  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
-
-
340  
400  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
155  
205  
DAC consumption from  
VREF+  
IDDV(DAC)  
µA  
185 ₓ  
Ton/(Ton Ton/(Ton  
400 ₓ  
Sample and hold mode, buffer ON,  
CSH = 100 nF, worst case  
-
-
+Toff)  
+Toff)  
(4)  
(4)  
155 ₓ  
205 ₓ  
Sample and hold mode, buffer OFF,  
CSH = 100 nF, worst case  
Ton/(Ton Ton/(Ton  
+Toff) +Toff)  
(4)  
(4)  
1. Guaranteed by design.  
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
3. Refer to Table 54: I/O static characteristics.  
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to the reference manual RM0440 "STM32G4  
Series advanced Arm®-based 32-bit MCUs" for more details.  
Figure 30. 12-bit buffered / non-buffered DAC  
Buffered/non-buffered DAC  
Buffer(1)  
RLOAD  
12-bit  
DACx_OUT  
digital to  
analog  
converter  
CLOAD  
ai17157d  
1. The DAC integrates an output buffer to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx  
bit in the DAC_CR register.  
156/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
.
(1)  
Table 75. DAC 1MSPS accuracy  
Conditions  
DAC output buffer ON  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
-
-
-
±2  
±2  
Differential non  
linearity (2)  
DNL  
-
DAC output buffer OFF  
10 bits  
-
monotonicity  
Guaranteed  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±4  
±4  
Integral non  
linearity(3)  
INL  
DAC output buffer OFF  
CL 50 pF, no RL  
VREF+ = 3.6 V  
VREF+ = 1.8 V  
±12  
±25  
±8  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
LSB  
Offset error at  
code 0x800(3)  
Offset  
DAC output buffer OFF  
CL 50 pF, no RL  
Offset error at  
code 0x001(4)  
DAC output buffer OFF  
CL 50 pF, no RL  
Offset1  
±5  
VREF+ = 3.6 V  
VREF+ = 1.8 V  
±5  
Offset Error at  
OffsetCal code 0x800  
after calibration  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
±7  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
±0.5  
±0.5  
±30  
±12  
Gain  
Gain error(5)  
%
DAC output buffer OFF  
CL 50 pF, no RL  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
Total  
TUE  
unadjusted  
error  
LSB  
LSB  
DAC output buffer OFF  
CL 50 pF, no RL  
Total  
unadjusted  
error after  
calibration  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
TUECal  
-
-
±23  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
1 kHz, BW 500 kHz  
-
-
71.2  
71.6  
-
-
Signal-to-noise  
ratio  
SNR  
THD  
dB  
dB  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
BW 500 kHz  
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
-
-
-78  
-79  
-
-
Total harmonic  
distortion  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
DS12288 Rev 5  
157/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 75. DAC 1MSPS accuracy (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
-
70.4  
-
Signal-to-noise  
and distortion  
ratio  
SINAD  
dB  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
-
-
-
71  
-
-
-
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
11.4  
11.5  
Effective  
number of bits  
ENOB  
bits  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
1. Guaranteed by design.  
2. Difference between two consecutive codes - 1 LSB.  
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.  
4. Difference between the value measured at Code (0x001) and the ideal value.  
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when  
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.  
(1)  
Table 76. DAC 15MSPS characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage for  
DAC ON  
VDDA  
-
1.71  
1.71  
-
-
3.6  
V
VREF+  
VREF-  
VDAC_OUT  
Positive reference voltage  
Negative reference voltage  
-
-
VDDA  
VSSA  
Voltage on DAC_OUT  
output  
-
0
-
VREF+  
V
10%-90%  
5%-95%  
1%-99%  
32lsb  
-
-
-
-
-
-
-
-
-
-
16  
21  
33  
40  
64  
24  
32  
49  
57  
93  
22  
29  
46  
53  
87  
32  
43  
67  
75  
125  
VDDA>2,7V  
With One comparator  
on DAC output  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value)  
1lsb  
tSETTLING  
ns  
10%-90%  
5%-95%  
1%-99%  
32lsb  
VDDA>2,7V  
With One comparator  
and OPAMP on DAC  
output  
1lsb  
158/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 76. DAC 15MSPS characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
10%-90%  
5%-95%  
1%-99%  
32lsb  
-
-
-
-
-
-
-
-
-
-
16  
21  
33  
40  
64  
24  
32  
49  
57  
93  
88  
116  
181  
196  
332  
128  
170  
265  
284  
483  
VDDA<2,7V  
With One comparator  
on DAC output  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and the  
highest input codes when  
DAC_OUT reaches final  
value)  
1lsb  
tSETTLING  
ns  
10%-90%  
5%-95%  
1%-99%  
32lsb  
VDDA<2,7V  
With One comparator  
and OPAMP on DAC  
output  
1lsb  
Wakeup time from off state  
(setting the ENx bit in the  
DAC Control register) until  
final value ±1 LSB  
(2)  
tWAKEUP  
Normal mode CL 10 pF  
-
1.4  
3.5  
µs  
V
DD > 2.7 V  
65  
40  
85  
85  
-
-
PSRR  
VDDA supply rejection ratio  
dB  
VDD <2.7 V  
Sampling time in sample  
and hold mode (code  
transition between the  
lowest input code and the  
highest input code when  
DACOUT reaches final  
value ±1LSB)  
tSAMP  
-
-
-
0.7  
-
µs  
Internal sample and hold  
capacitor  
CIint  
-
-
4
5
-
pF  
Voltage decay rate in  
Sample and hold mode,  
during hold phase  
CSH = 4 pF  
T = 55°C  
dV/dt (hold  
phase)  
50  
mV/ms  
DAC consumption from  
VDDA  
IDDA(DAC)  
No load, middle code (0x800)  
No load, middle code (0x800)(3)  
-
-
-
0.2  
µA  
DAC consumption from  
VREF+  
IDDV(DAC)  
720  
955  
1. Guaranteed by design.  
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
3. Worst case consumption is at code 0x800.  
DS12288 Rev 5  
159/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
.
(1)  
Table 77. DAC 15MSPS accuracy  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DNL  
INL  
Differential non linearity (2)  
Integral non linearity(3)  
Total unadjusted error  
-
-2  
-5  
-5  
-
-
-
2
5
5
CL 50 pF, no RL  
LSB  
TUE  
CL 50 pF, no RL  
Spike amplitude on DAC voltage when  
DAC output value is decreasing  
DCS  
Dynamic code spike  
-
0
4
1. Guaranteed by design.  
2. Difference between two consecutive codes - 1 LSB.  
3. Difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095.  
Offset error is included.  
160/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.21  
Voltage reference buffer characteristics  
(1)  
Table 78. VREFBUF characteristics  
Conditions Min  
VRS = 00 2.4  
Symbol  
Parameter  
Typ  
Max  
Unit  
-
3.6  
3.6  
Normal mode  
VRS = 01  
VRS = 10  
VRS= 00  
2.8  
3.135  
-
-
3.6  
Analog supply  
voltage  
VDDA  
1.65  
-
2.4  
Degraded mode(2) VRS = 01  
1.65  
-
2.8  
VRS= 10  
1.65  
-
3.135  
2.052  
2.504  
2.904  
VDDA  
VDDA  
VDDA  
V
VRS= 00  
2.044  
2.048  
Normal mode(3)  
VRS= 01  
VRS = 10  
VRS= 00  
2.496  
2.5  
2.896  
2.9  
VREFBUF_ Voltage reference  
output  
OUT  
VDDA -250 mV  
VDDA -250 mV  
VDDA -250 mV  
-
-
-
Degraded mode(2) VRS = 01  
VRS = 10  
Voltage reference  
See  
VREFOUT_ output spread over  
Figure 31,  
Figure 32,  
Figure 33  
VDDA = 3V  
-
-
mV  
(3)  
the temperature  
range  
TEMP  
Trim step  
resolution  
TRIM  
CL  
-
-
-
-
0.5  
-
±0.05  
±0.1  
1.5  
2
%
µF  
Load capacitor  
1
-
Equivalent Serial  
Resistor of Cload  
esr  
Iload  
Static load current  
Line regulation  
-
-
-
-
6.5  
mA  
(4)  
Iline_reg  
-
500 μA ≤  
1000  
2000  
ppm/V  
Normal  
mode  
ppm/m  
A
Iload_reg  
Load regulation  
-
50  
500  
I
load 4 mA  
-40 °C < TJ < +125 °C  
0 °C < TJ < +50 °C  
-
-
-
-
Tcoeff_vr  
efint +  
50(5)  
Temperature  
coefficient  
TCoeff  
ppm/ °C  
dB  
DC  
40  
25  
-
55  
40  
-
Power supply  
rejection  
PSRR  
100 kHz  
-
CL = 0.5 µF(6)  
CL = 1.1 µF(6)  
CL = 1.5 µF(6)  
300  
500  
650  
350  
650  
800  
tSTART  
Start-up time  
-
µs  
-
DS12288 Rev 5  
161/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 78. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Control of  
maximum DC  
current drive on  
VREFBUF_  
IINRUSH  
-
-
8
-
mA  
OUT during start-  
up phase (7)  
Iload = 0 µA  
load = 500 µA  
-
-
-
-
16  
18  
35  
45  
25  
30  
50  
80  
VREFBUF  
consumption from  
VDDA  
I
IDDA(VREF  
BUF)  
µA  
Iload = 4 mA  
Iload = 6.5 mA  
1. Guaranteed by design, unless otherwise specified.  
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (VDDA - drop  
voltage).  
3. Guaranteed by characterization results.  
4. Line regulation is given for overall supply variation, in normal mode.  
5. Tcoeff_vrefint refer to Tcoeff parameter in the embedded voltage reference section.  
6. The capacitive load must include a 100 nF low ESR capacitor in order to cut-off the high frequency noise.  
7. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in  
the range [2.4 V to 3.6 V], [2.8 V to 3.6 V] and [3.135 V to 3.6 V] respectively for VRS=0,1 and 2.  
Figure 31. V  
in case VRS = 00  
REFOUT_TEMP  
V
2.06  
2.055  
2.05  
2.045  
2.04  
2.035  
2.03  
2.025  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120 °C  
Min  
Max  
MSv62522V1  
162/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Figure 32. V  
Electrical characteristics  
in case VRS = 01  
REFOUT_TEMP  
V
2.51  
2.505  
2.5  
2.495  
2.49  
2.485  
2.48  
2.475  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
Mean  
Min  
Max  
MSv62523V1  
Figure 33. V  
in case VRS = 10  
REFOUT_TEMP  
V
2.91  
2.905  
2.9  
2.895  
2.89  
2.885  
2.88  
2.875  
2.87  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120 °C  
Min  
Max  
MSv62524V1  
DS12288 Rev 5  
163/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.22  
Comparator characteristics  
(1)  
Table 79. COMP characteristics  
Parameter Conditions  
Symbol  
VDDA  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
-
-
1.62  
-
3.6  
Comparator input voltage  
range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
VREFINT  
±5  
(3)  
VSC  
-
-
-
-
-
±10  
300  
1
mV  
nA  
µA  
µs  
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
200  
Scaler static consumption from  
VDDA  
I
DDA(SCALER)  
0.8  
tSTART_SCALER Scaler startup time  
Comparator startup time to  
100  
200  
tSTART  
reach propagation delay  
-
-
-
5
µs  
specification  
Propagation delay (From  
COMP input pin to COMP  
output pin) for 200 mV step  
with 100 mV overdrive  
VDDA < 2.7 V  
50pF load on  
-
-
-
35  
31  
ns  
ns  
(4)  
tD  
output  
VDDA 2.7 V  
16.7  
Full VDDA voltage range, full  
temperature range  
(3)  
Voffset  
Comparator offset error  
Comparator hysteresis  
-9  
-6/+2  
3
mV  
HYST[2:0] = 0  
HYST[2:0] =1  
HYST[2:0] = 2  
HYST[2:0] = 3  
HYST[2:0] = 4  
HYST[2:0] = 5  
HYST[2:0] = 6  
HYST[2:0] = 7  
Static  
-
0
9
-
4
16  
32  
47  
63  
79  
95  
110  
720  
7
18  
27  
36  
45  
54  
63  
450  
11  
15  
19  
23  
26  
-
Vhys  
mV  
Comparator consumption from  
VDDA  
IDDA(COMP)  
µA  
With 50 kHz ±100 mV overdrive  
square signal  
-
450  
-
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 20: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
4. Typical value (3V) is an average for all comparators propagation delay.  
164/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.23  
Operational amplifiers characteristics  
(1) (2)  
Table 80. OPAMP characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
VDDA  
CMIR  
Analog supply voltage  
-
-
2
3.3  
3.6  
V
V
Common mode input  
range  
0
-
VDDA  
25 °C, No Load on output.  
All voltage/temperature.  
-
-
-
-
±1.5  
±3  
(3)  
VIOFFSET  
Input offset voltage  
mV  
Input offset voltage  
drift  
VIOFFSET  
-
-
-
-
±10  
1.1  
-
μV/°C  
Offset trim step at low  
common input voltage  
TRIMOFFSE  
TP  
1.2  
(0.1 VDDA  
)
mV  
Offset trim step at high  
common input voltage  
TRIMOFFSE  
TN  
-
-
1.3  
1.65  
(0.9 VDDA  
)
ILOAD  
ILOAD_PGA  
CLOAD  
Drive current  
-
-
-
-
-
-
-
-
-
-
500  
270  
50  
-
µA  
Drive current in PGA  
mode  
Capacitive load  
-
pF  
dB  
Common mode  
rejection ratio  
CMRR  
60  
Power supply rejection CLOAD 50 pf,  
PSRR  
GBW  
-
80  
13  
-
-
dB  
ratio  
RLOAD 4 kDC Vcom=VDDA/2  
Gain Bandwidth  
Product  
100mV Output dynamic range VDDA -  
100mV  
7
MHz  
Slew rate  
(from 10 and 90% of  
output voltage)  
Normal mode  
2.5  
18  
6.5  
45  
-
-
SR(3)  
V/µs  
dB  
High-speed mode  
100mV Output dynamic range VDDA  
100mV  
-
65  
75  
95  
95  
-
-
AO  
Open loop gain  
200mV Output dynamic range VDDA -  
200mV  
-
-
High saturation  
voltage  
Iload = max or Rload = min Input at VDDA  
.
VDDA  
- 100  
(3)  
VOHSAT  
Follower mode  
mV  
I
load = max or Rload = min Input at 0.  
(3)  
VOLSAT  
Low saturation voltage  
-
-
100  
Follower mode  
φm  
Phase margin  
Gain margin  
Follower mode, Vcom=VDDA/2  
Follower mode, Vcom=VDDA/2  
-
-
65  
10  
-
-
°
GM  
dB  
DS12288 Rev 5  
165/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1) (2)  
Table 80. OPAMP characteristics  
Parameter Conditions  
(continued)  
Symbol  
Min  
Typ  
Max Unit  
CLOAD 50 pf,  
RLOAD 4 kΩ  
follower  
Normal mode  
-
3
6
configuration  
Wake up time from  
OFF state.  
(3)  
tWAKEUP  
µs  
CLOAD 50 pf,  
RLOAD  
High-speed mode  
20 kΩ  
-
3
6
follower  
configuration  
OPAMP input bias  
current  
Ibias  
See lleak parameter in Table 54: I/O static characteristics for given pin.  
PGA Gain = 2 0.1 Out  
V
DDA < 2.2  
-2  
-1  
-
-
2
1
dynamic range VDDA  
-
VDDA 2.2  
0.1  
PGA Gain=4, 100mV Output dynamic  
range VDDA - 100mV  
-1  
-1  
-1  
-2  
-2  
-
-
-
-
-
1
1
1
2
2
PGA Gain=8 100mV Output dynamic  
range VDDA - 100mV  
Non inverting gain  
value(4)  
%
PGA Gain=16, 100mV Output dynamic  
range VDDA - 100mV  
PGA Gain=32 200mV Output VDDA  
200mV  
-
PGA Gain=64 200mV Output dynamic  
range VDDA - 200mV  
PGA gain  
PGA Gain = -1  
V
DDA < 2.2  
-2  
-1  
-
-
2
1
100mV Output dynamic  
range VDDA - 100mV  
VDDA 2.2  
PGA Gain=-3, 100mV Output dynamic  
range VDDA - 100mV  
-1  
-1  
-1  
-2  
-5  
-
-
-
-
-
1
1
1
2
2
PGA Gain=-7 100mV Output dynamic  
range VDDA - 100mV  
Inverting gain value  
%
PGA Gain=-15, 100mV Output dynamic  
range VDDA - 100mV  
PGA Gain=-31 200mV Output VDDA  
200mV  
-
PGA Gain=-63 200mV Output dynamic  
range VDDA - 200mV  
166/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1) (2)  
Table 80. OPAMP characteristics  
(continued)  
Min  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
PGA Gain = 2  
PGA Gain = 4  
PGA Gain = 8  
PGA Gain = 16  
PGA Gain = 32  
PGA Gain = 64  
PGA Gain = -1  
PGA Gain = -3  
PGA Gain = -7  
-
-
-
-
-
-
-
-
-
-
-
-
10/10  
30/10  
-
-
-
-
-
R2/R1 internal  
resistance values in  
non-inverting PGA  
mode(5)  
70/10  
150/10  
310/10  
630/10  
10/10  
-
k/k  
Rnetwork  
-
30/10  
-
-
-
-
-
R2/R1 internal  
70/10  
resistance values in  
inverting PGA mode(5)  
PGA Gain = -15  
PGA Gain = -31  
PGA Gain = -63  
150/10  
310/10  
630/10  
Resistance variation  
(R1 or R2)  
Delta R  
-
-15  
-
+15  
%
Gain = 2  
-
GBW/2  
GBW/4  
GBW/8  
GBW/16  
GBW/32  
GBW/64  
GBW/2  
GBW/4  
GBW/8  
GBW/16  
GBW/32  
GBW/64  
250  
-
Gain = 4  
-
-
PGA bandwidth for  
different non inverting  
gain  
Gain = 8  
-
-
MHz  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = -1  
Gain = -3  
Gain = -7  
Gain = -15  
Gain = -31  
Gain = -63  
-
-
-
-
-
-
PGA BW  
-
-
-
-
-
-
PGA bandwidth for  
different inverting gain  
MHz  
-
-
-
-
-
-
-
at 1 kHz, Output loaded with 4 kΩ  
at 10 kHz, Output loaded with 4 kΩ  
-
nV/√  
Hz  
eN  
Voltage noise density  
-
90  
-
Normal mode  
No load,  
-
-
1.3  
2.2  
2.6  
-
OPAMP consumption  
from VDDA  
IDDA(OPAMP)  
mA  
ns  
follower mode  
High-speed mode  
VDDA < 2V  
1.4  
ADC sampling time  
TS_OPAMP_VO when reading the  
300  
-
OPAMP output.  
OPAINTOEN=1  
UT  
VDDA 2V  
200  
-
-
OPAMP consumption Normal mode  
-
-
0.45  
0.5  
0.7  
0.8  
I
DDA(OPAMPI  
no load,  
follower mode  
from VDDA  
.
mA  
NT)  
High-speed mode  
OPAINTOEN=1  
DS12288 Rev 5  
167/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
1. Guaranteed by design, unless otherwise specified.  
2. Data guaranteed on normal and high speed mode unless otherwise specified.  
3. Guaranteed by characterization results.  
4. Valid also for inverting gain configuration with external bias.  
5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between  
OPAMP inverting input and ground. The PGA gain =1+R2/R1  
Figure 34. OPAMP noise density @ 25°C  
MSv62525V1  
168/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
5.3.24  
Temperature sensor characteristics  
Table 81. TS characteristics  
Parameter  
VTS linearity with temperature  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
TL  
-
±1  
2.5  
±2  
2.7  
°C  
mV/°C  
V
Avg_Slope(1) Average slope  
2.3  
V30  
Voltage at 30°C (±5 °C)(2)  
0.742  
0.76  
0.785  
(1)  
tSTART-RUN  
Start-up time in Run mode (start-up of buffer)  
-
-
8
15  
µs  
µs  
Start-up time when entering in continuous  
mode  
(3)  
tSTART_CONT  
70  
120  
ADC sampling time when reading the  
temperature  
(1)  
tS_temp  
5
-
-
-
µs  
Temperature sensor consumption from VDD,  
when selected by ADC  
IDD(TS)(1)  
4.7  
7
µA  
1. Guaranteed by design.  
2. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer  
to Table 5: Temperature sensor calibration values.  
3. Continuous mode means RUN mode or Temperature Sensor ON.  
5.3.25  
V
monitoring characteristics  
BAT  
Table 82. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
39  
3
-
-
-
kΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
-10  
12  
10  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the V  
-
BAT  
1. Guaranteed by design.  
Table 83. V  
charging characteristics  
BAT  
Symbol  
Parameter Conditions  
Min  
Typ  
5
Max  
Unit  
VBRS = 0  
VBRS = 1  
-
-
-
-
Battery  
charging  
resistor  
RBC  
kΩ  
1.5  
DS12288 Rev 5  
169/236  
200  
 
 
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.26  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
(2)  
Table 84. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
5.88  
0
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 170 MHz  
-
-
Timer external clock  
frequency on CH1 to  
CH4  
f
TIMxCLK/2  
MHz  
fEXT  
fTIMxCLK = 170 MHz  
0
-
85  
16  
MHz  
TIMx (except TIM2  
and TIM5)  
ResTIM  
Timer resolution  
bit  
TIM2 and TIM5  
-
-
32  
1
65536  
385.5  
tTIMxCLK  
µs  
16-bit counter clock  
period  
tCOUNTER  
fTIMxCLK = 170 MHz 0.00588  
Maximum possible  
tMAX_COUNT count with 32-bit  
counter  
-
-
-
65536 × 65536  
25.26  
tTIMxCLK  
fTIMxCLK = 170 MHz  
s
-
TIMxCLK = 170MHz  
0
0
fTIMxCLK/4  
42.5  
MHz  
MHz  
Encoder frequency on  
fENC  
TI1 and TI2 input pins  
f
Index pulsewidth on  
tW(INDEX)  
-
2
-
Tck  
ETR input  
Min pulsewidth  
on TI1 and TI2 inputs  
in all encoder modes  
except directional  
-
2
-
Tck  
tW(TI1, TI2)  
clock x1  
Min pulsewidth  
on TI1 and TI2 inputs  
in directional clock x1  
-
3
-
Tck  
1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16, 17 or 20.  
2. Guaranteed by design.  
170/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Prescaler divider PR[2:0] bits  
Electrical characteristics  
(1)(2)  
Table 85. IWDG min/max timeout period at 32 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Unit  
/4  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
4096  
8192  
16384  
32768  
/8  
1
/16  
2
/32  
3
4
ms  
/64  
2.0  
/128  
/256  
5
4.0  
6 or 7  
8.0  
1. Guaranteed by design.  
2. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there  
is always a full RC period of uncertainty.  
(1)  
Table 86. WWDG min/max timeout value at 170 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0241  
0.0482  
0.0964  
0.1928  
1.542  
3.084  
6.168  
12.336  
ms  
1. Guaranteed by design.  
5.3.27  
Communication interfaces characteristics  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
®
configured (refer to reference manual RM0440 "STM32G4 Series advanced Arm -based  
32-bit MCUs") and when the I2CCLK frequency is greater than the minimum shown in the  
table below.  
DS12288 Rev 5  
171/236  
200  
 
 
 
Electrical characteristics  
Symbol  
STM32G474xB STM32G474xC STM32G474xE  
Table 87. Minimum I2CCLK frequency in all I2C modes  
Parameter  
Condition  
Min  
Unit  
Standard mode  
Fast-mode  
2
Analog Filtre ON  
DNF=0  
8
9
Analog Filtre OFF  
DNF=1  
I2CCLK  
frequency  
f(I2CCLK)  
MHz  
Analog Filtre ON  
DNF=0  
17  
16  
Fast-mode  
Plus  
Analog Filtre OFF  
DNF=1  
The SDA and SCL I/O requirements are met with the following restrictions:  
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,  
the PMOS connected between the I/O pin and V is disabled, but is still present.  
DDIOx  
The 20mA output drive requirement in Fast-mode Plus is supported partially. This limits  
the maximum load Cload supported in Fm+, which is given by these formulas:  
t (SDA/SCL)=0.8473 x R x C  
r p load  
R (min)= (V - V (max)) / I (max)  
p
DD  
OL  
OL  
Where Rp is the I2C lines pull-up. Refer to Section 5.3.14: I/O port characteristics for the  
I2C I/Os characteristics.  
All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 88 below for the analog  
filter characteristics:  
(1)  
Table 88. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
90(3)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 89 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 17: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
172/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 89. SPI characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max(2) Unit  
Master mode  
2.7 V < VDD < 3.6 V  
Voltage Range V1  
75  
Master mode  
1.71 V < VDD < 3.6 V  
Voltage Range V1  
50  
50  
Master transmitter mode  
1.71 V < VDD < 3.6 V  
Voltage Range V1  
Slave receiver mode  
1.71 V < VDD < 3.6 V  
Voltage Range V1  
fSCK  
1/tc(SCK)  
SPI clock frequency  
-
-
MHz  
50  
41  
27  
13  
Slave mode transmitter/full duplex  
2.7 V < VDD < 3.6 V  
Voltage Range V1  
Slave mode transmitter/full duplex  
1.71 V < VDD < 3.6 V  
Voltage Range V1  
1.71 V < VDD < 3.6 V  
Voltage Range V2  
tsu(NSS) NSS setup time  
th(NSS) NSS hold time  
tw(SCKH)  
Slave mode  
Slave mode  
4*Tpclk  
2*Tpclk  
-
-
-
-
-
-
SCK high and low time Master mode, SPI prescaler = 2  
Tpclk-1  
Tpclk  
Tpclk+1  
ns  
ns  
tw(SCKL)  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Data input setup time  
4
3
4
1
9
9
-
-
-
-
-
-
-
-
Slave mode  
Master mode  
Data input hold time  
-
ns  
th(SI)  
Slave mode  
-
ta(SO) Data output access time Slave mode  
tdis(SO) Data output disable time Slave mode  
34  
16  
ns  
ns  
DS12288 Rev 5  
173/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 89. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(2) Unit  
Slave mode  
2.7 V < VDD < 3.6 V  
Voltage Range V1  
-
9
12  
Slave mode  
tv(SO)  
1.71 V < VDD < 3.6 V  
Voltage Range V1  
-
-
9
18  
Data output valid time  
Slave mode  
1.71 V < VDD < 3.6 V  
Voltage Range V2  
ns  
22  
13  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
-
3.5  
4.5  
Slave mode 1.71 V < VDD < 3.6 V  
Slave mode Range V2  
Master mode  
6
9
2
-
-
-
-
-
-
Data output hold time  
1. Guaranteed by characterization results.  
2. The maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into  
SCK low or high-phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a  
master having tsu(MI) = 0 while Duty(SCK) = 50%.  
Figure 35. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
174/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 36. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.  
Figure 37. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.  
DS12288 Rev 5  
175/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
I2S characteristics  
Unless otherwise specified, the parameters given in Table 90 for I2S are derived from tests  
performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 17: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK,SD,WS).  
(1)  
Table 90. I2S characteristics  
Uni  
t
Symbol  
fMCLK  
fCK  
Parameter  
Conditions  
Min  
Max  
I2S Main clock  
output  
256x8  
K
256  
MH  
z
-
*Fs(2)  
Master data  
Slave data  
-
-
64xFs  
64xFs  
MH  
z
I2S clock frequency  
I2S clock frequency  
duty cycle  
DCK  
Slave receiver  
30  
70  
%
tv(WS)  
WS valid time  
WS hold time  
WS setup time  
Master mode  
Master mode  
Slave mode  
-
3
2
4
3
4
4
2
-
6
-
th(WS)  
-
tsu(WS)  
Slave mode  
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
-
Data input setup  
time  
-
-
ns  
Data input hold time  
-
2.7 V VDD 3.6 V  
1.65 V VDD 3.6 V  
15  
22  
3
-
Slave transmitter (after  
enable edge)  
tv(SD_ST)  
Data output valid  
time  
-
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
-
7
1
Data output hold  
time  
-
1. Guaranteed by characterization results, not tested in production.  
2. 256xFs maximum is 49.152 MHz.  
®
Note:  
Refer to the reference manual RM0440 "STM32G4 Series advanced Arm -based 32-bit  
MCUs" I2S section for more details about the sampling frequency (Fs), f  
, f , D  
MCK CK  
CK  
values reflect only the digital peripheral behavior, source clock precision might slightly  
change the values D depends mainly on ODD bit value. Digital contribution leads to a min  
CK  
of (I2SDIV/(2*I2SDIV+ODD) and a max (I2SDIV+ODD)/(2*I2SDIV+ODD) and Fs max  
supported for each mode/condition.  
176/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
SAI characteristics  
Electrical characteristics  
Unless otherwise specified, the parameters given in Table 91 for SAI are derived from tests  
performed under the ambient temperature, f frequency and V supply voltage condi-  
PCLKx  
DD  
tions summarized inTable 17: General operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK,SD,FS).  
DS12288 Rev 5  
177/236  
200  
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)  
Table 91. SAI characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max Unit  
fMCLK  
SAI Main clock output  
-
-
50  
33  
MHz  
Master transmitter  
2.7 V VDD 3.6 V  
-
Voltage Range 1  
Master transmitter  
1.71 V VDD 3.6 V  
Voltage Range 1  
-
-
-
22  
22  
45  
Master receiver  
Voltage Range 1  
Slave transmitter  
2.7 V VDD 3.6 V  
Voltage Range 1  
fCK  
SAI clock frequency(2)  
MHz  
Slave transmitter  
1.71 V VDD 3.6 V  
Voltage Range 1  
-
29  
Slave receiver  
Voltage Range 1  
-
-
-
-
50  
13  
15  
22  
Slave transmitter  
Voltage Range 2  
Master mode  
2.7 V VDD 3.6 V  
tv(FS)  
FS valid time  
ns  
Master mode  
1.71 V VDD 3.6 V  
th(FS)  
tsu(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
10  
2
-
-
-
-
-
-
-
ns  
ns  
ns  
th(FS)  
Slave mode  
1
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
2.5  
1
Data input setup time  
Data input hold time  
ns  
ns  
5
1
Slave transmitter (after enable edge)  
2.7 V VDD 3.6 V  
-
-
11  
17  
Slave transmitter (after enable edge)  
1.71 V VDD 3.6 V  
tv(SD_B_ST) Data output valid time  
ns  
ns  
Slave transmitter (after enable edge)  
voltage range V2  
-
20  
-
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge)  
10  
178/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 91. SAI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Master transmitter (after enable edge)  
2.7 V VDD 3.6 V  
-
14  
ns  
21  
tv(SD_A_MT) Data output valid time  
Master transmitter (after enable edge)  
1.71 V VDD 3.6 V  
-
th(SD_A_MT) Data output hold time Master transmitter (after enable edge)  
10  
-
ns  
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
Figure 38. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
h(FS)  
SAI_FS_X  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
Figure 39. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
CAN (controller area network) interface  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (FDCANx_TX and FDCANx_RX).  
DS12288 Rev 5  
179/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
USB characteristics  
The device USB interface is fully compliant with the USB specification version 2.0 and is  
USB-IF certified (for Full-speed device operation).  
(1)  
Table 92. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
USB transceiver operating voltage  
3.0(2)  
-15  
-
3.6  
85  
V
tCrystal_less USB crystal less operation temperature  
-
°C  
RPUI  
Embedded USB_DP pull-up value during idle  
Embedded USB_PD pull-up value during reception  
Output driver impedance(4)  
Driving high and low  
900  
1400  
28  
1250  
2300  
36  
1500  
3200  
44  
RPUR  
(3)  
ZsDRV  
1. TA = -40 to 125 °C unless otherwise specified.  
2. The device USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics, which are degraded in  
the 2.7-to-3.0 V voltage range.  
3. Guarantee by design.  
4. No external termination series resistors are required on USB_PD (D+) and USB_DM (D-); the matching impedance is  
already included in the embedded driver.  
USART interface characteristics  
Unless otherwise specified, the parameters given in Table 93 for USART are derived from  
tests performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 93, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C=30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, CK, TX, RX for USART).  
(1)  
Table 93. USART electrical characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Typ  
Max  
Unit  
-
-
-
-
-
21  
22  
-
fCK  
USART clock frequency  
MHz  
Slave mode  
Slave mode  
Slave mode  
-
tker + 2  
2
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
ns  
-
tw(CKH)  
tw(CKL)  
CK high and low time  
Data input setup time  
Master mode  
1/fck/2-1  
1/fck/2 1/fck/2+1 ns  
Master mode  
Slave mode  
Master mode  
Slave mode  
tker + 2  
-
-
-
-
-
-
-
-
tsu(RX)  
th(RX)  
2
1
ns  
Data input hold time  
0.5  
180/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 93. USART electrical characteristics (continued)  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Typ  
Max  
Unit  
-
-
0.5  
10  
-
1.5  
22  
-
tv(TX)  
Data output valid time  
Slave mode  
Master mode  
Slave mode  
ns  
0
7
th(RX)  
Data output hold time  
-
-
1. Based on characterization, not tested in production.  
5.3.28  
FSMC characteristics  
Unless otherwise specified, the parameters given in Table 94 to Table 107 for the FMC  
interface are derived from tests performed under the ambient temperature, f frequency  
HCLK  
and V supply voltage conditions summarized in Table 17, with the following configuration:  
DD  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 40 through Figure 43 represent asynchronous waveforms and Table 94 through  
Table 101 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataHoldTime = 0x1  
ByteLaneSetup = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
In all timing tables, the THCLK is the HCLK clock period.  
DS12288 Rev 5  
181/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Figure 40. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FMC_NOE  
FMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32753V1  
182/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)(2)  
Table 94. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
3 THCLK– 0.5  
3THCLK+ 1  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
0
1
2 THCLK– 0.5  
2 THCLK+ 1  
th(NE_NOE)  
tv(A_NE)  
th(A_NOE)  
tsu(Data_NE)  
FMC_NOE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
Address hold time after FMC_NOE high  
Data to FMC_NEx high setup time  
THCLK  
-
-
2
2 THCLK– 1  
-
ns  
THCLK + 20  
-
tsu(Data_NOE) Data to FMC_NOEx high setup time  
20  
0
0
-
-
th(Data_NOE)  
th(Data_NE)  
tv(NADV_NE)  
tw(NADV)  
Data hold time after FMC_NOE high  
Data hold time after FMC_NEx high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
-
1.5  
-
THCLK+ 8  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Table 95. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
-
8 THCLK + 1  
tw(NOE)  
FMC_NWE low time  
FMC_NWAIT low time  
7 THCLK - 1 7 THCLK + 0.5  
ns  
tw(NWAIT)  
THCLK  
-
-
-
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
5 THCLK + 17  
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4 THCLK + 17  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DS12288 Rev 5  
183/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Figure 41. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FMC_NEx  
FMC_NOE  
FMC_NWE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
t
th(A_NWE)  
v(A_NE)  
FMC_A[25:0]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32754V1  
(1)(2)  
Table 96. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
FMC_NE low time  
Min  
Max  
Unit  
tw(NE)  
3 THCLK - 0.5  
3 THCLK + 1  
tv(NWE_NE) FMC_NEx low to FMC_NWE low  
tw(NWE) FMC_NWE low time  
th(NE_NWE) FMC_NWE high to FMC_NE high hold time  
tv(A_NE) FMC_NEx low to FMC_A valid  
th(A_NWE) Address hold time after FMC_NWE high  
tv(BL_NE) FMC_NEx low to FMC_BL valid  
THCLK - 0.5  
THCLK + 1  
THCLK -2  
THCLK + 1  
THCLK - 0.5  
-
-
0
THCLK - 1  
-
ns  
-
0
th(BL_NWE) FMC_BL hold time after FMC_NWE high  
tv(Data_NE) Data to FMC_NEx low to Data valid  
th(Data_NWE) Data hold time after FMC_NWE high  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK + 0.5  
-
THCLK + 2  
-
-
THCLK + 6  
-
-
1.5  
tw(NADV)  
FMC_NADV low time  
THCLK + 0.5  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
184/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Table 97. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
FMC_NE low time  
FMC_NWE low time  
Min  
Max  
Unit  
tw(NE)  
9 THCLK - 1 9 THCLK + 1  
6 THCLK - 1 6 THCLK + 1  
tw(NWE)  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
7 THCLK + 17  
-
-
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 7 THCLK + 17  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
Figure 42. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FMC_ NE  
FMC_NOE  
t
t
h(NE_NOE)  
v(NOE_NE)  
t
w(NOE)  
t
FMC_NWE  
t
h(A_NOE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
NBL  
t
t
v(BL_NE)  
h(BL_NOE)  
FMC_ NBL[1:0]  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
Address  
su(Data_NOE)  
Data  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32755V1  
DS12288 Rev 5  
185/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)  
Table 98. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
3 THCLK - 0.5 3 THCLK + 1  
tv(NOE_NE) FMC_NEx low to FMC_NOE low  
tw(NOE) FMC_NOE low time  
th(NE_NOE) FMC_NOE high to FMC_NE high hold time  
tv(A_NE) FMC_NEx low to FMC_A valid  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
0
1
2 THCLK - 0.5 2 THCLK + 0.5  
THCLK  
-
-
2
1.5  
0.5  
tw(NADV)  
FMC_NADV low time  
THCLK  
THCLK + 1.5  
FMC_AD(address) valid hold time after  
FMC_NADV high  
ns  
th(AD_NADV)  
THCLK - 0.3  
-
Addresshold  
until next  
read  
th(A_NOE) Address hold time after FMC_NOE high  
-
operation  
tsu(Data_NE) Data to FMC_NEx high setup time  
tsu(Data_NOE) Data to FMC_NOE high setup time  
th(Data_NE) Data hold time after FMC_NEx high  
th(Data_NOE) Data hold time after FMC_NOE high  
THCLK + 20  
-
-
-
-
20  
0
0
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 99. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
FMC_NE low time  
FMC_NWE low time  
Min  
Max  
Unit  
tw(NE)  
8 THCLK - 1  
8 THCLK + 1  
tw(NOE)  
7 THCLK - 1 7 THCLK + 0.5  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
5 THCLK + 17  
-
-
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 4 THCLK + 17  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
186/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 43. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FMC_ NEx  
FMC_NOE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
FMC_NWE  
t
t
h(A_NWE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_ NBL[1:0]  
NBL  
v(Data_NADV)  
Data  
t
t
h(Data_NWE)  
t
v(A_NE)  
Address  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32756V1  
DS12288 Rev 5  
187/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)  
Table 100. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
3 THCLK - 0.5 3 THCLK + 1  
tv(NWE_NE) FMC_NEx low to FMC_NWE low  
tw(NWE) FMC_NWE low time  
th(NE_NWE) FMC_NWE high to FMC_NE high hold time  
tv(A_NE) FMC_NEx low to FMC_A valid  
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
THCLK - 0.5  
THCLK - 2  
THCLK - 0.5  
-
THCLK + 1  
THCLK + 1  
-
0
1.5  
0
tw(NADV)  
FMC_NADV low time  
THCLK + 0.5  
THCLK + 1.5  
FMC_AD(address) valid hold time after  
FMC_NADV high  
ns  
th(AD_NADV)  
T
HCLK - 3  
-
Address hold  
until next  
write  
th(A_NWE) Address hold time after FMC_NWE high  
th(BL_NWE) FMC_BL hold time after FMC_NWE high  
-
operation  
THCLK - 0.5  
-
tv(BL_NE)  
FMC_NEx low to FMC_BL valid  
-
0
tv(Data_NADV) FMC_NADV high to Data valid  
-
THCLK + 2  
-
th(Data_NWE) Data hold time after FMC_NWE high  
THCLK + 6  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 101. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
FMC_NE low time  
FMC_NWE low time  
Min  
Max  
Unit  
tw(NE)  
9 THCLK - 1  
9 THCLK + 1  
tw(NWE)  
6 THCLK - 1 6 THCLK + 0.5  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
7 THCLK + 17  
-
-
th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 5 THCLK + 17  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
188/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Synchronous waveforms and timings  
Electrical characteristics  
Figure 44 through Figure 47 represent synchronous waveforms and Table 102  
through Table 105 provide the corresponding timings. The results shown in these  
tables are obtained with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable  
MemoryType = FMC_MemoryType_CRAM  
WriteBurst = FMC_WriteBurst_Enable  
CLKDivision = 1  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
In all timing tables, the THCLK is the HCLK clock period.  
For 2.7 V V 3.6 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and 54 MHz  
for CLKDIV = 0x0 at CL = 30 pF (on FMC_CLK).  
DD  
For 1.71 V V 2.7 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and  
32 MHz for CLKDIV = 0x0 at CL= 20 pF (on FMC_CLK).  
DD  
Figure 44. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
td(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
td(CLKH-AIV)  
d(CLKL-AV)  
FMC_A[25:16]  
t
td(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
MS32757V1  
DS12288 Rev 5  
189/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 102. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max Unit  
tw(CLK)  
FMC_CLK period  
R*THCLK - 0.5  
-
1.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
R*THCLK/2 + 1  
-
2.5  
-
3.5  
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
4
R*THCLK/2 + 1  
-
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low  
-
2
-
ns  
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
R*THCLK/2 + 1  
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid  
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high  
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
-
0
3
-
2
-
4
-
1.5  
4
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
3. Clock ratio R = (HCLK period /FMC_CLK period).  
190/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 45. Synchronous multiplexed PSRAM write timings  
%867851ꢈ ꢈꢂ  
WZꢉ&/.ꢌ  
WZꢉ&/.ꢌ  
)0&B&/.  
'DWDꢈODWHQF\ꢈ ꢈꢂ  
WGꢉ&/./ꢍ1([/ꢌ  
WGꢉ&/.+ꢍ1([+ꢌ  
)0&B1([  
WGꢉ&/./ꢍ1$'9/ꢌ  
WGꢉ&/./ꢍ1$'9+ꢌ  
)0&B1$'9  
WGꢉ&/.+ꢍ$,9ꢌ  
WGꢉ&/./ꢍ$9ꢌ  
)0&B$>ꢄꢅꢆꢃꢇ@  
WGꢉ&/.+ꢍ1:(+ꢌ  
WGꢉ&/./ꢍ1:(/ꢌ  
)0&B1:(  
WGꢉ&/./ꢍ'DWDꢌ  
WGꢉ&/./ꢍ$',9ꢌ  
$'>ꢃꢅꢆꢂ@  
WGꢉ&/./ꢍ'DWDꢌ  
WGꢉ&/./ꢍ$'9ꢌ  
)0&B$'>ꢃꢅꢆꢂ@  
'ꢃ  
'ꢄ  
)0&B1:$,7ꢈ  
ꢉ:$,7&)*ꢈ ꢈꢂEꢊ  
ꢈ:$,732/ꢈꢋꢈꢂEꢌ  
WVXꢉ1:$,79ꢍ&/.+ꢌ  
WKꢉ&/.+ꢍ1:$,79ꢌ  
WGꢉ&/.+ꢍ1%/+ꢌ  
)0&B1%/  
06Yꢀꢁꢂꢂꢃ9ꢄ  
DS12288 Rev 5  
191/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
(1)(2)(3)  
Table 103. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
R*THCLK - 0.5  
-
1.5  
-
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2)  
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
R*THCLK/2 + 1  
-
2.5  
-
3.5  
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
4
-
R*THCLK/2 + 1  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
-
2
-
ns  
R*THCLK/2 + 1  
td(CLKL-ADV)  
FMC_CLK low to FMC_AD[15:0] valid  
-
3
-
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid  
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low  
0
-
3
-
1
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
R*THCLK/2 + 1.5  
-
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1.5  
4
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
3. Clock ratio R = (HCLK period /FMC_CLK period).  
192/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 46. Synchronous non-multiplexed NOR/PSRAM read timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
FMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
su(DV-CLKH)  
t
t
h(CLKH-DV)  
FMC_D[15:0]  
FMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
MS32759V1  
(1)(2)(3)  
Table 104. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max Unit  
tw(CLK)  
FMC_CLK period  
FMC_CLK low to FMC_NEx low (x=0..2)  
R*THCLK - 0.5  
-
1.5  
-
td(CLKL-NExL)  
-
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
R*THCLK/2 + 1  
-
2.5  
-
3.5  
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NOE low  
-
4
-
ns  
R*THCLK/2+- 1  
-
2
-
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high  
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high  
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high  
R*THCLK/2 + 1  
2
4
-
-
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1.5  
4
-
ns  
-
DS12288 Rev 5  
193/236  
200  
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
3. Clock ratio R = (HCLK period /FMC_CLK period).  
Figure 47. Synchronous non-multiplexed PSRAM write timings  
WZꢉ&/.ꢌ  
WZꢉ&/.ꢌ  
)0&B&/.  
WGꢉ&/./ꢍ1([/ꢌ  
)0&B1([  
WGꢉ&/.+ꢍ1([+ꢌ  
'DWDꢈODWHQF\ꢈ ꢈꢂ  
WGꢉ&/./ꢍ1$'9+ꢌ  
WGꢉ&/./ꢍ1$'9/ꢌ  
)0&B1$'9  
)0&B$>ꢄꢅꢆꢂ@  
)0&B1:(  
WGꢉ&/.+ꢍ$,9ꢌ  
WGꢉ&/./ꢍ$9ꢌ  
WGꢉ&/.+ꢍ1:(+ꢌ  
WGꢉ&/./ꢍ1:(/ꢌ  
WGꢉ&/./ꢍ'DWDꢌ  
'ꢄ  
WGꢉ&/./ꢍ'DWDꢌ  
)0&B'>ꢃꢅꢆꢂ@  
'ꢃ  
)0&B1:$,7  
ꢉ:$,7&)*ꢈ ꢈꢂEꢊꢈ:$,732/ꢈꢋꢈꢂEꢌ  
)0&B1%/  
WGꢉ&/.+ꢍ1%/+ꢌ  
WKꢉ&/.+ꢍ1:$,79ꢌ  
WVXꢉ1:$,79ꢍ&/.+ꢌ  
06Yꢀꢁꢂꢂꢄ9ꢄ  
194/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)(2)(3)  
Table 105. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
R*THCLK - 0.5  
-
1.5  
-
td(CLKL-NExL)  
td(CLKH-NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
R*THCLK/2 + 1  
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low  
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high  
-
2.5  
-
3.5  
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
-
4
-
R*THCLK/2 + 1  
ns  
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low  
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high  
-
2
-
R*THCLK/2 + 1  
td(CLKL-Data)  
td(CLKL-NBLL)  
FMC_D[15:0] valid data after FMC_CLK low  
FMC_CLK low to FMC_NBL low  
-
3
-
1
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
R*THCLK/2 + 1.5  
-
1.5  
4
-
-
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
3. Clock ratio R = (HCLK period /FMC_CLK period).  
NAND controller waveforms and timings  
Figure 48 through Figure 51 represent synchronous waveforms, and Table 106 and  
Table 107 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
COM.FMC_SetupTime = 0x01  
COM.FMC_WaitSetupTime = 0x03  
COM.FMC_HoldSetupTime = 0x02  
COM.FMC_HiZSetupTime = 0x01  
ATT.FMC_SetupTime = 0x01  
ATT.FMC_WaitSetupTime = 0x03  
ATT.FMC_HoldSetupTime = 0x02  
ATT.FMC_HiZSetupTime = 0x01  
Bank = FMC_Bank_NAND  
MemoryDataWidth = FMC_MemoryDataWidth_16b  
ECC = FMC_ECC_Enable  
ECCPageSize = FMC_ECCPageSize_512Bytes  
TCLRSetupTime = 0  
TARSetupTime = 0  
In all timing tables, the THCLK is the HCLK clock period.  
DS12288 Rev 5  
195/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Figure 48. NAND controller waveforms for read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
FMC_NWE  
th(NOE-ALE)  
td(NCE-NOE)  
FMC_NOE (NRE)  
FMC_D[15:0]  
tsu(D-NOE)  
th(NOE-D)  
MSv38003V1  
Figure 49. NAND controller waveforms for write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
th(NWE-ALE)  
td(NCE-NWE)  
FMC_NWE  
FMC_NOE (NRE)  
FMC_D[15:0]  
th(NWE-D)  
tv(NWE-D)  
MSv38004V1  
Figure 50. NAND controller waveforms for common memory read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
th(NOE-ALE)  
td(NCE-NOE)  
FMC_NWE  
tw(NOE)  
FMC_NOE  
tsu(D-NOE)  
th(NOE-D)  
FMC_D[15:0]  
MSv38005V1  
196/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
Figure 51. NAND controller waveforms for common memory write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
td(NCE-NWE)  
tw(NWE)  
th(NOE-ALE)  
FMC_NWE  
FMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FMC_D[15:0]  
MSv38006V1  
(1)(2)  
Table 106. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
FMC_NOE low width  
Min  
Max  
Unit  
Tw(N0E)  
Tsu(D-NOE)  
Th(NOE-D)  
4 THCLK - 1  
4 THCLK  
FMC_D[15-0] valid data before FMC_NOE high  
FMC_D[15-0] valid data after FMC_NOE high  
19  
-
0
-
ns  
Td(NCE-NOE) FMC_NCE valid before FMC_NOE low  
Th(NOE-ALE) FMC_NOE high to FMC_ALE invalid  
-
3 THCLK  
-
3 THCLK  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
(1)(2)  
Table 107. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
FMC_NWE low width  
Min  
Max  
Unit  
Tw(NWE)  
Tv(NWE-D)  
Th(NWE-D)  
Td(D-NWE)  
4 THCLK -1  
0
4 THCLK  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
FMC_D[15-0] valid before FMC_NWE high  
-
3 THCLK - 1  
5 THCLK  
-
-
ns  
-
Td(NCE_NWE) FMC_NCE valid before FMC_NWE low  
3 THCLK  
-
Th(NWE-ALE)  
FMC_NWE high to FMC_ALE invalid  
3 THCLK  
1. CL = 30 pF.  
2. Guaranteed by characterization results.  
DS12288 Rev 5  
197/236  
200  
 
 
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
5.3.29  
QUADSPI characteristics  
Unless otherwise specified, the parameters given in Table 108 and Table 109 for Quad SPI  
are derived from tests performed under the ambient temperature, f  
frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 17: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 15 or 20 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 108. Quad SPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 < VDD< 3.6 V,  
CLOAD = 15 pF  
-
-
50  
Voltage Range 1  
Quad SPI clock  
frequency  
F(QCK)  
MHz  
1.71 < VDD< 3.6 V,  
CLOAD = 20 pF  
-
-
110  
Voltage Range 2  
tw(CKH) Quad SPI clock high  
and low time  
t(CK)/2-0.5  
t(CK)/2-1  
-
-
-
-
t(CK)/2+1  
t(CK)/2+0.5  
PRESCALER [7:0]  
n =0,1, 3, 5...  
tw(CKL)  
Even division  
tw(CKH) Quad SPI clock high  
and low time  
(n/2)*t(CK)/(n+1) - 0.5  
(n/2+1)*t(CK)/(n+1) - 1  
(n/2)*t(CK)/(n+1) + 1  
(n/2+1)*t(CK)/(n+1) +0.5  
PRESCALER [7:0]  
n =2,4, 6, 8...  
tw(CKL)  
Odd division  
ns  
ts(IN)  
Data input setup time 1.71 < VDD< 3.6 V  
1
5
-
-
-
-
th(IN) Data input hold time 1.71 < VDD< 3.6 V  
Data output valid  
tv(OUT)  
1.71 < VDD< 3.6 V  
-
1
-
1.5  
-
time  
th(OUT) Data output hold time 1.71 < VDD< 3.6 V  
1. Guaranteed by characterization results.  
0.5  
(1)  
Table 109. QUADSPI characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 < VDD< 3.6 V,  
CLOAD = 15 pF  
-
-
50  
70  
Voltage Range 1  
Quad SPI clock  
frequency  
F(QCK)  
MHz  
1.71 < VDD< 3.6 V,  
CLOAD = 20 pF  
-
-
Voltage Range 2  
198/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Electrical characteristics  
(1)  
Table 109. QUADSPI characteristics in DDR mode (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tw(CKH) Quad SPI clock high  
and low time  
t(CK)/2  
-
t(CK)/2+1  
PRESCALER [7:0]  
n =0,1, 3, 5 ...  
tw(CKL)  
t(CK)/2-1  
-
-
-
t(CK)/2  
Even division  
tw(CKH) Quad SPI clock high and  
low time  
(n/2)*t(CK)/(n+1)  
(n/2)*t(CK)/(n+1) + 1  
(n/2+1)*t(CK)/(n+1)  
PRESCALER [7:0]  
n =2,4, 6, 8...  
tw(CKL)  
(n/2+1)*t(CK)/(n+1) - 1  
Odd division  
Data input setup time on  
rising edge  
tsr(IN)  
1.71 < VDD< 3.6 V  
1.71 < VDD< 3.6 V  
1.71 < VDD< 3.6 V  
1.71 < VDD< 3.6 V  
1
1
6
5
-
-
Data input setup time on  
falling edge  
tsf(IN)  
thr(IN)  
thf(IN)  
-
-
-
Data input hold time on  
rising edge  
-
Data input hold time on  
falling edge  
-
-
1.71 < VDD< 3.6 V  
DHHC = 0  
7.5  
8
ns  
Data output valid time on  
rising edge  
tvr(OUT)  
-
-
1.71 < VDD< 3.6 V  
DHHC = 1  
Thclk/2  
+1  
Thclk/2+1.5  
1.71 < VDD< 3.6 V  
DHHC = 0  
7
10  
tvf(OUT) Data output valid time  
1.71 < VDD< 3.6 V  
DHHC = 1  
Thclk/2  
+1  
Thclk/2+2  
1.71 < VDD< 3.6 V  
DHHC = 0  
2
-
-
-
-
-
-
-
-
Data output hold time on  
rising edge  
thr(OUT)  
1.71 < VDD< 3.6 V  
DHHC = 1  
Thclk/2+ 0.5  
3
1.71 < VDD< 3.6 V  
DHHC = 0  
Data output hold time on  
falling edge  
thf(OUT)  
1.71 < VDD< 3.6 V  
DHHC = 1  
Thclk/2+0.5  
1. Guaranteed by characterization results.  
Figure 52. Quad SPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
DS12288 Rev 5  
199/236  
200  
 
Electrical characteristics  
STM32G474xB STM32G474xC STM32G474xE  
Figure 53. Quad SPI timing diagram - DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
5.3.30  
UCPD characteristics  
UCPD1 controller complies with USB Type-C Rev.1.2 and USB Power Delivery Rev. 3.0  
specifications.  
Table 110. UCPD characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Sink mode only  
3.0  
3.3  
3.3  
3.6  
V
V
VDD  
UCPD operating supply voltage  
Sink and source mode  
3.135  
3.465  
200/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
6.1  
WLCSP81 package information  
WLCSP81 is a 81-ball, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale package.  
Figure 54. WLCSP81 - outline  
DETAIL A  
bbb Z  
A1 BALL  
LOCATION  
F
D
A1  
e1  
A
G
e2  
E
e
J
A
A2  
9
1
eee  
(4X)  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
A2  
A3  
BUMP  
b
A1  
FRONT VIEW  
eee  
Z
z
b(81x)  
ccc M  
X
Y
Z
Z
SEATING PLANE  
M
ddd  
DETAIL A  
ROTATED 90  
B068_WLCSP81_DIE469_ME_V1  
1. Drawing is not to scale.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
4. Bump position designation per JESD 95-1, SPP-010.  
DS12288 Rev 5  
201/236  
232  
 
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Table 111. WLCSP81 - mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A(2)  
A1  
A2  
A3  
b
-
-
0.18  
0.38  
0.025  
0.25  
4.02  
4.27  
0.40  
3.20  
3.20  
0.410  
0.535  
-
0.59  
-
-
0.023  
-
-
-
0.007  
0.015  
0.001  
0.010  
0.158  
0.168  
0.016  
0.126  
0.126  
0.016  
0.021  
-
-
-
-
-
-
-
-
-
-
0.22  
0.28  
4.04  
4.29  
-
0.009  
0.011  
0.159  
0.169  
-
D
4.00  
0.157  
E
4.25  
0.167  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F(3)  
G(3)  
aaa  
bbb  
ccc  
ddd  
eee  
-
-
-
-
0.10  
0.10  
0.10  
0.05  
0.05  
0.004  
0.004  
0.004  
0.002  
0.002  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 3 decimal digits.  
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal  
and tolerances values of A1 and A2.  
3. Calculated dimensions are rounded to the 3rd decimal place  
Figure 55. WLCSP81 - recommended footprint  
Dpad  
Dsm  
B068_WLCSP81_DIE469_FP_V1  
202/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
Table 112. WLCSP81 - recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
Dsm  
0.4 mm  
0,225 mm  
0.290 mm typ. (depends on soldermask registration tolerance)  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
DS12288 Rev 5  
203/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
6.2  
UFQFPN48 package information  
UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.  
Figure 56. UFQFPN48 - outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
204/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
inches(1)  
Table 113. UFQFPN48 - mechanical data  
millimeters  
Typ  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 57. UFQFPN48 - recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
DS12288 Rev 5  
205/236  
232  
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
UFQFPN48 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 58. UFQFPN48 top view example  
Product  
(1)  
identification  
STM32G474  
CEU6  
Date code  
Y WW  
Revision code  
Pin 1  
identification  
B
MS51944V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
206/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.3  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.  
Figure 59. LQFP48 - outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
DS12288 Rev 5  
207/236  
232  
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Table 114. LQFP48 - mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
208/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
Figure 60. LQFP48 - recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Dimensions are expressed in millimeters.  
DS12288 Rev 5  
209/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
LQFP48 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 61. LQFP48 top view example  
Product  
(1)  
identification  
STM32G474  
CET6  
Date code  
Y WW  
Revision code  
Pin 1  
identification  
B
MS51943V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
1.  
210/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.4  
LQFP64 package information  
LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 62. LQFP64 - outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 115. LQFP64 - mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
DS12288 Rev 5  
211/236  
232  
 
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Table 115. LQFP64 - mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 63. LQFP64 - recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are expressed in millimeters.  
212/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
LQFP64 device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 64. LQFP64 top view example  
Product  
(1)  
identification  
STM32G474  
RET6  
Date code  
Y WW  
Revision code  
Pin 1  
identification  
B
MS51941V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12288 Rev 5  
213/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
6.5  
LQFP80 package information  
LQFP80 is a 80-pin, 12 x 12 mm low-profile quad flat package.  
Figure 65. LQFP80 - outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
L
k
D
L1  
D1  
D3  
60  
41  
61  
40  
80  
21  
PIN 1  
IDENTIFICATION  
1
20  
e
9X_ME  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
Table 116. LQFP80 - mechanical data  
Millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.050  
1.350  
0.170  
0.090  
-
0.0020  
0.0531  
0.0067  
0.0035  
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
214/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
inches(1)  
Table 116. LQFP80 - mechanical data (continued)  
Millimeters  
Typ  
Symbol  
Min  
Max  
Min  
Typ  
Max  
D
D1  
D2  
E
-
14.000  
12.000  
9.500  
14.000  
12.000  
9.500  
0.500  
0.600  
1.000  
-
-
-
0.5512  
0.4724  
0.3740  
0.5512  
0.4724  
0.3740  
0.0197  
0.0236  
0.0394  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E1  
E3  
e
-
-
-
-
-
-
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
ccc  
k
-
-
-
-
0.080  
7.0°  
0.0031  
7.0°  
0.0°  
-
0.0°  
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 66. LQFP80 - recommended footprint  
80  
61  
1
0.5  
60  
20  
41  
1.2  
21  
40  
9.8  
14.7  
9X_FP  
1. Dimensions are expressed in millimeters.  
DS12288 Rev 5  
215/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
LQFP80 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 67. LQFP80 top view example  
Product  
identification  
(1)  
STM32G474  
MET6  
Revision code  
Z
Date code  
Y WW  
Pin 1  
identification  
MS51945V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
216/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.6  
TFBGA100 package information  
TFBGA is a 100-ball, 8 x 8 mm, 0.8 mm pitch fine pitch ball grid array package.  
Figure 68. TFBGA100 - outline  
SEATING  
PLANE  
C
A1 ball  
index  
area  
A1 ball  
identifier  
D1  
D
e
F
A
B
C
D
E
F
G
H
J
A
K
10 9 8 7 6 5 4 3 2 1  
BOTTOM VIEW  
TOP VIEW  
b(100 BALLS)  
eee  
fff  
C
C
A B  
A08Q_ME_V1  
DS12288 Rev 5  
217/236  
232  
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Table 117. TFBGA100 - mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.100  
-
-
0.0433  
0.150  
-
-
0.0059  
-
-
-
0.760  
0.400  
8.000  
7.200  
8.000  
7.200  
0.800  
0.400  
0.400  
-
-
-
0.0299  
0.0157  
0.3150  
0.2835  
0.3150  
0.2835  
0.0315  
0.0157  
0.0157  
-
-
0.350  
0.450  
0.0138  
0.0177  
D
7.850  
8.150  
0.3091  
0.3209  
D1  
E
-
-
-
-
7.850  
8.150  
0.3091  
0.3209  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
G
-
-
ddd  
eee  
fff  
0.100  
0.150  
0.080  
0.0039  
0.0059  
0.0031  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 69. TFBGA100 - recommended footprint  
Dpad  
Dsm  
BGA_WLCSP_FT_V1  
Table 118. TFBGA100 - recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
0.8  
0.400 mm  
0.470 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
218/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
Table 118. TFBGA100 - recommended PCB design rules (continued)  
Dimension Recommended values  
Stencil opening  
Stencil thickness  
Pad trace width  
0.400 mm  
Between 0.100 mm and 0.125 mm  
0.120 mm  
TFBGA100 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 70. TFBGA100 - 8 x 8 mm, low-profile quad flat package top view example  
Product  
identification  
(1)  
STM32G474  
VEH6  
Revision code  
A
Date code  
Y WW  
Pin 1  
identification  
MS51946V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12288 Rev 5  
219/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
6.7  
LQFP100 package information  
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.  
Figure 71. LQFP100 - outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
75  
C
D
D1  
D3  
L
L1  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
e
1
1L_ME_V5  
1. Drawing is not to scale.  
Table 119. LQPF100 - mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
0.6299  
0.5512  
0.4724  
D1  
D3  
220/236  
DS12288 Rev 5  
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
Table 119. LQPF100 - mechanical data (continued)  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
E
E1  
E3  
e
15.800  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
16.200  
0.6220  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.6378  
13.800  
14.200  
0.5433  
0.5591  
-
-
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
0.080  
7.0°  
0.0031  
ccc  
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 72. LQFP100 - recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906c  
1. Dimensions are expressed in millimeters.  
DS12288 Rev 5  
221/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
LQFP100 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 73. LQFP100 top view example  
Product  
identification  
(1)  
STM32G474  
VET6  
Revision code  
R
Date code  
Y WW  
Pin 1  
identification  
MS51942V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
222/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.8  
LQFP128 package information  
LQFP128 is a 128-pin, 14 x 14 mm low-profile quad flat package.  
Figure 74. LQFP128 - outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
L
k
D
L1  
D1  
D3  
96  
65  
64  
97  
128  
33  
PIN 1  
IDENTIFICATION  
1
32  
e
TC_ME_V1  
1. Drawing is not to scale.  
Table 120. LQFP128 - mechanical data  
Millimeters  
Inches(1)  
Typ.  
Symbol  
Min.  
Typ.  
Max.  
Min.  
Max.  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.230  
-
-
0.0630  
0.0059  
0.0571  
0.0091  
0.050  
1.350  
0.130  
-
0.0020  
0.0531  
0.0051  
-
1.400  
0.180  
0.0551  
0.0071  
DS12288 Rev 5  
223/236  
232  
 
 
 
Package information  
Symbol  
STM32G474xB STM32G474xC STM32G474xE  
Table 120. LQFP128 - mechanical data (continued)  
Millimeters  
Typ.  
Inches(1)  
Min.  
Max.  
Min.  
Typ.  
Max.  
c
D
0.090  
-
0.200  
0.0035  
-
0.0079  
15.800  
16.000  
14.000  
12.400  
16.000  
14.000  
12.400  
0.400  
0.600  
1.000  
3.5°  
16.200  
0.6220  
0.6299  
0.5512  
0.4882  
0.6299  
0.5512  
0.4882  
0.0157  
0.0236  
0.0394  
3.5°  
0.6378  
D1  
D3  
E
13.800  
14.200  
0.5433  
0.5591  
-
-
-
-
15.800  
16.200  
0.6220  
0.6378  
E1  
E3  
e
13.800  
14.200  
0.5433  
0.5591  
-
-
-
-
-
-
0.750  
-
-
-
0.0295  
-
L
0.450  
0.0177  
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 75. LQFP128 - recommended footprint  
16  
14  
12.4  
96  
65  
64  
97  
14  
12.4  
16  
0.18  
128  
33  
1
32  
0.4  
TC_LQFP128_FP_V1  
Dimensions are expressed in millimeters.  
224/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
LQFP128 device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 76. LQFP128 top view example  
Product  
identification  
(1)  
STM32G474  
QET6  
Revision code  
B
Date code  
Y WW  
Pin 1  
identification  
MS51947V1  
1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12288 Rev 5  
225/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
6.9  
UFBGA121 package information  
UFBGA121 is a 121 balls, 6 x 6 mm, 0.5 mm pitch, fine pitch, square ball grid array  
package.  
Figure 77. UFBGA121 - outline  
SEATING  
PLANE  
C
A2  
A4  
A
A1  
SIDE VIEW  
E
E1  
F
e
A
F
L
K
J
H
G
F
E
D
C
B
A
D1  
D
e
1
2
3
4
5
6
7
8
9 10 11  
b (121 BALLS)  
A1 INDEX CORNER AREA  
eee  
fff  
C
C
A
B
BOTTOM VIEW  
B0CU_UFBGA121_ME_V1  
1. Drawing is not to scale.  
2. The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized  
markings, or other feature of package body or integral heat slug.  
A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1  
corner. Exact shape of each corner is optional.  
226/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
inches(1)  
Table 121. UFBGA121 - mechanical data  
millimeters  
Typ  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A(2)  
A1  
A2  
A4  
b(3)  
D
-
-
0.60  
0.11  
-
-
-
0.0236  
-
-
-
-
0.0043  
-
0.13  
0.32  
0.29  
6.00  
5.00  
6.00  
5.00  
0.50  
0.50  
-
-
0.0051  
0.0126  
0.0114  
0.2362  
0.1969  
0.2362  
0.1969  
0.0197  
0.0197  
-
-
-
-
-
-
0.24  
0.34  
6.15  
-
0.0094  
0.0134  
5.85  
0.2303  
0.2421  
D1  
E
-
-
-
5.85  
6.15  
-
0.2303  
0.2421  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
ddd  
eee(4)  
fff(5)  
0.08  
0.15  
0.05  
0.0031  
0.0059  
0.0020  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. - UFBGA stands for Ultra-Thin Profile Fine Pitch Ball Grid Array.  
- Ultra Thin profile: 0.50 < A 0.65mm / Fine pitch: e < 1.00mm pitch.  
- The total profile height (Dim A) is measured from the seating plane to the top of the component  
- The maximum total package height is calculated by the following methodology:  
A Max = A1 Typ + A2 Typ + A4 Typ + (A1²+A2²+A4² tolerance values)  
3. The typical balls diameters before mounting is 0.20 mm  
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B.  
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true  
position with respect  
to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this  
tolerance zone.  
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.  
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position  
as defined by e. The axis perpendicular to datumC of each ball must lie within this tolerance zone.  
Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each  
ball must lie simultaneously in both tolerance zones.  
DS12288 Rev 5  
227/236  
232  
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Figure 78. UFBGA121 - recommended footprint  
Dpad  
Dsm  
Table 122. UFBGA121 - recommended PCB design rules  
Dimension  
Recommended values  
Pitch  
Dpad  
Dsm  
0.5 mm  
0,225 mm  
0.290 mm typ. (depends on soldermask registration tolerance)  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
228/236  
DS12288 Rev 5  
 
 
 
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.10  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
I/O  
OL  
OL  
DDIOx OH OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 123. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP128 - 14 × 14 mm  
43.0  
46.2  
46.8  
47.9  
55.2  
30.8  
TBD  
26.8  
45  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm  
Thermal resistance junction-ambient  
LQFP80 - 12 × 12 mm  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
TFBGA100 - 8 × 8 mm  
Thermal resistance junction-ambient  
UFBGA121 - 6 × 6 mm  
Thermal resistance junction-ambient  
UFQFPN48 - 7 × 7 mm  
Thermal resistance junction-ambient  
WLCSP81 - 4.02 X 4.27 mm  
DS12288 Rev 5  
229/236  
232  
 
 
 
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Table 123. Package thermal characteristics (continued)  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-case  
LQFP128 - 14 × 14 mm  
7.0  
Thermal resistance junction-case  
LQFP100 - 14 × 14 mm  
8.3  
8.2  
8.0  
9.6  
13  
Thermal resistance junction-case  
LQFP80 - 12 × 12 mm  
Thermal resistance junction-case  
LQFP64 - 10 × 10 mm  
Thermal resistance junction-case  
LQFP48 - 7 × 7 mm  
ΘJC  
°C/W  
Thermal resistance junction-case  
TFBGA100 - 8 × 8 mm  
Thermal resistance junction-ambient  
UFBGA121 - 6 × 6 mm  
TBD  
Thermal resistance junction-case  
UFQFPN48 - 7 × 7 mm  
2(1)  
7.5  
Thermal resistance junction-case  
WLCSP81 - 4.02 X 4.27 mm  
1.46  
19.9  
22.9  
22.3  
21.8  
24.3  
13.42  
TBD  
11  
Thermal resistance junction-board  
LQFP128 - 14 × 14 mm  
Thermal resistance junction-board  
LQFP100 - 14 × 14 mm  
Thermal resistance junction-board  
LQFP80 - 12 × 12 mm  
Thermal resistance junction-board  
LQFP64 - 10 × 10 mm  
Thermal resistance junction-board  
LQFP48 - 7 × 7 mm  
ΘJB  
°C/W  
Thermal resistance junction-board  
TFBGA100 - 8 × 8 mm  
Thermal resistance junction-ambient  
UFBGA121 - 6 × 6 mm  
Thermal resistance junction-board  
UFQFPN48 - 7 × 7 mm  
Thermal resistance junction-board  
WLCSP81 - 4.02 X 4.27 mm  
27.45  
1. Thermal resistance junction-case where the case is the bottom thermal pad on the UFQFPN package.  
6.10.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
230/236  
DS12288 Rev 5  
 
STM32G474xB STM32G474xC STM32G474xE  
Package information  
6.10.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 7: Ordering information.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the STM32G474xE at maximum dissipation, it is  
useful to calculate the exact power consumption and junction temperature to determine  
which temperature range is best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
50 mA × 3.5 V= 175 mW  
INTmax =  
20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax =  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
175 272 = 447 mW  
+
Dmax =  
Using the values obtained in T  
is calculated as follows:  
Jmax  
T
For LQFP100, 42 °C/W  
= 82 °C + (42 °C/W × 447 mW) = 82 °C + 18.774 °C = 100.774 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C) see Section 7:  
J
Ordering information.  
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 7: Ordering information).  
Note:  
With this given P  
we can find the TAmax allowed for a given device temperature range  
Dmax  
(order code suffix 6 or 7).  
Suffix 6: T  
Suffix 3: T  
= T  
= T  
- (42°C/W × 447 mW) = 105-18.774 = 86.226 °C  
Amax  
Amax  
Jmax  
Jmax  
- (42°C/W × 447 mW) = 130-18.774 = 111.226 °C  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
DS12288 Rev 5  
231/236  
232  
 
Package information  
STM32G474xB STM32G474xC STM32G474xE  
Assuming the following application conditions:  
Maximum ambient temperature T = 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
20 mA × 3.5 V= 70 mW  
INTmax =  
× 8 mA × 0.4 V = 64 mW  
IOmax = 20  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
70 64 = 134 mW  
Dmax =  
+
Thus: P  
= 134 mW  
Dmax  
Using the values obtained in T  
is calculated as follows:  
Jmax  
T
For LQFP100, 42 °C/W  
= 100 °C + (42 °C/W × 134 mW) = 100 °C + 5.628 °C = 105.628 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 3 (see  
Section 7: Ordering information) unless we reduce the power dissipation in order to be able  
to use suffix 6 parts.  
232/236  
DS12288 Rev 5  
STM32G474xB STM32G474xC STM32G474xE  
Ordering information  
7
Ordering information  
Table 124. Ordering information  
STM32 G 474  
Example:  
V
E
T
6
x
Device family  
STM32 = Arm-based 32-bit microcontroller  
Product type  
G = General-purpose  
Sub-family  
474 = STM32G474xB/xC/xE  
Pin count  
C = 48 pins  
R = 64 pins  
M = 80 pins, 81 pins  
V = 100 pins  
P = 121 pins  
Q = 128 pins  
Code size  
B = 128 Kbyte  
C = 256 Kbyte  
E = 512 Kbyte  
Package  
H = TFBGA  
I = UFBGA  
T = LQFP  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, - 40 to 85 °C (105 °C junction)  
3 = Industrial temperature range, - 40 to 125 °C (130 °C junction)  
Options  
xxx = programmed parts  
TR = tape and reel  
For a list of available options (memory, package, and so on) or for further information on any  
aspect of this device, contact the nearest ST sales office.  
DS12288 Rev 5  
233/236  
233  
 
 
 
 
Revision history  
STM32G474xB STM32G474xC STM32G474xE  
8
Revision history  
Table 125. Document revision history  
Changes  
Date  
Revision  
15-May-2019  
1
Initial release.  
Updated:  
Section 2: Description, Section 3.5: Embedded SRAM,  
Table 2: STM32G474xB/xC/xE features and peripheral counts, Table 17: General  
operating conditions, Table 35: Peripheral current consumption, Table 66: ADC  
characteristics, Table 67: Maximum ADC RAIN, Table 89: SPI characteristics,  
Table 123: Package thermal characteristics, Table 124: Ordering information  
01-Oct-2019  
2
Added: Table 71: ADC accuracy (Multiple ADCs operation) - limited test conditions 1,  
Table 73: ADC accuracy (Multiple ADCs operation) - limited test conditions 3,  
Table 73: ADC accuracy (Multiple ADCs operation) - limited test conditions 3  
Updated:  
Section 2: Description,  
Table 2: STM32G474xB/xC/xE features and peripheral counts,  
Table 12: STM32G474xB/xC/xE pin definition  
Table 124: Ordering information  
– Added:  
24-Apr-2020  
3
Section 4.9: UFBGA121 pinout description,  
Section 6.9: UFBGA121 package information:  
234/236  
DS12288 Rev 5  
 
 
STM32G474xB STM32G474xC STM32G474xE  
Revision history  
Table 125. Document revision history (continued)  
Changes  
Date  
Revision  
Updated:  
Table 2: STM32G474xB/xC/xE features and peripheral counts,  
Table 36: Low-power mode wakeup timings  
Section 3.5: Embedded SRAM  
Deleted:  
03-Jun-2020  
4
Table 23: Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in single bank, ART disable  
Table 24: Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in dual bank, ART disable  
Table 27: Typical current consumption in Run and Low-power run modes, with  
different codes running from Flash, ART disable  
Updated:  
Table 1: Device summary  
Section 3.18: Analog-to-digital converter (ADC)  
Table 2: STM32G474xB/xC/xE features and peripheral counts  
Table 21: Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in single Bank, ART enable (Cache ON Prefetch  
OFF)  
Table 22: Current consumption in Run and Low-power run modes, code with data  
processing running from Flash in dual bank, ART enable (Cache ON Prefetch  
OFF)  
Table 23: Current consumption in Run and Low-power run modes, code with data  
processing running from SRAM1  
Table 28: Current consumption in Sleep and Low-power sleep mode Flash ON  
Table 29: Current consumption in low-power sleep modes, Flash in power-down  
Table 30: Current consumption in Stop 1 mode  
Table 31: Current consumption in Stop 0 mode  
Table 32: Current consumption in Standby mode  
Table 51: ESD absolute maximum ratings  
Table 76: DAC 15MSPS characteristics  
Table 79: COMP characteristics  
23-Oct-2020  
5
Table 80: OPAMP characteristics  
Table 84: TIMx characteristics  
Table 89: SPI characteristics  
Table 90: I2S characteristics  
Table 109: QUADSPI characteristics in DDR mode  
Table 121: UFBGA121 - mechanical data  
Table 122: UFBGA121 - recommended PCB design rules  
Table 123: Package thermal characteristics  
Table 124: Ordering information  
Figure 77: UFBGA121 - outline  
Figure 78: UFBGA121 - recommended footprint  
Added:  
Figure 75: LQFP128 - recommended footprint  
DS12288 Rev 5  
235/236  
235  
STM32G474xB STM32G474xC STM32G474xE  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
236/236  
DS12288 Rev 5  

相关型号:

STM32G474VEU3TR

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEU3XXX

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEU6TR

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEU6XXX

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEY3TR

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEY3XXX

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEY6TR

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474VEY6XXX

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474XB

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474XC

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G474XE

Arm® Cortex®-M4 32-bit MCUFPU, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math acc, 184 ps 12 chan Hi-res timer

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32G47CBH3TR

Arm® Cortex®-M4 32-bit MCUFPU, up to 512 KB Flash, 170 MHz / 213DMIPS, 128 KB SRAM, rich analog, math accelerator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR