STM32H723VGI6TR [STMICROELECTRONICS]

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces;
STM32H723VGI6TR
型号: STM32H723VGI6TR
厂家: ST    ST
描述:

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

文件: 总227页 (文件大小:3021K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32H723VE STM32H723VG  
STM32H723ZE STM32H723ZG  
32-bit Arm Cortex -M7 550 MHz MCU, up to 1 MB Flash memory,  
®
®
564 KB RAM, 35 comms peripherals and analog interfaces  
Datasheet - production data  
Features  
Core  
®
®
32-bit Arm Cortex -M7 CPU with DP-FPU, L1  
cache: 32-Kbyte data cache and 32-Kbyte  
instruction cache allowing 0-wait state  
LQFP144  
(20x20 mm)  
LQFP100  
(14x14 mm)  
FBGA  
FBGA  
execution from embedded Flash memory and  
external memories, frequency up to 550 MHz,  
MPU, 1177 DMIPS/2.14 DMIPS/MHz  
TFBGA100  
(8x8 mm)  
UFBGA144  
(7x7 mm)  
(Dhrystone 2.1), and DSP instructions  
Memories  
Clock, reset and supply management  
1.62 V to 3.6 V application supply and I/O  
POR, PDR, PVD and BOR  
Up to 1 Mbyte of embedded Flash memory with  
ECC  
SRAM: total 564 Kbytes all with ECC, including  
128 Kbytes of data TCM RAM for critical real-  
time data + 432 Kbytes of system RAM (up to  
256 Kbytes can remap on instruction TCM  
RAM for critical real time instructions) +  
4 Kbytes of backup SRAM (available in the  
lowest-power modes)  
Dedicated USB power  
Embedded LDO regulator  
Internal oscillators: 64 MHz HSI, 48 MHz  
HSI48, 4 MHz CSI, 32 kHz LSI  
External oscillators: 4-50 MHz HSE,  
Flexible external memory controller with up to  
16-bit data bus: SRAM, PSRAM,  
SDRAM/LPSDR SDRAM, NOR/NAND  
memories  
32.768 kHz LSE  
Low power  
Sleep, Stop and Standby modes  
2 x Octo-SPI interface with XiP  
2 x SD/SDIO/MMC interface  
Bootloader  
V  
supply for RTC, 32×32-bit backup  
registers  
BAT  
Analog  
Graphics  
2×16-bit ADC, up to 3.6 MSPS in 16-bit: up to  
18 channels and 7.2 MSPS in double-  
interleaved mode  
Chrom-ART Accelerator graphical hardware  
accelerator enabling enhanced graphical user  
interface to reduce CPU load  
1 x 12-bit ADC, up to 5 MSPS in 12-bit, up to 12  
LCD-TFT controller supporting up to XGA  
channels  
resolution  
2 x comparators  
2 x operational amplifier GBW = 8 MHz  
2× 12-bit D/A converters  
September 2020  
DS13313 Rev 2  
1/227  
www.st.com  
STM32H723xE/G  
SWPMI single-wire protocol master I/F  
Digital filters for sigma delta modulator  
(DFSDM)  
MDIO slave interface  
8 channels/4 filters  
Mathematical acceleration  
4 DMA controllers to offload the CPU  
1 × MDMA with linked list support  
CORDIC for trigonometric functions  
acceleration  
FMAC: Filter mathematical accelerator  
Digital temperature sensor  
True random number generator  
CRC calculation unit  
2 × dual-port DMAs with FIFO  
1 × basic DMA with request router capabilities  
24 timers  
Seventeen 16-bit (including 5 x low power  
16-bit timer available in stop mode) and four  
32-bit timers, each with up to 4 IC/OC/PWM or  
pulse counter and quadrature (incremental)  
encoder input  
RTC with sub-second accuracy and  
hardware calendar  
2x watchdogs, 1x SysTick timer  
ROP, PC-ROP, tamper detection  
96-bit unique ID  
Debug mode  
SWD and JTAG interfaces  
2-Kbyte embedded trace buffer  
All packages are ECOPACK2 compliant  
Up to 114 I/O ports with interrupt  
capability  
Up to 35 communication interfaces  
Up to 5 × I2C FM+ interfaces  
(SMBus/PMBus™)  
Up to 5 USARTs/5 UARTs (ISO7816 interface,  
LIN, IrDA, modem control) and 1 x LPUART  
Up to 6 SPIs with 4 with muxed duplex I2S for  
audio class accuracy via internal audio PLL or  
external clock and up to 5 x SPI (from 5 x  
USART when configured in synchronous  
mode)  
2x SAI (serial audio interface)  
1× FD/TT-CAN and 2xFD-CAN  
8- to 14-bit camera interface  
16-bit parallel slave synchronous interface  
SPDIF-IN interface  
HDMI-CEC  
Ethernet MAC interface with DMA controller  
USB 2.0 high-speed/full-speed  
device/host/OTG controller with dedicated  
DMA, on-chip FS PHY and ULPI for external  
HS PHY  
2/227  
DS13313 Rev 2  
STM32H723xE/G  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
3.3  
Arm® Cortex®-M7 with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.3.1  
3.3.2  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Error code correction (ECC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.4  
3.5  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CORDIC co-processor (CORDIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CORDIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.6  
3.7  
Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
FMAC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.7.1  
3.7.2  
3.7.3  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.8  
3.9  
Low-power strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.9.1  
3.9.2  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
System reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.10 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.11 Bus-interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.12 DMA controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.13 Chrom-ART Accelerator (DMA2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.14 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 31  
3.15 Extended interrupt and event controller (EXTI) . . . . . . . . . . . . . . . . . . . . 31  
3.16 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 31  
3.17 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.18 Octo-SPI memory interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DS13313 Rev 2  
3/227  
7
Contents  
STM32H723xE/G  
3.19 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.20 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.21 Digital temperature sensor (DTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.22  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.23 Digital-to-analog converters (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.24 Ultra-low-power comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.25 Operational amplifiers (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.26 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 36  
3.27 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.28 PSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.29 LCD-TFT controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.30 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.31 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.31.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.31.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.31.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.31.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5) . . . . 43  
3.31.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.31.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.31.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.32 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 44  
3.33 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.34 Universal synchronous/asynchronous receiver transmitter (USART) . . . 45  
3.35 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 46  
3.36 Serial peripheral interface (SPI)/inter- integrated sound interfaces (I2S) . 47  
3.37 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.38 SPDIFRX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.39 Single wire protocol master interface (SWPMI) . . . . . . . . . . . . . . . . . . . . 48  
3.40 Management data input/output (MDIO) slaves . . . . . . . . . . . . . . . . . . . . . 49  
3.41 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . . . 49  
3.42 Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 49  
3.43 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 50  
3.44 Ethernet MAC interface with dedicated DMA controller (ETH) . . . . . . . . . 50  
4/227  
DS13313 Rev 2  
STM32H723xE/G  
Contents  
3.45 High-definition multimedia interface (HDMI)  
- consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.46 Debug infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Pinouts, pin descriptions and alternate functions . . . . . . . . . . . . . . . . 53  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
4
5
6
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 93  
Embedded reset and power control block characteristics . . . . . . . . . . . 94  
Embedded reference voltage characteristics . . . . . . . . . . . . . . . . . . . . . 95  
Embedded USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . 96  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical and maximum current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
I/O system current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
6.3.8  
6.3.9  
Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
High-speed external user clock generated from an external source . . . . . . . . .105  
Low-speed external user clock generated from an external source . . . . . . . . . .106  
High-speed external clock generated from a crystal/ceramic resonator. . . . . . .107  
Low-speed external clock generated from a crystal/ceramic resonator . . . . . . .108  
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
48 MHz high-speed internal RC oscillator (HSI48). . . . . . . . . . . . . . . . . . . . . . .109  
64 MHz high-speed internal RC oscillator (HSI). . . . . . . . . . . . . . . . . . . . . . . . .110  
4 MHz low-power internal RC oscillator (CSI) . . . . . . . . . . . . . . . . . . . . . . . . . .111  
DS13313 Rev 2  
5/227  
7
Contents  
STM32H723xE/G  
Low-speed internal (LSI) RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.11  
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . . . . . . .117  
Designing hardened software to avoid noise problems . . . . . . . . . . . . . . . . . . .117  
Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 118  
Electrostatic discharge (ESD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Functional susceptibility to I/O current injection . . . . . . . . . . . . . . . . . . . . . . . . .119  
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
General input/output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Output driving current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
Output buffer timing characteristics (HSLV option disabled) . . . . . . . . . . . . . . .124  
Output buffer timing characteristics (HSLV option enabled). . . . . . . . . . . . . . . .126  
Analog switch between ports Pxy_C and Pxy . . . . . . . . . . . . . . . . . . . . . . . . . .127  
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
6.3.18 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Asynchronous waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
Synchronous waveforms and timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
NAND controller waveforms and timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
SDRAM waveforms and timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
6.3.19 Octo-SPI interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
6.3.20 Delay block (DLYB) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.21 16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
General PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
6.3.22 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
6.3.23 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
6.3.24 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 174  
6.3.25 Analog temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . 175  
6.3.26 Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . 176  
6.3.27 Temperature and V  
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
BAT  
6.3.28 Voltage booster for analog switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
6.3.29 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
6.3.30 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
6/227  
DS13313 Rev 2  
STM32H723xE/G  
Contents  
6.3.31 Digital filter for Sigma-Delta Modulators (DFSDM) characteristics . . . 181  
6.3.32 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 184  
6.3.33 Parallel synchronous slave interface (PSSI) characteristics . . . . . . . . 185  
6.3.34 LCD-TFT controller (LTDC) characteristics . . . . . . . . . . . . . . . . . . . . . 186  
6.3.35 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
6.3.36 Low-power timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
6.3.37 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
USART interface characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
SPI interface characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
I2S Interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
MDIO characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
SD/SDIO MMC card host interface (SDMMC) characteristics . . . . . . . . . . . . . .200  
USB OTG_FS characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
USB OTG_HS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
Ethernet interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
JTAG/SWD interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
7.1  
7.2  
7.3  
7.4  
7.5  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Device marking for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Device marking for TFBGA100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Device marking for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Device marking for UFBGA144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
7.5.1  
Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
DS13313 Rev 2  
7/227  
7
List of tables  
STM32H723xE/G  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
STM32H723xE/G features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
System versus domain low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
STM32H723 pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
STM32H723 pin alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Supply voltage and maximum temperature configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 92  
VCAP operating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 93  
Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
USB regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Typical and maximum current consumption in Run mode,  
code with data processing running from ITCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Typical and maximum current consumption in Run mode, code with data processing  
running from Flash memory, cache ON. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Typical and maximum current consumption in Run mode,  
code with data processing running from Flash memory, cache OFF. . . . . . . . . . . . . . . . 100  
Typical consumption in Run mode and corresponding performance  
Table 21.  
Table 22.  
Table 23.  
versus code position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical current consumption in Autonomous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical current consumption in Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical current consumption in Stop mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Typical current consumption in Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Typical and maximum current consumption in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . 102  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
4-50 MHz HSE oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
CSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
PLL1 characteristics (wide VCO frequency range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
PLL1 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
PLL2 and PLL3 characteristics (wide VCO frequency range) . . . . . . . . . . . . . . . . . . . . . 114  
PLL2 and PLL3 characteristics (medium VCO frequency range) . . . . . . . . . . . . . . . . . . . 115  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
8/227  
DS13313 Rev 2  
STM32H723xE/G  
List of tables  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Output voltage characteristics for all I/Os except PC13, PC14 and PC15 . . . . . . . . . . . . 122  
Output voltage characteristics for PC13, PC14 and PC15 . . . . . . . . . . . . . . . . . . . . . . . . 123  
Output timing characteristics (HSLV OFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Output timing characteristics (HSLV ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Pxy_C and Pxy analog switch characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 130  
Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 130  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 132  
Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 132  
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 134  
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 135  
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 141  
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
LPSDR SDRAM Write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus . . . . . . . . . . . . 153  
Delay Block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
16-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Minimum sampling time vs RAIN (16-bit ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
16-bit ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Minimum sampling time vs RAIN (12-bit ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
12-bit ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Digital temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
BAT  
BAT  
Temperature monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Voltage booster for analog switch characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
DS13313 Rev 2  
9/227  
10  
List of tables  
STM32H723xE/G  
Table 97.  
Table 98.  
Table 99.  
DFSDM measured timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
PSSI transmit characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 100. PSSI receive characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 101. LTDC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Table 102. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 103. LPTIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Table 104. Minimum i2c_ker_ck frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 105. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Table 106. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 107. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
2
Table 108. I S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Table 109. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
Table 110. MDIO Slave timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Table 111. Dynamics characteristics: SD / MMC characteristics, VDD=2.7 to 3.6 V . . . . . . . . . . . . . 200  
Table 112. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V. . . . . . . . . . . . . . . 201  
Table 113. USB OTG_FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Table 114. Dynamics characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Table 115. Dynamics characteristics: Ethernet MAC signals for SMI . . . . . . . . . . . . . . . . . . . . . . . . 205  
Table 116. Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 206  
Table 117. Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Table 118. Dynamics JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Table 119. Dynamics SWD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Table 120. LQPF100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Table 121. TFBGA100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Table 122. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 215  
Table 123. LQFP144 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Table 124. UFBGA144 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Table 125. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 221  
Table 126. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Table 127. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
10/227  
DS13313 Rev 2  
STM32H723xE/G  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32H723xE/G block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM32H723xE/G bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
UFBGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 10. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 11. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 12. External capacitor C  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
EXT  
Figure 13. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 14. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 15. Typical application with an 8 MHz crystal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 16. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 17. VIL/VIH for all I/Os except BOOT0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 18. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 19. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 129  
Figure 20. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 131  
Figure 21. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 22. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 23. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 24. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 25. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 26. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Figure 27. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 28. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 145  
Figure 29. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 146  
Figure 30. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 31. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 32. OCTOSPI SDR read/write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 33. OCTOSPI DTR mode timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 34. OCTOSPI Hyperbus clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 35. OCTOSPI Hyperbus read timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 36. OCTOSPI Hyperbus write timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 37. ADC accuracy characteristics (12-bit resolution) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 38. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 39. Power supply and reference decoupling (V  
Figure 40. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . 163  
). . . . . . . . . . . . . . . . 163  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 41. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 42. Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 43. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 44. LCD-TFT horizontal timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 45. LCD-TFT vertical timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Figure 46. USART timing diagram in Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Figure 47. USART timing diagram in Slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Figure 48. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
DS13313 Rev 2  
11/227  
12  
List of figures  
STM32H723xE/G  
(1)  
Figure 49. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
(1)  
Figure 50. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
2
(1)  
Figure 51. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
2
(1)  
Figure 52. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Figure 53. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Figure 54. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Figure 55. MDIO Slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Figure 56. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 57. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 58. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Figure 59. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Figure 60. Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Figure 61. Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
Figure 62. Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Figure 63. JTAG timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 64. SWD timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Figure 65. LQFP100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Figure 66. LQFP100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Figure 67. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Figure 68. TFBGA100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 69. TFBGA100 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 70. TFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Figure 71. LQFP144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 72. LQFP144 package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Figure 73. LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 74. UFBGA144 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
Figure 75. UFBGA144 package recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Figure 76. UFBGA144 marking example (package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
12/227  
DS13313 Rev 2  
STM32H723xE/G  
Introduction  
1
Introduction  
This document provides information on STM32H723xE/G microcontrollers, such as  
description, functional overview, pin assignment and definition, packaging, and ordering  
information.  
This document should be read in conjunction with the STM32H723xE/G reference manual  
(RM0468), available from the STMicroelectronics website www.st.com.  
®(a)  
®
®
For information on the Arm  
Cortex -M7 core, refer to the Cortex -M7 Technical  
Reference Manual, available from the http://www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS13313 Rev 2  
13/227  
52  
 
Description  
STM32H723xE/G  
2
Description  
®
®
STM32H723xE/G devices are based on the high-performance Arm Cortex -M7 32-bit  
RISC core operating at up to 550 MHz. The Cortex® -M7 core features a floating point unit  
®
(FPU) which supports Arm double-precision (IEEE 754 compliant) and single-precision  
data-processing instructions and data types. The Cortex -M7 core includes 32 Kbytes of  
instruction cache and 32 Kbytes of data cache. STM32H723xE/G devices support a full set  
of DSP instructions and a memory protection unit (MPU) to enhance application security.  
STM32H723xE/G devices incorporate high-speed embedded memories with up to 1 Mbyte  
of Flash memory, up to 564 Kbytes of RAM (including 192 Kbytes that can be shared  
between ITCM and AXI, plus 64 Kbytes exclusively ITCM, plus 128 Kbytes exclusively AXI,  
128 Kbyte DTCM, 48 Kbytes AHB and 4 Kbytes of backup RAM), as well as an extensive  
range of enhanced I/Os and peripherals connected to APB buses, AHB buses, 2x32-bit  
multi-AHB bus matrix and a multi layer AXI interconnect supporting internal and external  
memory access. To improve application robustness, all memories feature error code  
correction (one error correction, two error detections).  
The devices embed peripherals allowing mathematical/arithmetic function acceleration  
(CORDIC co-processor for trigonometric functions and FMAC unit for filter functions). All the  
devices offer three ADCs, two DACs, two operational amplifiers, two ultra-low power  
comparators, a low-power RTC, 4 general-purpose 32-bit timers, 12 general-purpose 16-bit  
timers including two PWM timers for motor control, five low-power timers, a true random  
number generator (RNG). The devices support four digital filters for external sigma-delta  
modulators (DFSDM). They also feature standard and advanced communication interfaces.  
Standard peripherals  
2
Five I Cs  
Five USARTs, five UARTs and one LPUART  
2
2
Six SPIs, four I Ss in Half-duplex mode. To achieve audio class accuracy, the I S  
peripherals can be clocked by a dedicated internal audio PLL or by an external  
clock to allow synchronization. (Note that the five USARTs also provide SPI slave  
capability.)  
Two SAI serial audio interfaces  
One SPDIFRX interface with four inputs  
One SWPMI (Single Wire Protocol Master Interface)  
Management Data Input/Output (MDIO) slaves  
Two SDMMC interfaces  
A USB OTG high-speed interface with full-speed capability (with the ULPI)  
Two FDCANs plus one TT-FDCAN interface  
An Ethernet interface  
Chrom-ART Accelerator  
HDMI-CEC  
14/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Description  
Advanced peripherals including  
A flexible memory control (FMC) interface  
Two Octo-SPI memory interfaces  
A camera interface for CMOS sensors  
An LCD-TFT display controller  
Refer to Table 1: STM32H723xE/G features and peripheral counts for the list of peripherals  
available on each part number.  
STM32H723xE/G devices operate in the –40 to +85 °C ambient temperature range from a  
1.62 to 3.6 V power supply. The supply voltage can drop down to 1.62 V by using an  
external power supervisor (see Section 3.7.2: Power supply supervisor) and connecting the  
PDR_ON pin to V . Otherwise the supply voltage must stay above 1.71 V with the  
SS  
embedded power voltage detector enabled.  
Dedicated supply inputs for USB are available to allow a greater power supply choice.  
A comprehensive set of power-saving modes allows the design of low-power applications.  
STM32H723xE/G devices are offered in several packages ranging from 100 to 144  
pins/balls. The set of included peripherals changes with the device chosen.  
These features make STM32H723xE/G microcontrollers suitable for a wide range of  
applications:  
Motor drive and application control  
Medical equipment  
Industrial applications: PLC, inverters, circuit breakers  
Printers, and scanners  
Alarm systems, video intercom, and HVAC  
Home audio appliances  
Mobile applications, Internet of Things  
Wearable devices: smart watches.  
Figure 1 shows the device block diagram.  
DS13313 Rev 2  
15/227  
52  
Description  
STM32H723xE/G  
Figure 1. STM32H723xE/G block diagram  
D[7:0],DP, DM, STP,  
D123DIR,NXT,ULPI:CK  
D0DIR, , D[7:0], DIR,  
MII / RMII  
MDIO  
as AF  
To APB1-2  
peripherals  
CMD, CKas AF ID, VBUS  
AHB1  
(275MHz)  
D-TCM  
64KB  
D-TCM  
64KB  
PHY  
OTG_HS  
I-TCM 64KB  
ETHER  
MAC  
DMA1 DMA2  
8 Stream 8 Stream  
SDMMC2  
FIFO  
Shared AXI  
I-TCM 192KB  
128 KB AXI  
SRAM  
AXI/AHB12 (275MHz)  
AHBP  
DMA/  
FIFO  
DMA/  
FIFO  
NJTRST, JTDI,  
JTCK/SWCLK  
JTDO/SWDIO, JTDO  
Arm CPU  
Cortex-M7  
550 MHz  
FIFOs  
FIFOs  
JTAG/SW  
ETM  
AXIM  
1 MB FLASH  
FMC  
TRACECLK  
TRACED[3:0]  
32-bit AHB BUS-MATRIX  
I-Cache  
32KB  
D-Cache  
32KB  
DMA  
Mux1  
FMC_signal
AHBS  
SRAM1 SRAM2  
16 KB 16 KB  
OCTOSPI1  
signals  
16 Streams  
FIFO  
MDMA  
RNG  
CORDIC  
FMAC  
ADC1  
Up to 20 analog inputs Most  
are common to ADC1 & 2  
ADC2  
CHROM-ART  
(DMA2D)  
FIFO  
FIFO  
AHB/APB  
32b  
16b  
16b  
32b  
32b  
32b  
TIM2  
TIM3  
CH[4;1], ETR as AF  
CH[4;1], ETR as AF  
CH[4;1], ETR as AF  
LCD_R[7:0], LCD_G[7:0],  
LCD_B[7:0], LCD_HSYNC,  
LCD_VSYNC, LCD_DE, LCD_CLK  
LCD-TFT  
OCTOSPI2  
signals  
TIM4  
WWDG  
AHB/APB  
DLYBOS1-2  
TIM5  
CH[4;1], ETR as AF  
DLYBSD1  
TIM23  
CH[4;1], ETR as AF  
CH[4;1], ETR as AF  
CH[2;1] as AF  
TIM6  
TIM7  
16b  
16b  
D[7:0], D123DIR, D0DIR,  
CMD, CKas AF  
TIM24  
FIFO  
SDMMC1  
AXI/AHB34 (275MHz)  
AHB2 (275MHz)  
16b  
TIM12  
SWPMI  
DLYBSD2  
DCMI  
TIM13  
CH1 as AF  
CH1 as AF  
16b  
16b  
TIM14  
HSYNC, VSYNC, PIXCLK, D[13:0]  
PDCK, DE, RDY, D[15:0]  
AHB/APB  
PSSI  
USART2  
USART3  
UART4  
UART5  
UART7  
UART8  
SPI2/I2S2  
SPI3/I2S3  
RX, TX, CK, CTS, RTS, DE as A  
RX, TX, CK, CTS, RTS, DE as A  
RX, TX, CTS, RTS, DE as AF  
RX, TX, CTS, RTS, DE as AF  
CKOUT, DATIN[7:0], CKIN[7:0]  
DFSDM  
SAI1  
SD_[A;B], SCK_[A;B], FS_[A;B],  
MCLK_[A;B], D[3:1], CK[2:1] as AF  
RX, TX, CTS, RTS, DE as AF  
RX, TX, CTS, RTS, DE as AF  
MOSI, MISO, SCK, NSS /  
SDO, SDI, CK, WS, MCK, as AF  
MOSI, MISO, SCK, NSS /  
SDO, SDI, CK, WS, MCK, as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
SPI5  
TIM17  
TIM16  
TIM15  
SPI4  
MOSI, MISO, SCK, NSS as AF  
1 compl. chan.(TIM17_CH1N),  
1 chan. (TIM17_CH1, BKIN as AF  
1 compl. chan.(TIM16_CH1N),  
1 chan. (TIM16_CH1, BKIN as AF  
I2C1/SMBUS  
I2C2/SMBUS  
I2C3/SMBUS  
2 compl. chan.(TIM15_CH1[1:2]N),  
2 chan. (TIM_CH15[1:2], BKIN as AF  
MOSI, MISO, SCK, NSS as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
MOSI, MISO, SCK, NSS /  
SDO, SDI, CK, WS, MCK, as AF  
SPI1/I2S1  
UART9  
DMA  
I2C5/SMBUS  
USBCR  
Mux2  
RX, TX, CTS, RTS, DE as AF  
AHB4  
DAP  
BDMA  
USART10  
RX, TX, CK, CTS, RTS, DE as AF  
RX, TX, CK, CTS, RTS, DE as AF  
RX, TX, CK, CTS, RTS, DE as AF  
MDC, MDIO as AF  
MDIOS  
USART6  
USART1  
TX, RX, RXFD_MODE,  
RAM  
I/F  
32-bit AHB BUS-MATRIX  
16 KB SRAM  
TT-FDCAN1  
FDCAN2  
TXFD_MODE as AF  
TX, RX, RXFD_MODE,  
TXFD_MODE as AF  
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2  
as AF  
TX, RX, RXFD_MODE,  
TIM1/PWM  
16b  
FDCAN3  
TXFD_MODE as AF  
HSEM  
CRC  
CH[1:4]N, CH[1:4], ETR, BKIN, BKIN2  
as AF  
4 KB BKP  
SPDIFRX1  
HDMI-CEC  
DAC  
IN[1:4] as AF  
TIM8/PWM  
16b  
RAM  
CEC as AF  
Up to 17 analog inputs  
Some common to ADC1 and 2  
ADC3  
OUT1, OUT2 as AF  
PA..H[15:0]  
PJ,PK[11:0]  
GPIO PORTA.. H  
LPTIM1  
IN1, IN2, ETR, OUT as AF  
16b  
GPIO PORTJ,K  
RCC  
Reset &  
control  
OPAMP1  
OPAMP2  
VINM, VINP, VOUT as AF  
VINM, VINP, VOUT as AF  
@VDD  
SD_[A;B], SCK_[A;B], FS_[A;B],  
MCLK_[A;B], D[3:1], CK[2:1] as AF  
SAI4  
VCORE  
BBgen + POWER MNGT  
VDD  
VSS  
VCAP, VDDLDO  
COMPx_INP, COMPx_INM,  
Voltage  
regulator  
3.3 to 1.2V  
COMP1&2  
COMPx_OUT as AF  
LPTIM5  
16b  
OUT as AF  
OUT as AF  
AHB/APB  
VREF  
SYSCFG  
EXTI WKUP  
IWDG  
VBAT  
LPTIM4  
16b  
@VSW  
OSC32_IN  
OSC32_OUT  
LPTIM3  
16b  
XTAL 32 kHz  
OUT as AF  
RTC  
Backup registers  
SCL, SDA, SMBA as AF  
I2C4  
@VDD  
TS, TAMP1, TAMP3,  
OUT, REFIN  
MOSI, MISO, SCK, NSS /  
SDO, SDI, CK, WS, MCK, as AF  
SPI6/I2S6  
AWU  
HSI  
HSI RC  
Temperature  
sensor  
RX, TX, CK, CTS, RTS as AF  
LPUART1  
HSI48  
HSI48 RC  
CSI RC  
LSI RC  
CSI  
LSI  
LPTIM2  
16b  
IN1, IN2, ETR, OUT as AF  
@VDD  
OSC_IN  
OSC_OUT  
XTAL OSC  
4- 48 MHz  
PLL1+PLL2+PLL3  
@VDD  
SUPPLY SUPERVISION  
POR/PDR/BOR  
POR  
reset  
Int  
VDDA, VSSA  
NRESET  
WKUP[1;2;4;6]  
PVD  
MSv52561V3  
16/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Description  
Table 1. STM32H723xE/G features and peripheral counts  
STM32H723 STM32H723 STM32H723 STM32H723  
Peripherals  
VGH/VEH  
VGT/VET  
ZGT/ZET  
ZGI/ZEI  
Flash memory (Kbytes)(1)  
SRAM mapped onto AXI bus  
1024 / 512  
1024 / 512  
1024 / 512  
1024 / 512  
128  
16  
16  
16  
192  
64  
128  
4
SRAM1 (D2 domain)  
SRAM2 (D2 domain)  
SRAM4 (D3 domain)  
SRAM (Kbytes)  
RAM shared between ITCM and AXI (Kbytes)  
ITCM RAM (instruction)  
TCM RAM (Kbytes)  
DTCM RAM (data)  
Backup SRAM (Kbytes)  
Interface  
1
NOR Flash  
memory/RAM  
controller  
-
-
yes  
yes  
yes  
yes  
Multiplexed I/O  
FMC  
NOR Flash  
memory  
yes  
yes  
16-bit NAND  
yes  
-
yes  
-
yes  
yes  
yes  
yes  
Flash memory  
16-bit SDRAM  
controller  
GPIO  
80  
80  
112  
2
114  
2
Octo-SPI interface  
OTFDEC  
CORDIC  
FMAC  
2(2)  
2(2)  
no  
yes  
yes  
General purpose 32 bits  
General purpose 16 bits  
2
2
2
2
10  
10  
10  
10  
Advanced control  
(PWM)  
2
2
2
2
Timers  
Basic  
2
5
1
2
5
1
2
5
1
2
5
1
Low-power  
RTC  
Window watchdog /  
2
4
2
4
2
4
2
4
independent watchdog  
Wakeup pins  
DS13313 Rev 2  
17/227  
52  
 
Description  
STM32H723xE/G  
Table 1. STM32H723xE/G features and peripheral counts (continued)  
STM32H723 STM32H723 STM32H723 STM32H723  
Peripherals  
VGH/VEH  
VGT/VET  
ZGT/ZET  
ZGI/ZEI  
Tamper pins  
2
2
2
2
Random number generator  
Cryptographic accelerator  
yes  
no  
SPI / I2S  
5/4  
5
5/4  
5
6/4  
5
6/4  
5
I2C  
USART/UART/  
LPUART  
5/5/1  
2/1(3)  
5/5/1  
2/1(3)  
5/5/1  
2/1  
5/5/1  
2/1  
SAI/PDM  
SPDIFRX  
1
1
1
1
2
Communication  
interfaces  
HDMI-CEC  
SWPMI  
MDIO  
SDMMC  
FDCAN/TT-FDCAN  
USB [OTG_HS(ULPI)/FS(PHY)]  
Ethernet [MII/RMII]  
2/1  
2/1  
2/1  
2/1  
1 [1/1]  
1 [1/1]  
1 [1/1]  
1 [1/1]  
1 [1/1]  
1 [1/1]  
1 [1/1]  
1 [1/1]  
Camera interface/PSSI  
LCD-TFT  
yes  
yes  
yes  
yes  
yes  
Chrom-ART Accelerator (DMA2D)  
yes  
2
Number of ADCs  
Number of direct  
channelsADC1/ADC2  
2/2  
3/2  
9/8  
0
0
2/2  
4/3  
16-bit ADCs  
12-bit ADCs  
Number of fast channels  
ADC1/ADC2  
3/2  
4/3  
Number of slow channels  
ADC1/ADC2  
11/10  
12/11  
12/11  
Number of ADCs  
1
Number of direct channels  
Number of fast channels  
Number of slow channels  
Present in IC  
2
6
9
2
2
0
2
6
4
2
6
9
yes  
2
Number of channels  
Comparators  
12-bit DAC  
DFSDM  
2
Operational amplifiers  
Present in IC  
2
yes  
18/227  
DS13313 Rev 2  
STM32H723xE/G  
Description  
Table 1. STM32H723xE/G features and peripheral counts (continued)  
STM32H723 STM32H723 STM32H723 STM32H723  
Peripherals  
VGH/VEH  
VGT/VET  
ZGT/ZET  
ZGI/ZEI  
Maximum CPU frequency  
USB separate supply pad  
USB internal regulator  
LDO  
550 MHz  
yes  
-
-
-
yes  
-
yes  
-
yes  
SMPS step-down converter  
-
-
-
-
1.62 to  
3.6 V  
1.71 to  
3.6 V  
Operating voltage  
1.62 to 3.6 V  
Ambient temperature  
Junction temperature  
-40°C to +85°C  
-40°C to +125°C  
Operating  
temperatures  
Package  
TFBGA100  
LQFP100  
LQFP144  
UFBGA144  
1. STM32H723xGy products have 1024 Kbytes of Flash memory, whereas STM32H723xEy products have 512 Kbytes  
2. The two Octo-SPI/Quad-SPI interfaces are available only in Muxed mode.  
3. For limitations on peripheral features depending on packages, check the available pins/balls in Table 7: STM32H723 pin  
and ball descriptions.  
DS13313 Rev 2  
19/227  
52  
Functional overview  
STM32H723xE/G  
3
Functional overview  
3.1  
Arm® Cortex®-M7 with FPU  
®
®
The Arm Cortex -M7 with double-precision FPU processor is the latest generation of Arm  
processors for embedded systems. It was developed to provide a low-cost platform that  
meets the needs of MCU implementation, with a reduced pin count and optimized power  
consumption, while delivering outstanding computational performance and low interrupt  
latency.  
®
The Cortex -M7 processor is a highly efficient high-performance featuring:  
Six-stage dual-issue pipeline  
Dynamic branch prediction  
Harvard architecture with L1 caches (32 Kbytes of I-cache and 32 Kbytes of D-cache)  
64-bit AXI interface  
64-bit ITCM interface  
2x32-bit DTCM interfaces  
The following memory interfaces are supported:  
Separate Instruction and Data buses (Harvard Architecture) to optimize CPU latency  
Tightly Coupled Memory (TCM) interface designed for fast and deterministic SRAM  
accesses  
AXI Bus interface to optimize Burst transfers  
Dedicated low-latency AHB-Lite peripheral bus (AHBP) to connect to peripherals.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
It also supports single and double precision FPU (floating point unit) speeds up software  
development by using metalanguage development tools, while avoiding saturation.  
Figure 1 shows the general block diagram of the STM32H723xE/G family.  
3.2  
Memory protection unit (MPU)  
The memory protection unit (MPU) manages the CPU access rights and the attributes of the  
system resources. It has to be programmed and enabled before use. Its main purposes are  
to prevent an untrusted user program to accidentally corrupt data used by the OS and/or by  
a privileged task, but also to protect data processes or read-protect memory regions.  
The MPU defines access rules for privileged accesses and user program accesses. It  
allows defining up to 16 protected regions that can in turn be divided into up to 8  
independent subregions, where region address, size, and attributes can be configured. The  
protection area ranges from 32 bytes to 4 Gbytes of addressable memory.  
When an unauthorized access is performed, a memory management exception is  
generated.  
20/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Functional overview  
3.3  
Memories  
3.3.1  
Embedded Flash memory  
The STM32H723xE/G devices embed up to 1 Mbyte of Flash memory that can be used for  
storing programs and data.  
The Flash memory is organized as 266-bit Flash words memory that can be used for storing  
both code and data constants. Each word consists of:  
one Flash word (8 words, 32 bytes or 256 bits)  
10 ECC bits (single-error correction and double-error detection).  
The Flash memory is organized as follows:  
up to 1 Mbyte of user Flash memory block containing eight user sectors of 128 Kbytes  
(4 K Flash memory words)  
128 Kbytes of system Flash memory from which the device can boot  
2 Kbytes (64 Flash words) of user option bytes for user configuration  
3.3.2  
Embedded SRAM  
All devices feature:  
from 128 to 320 Kbytes of AXI-SRAM mapped onto the AXI bus on D1 domain  
SRAM1 mapped on D2 domain: 16 Kbytes  
SRAM2 mapped on D2 domain: 16 Kbytes  
SRAM4 mapped on D3 domain: 16 Kbytes  
4 Kbytes of backup SRAM  
The content of this area is protected against possible unwanted write accesses, and  
can be retained in Standby or V  
mode.  
BAT  
RAM mapped to TCM interface (ITCM and DTCM):  
Both ITCM and DTCM RAMs are 0 wait state memories. They can be accessed either  
from the CPU or the MDMA (even in Sleep mode) through a specific AHB slave of the  
Cortex®-M7CPU(AHBSAHBP):  
64 to 256 Kbytes of ITCM-RAM (instruction RAM)  
This RAM is connected to ITCM 64-bit interface designed for execution of critical  
real-times routines by the CPU.  
128 Kbytes of DTCM-RAM (2x 64-Kbyte DTCM-RAMs on 2x32-bit DTCM ports)  
The DTCM-RAM could be used for critical real-time data, such as interrupt service  
routines or stack/heap memory. Both DTCM-RAMs can be used in parallel (for  
load/store operations) thanks to the Cortex®-M7 dual issue capability.  
The MDMA can be used to load code or data in ITCM or DTCM RAMs. As reflected  
above, 192 Kbyte of RAM can be used either for AXI SRAM or ITCM, with a 64Kbyte  
granularity.  
DS13313 Rev 2  
21/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
Error code correction (ECC)  
Over the product lifetime, and/or due to external events such as radiations, invalid bits in  
memories may occur. They can be detected and corrected by ECC. This is an expected  
behavior that has to be managed at final-application software level in order to ensure data  
integrity through ECC algorithms implementation.  
SRAM data are protected by ECC:  
7 ECC bits are added per 32-bit word.  
8 ECC bits are added per 64-bit word for AXI-SRAM and ITCM-RAM.  
The ECC mechanism is based on the SECDED algorithm. It supports single-error correction  
and double-error detection.  
22/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Functional overview  
3.4  
Boot modes  
At startup, the boot memory space is selected by the BOOT pin and BOOT_ADDx option  
bytes, allowing to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF  
which includes:  
All Flash address space  
All RAM address space: ITCM, DTCM RAMs and SRAMs  
The System memory bootloader  
The boot loader is located in non-user System memory. It is used to reprogram the Flash  
memory through a serial interface (USART, I2C, SPI, FDCAN, USB-DFU). Refer to  
application note AN2606 “STM32 microcontroller System memory Boot mode” for details.  
3.5  
CORDIC co-processor (CORDIC)  
The CORDIC co-processor provides hardware acceleration of certain mathematical  
functions, notably trigonometric, commonly used in motor control, metering, signal  
processing and many other applications.  
It speeds up the calculation of these functions compared to a software implementation,  
allowing a lower operating frequency, or freeing up processor cycles in order to perform  
other tasks.  
The filter mathematical accelerator unit performs arithmetic operations on vectors. It  
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,  
which allows it to index vector elements held in local memory.  
The unit includes support for circular buffers on input and output, which allows digital filters  
to be implemented. Both finite and infinite impulse response filters can be realized.  
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing  
up the processor for other tasks. In many cases it can accelerate such calculations  
compared to a software implementation, resulting in a speed-up of time critical tasks.  
CORDIC features  
24-bit CORDIC rotation engine  
Circular and Hyperbolic modes  
Rotation and Vectoring modes  
Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root,  
Natural logarithm  
Programmable precision up to 20-bit  
Fast convergence: 4 bits per clock cycle  
Supports 16-bit and 32-bit fixed point input and output formats  
Low latency AHB slave interface  
Results can be read as soon as ready without polling or interrupt  
DMA read and write channels  
DS13313 Rev 2  
23/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
3.6  
Filter mathematical accelerator (FMAC)  
The filter mathematical accelerator unit performs arithmetic operations on vectors. It  
comprises a multiplier/accumulator (MAC) unit, together with address generation logic,  
which allows it to index vector elements held in local memory.  
The unit includes support for circular buffers on input and output, which allows digital filters  
to be implemented. Both finite and infinite impulse response filters can be realized.  
The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing  
up the processor for other tasks. In many cases it can accelerate such calculations  
compared to a software implementation, resulting in a speed-up of time critical tasks.  
FMAC features  
16 x 16-bit multiplier  
24+2-bit accumulator with addition and subtraction  
16-bit input and output data  
256 x 16-bit local memory  
Up to three areas can be defined in memory for data buffers (two input, one output),  
defined by programmable base address pointers and associated size registers  
Input and output sample buffers can be circular  
Buffer “watermark” feature reduces overhead in interrupt mode  
Filter functions: FIR, IIR (direct form 1)  
AHB slave interface  
DMA read and write data channels  
3.7  
Power supply management  
3.7.1  
Power supply scheme  
STM32H723xE/G power supply voltages are the following:  
V
pins.  
= 1.62 to 3.6 V: external power supply for I/Os, provided externally through V  
DD  
DD  
V
= 1.62 to 3.6 V: supply voltage for the internal regulator supplying V  
DDLDO  
CORE  
V
= 1.62 to 3.6 V: external analog power supplies for ADC, DAC, COMP and  
DDA  
OPAMP.  
V
: allows the support of a VDD supply different from 3.3 V while powering the  
DD33USB  
USB transceiver with 3.3V on V  
.
DD33USB  
V
V
= 1.2 to 3.6 V: power supply for the V  
domain when V is not present.  
BAT  
SW DD  
: V  
supply voltage, which values depend on voltage scaling (1.0 V, 1.1 V,  
CAP  
CORE  
1.2 V or 1.35 V). They are configured through VOS bits in PWR_D3CR register. The  
domain is split into the following power domains that can be independently  
V
CORE  
switch off.  
®
D1 domain containing some peripherals and the Cortex -M7 core  
D2 domain containing a large part of the peripherals  
D3 domain containing some peripherals and the system control  
24/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Functional overview  
During power-up and power-down phases, the following power sequence requirements  
must be respected (see Figure 2):  
When V is below 1 V, other power supplies (V  
, V  
) must remain below  
DD33USB  
DD  
DDA  
V
+ 300 mV.  
DD  
When V is above 1 V, all power supplies are independent.  
DD  
During the power-down phase, V can temporarily become lower than other supplies only  
DD  
if the energy provided to the microcontroller remains below 1 mJ. This allows external  
decoupling capacitors to be discharged with different time constants during the power-down  
transient phase.  
Figure 2. Power-up/power-down sequence  
V
3.6  
(1)  
VDDX  
VDD  
VBOR0  
1
0.3  
Power-on  
Operating mode  
VDDX < VDD + 300 mV  
Power-down  
time  
Invalid supply area  
VDDX independent from VDD  
MSv47490V1  
1. VDDx refers to any power supply among VDDA, VDD33USB  
.
3.7.2  
Power supply supervisor  
The devices have an integrated power-on reset (POR)/ power-down reset (PDR) circuitry  
coupled with a Brownout reset (BOR) circuitry:  
Power-on reset (POR)  
The POR supervisor monitors V power supply and compares it to a fixed threshold.  
DD  
The devices remain in Reset mode when V is below this threshold,  
DD  
Power-down reset (PDR)  
The PDR supervisor monitors V power supply. A reset is generated when V drops  
DD  
DD  
below a fixed threshold.  
The PDR supervisor can be enabled/disabled through PDR_ON pin.  
Brownout reset (BOR)  
The BOR supervisor monitors V power supply. Three BOR thresholds (from 2.1 to  
DD  
2.7 V) can be configured through option bytes. A reset is generated when V drops  
DD  
below this threshold.  
DS13313 Rev 2  
25/227  
52  
 
 
Functional overview  
STM32H723xE/G  
3.7.3  
Voltage regulator  
The same voltage regulator supplies the 3 power domains (D1, D2 and D3). D1 and D2 can  
be independently switched off.  
Voltage regulator output can be adjusted according to application needs through 6 power  
supply levels:  
Run mode (VOS0 to VOS3)  
Scale 0: boosted performance  
Scale 1: high performance  
Scale 2: medium performance and consumption  
Scale 3: optimized performance and low-power consumption  
Stop mode (SVOS3 to SVOS5)  
Scale 3: peripheral with wakeup from Stop mode capabilities (UART, SPI, I2C,  
LPTIM) are operational  
Scale 4 and 5 where the peripheral with wakeup from Stop mode is disabled. The  
peripheral functionality is disabled but wakeup from Stop mode is possible through  
GPIO or asynchronous interrupt.  
3.8  
Low-power strategy  
There are several ways to reduce power consumption on STM32H723xE/G:  
Decrease the dynamic power consumption by slowing down the system clocks even in  
Run mode and by individually clock gating the peripherals that are not used.  
Save power when the CPU is idle, by selecting among the available low-power modes  
according to the user application needs. This allows the best compromise between  
short startup time and low power consumption to be achieved, according to the  
available wakeup sources.  
The devices feature several low-power modes:  
CSleep (CPU clock stopped)  
CStop (CPU sub-system clock stopped)  
DStop (Domain bus matrix clock stopped)  
Stop (System clock stopped)  
DStandby (Domain powered down)  
Standby (System powered down)  
CSleep and CStop low-power modes are entered by the MCU when executing the WFI  
(Wait for Interrupt) or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit of  
®
the Cortex -Mx core is set after returning from an interrupt service routine.  
A domain can enter low-power mode (DStop or DStandby) when the processor, its  
subsystem and the peripherals allocated in the domain enter low-power mode.  
If part of the domain is not in low-power mode, the domain remains in the current mode.  
Finally the system can enter Stop or Standby when all EXTI wakeup sources are cleared  
and the power domains are in DStop or DStandby mode.  
26/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
D3 domain power mode  
Table 2. System versus domain low-power mode  
System power mode  
D1 domain power mode  
D2 domain power mode  
Run  
Stop  
DRun/DStop/DStandby  
DStop/DStandby  
DStandby  
DRun/DStop/DStandby  
DStop/DStandby  
DStandby  
DRun  
DStop  
Standby  
DStandby  
3.9  
Reset and clock controller (RCC)  
The clock and reset controller is located in D3 domain. The RCC manages the generation of  
all the clocks, as well as the clock gating and the control of the system and peripheral  
resets. It provides a high flexibility in the choice of clock sources and allows to apply clock  
ratios to improve the power consumption. In addition, on some communication peripherals  
that are capable to work with two different clock domains (either a bus interface clock or a  
kernel peripheral clock), thus the system frequency can be changed without modifying the  
baudrate.  
3.9.1  
Clock management  
The devices embed four internal oscillators, two oscillators with external crystal or  
resonator, two internal oscillators with fast startup time and three PLLs.  
The RCC receives the following clock source inputs:  
Internal oscillators:  
64 MHz HSI clock  
48 MHz RC oscillator  
4 MHz CSI clock  
32 kHz LSI clock  
External oscillators:  
HSE clock: 4-50 MHz (generated from an external source) or 4-48 MHz(generated  
from a crystal/ceramic resonator)  
LSE clock: 32.768 kHz  
The RCC provides three PLLs: one for system clock, two for kernel clocks.  
The system starts on the HSI clock. The user application can then select the clock  
configuration.  
DS13313 Rev 2  
27/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
3.9.2  
System reset sources  
Power-on reset initializes all registers while system reset reinitializes the system except for  
the debug, part of the RCC and power controller status registers, as well as the backup  
power domain.  
A system reset is generated in the following cases:  
Power-on reset (pwr_por_rst)  
Brownout reset  
Low level on NRST pin (external reset)  
Window watchdog  
Independent watchdog  
Software reset  
Low-power mode security reset  
Exit from Standby  
3.10  
General-purpose input/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,  
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)  
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog  
alternate functions. All GPIOs are high-current-capable and have speed selection to better  
manage internal noise, power consumption and electromagnetic emission.  
After reset, all GPIOs (except debug pins) are in Analog mode to reduce power  
consumption (refer to GPIOs register reset values in the device reference manual).  
The I/O configuration can be locked if needed by following a specific sequence in order to  
avoid spurious writing to the I/Os registers.  
3.11  
Bus-interconnect matrix  
The devices feature an AXI bus matrix, two AHB bus matrices and bus bridges that allow  
the interconnection of bus masters with bus slaves (see Figure 3).  
28/227  
DS13313 Rev 2  
 
 
 
Figure 3. STM32H723xE/G bus matrix  
AHBS  
ITCM  
CPU  
64 Kbyte  
Cortex-M7  
D$  
OR  
ITCM  
192 Kbyte  
I$  
Ethernet  
MAC  
DMA1  
DMA2  
SDMMC2 USBHS1  
32KB 32KB  
DTCM  
128 Kbyte  
SDMMC1 MDMA  
DMA2D  
LTDC  
D1-to-D2 AHB  
AXI SRAM  
192K byte  
SRAM1 16  
Kbyte  
SRAM2 16  
Kbyte  
Flash A  
Up to 1 Mbyte  
AHB1  
AHB2  
AXI SRAM  
128 Kbyte  
OCTOSPI1  
OCTOSPI2  
FMC  
APB1  
APB2  
APB3  
AHB3  
64-bit AXI bus matrix  
32-bit AHB bus matrix  
D1 domain  
D2 domain  
D2-to-D1 AHB  
D2-to-D3 AHB  
D1-to-D3 AHB  
32-bit AHB bus matrix  
BDMA  
D3 domain  
Legend  
AHB4  
APB4  
TCM AHB  
32-bit bus  
64-bit bus  
Bus multiplexer  
AXI  
APB  
SRAM4  
16 Kbyte  
Master interface  
Slave interface  
Backup  
SRAM  
4 Kbyte  
MSv65313V1  
 
Functional overview  
STM32H723xE/G  
3.12  
DMA controllers  
The devices feature four DMA instances and a DMA request router to unload CPU activity:  
A master direct memory access (MDMA)  
The MDMA is a high-speed DMA controller, which is in charge of all types of memory  
transfers (peripheral to memory, memory to memory, memory to peripheral), without  
any CPU action. It features a master AXI interface and a dedicated AHB interface to  
®
access Cortex -M7 TCM memories.  
The MDMA is located in D1 domain. It is able to interface with the other DMA  
controllers located in D2 domain to extend the standard DMA capabilities, or can  
manage peripheral DMA requests directly.  
Each of the 16 channels can perform single block transfers, repeated block transfers  
and linked list transfers.  
Two dual-port DMAs (DMA1, DMA2) located in D2 domain, with FIFO and request  
router capabilities.  
One basic DMA (BDMA) located in D3 domain, with request router capabilities.  
A DMA request multiplexer (DMAMUX)  
The DMA request router could be considered as an extension of the DMA controller. It  
routes the DMA peripheral requests to the DMA controller itself. This allowing  
managing the DMA requests with a high flexibility, maximizing the number of DMA  
requests that run concurrently, as well as generating DMA requests from peripheral  
output trigger or DMA event.  
3.13  
Chrom-ART Accelerator (DMA2D)  
The Chrom-Art Accelerator (DMA2D) is a specialized DMA dedicated to image manipulation.  
It can perform the following operations:  
Filling a part or the whole of a destination image with a specific color  
Copying a part or the whole of a source image into a part or the whole of a destination  
image  
Copying a part or the whole of a source image into a part or the whole of a destination  
image with a pixel format conversion  
Blending a part and/or two complete source images with different pixel format and copy  
the result into a part or the whole of a destination image with a different color format.  
All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel  
with indexed or direct color mode, including block based YCbCr to handle JPEG  
decoder output.  
The DMA2D has its own dedicated memories for CLUTs (color look-up tables).  
An interrupt can be generated when an operation is complete or at a programmed  
watermark.  
All the operations are fully automated and are running independently from the CPU or the  
DMAs.  
30/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
3.14  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller which is able to manage 16  
priority levels, and handle up to 140 maskable interrupt channels plus the 16 interrupt lines  
®
of the Cortex -M7 with FPU core.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support tail chaining  
Processor context automatically saved on interrupt entry, and restored on interrupt exit  
with no instruction overhead  
This hardware block provides flexible interrupt management features with minimum interrupt  
latency.  
3.15  
Extended interrupt and event controller (EXTI)  
The EXTI controller performs interrupt and event management. In addition, it can wake up  
the processor, power domains and/or D3 domain from Stop mode.  
The EXTI handles up to 80 independent event/interrupt lines split as 26 configurable events  
and 54 direct events.  
Configurable events have dedicated pending flags, active edge selection, and software  
trigger capable.  
Direct events provide interrupts or events from peripherals having a status flag.  
3.16  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
programmable polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
DS13313 Rev 2  
31/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
3.17  
Flexible memory controller (FMC)  
The FMC controller main features are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM (4 memory banks)  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories  
8-,16-bit data bus width  
Independent Chip Select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
Read FIFO for SDRAM controller  
The maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is the  
FMC kernel clock divided by 2.  
3.18  
Octo-SPI memory interface (OCTOSPI)  
The OCTOSPI is a specialized communication interface targeting single, dual, quad or octal  
SPI memories. The STM32H723xE/G embeds two separate Octo-SPI interfaces.  
Each OCTOSPI instance supports single/dual/quad/octal SPI formats. multiplexing of  
single/dual/quad/octal SPI over the same bus can be achieved using the integrated Octo-  
SPI I/O manager (OCTOSPIM).  
The OCTOSPI can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the OCTOSPI registers  
Status-polling mode: the external memory status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external memory is memory mapped and it is seen by the  
system as if it was an internal memory supporting both read and write operations.  
The OCTOSPI supports two frame formats supported by most external serial memories  
such as serial PSRAMs, serial NAND and serial NOR Flash memories, Hyper RAMs and  
Hyper Flash memories.  
Multi chip package (MCP) combining any of the above mentioned memory types can also  
be supported.  
The classical frame format with the command, address, alternate byte, dummy cycles  
and data phase  
The HyperBus™ frame format.  
32/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
3.19  
Analog-to-digital converters (ADCs)  
STM32H723xE/G devices embed three analog-to-digital converters, two of 16-bit resolution,  
and the third of 12-bit resolution. The 16-bit resolution ADCs can be configured as 16, 14,  
12, 10 or 8 bits. The 12-bit resolution ADC can be configured to 12, 10 or 8 bits.  
Each ADC shares up to 20 external channels, performing conversions in Single-shot or  
Scan mode. In Scan mode, automatic conversion is performed on a selected group of  
analog inputs.  
Additional logic functions embedded in the ADC interface allow:  
simultaneous sample and hold  
Interleaved sample and hold  
The ADC can be served by the DMA controller, thus allowing automatic transfer of ADC  
converted values to a destination location without any software action.  
In addition, an analog watchdog feature can accurately monitor the converted voltage of  
one, some, or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
To synchronize A/D conversion and timers, the ADCs can be triggered by any of the TIM1,  
TIM2, TIM3, TIM4, TIM6, TIM8, TIM15, TIM23, TIM24, and LPTIM1 timers.  
3.20  
Temperature sensor  
STM32H723xE/G devices embed a temperature sensor that generates a voltage (V ) that  
TS  
varies linearly with the temperature. This temperature sensor is internally connected to  
ADC3_IN17. The conversion range is between 1.7 V and 3.6 V. It can measure the device  
junction temperature ranging from 40 to +125°C.  
The temperature sensor have a good linearity, but it has to be calibrated to obtain a good  
overall accuracy of the temperature measurement. As the temperature sensor offset varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only. To improve the accuracy of  
the temperature sensor measurement, each device is individually factory-calibrated by ST.  
The temperature sensor factory calibration data are stored by ST in the System memory  
area, which is accessible in Read-only mode.  
3.21  
Digital temperature sensor (DTS)  
STM32H723xE/G devices embed a sensor that converts the temperature into a square  
wave the frequency of which is proportional to the temperature. The PCLK or the LSE clock  
can be used as the reference clock for the measurements. A formula given in the product  
reference manual allows calculation of the temperature according to the measured  
frequency stored in the DTS_DR register.  
DS13313 Rev 2  
33/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
3.22  
VBAT operation  
The V  
power domain contains the RTC, the backup registers and the backup SRAM.  
BAT  
To optimize battery duration, this power domain is supplied by V when available or by the  
DD  
voltage applied on VBAT pin (when V supply is not present). V  
power is switched  
DD  
BAT  
when the PDR detects that V dropped below the PDR level.  
DD  
The voltage on the VBAT pin could be provided by an external battery, a supercapacitor or  
directly by V , in which case, the V mode is not functional.  
DD  
BAT  
V
operation is activated when V is not present.  
DD  
BAT  
The V  
pin supplies the RTC, the backup registers and the backup SRAM.  
BAT  
Note:  
When the microcontroller is supplied from V  
, external interrupts and RTC alarm/events  
BAT  
do not exit it from V  
operation.  
BAT  
When PDR_ON pin is connected to V (Internal Reset OFF), the V  
functionality is no  
BAT  
SS  
more available and V  
pin should be connected to VDD.  
BAT  
3.23  
Digital-to-analog converters (DAC)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channel independent or simultaneous conversions  
DMA capability for each channel including DMA underrun error detection  
external triggers for conversion  
input voltage reference V  
or internal VREFBUF reference.  
REF+  
The DAC channels are triggered through the timer update outputs that are also connected  
to different DMA streams.  
34/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
3.24  
Ultra-low-power comparators (COMP)  
STM32H723xE/G devices embed two rail-to-rail comparators (COMP1 and COMP2). They  
feature programmable reference voltage (internal or external), hysteresis and speed (low  
speed for low-power) as well as selectable output polarity.  
The reference voltage can be one of the following:  
An external I/O  
A DAC output channel  
An internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,  
and be combined into a window comparator.  
3.25  
Operational amplifiers (OPAMP)  
STM32H723xE/G devices embed two rail-to-rail operational amplifiers (OPAMP1 and  
OPAMP2) with external or internal follower routing and PGA capability.  
The operational amplifier main features are:  
PGA with a non-inverting gain ranging of 2, 4, 8 or 16 or inverting gain ranging of -1, -3,  
-7 or -15  
One positive input connected to DAC  
Output connected to internal ADC  
Low input bias current down to 1 nA  
Low input offset voltage down to 1.5 mV  
Gain bandwidth up to 7.3 MHz  
The devices embeds two operational amplifiers (OPAMP1 and OPAMP2) with two inputs  
and one output each. These three I/Os can be connected to the external pins, thus enabling  
any type of external interconnections. The operational amplifiers can be configured  
internally as a follower, as an amplifier with a non-inverting gain ranging from 2 to 16 or with  
inverting gain ranging from -1 to -15.  
DS13313 Rev 2  
35/227  
52  
 
 
Functional overview  
STM32H723xE/G  
3.26  
Digital filter for sigma-delta modulators (DFSDM)  
The devices embed one DFSDM with 4 digital filters modules and 8 external input serial  
channels (transceivers) or alternately 8 internal parallel inputs support.  
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to  
microcontroller and then to perform digital filtering of the received data streams (which  
represent analog value on Σ∆ modulators inputs). DFSDM can also interface PDM (Pulse  
Density Modulation) microphones and perform PDM to PCM conversion and filtering in  
hardware. DFSDM features optional parallel data stream inputs from internal ADC  
peripherals or microcontroller memory (through DMA/CPU transfers into DFSDM).  
DFSDM transceivers support several serial interface formats (to support various Σ∆  
modulators). DFSDM digital filter modules perform digital processing according user  
selected filter parameters with up to 24-bit final ADC resolution.  
The DFSDM peripheral supports:  
8 multiplexed input digital serial channels:  
configurable SPI interface to connect various SD modulator(s)  
configurable Manchester coded 1 wire interface support  
PDM (Pulse Density Modulation) microphone input support  
maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)  
clock output for SD modulator(s): 0..20 MHz  
alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):  
internal sources: ADC data or memory data streams (DMA)  
4 digital filter modules with adjustable digital signal processing:  
x
Sinc filter: filter order/type (1..5), oversampling ratio (up to 1..1024)  
integrator: oversampling ratio (1..256)  
up to 24-bit output data resolution, signed output data format  
automatic data offset correction (offset stored in register by user)  
continuous or single conversion  
start-of-conversion triggered by:  
software trigger  
internal timers  
external events  
start-of-conversion synchronously with first digital filter module (DFSDM0)  
analog watchdog feature:  
low value and high value data threshold registers  
dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)  
input from final output data or from selected input digital serial channels  
continuous monitoring independently from standard conversion  
short circuit detector to detect saturated analog input values (bottom and top range):  
up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on serial data stream  
monitoring continuously each input serial channel  
break signal generation on analog watchdog event or on short circuit detector event  
36/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Functional overview  
extremes detector:  
storage of minimum and maximum values of final conversion data  
refreshed by software  
DMA capability to read the final conversion data  
interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial  
channel clock absence  
“regular” or “injected” conversions:  
“regular” conversions can be requested at any time or even in Continuous mode  
without having any impact on the timing of “injected” conversions  
“injected” conversions for precise timing and with high conversion priority  
Pulse skipper feature to support beamforming applications (delay-line like behavior).  
Table 3. DFSDM implementation  
DFSDM features  
Number of filters  
DFSDM1  
4
Number of input  
transceivers/channels  
8
Internal ADC parallel input  
Number of external triggers  
X
16  
Regular channel information in  
identification register  
X
DS13313 Rev 2  
37/227  
52  
 
Functional overview  
STM32H723xE/G  
3.27  
Digital camera interface (DCMI)  
The devices embed a camera interface that can connect with camera modules and CMOS  
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera  
interface can achieve a data transfer rate up to 140 Mbyte/s using a 80 MHz pixel clock. It  
features:  
Programmable polarity for the input pixel clock and synchronization signals  
Parallel data communication can be 8-, 10-, 12- or 14-bit  
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2  
progressive video, RGB 565 progressive video or compressed data (like JPEG)  
Supports Continuous mode or Snapshot (a single frame) mode  
Capability to automatically crop the image  
3.28  
PSSI  
The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It  
allows the transmitter to send a data valid signal to indicate when the data is valid, and the  
receiver to output a flow control signal to indicate when it is ready to sample the data.  
The main PSSI features are:  
Slave mode operation  
8- or 16-bit parallel data input or output  
8-word (32-byte) FIFO  
Data enable (DE) alternate function input and Ready (RDY) alternate function output.  
When enabled, these signals can either allow the transmitter to indicate when the data is  
valid or, the receiver to indicate when it is ready to sample the data, or both.  
The PSSI shares most of its circuitry with the digital camera interface (DCMI). It therefore  
cannot be used simultaneously with the DCMI.  
3.29  
LCD-TFT controller  
The LCD-TFT display controller provides a 24-bit parallel digital RGB (Red, Green, Blue)  
and delivers all signals to interface directly to a broad range of LCD and TFT panels up to  
XGA (1024 x 768) resolution with the following features:  
2 display layers with dedicated FIFO (64x64-bit)  
Color Look-Up table (CLUT) up to 256 colors (256x24-bit) per layer  
Up to 8 input color formats selectable per layer  
Flexible blending between two layers using alpha value (per pixel or constant)  
Flexible programmable parameters for each layer  
Color keying (transparency color)  
Up to 4 programmable interrupt events  
AXI master interface with burst of 16 words  
38/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Functional overview  
3.30  
True random number generator (RNG)  
The RNG is a true random number generator that provides full entropy outputs to the  
application as 32-bit samples. It is composed of a live entropy source (analog) and an  
internal conditioning component.  
The RNG can be used to construct a Non-deterministic Random Bit Generator (NDRBG), as  
a NIST SP 800-90B compliant entropy source.  
The RNG true random number generator has been tested using German BSI statistical tests  
of AIS-31 (T0 to T8), and NIST SP800-90B statistical test suite.  
DS13313 Rev 2  
39/227  
52  
 
 
Functional overview  
STM32H723xE/G  
3.31  
Timers and watchdogs  
The devices include two advanced-control timers, twelve general-purpose timers, two basic  
timers, five low-power timers, two watchdogs and a SysTick timer.  
All timer counters can be frozen in Debug mode.  
Table 4 compares the features of the advanced-control, general-purpose and basic timers.  
Table 4. Timer feature comparison  
Max  
Max  
DMA  
request  
generation channels  
Capture/ Comple-  
compare mentary  
timer  
clock  
Timer  
type  
Counter Counter Prescaler  
interface  
clock  
Timer  
resolution  
type  
factor  
output  
(MHz)  
(MHz)  
(1)  
Any  
Up,  
integer  
Advanced TIM1,  
16-bit  
Down, between1  
Up/down  
Yes  
Yes  
Yes  
No  
4
4
4
2
1
2
1
Yes  
137.5  
137.5  
137.5  
137.5  
137.5  
137.5  
137.5  
275  
275  
275  
275  
275  
275  
275  
-control  
TIM8  
and  
65536  
Any  
integer  
Down, between1  
TIM2,  
TIM5,  
TIM23,  
TIM24  
Up,  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
No  
No  
No  
No  
1
Up/down  
and  
65536  
Any  
integer  
Down, between1  
Up,  
TIM3,  
TIM4  
Up/down  
and  
65536  
Any  
integer  
between1  
and  
TIM12  
Up  
65536  
General  
purpose  
Any  
integer  
between1  
and  
TIM13,  
TIM14  
Up  
Up  
Up  
No  
65536  
Any  
integer  
between1  
and  
TIM15  
Yes  
Yes  
65536  
Any  
integer  
between1  
and  
TIM16,  
TIM17  
1
65536  
40/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
Table 4. Timer feature comparison (continued)  
Max  
Max  
DMA  
request  
generation channels  
Capture/ Comple-  
compare mentary  
timer  
clock  
Timer  
Timer  
type  
Counter Counter Prescaler  
interface  
clock  
resolution  
type  
factor  
output  
(MHz)  
(MHz)  
(1)  
Any  
integer  
between1  
and  
TIM6,  
Basic  
16-bit  
Up  
Yes  
No  
0
0
No  
137.5  
137.5  
275  
275  
TIM7  
65536  
LPTIM1,  
Low-  
power  
timer  
LPTIM2,  
LPTIM3,  
LPTIM4,  
LPTIM5  
1, 2, 4, 8,  
16, 32,  
64, 128  
16-bit  
Up  
No  
1. The maximum timer clock is up to 550 MHz depending on theTIMPRE bit in the RCC_CFGR register and D2PRE1/2 bits in  
RCC_D2CFGR register.  
DS13313 Rev 2  
41/227  
52  
Functional overview  
STM32H723xE/G  
3.31.1  
Advanced-control timers (TIM1, TIM8)  
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators  
multiplexed on 6 channels. They have complementary PWM outputs with programmable  
inserted dead times. They can also be considered as complete general-purpose timers.  
Their 4 independent channels can be used for:  
Input capture  
Output compare  
PWM generation (Edge- or Center-aligned modes)  
One-pulse mode output  
If configured as standard 16-bit timers, they have the same features as the general-purpose  
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-  
100%).  
The advanced-control timer can work together with the TIMx timers via the Timer Link  
feature for synchronization or event chaining.  
TIM1 and TIM8 support independent DMA request generation.  
3.31.2  
General-purpose timers (TIMx)  
There are ten synchronizable general-purpose timers embedded in the STM32H723xE/G  
devices (see Table 4: Timer feature comparison for differences).  
TIM2, TIM3, TIM4, TIM5, TIM23, TIM24  
The devices include 4 full-featured general-purpose timers: TIM2, TIM3, TIM4, TIM5,  
TIM23 and TIM24. TIM2, TIM5, TIM23 and TIM24 are based on a 32-bit auto-reload  
up/downcounter and a 16-bit prescaler while TIM3 and TIM4 are based on a 16-bit  
auto-reload up/downcounter and a 16-bit prescaler. All timers feature 4 independent  
channels for input capture/output compare, PWM or One-pulse mode output. This  
gives up to 24 input capture/output compare/PWMs on the largest packages.  
TIM2, TIM3, TIM4, TIM5, TIM23 and TIM24 general-purpose timers can work together,  
or with the other general-purpose timers and the advanced-control timers TIM1 and  
TIM8 via the Timer Link feature for synchronization or event chaining.  
Any of these general-purpose timers can be used to generate PWM outputs.  
TIM2, TIM3, TIM4, TIM5, TIM23, and TIM24 all have independent DMA request  
generation. They are capable of handling quadrature (incremental) encoder signals  
and the digital outputs from 1 to 4 hall-effect sensors.  
TIM12, TIM13, TIM14, TIM15, TIM16, TIM17  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.  
TIM13, TIM14, TIM16 and TIM17 feature one independent channel, whereas TIM12  
and TIM15 have two independent channels for input capture/output compare, PWM or  
One-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5,  
TIM23, and TIM24 full-featured general-purpose timers or used as simple time bases.  
42/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
3.31.3  
Basic timers TIM6 and TIM7  
These timers are mainly used for DAC trigger and waveform generation. They can also be  
used as a generic 16-bit time base.  
TIM6 and TIM7 support independent DMA request generation.  
3.31.4  
Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5)  
The low-power timers have an independent clock and is running also in Stop mode if it is  
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous / One-shot mode  
Selectable software / hardware input trigger  
Selectable clock source:  
Internal clock source: LSE, LSI, HSI or APB clock  
External clock source over LPTIM input (working even with no internal clock source  
running, used by the Pulse Counter Application)  
Programmable digital glitch filter  
Encoder mode  
3.31.5  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes.  
A window option allows the device to be reset when a reload operation is made too early  
after the previous reload.  
3.31.6  
3.31.7  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
Debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source.  
DS13313 Rev 2  
43/227  
52  
 
 
 
 
 
Functional overview  
STM32H723xE/G  
3.32  
Real-time clock (RTC), backup SRAM and backup registers  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Three anti-tamper detection pins with programmable filter.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
V
mode.  
BAT  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 32 backup registers are supplied through a switch that takes power either  
from the VDD supply when present or from the VBAT pin.  
The backup registers are 32-bit registers used to store 128 bytes of user application data  
when VDD power is not present. They are not reset by a system or power reset, or when the  
device wakes up from Standby mode.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
The internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE) divided by 32.  
The RTC is functional in V  
mode and in all low-power modes when it is clocked by the  
BAT  
LSE. When clocked by the LSI, the RTC is not functional in V  
all low-power modes.  
mode, but is functional in  
BAT  
All RTC events (Alarm, Wakeup Timer, Timestamp or Tamper) can generate an interrupt and  
wakeup the device from the low-power modes.  
44/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Functional overview  
3.33  
Inter-integrated circuit interface (I2C)  
2
STM32H723xE/G devices embed five I C interfaces.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and Master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
3.34  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
STM32H723xE/G devices have five embedded universal synchronous receiver transmitters  
(USART1, USART2, USART3, USART6, and USART10) and five universal asynchronous  
receiver transmitters (UART4, UART5, UART7, UART8, and UART9). Refer to Table 5:  
USART features for a summary of USARTx and UARTx features.  
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire Half-duplex communication mode and  
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS  
signals, and RS485 Driver Enable. They are able to communicate at speeds of up to  
12.5 Mbit/s.  
USART1, USART2, USART3, USART6, and USART10 also provide Smartcard mode (ISO  
7816 compliant) and SPI-like communication capability.  
The USARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode  
is enabled by software and is disabled by default.  
DS13313 Rev 2  
45/227  
52  
 
 
Functional overview  
STM32H723xE/G  
All USART have a clock domain independent from the CPU clock, allowing the USARTx to  
wake up the MCU from Stop mode.The wakeup from Stop mode is programmable and can  
be done on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.  
All USART interfaces can be served by the DMA controller.  
Table 5. USART features  
USART modes/features(1)  
USART1/2/3/6/10  
UART4/5/7/8/9  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode (Master/Slave)  
Smartcard mode  
-
Single-wire Half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
X
X
Dual clock domain and wakeup from low power mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
USART data length  
7, 8 and 9 bits  
Tx/Rx FIFO  
X
X
Tx/Rx FIFO size  
16  
1. X = supported.  
3.35  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The device embeds one Low-Power UART (LPUART1). The LPUART supports  
asynchronous serial communication with minimum power consumption. It supports half  
duplex single wire communication and modem operations (CTS/RTS). It allows  
multiprocessor communication.  
The LPUARTs embed a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO  
mode is enabled by software and is disabled by default.  
46/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
The LPUART has a clock domain independent from the CPU clock, and can wakeup the  
system from Stop mode. The wakeup from Stop mode are programmable and can be done  
on:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Specific TXFIFO/RXFIFO status when FIFO mode is enabled.  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to  
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame  
while having an extremely low energy consumption. Higher speed clock can be used to  
reach higher baudrates.  
LPUART interface can be served by the DMA controller.  
3.36  
Serial peripheral interface (SPI)/inter- integrated sound  
interfaces (I2S)  
The devices feature up to six SPIs (SPI2S1, SPI2S2, SPI2S3, SPI4, SPI5 and SPI2S6) that  
allow communicating up to 150 Mbits/s in Master and Slave modes, in Half-duplex, Full-  
duplex and Simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the  
frame is configurable from 4 to 16 bits. All SPI interfaces support NSS pulse mode, TI mode,  
Hardware CRC calculation and 8x 8-bit embedded Rx and Tx FIFOs with DMA capability.  
2
Four standard I S interfaces (multiplexed with SPI1, SPI2, SPI3 and SPI6) are available.  
They can be operated in Master or Slave mode, in Simplex communication modes, and can  
be configured to operate as a 16-/32-bit resolution input or output channel (except SPI2S6  
which is limited to 16 bits). Audio sampling frequencies from 8 kHz up to 192 kHz are  
2
supported. When either or both of the I S interfaces is/are configured in Master mode, the  
master clock can be output to the external DAC/CODEC at 256 times the sampling  
2
frequency. All I S interfaces support 16x 8-bit embedded Rx and Tx FIFOs with DMA  
capability.  
3.37  
Serial audio interfaces (SAI)  
The devices embed 2 SAIs (SAI1, and SAI4) that allow designing many stereo or mono  
audio protocols such as I2S, LSB or MSB-justified, PCM/DSP, TDM or AC’97. An SPDIF  
output is available when the audio block is configured as a transmitter. To bring this level of  
flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each  
block has it own clock generator and I/O line controller.  
Audio sampling frequencies up to 192 kHz are supported.  
In addition, up to 8 microphones can be supported thanks to an embedded PDM interface.  
The SAI can work in master or slave configuration. The audio sub-blocks can be either  
receiver or transmitter and can work synchronously or asynchronously (with respect to the  
other one). The SAI can be connected with other SAIs to work synchronously.  
DS13313 Rev 2  
47/227  
52  
 
 
Functional overview  
STM32H723xE/G  
3.38  
SPDIFRX Receiver Interface (SPDIFRX)  
The SPDIFRX peripheral is designed to receive an S/PDIF flow compliant with IEC-60958  
and IEC-61937. These standards support simple stereo streams up to high sample rate,  
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up  
to 5.1).  
The main SPDIFRX features are the following:  
Up to 4 inputs available  
Automatic symbol rate detection  
Maximum symbol rate: 12.288 MHz  
Stereo stream from 32 to 192 kHz supported  
Supports Audio IEC-60958 and IEC-61937, consumer applications  
Parity bit management  
Communication using DMA for audio samples  
Communication using DMA for control and user channel information  
Interrupt capabilities  
The SPDIFRX receiver provides all the necessary features to detect the symbol rate, and  
decode the incoming data stream. The user can select the wanted SPDIF input, and when a  
valid signal will be available, the SPDIFRX will re-sample the incoming signal, decode the  
Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the  
CPU decoded data, and associated status flags.  
The SPDIFRX also offers a signal named spdif_frame_sync, which toggles at the S/PDIF  
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.  
3.39  
Single wire protocol master interface (SWPMI)  
The Single wire protocol master interface (SWPMI) is the master interface corresponding to  
the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The  
main features are:  
Full-duplex communication mode  
automatic SWP bus state management (active, suspend, resume)  
configurable bitrate up to 2 Mbit/s  
automatic SOF, EOF and CRC handling  
SWPMI can be served by the DMA controller.  
48/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
3.40  
Management data input/output (MDIO) slaves  
The devices embed an MDIO slave interface it includes the following features:  
32 MDIO Registers addresses, each of which is managed using separate input and  
output data registers:  
32 x 16-bit firmware read/write, MDIO read-only output data registers  
32 x 16-bit firmware read-only, MDIO write-only input data registers  
Configurable slave (port) address  
Independently maskable interrupts/events:  
MDIO Register write  
MDIO Register read  
MDIO protocol error  
Able to operate in and wake up from Stop mode  
3.41  
SD/SDIO/MMC card host interfaces (SDMMC)  
Two SDMMC host interfaces are available. They support MultiMediaCard System  
Specification Version 4.51 in three different databus modes: 1 bit (default), 4 bits and 8 bits.  
Both interfaces support the SD memory card specifications version 4.1. and the SDIO card  
specification version 4.0. in two different databus modes: 1 bit (default) and 4 bits.  
Each SDMMC host interface supports only one SD/SDIO/MMC card at any one time and a  
stack of MMC Version 4.51 or previous.  
The SDMMC host interface embeds a dedicated DMA controller allowing high-speed  
transfers between the interface and the SRAM.  
3.42  
Controller area network (FDCAN1, FDCAN2, FDCAN3)  
The controller area network (CAN) subsystem consists of two CAN modules, a shared  
message RAM memory and a clock calibration unit.  
All CAN modules (FDCAN1, FDCAN2, and FDCAN3) are compliant with ISO 11898-1 (CAN  
protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.  
FDCAN1 supports time triggered CAN (TT-FDCAN) specified in ISO 11898-4, including  
event synchronized time-triggered communication, global system time, and clock drift  
compensation. The FDCAN1 contains additional registers, specific to the time triggered  
feature. The CAN FD option can be used together with event-triggered and time-triggered  
CAN communication.  
A 10-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,  
transmit event FIFOs, transmit buffers (and triggers for TT-FDCAN). This message RAM is  
shared between the three modules - FDCAN1 FDCAN2 and FDCAN3.  
The common clock calibration unit is optional. It can be used to generate a calibrated clock  
for FDCAN1, FDCAN2 and FDCAN3 from the HSI internal RC oscillator and the PLL, by  
evaluating CAN messages received by the FDCAN1.  
DS13313 Rev 2  
49/227  
52  
 
 
 
Functional overview  
STM32H723xE/G  
3.43  
Universal serial bus on-the-go high-speed (OTG_HS)  
The devices embed an USB OTG high-speed (up to 480 Mbit/s) device/host/OTG peripheral  
that supports both full-speed and high-speed operations. It integrates the transceivers for  
full-speed operation (12 Mbit/s) and a UTMI low-pin interface (ULPI) for high-speed  
operation (480 Mbit/s). When using the USB OTG_HS interface in HS mode, an external  
PHY device connected to the ULPI is required.  
The USB OTG_HS peripheral is compliant with the USB 2.0 specification and with the OTG  
2.0 specification. It features software-configurable endpoint setting and supports  
suspend/resume. The USB OTG_HS controller requires a dedicated 48 MHz clock that is  
generated by a PLL connected to the HSE oscillator.  
The main features are:  
Combined Rx and Tx FIFO size of 4 Kbytes with dynamic FIFO sizing  
Supports the session request protocol (SRP) and host negotiation protocol (HNP)  
8 bidirectional endpoints  
16 host channels with periodic OUT support  
Software configurable to OTG1.3 and OTG2.0 modes of operation  
USB 2.0 LPM (Link Power Management) support  
Battery Charging Specification Revision 1.2 support  
Internal FS OTG PHY support  
External HS or HS OTG operation supporting ULPI in SDR mode The OTG PHY is  
connected to the microcontroller ULPI port through 12 signals. It can be clocked using  
the 60 MHz output.  
Internal USB DMA  
HNP/SNP/IP inside (no need for any external resistor)  
For OTG/Host modes, a power switch is needed in case bus-powered devices are  
connected  
3.44  
Ethernet MAC interface with dedicated DMA controller (ETH)  
The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for  
ethernet LAN communications through an industry-standard medium-independent interface  
(MII) or a reduced medium-independent interface (RMII). The microcontroller requires an  
external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair,  
fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals  
for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.  
50/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Functional overview  
The devices include the following features:  
Supports 10 and 100 Mbit/s rates  
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM  
and the descriptors  
Tagged MAC frame support (VLAN support)  
Half-duplex (CSMA/CD) and full-duplex operation  
MAC control sublayer (control frames) support  
32-bit CRC generation and removal  
Several address filtering modes for physical and multicast address (multicast and  
group addresses)  
32-bit status code for each transmitted or received frame  
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the  
receive FIFO are both 2 Kbytes.  
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008  
(PTP V2) with the time stamp comparator connected to the TIM2 input  
Triggers interrupt when system time becomes greater than target time  
3.45  
High-definition multimedia interface (HDMI)  
- consumer electronics control (CEC)  
The devices embed a HDMI-CEC controller that provides hardware support for the  
Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).  
This protocol provides high-level control functions between all audiovisual products in an  
environment. It is specified to operate at low speeds with minimum processing and memory  
overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC  
controller to wakeup the MCU from Stop mode on data reception.  
3.46  
Debug infrastructure  
The devices offer a comprehensive set of debug and trace features to support software  
development and system integration.  
Breakpoint debugging  
Code execution tracing  
Software instrumentation  
JTAG debug port  
Serial-wire debug port  
Trigger input and output  
Serial-wire trace port  
Trace port  
®
Arm CoreSight™ debug and trace components  
The debug can be controlled via a JTAG/Serial-wire debug access port, using industry  
standard debugging tools. The trace port performs data capture for logging and analysis.  
DS13313 Rev 2  
51/227  
52  
 
 
Memory mapping  
STM32H723xE/G  
4
Memory mapping  
Refer to the product line reference manual for details on the memory mapping as well as the  
boundary addresses for all peripherals.  
52/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
5
Pinouts, pin descriptions and alternate functions  
Figure 4. TFBGA100 pinout  
1
2
3
PE2  
PE3  
PE4  
PE5  
PE6  
PC3_C  
PA4  
PA5  
PA6  
PA7  
4
5
PB7  
PB6  
PB5  
BOOT0  
VSS  
VDD  
PB2  
PE7  
6
7
8
9
10  
PC14-  
OSC32_IN  
A
B
C
D
E
F
PC13  
VBAT  
VSS  
VDD  
PC2_C  
PC1  
PB9  
PB8  
PE1  
PE0  
VSS  
VDD  
PC4  
PC5  
PB0  
PB1  
PB4  
PB3  
PA15  
PC11  
PC12  
PD0  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PA10  
PC7  
PC15-  
OSC32_OUT  
PD5  
PD2  
PH0-OSC_IN  
PD6  
PD3  
PH1-  
OSC_OUT  
PD7  
PD4  
PA8  
NRST  
PC0  
VSS  
VCAP  
PDR_ON  
PE14  
PE15  
PB10  
PB11  
PD1  
PC9  
PC8  
PD11  
PD10  
PD9  
PD8  
VDD33USB  
PE10  
PE11  
PE12  
PE13  
VCAP  
PD15  
PD14  
PB13  
PB12  
PC6  
G
H
J
VSSA  
VDDA  
VSS  
PA0  
PB15  
PB14  
PD13  
PD12  
PA1  
PA2  
PE8  
K
VDD  
PA3  
PE9  
MSv52520V1.  
1. The above figure shows the package top view.  
DS13313 Rev 2  
53/227  
85  
 
 
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Figure 5. LQFP100 pinout  
PE2  
PE3  
1
2
75  
VDD  
VSS  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PE4  
PE5  
PE6  
VBAT  
PC13  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VCAP  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS  
VDD  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC6  
LQFP100  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2_C  
PC3_C  
VSSA  
VREF+  
VDDA  
PA0  
PD8  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
PA3  
MSv52521V1.  
1. The above figure shows the package top view.  
54/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Figure 6. LQFP144 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
VSS  
VCAP  
PA13  
PA12  
PA11  
PA10  
PA9  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PF0  
9
PA8  
PC9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
PF1  
PF2  
PF3  
PF4  
PF5  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
PF10  
PC8  
PC7  
PC6  
VDD33USB  
VSS  
PG8  
PG7  
PG6  
PG5  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
LQFP144  
PG4  
PG3  
PG2  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PD15  
PD14  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2_C  
PC3_C  
VDD  
VSSA  
VREF+  
VDDA  
PA0  
PD8  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MSv52522V1.  
1. The above figure shows the package top view.  
DS13313 Rev 2  
55/227  
85  
 
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Figure 7. UFBGA144 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
PA14  
PC10  
VDD33USB  
PA10  
PC9  
12  
A
B
C
D
E
F
PC13  
PE3  
PE4  
VBAT  
VSS  
PF3  
PF7  
PF9  
PC1  
PA0  
PA1  
PA2  
PA3  
PE2  
PE5  
PF0  
VDD  
PF4  
PF6  
PF8  
PC2  
PA4  
PA5  
PA6  
PA7  
PE1  
PE6  
PF1  
PF2  
PF5  
VDD  
VSS  
PC3  
PC4  
PC5  
PB0  
PB1  
PE0  
PB4  
PB5  
PB6  
PB7  
VSS  
VDD  
VDD  
VSS  
PG1  
PG0  
PF15  
PF14  
PB3  
PD6  
PD7  
PD5  
PD4  
PD3  
PD2  
VDD  
VCAP  
PD11  
PD10  
PD9  
PD8  
PB10  
PA15  
PC11  
PC12  
PD1  
PA13  
PA12  
PA11  
PA9  
PC14-  
OSC32_IN  
PB9  
PG15  
PG14  
PG13  
VSS  
VDD  
VDD  
VCAP  
PE10  
PE9  
PG12  
PG11  
PG10  
PG9  
PC15-  
OSC32_OUT  
PB8  
PH0-OSC_IN  
BOOT0  
PDR_ON  
VDD  
PH1-  
OSC_OUT  
PD0  
PA8  
NRST  
PF10  
VDD  
VSS  
VDD  
VSS  
PC8  
PC7  
G
H
J
VDD  
PG8  
PC6  
PC0  
VSS  
PE11  
PE12  
PE13  
PE14  
PE15  
PG7  
PG6  
PG5  
PG2  
PD15  
PB15  
PB13  
VSSA  
VREF-  
VREF+  
VDDA  
PB2  
PG4  
PG3  
K
L
PF13  
PF12  
PF11  
PD13  
PD12  
PB11  
PD14  
PB14  
PB12  
PE8  
M
PE7  
MSv52523V1.  
1. The above figure shows the package top view.  
Table 6. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during  
and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
ANA  
FT  
TT  
B
Input / output pin  
Analog-only Input  
5 V tolerant I/O  
3.3 V tolerant I/O  
Dedicated BOOT0 pin  
Bidirectional reset pin with embedded weak pull-up resistor  
RST  
I/O structure  
Option for TT and FT I/Os  
_f  
I2C FM+ option  
_a  
_u  
_h  
analog option (supplied by VDDA)  
USB option (supplied by VDD33USB  
)
High-speed low-voltage I/O  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and  
after reset.  
Notes  
56/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Definition  
Table 6. Legend/abbreviations used in the pinout table (continued)  
Name  
Abbreviation  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 7. STM32H723 pin and ball descriptions  
Pin number  
Pin name (function  
Additional  
functions  
Alternate functions  
after reset)  
TRACECLK, SAI1_CK1,  
USART10_RX, SPI4_SCK,  
SAI1_MCLK_A, SAI4_MCLK_A,  
OCTOSPIM_P1_IO2, SAI4_CK1,  
ETH_MII_TXD3, FMC_A23,  
EVENTOUT  
A3  
B3  
C3  
1
2
3
1
2
3
A3  
A2  
B2  
PE2  
PE3  
PE4  
I/O FT_h  
I/O FT_h  
I/O FT_h  
-
-
-
-
-
-
TRACED0, TIM15_BKIN, SAI1_SD_B,  
SAI4_SD_B, USART10_TX, FMC_A19,  
EVENTOUT  
TRACED1, SAI1_D2,  
DFSDM1_DATIN3, TIM15_CH1N,  
SPI4_NSS, SAI1_FS_A, SAI4_FS_A,  
SAI4_D2, FMC_A20,  
DCMI_D4/PSSI_D4, LCD_B0,  
EVENTOUT  
TRACED2, SAI1_CK2,  
DFSDM1_CKIN3, TIM15_CH1,  
SPI4_MISO, SAI1_SCK_A,  
SAI4_SCK_A, SAI4_CK2, FMC_A21,  
DCMI_D6/PSSI_D6, LCD_G0,  
EVENTOUT  
D3  
E3  
4
5
4
5
B3  
B4  
PE5  
PE6  
I/O FT_h  
-
-
-
TRACED3, TIM1_BKIN2, SAI1_D1,  
TIM15_CH2, SPI4_MOSI, SAI1_SD_A,  
SAI4_SD_A, SAI4_D1, SAI4_MCLK_B,  
TIM1_BKIN2_COMP12, FMC_A22,  
DCMI_D7/PSSI_D7, LCD_G1,  
EVENTOUT  
I/O FT_h  
-
-
B2  
A2  
6
7
6
7
C2  
A1  
VBAT  
PC13  
S
-
-
-
-
RTC_TAMP1/  
RTC_TS,  
I/O  
FT  
EVENTOUT  
WKUP4  
A1  
B1  
8
9
8
9
B1  
C1  
PC14-OSC32_IN  
I/O  
I/O  
FT  
FT  
-
-
EVENTOUT  
EVENTOUT  
OSC32_IN  
PC15-OSC32_OUT  
OSC32_OUT  
DS13313 Rev 2  
57/227  
85  
 
 
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
I2C2_SDA(boot), I2C5_SDA,  
OCTOSPIM_P2_IO0, FMC_A0,  
TIM23_CH1, EVENTOUT  
-
-
-
-
-
-
10  
11  
12  
C3  
C4  
D4  
PF0  
PF1  
PF2  
I/O FT_fh  
I/O FT_fh  
I/O FT_h  
-
-
-
-
-
I2C2_SCL(boot), I2C5_SCL,  
OCTOSPIM_P2_IO1, FMC_A1,  
TIM23_CH2, EVENTOUT  
I2C2_SMBA, I2C5_SMBA,  
OCTOSPIM_P2_IO2, FMC_A2,  
TIM23_CH3, EVENTOUT  
-
OCTOSPIM_P2_IO3, FMC_A3,  
TIM23_CH4, EVENTOUT  
-
-
-
-
-
-
13  
14  
15  
E2  
E3  
E4  
PF3  
PF4  
PF5  
I/O FT_ha  
I/O FT_ha  
I/O FT_ha  
-
-
-
ADC3_INP5  
OCTOSPIM_P2_CLK, FMC_A4,  
EVENTOUT  
ADC3_INN5,  
ADC3_INP9  
OCTOSPIM_P2_NCLK, FMC_A5,  
EVENTOUT  
ADC3_INP4  
-
-
10  
11  
16  
17  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM16_CH1, FDCAN3_RX, SPI5_NSS,  
SAI1_SD_B, UART7_RX, SAI4_SD_B,  
OCTOSPIM_P1_IO3, TIM23_CH1,  
EVENTOUT  
ADC3_INN4,  
ADC3_INP8  
-
-
-
-
18  
19  
F3  
F2  
PF6  
PF7  
I/O FT_ha  
I/O FT_ha  
-
-
TIM17_CH1, FDCAN3_TX, SPI5_SCK,  
SAI1_MCLK_B, UART7_TX,  
SAI4_MCLK_B, OCTOSPIM_P1_IO2,  
TIM23_CH2, EVENTOUT  
ADC3_INP3  
TIM16_CH1N, SPI5_MISO,  
SAI1_SCK_B,  
UART7_RTS/UART7_DE,  
SAI4_SCK_B, TIM13_CH1,  
OCTOSPIM_P1_IO0, TIM23_CH3,  
EVENTOUT  
ADC3_INN3,  
ADC3_INP7  
-
-
-
-
20  
21  
G3  
G2  
PF8  
PF9  
I/O FT_ha  
-
-
TIM17_CH1N, SPI5_MOSI,  
SAI1_FS_B, UART7_CTS, SAI4_FS_B,  
TIM14_CH1, OCTOSPIM_P1_IO1,  
TIM23_CH4, EVENTOUT  
I/O FT_ha  
I/O FT_ha  
ADC3_INP2  
TIM16_BKIN, SAI1_D3, PSSI_D15,  
OCTOSPIM_P1_CLK, SAI4_D3,  
DCMI_D11/PSSI_D11, LCD_DE,  
EVENTOUT  
ADC3_INN2,  
ADC3_INP6  
-
-
22  
23  
G1  
D1  
PF10  
-
-
C1  
12  
PH0-OSC_IN  
I/O  
FT  
EVENTOUT  
OSC_IN  
58/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
D1  
E1  
13  
14  
24  
25  
E1  
F1  
PH1-OSC_OUT  
NRST  
I/O  
FT  
-
-
EVENTOUT  
-
OSC_OUT  
-
I/O RST  
FMC_D12/FMC_AD12,  
DFSDM1_CKIN0, DFSDM1_DATIN4,  
SAI4_FS_B, FMC_A25,  
OTG_HS_ULPI_STP, LCD_G2,  
FMC_SDNWE, LCD_R5, EVENTOUT  
F1  
F2  
15  
16  
26  
27  
H1  
H2  
PC0  
PC1  
I/O FT_ha  
-
-
ADC123_INP10  
TRACED0, SAI4_D1, SAI1_D1,  
DFSDM1_DATIN0, DFSDM1_CKIN4, ADC123_INN10,  
SPI2_MOSI/I2S2_SDO, SAI1_SD_A, ADC123_INP11,  
SAI4_SD_A, SDMMC2_CK,  
OCTOSPIM_P1_IO4, ETH_MDC,  
MDIOS_MDC, LCD_G5, EVENTOUT  
I/O FT_ha  
RTC_TAMP3,  
WKUP6  
PWR_DEEPSLEEP, DFSDM1_CKIN1,  
OCTOSPIM_P1_IO5,  
SPI2_MISO/I2S2_SDI,  
DFSDM1_CKOUT,  
OCTOSPIM_P1_IO2,  
ADC123_INN11,  
ADC123_INP12  
-
-
-
H3  
PC2  
PC2_C  
PC3  
I/O FT_a  
-
-
-
-
OTG_HS_ULPI_DIR, ETH_MII_TXD2,  
FMC_SDNE0, EVENTOUT  
AN  
TT_a  
A
ADC3_INN1,  
ADC3_INP0  
E2  
17  
28  
-
-
PWR_SLEEP, DFSDM1_DATIN1,  
OCTOSPIM_P1_IO6,  
SPI2_MOSI/I2S2_SDO,  
OCTOSPIM_P1_IO0,  
OTG_HS_ULPI_NXT,  
ADC12_INN12,  
ADC12_INP13  
-
-
-
H4  
I/O FT_a  
ETH_MII_TX_CLK, FMC_SDCKE0,  
EVENTOUT  
AN  
TT_a  
A
F3  
18  
29  
-
PC3_C  
-
ADC3_INP1  
-
G1  
-
-
30  
31  
-
-
VDD  
VSSA  
VREF-  
VREF+  
VDDA  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19  
-
J1  
K1  
L1  
M1  
-
20  
21  
32  
33  
H1  
DS13313 Rev 2  
59/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM2_CH1/TIM2_ETR, TIM5_CH1,  
TIM8_ETR, TIM15_BKIN,  
SPI6_NSS/I2S6_WS,  
USART2_CTS/USART2_NSS,  
UART4_TX, SDMMC2_CMD,  
SAI4_SD_B, ETH_MII_CRS,  
FMC_A19, EVENTOUT  
ADC1_INP16,  
WKUP1  
G2  
22  
34  
J2  
PA0  
PA1  
I/O FT_ha  
-
TIM2_CH2, TIM5_CH2, LPTIM3_OUT,  
TIM15_CH1N,  
USART2_RTS/USART2_DE,  
UART4_RX, OCTOSPIM_P1_IO3,  
SAI4_MCLK_B,  
ADC1_INN16,  
ADC1_INP17  
H2  
23  
35  
K2  
I/O FT_ha  
-
ETH_MII_RX_CLK/ETH_RMII_REF_C  
LK, OCTOSPIM_P1_DQS, LCD_R2,  
EVENTOUT  
TIM2_CH3, TIM5_CH3, LPTIM4_OUT,  
TIM15_CH1, OCTOSPIM_P1_IO0,  
USART2_TX(boot), SAI4_SCK_B,  
ETH_MDIO, MDIOS_MDIO, LCD_R1,  
EVENTOUT  
ADC12_INP14,  
WKUP2  
J2  
24  
25  
36  
37  
L2  
PA2  
PA3  
I/O FT_ha  
-
-
TIM2_CH4, TIM5_CH4, LPTIM5_OUT,  
TIM15_CH2, I2S6_MCK,  
OCTOSPIM_P1_IO2,  
K2  
M2  
I/O FT_ha  
USART2_RX(boot), LCD_B2,  
OTG_HS_ULPI_D0, ETH_MII_COL,  
OCTOSPIM_P1_CLK, LCD_B5,  
EVENTOUT  
ADC12_INP15  
-
-
26  
27  
38  
39  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
D1PWREN, TIM5_ETR,  
SPI1_NSS(boot)/I2S1_WS,  
SPI3_NSS/I2S3_WS, USART2_CK,  
SPI6_NSS/I2S6_WS,  
ADC12_INP18,  
DAC1_OUT1  
G3  
H3  
28  
29  
40  
41  
J3  
PA4  
PA5  
I/O TT_ha  
-
-
FMC_D8/FMC_AD8,  
DCMI_HSYNC/PSSI_DE,  
LCD_VSYNC, EVENTOUT  
D2PWREN, TIM2_CH1/TIM2_ETR,  
TIM8_CH1N,  
SPI1_SCK(boot)/I2S1_CK,  
SPI6_SCK/I2S6_CK,  
ADC12_INN18,  
ADC12_INP19,  
DAC1_OUT2  
K3  
I/O TT_ha  
OTG_HS_ULPI_CK,  
FMC_D9/FMC_AD9, PSSI_D14,  
LCD_R4, EVENTOUT  
60/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM1_BKIN, TIM3_CH1, TIM8_BKIN,  
SPI1_MISO(boot)/I2S1_SDI,  
OCTOSPIM_P1_IO3,  
SPI6_MISO/I2S6_SDI, TIM13_CH1,  
TIM8_BKIN_COMP12, MDIOS_MDC,  
TIM1_BKIN_COMP12,  
DCMI_PIXCLK/PSSI_PDCK, LCD_G2,  
EVENTOUT  
J3  
30  
42  
L3  
PA6  
PA7  
I/O FT_ha  
-
ADC12_INP3  
TIM1_CH1N, TIM3_CH2, TIM8_CH1N,  
SPI1_MOSI(boot)/I2S1_SDO,  
SPI6_MOSI/I2S6_SDO, TIM14_CH1,  
OCTOSPIM_P1_IO2,  
ADC12_INN3,  
ADC12_INP7,  
K3  
31  
43  
M3  
I/O TT_ha  
-
ETH_MII_RX_DV/ETH_RMII_CRS_DV, OPAMP1_VINM  
FMC_SDNWE, LCD_VSYNC,  
EVENTOUT  
PWR_DEEPSLEEP, FMC_A22,  
DFSDM1_CKIN2, I2S1_MCK,  
SPDIFRX1_IN3, SDMMC2_CKIN,  
ETH_MII_RXD0/ETH_RMII_RXD0,  
FMC_SDNE0, LCD_R7, EVENTOUT  
ADC12_INP4,  
OPAMP1_VOUT,  
COMP1_INM  
G4  
H4  
32  
33  
44  
45  
J4  
PC4  
PC5  
I/O TT_ha  
I/O TT_ha  
-
-
PWR_SLEEP, SAI4_D3, SAI1_D3,  
DFSDM1_DATIN2, PSSI_D15,  
SPDIFRX1_IN4,OCTOSPIM_P1_DQS,  
ETH_MII_RXD1/ETH_RMII_RXD1,  
FMC_SDCKE0, COMP1_OUT,  
LCD_DE, EVENTOUT  
ADC12_INN4,  
ADC12_INP8,  
OPAMP1_VINM  
K4  
TIM1_CH2N, TIM3_CH3, TIM8_CH2N,  
OCTOSPIM_P1_IO1,  
DFSDM1_CKOUT, UART4_CTS,  
LCD_R3, OTG_HS_ULPI_D1,  
ETH_MII_RXD2, LCD_G1, EVENTOUT  
ADC12_INN5,  
ADC12_INP9,  
OPAMP1_VINP,  
COMP1_INP  
J4  
34  
35  
46  
47  
L4  
PB0  
PB1  
I/O TT_ha  
I/O FT_ha  
-
-
TIM1_CH3N, TIM3_CH4, TIM8_CH3N,  
OCTOSPIM_P1_IO0,  
DFSDM1_DATIN1, LCD_R6,  
OTG_HS_ULPI_D2, ETH_MII_RXD3,  
LCD_G0, EVENTOUT  
ADC12_INP5,  
COMP1_INM  
K4  
M4  
RTC_OUT, SAI4_D1, SAI1_D1,  
DFSDM1_CKIN1, SAI1_SD_A,  
SPI3_MOSI/I2S3_SDO, SAI4_SD_A,  
OCTOSPIM_P1_CLK,  
G5  
36  
48  
J5  
PB2  
I/O FT_ha  
-
COMP1_INP  
OCTOSPIM_P1_DQS, ETH_TX_ER,  
TIM23_ETR, EVENTOUT  
DS13313 Rev 2  
61/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
SPI5_MOSI, OCTOSPIM_P1_NCLK,  
SAI4_SD_B, FMC_NRAS,  
DCMI_D12/PSSI_D12, TIM24_CH1,  
EVENTOUT  
-
-
-
-
49  
50  
M5  
L5  
PF11  
PF12  
I/O FT_ha  
I/O FT_ha  
-
-
ADC1_INP2  
OCTOSPIM_P2_DQS, FMC_A6,  
TIM24_CH2, EVENTOUT  
ADC1_INN2,  
ADC1_INP6  
-
-
-
-
51  
52  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
DFSDM1_DATIN6, I2C4_SMBA,  
FMC_A7, TIM24_CH3, EVENTOUT  
-
-
53  
K5  
PF13  
I/O FT_ha  
-
ADC2_INP2  
DFSDM1_CKIN6, I2C4_SCL, FMC_A8,  
TIM24_CH4, EVENTOUT  
ADC2_INN2,  
ADC2_INP6  
-
-
-
-
-
-
54  
55  
56  
M6  
L6  
PF14  
PF15  
PG0  
I/O FT_fha  
I/O FT_fh  
I/O FT_h  
-
-
-
I2C4_SDA, FMC_A9, EVENTOUT  
-
-
OCTOSPIM_P2_IO4, UART9_RX,  
FMC_A10, EVENTOUT  
K6  
OCTOSPIM_P2_IO5, UART9_TX,  
FMC_A11, EVENTOUT  
-
-
57  
58  
J6  
PG1  
PE7  
I/O TT_h  
I/O TT_ha  
-
-
OPAMP2_VINM  
TIM1_ETR, DFSDM1_DATIN2,  
UART7_RX, OCTOSPIM_P1_IO4,  
FMC_D4/FMC_AD4, EVENTOUT  
OPAMP2_VOUT,  
COMP2_INM  
H5  
37  
M7  
TIM1_CH1N, DFSDM1_CKIN2,  
UART7_TX, OCTOSPIM_P1_IO5,  
FMC_D5/FMC_AD5, COMP2_OUT,  
EVENTOUT  
J5  
38  
39  
59  
60  
L7  
K7  
PE8  
PE9  
I/O TT_ha  
I/O TT_ha  
-
-
OPAMP2_VINM  
TIM1_CH1, DFSDM1_CKOUT,  
UART7_RTS/UART7_DE,  
OCTOSPIM_P1_IO6,  
OPAMP2_VINP,  
COMP2_INP  
K5  
FMC_D6/FMC_AD6, EVENTOUT  
-
-
-
-
61  
62  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM1_CH2N, DFSDM1_DATIN4,  
UART7_CTS, OCTOSPIM_P1_IO7,  
FMC_D7/FMC_AD7, EVENTOUT  
G6  
40  
63  
J7  
PE10  
I/O FT_ha  
-
COMP2_INM  
TIM1_CH2, DFSDM1_CKIN4,  
SPI4_NSS(boot), SAI4_SD_B,  
OCTOSPIM_P1_NCS,  
H6  
41  
64  
H8  
PE11  
I/O FT_ha  
-
COMP2_INP  
FMC_D8/FMC_AD8, LCD_G3,  
EVENTOUT  
62/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM1_CH3N, DFSDM1_DATIN5,  
SPI4_SCK(boot), SAI4_SCK_B,  
FMC_D9/FMC_AD9, COMP1_OUT,  
LCD_B4, EVENTOUT  
J6  
42  
65  
J8  
PE12  
I/O FT_h  
-
-
TIM1_CH3, DFSDM1_CKIN5,  
SPI4_MISO(boot), SAI4_FS_B,  
FMC_D10/FMC_AD10, COMP2_OUT,  
LCD_DE, EVENTOUT  
K6  
G7  
H7  
43  
44  
45  
66  
67  
68  
K8  
L8  
PE13  
PE14  
PE15  
I/O FT_h  
I/O FT_h  
I/O FT_h  
-
-
-
-
-
-
TIM1_CH4, SPI4_MOSI(boot),  
SAI4_MCLK_B, FMC_D11/FMC_AD11,  
LCD_CLK, EVENTOUT  
TIM1_BKIN, USART10_CK,  
FMC_D12/FMC_AD12,  
TIM1_BKIN_COMP12, LCD_R7,  
EVENTOUT  
M8  
TIM2_CH3, LPTIM2_IN1, I2C2_SCL,  
SPI2_SCK/I2S2_CK,  
DFSDM1_DATIN7, USART3_TX(boot),  
OCTOSPIM_P1_NCS,  
OTG_HS_ULPI_D3, ETH_MII_RX_ER,  
LCD_G4, EVENTOUT  
J7  
46  
47  
69  
M9  
PB10  
PB11  
I/O FT_fh  
-
-
-
-
TIM2_CH4, LPTIM2_ETR, I2C2_SDA,  
DFSDM1_CKIN7, USART3_RX(boot),  
OTG_HS_ULPI_D4,  
K7  
70 M10  
I/O FT_f  
ETH_MII_TX_EN/ETH_RMII_TX_EN,  
LCD_G5, EVENTOUT  
F8  
-
48  
49  
50  
71  
-
H7  
VCAP  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
72  
VDD  
TIM1_BKIN, OCTOSPIM_P1_NCLK,  
I2C2_SMBA, SPI2_NSS/I2S2_WS,  
DFSDM1_DATIN1, USART3_CK,  
FDCAN2_RX, OTG_HS_ULPI_D5,  
ETH_MII_TXD0/ETH_RMII_TXD0,  
OCTOSPIM_P1_IO0,  
K8  
51  
73 M11  
PB12  
I/O FT_h  
-
-
TIM1_BKIN_COMP12, UART5_RX,  
EVENTOUT  
DS13313 Rev 2  
63/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TIM1_CH1N, LPTIM2_OUT,  
OCTOSPIM_P1_IO2,  
SPI2_SCK/I2S2_CK, DFSDM1_CKIN1,  
USART3_CTS/USART3_NSS,  
FDCAN2_TX, OTG_HS_ULPI_D6,  
ETH_MII_TXD1/ETH_RMII_TXD1,  
SDMMC1_D0, DCMI_D2/PSSI_D2,  
UART5_TX, EVENTOUT  
J8  
52  
74 M12  
PB13  
I/O FT_h  
-
-
TIM1_CH2N, TIM12_CH1,  
TIM8_CH2N, USART1_TX,  
SPI2_MISO/I2S2_SDI,  
DFSDM1_DATIN2,  
H10 53  
75 L11  
PB14  
PB15  
I/O FT_h  
-
-
-
-
USART3_RTS/USART3_DE,  
UART4_RTS/UART4_DE,  
SDMMC2_D0, FMC_D10/FMC_AD10,  
LCD_CLK, EVENTOUT  
RTC_REFIN, TIM1_CH3N,  
TIM12_CH2, TIM8_CH3N,  
USART1_RX, SPI2_MOSI/I2S2_SDO,  
DFSDM1_CKIN2, UART4_CTS,  
SDMMC2_D1, FMC_D11/FMC_AD11,  
LCD_G7, EVENTOUT  
G10 54  
76 L12  
I/O FT_h  
DFSDM1_CKIN3, USART3_TX(boot),  
SPDIFRX1_IN2,  
FMC_D13/FMC_AD13, EVENTOUT  
K9  
J9  
55  
56  
57  
77  
78  
79  
L9  
K9  
J9  
PD8  
PD9  
I/O FT_h  
I/O FT_h  
I/O FT_h  
-
-
-
-
-
-
DFSDM1_DATIN3, USART3_RX(boot),  
FMC_D14/FMC_AD14, EVENTOUT  
DFSDM1_CKOUT, USART3_CK,  
FMC_D15/FMC_AD15, LCD_B3,  
EVENTOUT  
H9  
PD10  
LPTIM2_IN2, I2C4_SMBA,  
USART3_CTS/USART3_NSS,  
OCTOSPIM_P1_IO0, SAI4_SD_A,  
FMC_A16/FMC_CLE, EVENTOUT  
G9  
58  
80  
H9  
PD11  
PD12  
I/O FT_h  
I/O FT_fh  
-
-
-
-
LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1,  
I2C4_SCL, FDCAN3_RX,  
USART3_RTS/USART3_DE,  
OCTOSPIM_P1_IO1, SAI4_FS_A,  
FMC_A17/FMC_ALE,  
K10 59  
81 L10  
DCMI_D12/PSSI_D12, EVENTOUT  
64/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
LPTIM1_OUT, TIM4_CH2, I2C4_SDA,  
FDCAN3_TX, OCTOSPIM_P1_IO3,  
SAI4_SCK_A,  
J10 60  
82 K10  
PD13  
I/O FT_fh  
-
-
UART9_RTS/UART9_DE, FMC_A18,  
DCMI_D13/PSSI_D13, EVENTOUT  
-
-
-
-
83  
84  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM4_CH3, UART8_CTS, UART9_RX,  
FMC_D0/FMC_AD0, EVENTOUT  
H8  
G8  
61  
62  
85 K11  
86 K12  
87 J12  
PD14  
PD15  
I/O FT_h  
I/O FT_h  
-
-
-
-
TIM4_CH4, UART8_RTS/UART8_DE,  
UART9_TX, FMC_D1/FMC_AD1,  
EVENTOUT  
TIM8_BKIN, TIM8_BKIN_COMP12,  
FMC_A12, TIM24_ETR, EVENTOUT  
-
-
-
-
-
-
-
-
PG2  
PG3  
PG4  
PG5  
I/O FT_h  
I/O FT_h  
I/O FT_h  
I/O FT_h  
-
-
-
-
-
-
-
-
TIM8_BKIN2, TIM8_BKIN2_COMP12,  
FMC_A13, TIM23_ETR, EVENTOUT  
88  
J11  
TIM1_BKIN2, TIM1_BKIN2_COMP12,  
FMC_A14/FMC_BA0, EVENTOUT  
89 J10  
90 H12  
TIM1_ETR, FMC_A15/FMC_BA1,  
EVENTOUT  
TIM17_BKIN, OCTOSPIM_P1_NCS,  
FMC_NE3, DCMI_D12/PSSI_D12,  
LCD_R7, EVENTOUT  
-
-
-
-
91 H11  
92 H10  
PG6  
PG7  
I/O FT_h  
I/O FT_h  
-
-
-
-
SAI1_MCLK_A, USART6_CK,  
OCTOSPIM_P2_DQS, FMC_INT,  
DCMI_D13/PSSI_D13, LCD_CLK,  
EVENTOUT  
TIM8_ETR, SPI6_NSS/I2S6_WS,  
USART6_RTS/USART6_DE,  
SPDIFRX1_IN3, ETH_PPS_OUT,  
FMC_SDCLK, LCD_G7, EVENTOUT  
-
-
93 G11  
PG8  
I/O FT_h  
-
-
-
-
-
94  
-
VSS  
S
S
-
-
-
-
-
-
-
-
F6  
95 C11  
VDD33USB  
TIM3_CH1, TIM8_CH1,  
DFSDM1_CKIN3, I2S2_MCK,  
USART6_TX, SDMMC1_D0DIR,  
FMC_NWAIT, SDMMC2_D6,  
SDMMC1_D6, DCMI_D0/PSSI_D0,  
LCD_HSYNC, EVENTOUT  
F10 63  
96 G12  
PC6  
I/O FT_h  
-
SWPMI_IO  
DS13313 Rev 2  
65/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
DBTRGIO, TIM3_CH2, TIM8_CH2,  
DFSDM1_DATIN3, I2S3_MCK,  
USART6_RX, SDMMC1_D123DIR,  
FMC_NE1, SDMMC2_D7, SWPMI_TX,  
SDMMC1_D7, DCMI_D1/PSSI_D1,  
LCD_G6, EVENTOUT  
E10 64  
97 F12  
PC7  
PC8  
I/O FT_h  
-
-
-
TRACED1, TIM3_CH3, TIM8_CH3,  
USART6_CK,  
UART5_RTS/UART5_DE,  
FMC_NE2/FMC_NCE, FMC_INT,  
SWPMI_RX, SDMMC1_D0,  
DCMI_D2/PSSI_D2, EVENTOUT  
F9  
E9  
65  
66  
98 F11  
I/O FT_h  
-
-
MCO2, TIM3_CH4, TIM8_CH4,  
I2C3_SDA(boot), I2S_CKIN,  
I2C5_SDA, UART5_CTS,  
OCTOSPIM_P1_IO0, LCD_G3,  
SWPMI_SUSPEND, SDMMC1_D1,  
DCMI_D3/PSSI_D3, LCD_B2,  
EVENTOUT  
99 E11  
PC9  
I/O FT_fh  
-
MCO1, TIM1_CH1, TIM8_BKIN2,  
I2C3_SCL(boot), I2C5_SCL,  
D9  
C9  
67 100 E12  
PA8  
PA9  
I/O FT_fh  
I/O FT_u  
-
-
USART1_CK, OTG_HS_SOF,  
UART7_RX, TIM8_BKIN2_COMP12,  
LCD_B3, LCD_R6, EVENTOUT  
-
TIM1_CH2, LPUART1_TX,  
I2C3_SMBA, SPI2_SCK/I2S2_CK,  
I2C5_SMBA, USART1_TX(boot),  
ETH_TX_ER, DCMI_D0/PSSI_D0,  
LCD_R5, EVENTOUT  
68 101 D12  
OTG_HS_VBUS  
TIM1_CH3, LPUART1_RX,  
USART1_RX(boot), OTG_HS_ID,  
MDIOS_MDIO, LCD_B4,  
DCMI_D1/PSSI_D1, LCD_B1,  
EVENTOUT  
D10 69 102 D11  
PA10  
PA11  
I/O FT_u  
I/O FT_u  
-
-
-
TIM1_CH4, LPUART1_CTS,  
SPI2_NSS/I2S2_WS, UART4_RX,  
USART1_CTS/USART1_NSS,  
FDCAN1_RX, LCD_R4, EVENTOUT  
OTG_HS_DM  
(boot)  
C10 70 103 C12  
TIM1_ETR,  
LPUART1_RTS/LPUART1_DE,  
SPI2_SCK/I2S2_CK, UART4_TX,  
USART1_RTS/USART1_DE,  
SAI4_FS_B, FDCAN1_TX,  
OTG_HS_DP  
(boot)  
B10 71 104 B12  
PA12  
I/O FT_u  
-
TIM1_BKIN2, LCD_R5, EVENTOUT  
66/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
A10 72 105 A12 PA13(JTMS/SWDIO) I/O  
FT  
-
-
-
-
-
-
JTMS/SWDIO, EVENTOUT  
-
-
-
-
-
E7  
-
73 106 G9  
VCAP  
VSS  
S
S
S
-
74 107  
75 108  
-
-
-
-
-
VDD  
-
-
A9  
76 109 A11 PA14(JTCK/SWCLK) I/O  
FT  
JTCK/SWCLK, EVENTOUT  
JTDI, TIM2_CH1/TIM2_ETR, CEC,  
SPI1_NSS/I2S1_WS,  
SPI3_NSS/I2S3_WS,  
SPI6_NSS/I2S6_WS,  
UART4_RTS/UART4_DE, LCD_R3,  
UART7_TX, LCD_B6, EVENTOUT  
A8  
B9  
B8  
C8  
77 110 A10  
PA15(JTDI)  
I/O  
FT  
-
-
-
-
-
-
-
-
DFSDM1_CKIN5, I2C5_SDA,  
SPI3_SCK(boot)/I2S3_CK,  
USART3_TX, UART4_TX,  
OCTOSPIM_P1_IO1, LCD_B1,  
SWPMI_RX, SDMMC1_D2,  
DCMI_D8/PSSI_D8, LCD_R2,  
EVENTOUT  
78  
111 B11  
PC10  
I/O FT_fh  
I/O FT_fh  
I/O FT_h  
DFSDM1_DATIN5, I2C5_SCL,  
SPI3_MISO(boot)/I2S3_SDI,  
USART3_RX, UART4_RX,  
OCTOSPIM_P1_NCS, SDMMC1_D3,  
DCMI_D4/PSSI_D4, LCD_B4,  
EVENTOUT  
79 112 B10  
PC11  
TRACED3, FMC_D6/FMC_AD6,  
TIM15_CH1, I2C5_SMBA,  
SPI6_SCK/I2S6_CK,  
SPI3_MOSI(boot)/I2S3_SDO,  
USART3_CK, UART5_TX,  
SDMMC1_CK, DCMI_D9/PSSI_D9,  
LCD_R6, EVENTOUT  
80 113 C10  
PC12  
DFSDM1_CKIN6, UART4_RX,  
FDCAN1_RX(boot), UART9_CTS,  
FMC_D2/FMC_AD2, LCD_B1,  
EVENTOUT  
D8  
E8  
81 114 E10  
82 115 D10  
PD0  
PD1  
I/O FT_h  
I/O FT_h  
-
-
-
-
DFSDM1_DATIN6, UART4_TX,  
FDCAN1_TX(boot),  
FMC_D3/FMC_AD3, EVENTOUT  
DS13313 Rev 2  
67/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
TRACED2, FMC_D7/FMC_AD7,  
TIM3_ETR, TIM15_BKIN, UART5_RX,  
LCD_B7, SDMMC1_CMD,  
DCMI_D11/PSSI_D11, LCD_B2,  
EVENTOUT  
B7  
C7  
83 116 E9  
PD2  
PD3  
I/O FT_h  
I/O FT_h  
-
-
-
-
DFSDM1_CKOUT,  
SPI2_SCK/I2S2_CK,  
USART2_CTS/USART2_NSS,  
FMC_CLK, DCMI_D5/PSSI_D5,  
LCD_G7, EVENTOUT  
84 117 D9  
USART2_RTS/USART2_DE,  
OCTOSPIM_P1_IO4, FMC_NOE,  
EVENTOUT  
D7  
B6  
85 118 C9  
86 119 B9  
PD4  
PD5  
I/O FT_h  
I/O FT_h  
-
-
-
-
USART2_TX, OCTOSPIM_P1_IO5,  
FMC_NWE, EVENTOUT  
-
-
-
-
120  
121  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
SAI4_D1, SAI1_D1, DFSDM1_CKIN4,  
DFSDM1_DATIN1,  
SPI3_MOSI/I2S3_SDO, SAI1_SD_A,  
USART2_RX, SAI4_SD_A,  
OCTOSPIM_P1_IO6, SDMMC2_CK,  
FMC_NWAIT, DCMI_D10/PSSI_D10,  
LCD_B2, EVENTOUT  
C6  
D6  
87 122 A8  
PD6  
PD7  
I/O FT_h  
-
-
-
-
DFSDM1_DATIN4,  
SPI1_MOSI/I2S1_SDO,  
DFSDM1_CKIN1, USART2_CK,  
SPDIFRX1_IN1, OCTOSPIM_P1_IO7,  
SDMMC2_CMD, FMC_NE1,  
EVENTOUT  
88 123 A9  
I/O FT_h  
FDCAN3_TX, SPI1_MISO/I2S1_SDI,  
USART6_RX, SPDIFRX1_IN4,  
-
-
-
-
124 E8  
PG9  
I/O FT_h  
I/O FT_h  
-
-
OCTOSPIM_P1_IO6, SAI4_FS_B,  
SDMMC2_D0, FMC_NE2/FMC_NCE,  
DCMI_VSYNC/PSSI_RDY, EVENTOUT  
-
-
FDCAN3_RX, OCTOSPIM_P2_IO6,  
SPI1_NSS/I2S1_WS, LCD_G3,  
SAI4_SD_B, SDMMC2_D1, FMC_NE3,  
DCMI_D2/PSSI_D2, LCD_B2,  
EVENTOUT  
125 D8  
PG10  
68/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
LPTIM1_IN2, USART10_RX,  
SPI1_SCK/I2S1_CK, SPDIFRX1_IN1,  
OCTOSPIM_P2_IO7, SDMMC2_D2,  
ETH_MII_TX_EN/ETH_RMII_TX_EN,  
DCMI_D3/PSSI_D3, LCD_B3,  
EVENTOUT  
-
-
-
-
126 C8  
PG11  
PG12  
I/O FT_h  
-
-
-
-
LPTIM1_IN1, OCTOSPIM_P2_NCS,  
USART10_TX, SPI6_MISO/I2S6_SDI,  
USART6_RTS/USART6_DE,  
SPDIFRX1_IN2, LCD_B4,  
SDMMC2_D3,  
127 B8  
I/O FT_h  
ETH_MII_TXD1/ETH_RMII_TXD1,  
FMC_NE4, TIM23_CH1, LCD_B1,  
EVENTOUT  
TRACED0, LPTIM1_OUT,  
USART10_CTS/USART10_NSS,  
SPI6_SCK/I2S6_CK,  
USART6_CTS/USART6_NSS,  
SDMMC2_D6,  
-
-
128 D7  
PG13  
I/O FT_h  
-
-
ETH_MII_TXD0/ETH_RMII_TXD0,  
FMC_A24, TIM23_CH2, LCD_R0,  
EVENTOUT  
TRACED1, LPTIM1_ETR,  
USART10_RTS/USART10_DE,  
SPI6_MOSI/I2S6_SDO, USART6_TX,  
OCTOSPIM_P1_IO7, SDMMC2_D7,  
ETH_MII_TXD1/ETH_RMII_TXD1,  
FMC_A25, TIM23_CH3, LCD_B0,  
EVENTOUT  
-
-
129 C7  
PG14  
I/O FT_h  
-
-
-
-
-
-
130  
131  
-
-
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
USART6_CTS/USART6_NSS,  
OCTOSPIM_P2_DQS, USART10_CK,  
FMC_NCAS, DCMI_D13/PSSI_D13,  
EVENTOUT  
-
-
132 B7  
PG15  
I/O FT_h  
-
-
JTDO/TRACESWO, TIM2_CH2,  
SPI1_SCK/I2S1_CK,  
PB3  
SPI3_SCK/I2S3_CK,  
A7  
89 133 A7  
I/O FT_h  
-
-
(JTDO/TRACESWO)  
SPI6_SCK/I2S6_CK, SDMMC2_D2,  
CRS_SYNC, UART7_RX, TIM24_ETR,  
EVENTOUT  
DS13313 Rev 2  
69/227  
85  
Pinouts, pin descriptions and alternate functions  
STM32H723xE/G  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
NJTRST, TIM16_BKIN, TIM3_CH1,  
SPI1_MISO/I2S1_SDI,  
SPI3_MISO/I2S3_SDI,  
SPI2_NSS/I2S2_WS,  
SPI6_MISO/I2S6_SDI, SDMMC2_D3,  
UART7_TX, EVENTOUT  
A6  
C5  
90 134 A6  
PB4(NJTRST)  
I/O FT_h  
-
-
-
TIM17_BKIN, TIM3_CH2, LCD_B5,  
I2C1_SMBA, SPI1_MOSI/I2S1_SDO,  
I2C4_SMBA, SPI3_MOSI/I2S3_SDO,  
SPI6_MOSI/I2S6_SDO, FDCAN2_RX,  
OTG_HS_ULPI_D7, ETH_PPS_OUT,  
FMC_SDCKE1, DCMI_D10/PSSI_D10,  
UART5_RX, EVENTOUT  
91 135 B6  
PB5  
I/O FT_h  
-
-
TIM16_CH1N, TIM4_CH1,  
I2C1_SCL(boot), CEC, I2C4_SCL,  
USART1_TX, LPUART1_TX,  
FDCAN2_TX, OCTOSPIM_P1_NCS,  
DFSDM1_DATIN5, FMC_SDNE1,  
DCMI_D5/PSSI_D5, UART5_TX,  
EVENTOUT  
B5  
92 136 C6  
PB6  
I/O FT_fh  
-
TIM17_CH1N, TIM4_CH2, I2C1_SDA,  
I2C4_SDA, USART1_RX,  
A5  
D5  
93 137 D6  
94 138 D5  
PB7  
I/O FT_fa  
-
-
LPUART1_RX, DFSDM1_CKIN5,  
FMC_NL, DCMI_VSYNC/PSSI_RDY,  
EVENTOUT  
PVD_IN  
VPP  
BOOT0  
I
B
-
TIM16_CH1, TIM4_CH3,  
DFSDM1_CKIN7, I2C1_SCL,  
I2C4_SCL, SDMMC1_CKIN,  
UART4_RX, FDCAN1_RX,  
SDMMC2_D4, ETH_MII_TXD3,  
SDMMC1_D4, DCMI_D6/PSSI_D6,  
LCD_B6, EVENTOUT  
B4  
95 139 C5  
PB8  
I/O FT_fh  
-
-
TIM17_CH1, TIM4_CH4,  
DFSDM1_DATIN7, I2C1_SDA(boot),  
SPI2_NSS/I2S2_WS, I2C4_SDA,  
SDMMC1_CDIR, UART4_TX,  
FDCAN1_TX, SDMMC2_D5,  
I2C4_SMBA, SDMMC1_D5,  
DCMI_D7/PSSI_D7, LCD_B7,  
EVENTOUT  
A4  
96 140 B5  
PB9  
I/O FT_fh  
-
-
70/227  
DS13313 Rev 2  
STM32H723xE/G  
Pinouts, pin descriptions and alternate functions  
Table 7. STM32H723 pin and ball descriptions (continued)  
Pin number  
Pin name (function  
after reset)  
Additional  
functions  
Alternate functions  
LPTIM1_ETR, TIM4_ETR,  
LPTIM2_ETR, UART8_RX,  
SAI4_MCLK_A, FMC_NBL0,  
DCMI_D2/PSSI_D2, LCD_R0,  
EVENTOUT  
D4  
C4  
97 141 A5  
PE0  
PE1  
I/O FT_h  
I/O FT_h  
-
-
-
-
LPTIM1_IN2, UART8_TX, FMC_NBL1,  
DCMI_D3/PSSI_D3, LCD_R6,  
EVENTOUT  
98 142 A4  
-
F7  
-
99  
-
-
-
VSS  
PDR_ON  
VDD  
VSS  
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
143 E5  
100 144  
-
C2  
E6  
J1  
E4  
E5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D2  
E6  
E7  
G4  
G8  
G10  
H5  
H6  
D3  
F4  
VSS  
VSS  
VSS  
VSS  
VSS  
-
VSS  
-
VSS  
D2  
F5  
K1  
F4  
-
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
F5  
F6  
F7  
-
F8  
-
F9  
-
F10  
G5  
G6  
G7  
-
-
-
DS13313 Rev 2  
71/227  
85  
Table 8. STM32H723 pin alternate functions  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
USART2  
_CTS/  
USART2  
_NSS  
TIM2_CH  
1/TIM2_ TIM5_CH1  
ETR  
SPI6_  
NSS/I2S  
6_WS  
TIM8_  
ETR  
TIM15_  
BKIN  
UART4_ SDMMC2_ SAI4_SD_  
ETH_MII_  
CRS  
EVENT  
OUT  
PA0  
-
-
-
-
FMC_A19  
-
-
-
TX  
CMD  
B
USART2  
_RTS/  
USART2  
_DE  
ETH_MII_  
RX_CLK/  
OCTOSPI  
M_P1_  
DQS  
TIM2_CH  
TIM5_CH2  
2
LPTIM3_  
OUT  
TIM15_  
CH1N  
UART4_  
RX  
OCTOSPI  
M_P1_IO3 MCLK_B ETH_RMII_  
REF_CLK  
SAI4_  
LCD_ EVENT  
R2 OUT  
PA1  
-
-
TIM2_CH  
TIM5_CH3  
3
LPTIM4_  
OUT  
TIM15_  
CH1  
OCTOSPI USART2 SAI4_SCK  
MDIOS_  
MDIO  
LCD_R EVENT  
OUT  
PA2  
PA3  
-
-
-
-
ETH_MDIO  
-
-
M_P1_IO0  
_TX  
_B  
1
OCTOSPI  
M_P1_  
CLK  
TIM2_CH  
TIM5_CH4  
4
LPTIM5_  
OUT  
TIM15_  
CH2  
I2S6_  
MCK  
OCTOSPI USART2  
M_P1_IO2 _RX  
OTG_HS_  
ULPI_D0  
ETH_MII_  
COL  
LCD_B EVENT  
OUT  
-
LCD_B2  
5
SPI1_  
NSS/  
I2S1_WS  
DCMI_  
HSYNC/  
PSSI_DE  
D1PWR  
EN  
TIM5_  
ETR  
SPI3_NSS USART2 SPI6_NSS  
FMC_D8/  
FMC_AD8  
LCD_ EVENT  
VSYNC OUT  
PA4  
PA5  
-
-
-
-
-
-
-
-
-
/I2S3_WS  
_CK  
/I2S6_WS  
TIM2_CH  
1/TIM2_  
ETR  
SPI1_  
SCK/  
I2S1_CK  
D2PWR  
EN  
TIM8_CH  
1N  
SPI6_SCK  
/I2S6_CK  
OTG_HS_  
ULPI_CK  
FMC_D9/ PSSI_D1 LCD_R EVENT  
-
-
-
FMC_AD9  
4
4
OUT  
DCMI_  
SPI1_  
MISO/  
I2S1_SDI  
SPI6_  
MISO/I2S6  
_SDI  
TIM8_  
BKIN_  
COMP12  
TIM1_  
BKIN_  
COMP12  
TIM1_  
BKIN  
TIM8_  
BKIN  
OCTOSPI  
M_P1_IO3  
TIM13_CH  
1
MDIOS_  
MDC  
PIXCLK/ LCD_G EVENT  
PSSI_  
PDCK  
PA6  
PA7  
-
-
TIM3_CH1  
-
-
-
-
2
OUT  
ETH_MII_  
RX_DV/  
SPI1_  
MOSI/I2S  
1_SDO  
SPI6_  
MOSI/I2S6  
_SDO  
TIM1_CH  
1N  
TIM8_CH  
1N  
TIM14_CH OCTOSPI  
FMC_SDN  
WE  
LCD_ EVENT  
VSYNC OUT  
TIM3_CH2  
-
-
1
M_P1_IO2 ETH_RMII_  
CRS_DV  
 
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
TIM8_  
BKIN2_  
COMP12  
TIM1_CH  
1
TIM8_  
BKIN2  
I2C3_  
SCL  
USART1  
_CK  
OTG_HS_  
SOF  
LCD_R EVENT  
OUT  
PA8  
MCO1  
-
-
-
-
I2C5_SCL  
-
-
-
-
-
-
UART7_RX  
LCD_B3  
6
SPI2_  
SCK/  
I2S2_CK  
DCMI_  
D0/PSSI  
_D0  
TIM1_CH  
2
LPUART  
1_TX  
I2C3_  
SMBA  
I2C5_  
SMBA  
USART1  
_TX  
ETH_TX_  
ER  
LCD_R EVENT  
OUT  
PA9  
-
-
-
-
5
DCMI_  
D1/PSSI  
_D1  
TIM1_CH  
3
LPUART  
1_RX  
USART1  
_RX  
OTG_HS_  
ID  
MDIOS_  
MDIO  
LCD_B EVENT  
OUT  
PA10  
-
-
-
-
LCD_B4  
1
USART1  
_CTS/  
USART1  
_NSS  
SPI2_  
NSS/  
I2S2_WS  
TIM1_CH  
4
LPUART  
1_CTS  
UART4_  
RX  
FDCAN1_  
RX  
LCD_R EVENT  
OUT  
PA11  
PA12  
-
-
-
-
-
-
-
-
-
-
-
-
4
LPUART  
1_RTS/  
LPUART  
1_DE  
USART1  
_RTS/  
USART1  
_DE  
SPI2_  
SCK/  
I2S2_CK  
TIM1_  
ETR  
UART4_  
TX  
SAI4_FS_ FDCAN1_  
TIM1_  
BKIN2  
LCD_R EVENT  
-
B
TX  
5
OUT  
JTMS/  
SWDIO  
EVENT  
OUT  
PA13  
PA14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
JTCK/  
SWCLK  
EVENT  
OUT  
UART4_  
RTS/  
UART4_  
DE  
TIM2_  
CH1/TIM2  
_ETR  
SPI1_  
NSS/  
I2S1_WS  
SPI6_  
NSS/  
I2S6_WS  
SPI3_NSS  
/I2S3_WS  
LCD_B EVENT  
OUT  
PA15  
JTDI  
-
-
CEC  
LCD_R3  
-
UART7_TX  
-
-
6
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P1  
_IO1  
TIM1_CH  
2N  
TIM8_CH  
2N  
DFSDM1_  
CKOUT  
UART4_  
CTS  
OTG_HS_  
ULPI_D1  
ETH_MII_  
RXD2  
LCD_G EVENT  
OUT  
PB0  
-
-
TIM3_CH3  
TIM3_CH4  
SAI1_D1  
-
-
-
-
-
-
LCD_R3  
-
-
-
-
-
-
-
1
OCTO  
SPIM_P1  
_IO0  
TIM1_CH  
3N  
TIM8_CH  
3N  
DFSDM1_  
DATIN1  
OTG_HS_  
ULPI_D2  
ETH_MII_  
RXD3  
LCD_G EVENT  
PB1  
PB2  
-
LCD_R6  
OCTO  
0
OUT  
SPI3_  
MOSI/I2S  
3_SDO  
OCTO  
SPIM_P1_ SPIM_P1_  
RTC_  
OUT  
DFSDM1  
_CKIN1  
SAI1_SD_  
A
SAI4_SD_  
A
ETH_TX_  
ER  
TIM23_  
ETR  
EVENT  
OUT  
SAI4_D1  
-
-
-
-
CLK  
DQS  
JTDO/  
SPI1_  
SCK/  
I2S1_CK  
TIM2_CH  
2
SPI3_SCK  
/I2S3_CK  
SPI6_SCK SDMMC2_  
/I2S6_CK  
CRS_  
SYNC  
TIM24_ EVENT  
PB3 TRACE  
SWO  
-
-
-
UART7_RX  
UART7_TX  
-
-
D2  
ETR  
OUT  
SPI1_  
MISO/  
SPI3_  
MISO/  
SPI2_  
NSS/  
SPI6_  
MISO/  
NJT  
PB4  
TIM16_  
BKIN  
SDMMC2_  
D3  
EVENT  
OUT  
TIM3_CH1  
-
-
RST  
I2S1_SDI I2S3_SDI I2S2_WS I2S6_SDI  
SPI1_  
MOSI/I2S  
1_SDO  
SPI3_  
MOSI/I2S MOSI/I2S6  
3_SDO _SDO  
SPI6_  
DCMI_  
D10/PSS  
I_D10  
TIM17_  
BKIN  
I2C1_  
SMBA  
I2C4_  
SMBA  
FDCAN2_ OTG_HS_ ETH_PPS_ FMC_SDC  
UART5 EVENT  
_RX OUT  
PB5  
PB6  
-
-
TIM3_CH2 LCD_B5  
RX  
ULPI_D7  
OUT  
KE1  
OCTO  
SPIM_P1_  
NCS  
DCMI_  
D5/PSSI  
_D5  
TIM16_  
CH1N  
I2C1_  
SCL  
USART1 LPUART1 FDCAN2_  
DFSDM1_ FMC_SDN  
UART5 EVENT  
TIM4_CH1  
TIM4_CH2  
-
-
CEC  
-
I2C4_SCL  
I2C4_SDA  
I2C4_SCL  
_TX  
_TX  
TX  
-
DATIN5  
E1  
_TX  
OUT  
DCMI_  
VSYNC/  
PSSI_  
RDY  
TIM17_  
CH1N  
I2C1_  
SDA  
USART1 LPUART1  
_RX _RX  
DFSDM1_  
CKIN5  
EVENT  
OUT  
PB7  
-
-
FMC_NL  
-
DCMI_  
D6/PSSI  
_D6  
TIM16_C  
H1  
DFSDM1  
_CKIN7  
I2C1_  
SCL  
SDMMC1 UART4_  
_CKIN RX  
FDCAN1_ SDMMC2_ ETH_MII_ SDMMC1_  
LCD_B EVENT  
OUT  
PB8  
PB9  
-
-
TIM4_CH3  
TIM4_CH4  
-
RX  
D4  
TXD3  
D4  
6
SPI2_  
NSS/I2S I2C4_SDA  
2_WS  
DCMI_  
D7/PSSI  
_D7  
TIM17_  
CH1  
DFSDM1  
_DATIN7  
I2C1_  
SDA  
SDMMC1 UART4_  
FDCAN1_ SDMMC2_  
TX D5  
I2C4_  
SMBA  
SDMMC1_  
D5  
LCD_B EVENT  
OUT  
_CDIR  
TX  
7
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
SPI2_  
SCK/  
I2S2_CK  
OCTO  
SPIM_P1_  
NCS  
TIM2_CH  
3
LPTIM2_  
IN1  
I2C2_  
SCL  
DFSDM1_ USART3  
DATIN7 _TX  
OTG_HS_  
ULPI_D3  
ETH_MII_  
RX_ER  
LCD_G EVENT  
OUT  
PB10  
-
-
-
-
-
-
-
-
-
4
ETH_MII_  
TX_EN/  
TIM2_CH  
4
LPTIM2_  
ETR  
I2C2_  
SDA  
DFSDM1_ USART3  
CKIN7 _RX  
OTG_HS_  
ULPI_D4 ETH_RMII_  
TX_EN  
LCD_G EVENT  
OUT  
PB11  
PB12  
PB13  
-
-
-
5
ETH_MII_  
TXD0/  
OCTO  
SPIM_P1  
_NCLK  
SPI2_  
NSS/  
I2S2_WS  
TIM1_  
BKIN_  
COMP12  
TIM1_BKI  
N
I2C2_SM  
BA  
DFSDM1_ USART3  
FDCAN2_ OTG_HS_  
OCTOSPI  
UART5 EVENT  
_RX OUT  
-
-
-
-
-
-
-
DATIN1  
_CK  
RX  
ULPI_D5 ETH_RMII_ M_P1_IO0  
TXD0  
USART3  
_CTS/  
USART3  
_NSS  
ETH_MII_  
TXD1/  
OCTO  
SPIM_P1  
_IO2  
SPI2_  
SCK/  
I2S2_CK  
DCMI_  
D2/PSSI  
_D2  
TIM1_CH  
1N  
LPTIM2_  
OUT  
DFSDM1_  
CKIN1  
FDCAN2_ OTG_HS_  
SDMMC1_  
D0  
UART5 EVENT  
_TX OUT  
TX  
ULPI_D6 ETH_RMII_  
TXD1  
USART3  
_RTS/  
USART3  
_DE  
SPI2_  
MISO/  
I2S2_SDI  
UART4_  
RTS/UAR  
T4_DE  
FMC_D10/  
FMC_  
AD10  
TIM1_CH TIM12_CH TIM8_CH USART1  
2N 2N _TX  
DFSDM1_  
DATIN2  
SDMMC2_  
D0  
LCD_C EVENT  
LK OUT  
PB14  
PB15  
-
-
-
-
-
-
1
SPI2_  
MOSI/I2S  
2_SDO  
FMC_D11/  
FMC_AD1  
1
RTC_  
REFIN  
TIM1_CH TIM12_CH TIM8_CH USART1  
3N 3N _RX  
DFSDM1_  
CKIN2  
UART4_ SDMMC2_  
CTS D1  
LCD_G EVENT  
OUT  
-
2
7
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
FMC_D12  
/FMC_AD  
12  
DFSDM1  
_CKIN0  
DFSDM1_  
DATIN4  
SAI4_FS_  
B
OTG_HS_  
ULPI_STP  
FMC_SDN  
WE  
LCD_R EVENT  
OUT  
PC0  
-
-
-
-
-
-
-
-
FMC_A25  
LCD_G2  
-
-
-
-
5
SPI2_  
MOSI/I2S  
2_SDO  
OCTO  
SPIM_P1_ ETH_MDC  
IO4  
TRACE  
D0  
DFSDM1 DFSDM1  
_DATIN0 _CKIN4  
SAI1_SD_  
A
SAI4_SD_ SDMMC2_  
MDIOS_  
MDC  
LCD_G EVENT  
PC1  
PC2  
PC3  
SAI4_D1  
SAI1_D1  
A
CK  
5
OUT  
PWR_  
DEEP  
SLEEP  
OCTO  
SPIM_P1 MISO/I2S  
_IO5  
SPI2_  
DFSDM1  
_CKIN1  
DFSDM1_  
CKOUT  
OCTOSPI OTG_HS_  
M_P1_IO2 ULPI_DIR  
ETH_MII_ FMC_SDN  
TXD2 E0  
EVENT  
OUT  
-
-
-
-
-
-
2_SDI  
OCTO  
SPIM_P1 MOSI/I2S  
_IO6  
SPI2_  
PWR_  
SLEEP  
DFSDM1  
_DATIN1  
OCTOSPI OTG_HS_  
M_P1_IO0 ULPI_NXT  
ETH_MII_ FMC_SDC  
EVENT  
OUT  
-
-
-
-
-
-
TX_CLK  
KE0  
2_SDO  
ETH_MII_  
PWR_  
DEEP  
SLEEP  
DFSDM1  
_CKIN2  
I2S1_  
MCK  
SPDIFRX1 SDMMC2_ RXD0/ETH FMC_SDN  
LCD_R EVENT  
OUT  
PC4  
FMC_A22  
-
-
-
-
-
_IN3  
CKIN  
_RMII_RXD  
0
E0  
7
OCTOSPI ETH_MII_R  
M_P1_DQ XD1/ETH_  
PWR_  
SLEEP  
DFSDM1 PSSI_D1  
_DATIN2  
SPDIFRX1  
_IN4  
FMC_SDC COMP1_ LCD_D EVENT  
PC5  
PC6  
PC7  
SAI4_D3  
SAI1_D3  
TIM3_CH1  
TIM3_CH2  
-
-
-
5
KE0  
OUT  
E
OUT  
S
RMII_RXD1  
DCMI_  
D0/PSSI  
_D0  
TIM8_CH DFSDM1  
_CKIN3  
I2S2_  
MCK  
USART6 SDMMC1_  
_TX D0DIR  
FMC_  
NWAIT  
SDMMC2_  
D6  
SDMMC1_  
D6  
LCD_H EVENT  
SYNC OUT  
-
-
-
-
1
DCMI_  
D1/PSSI  
_D1  
DB  
TRGIO  
TIM8_CH DFSDM1  
I2S3_  
MCK  
USART6 SDMMC1_  
SDMMC2_  
D7  
SDMMC1_  
D7  
LCD_G EVENT  
-
-
FMC_NE1  
SWPMI_TX  
2
_DATIN3  
-
_RX  
D123DIR  
6
OUT  
UART5_  
RTS/  
UART5_  
DE  
FMC_NE2  
/FMC_  
NCE  
DCMI_  
D2/PSSI  
_D2  
TRACE  
D1  
TIM8_CH  
3
USART6  
_CK  
SDMMC1_  
D0  
EVENT  
OUT  
PC8  
-
TIM3_CH3  
-
FMC_INT SWPMI_RX  
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P1_  
IO0  
DCMI_D  
3/PSSI_  
D3  
TIM8_CH  
4
I2C3_  
SDA  
I2S_  
CKIN  
UART5_C  
TS  
SWPMI_  
SUSPEND  
SDMMC1_  
D1  
LCD_B EVENT  
OUT  
PC9  
MCO2  
-
-
-
TIM3_CH4  
I2C5_SDA  
-
LCD_G3  
2
OCTO  
SPIM_P1_  
IO1  
DCMI_D  
8/PSSI_  
D8  
DFSDM1  
_CKIN5  
I2C5_  
SDA  
SPI3_SCK USART3  
/I2S3_CK  
UART4_  
TX  
SDMMC1_  
D2  
LCD_R EVENT  
OUT  
PC10  
PC11  
PC12  
-
-
-
-
-
-
LCD_B1  
SWPMI_RX  
_TX  
2
SPI3_  
MISO/  
I2S3_SDI  
OCTO  
SPIM_P1_  
NCS  
DCMI_  
D4/PSSI  
_D4  
DFSDM1  
_DATIN5  
I2C5_  
SCL  
USART3  
_RX  
UART4_  
RX  
SDMMC1_  
D3  
LCD_B EVENT  
OUT  
-
-
-
-
4
SPI6_  
SCK/  
I2S6_CK I2S3_SDO  
SPI3_  
MOSI/  
DCMI_  
D9/PSSI  
_D9  
TRACE FMC_D6/ TIM15_CH  
D3  
I2C5_  
SMBA  
USART3  
_CK  
UART5_  
TX  
SDMMC1_  
CK  
LCD_R EVENT  
-
-
FMC_AD6  
1
6
OUT  
EVENT  
OUT  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
-
-
EVENT  
OUT  
-
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
DFSDM1  
_CKIN6  
UART4_  
RX  
FDCAN1_  
RX  
UART9_  
CTS  
FMC_D2/  
FMC_AD2  
LCD_B EVENT  
PD0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
OUT  
DFSDM1  
_DATIN6  
UART4_  
TX  
FDCAN1_  
TX  
FMC_D3/  
FMC_AD3  
EVENT  
OUT  
PD1  
PD2  
-
-
-
DCMI_  
D11/PSSI  
_D11  
TRACE FMC_D7/  
D2  
TIM3_  
ETR  
TIM15_  
BKIN  
UART5_  
RX  
SDMMC1_  
CMD  
LCD_B EVENT  
OUT  
-
-
-
-
-
LCD_B7  
-
-
FMC_AD7  
2
USART2  
_CTS/  
USART2  
_NSS  
SPI2_  
SCK/  
I2S2_CK  
DCMI_  
DFSDM1  
_CKOUT  
LCD_G EVENT  
PD3  
PD4  
-
-
-
-
-
-
-
-
FMC_CLK D5/PSSI  
_D5  
7
OUT  
USART2  
_RTS/  
USART2  
_DE  
OCTOSPI  
M_P1_IO4  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NOE  
FMC_NWE  
-
-
-
USART2  
_TX  
OCTOSPI  
M_P1_IO5  
EVENT  
OUT  
PD5  
PD6  
-
-
-
-
-
-
-
-
SPI3_  
MOSI/I2S  
3_SDO  
OCTO  
SPIM_P1_  
IO6  
DCMI_D  
10/PSSI_  
D10  
DFSDM1 DFSDM1  
_CKIN4 _DATIN1  
SAI1_SD_ USART2 SAI4_SD_  
SDMMC2_  
CK  
FMC_  
NWAIT  
LCD_B EVENT  
SAI4_D1  
SAI1_D1  
A
_RX  
A
2
OUT  
SPI1_  
MOSI/I2S  
1_SDO  
OCTO  
SPIM_P1_  
IO7  
DFSDM1  
-
DFSDM1_ USART2  
SPDIFRX1  
_IN1  
SDMMC2_  
CMD  
EVENT  
OUT  
PD7  
PD8  
-
-
-
-
-
-
-
FMC_NE1  
-
-
-
_DATIN4  
CKIN1  
_CK  
FMC_D13/  
FMC_  
AD13  
DFSDM1  
-
USART3  
_TX  
SPDIFRX1  
_IN2  
EVENT  
OUT  
-
-
-
-
-
-
_CKIN3  
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
FMC_D14/  
FMC_AD1  
4
DFSDM1  
_DATIN3  
USART3  
_RX  
EVENT  
OUT  
PD9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D15/  
FMC_AD1  
5
DFSDM1  
_CKOUT  
USART3  
_CK  
LCD_B EVENT  
PD10  
PD11  
3
OUT  
USART3  
_CTS/  
USART3  
_NSS  
LPTIM2_I I2C4_SM  
OCTOSPI SAI4_SD_  
M_P1_IO0  
FMC_A16/  
FMC_CLE  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
N2  
BA  
A
USART3  
_RTS/  
USART3  
_DE  
OCTO  
SPIM_P1_  
IO1  
DCMI_  
D12/PSS  
I_D12  
LPTIM1_  
IN1  
LPTIM2_  
IN1  
I2C4_  
SCL  
FDCAN3  
_RX  
SAI4_FS_  
A
FMC_A17/  
FMC_ALE  
EVENT  
OUT  
PD12  
TIM4_CH1  
-
DCMI_  
D13/  
PSSI_  
D13  
OCTO  
SPIM_P1_  
IO3  
UART9_  
RTS/  
UART9_DE  
LPTIM1_  
OUT  
I2C4_  
SDA  
FDCAN3  
_TX  
SAI4_  
SCK_A  
EVENT  
OUT  
PD13  
PD14  
PD15  
-
-
-
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
-
-
FMC_A18  
-
-
-
UART8_  
CTS  
FMC_D0/  
FMC_AD0  
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
UART9_RX  
UART9_TX  
-
UART8_  
RTS/  
UART8_  
DE  
FMC_D1/  
FMC_AD1  
EVENT  
OUT  
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
DCMI_  
D2/PSSI  
_D2  
LPTIM1_  
ETR  
TIM4_  
ETR  
LPTIM2_  
ETR  
UART8_  
RX  
SAI4_  
MCLK_A  
FMC_NBL  
0
LCD_R EVENT  
OUT  
PE0  
-
-
-
-
-
-
-
-
-
-
-
-
-
0
DCMI_  
D3/  
PSSI_D3  
LPTIM1_  
IN2  
UART8_  
TX  
FMC_NBL  
1
LCD_R EVENT  
PE1  
-
-
-
-
6
OUT  
TRACE  
CLK  
SAI1_  
CK1  
USART1  
0_RX  
SPI4_  
SCK  
SAI1_  
MCLK_A  
SAI4_  
MCLK_A M_P1_IO2  
OCTOSPI  
ETH_MII_  
TXD3  
EVENT  
OUT  
PE2  
PE3  
-
-
-
-
-
-
SAI4_CK1  
-
FMC_A23  
FMC_A19  
-
-
TRACE  
D0  
TIM15_  
BKIN  
SAI1_SD_  
B
SAI4_SD_  
USART10_  
TX  
EVENT  
OUT  
-
-
-
-
-
B
DCMI_  
FMC_A20 D4/PSSI  
_D4  
TRACE  
D1  
DFSDM1 TIM15_ SPI4_NS SAI1_FS_  
SAI4_FS_  
LCD_B EVENT  
OUT  
PE4  
PE5  
PE6  
PE7  
PE8  
-
-
SAI1_D2  
-
-
-
-
SAI4_D2  
-
_DATIN3  
CH1N  
S
A
A
0
DCMI_  
FMC_A21 D6/PSSI  
_D6  
TRACE  
D2  
DFSDM1 TIM15_  
SPI4_  
MISO  
SAI1_SCK  
_A  
SAI4_SCK  
LCD_G EVENT  
OUT  
SAI1_CK2  
-
SAI4_CK2  
SAI4_  
-
_CKIN3  
CH1  
_A  
0
DCMI_  
FMC_A22 D7/PSSI  
_D7  
TRACE  
D3  
TIM1_  
BKIN2  
TIM15_  
CH2  
SPI4_  
MOSI  
SAI1_SD_  
A
SAI4_SD_  
SAI4_D1  
A
TIM1_BKIN  
LCD_G EVENT  
SAI1_D1  
-
MCLK_B 2_COMP12  
1
OUT  
OCTO  
SPIM_P1_  
IO4  
TIM1_ET  
R
DFSDM1  
_DATIN2  
UART7_  
RX  
FMC_D4/  
-
EVENT  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_AD4  
OCTO  
SPIM_P1_  
IO5  
TIM1_CH  
1N  
DFSDM1  
_CKIN2  
UART7_  
TX  
FMC_D5/ COMP2_  
EVENT  
OUT  
-
-
FMC_AD5  
OUT  
UART7_  
RTS/  
UART7_  
DE  
OCTO  
SPIM_P1_  
IO6  
TIM1_CH  
1
DFSDM1  
_CKOUT  
FMC_D6/  
FMC_AD6  
EVENT  
OUT  
PE9  
-
-
-
-
-
-
-
-
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P1_  
IO7  
TIM1_CH  
2N  
DFSDM1  
_DATIN4  
UART7_  
CTS  
FMC_D7/  
FMC_AD7  
EVENT  
OUT  
PE10  
-
-
-
-
-
-
-
-
-
-
-
OCTO  
SPIM_P1_  
NCS  
TIM1_CH  
2
DFSDM1  
_CKIN4  
SPI4_  
NSS  
SAI4_SD_  
B
FMC_D8/  
FMC_AD8  
LCD_G EVENT  
OUT  
PE11  
PE12  
PE13  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
TIM1_CH  
3N  
DFSDM1  
_DATIN5  
SPI4_  
SCK  
SAI4_SCK  
_B  
FMC_D9/ COMP1_ LCD_B EVENT  
FMC_AD9  
-
-
OUT  
4
OUT  
FMC_D10/  
FMC_  
AD10  
TIM1_CH  
3
DFSDM1  
_CKIN5  
SPI4_  
MISO  
SAI4_FS_  
B
COMP2_  
OUT  
LCD_ EVENT  
DE OUT  
FMC_D11/  
FMC_  
AD11  
TIM1_CH  
4
SPI4_  
MOSI  
SAI4_  
MCLK_B  
LCD_ EVENT  
CLK OUT  
PE14  
PE15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D12/  
FMC_  
AD12  
TIM1_  
BKIN_  
COMP12  
TIM1_  
BKIN  
USART10_  
CK  
LCD_ EVENT  
R7 OUT  
-
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P2_  
IO0  
I2C2_  
SDA  
TIM23_  
CH1  
EVENT  
OUT  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C5_SDA  
I2C5_SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
FMC_A1  
FMC_A2  
FMC_A3  
FMC_A4  
FMC_A5  
-
-
-
-
-
-
-
-
-
OCTO  
SPIM_P2_  
IO1  
I2C2_  
SCL  
TIM23_  
CH2  
EVENT  
OUT  
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
OCTO  
SPIM_P2_  
IO2  
I2C2_  
SMBA  
I2C5_  
SMBA  
TIM23_  
CH3  
EVENT  
OUT  
OCTO  
SPIM_P2_  
IO3  
TIM23_  
CH4  
EVENT  
OUT  
-
-
-
-
-
-
-
-
OCTO  
SPIM_P2_  
CLK  
EVENT  
OUT  
-
-
OCTO  
SPIM_P2_  
NCLK  
EVENT  
OUT  
OCTO  
SPIM_P1_  
IO3  
TIM16_  
CH1  
FDCAN3_  
RX  
SPI5_  
NSS  
SAI1_SD_ UART7_ SAI4_SD_  
TIM23_  
CH1  
EVENT  
OUT  
-
-
B
RX  
B
OCTO  
SPIM_P1_  
IO2  
TIM17_  
CH1  
FDCAN3_  
TX  
SPI5_  
SCK  
SAI1_  
MCLK_B  
UART7_  
TX  
SAI4_  
MCLK_B  
TIM23_  
CH2  
EVENT  
OUT  
-
UART7_  
RTS/  
UART7_  
DE  
OCTO  
SPIM_P1_  
IO0  
TIM16_  
CH1N  
SPI5_  
MISO  
SAI1_SCK  
_B  
SAI4_SCK TIM13_CH  
_B  
TIM23_  
CH3  
EVENT  
OUT  
PF8  
PF9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
OCTO  
SPIM_P1_  
IO1  
TIM17_  
CH1N  
SPI5_  
MOSI  
SAI1_FS_ UART7_ SAI4_FS_ TIM14_CH  
CTS  
TIM23_  
CH4  
EVENT  
OUT  
B
B
1
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P1_ SAI4_D3  
CLK  
DCMI_  
D11/PSSI  
_D11  
TIM16_BK  
IN  
PSSI_  
D15  
LCD_D EVENT  
OUT  
PF10  
-
-
-
SAI1_D3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E
OCTO  
SAI4_SD_  
SPIM_P1_  
B
DCMI_  
D12/PSS  
I_D12  
SPI5_  
MOSI  
FMC_  
NRAS  
TIM24_ EVENT  
CH1 OUT  
PF11  
PF12  
-
-
-
-
-
-
NCLK  
OCTO  
SPIM_P2_  
DQS  
TIM24_ EVENT  
CH2 OUT  
-
-
FMC_A6  
-
DFSDM1  
_DATIN6  
I2C4_  
SMBA  
TIM24_ EVENT  
CH3 OUT  
PF13  
PF14  
PF15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A7  
FMC_A8  
FMC_A9  
-
-
-
DFSDM1  
_CKIN6  
I2C4_  
SCL  
TIM24_ EVENT  
CH4  
OUT  
I2C4_  
SDA  
EVENT  
OUT  
-
-
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
SAI4/  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
SDMMC2/ 8/UART7/9/  
TIM8  
USART10  
OCTO  
SPIM_P2_  
IO4  
EVENT  
OUT  
PG0  
-
-
-
-
-
-
-
-
-
-
-
UART9_RX FMC_A10  
UART9_TX FMC_A11  
-
-
-
OCTO  
SPIM_P2_  
IO5  
EVENT  
OUT  
PG1  
PG2  
PG3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM8_  
BKIN  
TIM8_BKIN  
FMC_A12  
_COMP12  
TIM24_ EVENT  
-
-
ETR  
OUT  
TIM8_  
TIM8_  
BKIN2  
TIM23_  
ETR  
EVENT  
OUT  
BKIN2_  
FMC_A13  
-
COMP12  
TIM1_  
BKIN2_  
COMP12  
TIM1_BKI  
N2  
FMC_A14/  
FMC_BA0  
EVENT  
OUT  
PG4  
PG5  
PG6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_  
ETR  
FMC_A15/  
FMC_BA1  
EVENT  
OUT  
-
-
-
OCTO  
SPIM_P1_  
NCS  
DCMI_D  
TIM17_  
BKIN  
LCD_R EVENT  
OUT  
FMC_NE3 12/PSSI_  
D12  
7
OCTO  
SPIM_P2_  
DQS  
DCMI_D  
FMC_INT 13/PSSI_  
D13  
SAI1_  
MCLK_A  
USART6  
_CK  
LCD_ EVENT  
CLK OUT  
PG7  
PG8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART6  
_RTS/  
USART6  
_DE  
SPI6_  
NSS/I2S  
6_WS  
TIM8_  
ETR  
SPDIFRX1  
_IN3  
ETH_PPS_  
OUT  
FMC_  
-
LCD_G EVENT  
-
-
-
SDCLK  
7
-
OUT  
DCMI_  
SPI1_  
MISO/I2S  
1_SDI  
OCTO  
SPIM_P1_  
IO6  
FDCAN3_  
TX  
USART6 SPDIFRX1  
_RX _IN4  
SAI4_FS_ SDMMC2_ FMC_NE2/ VSYNC/  
EVENT  
OUT  
PG9  
-
-
-
-
B
D0  
FMC_NCE  
PSSI_  
RDY  
Table 8. STM32H723 pin alternate functions (continued)  
AF0  
SYS  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
CEC/  
DCMI/  
PSSI/  
CRS/  
FMC/  
LCD/  
DFSDM1/  
ETH/I2C4/  
LCD/MDIO  
S/OCTOSP  
IM_P1/  
FDCAN1/2  
/FMC/  
LCD/  
DFSDM1  
/LCD/  
DFSDM1/I SDMMC1  
CEC/  
LPUART1/  
SAI4/  
SDMMC1/  
SPDIFRX1 SPIM_P1/  
/SPI6/ 2/SAI4/  
UART4/5/ SDMMC2/  
FMC/LCD/  
MDIOS/  
OCTOSPI  
M_P1/  
SDMMC1/  
TIM1x/  
DFSDM1  
2C4/5/  
OCTO  
SPIM_P1/  
SAI1/  
SPI3/  
I2S3/  
/SPI2/I2S  
2/SPI3/  
I2S3/  
COMP/  
DCMI/  
PSSI/  
LCD/  
TIM1x/  
TIM23  
FMC/  
LPTIM1/  
SAI4/TIM1  
6/17/TIM1 TIM3/4/5/1  
x/TIM2x  
FDCAN3/  
PDM_  
SAI1/  
FDCAN3/  
SPI1/I2S  
1/SPI2/  
I2S2/SPI  
3/I2S3/  
LPTIM2/ /I2C1/2/3/  
3/4/5/ 4/5/  
LPUART LPTIM2/  
1/OCTO OCTO  
SPIM_P1 SPIM_P1  
OCTO  
SPIM_P1/  
OTG1_FS/ SDMMC2/  
OTG1_HS/ SWPMI1/  
SAI4/  
SDMMC2/ 8/UART7/9/  
TIM8 USART10  
Port  
OCTO  
LCD/  
TIM24/  
UART5  
SYS  
SPI6/  
UART7/  
USART1/  
2/3/6  
2/15  
TIM1x/TIM  
SPI4/5/6  
8
SPDIFRX1  
/TIM13/14  
TIM8  
/2/TIM8  
/TIM15/  
USART1/  
10  
UART4  
OCTO  
SPIM_P2  
_IO6  
SPI1_  
NSS/I2S  
1_WS  
DCMI_  
FMC_NE3 D2/PSSI  
_D2  
FDCAN3_  
RX  
SAI4_SD_ SDMMC2_  
LCD_B EVENT  
OUT  
PG10  
-
-
-
-
-
-
-
-
-
LCD_G3  
B
D1  
2
ETH_MII_  
TX_EN/  
ETH_RMII_  
TX_EN  
SPI1_  
SCK/I2S  
1_CK  
OCTO  
SPIM_P2_  
IO7  
DCMI_  
D3/PSSI  
_D3  
LPTIM1_  
IN2  
USART1  
0_RX  
SPDIFRX1  
_IN1  
SDMMC2_  
D2  
LCD_B EVENT  
OUT  
PG11  
PG12  
PG13  
PG14  
PG15  
-
-
-
-
-
-
-
3
USART6  
_RTS/  
USART6  
_DE  
ETH_MII_  
SDMMC2_ TXD1/ETH  
OCTO  
SPIM_P2  
_NCS  
SPI6_  
MISO/I2S  
6_SDI  
LPTIM1_  
IN1  
USART1  
0_TX  
SPDIFRX1  
_IN2  
TIM23_  
CH1  
LCD_B EVENT  
OUT  
-
-
-
-
-
LCD_B4  
FMC_NE4  
FMC_A24  
FMC_A25  
D3  
_RMII_TXD  
1
1
USART1  
0_CTS/  
USART1  
0_NSS  
USART6  
_CTS/  
USART6  
_NSS  
ETH_MII_  
SDMMC2_ TXD0/ETH  
SPI6_  
SCK/I2S  
6_CK  
TRACE LPTIM1_  
D0 OUT  
TIM23_  
CH2  
LCD_R EVENT  
OUT  
-
-
-
-
-
-
-
D6  
_RMII_TXD  
0
0
USART1  
0_RTS/  
USART1  
0_DE  
ETH_MII_  
SDMMC2_ TXD1/ETH  
SPI6_  
MOSI/I2S  
6_SDO  
OCTO  
SPIM_P1_  
IO7  
TRACE LPTIM1_  
D1  
USART6  
_TX  
TIM23_  
CH3  
LCD_B EVENT  
ETR  
D7  
_RMII_TXD  
1
0
OUT  
USART6  
_CTS/  
USART6  
_NSS  
OCTO  
SPIM_P2_  
DQS  
DCMI_D  
13/PSSI_  
D13  
USART10_ FMC_NCA  
EVENT  
OUT  
-
-
-
-
-
-
CK  
S
EVENT  
OUT  
PH0  
PH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT  
OUT  
Electrical characteristics  
STM32H723xE/G  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of junction temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an junction temperature at T = 25 °C and T = T (given by the  
J
J
Jmax  
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes. Based on characterization, the minimum and maximum  
values refer to sample tests and represent the mean value plus or minus three times the  
standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
J
DD  
1.7 V V  
tested.  
3.6 V voltage range). They are given only as design guidelines and are not  
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 8.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 9.  
Figure 8. Pin loading conditions  
Figure 9. Pin input voltage  
MCU pin  
MCU pin  
V
C =50 pF  
IN  
MS19011V2  
MS19010V2  
86/227  
DS13313 Rev 2  
 
 
 
 
 
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 10. Power supply scheme  
VCAP  
Core domain (VCORE  
)
LDO  
voltage  
regulator  
VDDLDO  
VSS  
D3 domain  
(System  
logic,  
D1 domain  
(CPU, peripherals,  
RAM)  
D2 domain  
(peripherals,  
RAM)  
EXTI,  
IO  
logic  
IOs  
Peripherals,  
RAM)  
Flash  
VSS  
VDD domain  
HSI, CSI,  
VDD  
Power  
switch  
HSI48,  
HSE, PLLs  
VBAT  
charging  
Backup domain  
Backup  
regulator  
VSW  
VBKP  
VBAT  
Power switch  
LSI, LSE, RTC,  
Wakeup logic,  
backup  
Backup  
RAM  
BKUP  
IOs  
IO  
logic  
registers, Reset  
VSS  
VSS  
VDD33USB  
VDDA  
USB  
FS IOs  
Analog domain  
REF_BUF  
ADC, DAC  
VREF+  
OPAMP,  
Comparator  
VREF+  
VREF-  
VREF-  
VSSA  
1. Refer to application note AN5419 “Getting started with STM32H723/733, STM32H725/735 and  
STM32H730 Value Line hardware development“ for the possible power scheme and connected capacitors.  
DS13313 Rev 2  
87/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
6.1.7  
Current consumption measurement  
Figure 11. Current consumption measurement scheme  
LDO ON  
IDD_VBAT  
VBAT  
IDD  
VDD  
VDDLDO  
VDDA  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 9: Voltage characteristics,  
Table 10: Current characteristics, and Table 11: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and the functional operation  
of the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Device mission profile (application conditions)  
is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are  
available on demand.  
Table 9. Voltage characteristics  
Symbols  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDD  
,
(1)  
VDDX - VSS  
0.3  
4.0  
V
VDDLDO, VDDA, VDD33USB, VBAT  
)
Min(VDD, VDDA  
,
Input voltage on FT_xxx pins  
VSS0.3  
V
DD33USB, VBAT  
)
V
+4.0(3)(4)  
(2)  
VIN  
Input voltage on TT_xx pins  
Input voltage on BOOT0 pin  
Input voltage on any other pins  
V
SS0.3  
4.0  
9.0  
4.0  
V
V
V
VSS  
VSS-0.3  
-
Variations between different VDDX power  
pins of the same domain  
|VDDX  
|
50  
50  
mV  
mV  
Variations between all the different ground  
pins  
|VSSx-VSS  
|
-
1. All main power (VDD, VDDA, VDD33USB, VBAT) and ground (VSS, VSSA) pins must always be connected to  
the external power supply, in the permitted range.  
2. VIN maximum must always be respected.  
3. This formula has to be applied on power supplies related to the IO structure described by the pin definition  
table.  
88/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
4. To sustain a voltage higher than 4V the internal pull-up/pull-down resistors must be disabled.  
Table 10. Current characteristics  
Ratings  
Symbols  
Max  
Unit  
ΣIVDD  
ΣIVSS  
IVDD  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin, except Px_C  
Output current sunk by Px_C pins  
620  
620  
100  
100  
20  
IVSS  
IIO  
1
mA  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
140  
140  
ΣI(PIN)  
Injected current on FT_xxx, TT_xx, RST and B pins except PA4,  
PA5  
5/+0  
(3)(4)  
IINJ(PIN)  
Injected current on PA4, PA5  
0/0  
ΣIINJ(PIN)  
Total injected current (sum of all I/Os and control pins)(5)  
±25  
1. All main power (VDD, VDDA, VDD33USB) and ground (VSS, VSSA) pins must always be connected to the  
external power supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
QFP packages.  
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must  
never be exceeded. Refer also to Table 9: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 11. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Value  
Unit  
TSTG  
65 to +150  
°C  
Maximum junction  
temperature  
TJ  
Industrial temperature range 6  
125  
DS13313 Rev 2  
89/227  
208  
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 12. General operating conditions  
Operating  
conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
-
VDD  
Standard operating voltage  
-
1.62(1)  
1.62(1)  
3.6  
3.6  
Supply voltage for the internal  
regulator  
VDDLDO  
VDDLDO VDD  
-
USB used  
3.0  
0
-
-
-
-
-
-
3.6  
3.6  
Standard operating voltage, USB  
domain  
VDD33USB  
USB not used  
ADC or COMP used  
DAC used  
1.62  
1.8  
2.0  
1.8  
OPAMP used  
VREFBUF used  
VDDA  
Analog operating voltage  
3.6  
ADC, DAC, OPAMP,  
COMP, VREFBUF not  
used  
0
-
V
TT_xx I/O  
BOOT0  
0.3  
-
-
VDD+0.3  
9
0
Min(VDD  
VDDA  
VDD33USB  
+3.6V <  
5.5V(2)  
,
VIN  
I/O Input voltage  
,
All I/O except BOOT0  
and TT_xx  
0.3  
-
)
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
0.95  
1.05  
1.15  
1.30  
0.98  
1.08  
1.18  
1.33  
1.0  
1.05  
1.15  
1.26  
1.40  
1.08  
1.18  
1.28  
1.40  
1.10  
1.21  
1.36  
1.03  
1.13  
1.23  
1.38  
Internal regulator ON (LDO)(3)  
VCORE  
V
Regulator OFF: external VCORE  
voltage must be supplied from  
external regulator on VCAP pins  
90/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Symbol  
Electrical characteristics  
Table 12. General operating conditions (continued)  
Operating  
conditions  
Parameter  
Min  
Typ  
Max  
Unit  
VOS3  
-
-
-
-
-
-
-
-
170  
300  
400  
520  
VOS2  
VOS1  
VOS0  
fCPU  
Arm® Cortex®-M7 clock frequency  
VOS0 and  
CPU_FREQ_BOOST  
-
-
550  
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
VOS3  
VOS2  
VOS1  
VOS0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
85  
150  
200  
275  
85  
fACLK  
fHCLK  
fPCLK  
AXI clock frequency  
AHB clock frequency  
APB clock frequency  
MHz  
150  
200  
275  
42.5(4)  
75  
100  
137.5  
Ambient temperature for  
temperature range 3  
Maximum power  
dissipation  
40  
40  
40  
125  
85  
Maximum power  
dissipation  
(5)  
TA  
°C  
Ambient temperature for  
temperature range 6  
Low-power  
105  
dissipation(6)  
1. When RESET is released, the functionality is guaranteed down to VPDRmax or down to the specified VDDmin when the PDR  
is OFF. The PDR can only be switched OFF though the PDR_ON pin that not available in all packages.  
2. This formula has to be applied on power supplies related to the I/O structure described by the pin definition table.  
3. At startup, the external VCORE voltage must remain higher or equal to 1.10 V before disabling the internal regulator (LDO).  
4. This value corresponds to the maximum APB clock frequency when at least one peripheral is enabled.  
5. The device junction temperature must be kept below maximum TJ indicated in Table 13: Supply voltage and maximum  
temperature configuration and the maximum temperature.  
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:  
Thermal characteristics).  
DS13313 Rev 2  
91/227  
208  
Electrical characteristics  
STM32H723xE/G  
Table 13. Supply voltage and maximum temperature configuration  
Power scale  
VCORE source  
Max. TJ (°C)  
Min. VDD(V)  
Min. VDDLDO (V)  
LDO  
External (Bypass)  
LDO  
1.7  
1.62  
1.62  
-
1.7  
VOS0  
105  
-
1.62  
VOS1  
125  
125  
External (Bypass)  
LDO  
-
1.62  
-
1.62  
VOS2 or VOS3  
External (bypass)  
-
2
125  
105  
125  
2
LDO  
SVOS4/SVOS5  
1.62  
1.62  
1.62  
-
External (Bypass)  
6.3.2  
VCAP external capacitor  
Stabilization for the main regulator is achieved by connecting an external capacitor C  
to  
EXT  
the VCAP pin. C  
VCAP pins.  
is specified in Table 14. Two external capacitors can be connected to  
EXT  
Figure 12. External capacitor C  
EXT  
C
ESR  
R Leak  
MS19044V2  
1. Legend: ESR is the equivalent series resistance.  
(1)  
Table 14. VCAP operating conditions  
Parameter  
Symbol  
Conditions  
CEXT  
ESR  
Capacitance of external capacitor  
ESR of external capacitor  
2.2 µF(2)(3)  
< 100 mΩ  
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be  
replaced by two 100 nF decoupling capacitors.  
2. This value corresponds to CEXT typical value. A variation of +/-20% is tolerated.  
3. If a third VCAP pin is available on the package, it must be connected to the other VCAP pins but no  
additional capacitor is required.  
92/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
6.3.3  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 15. Operating conditions at power-up / power-down (regulator ON)  
Symbol  
Parameter  
VDD rise time rate  
Min  
Max  
Unit  
0
10  
0
tVDD  
VDD fall time rate  
VDDA rise time rate  
tVDDA  
µs/V  
V
DDA fall time rate  
VDDUSB rise time rate  
DDUSB fall time rate  
10  
0
tVDDUSB  
V
10  
DS13313 Rev 2  
93/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.4  
Embedded reset and power control block characteristics  
The parameters given in Table 16 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 12: General operating  
DD  
conditions.  
Table 16. Reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Reset temporization  
after BOR0 released  
(1)  
tRSTTEMPO  
-
-
377  
550  
µs  
Rising edge(1)  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge in Run mode  
1.62  
1.58  
2.04  
1.95  
2.34  
2.25  
2.63  
2.54  
1.90  
1.81  
2.05  
1.96  
2.19  
2.10  
2.35  
2.25  
2.49  
2.39  
2.64  
2.55  
2.78  
2.69  
1.67  
1.62  
2.10  
2.00  
2.41  
2.31  
2.70  
2.61  
1.96  
1.86  
2.10  
2.01  
2.26  
2.15  
2.41  
2.31  
2.56  
2.45  
2.71  
2.61  
2.86  
2.76  
1.71  
1.68  
2.15  
2.06  
2.47  
2.37  
2.78  
2.68  
2.01  
1.91  
2.16  
2.06  
2.32  
2.21  
2.47  
2.37  
2.62  
2.51  
2.78  
2.68  
2.94  
2.83  
Power-on/power-downreset  
threshold  
VPOR/PDR  
VBOR1  
VBOR2  
VBOR3  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Programmable Voltage  
Detector threshold 0  
Programmable Voltage  
Detector threshold 1  
V
Programmable Voltage  
Detector threshold 2  
Programmable Voltage  
Detector threshold 3  
Programmable Voltage  
Detector threshold 4  
Programmable Voltage  
Detector threshold 5  
Programmable Voltage  
Detector threshold 6  
VPVD6  
Hysteresis voltage for  
Power-on/power-downreset  
VPOR/PDR  
Hysteresis in Run mode  
-
-
-
43.00  
100  
-
-
-
mV  
µA  
Vhyst_BOR_PVD Hysteresis voltage for BOR  
Hysteresis in Run mode  
-
BOR and PVD consumption  
from VDD  
(1)  
IDD_BOR_PVD  
0.630  
POR and PVD consumption  
from VDD  
IDD_POR_PVD  
-
0.8  
-
1.200  
94/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Table 16. Reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
1.66  
1.56  
2.06  
1.96  
2.42  
2.35  
2.74  
2.64  
1.71  
1.61  
2.12  
2.02  
2.50  
2.42  
2.83  
2.72  
1.76  
1.66  
2.19  
2.08  
2.58  
2.49  
2.91  
2.80  
Analog voltage detector for  
VDDA threshold 0  
VAVM_0  
Analog voltage detector for  
VDDA threshold 1  
VAVM_1  
VAVM_2  
VAVM_3  
V
Analog voltage detector for  
VDDA threshold 2  
Analog voltage detector for  
VDDA threshold 3  
Hysteresis of VDDA voltage  
detector  
Vhyst_VDDA  
IDD_PVM  
-
-
-
-
100  
-
mV  
µA  
µA  
PVM consumption from  
VDD(1)  
-
-
-
0.25  
2.5  
Voltage detector  
consumption on VDDA  
IDD_VDDA  
Resistor bridge  
(1)  
1. Guaranteed by design.  
6.3.5  
Embedded reference voltage characteristics  
The parameters given in Table 17 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 12: General operating  
DD  
conditions.  
Table 17. Embedded reference voltage  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltages  
-40°C < TJ < TJmax  
1.180  
1.216  
1.255  
V
ADC sampling time when  
reading the internal reference  
voltage  
(1)(2)  
tS_vrefint  
-
-
4.3  
9
-
-
-
-
(3)  
VBAT sampling time when  
reading the internal VBAT  
reference voltage  
µs  
(2)  
tS_vbat  
Start time of reference voltage  
buffer when ADC is enable  
(2)  
tstart_vrefint  
-
-
-
4.4  
23  
Reference Buffer  
consumption for ADC  
(2)  
Irefbuf  
VDD = 3.3 V  
9
13.5  
µA  
Internal reference voltage  
spread over the temperature  
range  
(2)  
ΔVREFINT  
-40°C < TJ < TJmax  
-
5
15  
mV  
Average temperature  
coefficient  
Average temperature  
coefficient  
(2)  
Tcoeff  
-
-
20  
10  
70  
ppm/°C  
ppm/V  
(2)  
VDDcoeff  
Average Voltage coefficient  
3.0 V < VDD < 3.6 V  
1370  
DS13313 Rev 2  
95/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
Table 17. Embedded reference voltage (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
25  
Max  
Unit  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
-
-
-
-
-
-
-
-
-
%
50  
VREFINT  
75  
1. The shortest sampling time for the application can be determined by multiple iterations.  
2. Guaranteed by design.  
3. Guaranteed by design. and tested in production at 3.3 V.  
Table 18. Internal reference voltage calibration values  
Parameter Memory address  
VREFIN_CAL Raw data acquired at temperature of 30 °C, VDDA = 3.3 V 1FF1 E860 - 1FF1 E861  
Symbol  
6.3.6  
Embedded USB regulator characteristics  
The parameters given in Table 19 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 12: General operating  
DD  
conditions.  
Table 19. USB regulator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VREGOUTV33V  
Regulated output voltage  
-
3
-
3.6  
V
Output current load sinked by  
USB block  
IOUT  
-
-
-
-
-
20  
mA  
us  
TWKUP  
Wakeup time  
120  
170  
6.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 11: Current consumption  
measurement scheme.  
All the run-mode current consumption measurements given in this section are performed  
with a CoreMark code.  
96/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode.  
All peripherals are disabled except when explicitly mentioned.  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the fACLK frequency (refer to the table “Number of wait states according to  
CPU clock (f  
) frequency and V  
range” available in the reference manual).  
rcc_c_ck  
CORE  
When the peripherals are enabled, the AHB clock frequency is the CPU frequency  
divided by 2 and the APB clock frequency is AHB clock frequency divided by 2.  
The parameters given in the below tables are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 12: General operating  
conditions.  
DS13313 Rev 2  
97/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Table 20. Typical and maximum current consumption in Run mode,  
(1)  
code with data processing running from ITCM  
Max(2)  
TJ =  
frcc_c_ck  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TJ =  
TJ =  
TJ =  
25 °C  
85 °C  
105 °C  
125 °C  
550  
520  
520  
480  
450  
400  
400  
300  
300  
280  
216  
200  
170  
168  
144  
60  
145  
135  
135  
125  
115  
105  
90.5  
69.5  
63  
170  
160  
160  
150  
150  
130  
110  
84  
260  
260  
260  
250  
240  
230  
170  
150  
130  
120  
110  
110  
80  
330  
320  
320  
310  
300  
290  
220  
200  
170  
160  
150  
140  
110  
110  
110  
90  
-
VOS0(3)  
-
-
-
VOS0  
VOS1  
VOS2  
-
-
280  
260  
220  
210  
200  
200  
160  
160  
150  
140  
130  
-
All  
peripherals  
disabled  
74  
58  
69  
45.5  
42  
56  
53  
Supply  
current in  
Run mode  
32.5  
32  
40  
IDD  
mA  
40  
79  
VOS3  
28  
36  
75  
13.5  
6.9  
21  
61  
25  
14  
54  
83  
550  
520  
520  
400  
400  
300  
300  
280  
170  
215  
205  
205  
160  
135  
105  
95  
250  
240  
240  
190  
160  
130  
110  
100  
58  
360  
350  
350  
300  
230  
200  
170  
160  
110  
430  
420  
420  
370  
290  
250  
210  
210  
140  
VOS0  
(3)  
-
-
VOS0  
VOS1  
-
All  
peripherals  
enabled  
360  
330  
280  
270  
190  
VOS2  
VOS3  
88  
49  
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.  
2. Guaranteed by characterization results, unless otherwise specified.  
3. CPU_FREQ_BOOST is enabled.  
98/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
Table 21. Typical and maximum current consumption in Run mode, code with data processing  
(1)  
running from Flash memory, cache ON  
Max(2)  
frcc_c_ck  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TJ =  
TJ =  
TJ =  
TJ =  
25 °C  
85 °C  
105 °C  
125 °C  
550  
520  
520  
400  
400  
300  
300  
280  
216  
200  
180  
170  
168  
144  
60  
145  
140  
140  
110  
92  
170  
170  
170  
140  
110  
86  
270  
260  
260  
230  
180  
150  
130  
120  
-
330  
320  
320  
290  
220  
200  
170  
160  
-
-
VOS0(3)  
-
-
VOS0  
VOS1  
-
290  
260  
220  
210  
-
71  
64  
75  
All  
59  
70  
peripherals  
disabled  
VOS2  
VOS3  
46.5  
42.5  
36  
-
53  
110  
83  
140  
120  
110  
-
200  
160  
160  
-
43  
33.5  
33  
41  
81  
Supply  
current in Run  
mode  
IDD  
-
-
mA  
29  
-
-
-
-
14  
-
-
-
-
25  
6.85  
220  
210  
210  
160  
140  
105  
96  
-
-
-
-
550  
520  
520  
400  
400  
300  
300  
280  
170  
250  
240  
240  
190  
160  
130  
110  
110  
59  
360  
350  
350  
300  
240  
200  
170  
160  
110  
430  
420  
420  
370  
290  
250  
210  
210  
140  
-
VOS0  
(3)  
-
-
VOS0  
VOS1  
-
All  
peripherals  
enabled  
360  
330  
280  
270  
190  
VOS2  
VOS3  
89  
50  
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this case.  
2. Guaranteed by characterization results, unless otherwise specified.  
3. CPU_FREQ_BOOST is enabled.  
DS13313 Rev 2  
99/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Table 22. Typical and maximum current consumption in Run mode,  
(1)  
code with data processing running from Flash memory, cache OFF  
frcc_c_ck  
(MHz)  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
550  
520  
520  
400  
400  
300  
300  
280  
170  
550  
520  
520  
400  
400  
300  
300  
280  
170  
99  
95  
VOS0(2)  
VOS0  
95  
76.5  
66.5  
51.5  
47.5  
43.5  
24.5  
170  
165  
165  
130  
115  
87  
All peripherals  
disabled  
VOS1  
VOS2  
VOS3  
Supply current  
in Run mode  
IDD  
mA  
VOS0(2)  
VOS0  
VOS1  
All peripherals  
enabled  
79  
VOS2  
VOS3  
73.5  
41  
1. Data are in DTCM for best computation performance, the cache has no influence on consumption in this  
case.  
2. CPU_FREQ_BOOST is enabled.  
100/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
Table 23. Typical consumption in Run mode and corresponding performance  
versus code position  
Conditions  
frcc_c_c k  
(MHz)  
IDD/  
Coremark  
Symbol Parameter  
Coremark  
Typ  
Unit  
Unit  
Peripheral  
Code  
ITCM  
550  
550  
2777  
2777  
145  
145  
52.2  
52.2  
FLASH  
All  
peripherals  
disabled,  
cache ON  
AXI  
SRAM  
550  
2777  
145  
52.2  
SRAM 1  
SRAM 4  
FLASH  
550  
550  
550  
2777  
2777  
923  
150  
145  
99  
54.0  
52.2  
Supply  
current in  
Run mode  
µA/  
Core-  
mark  
IDD  
mA  
107.3  
All  
AXI  
SRAM  
550  
1271  
105  
82.6  
peripherals  
disabled  
SRAM 1  
SRAM 4  
550  
550  
790  
723  
96.5  
89.5  
122.2  
123.8  
cache OFF  
Table 24. Typical current consumption in Autonomous mode  
frcc_c_c k  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
(MHz)  
Run, D1Stop,  
VOS3  
64  
3.6  
D2Stop  
Run,  
Supply current in  
Autonous mode  
IDD  
mA  
D1Standby, VOS3  
D2Standby  
64  
2.6  
Table 25. Typical current consumption in Sleep mode  
Max(1)  
frcc_c_ck  
(MHz)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
TJ =  
TJ =  
TJ =  
TJ =  
25 °C 85 °C 105 °C 125 °C  
550  
520  
520  
400  
400  
300  
300  
170  
170  
36  
-
-
-
-
VOS0  
(2)  
33.5  
33.5  
27  
60  
60  
52  
39  
34  
28  
21  
17  
170  
170  
160  
110  
110  
85  
240  
240  
230  
170  
160  
130  
120  
96  
-
-
VOS0  
-
Supply  
current in  
Sleep mode  
All  
IDD(Sleep)  
peripherals  
disabled  
22.5  
18.5  
16.5  
9.7  
240  
240  
190  
190  
150  
mA  
VOS1  
VOS2  
VOS3  
78  
8.5  
61  
1. Guaranteed by characterization results.  
2. CPU_FREQ_BOOST is enabled.  
DS13313 Rev 2  
101/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
Table 26. Typical current consumption in Stop mode  
Max(1)  
Symbol Parameter  
Conditions  
Typ  
Unit  
TJ =  
TJ =  
TJ =  
TJ =  
25 °C 85 °C 105 °C 125 °C  
SVOS5  
SVOS4  
SVOS3  
SVOS5  
SVOS4  
SVOS3  
0.52  
0.81  
1.15  
0.535  
0.96  
1.45  
3.7  
6.1  
8.6  
3.7  
6.2  
8.8  
26  
39  
51  
26  
39  
51  
44  
64  
82  
44  
64  
83  
72  
110  
130  
72  
Flash memory in low  
power mode  
Supply  
current in  
IDD(Stop) Stop and  
DStop  
mA  
Flash memory in  
normal mode  
modes  
110  
130  
1. Guaranteed by characterization results.  
Table 27. Typical current consumption in Standby mode  
Conditions  
Typ(1)  
Max at 3.6 V(2)  
Symbol Parameter  
RTC  
TJ = TJ = TJ =  
3.3 V 25 ° 85 ° 105 ° 125 °  
TJ =  
Unit  
Backup  
SRAM  
1.65  
V
and  
2.4 V  
3 V  
LSE(3)  
C
C
C
C
OFF  
ON  
OFF  
OFF  
ON  
2.2  
3.5  
2.2  
3.5  
2.35  
3.7  
2.5  
4
2.8  
4.3  
-
-
-
-
-
-
Supply  
current in  
Standby  
mode,  
-
-
IDD  
µA  
(Standby)  
OFF  
ON  
2.4  
2.85  
4.35  
3.25 4.5  
4.75 8.3  
15  
39  
30  
75  
64  
140  
IWDG OFF  
ON  
3.8  
1. These values are given for PDR OFF. When the PDR is ON, the typical current consumption is increased  
(refer to Table 16: Reset and power control block characteristics.  
2. Guaranteed by characterization results.  
3. The LSE is in Low-drive mode.  
Table 28. Typical and maximum current consumption in V  
mode  
BAT  
Max at 3.6 V(1)(2)  
Conditions  
Typ  
Sym-  
bol  
Para-  
meter  
RTC  
TJ = TJ =  
105 ° 125 °  
Back-up  
SRAM  
TJ = 2 TJ =  
5 °C 85 °C  
and  
1.2 V  
2 V  
3 V  
3.3 V  
LSE(3)  
C
C
OFF  
ON  
OFF  
OFF  
ON  
0.008  
1.5  
0.01  
1.7  
0.025  
1.9  
0.05  
1.9  
0.8  
3.2  
0.3  
3.1  
28  
-
7.4  
53  
-
18  
91  
-
Supply  
current in  
VBAT  
4
-
IDD  
(VBAT)  
OFF  
ON  
0.4  
0.5  
0.75  
2.8  
mode  
ON  
1.8  
2.1  
-
-
-
-
1. Guaranteed by characterization results.  
2. The LDO regulator is used before switching to VBAT mode.  
3. The LSE is in Low-drive mode.  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
102/227  
DS13313 Rev 2  
 
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate a current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 50: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
An additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid a current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption, the I/Os used by an application  
also contribute to the current consumption. When an I/O pin switches, it uses the current  
from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the  
capacitive load (internal or external) connected to the pin:  
ISW = VDDx × fSW × CL  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the MCU supply voltage  
DDx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
EXT  
L
INT  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DS13313 Rev 2  
103/227  
208  
Electrical characteristics  
STM32H723xE/G  
6.3.8  
Wakeup time from low-power modes  
The wakeup times given in Table 29 are measured starting from the wakeup event trigger up  
to the first instruction executed by the CPU:  
For Stop or Sleep modes: the wakeup event is WFE.  
WKUP (PC1) pin is used to wakeup from Standby, Stop and Sleep modes.  
All timings are derived from tests performed under ambient temperature and V =3.3 V.  
DD  
Table 29. Low-power mode wakeup timings  
Max(1)  
Typ(1)  
Symbol  
Parameter  
Conditions  
Unit  
(2)  
CPU  
clock  
cycles  
(3)  
tWUSLEEP  
Wakeup from Sleep  
-
14.00  
15.00  
SVOS3, HSI, Flash memory in Normal mode  
SVOS3, HSI, Flash memory in low-power mode  
SVOS4, HSI, Flash memory in Normal mode  
SVOS4, HSI, Flash memory in low-power mode  
SVOS5, HSI, Flash memory in Normal mode  
SVOS5, HSI, Flash memory in low-power mode  
SVOS3, CSI, Flash memory in Normal mode  
SVOS3, CSI, Flash memory in low power mode  
SVOS4, CSI, Flash memory in Normal mode  
SVOS4, CSI, Flash memory in low-power mode  
SVOS5, CSI, Flash memory in Normal mode  
SVOS5, CSI, Flash memory in low-power mode  
4.6  
6.2  
12.4  
15.5  
23.3  
39.1  
39.1  
30.0  
40.6  
41.0  
51.5  
67.3  
67.2  
17.4  
21.1  
31.8  
52.6  
52.7  
41.6  
55.0  
55.4  
68.8  
89.5  
89.5  
Wakeup from Stop  
mode  
(3)  
tWUSTOP  
µs  
Wakeup from  
Standby mode  
(3)  
tWUSTDBY  
-
400.0  
504.3  
1. Guaranteed by characterization results.  
2. The maximum values have been measured at -40 °C, in worst conditions.  
3. The wakeup times are measured from the wakeup event to the point in which the application code reads the first  
104/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
6.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O.  
The external clock signal has to respect the Table 50: I/O static characteristics. However,  
the recommended clock input waveform is shown in Figure 13.  
(1)  
Table 30. High-speed external user clock characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fHSE_ext  
User external clock source frequency  
4
25  
50  
MHz  
VSW  
(VHSEHVHSEL)  
OSC_IN amplitude  
0.7VDD  
-
VDD  
V
VDC  
OSC_IN input voltage  
VSS  
7
-
-
0.3VSS  
-
tW(HSE)  
OSC_IN high or low time  
ns  
1. Guaranteed by design.  
Figure 13. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10 %  
HSEL  
V
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
External  
I
L
OSC _I N  
clock source  
STM32  
ai17528b  
DS13313 Rev 2  
105/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The  
external clock signal has to respect the Table 50: I/O static characteristics. However, the  
recommended clock input waveform is shown in Figure 14.  
(1)  
Table 31. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
-
-
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
-
-
-
0.7 VDD  
VSS  
-
-
-
VDD  
0.3 VDD  
-
V
OSC32_IN input pin low level  
voltage  
tw(LSEH)  
tw(LSEL)  
OSC32_IN high or low time  
250  
ns  
1. Guaranteed by design.  
Figure 14. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
External  
I
L
OSC32_IN  
clock source  
STM32  
ai17529b  
106/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 32. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 32. 4-50 MHz HSE oscillator characteristics  
Operating  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
conditions(2)  
F
Oscillator frequency  
Feedback resistor  
-
4
-
-
200  
-
50  
-
MHz  
RF  
-
kΩ  
During startup(3)  
-
4
V
DD=3 V, Rm=30 Ω  
-
-
-
-
-
0.35  
0.40  
0.45  
0.65  
0.95  
-
-
-
-
-
CL=10 pF at 4 MHz  
VDD=3 V, Rm=30 Ω  
CL=10 pF at 8 MHz  
HSE current  
consumption  
IDD(HSE)  
mA  
VDD=3 V, Rm=30 Ω  
CL=10 pF at 16 MHz  
VDD=3 V, Rm=30 Ω  
CL=10 pF at 32 MHz  
VDD=3 V, Rm=30 Ω  
CL=10 pF at 48 MHz  
Maximum critical crystal  
gm  
Gmcritmax  
Startup  
-
-
-
1.5  
-
mA/V  
ms  
(4)  
tSU  
Start-up time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typical), designed for high-frequency applications, and selected to  
match the requirements of the crystal or resonator (see Figure 15). C and C are usually  
L1  
L2  
the same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . The PCB and MCU pin capacitance must be included  
L1  
L2  
(10 pF can be used as a rough estimate of the combined pin and board capacitance) when  
sizing C and C .  
L1  
L2  
Note:  
For information on selecting the crystal, refer to application note AN2867 “Oscillator design  
guide for ST microcontrollers” available from the ST website www.st.com.  
DS13313 Rev 2  
107/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
Figure 15. Typical application with an 8 MHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
OSC_OUT  
(1)  
STM32  
R
EXT  
C
L2  
ai17530b  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 33. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 33. Low-speed external user clock characteristics  
Symbol  
Parameter  
Operating conditions(2)  
Min  
Typ  
Max  
Unit  
F
Oscillator frequency  
-
-
32.768  
-
kHz  
LSEDRV[1:0] = 00,  
Low drive capability  
-
-
-
-
-
-
-
290  
390  
550  
900  
-
-
-
LSEDRV[1:0] = 01,  
Medium Low drive capability  
LSE current  
consumption  
IDD  
nA  
LSEDRV[1:0] = 10,  
Medium high drive capability  
-
LSEDRV[1:0] = 11,  
High drive capability  
-
LSEDRV[1:0] = 00,  
Low drive capability  
0.5  
0.75  
1.7  
LSEDRV[1:0] = 01,  
Medium Low drive capability  
-
Maximum critical crystal  
gm  
Gmcritmax  
µA/V  
LSEDRV[1:0] = 10,  
Medium high drive capability  
-
LSEDRV[1:0] = 11,  
High drive capability  
-
-
-
2.7  
-
(3)  
tSU  
Startup time  
VDD is stabilized  
2
s
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
3. tSU is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768k Hz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
108/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 16. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
CL1  
fHSE  
OSC32_IN  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
RF  
OSC32_OUT  
STM32  
CL2  
ai17531c  
1. An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.  
6.3.10  
Internal clock source characteristics  
The parameters given in Table 34 to Table 36 are derived from tests performed under  
ambient temperature and V supply voltage conditions summarized in Table 12: General  
DD  
operating conditions.  
48 MHz high-speed internal RC oscillator (HSI48)  
Table 34. HSI48 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD=3.3 V,  
TJ=30 °C  
fHSI48  
HSI48 frequency  
47.5(1)  
-
48  
48.5(1) MHz  
TRIM(2)  
USER trimming step  
USER TRIMMING coverage  
Duty Cycle  
-
± 32 steps  
-
0.175 0.250  
%
%
%
%
USER TRIM  
±4.70  
45  
±5.6  
-
COVERAGE(3)  
DuCy(HSI48)(2)  
-
-
55  
3.5  
Accuracy of the HSI48 oscillator over  
temperature (factory calibrated)  
ACCHSI48_REL(3)(4)  
TJ=-40 to 125 °C  
–4.5  
V
DD=3 to 3.6 V  
-
-
-
-
0.025  
0.05  
2.1  
0.05  
0.1  
HSI48 oscillator frequency drift with  
VDD(6) (the reference is 3.3 V)  
VDD(HSI48)(2)(5)  
%
VDD=1.62 V to 3.6 V  
(2)  
tsu(HSI48)  
HSI48 oscillator start-up time  
-
-
4.0  
µs  
(2)  
IDD(HSI48)  
HSI48 oscillator power consumption  
350  
400  
µA  
Next transition jitter  
NT jitter(2)  
PT jitter(2)  
-
-
-
-
± 0.15  
± 0.25  
-
-
ns  
ns  
Accumulated jitter on 28 cycles(7)  
Paired transition jitter  
Accumulated jitter on 56 cycles(7)  
1. Guaranteed by test in production.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. fHSI = ACCHSI48_REL + VDD  
.
DS13313 Rev 2  
109/227  
208  
 
 
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
5. fHSI = ACCHSI48_REL + VDD  
.
6. These values are obtained by using the formula: (Freq(3.6 V) - Freq(3.0 V)) / Freq(3.0 V) or (Freq(3.6 V) - Freq(1.62 V)) /  
Freq(1.62 V).  
7. Jitter measurements are performed without clock source activated in parallel.  
64 MHz high-speed internal RC oscillator (HSI)  
(1)  
Table 35. HSI oscillator characteristics  
Symbol  
Parameter  
HSI frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
VDD=3.3 V, TJ=30 °C  
63.7(2)  
64  
64.3(2)  
MHz  
Trimming is not a multiple  
of 32  
-
0.24  
1.8  
0.8  
0.32  
Trimming is 128, 256 and  
384  
5.2  
1.4  
-
-
Trimming is 64, 192, 320  
and 448  
TRIM  
HSI user trimming step  
%
Other trimming are a  
multiple of 32 (not  
including multiple of 64  
and 128)  
0.6  
0.25  
-
DuCy(HSI) Duty cycle  
HSI oscillator frequency drift over  
-
45  
-
-
55  
%
%
ΔVDD (HSI)  
VDD=1.62 to 3.6 V  
0.12  
0.03  
VDD (the reference is 3.3 V)  
HSI oscillator frequency drift over  
TJ=-20 to 105 °C  
1(3)  
2(3)  
-
-
1(3)  
1(3)  
ΔTEMP(HSI) temperature (the reference is  
%
TJ=40 to TJmax °C  
64 MHz)  
tsu(HSI)  
tstab(HSI) HSI oscillator stabilization time  
DD(HSI) HSI oscillator power consumption  
HSI oscillator start-up time  
-
-
-
-
-
1.4  
4
2
8
at 1% of target frequency  
at 5% of target frequency  
-
µs  
-
4
I
300  
400  
µA  
1. Guaranteed by design unless otherwise specified.  
2. Guaranteed by test in production.  
3. Guaranteed by characterization results.  
110/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
4 MHz low-power internal RC oscillator (CSI)  
(1)  
Table 36. CSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fCSI  
CSI frequency  
CSI trimming step  
Duty cycle  
VDD=3.3 V, TJ=30 °C  
3.96(2)  
4
4.04(2) MHz  
Trimming is not a  
multiple of 16  
-
0.40  
0.75  
Trimming is a multiple  
of 32  
4.75 2.75  
0.75  
%
TRIM  
Other trimming values  
not multiple of 16  
(excluding multiple of  
32)  
0.43  
0.00  
0.75  
DuCy(CSI)  
-
45  
-
-
-
55  
%
%
TJ = 0 to 85 °C  
TJ = 40 to 125 °C  
3.7(3)  
11(3)  
4.5(3)  
7.5(3)  
CSI oscillator frequency drift over  
temperature  
TEMP (CSI)  
CSI oscillator frequency drift over  
VDD  
VDD (CSI)  
tsu(CSI)  
VDD = 1.62 to 3.6 V  
0.06  
-
1
0.06  
2
%
µs  
CSI oscillator startup time  
-
-
-
-
-
-
CSI oscillator stabilization time  
tstab(CSI)  
IDD(CSI)  
-
4
cycle  
µA  
(to reach ± 3% of fCSI  
)
CSI oscillator power consumption  
23  
30  
1. Guaranteed by design, unless otherwise specified.  
2. Guaranteed by test in production.  
3. Guaranteed by characterization results.  
Low-speed internal (LSI) RC oscillator  
Table 37. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.3 V, TJ = 25 °C  
31.4(1)  
32  
32.6(1)  
TJ = –40 to 110 °C,  
VDD = 1.62 to 3.6 V  
29.76(2)  
-
33.6(2)  
fLSI  
LSI frequency  
kHz  
TJ = –40 to 125 °C,  
VDD = 1.62 to 3.6 V  
29.4(2)  
-
33.6(2)  
130  
(3)  
tsu(LSI)  
LSI oscillator startup time  
-
-
-
-
-
-
80  
µs  
LSI oscillator stabilization time  
(5% of final value)  
(3)  
tstab(LSI)  
120  
130  
170  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
280  
nA  
1. Guaranteed by test in production.  
2. Guaranteed by characterization results.  
3. Guaranteed by design.  
DS13313 Rev 2  
111/227  
208  
 
 
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.11  
PLL characteristics  
The parameters given in Table 38, Table 41 are derived from tests performed under  
temperature and V supply voltage conditions summarized in Table 12: General operating  
DD  
conditions.  
(1)  
Table 38. PLL1 characteristics (wide VCO frequency range)  
Symbol  
fPLL_IN  
Parameter  
PLL input clock  
PLL input clock duty cycle  
Conditions  
Min  
Typ  
Max  
Unit  
-
2
-
-
16  
MHz  
%
-
10  
90  
VOS0  
VOS1  
VOS2  
VOS3  
-
1.5  
1.5  
1.5  
1.5  
192  
15  
-
550(2)  
400(2)  
300(2)  
170(2)  
836(3)  
150(3)  
-
fPLL_P_OUT PLL multiplier output clock P  
-
MHz  
µs  
-
fVCO_OUT  
PLL VCO output  
PLL lock time  
-
Normal mode  
50  
tLOCK  
Sigma-delta mode (CKIN ≥  
25  
-
65  
51  
170  
8 MHz)  
fVCO_OUT  
= 192 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
fVCO_OUT  
= 400 MHz  
-
19  
Cycle-to-cycle jitter(4)  
fVCO_OUT  
= 560 MHz  
-
10  
fPLL_OUT  
=
fVCO_OUT  
fVCO_OUT/100 = 800 MHz  
-
9
fVCO_OUT  
= 192 MHz  
-
38  
fVCO_OUT  
= 560 MHz  
Period jitter  
-
8
fVCO_OUT  
= 800 MHz  
Jitter  
-
7
ps  
fVCO_OUT  
= 192 MHz  
-
0.15  
0.14  
0.16  
0.17  
0.08  
0.06  
Normal mode  
fVCO_OUT  
(CKIN = 2 MHz) = 400 MHz  
-
fVCO_OUT  
= 832 MHz  
-
Long term jitter  
fVCO_OUT  
= 192 MHz  
-
Sigma-delta  
fVCO_OUT  
mode (CKIN =  
= 500 MHz  
16 MHz)  
-
fVCO_OUT  
= 836 MHz  
-
112/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 38. PLL1 characteristics (wide VCO frequency range) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
VCORE  
VDDA  
530  
1190  
260  
557  
1285  
286  
670  
6300  
513  
fVCO_OUT  
560 MHz  
=
IDD(PLL)  
PLL power consumption  
µA  
fVCO_OUT  
192 MHz  
=
VCORE  
309  
377  
5700  
1. Guaranteed by design unless otherwise specified.  
2. This value must be limited to the maximum frequency due to the product limitation.  
3. Guaranteed by characterization results.  
4. Integer mode only.  
(1)  
Table 39. PLL1 characteristics (medium VCO frequency range)  
Symbol  
Parameter  
PLL input clock  
Conditions  
Min  
Typ  
Max Unit  
-
1
-
-
-
-
-
-
-
2
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
-
VOS0  
10  
90  
1.17  
1.17  
1.17  
1.17  
150  
-
210  
210  
VOS1  
fPLL_OUT  
PLL multiplier output clock P, Q, R  
VOS2  
210 MHz  
200  
VOS3  
fVCO_OUT  
tLOCK  
PLL VCO output  
PLL lock time  
-
420  
Normal mode  
Sigma-delta mode  
fVCO_OUT  
60(2) 100(2)  
µs  
forbidden  
145  
=
-
-
-
-
-
-
-
-
-
-
-
-
-
-
150 MHz  
fVCO_OUT  
300 MHz  
=
91  
64  
Cycle-to-cycle jitter(3)  
-
±ps  
fVCO_OUT  
400 MHz  
=
fVCO_OUT  
420 MHz  
=
Jitter  
63  
fVCO_OUT  
=
55  
150 MHz  
fPLL_OUT  
50 MHz  
=
Period jitter  
±-ps  
%
fVCO_OUT  
=
30  
400 MHz  
fVCO_OUT  
400 MHz  
=
Long term jitter  
Normal mode  
±0.3  
VDD  
VCORE  
VDD  
-
-
-
-
440  
530  
180  
200  
1150  
fVCO_OUT  
420 MHz  
=
-
500  
-
I(PLL)  
PLL power consumption on VDD  
µA  
fVCO_OUT  
150 MHz  
=
VCORE  
DS13313 Rev 2  
113/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
1. Guaranteed by design unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Integer mode only.  
(1)  
Table 40. PLL2 and PLL3 characteristics (wide VCO frequency range)  
Symbol  
Parameter  
PLL input clock  
Conditions  
Min  
Typ  
Max  
Unit  
-
-
2
-
-
16  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
10  
90  
VOS0  
VOS1  
VOS2  
VOS3  
-
1.5  
1.5  
1.5  
1.5  
192  
-
-
550(2)  
400(2)  
300(2)  
170(2)  
960(3)  
150(3)  
-
PLL multiplier output clock P,  
Q, R  
fPLL_OUT  
-
MHz  
-
fVCO_OUT PLL VCO output  
-
Normal mode  
50  
tLOCK  
PLL lock time  
µs  
Sigma-delta mode (fPLL_IN  
-
58  
166(3)  
8 MHz)  
fVCO_OUT = 192 MHz  
-
-
-
-
134  
134  
76  
-
-
-
-
f
f
VCO_OUT = 200 MHz  
VCO_OUT = 400 MHz  
Cycle-to-cycle jitter(4)  
±ps  
fVCO_OUT = 800 MHz  
Normal  
39  
mode  
(fPLL_IN  
2 MHz)  
fVCO_OUT  
560 MHz  
=
-
-
-
-
±0.2  
±0.8  
±0.2  
±0.8  
-
-
-
-
=
Normal  
mode  
(fPLL_IN  
Jitter  
fVCO_OUT  
560 MHz  
=
=
16 MHz)  
Long term jitter  
%
Sigma-delta  
mode  
(fPLL_IN  
fVCO_OUT  
560 MHz  
=
=
2 MHz)  
Sigma-delta  
mode  
(fPLL_IN  
fVCO_OUT  
560 MHz  
=
=
16 MHz)  
VDD  
VCORE  
VDD  
-
-
-
-
590  
720  
180  
280  
1500  
fVCO_OUT  
836 MHz  
=
-
600  
-
(3)  
IDD(PLL)  
PLL power consumption  
µA  
fVCO_OUT  
192 MHz  
=
VCORE  
1. Guaranteed by design unless otherwise specified.  
2. This value must be limited to the maximum frequency due to the product limitation.  
114/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
3. Guaranteed by characterization results.  
4. Integer mode only.  
(1)  
Table 41. PLL2 and PLL3 characteristics (medium VCO frequency range)  
Symbol  
Parameter  
PLL input clock  
Conditions  
Min  
Typ  
Max  
Unit  
-
1
-
2
90  
MHz  
fPLL_IN  
PLL input clock duty cycle  
-
VOS0  
10  
-
%
1.17  
1.17  
1.17  
1.17  
150  
-
-
210  
210  
210  
200  
420  
100(2)  
MHz  
VOS1  
-
-
-
-
-
PLL multiplier output clock  
P, Q, R  
fPLL_OUT  
VOS2  
-
VOS3  
-
fVCO_OUT PLL VCO output  
-
-
60  
Normal mode  
Sigma-delta mode  
fVCO_OUT = 150 MHz  
tLOCK  
PLL lock time  
µs  
forbidden  
145  
91  
-
-
-
-
-
-
-
-
f
VCO_OUT = 200 MHz  
VCO_OUT = 400 MHz  
Cycle-to-cycle jitter(3)  
±ps  
f
64  
fVCO_OUT = 420 MHz  
63  
Jitter  
fPLL_OUT  
50 MHz  
=
fVCO_OUT  
150 MHz  
=
-
-
-
55  
30  
-
-
-
Period jitter  
±ps  
%
fVCO_OUT = 400 MHz  
fVCO_OUT  
=
Long term jitter  
Normal mode  
±0.3  
400 MHz  
VDD  
-
-
-
-
440  
530  
180  
200  
1150  
fVCO_OUT  
420 MHz  
=
VCORE  
VDD  
-
500  
-
PLL power consumption on  
VDD  
IDD(PLL)  
µA  
fVCO_OUT  
150 MHz  
=
VCORE  
1. Guaranteed by design unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Integer mode only.  
DS13313 Rev 2  
115/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
6.3.12  
Memory characteristics  
Flash memory  
The characteristics are given at T = –40 to 125 °C unless otherwise specified.  
J
The devices are shipped to customers with the Flash memory erased.  
Table 42. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Write / Erase 8-bit mode  
Min  
Typ  
Max  
Unit  
-
-
-
-
6.5  
11.5  
20  
-
-
-
-
Write / Erase 16-bit mode  
Write / Erase 32-bit mode  
Write / Erase 64-bit mode  
IDD  
Supply current  
mA  
35  
Table 43. Flash memory programming  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1) Unit  
Program/erase parallelism x 8  
Program/erase parallelism x 16  
Program/erase parallelism x 32  
Program/erase parallelism x 64  
Program/erase parallelism x 8  
-
-
-
-
-
-
-
-
-
-
-
290  
180  
130  
100  
2
580(2)  
360  
µs  
260  
Word (266 bits) programming  
time  
tprog  
200  
4
tERASE  
Sector (128 Kbytes) erase time Program/erase parallelism x 16  
Program/erase parallelism x 32  
1.8  
3.6  
Program/erase parallelism x 8  
3
8
6
5
26  
16  
12  
10  
s
Program/erase parallelism x 16  
Mass erase time (1 Mbyte)  
tME  
Program/erase parallelism x 32  
Program/erase parallelism x 64  
Program parallelism x 8  
Program parallelism x 16  
Programming voltage  
1.62  
1.8  
-
-
3.6  
3.6  
Vprog  
V
Program parallelism x 32  
Program parallelism x 64  
1. Guaranteed by characterization results.  
2. The maximum programming time is measured after 10K erase operations.  
Table 44. Flash memory endurance and data retention  
Parameter Conditions  
Min(1)  
TJ = –40 to +125 °C  
Symbol  
Unit  
NEND  
Endurance  
kcycles  
Years  
10  
30  
20  
Data retention  
1 kcycle at TA = 85 °C  
10 kcycles at TA = 55 °C  
tRET  
116/227  
DS13313 Rev 2  
 
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
1. Guaranteed by characterization results.  
6.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed.  
The test results are given in Table 45. They are based on the EMS levels and classes  
defined in application note AN1709 “EMC design guide for STM8, STM32 and Legacy  
MCUs ”.  
Table 45. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = 25 °C,  
LQFP176, conforming to  
IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to induce  
a functional disturbance  
VFESD  
3B  
5A  
Fast transient voltage burst limits to be applied  
through 100 pF on VDD and VSS pins to induce a  
functional disturbance  
VDD = 3.3 V, TA = 25 °C,  
LQFP176, conforming to  
IEC 61000-4-4  
VFTB  
As a consequence, it is recommended to add a serial resistor (1 kΏ) located as close as  
possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm  
on PCB).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
DS13313 Rev 2  
117/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015 “Software  
techniques for improving microcontrollers EMC performance”).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application,  
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2  
standard which specifies the test board and the pin loading.  
Table 46. EMI characteristics  
Max vs.  
Monitored  
frequency band  
[fHSE/fCPU  
]
Symbol Parameter  
Conditions  
Unit  
8/550 MHz  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
14  
20  
27  
17  
4
dBµV  
-
VDD = 3.6 V, TA = 25 °C, LQFP176 package,  
conforming to IEC61967-2  
SEMI  
Peak level  
6.3.14  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse) are applied to the pins of each  
sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC  
JS-001 and ANSI/ESDA/JEDEC JS-002 standards.  
Table 47. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Packages  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) ANSI/ESDA/JEDEC JS-001  
TA = 25 °C conforming to  
VESD(HBM)  
All packages  
2
2000  
All LQFP  
packages  
C1  
250  
500  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C conforming to  
ANSI/ESDA/JEDEC JS-002  
All BGA and  
WLCSP packages  
C2a  
1. Guaranteed by characterization results.  
118/227  
DS13313 Rev 2  
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
Static latchup  
Two complementary static tests are required on six parts to assess the latchup  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with JESD78 IC latchup standard.  
Table 48. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Conforming to JESD78,  
TJ = TJMax  
Class  
LU  
Static latchup class  
II level A  
6.3.15  
I/O current injection characteristics  
As a general rule, a current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3.3 V-capable I/O pins) should be avoided during the normal  
DD  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when an abnormal injection accidentally happens, susceptibility  
tests are performed on a sample basis during the device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency  
deviation).  
The following tables are the compilation of the SIC1/SIC2 and functional ESD results.  
Negative induced A negative induced leakage current is caused by negative injection and  
positive induced leakage current by positive injection.  
Table 49. I/O current injection susceptibility(1)  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
PA12, PE8  
5
0
0
PC4, PE12, PF15, PH0  
NA  
IINJ  
mA  
PA0, PA0_C, PA1, PA1_C, PC2, PC2_C, PC3, PC3_C, PA4,  
PA5, PE7, PG1, PH4, PH5, BOOT0  
0
5
0
All other I/Os  
NA  
1. Guaranteed by characterization results.  
DS13313 Rev 2  
119/227  
208  
 
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 50: I/O static characteristics are  
derived from tests performed under the conditions summarized in Table 12: General  
operating conditions. All I/Os are CMOS and TTL compliant (except for BOOT0).  
Note:  
For information on GPIO configuration, refer to application note AN4899 “STM32 GPIO  
configuration for hardware settings and low-power consumption” available from the ST  
website www.st.com.  
Table 50. I/O static characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
I/O input low level voltage  
except BOOT0  
(1)  
-
-
0.3VDD  
I/O input low level voltage  
except BOOT0  
0.4VDD0.1  
VIL  
1.62 V<VDD<3.6 V  
-
-
-
V
(2)  
BOOT0 I/O input low level  
voltage  
0.19VDD+0.1  
-
(2)  
I/O input high level voltage  
except BOOT0  
(1)  
0.7VDD  
-
-
-
-
-
I/O input high level voltage  
except BOOT0  
0.47VDD  
+
+
VIH  
1.62 V<VDD<3.6 V  
-
-
V
0.25(2)  
BOOT0 I/O input high level  
voltage  
0.17VDD  
0.6(2)  
TT_xx, FT_xxx and NRST I/O  
input hysteresis  
-
250  
(2)  
VHYS  
1.62 V< VDD <3.6 V  
mV  
BOOT0 I/O input hysteresis  
-
-
200  
-
-
(8)  
0< VIN Max(VDDXXX  
)
+/-250  
FT_xx Input leakage current(2)  
Max(VDDXXX) < VIN 5.5 V  
-
-
-
-
-
-
1500  
(4)(5)(8)  
(8)  
0< VIN Max(VDDXXX  
)
+/- 350  
5000(6)  
(3)  
FT_u IO  
Ileak  
Max(VDDXXX) < VIN 5.5 V  
nA  
(4)(5)(8)  
(8)  
TT_xx Input leakage current  
0< VIN Max(VDDXXX  
0< VIN VDD  
)
-
-
-
-
+/-250  
15  
VPP (BOOT0 alternate  
function)  
VDD < VIN 9 V  
35  
Weak pull-up equivalent  
resistor(7)  
RPU  
VIN=VSS  
30  
40  
50  
kΩ  
Weak pull-down equivalent  
resistor(7)  
(8)  
RPD  
CIO  
VIN=VDD  
30  
-
40  
5
50  
-
I/O pin capacitance  
-
pF  
1. Compliant with CMOS requirements.  
2. Guaranteed by design.  
120/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
3. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following  
formula: ITotal_Ileak_max = 10 μA + [number of I/Os where VIN is applied on the pad] Ilkg(Max)  
.
4. All FT_xx IO except FT_lu, FT_u and PC3.  
5. VIN must be less than Max(VDDXXX) + 3.6 V.  
6. To sustain a voltage higher than MIN(VDD, VDDA, VDD33USB) +0.3 V, the internal pull-up and pull-down resistors must be  
disabled.  
7. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
8. Max(VDDXXX) is the maximum value of all the I/O supplies.  
All I/Os are CMOS and TTL compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements for FT I/Os is shown in Figure 17.  
Figure 17. V /V for all I/Os except BOOT0  
IL IH  
3
2.5  
2
TLL requirement: VIHmin = 2 V  
1.5  
1
TLL requirement: VILmin = 0.8 V  
0.5  
0
2.8  
1.6  
1.8  
2
2.2  
2.4  
2.6  
3
3.2  
3.4  
3.6  
MSv46121V3  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ±20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2. In particular:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 10).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
ΣI  
(see Table 10).  
VSS  
DS13313 Rev 2  
121/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 51: Output voltage characteristics  
for all I/Os except PC13, PC14 and PC15 and Table 52: Output voltage characteristics for  
PC13, PC14 and PC15 are derived from tests performed under ambient temperature and  
V
supply voltage conditions summarized in Table 12: General operating conditions. All  
DD  
I/Os are CMOS and TTL compliant.  
(1)  
Table 51. Output voltage characteristics for all I/Os except PC13, PC14 and PC15  
Symbol  
Parameter  
Conditions(3)  
Min  
Max  
Unit  
CMOS port(2)  
IIO = 8 mA  
VOL  
Output low level voltage  
-
0.4  
2.7 VVDD 3.6 V  
CMOS port(2)  
IIO = 8 mA  
VOH  
Output high level voltage  
Output low level voltage  
Output high level voltage  
V
DD0.4  
-
0.4  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO = 8 mA  
(3)  
VOL  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO = 8 mA  
(3)  
VOH  
2.4  
-
2.7 VVDD 3.6 V  
V
I
IO = 20 mA  
2.7 VVDD 3.6 V  
IO = 20 mA  
2.7 VVDD 3.6 V  
IO = 4 mA  
1.62 VVDD 3.6 V  
IO = 4 mA  
(3)  
VOL  
Output low level voltage  
Output high level voltage  
Output low level voltage  
Output high level voltage  
1.3  
-
I
(3)  
VOH  
VDD1.3  
I
(3)  
VOL  
-
0.4  
-
I
(3)  
VOH  
VDD-0.4  
1.62 VVDD<3.6 V  
IIO = 20 mA  
-
-
0.4  
0.4  
2.3 VVDD3.6 V  
Output low level voltage for an FTf  
I/O pin in FM+ mode  
(3)  
VOLFM+  
IIO = 10 mA  
1.62 VVDD 3.6 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 9:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO.  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
122/227  
DS13313 Rev 2  
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 52. Output voltage characteristics for PC13, PC14 and PC15  
Symbol  
Parameter  
Conditions(3)  
Min  
Max  
Unit  
CMOS port(2)  
IIO = 3 mA  
VOL  
Output low level voltage  
-
0.4  
2.7 VVDD 3.6 V  
CMOS port(2)  
IIO = 3 mA  
VOH  
Output high level voltage  
Output low level voltage  
Output high level voltage  
V
DD0.4  
-
0.4  
-
2.7 VVDD 3.6 V  
TTL port(2)  
IIO = 3 mA  
(3)  
VOL  
-
V
2.7 VVDD 3.6 V  
TTL port(2)  
IIO = 3 mA  
(2)  
VOH  
2.4  
-
2.7 VVDD 3.6 V  
IIO = 1.5 mA  
(2)  
VOL  
Output low level voltage  
Output high level voltage  
0.4  
-
1.62 VVDD 3.6 V  
IIO = 1.5 mA  
(2)  
VOH  
VDD0.4  
1.62 VVDD 3.6 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 9:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO.  
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
DS13313 Rev 2  
123/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
Output buffer timing characteristics (HSLV option disabled)  
The HSLV bit of SYSCFG_CCCSR register can be used to optimize the I/O speed when the  
product voltage is below 2.7 V.  
(1)  
Table 53. Output timing characteristics (HSLV OFF)  
Speed Symbol  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 2.7 VVDD3.6 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 2.7 VVDD3.6 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 2.7 VVDD3.6 V  
C=10 pF, 1.62 VVDD2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12  
3
12  
(2)  
Fmax  
Maximum frequency  
MHz  
3
16  
4
00  
16.6  
33.3  
13.3  
25  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
ns  
MHz  
ns  
10  
20  
60  
15  
80  
(2)  
Fmax  
Maximum frequency  
15  
110  
20  
01  
5.2  
10  
Output high to low level  
fall time and output low  
to high level rise time  
4.2  
7.5  
2.8  
5.2  
tr/tf(3)  
124/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Speed Symbol  
Electrical characteristics  
(1)  
Table 53. Output timing characteristics (HSLV OFF) (continued)  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDD3.6 V(4)  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 2.7 VVDD3.6 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 2.7 VVDD3.6 V(4)  
C=10 pF, 1.62 VVDD2.7 V(4)  
C=50 pF, 2.7 VVDD3.6 V(4)  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 2.7 VVDD3.6 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 2.7 VVDD3.6 V(4)  
C=10 pF, 1.62 VVDD2.7 Vv  
C=50 pF, 2.7 VVDD3.6 Vv  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 2.7 VVDD3.6 Vv  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 2.7 VVDD3.6 V(4)  
C=10 pF, 1.62 VVDD2.7 V(4)  
C=50 pF, 2.7 VVDD3.6 V(4)  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 2.7 VVDD3.6 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 2.7 VVDD3.6 V(4)  
C=10 pF, 1.62 VVDD2.7 V(4)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
85  
35  
110  
40  
(2)  
Fmax  
Maximum frequency  
MHz  
166  
100  
3.8  
6.9  
2.8  
5.2  
1.8  
3.3  
100  
50  
10  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
ns  
MHz  
ns  
133  
66  
(2)  
Fmax  
Maximum frequency  
220  
85  
11  
3.3  
6.6  
2.4  
4.5  
1.5  
2.7  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
1. Guaranteed by design.  
2. The maximum frequency is defined with the following conditions:  
(tr+tf) 2/3 T  
Skew 1/20 T  
45%<Duty cycle<55%  
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.  
4. Compensation system enabled.  
DS13313 Rev 2  
125/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
Output buffer timing characteristics (HSLV option enabled)  
(1)  
Table 54. Output timing characteristics (HSLV ON)  
Speed Symbol  
Parameter  
conditions  
Min  
Max  
Unit  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V  
C=30 pF, 1.62 VVDD2.7 V  
C=10 pF, 1.62 VVDD2.7 V  
C=50 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=10 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
C=30 pF, 1.62 VVDD2.7 V(4)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10  
10  
10  
11  
(2)  
Fmax  
Maximum frequency  
MHz  
00  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
9
ns  
MHz  
ns  
6.6  
50  
58  
66  
6.6  
4.8  
3
(2)  
Fmax  
Maximum frequency  
01  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
55  
80  
133  
5.8  
4
(2)  
Fmax  
Maximum frequency  
MHz  
ns  
10  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
2.4  
60  
90  
175  
5.3  
3.6  
1.9  
(2)  
Fmax  
Maximum frequency  
MHz  
ns  
11  
Output high to low level  
fall time and output low  
to high level rise time  
tr/tf(3)  
1. Guaranteed by design.  
2. The maximum frequency is defined with the following conditions:  
(tr+tf) 2/3 T  
Skew 1/20 T  
45%<Duty cycle<55%  
3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.  
4. Compensation system enabled.  
126/227  
DS13313 Rev 2  
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
Analog switch between ports Pxy_C and Pxy  
PA0_C, PA1_C, PC2_C and PC3_C can be connected internally to PA0, PA1, PC2 and  
PC3, respectively (refer to SYSCFG_PMCR register in RM0468 reference manual). The  
switch is controlled by V  
voltage level. It is defined through BOOSTVDDSEL bit of  
DDSWITCH  
SYSCFG_PMCR. If the switch is closed the switch characteristics are given in the table  
below.  
Table 55. Pxy_C and Pxy analog switch characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Switch control boosted  
-
-
-
-
-
-
-
-
-
-
-
-
315  
315  
335  
390  
445  
550  
V
V
V
V
> 2.7 V  
> 2.4 V  
> 2.0 V  
> 1.8 V  
> 1.62 V  
DDSWITCH  
DDSWITCH  
DDSWITCH  
DDSWITCH  
Switch  
impedance  
Switch control  
not boosted  
V
DDSWITCH  
6.3.17  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 50: I/O static characteristics).  
PU  
Unless otherwise specified, the parameters given in Table 56 are derived from tests  
performed under the ambient temperature and V supply voltage conditions summarized  
DD  
in Table 12: General operating conditions.  
Table 56. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Weak pull-up equivalent  
resistor(1)  
(2)  
RPU  
VIN = VSS  
30  
40  
50  
(2)  
VF(NRST)  
NRST Input filtered pulse  
1.71 V < VDD < 3.6 V  
1.71 V < VDD < 3.6 V  
-
-
-
-
50  
-
350  
ns  
(2)  
VNF(NRST)  
NRST Input not filtered pulse  
1.62 V < VDD < 3.6 V 1000  
-
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution  
to the series resistance must be minimum (~10% order).  
2. Guaranteed by design.  
DS13313 Rev 2  
127/227  
208  
 
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
Figure 18. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
(1)  
R
PU  
(2)  
Internal Reset  
NRST  
Filter  
0.1 μF  
STM32  
ai14132d  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 50. Otherwise the reset is not taken into account by the device.  
6.3.18  
FMC characteristics  
Unless otherwise specified, the parameters given in Table 57 to Table 70 for the FMC  
interface are derived from tests performed under the ambient temperature, f  
frequency  
HCLK  
and V supply voltage conditions summarized in Table 12: General operating conditions,  
DD  
with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS0.  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
Asynchronous waveforms and timings  
Figure 19 through Figure 21 represent asynchronous waveforms and Table 57 through  
Table 64 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
AddressSetupTime = 0x1  
AddressHoldTime = 0x1  
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)  
BusTurnAroundDuration = 0x0  
Capacitive load C = 30 pF  
L
In all timing tables, the T  
is the f  
clock period.  
KERCK  
mc_ker_ck  
128/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 19. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FMC_NOE  
FMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32753V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
DS13313 Rev 2  
129/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 57. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NOE_NE)  
tw(NOE)  
FMC_NE low time  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
3Tfmc_ker_ck–1  
0
3Tfmc_ker_ck+1  
0.5  
2Tfmc_ker_ck –1  
2Tfmc_ker_ck+1  
FMC_NOE high to FMC_NE high  
hold time  
th(NE_NOE)  
tv(A_NE)  
Tfmc_ker_ck  
-
-
0.5  
-
FMC_NEx low to FMC_A valid  
Address hold time after  
FMC_NOE high  
th(A_NOE)  
2Tfmc_ker_ck  
Data to FMC_NEx high setup  
time  
ns  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
Tfmc_ker_ck+14  
-
-
-
-
Data to FMC_NOEx high setup  
time  
13  
0
Data hold time after FMC_NOE  
high  
Data hold time after FMC_NEx  
high  
0
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
tw(NADV) FMC_NADV low time  
-
-
4
Tfmc_ker_ck+1  
1. Guaranteed by characterization results.  
Table 58. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tw(NOE)  
tw(NWAIT)  
FMC_NE low time  
FMC_NOE low time  
FMC_NWAIT low time  
7Tfmc_ker_ck–1  
5Tfmc_ker_ck–1  
Tfmc_ker_ck– 0.5  
7Tfmc_ker_ck+1  
5Tfmc_ker_ck +1  
-
ns  
FMC_NWAIT valid before FMC_NEx  
high  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
4Tfmc_ker_ck +9  
3Tfmc_ker_ck+12  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.  
130/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 20. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FMC_NEx  
FMC_NOE  
FMC_NWE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
t
th(A_NWE)  
v(A_NE)  
FMC_A[25:0]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32754V1  
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.  
DS13313 Rev 2  
131/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 59. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
3Tfmc_ker_ck –1  
Tfmc_ker_ck–1  
3Tfmc_ker_ck + 1  
Tfmc_ker_ck  
Tfmc_ker_ck –0.5  
Tfmc_ker_ck+0.5  
FMC_NWE high to FMC_NE high  
hold time  
th(NE_NWE)  
tv(A_NE)  
th(A_NWE)  
tv(BL_NE)  
th(BL_NWE)  
tv(Data_NE)  
Tfmc_ker_ck  
-
1
FMC_NEx low to FMC_A valid  
-
Address hold time after FMC_NWE  
high  
Tfmc_ker_ck –0.5  
-
-
ns  
FMC_NEx low to FMC_BL valid  
0.5  
-
FMC_BL hold time after FMC_NWE  
high  
Tfmc_ker_ck –0.5  
Data to FMC_NEx low to Data valid  
-
Tfmc_ker_ck+ 2  
th(Data_NWE) Data hold time after FMC_NWE high  
Tfmc_ker_ck  
-
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
-
5
Tfmc_ker_ck+ 1  
1. Guaranteed by characterization results.  
Table 60. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT  
(1)(2)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
8Tfmc_ker_ck –1  
6Tfmc_ker_ck –1  
8Tfmc_ker_ck+1  
6Tfmc_ker_ck+1  
tw(NWE)  
FMC_NWE low time  
FMC_NWAIT valid before FMC_NEx  
high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
5Tfmc_ker_ck+13  
4Tfmc_ker_ck+12  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.  
132/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 21. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FMC_ NE  
FMC_NOE  
t
t
h(NE_NOE)  
v(NOE_NE)  
t
w(NOE)  
t
FMC_NWE  
t
h(A_NOE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
NBL  
t
t
v(BL_NE)  
h(BL_NOE)  
FMC_ NBL[1:0]  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
Address  
su(Data_NOE)  
Data  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32755V1  
DS13313 Rev 2  
133/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 61. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
4Tfmc_ker_ck –1  
4Tfmc_ker_ck +1  
2Tfmc_ker_ck  
+0.5  
tv(NOE_NE)  
ttw(NOE)  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2Tfmc_ker_ck  
Tfmc_ker_ck –1  
Tfmc_ker_ck  
Tfmc_ker_ck+1  
-
FMC_NOE high to FMC_NE high hold  
time  
th(NE_NOE)  
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
0.5  
4.0  
0
Tfmc_ker_ck –0.5  
Tfmc_ker_ck +1  
ns  
FMC_AD(address) valid hold time  
after FMC_NADV high)  
th(AD_NADV)  
th(A_NOE)  
Tfmc_ker_ckk –4  
Tfmc_ker_ck –0.5  
-
-
Address hold time after FMC_NOE  
high  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NE)  
Data to FMC_NEx high setup time  
Data to FMC_NOE high setup time  
Data hold time after FMC_NEx high  
Data hold time after FMC_NOE high  
Tfmc_ker_ck +14  
-
-
13  
0
-
th(Data_NOE)  
0
-
1. Guaranteed by characterization results.  
(1)  
Table 62. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
8Tfmc_ker_ck –1  
5Tfmc_ker_ck –1  
8Tfmc_ker_ck +1  
5Tfmc_ker_ck +1  
tw(NOE)  
FMC_NWE low time  
FMC_NWAIT valid before  
FMC_NEx high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
4Tfmc_ker_ck +9  
3Tfmc_ker_ck +12  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
134/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 63. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
4Tfmc_ker_ck –1  
Tfmc_ker_ck –1  
4Tfmc_ker_ck  
Tfmc_ker_ck +0.5  
2Tfmc_ker_ck –0.5 2Tfmc_ker_ck +0.5  
FMC_NWE high to FMC_NE high hold  
time  
th(NE_NWE)  
Tfmc_ker_ck –0.5  
-
tv(A_NE)  
tv(NADV_NE)  
tw(NADV)  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
1
5.0  
0
Tfmc_ker_ck –0.5  
Tfmc_ker_ck + 1  
ns  
FMC_AD(adress) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
th(A_NWE)  
Tfmc_ker_ck –4.5  
-
-
-
Address hold time after FMC_NWE  
high  
T
fmc_ker_ck – 0.5  
fmc_ker_ck – 0.5  
FMC_BL hold time after FMC_NWE  
high  
th(BL_NWE)  
T
tv(BL_NE)  
FMC_NEx low to FMC_BL valid  
FMC_NADV high to Data valid  
-
0.5  
tv(Data_NADV)  
th(Data_NWE)  
-
Tfmc_ker_ck +2  
-
Data hold time after FMC_NWE high  
Tfmc_ker_ck  
1. Guaranteed by characterization results.  
(1)(2)  
Table 64. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
9Tfmc_ker_ck –1  
9Tfmc_ker_ck  
tw(NWE)  
FMC_NWE low time  
7Tfmc_ker_ck –0.5  
7Tfmc_ker_ck +0.5  
FMC_NWAIT valid before FMC_NEx  
high  
ns  
tsu(NWAIT_NE)  
th(NE_NWAIT)  
5Tfmc_ker_ck +9  
4Tfmc_ker_ck +12  
-
-
FMC_NEx hold time after  
FMC_NWAIT invalid  
1. Guaranteed by characterization results.  
2. NWAIT pulse width is equal to 1 fmc_ker_ck cycle.  
DS13313 Rev 2  
135/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
Synchronous waveforms and timings  
Figure 22 through Figure 25 represent synchronous waveforms and Table 65 through  
Table 68 provide the corresponding timings. The results shown in these tables are obtained  
with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable  
MemoryType = FMC_MemoryType_CRAM  
WriteBurst = FMC_WriteBurst_Enable  
CLKDivision = 1  
DataLatency = 1 for NOR Flash, DataLatency = 0 for PSRAM, C = 30 pF  
L
In all the timing tables, the Tfmc_ker_ck is the f  
FMC_CLK maximum values:  
clock period, with the following  
mc_ker_ck  
For 2.7 V<V <3.6 V: maximum FMC_CLK = 137 MHz at C = 20 pF  
DD L  
For 1.8 V<V <1.9 V: maximum FMC_CLK = 100 MHz at C = 20 pF  
DD  
L
For 1.62 V<V <1.8 V: maximumFMC_CLK = 88 MHz at C = 15 pF  
DD  
L
Figure 22. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
td(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
td(CLKH-AIV)  
d(CLKL-AV)  
FMC_A[25:16]  
t
td(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
MS32757V1  
136/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 65. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max Unit  
tw(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –0.5  
-
3
td(CLKL-NExL)  
td(CLKH_NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
Tfmc_ker_ck+1.5  
-
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
5.5  
2
td(CLKL-NADVL)  
-
FMC_NADV low  
2.7 V <VDD < 3.6 V  
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
-
td(CLKL-NADVH)  
1
FMC_NADV high  
2.7 V <VDD < 3.6 V  
-
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NOE low  
-
3
Tfmc_ker_ck  
-
ns  
-
2.5  
FMC_CLK high to FMC_NOE high  
Tfmc_ker_ck +1  
-
3
-
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
FMC_A/D[15:0] valid data before FMC_CLK high  
FMC_A/D[15:0] valid data after FMC_CLK high  
-
0
3
0
-
-
tsu(NWAIT-  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
3
-
-
CLKH)  
th(CLKH-NWAIT)  
2.5  
1. Guaranteed by characterization results.  
DS13313 Rev 2  
137/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Figure 23. Synchronous multiplexed PSRAM write timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
t
d(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
FMC_A[25:16]  
t
d(CLKH-NWEH)  
d(CLKL-NWEL)  
FMC_NWE  
t
t
t
d(CLKL-ADIV)  
t
d(CLKL-Data)  
d(CLKL-Data)  
d(CLKL-ADV)  
FMC_AD[15:0]  
AD[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
t
d(CLKH-NBLH)  
FMC_NBL  
MS32758V1  
138/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 66. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period, VDD = 2.7 to 3.6 V  
2Tfmc_ker_ck –0.5  
-
-
td(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x =0..2)  
3
FMC_CLK high to FMC_NEx high  
(x = 0…2)  
td(CLKH-NExH)  
Tfmc_ker_ck +1.5  
-
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
5.5  
td(CLKL-NADVL)  
-
FMC_NADV low  
2.7 V <VDD < 3.6 V  
2.0  
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
-
td(CLKL-NADVH)  
1
FMC_NADV high  
2.7 V <VDD < 3.6 V  
-
3
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NWEL)  
t(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_Ax valid (x =16…25)  
FMC_CLK high to FMC_Ax invalid (x =16…25)  
FMC_CLK low to FMC_NWE low  
-
Tfmc_ker_ck  
-
ns  
-
2.5  
-
FMC_CLK high to FMC_NWE high  
Tfmc_ker_ck +1  
FMC_CLK low to to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
2.5  
-
0
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low  
-
3.5  
2
td(CLKL-NBLL)  
td(CLKH-NBLH)  
tsu(NWAIT-CLKH)  
th(CLKH-NWAIT)  
FMC_CLK low to FMC_NBL low  
FMC_CLK high to FMC_NBL high  
-
Tfmc_ker_ck +0.5  
-
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
3
-
2.5  
-
1. Guaranteed by characterization results.  
DS13313 Rev 2  
139/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Figure 24. Synchronous non-multiplexed NOR/PSRAM read timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
t
d(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
su(DV-CLKH)  
t
t
h(CLKH-DV)  
FMC_D[15:0]  
FMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
MS32759V1  
140/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 67. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –0.5  
-
t(CLKL-NExL)  
td(CLKH-NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
3
Tfmc_ker_ck+1.5  
-
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
5.5  
td(CLKL-NADVL)  
-
FMC_NADV low  
2.7 V <VDD < 3.6 V  
2.0  
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
-
td(CLKL-NADVH)  
1
FMC_NADV high  
2.7 V <VDD < 3.6 V  
-
3
-
td(CLKL-AV)  
td(CLKH-AIV)  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK ow to FMC_NOE low  
-
ns  
Tfmc_ker_ck  
-
2.5  
-
FMC_CLK high to FMC_NOE high  
Tfmc_ker_ck+1  
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high  
3
0
-
th(CLKH-DV)  
t(NWAIT-CLKH)  
th(CLKH-NWAIT)  
FMC_D[15:0] valid data after FMC_CLK high  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
-
3
-
2.5  
-
1. Guaranteed by characterization results.  
DS13313 Rev 2  
141/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Figure 25. Synchronous non-multiplexed PSRAM write timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKL-NExL)  
FMC_NEx  
d(CLKH-NExH)  
Data latency = 0  
d(CLKL-NADVH)  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
FMC_NWE  
t
d(CLKH-AIV)  
t
t
d(CLKL-AV)  
td(CLKH-NWEH)  
d(CLKL-NWEL)  
t
t
d(CLKL-Data)  
d(CLKL-Data)  
FMC_D[15:0]  
D1  
D2  
FMC_NWAIT  
(WAITCFG = 0b, WAITPOL + 0b)  
FMC_NBL  
t
t
d(CLKH-NBLH)  
su(NWAITV-CLKH)  
t
h(CLKH-NWAITV)  
MS32760V1  
142/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 68. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
t(CLK)  
FMC_CLK period  
2Tfmc_ker_ck –0.5  
-
3
td(CLKL-NExL)  
t(CLKH-NExH)  
FMC_CLK low to FMC_NEx low (x=0..2)  
FMC_CLK high to FMC_NEx high (x= 0…2)  
-
Tfmc_ker_ck+1.5  
-
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
5.5  
2
td(CLKL-NADVL)  
-
FMC_NADV low  
2.7 V <VDD < 3.6 V  
1.62 V <VDD < 3.6 V  
FMC_CLK low to  
-
td(CLKL-NADVH)  
1
FMC_NADV high  
2.7 V <VDD < 3.6 V  
-
td(CLKL-AV)  
td(CLKH-AIV)  
FMC_CLK low to FMC_Ax valid (x=16…25)  
FMC_CLK high to FMC_Ax invalid (x=16…25)  
FMC_CLK low to FMC_NWE low  
-
3
ns  
Tfmc_ker_ck  
-
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-Data)  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
-
2.5  
-
FMC_CLK high to FMC_NWE high  
Tfmc_ker_ck+1  
FMC_D[15:0] valid data after FMC_CLK low  
FMC_CLK low to FMC_NBL low  
-
3.5  
2
-
FMC_CLK high to FMC_NBL high  
Tfmc_ker_ck+0.5  
-
tsu(NWAIT-  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
3
-
-
CLKH)  
th(CLKH-NWAIT)  
2.5  
1. Guaranteed by characterization results.  
DS13313 Rev 2  
143/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
NAND controller waveforms and timings  
Figure 26 through Figure 29 represent synchronous waveforms, and Table 69 and Table 70  
provide the corresponding timings. The results shown in this table are obtained with the  
following FMC configuration and a capacitive load (C ) of 30 pF:  
L
COM.FMC_SetupTime = 0x01  
COM.FMC_WaitSetupTime = 0x03  
COM.FMC_HoldSetupTime = 0x02  
COM.FMC_HiZSetupTime = 0x01  
ATT.FMC_SetupTime = 0x01  
ATT.FMC_WaitSetupTime = 0x03  
ATT.FMC_HoldSetupTime = 0x02  
ATT.FMC_HiZSetupTime = 0x01  
Bank = FMC_Bank_NAND  
MemoryDataWidth = FMC_MemoryDataWidth_16b  
ECC = FMC_ECC_Enable  
ECCPageSize = FMC_ECCPageSize_512Bytes  
TCLRSetupTime = 0  
TARSetupTime = 0  
In all timing tables, the Tfmc_ker_ck is the fmc_ker_ck clock period.  
Figure 26. NAND controller waveforms for read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
FMC_NWE  
t
th(NOE-ALE)  
d(ALE-NOE)  
FMC_NOE (NRE)  
t
t
h(NOE-D)  
su(D-NOE)  
FMC_D[15:0]  
MS32767V1  
144/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 27. NAND controller waveforms for write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NWE-ALE)  
d(ALE-NWE)  
FMC_NWE  
FMC_NOE (NRE)  
FMC_D[15:0]  
t
t
h(NWE-D)  
v(NWE-D)  
MS32768V1  
Figure 28. NAND controller waveforms for common memory read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
h(NOE-ALE)  
d(ALE-NOE)  
FMC_NWE  
FMC_NOE  
t
w(NOE)  
t
t
h(NOE-D)  
su(D-NOE)  
FMC_D[15:0]  
MS32769V1  
DS13313 Rev 2  
145/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
Figure 29. NAND controller waveforms for common memory write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
t
t
t
d(ALE-NOE)  
w(NWE)  
h(NOE-ALE)  
FMC_NWE  
FMC_N OE  
t
d(D-NWE)  
t
t
v(NWE-D)  
h(NWE-D)  
FMC_D[15:0]  
MS32770V1  
(1)  
Table 69. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
Min  
Max  
4Tfmc_ker_ck+0.5  
Unit  
tw(N0E)  
FMC_NOE low width  
4Tfmc_ker_ck – 0.5  
FMC_D[15-0] valid data before  
FMC_NOE high  
tsu(D-NOE)  
th(NOE-D)  
11  
0
-
FMC_D[15-0] valid data after  
FMC_NOE high  
ns  
-
td(ALE-NOE) FMC_ALE valid before FMC_NOE low  
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid  
1. Guaranteed by characterization results.  
-
3Tfmc_ker_ck +0.5  
-
4Tfmc_ker_ck –1  
(1)  
Table 70. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NWE)  
FMC_NWE low width  
4Tfmc_ker_ck – 0.5  
4Tfmc_ker_ck +0.5  
FMC_NWE low to FMC_D[15-0]  
valid  
tv(NWE-D)  
th(NWE-D)  
0
-
FMC_NWE high to FMC_D[15-0]  
invalid  
2Tfmc_ker_ck +1.5  
5Tfmc_ker_ck – 5  
-
-
ns  
FMC_D[15-0] valid before  
FMC_NWE high  
td(D-NWE)  
-
FMC_ALE valid before FMC_NWE  
low  
td(ALE-NWE)  
th(NWE-ALE)  
3Tfmc_ker_ck +0.5  
-
FMC_NWE high to FMC_ALE  
invalid  
2Tfmc_ker_ck – 0.5  
1. Guaranteed by characterization results.  
146/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
SDRAM waveforms and timings  
In all timing tables, the TKERCK is the fmc_ker_ck clock period, with the following  
FMC_SDCLK maximum values:  
For 2.7 V<V <3.6 V: maximum FMC_CLK = 95 MHz at 20 pF  
DD  
For 1.8 V<V <1.9 V: maximum FMC_CLK = 90 MHz at 20 pF  
DD  
For 1.62 V< <1.8 V: maximum FMC_CLK = 85 MHz at 15 pF  
DD  
Figure 30. SDRAM read access waveforms (CL = 1)  
FMC_SDCLK  
td(SDCLKL_AddC)  
td(SDCLKL_AddR)  
th(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
th(SDCLKL_NCAS)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
td(SDCLKL_NCAS)  
FMC_SDNWE  
FMC_D[31:0]  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
Data1 Data2 Datai  
Datan  
MS32751V2  
DS13313 Rev 2  
147/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 71. SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
2Tfmc_ker_ck  
0.5  
2Tfmc_ker_ck  
+0.5  
tw(SDCLK)  
FMC_SDCLK period  
tsu(SDCLKH _Data)  
th(SDCLKH_Data)  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
3
1.5  
-
-
-
td(SDCLKL_Add)  
2.0  
td(SDCLKL- SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
1.5(2)  
ns  
0
-
1
-
0
-
-
2.0  
-
0.5  
1. Guaranteed by characterization results.  
2. Using PC2_C I/O adds 4.5 ns to this timing.  
(1)  
Table 72. LPSDR SDRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
2Tfmc_ker_ck  
0.5  
tW(SDCLK)  
FMC_SDCLK period  
2Tfmc_ker_ck+0.5  
tsu(SDCLKH_Data)  
th(SDCLKH_Data)  
Data input setup time  
Data input hold time  
Address valid time  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
3
2.5  
-
-
-
td(SDCLKL_Add)  
2
td(SDCLKL_SDNE)  
th(SDCLKL_SDNE)  
td(SDCLKL_SDNRAS  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
th(SDCLKL_SDNCAS)  
-
1.5(2)(3)  
ns  
0
-
1
-
-
0
-
2
-
0.5  
1. Guaranteed by characterization results.  
2. Using PC2 I/O adds 4 ns to this timing.  
3. Using PC2_C I/O adds 16.5 ns to this timing.  
148/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 31. SDRAM write access waveforms  
FMC_SDCLK  
td(SDCLKL_AddC)  
th(SDCLKL_AddR)  
td(SDCLKL_AddR)  
Row n  
Col1  
Col2  
Coli  
Coln  
FMC_A[12:0]  
th(SDCLKL_AddC)  
th(SDCLKL_SNDE)  
td(SDCLKL_SNDE)  
FMC_SDNE[1:0]  
td(SDCLKL_NRAS)  
th(SDCLKL_NRAS)  
FMC_SDNRAS  
FMC_SDNCAS  
FMC_SDNWE  
th(SDCLKL_NCAS)  
th(SDCLKL_NWE)  
td(SDCLKL_NCAS)  
td(SDCLKL_NWE)  
td(SDCLKL_Data)  
Data1  
Data2  
Datai  
Datan  
FMC_D[31:0]  
td(SDCLKL_NBL)  
FMC_NBL[3:0]  
th(SDCLKL_Data)  
MS32752V2  
(1)  
Table 73. SDRAM Write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
2Tfmc_ker_ck – 0.5 2Tfmc_ker_ck+0.5  
td(SDCLKL _Data  
th(SDCLKL _Data)  
td(SDCLKL_Add)  
)
-
0.5  
-
2
-
2
td(SDCLKL_SDNWE)  
th(SDCLKL_SDNWE)  
td(SDCLKL_ SDNE)  
th(SDCLKL-_SDNE)  
td(SDCLKL_SDNRAS)  
th(SDCLKL_SDNRAS)  
td(SDCLKL_SDNCAS)  
td(SDCLKL_SDNCAS)  
-
2
0
-
ns  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
-
1.5(2)  
0
-
1
-
-
0
-
2
-
0.5  
1. Guaranteed by characterization results.  
2. Using PC2_C I/O adds 4.5 ns to this timing.  
DS13313 Rev 2  
149/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 74. LPSDR SDRAM Write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(SDCLK)  
FMC_SDCLK period  
Data output valid time  
Data output hold time  
Address valid time  
SDNWE valid time  
SDNWE hold time  
2Tfmc_ker_ck – 0.5 2Tfmc_ker_ck+0.5  
td(SDCLKL _Data  
)
-
0
-
2
th(SDCLKL _Data)  
td(SDCLKL_Add)  
-
2.5  
td(SDCLKL-SDNWE)  
th(SDCLKL-SDNWE)  
td(SDCLKL- SDNE)  
th(SDCLKL- SDNE)  
td(SDCLKL-SDNRAS)  
th(SDCLKL-SDNRAS)  
td(SDCLKL-SDNCAS)  
td(SDCLKL-SDNCAS)  
-
2
0
-
-
ns  
Chip select valid time  
Chip select hold time  
SDNRAS valid time  
SDNRAS hold time  
SDNCAS valid time  
SDNCAS hold time  
1.5(2)(3)  
0
-
-
1
-
0
-
2
-
0.5  
1. Guaranteed by characterization results.  
2. Using PC2 I/O adds 4 ns to this timing.  
3. Using PC2_C I/O adds 16.5 ns to this timing.  
6.3.19  
Octo-SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 75 and Table 77 for OCTOSPI  
are derived from tests performed under the ambient temperature, f frequency and V  
HCLK  
DD  
supply voltage conditions summarized in Table 12: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.5 V  
DD  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)(2)  
Table 75. OCTOSPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 V < VDD < 3.6 V,  
VOS0,  
-
-
92  
CLOAD = 15 pF  
1.71 V < VDD < 3.6 V,  
VOS0, CLOAD =20 pF  
F(CLK)  
OCTOSPI clock frequency  
-
-
-
-
90  
MHz  
2.7 V < VDD < 3.6 V,  
VOS0,  
140  
CLOAD = 20 pF  
150/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
(1)(2)  
Table 75. OCTOSPI characteristics in SDR mode  
(continued)  
Typ  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tw(CKH)  
t(CK)/2  
-
-
t(CK)/2+1  
t(CK)/2  
OCTOSPI clock high and low PRESCALER[7:0] = n  
time, even division = 0,1,3,5  
tw(CKL)  
tw(CKH)  
t(CK)/2–1  
(n/2)*t(CK)  
/
(n/2)*t(CK)  
(n+1)+1  
/
-
-
(n+1)  
OCTOSPI clock high and low PRESCALER[7:0] = n  
time, odd division  
= 2,4,6,8  
(n/2+1)*t(CK)  
/
(n/2+1)*t(CK)  
/(n+1)  
tw(CKL)  
ns  
(n+1)–1  
(3)  
ts(IN)  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
-
-
-
-
3.0  
1.5  
-
-
-
-
(3)  
th(IN)  
-
tv(OUT)  
th(OUT)  
0.5  
-
1(4)  
-
0
1. All values apply to Octal and Quad-SPI mode.  
2. Guaranteed by characterization results.  
3. Delay block bypassed.  
4. Using PC2 or PC3 I/O in the data bus adds 4 ns to this timing value.  
Figure 32. OCTOSPI SDR read/write timing diagram  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
DS13313 Rev 2  
151/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 76. OCTOSPI characteristics in DTR mode (no DQS)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 V < VDD < 3.6 V,  
VOS0, CLOAD = 15 pF  
-
-
-
-
90(4)  
1.71 V < VDD < 3.6 V,  
VOS0, CLOAD = 20 pF  
(3)  
FCK  
OCTOSPI clock frequency  
-
-
87(4)  
110  
MHz  
2.7 V < VDD < 3.6 V,  
VOS0, CLOAD = 20 pF  
tw(CKH)  
tw(CKL)  
t(CK)/2  
-
-
t(CK)/2+1  
t(CK)/2  
OCTOSPI clock high and  
low time, even division  
PRESCALER[7:0] = n  
= 0,1,3,5  
t(CK)/2–1  
(n/2)*t(CK)  
/
(n/2)*t(CK)  
(n+1)+1  
/
tw(CKH)  
-
-
-
(n+1)  
OCTOSPI clock high and  
low time, odd division  
PRESCALER[7:0] = n  
= 2,4,6,8  
(n/2+1)*t(CK)/(  
n+1) – 1  
(n/2+1)*  
tw(CKL)  
t
(CK)/(n+1)  
tsr(IN)  
Data input setup time  
Data input hold time  
-
3.0  
-
(5)  
tsf(IN)  
ns  
thr(IN)  
-
1.50  
-
-
(5)  
thf(IN)  
DHQC = 0  
-
-
6
7(6)  
tvr(OUT)  
tvf(OUT)  
Data output valid time  
Data output hold time  
DHQC = 1,  
Prescaler = 1,2 ...  
tpclk/4+ tpclk/4+1.25  
(6)  
1
DHQC = 0  
4.5  
-
-
-
-
thr(OUT)  
thf(OUT)  
DHQC = 1,  
Prescaler = 1,2 ...  
t
pclk/4  
1. All values apply to Octal and Quad-SPI mode.  
2. Guaranteed by characterization results.  
3. DHQC must be set to reach the mentioned frequency.  
4. Using PC2 or PC3 I/O in the data bus decreases the frequency to 47 MHz.  
5. Delay block bypassed.  
6. Using PC2 or PC3 I/O in the data bus adds 4 ns to this timing value.  
Figure 33. OCTOSPI DTR mode timing diagram  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tvf(OUT) thr(OUT)  
D0  
tvr(OUT)  
thf(OUT)  
D3  
Data output  
D1  
D2  
D4  
tsr(IN)thr(IN)  
D5  
tsf(IN) thf(IN)  
Data input  
D0  
D1  
D2  
D3  
D4  
D5  
MSv36879V1  
152/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 77. OCTOSPI characteristics in DTR mode (with DQS)/Octal and Hyperbus  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2,7 V < VDD < 3.6 V,  
VOS0, CLOAD = 20 pF  
-
-
100  
(2)(3)  
FCK  
OCTOSPI clock frequency  
MHz  
1.71 V < VDD < 3.6 V,  
VOS0, CLOAD = 20 pF  
-
-
100(4)  
tw(CKH)  
tw(CKL)  
t(CK)/2  
-
-
t(CK)/2+1  
t(CK)/2  
OCTOSPI clock high and  
low time, even division  
PRESCALER[7:0] = n =  
0,1,3,5  
ns  
ns  
t(CK)/2–1  
(n/2)*t(CK)  
/
(n/2)*t(CK)  
(n+1)+1  
/
tw(CKH)  
tw(CKL)  
-
-
(n+1)  
OCTOSPI clock high and  
low time, odd division  
PRESCALER[7:0] = n =  
2,4,6,8  
(n/2+1)*t(CK)/(  
n+1)–1  
(n/2+1)*t(CK)  
/
(n+1)  
tv(CK)  
th(CK)  
Clock valid time  
Clock hold time  
-
-
-
-
-
t(CK)+1  
-
t(CK)/2  
CK,CK crossing level on CK  
rising edge  
VODr(CK)  
VODf(CK)  
VDD = 1.8 V  
VDD = 1.8 V  
922  
-
-
1229  
1277  
mV  
CK,CK crossing level on CK  
falling edge  
1000  
tw(CS)  
tv(DQ)  
tv(DS)  
th(DS)  
Chip select high time  
Data input vallid time  
-
-
-
-
3*t(CK)  
-
-
-
-
-
-
-
-
0
0
0
Data strobe input valid time  
Data strobe input hold time  
Data strobe output valid  
time  
tv(RWDS)  
-
-
-
3 x t(CK)  
tsr(DQ)  
tsf(DQ)  
thr(DQ)  
thf(DQ)  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
DHQC = 0  
0
0
1
1
-
-
-
-
Data input setup time  
Data input hold time  
-
-
-
-
-
ns  
6
7(5)  
Data output valid time rising  
edge  
tvr(OUT)  
tvf(OUT)  
thr(OUT)  
thf(OUT)  
DHQC = 1,  
Prescaler = 1,2...  
tpclk/4+ tpclk/4+1.25  
-
-
(5)  
1
DHQC = 0  
5.5  
6(5)  
Data output valid time  
falling edge  
DHQC = 1,  
Prescaler = 1,2...  
tpclk/4+ tpclk/4+0.75  
0.5  
-
(5)  
DHQC = 0  
4.5  
-
-
-
-
-
-
-
-
Data output hold time rising  
edge  
DHQC = 1,  
Prescaler = 1,2...  
t
pclk/4  
4.5  
DHQC = 0  
Data output hold time falling  
edge  
DHQC = 1,  
Prescaler = 1,2...  
tpclk/4  
1. Guaranteed by characterization results.  
DS13313 Rev 2  
153/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
2. Maximum frequency values are given for a RWDS to DQ skew of maximum +/-1.0 ns.  
3. Activating DHQC is mandatory to reach this frequency  
4. Using PC2 or PC3 I/O on data bus decreases the frequency to 47 MHz.  
5. Using PC2 or PC3 I/O on the data bus adds 4 ns to this timing value.  
Figure 34. OCTOSPI Hyperbus clock timing diagram  
tr(CK)  
tw(CKH)  
tw(CKL)  
t(CK)  
tf(CK)  
VOD(CK)  
CK  
MSv47732V2  
Figure 35. OCTOSPI Hyperbus read timing diagram  
tw(CS)  
CS#  
th(CK)  
tv(CK)  
tACC= Initial Access  
CK  
tv(RWDS)  
tv(DS)  
th(DS)  
RWDS  
tv(OUT)  
th(OUT)  
tv(DQ)  
ts(DQ)  
th(DQ)  
Latency Count  
Dn  
Dn  
Dn+1  
A
Dn+1  
47:40 39:32 31:24 23:16 15:8  
7:0  
DQ[7:0]  
A
B
B
Command-Address  
Memory drives DQ[7:0] and RWDS  
MSv47733V2  
Host drives DQ[7:0] and Memory drives RWDS  
154/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 36. OCTOSPI Hyperbus write timing diagram  
tw(CS)  
CS#  
CK  
Read Write Recovery  
tv(CK)  
Access Latency  
th(CK)  
th(OUT)  
tv(OUT)  
tv(RWDS)  
High = 2x Latency Count  
Low = 1x Latency Count  
RWDS  
Latency Count  
th(OUT)  
th(OUT)  
tv(OUT)  
tv(OUT)  
Dn  
A
Dn  
B
Dn+1  
A
Dn+1  
B
47:40 39:32 31:24 23:16 15:8  
7:0  
DQ[7:0]  
Command-Address  
Host drives DQ[7:0] and RWDS  
Host drives DQ[7:0] and Memory drives RWDS  
MSv47734V2  
6.3.20  
Delay block (DLYB) characteristics  
Unless otherwise specified, the parameters given in Table 78 for Delay Block are derived  
from tests performed under the ambient temperature, f frequency and VDD supply  
rcc_c_ck  
voltage summarized in Table 12: General operating conditions, with the following  
configuration:  
Table 78. Delay Block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tinit  
t∆  
Initial delay  
Unit Delay  
-
-
900  
28  
1300  
33  
1900  
41  
ps  
-
6.3.21  
16-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 79, Table 80 and Table 81 are  
derived from tests performed under the ambient temperature, f frequency and V  
PCLK2  
DDA  
supply voltage conditions summarized in Table 12: General operating conditions.  
(1)(2)  
Table 79. 16-bit ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage for ADC  
ON  
V
-
1.62  
1.62  
-
-
3.6  
DDA  
V
V
2 V  
V
DDA  
Positive  
reference  
voltage  
DDA  
V
V
REF+  
V
< 2 V  
DDA  
DDA  
Negative  
reference  
voltage  
V
-
V
SSA  
REF-  
DS13313 Rev 2  
155/227  
208  
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 79. 16-bit ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BOOST = 11  
BOOST = 10  
BOOST = 01  
BOOST = 00  
0.12  
0.12  
0.12  
-
-
-
-
-
50  
25  
ADC clock  
frequency  
f
1.62 V VDDA 3.6 V  
MHz  
ADC  
12.5  
6.25  
Resolution = 16 bits,  
>2.5 V  
f
f
= 36 MHz  
SMP = 1.5  
-
-
3.60  
ADC  
V
DDA  
T
= 90 °C  
J
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 16 bits,  
= 37 MHz  
= 50 MHz  
= 50 MHz  
= 50 MHz  
= 50 MHz  
= 49 MHz  
= 50 MHz  
= 50 MHz  
= 50 MHz  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 1.5  
SMP = 1.5  
SMP = 1.5  
SMP = 1.5  
SMP = 1.5  
SMP = 1.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3.35  
5.00  
5.50  
7.10  
8.30  
4.90  
5.50  
6.70  
8.30  
ADC  
ADC  
ADC  
ADC  
ADC  
f
f
f
f
T = 125 °C  
J
Sampling rate  
for Direct  
channels  
f
ADC  
ADC  
ADC  
ADC  
f
f
f
T = 140 °C  
J
f
f
= 32 MHz  
SMP = 2.5  
-
-
2.90  
ADC  
V
>2.5 V  
DDA  
T
= 90 °C  
J
Resolution = 16 bits  
Resolution = 14 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 16 bits  
resolution = 14 bits  
resolution = 12 bits  
resolution = 10 bits  
resolution = 8 bits  
resolution = 12 bits  
resolution = 10 bits  
resolution = 8 bits  
= 31 MHz  
= 33 MHz  
= 39 MHz  
= 48 MHz  
= 50 MHz  
= 37 MHz  
= 46 MHz  
= 50 MHz  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
SMP = 2.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.80  
3.30  
4.30  
6.00  
7.10  
4.10  
5.70  
7.10  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
f
f
f
f
f
f
f
(3)  
f
MSps  
s
Sampling rate  
for Fast  
channels  
T = 125 °C  
J
T
= 140 °C  
= 90 °C  
J
T
J
Sampling rate  
for Slow  
channels,  
T = 125 °C  
J
f
= 10 MHz  
SMP = 1.5  
1.00  
ADC  
BOOST = 0,  
f
= 10 MHz  
ADC  
T
= 140 °C  
J
External trigger  
period  
1/  
t
Resolution = 16 bits  
-
-
-
10  
TRIG  
f
ADC  
Conversion  
voltage range  
(4)  
AIN  
V
-
-
0
V
REF+  
V
Common mode  
input voltage  
V
/2  
V
/
V
/2  
REF  
+ 10%  
REF  
10%  
REF  
2
V
V
CMIV  
156/227  
DS13313 Rev 2  
STM32H723xE/G  
Electrical characteristics  
(1)(2)  
Table 79. 16-bit ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Resolution = 16 bits, T = 125 °C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
170  
435  
J
Resolution = 14 bits, T = 125 °C  
J
External input  
impedance  
(5)  
R
Resolution = 12 bits, T =125 °C  
1,150  
5,650  
26,500  
AIN  
J
Resolution = 10 bits, T = 125 °C  
J
Resolution = 8 bits, T = 125 °C  
J
Internal sample  
and hold  
capacitor  
C
-
-
-
4
5
-
-
10  
-
pF  
us  
ADC  
t
ADC LDO  
startup time  
ADCVREG  
_STUP  
-
conver  
sion  
cycle  
ADC Power-up  
time  
t
LDO already started  
1
STAB  
Offset and  
linearity  
calibration time  
t
-
-
16,5010  
1,280  
1/f  
1/f  
CAL  
ADC  
ADC  
t
Offsetcalibration  
time  
OFF_  
CAL  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
1.5  
2
-
2.5  
2.5  
2.5  
2.25  
3.5  
3.5  
3.5  
Trigger  
conversion  
latency regular  
and injected  
channelswithout  
conversion abort  
-
t
1/f  
1/f  
LATR  
ADC  
-
-
-
2.5  
-
-
Trigger  
conversion  
latency regular  
injected  
3
-
t
LATRINJ  
ADC  
-
-
channels  
aborting a  
regular  
conversion  
CKMODE = 11  
-
-
-
-
3.25  
t
Sampling time  
1.5  
810.5  
1/f  
1/f  
S
ADC  
ADC  
Total conversion  
time (including  
sampling time)  
ts + 0.5  
+ N/2  
t
Resolution = N bits  
-
-
CONV  
DS13313 Rev 2  
157/227  
208  
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 79. 16-bit ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ADC  
consumption on  
Resolution = 16 bits, f  
Resolution = 14 bits, f  
= 25 MHz  
-
-
-
-
-
-
1,440  
1,350  
-
-
ADC  
ADC  
= 30 MHz  
= 40 MHz  
V
,
DDA  
BOOST=11,  
Differential  
mode  
Resolution = 12 bits, f  
-
-
-
990  
-
ADC  
ADC  
consumption on  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
1,080  
810  
-
-
V
,
DDA  
BOOST=10,  
Differential  
mode,  
Resolution = 12 bits  
-
-
-
585  
-
f
= 25 MHz  
ADC  
I
_
D
DDA  
(ADC)  
ADC  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
630  
432  
-
-
consumption on  
V
,
DDA  
BOOST=01,  
Differential  
mode,  
Resolution = 12 bits  
-
-
-
315  
-
f
= 12.5 MHz  
ADC  
ADC  
consumption on  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
360  
270  
-
-
V
DDA,  
BOOST=00,  
Differential  
mode,  
Resolution = 12 bits  
-
-
-
225  
-
f
= 6.25 MHz  
ADC  
ADC  
consumption on  
Resolution = 16 bits, f  
=25 MHz  
-
-
-
-
-
-
720  
675  
-
-
ADC  
Resolution = 14 bits, f  
Resolution = 12 bits, f  
=30 MHz  
=40 MHz  
V
,
ADC  
DDA  
BOOST=11,  
Single-ended  
mode  
µA  
-
-
-
495  
-
ADC  
ADC  
consumption on  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
540  
405  
-
-
V
,
DDA  
BOOST=10,  
Singl-ended  
mode,  
Resolution = 12 bits  
-
-
-
292.5  
-
f
= 25 MHz  
ADC  
I
_
DDA SE  
(ADC)  
ADC  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
315  
216  
-
-
consumption on  
V
,
DDA  
BOOST=01,  
Single-ended  
mode,  
Resolution = 12 bits  
-
-
-
157.5  
-
f
= 12.5 MHz  
ADC  
ADC  
consumption on  
Resolution = 16 bits  
Resolution = 14 bits  
-
-
-
-
-
-
180  
135  
-
-
V
DDA  
BOOST=00,  
Single-ended  
mode  
Resolution = 12 bits  
-
-
-
112.5  
-
f
=6.25 MHz  
ADC  
f
=50 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
220  
180  
120  
80  
-
-
-
-
-
ADC  
f
=25 MHz  
ADC  
ADC  
consumption on  
I
DD  
f
f
=12.5 MHz  
=6.25 MHz  
ADC  
ADC  
(ADC)  
V
DD  
f
=3.125 MHz  
ADC  
1. Guaranteed by design.  
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).  
158/227  
DS13313 Rev 2  
STM32H723xE/G  
Electrical characteristics  
3. These values are valid for TFBGA100, UFBGA169 and UFBGA176+25 packages and one ADC. The values for other  
packages and multiple ADCs may be different.  
4. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA  
.
5. The tolerance is 10 LSBs for 16-bit resolution, 4 LSBs for 14-bit resolution, and 2 LSBs for 12-bit, 10-bit and 8-bit  
resolutions.  
(1)(2)  
Table 80. Minimum sampling time vs R  
(16-bit ADC)  
AIN  
Minimum sampling time (s)  
Resolution  
RAIN ()  
Direct  
Fast channels(4) Slow channels(5)  
channels(3)  
16 bits  
47  
47  
7.37E-08  
6.29E-08  
6.84E-08  
7.80E-08  
9.86E-08  
1.32E-07  
5.32E-08  
5.74E-08  
6.58E-08  
8.37E-08  
1.11E-07  
1.56E-07  
2.16E-07  
3.01E-07  
4.34E-08  
4.68E-08  
5.35E-08  
6.68E-08  
8.80E-08  
1.24E-07  
1.69E-07  
2.38E-07  
3.45E-07  
5.15E-07  
7.42E-07  
1.10E-06  
1.14E-07  
9.74E-08  
1.02E-07  
1.12E-07  
1.32E-07  
1.61E-07  
8.00E-08  
8.50E-08  
9.31E-08  
1.10E-07  
1.34E-07  
1.78E-07  
2.39E-07  
3.29E-07  
6.51E-08  
6.89E-08  
7.55E-08  
8.77E-08  
1.08E-07  
1.43E-07  
1.89E-07  
2.60E-07  
3.66E-07  
5.35E-07  
7.75E-07  
1.14E-06  
1.72E-07  
1.55E-07  
1.58E-07  
1.62E-07  
1.80E-07  
2.01E-07  
1.29E-07  
1.32E-07  
1.40E-07  
1.51E-07  
1.73E-07  
2.14E-07  
2.68E-07  
3.54E-07  
1.08E-07  
1.11E-07  
1.16E-07  
1.26E-07  
1.40E-07  
1.71E-07  
2.13E-07  
2.80E-07  
3.84E-07  
5.48E-07  
7.78E-07  
1.14E-06  
68  
14 bits  
100  
150  
220  
47  
68  
100  
150  
220  
330  
470  
680  
47  
12 bits  
68  
100  
150  
220  
330  
470  
680  
1000  
1500  
2200  
3300  
10 bits  
DS13313 Rev 2  
159/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 80. Minimum sampling time vs R  
(16-bit ADC)  
(continued)  
AIN  
Minimum sampling time (s)  
Resolution  
RAIN ()  
Direct  
Fast channels(4) Slow channels(5)  
channels(3)  
47  
68  
3.32E-08  
3.59E-08  
4.10E-08  
5.06E-08  
6.61E-08  
9.17E-08  
1.24E-07  
1.74E-07  
2.53E-07  
3.73E-07  
5.39E-07  
8.02E-07  
1.13E-06  
1.62E-06  
2.36E-06  
3.50E-06  
5.10E-08  
5.35E-08  
5.83E-08  
6.76E-08  
8.22E-08  
1.08E-07  
1.40E-07  
1.91E-07  
2.70E-07  
3.93E-07  
5.67E-07  
8.36E-07  
1.18E-06  
1.69E-06  
2.47E-06  
3.69E-06  
8.61E-08  
8.83E-08  
9.22E-08  
9.95E-08  
1.11E-07  
1.32E-07  
1.63E-07  
2.12E-07  
2.85E-07  
4.05E-07  
5.75E-07  
8.38E-07  
1.18E-06  
1.68E-06  
2.45E-06  
3.65E-06  
100  
150  
220  
330  
470  
680  
8 bits  
1000  
1500  
2200  
3300  
4700  
6800  
10000  
15000  
1. Guaranteed by design.  
2. Data valid at up to 130 °C, with a 47 pF PCB capacitor, and VDDA=1.6 V.  
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.  
4. Fast channels correspond to PA6, PB1, PC4, PF11, PF13 for ADCx_INPx, and to PA7, PB0, PC5, PF12, PF14 for  
ADCx_INNx.  
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.  
160/227  
DS13313 Rev 2  
STM32H723xE/G  
Symbol  
Electrical characteristics  
(1)(2)  
Table 81. 16-bit ADC accuracy  
Conditions(3)  
Parameter  
Min  
Typ  
Max  
Unit  
Single ended  
Direct  
-
-
-
-
-
+10/–20  
±15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
channel  
Differential  
Single ended  
Fast channel  
+10/–20  
±15  
ET  
Total undadjusted error  
Differential  
Single ended  
Slow  
±10  
channel  
Differential  
±10  
EO  
EG  
Offset error  
Gain error  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±10  
-
±15  
LSB  
Single ended  
+3/–1  
+4.5/–1  
±11  
ED  
Differential linearity error  
Integral linearity error  
Effective number of bits  
Differential  
Single ended  
Direct  
channel  
Differential  
Single ended  
Differential  
±7  
±13  
EL  
Fast channel  
±7  
Single ended  
Differential  
±10  
Slow  
channel  
±6  
Single ended  
12.2  
13.2  
75.2  
81.2  
77.0  
81.0  
87  
ENOB  
SINAD  
SNR  
Bits  
dB  
Differential  
Single ended  
Differential  
Signal-to-noise and  
distortion ratio  
Single ended  
Differential  
Signal-to-noise ratio  
Single ended  
Differential  
THD  
Total harmonic distortion  
90  
1. Guaranteed by characterization results for BGA packages. The values for LQFP packages might differ.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC clock frequency = 25 MHz, ADC resolution = 16 bits, VDDA=VREF+=3.3 V, BOOST=11 and 16-bit mode.  
Note:  
ADC accuracy vs. negative injection current: injecting a negative current on any analog  
input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to  
ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for I  
affect the ADC accuracy.  
and ΣI  
does not  
INJ(PIN)  
INJ(PIN)  
DS13313 Rev 2  
161/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Figure 37. ADC accuracy characteristics (12-bit resolution)  
V
V
DDA  
4096  
REF+  
[1LSB  
=
(or  
depending on package)]  
IDEAL  
4096  
E
G
4095  
4094  
4093  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
E
O
L
E
D
1L SB  
IDEAL  
7
0
V
1
2
3
456  
4093 4094 4095 4096  
V
DDA  
SSA  
ai14395c  
1. Example of an actual transfer curve.  
2. Ideal transfer curve.  
3. End point correlation line.  
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset Error: deviation between the first actual transition and the first ideal one.  
EG = Gain Error: deviation between the last ideal transition and the last actual one.  
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.  
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point  
correlation line.  
Figure 38. Typical connection diagram using the ADC  
STM32  
V
DD  
Sample and hold ADC  
V
T
converter  
0.6 V  
(1)  
AIN  
(1)  
R
R
ADC  
AINx  
12-bit  
converter  
V
0.6 V  
T
V
AIN  
C
(1)  
ADC  
C
parasitic  
I
1 μA  
L
ai17534b  
1. Refer to Table 79 for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,  
f
ADC should be reduced.  
162/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 39 or Figure 40,  
depending on whether V is connected to V or not. The 100 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 39. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32  
(1)  
VREF+  
1 μF // 100 nF  
VDDA  
1 μF // 100 nF  
(1)  
VSSA/VREF+  
MSv50648V1  
1. When VREF+ and VREF- inputs are not available, they are internally connected to VDDA and VSSA  
respectively.  
,
Figure 40. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32  
(1)  
VREF+/VDDA  
1 μF // 100 nF  
(1)  
VREF-/VSSA  
MSv50649V1  
1. When VREF+ and VREF- inputs are not available, they are internally connected to VDDA and VSSA  
respectively.  
,
DS13313 Rev 2  
163/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.22  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 82, Table 83 and Table 84 are  
derived from tests performed under the ambient temperature and V  
supply voltage  
DDA  
conditions summarized in Table 12: General operating conditions. In Table 82, Table 83 and  
Table 84, f refers to f  
.
adc_ker_ck  
ADC  
(1)(2)  
Table 82. 12-bit ADC characteristics  
Sym-  
bol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog  
power  
supply for  
ADC ON  
V
-
1.62  
-
3.6  
DDA  
Positive  
reference  
voltage  
V
V
REF+  
(3)  
V
V  
1.62  
-
-
V
DDA  
REF+  
DDA  
-
Negative  
reference  
voltage  
V
-
V
SSA  
REF-  
ADC clock  
frequency  
f
1,62 V V  
3.6 V  
1.5  
-
-
-
-
-
75  
5
MHz  
ADC  
DDA  
f
= 75  
MHz  
ADC  
Continuous  
2.4 V V  
1.6V V  
2.4 V V  
1.6 V V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
-
-
-
-
DDA  
DDA  
DDA  
DDA  
and  
Discontinuous  
f
= 60  
MHz  
(5)  
ADC  
4
mode  
Resolution  
= 12 bits  
SMP  
= 2.5  
–40 °C T 130 °C  
J
f
= 50  
ADC  
3.33  
2.53  
(6)  
MHz  
Single mode  
f
= 38  
ADC  
(6)  
MHz  
Continuous  
and  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
5.77  
DDA  
Discontinuous  
(5)  
mode  
Resolution  
= 10 bits  
SMP  
–40 °C T 130 °C  
J
f
= 58 = 2.5  
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
4.46  
3.23  
(6)  
DDA  
DDA  
MHz  
Single mode  
Sampling  
rate for  
Direct  
f
= 42  
ADC  
(6)  
MHz  
(4)  
f
MSPS  
S
Continuous  
and  
channels  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
6.82  
DDA  
Discontinuous  
(5)  
mode  
Resolution  
= 8 bits  
SMP  
= 67 = 2.5  
MHz  
–40 °C T 130 °C  
J
f
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
6.09  
4.36  
(6)  
DDA  
DDA  
Single mode  
f
= 48  
ADC  
(6)  
MHz  
Continuous  
and  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
8.33  
DDA  
Discontinuous  
(5)  
mode  
Resolution  
= 6 bits  
SMP  
= 75 = 2.5  
–40 °C T 130 °C  
J
f
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
8.33  
6.11  
(6)  
DDA  
DDA  
MHz  
Single mode  
f
= 55  
ADC  
(6)  
MHz  
164/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)(2)  
Table 82. 12-bit ADC characteristics  
(continued)  
Sym-  
Parameter  
bol  
Conditions  
Min  
Typ  
Max  
Unit  
f
= 65  
MHz  
ADC  
Continuous  
and  
2.4 V V  
1.6V V  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
3.6 V  
3.6V  
-
-
-
-
-
-
-
-
4.33  
3.87  
2.13  
1.73  
DDA  
DDA  
DDA  
DDA  
Discontinuous  
f
= 58  
MHz  
(5)  
ADC  
mode  
Resolution  
= 12 bits  
SMP  
= 2.5  
–40 °C T 130 °C  
J
f
= 32  
ADC  
(6)  
MHz  
Single mode  
f
=
ADC  
(6)  
26 MHz  
Continuous  
and  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
5.77  
DDA  
Discontinuous  
(5)  
mode  
Resolution  
= 10 bits  
SMP  
–40 °C T 130 °C  
J
f
= 36 = 2.5  
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
2.77  
2.31  
(6)  
DDA  
DDA  
MHz  
Single mode  
Sampling  
rate for fast  
channels  
f
= 30  
ADC  
(6)  
MHz  
Continuous  
and  
(VIN[0:5])  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
6.82  
DDA  
Discontinuous  
(5)  
mode  
(4)  
f
S
Resolution  
= 8 bits  
SMP  
=44 = 2.5  
MHz  
(conti-  
nued)  
–40 °C T 130 °C  
MSPS  
J
f
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
4.00  
3.18  
(6)  
DDA  
DDA  
Single mode  
f
= 35  
ADC  
(6)  
MHz  
Continuous  
and  
f
= 75  
MHz  
ADC  
1.6V V  
3.6V  
-
-
8.33  
DDA  
Discontinuous  
(5)  
mode  
Resolution  
= 6 bits  
SMP  
= 56 = 2.5  
MHz  
–40 °C T 130 °C  
J
f
ADC  
2.4 V V  
1.6V V  
3.6 V  
3.6V  
-
-
-
-
-
-
-
-
-
-
-
-
6.22  
4.66  
1.00  
1.28  
1.63  
2.08  
(6)  
DDA  
DDA  
Single mode  
f
= 42  
ADC  
(6)  
MHz  
Resolution  
= 12 bits  
Resolution  
= 10 bits  
Sampling  
rate for slow  
channels  
f
= 15 SMP  
ADC  
-
-
–40 °C T 130 °C  
(6)  
J
MHz  
= 2.5  
Resolution  
= 8 bits  
Resolution  
= 6 bits  
External  
trigger  
period  
t
Resolution = 12 bits  
-
-
-
15  
1/f  
ADC  
TRIG  
Conversion  
voltage  
range  
V
-
-
0
V
REF+  
AIN  
V
Common  
mode input  
voltage  
V
REF  
/2−  
10%  
V
V
/2  
REF  
+ 10%  
REF  
/2  
V
CMIV  
Resolution = 12 bits, T = 125 °C  
-
-
-
-
-
-
-
-
220  
J
External  
input  
Resolution = 10 bits, T = 125 °C  
J
2100  
R
AIN  
(7)  
Resolution = 8 bits, T = 125 °C  
J
12000  
80000  
impedance  
Resolution = 6 bits, T = 125 °C  
J
DS13313 Rev 2  
165/227  
208  
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 82. 12-bit ADC characteristics  
(continued)  
Sym-  
bol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal  
sample and  
hold  
C
-
-
5
-
pF  
ADC  
capacitor  
t
ADCV  
ADC LDO  
startup time  
-
-
1
5
-
10  
-
µs  
REG_  
STUP  
con-  
version  
cycle  
ADC power-  
up time  
t
LDO already started  
STAB  
Offset  
calibration  
time  
t
OFF_  
CAL  
-
135  
-
-
Trigger  
conversion  
latency for  
regular and  
injected  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
1.5  
2
-
2.5  
2.5  
2.5  
-
-
-
t
LATR  
channels  
without  
aborting the  
conversion  
CKMODE = 11  
-
-
2.25  
Trigger  
conversion  
latency for  
regular and  
injected  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
2.5  
3
-
3.5  
3.5  
3.5  
-
-
1/f  
ADC  
-
t
LATR  
INJ  
channels  
when a  
regular  
conversion  
is aborted  
CKMODE = 11  
-
-
-
3.25  
Sampling  
time  
t
-
2.5  
640.5  
S
Total  
conversion  
time  
(including  
sampling  
time)  
t
+
S
t
N-bits resolution  
0.5 +  
-
-
CONV  
N
ADC  
consumption  
f = 5 MSPS  
-
-
430  
133  
-
-
S
f
= 1 MSPS  
I
on V  
and  
,
S
DDA_  
D(ADC)  
DDA  
V
REF  
Differential  
mode  
f
f
= 0.1 MSPS  
-
51  
-
S
µA  
ADC  
consumption  
f = 5 MSPS  
-
-
350  
122  
-
-
S
I
DDA_  
SE  
f
= 1 MSPS  
on V  
and  
,
S
DDA  
V
REF  
(ADC)  
Single-  
ended mode  
= 0.1 MSPS  
-
-
47  
-
-
S
ADC  
consumption  
I
µA/  
MHz  
DD  
(ADC)  
-
2.4  
on V per  
DD  
f
ADC  
1. Guaranteed by design.  
2. The voltage booster on ADC switches must be used for VDDA < 2.4 V (embedded I/O switches).  
3. Depending on the package, VREF+ can be internally connected to VDDA and VREF- to VSSA  
4. Guaranteed by characterization for BGA and CSP packages. The values for LQFP packages may be different.  
.
166/227  
DS13313 Rev 2  
STM32H723xE/G  
Electrical characteristics  
5. The conversion of the first element in the group is excluded.  
6. fADC value corresponds to the maximum frequency that can be reached considering a 2.5 sampling period. For other SMPy  
sampling periods, the maximum frequency is fADC value * SMPy / 2.5 with a limitation to 75 MHz.  
7. The tolerance is 2 LSBs for 12-bit, 10-bit and 8-bit resolutions. It is otherwise specified.  
(1)(2)  
Table 83. Minimum sampling time vs R  
(12-bit ADC)  
AIN  
Minimum sampling time (s)  
Direct channels(3) Fast channels(4) Slow channels(5)  
Resolution  
RAIN (Ω)  
47  
68  
5.55E-08  
5.76E-08  
6.17E-08  
7.02E-08  
8.59E-08  
1.11E-07  
1.46E-07  
1.98E-07  
4.90E-08  
5.07E-08  
5.41E-08  
6.18E-08  
7.51E-08  
9.46E-08  
1.22E-07  
1.63E-07  
2.27E-07  
3.27E-07  
4.53E-07  
6.56E-07  
7.04E-08  
7.22E-08  
7.65E-08  
8.45E-08  
1.00E-07  
1.26E-07  
1.61E-07  
2.17E-07  
6.06E-08  
6.27E-08  
6.67E-08  
7.50E-08  
8.70E-08  
1.07E-07  
1.34E-07  
1.77E-07  
2.42E-07  
3.40E-07  
4.86E-07  
6.93E-07  
1.03E-07  
1.05E-07  
1.07E-07  
1.13E-07  
1.22E-07  
1.41E-07  
1.69E-07  
2.25E-07  
8.77E-08  
8.95E-08  
9.22E-08  
9.59E-08  
1.04E-07  
1.17E-07  
1.42E-07  
1.86E-07  
2.43E-07  
3.35E-07  
4.73E-07  
6.72E-07  
100  
150  
220  
330  
470  
680  
47  
12 bits  
68  
100  
150  
220  
330  
470  
680  
1000  
1500  
2200  
3300  
10 bits  
DS13313 Rev 2  
167/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
(1)(2)  
Table 83. Minimum sampling time vs R  
(12-bit ADC)  
(continued)  
AIN  
Minimum sampling time (s)  
Resolution  
RAIN (Ω)  
Direct channels(3)  
Fast channels(4) Slow channels(5)  
47  
68  
4.35E-08  
4.47E-08  
4.72E-08  
5.33E-08  
6.26E-08  
7.84E-08  
9.80E-08  
1.28E-07  
1.76E-07  
2.49E-07  
3.50E-07  
5.09E-07  
7.00E-07  
9.84E-07  
1.43E-06  
2.10E-06  
3.79E-08  
3.88E-08  
4.09E-08  
4.48E-08  
5.07E-08  
6.04E-08  
7.37E-08  
9.31E-08  
1.23E-07  
1.71E-07  
2.39E-07  
3.43E-07  
4.72E-07  
6.65E-07  
9.54E-07  
1.40E-06  
5.31E-08  
5.48E-08  
5.79E-08  
6.35E-08  
7.26E-08  
8.80E-08  
1.07E-07  
1.39E-07  
1.88E-07  
2.66E-07  
3.63E-07  
5.27E-07  
7.28E-07  
1.03E-06  
1.48E-06  
2.18E-06  
4.58E-08  
4.69E-08  
4.89E-08  
5.25E-08  
5.81E-08  
6.79E-08  
8.10E-08  
1.01E-07  
1.32E-07  
1.82E-07  
2.50E-07  
3.57E-07  
4.92E-07  
6.89E-07  
9.88E-07  
1.45E-06  
7.36E-08  
7.47E-08  
7.63E-08  
7.88E-08  
8.47E-08  
9.48E-08  
1.14E-07  
1.43E-07  
1.90E-07  
2.64E-07  
3.63E-07  
5.24E-07  
7.09E-07  
1.00E-06  
1.44E-06  
2.11E-06  
5.74E-08  
5.81E-08  
5.93E-08  
6.14E-08  
6.58E-08  
7.46E-08  
8.60E-08  
1.04E-07  
1.34E-07  
1.82E-07  
2.49E-07  
3.49E-07  
4.81E-07  
6.68E-07  
9.54E-07  
1.39E-06  
100  
150  
220  
330  
470  
680  
8 bits  
1000  
1500  
2200  
3300  
4700  
6800  
10000  
15000  
47  
68  
100  
150  
220  
330  
470  
680  
6 bits  
1000  
1500  
2200  
3300  
4700  
6800  
10000  
15000  
1. Guaranteed by design.  
2. Data valid up to 130 °C, with a 22 pF PCB capacitor and VDDA = 1.62 V.  
168/227  
DS13313 Rev 2  
STM32H723xE/G  
Electrical characteristics  
3. Direct channels are connected to analog I/Os (PA0_C, PA1_C, PC2_C and PC3_C) to optimize ADC performance.  
4. Fast channels correspond to ADCx_INx[0:5].  
5. Slow channels correspond to all ADC inputs except for the Direct and Fast channels.  
(1)(2)  
Table 84. 12-bit ADC accuracy  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
Single  
ended  
-
-
-
-
-
3.5  
2.5  
3.5  
2.5  
3.5  
5
3
5
3
5
Direct channel  
Differential  
Single  
ended  
Total  
unadjusted  
error  
ET  
Fast channel  
Slow channel  
Differential  
Single  
ended  
Differential  
-
-
2.5  
3
EO  
EG  
Offset error  
Gain error  
-
-
+/-2  
+/-5  
TBD  
-
-
-
-
(3)  
±LSB  
+/- +1.5/-  
0.75  
Single ended  
Differential  
Differential  
linearity  
error  
1
ED  
+1.25  
/-1  
+/-0.5  
Single  
ended  
-
-
-
-
-
+/-1 +/-2.5  
+/-1 +/-2  
+/-1 +/-2.5  
+/-1 +/-2  
+/-1 +/-2.5  
Direct channel  
Differential  
Single  
ended  
Integral  
linearity  
error  
EL  
Fast channel  
Slow channel  
Differential  
Single  
ended  
Differential  
-
-
+/-1  
11.2  
+/-2  
-
Effective  
number of  
bits  
Single ended  
ENOB  
SINAD  
bits  
Differential  
-
-
11.5  
68.9  
-
-
Signal-to-  
noise and  
distortion  
ratio  
Single ended  
Differential  
-
71.1  
-
Single ended  
Differential  
-
-
-
69.1  
71.4  
-79.6  
-
-
-
Signal-to-  
noise ratio  
dB  
SNR  
THD  
Total  
harmonic  
distortion  
Single ended  
Differential  
-
-81.8  
-
DS13313 Rev 2  
169/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
1. Guaranteed by characterization for BGA packages. The maximum values are preliminary data. The values for LQFP  
packages may be different.  
2. ADC DC accuracy values are measured after internal calibration in Continuous and Discontinuous mode.  
3. TBD stands for “to be defined”.  
6.3.23  
DAC characteristics  
(1)  
Table 85. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
-
1.8  
3.3  
-
3.6  
VREF+  
Positive reference voltage  
1.80  
VDDA  
V
Negative reference  
voltage  
VREF-  
-
-
5
VSSA  
-
-
-
connected  
to VSSA  
-
-
DAC output buffer  
ON  
RL  
Resistive Load  
connected  
to VDDA  
kΩ  
25  
RO  
Output Impedance  
DAC output buffer OFF  
10.3  
-
13  
-
16  
Output impedance  
sample and hold mode,  
output buffer ON  
VDD = 2.7 V  
1.6  
DAC output buffer  
ON  
RBON  
kΩ  
kΩ  
VDD = 2.0 V  
VDD = 2.7 V  
VDD = 2.0 V  
-
-
-
-
-
-
2.6  
Output impedance  
sample and hold mode,  
output buffer OFF  
17.8  
18.7  
DAC output buffer  
OFF  
RBOFF  
CL  
DAC output buffer OFF  
Sample and Hold mode  
-
-
-
50  
1
pF  
µF  
Capacitive Load  
CSH  
0.1  
VDDA  
0.2  
DAC output buffer ON  
DAC output buffer OFF  
0.2  
-
Voltage on DAC_OUT  
output  
VDAC_OUT  
V
0
-
-
VREF+  
3
±0.5 LSB  
2.05  
1.97  
1.67  
1.66  
1.65  
Settling time (full scale:  
for a 12-bit code transition  
between the lowest and  
the highest input codes  
when DAC_OUT reaches  
the final value of ±0.5LSB,  
±1LSB, ±2LSB, ±4LSB,  
±8LSB)  
±1 LSB  
±2 LSB  
±4 LSB  
±8 LSB  
-
2.87  
2.84  
2.78  
2.7  
Normal mode, DAC  
output buffer ON,  
CL 50 pF,  
-
tSETTLING  
µs  
RL 5 ㏀  
-
-
Normal mode, DAC output buffer  
OFF, ±1LSB CL=10 pF  
-
-
1.7  
5
2
Wakeup time from off  
state (setting the ENx bit  
in the DAC Control  
register) until the final  
value of ±1LSB is reached  
Normal mode, DAC output buffer  
7.5  
ON, CL 50 pF, RL = 5 ㏀  
(2)  
tWAKEUP  
µs  
Normal mode, DAC output buffer  
2
5
OFF, CL 10 pF  
DC VDDA supply rejection Normal mode, DAC output buffer  
PSRR  
-
80  
28  
dB  
ratio  
ON, CL 50 pF, RL = 5 ㏀  
170/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Symbol  
Electrical characteristics  
(1)  
Table 85. DAC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Sampling time in Sample  
and Hold mode  
MODE<2:0>_V12=100/101  
(BUFFER ON)  
-
0.7  
2.6  
ms  
CL=100 nF  
MODE<2:0>_V12=110  
(BUFFER OFF)  
-
-
11.5  
18.7  
0.6  
(code transition between  
the lowest input code and  
the highest input code  
when DAC_OUT reaches  
the ±1LSB final value)  
tSAMP  
MODE<2:0>_V12=111  
(INTERNAL BUFFER OFF)  
0.3  
(3)  
µs  
Ileak  
CIint  
Output leakage current  
-
-
nA  
pF  
Internal sample and hold  
capacitor  
1.8  
50  
2.2  
2.6  
-
Middle code offset trim  
time  
Minimum time to verify the each  
code  
tTRIM  
-
µs  
VREF+ = 3.6 V  
VREF+ = 1.8 V  
-
-
850  
425  
-
-
Middle code offset for 1  
trim code step  
Voffset  
µV  
No load,  
middlecode  
(0x800)  
-
-
360  
490  
-
-
DAC output buffer  
ON  
No load,  
worst code  
(0xF1C)  
DAC quiescent  
consumption from VDDA  
IDDA(DAC)  
No load,  
DAC output buffer  
OFF  
middle/  
worst code  
(0x800)  
-
20  
-
360*TON  
/
Sample and Hold mode,  
CSH=100 nF  
-
-
-
(TON+TOFF  
)
-
-
-
(4)  
No load,  
middlecode  
(0x800)  
170  
170  
µA  
DAC output buffer  
ON  
No load,  
worst code  
(0xF1C)  
No load,  
middle/  
worst code  
(0x800)  
DAC consumption from  
VREF+  
DAC output buffer  
OFF  
I
DDV(DAC)  
-
160  
-
170*TON  
/
Sample and Hold mode, Buffer  
ON, CSH=100 nF (worst code)  
-
-
(TON+TOFF  
)
)
-
-
(4)  
160*TON  
/
Sample and Hold mode, Buffer  
OFF, CSH=100 nF (worst code)  
(TON+TOFF  
(4)  
1. Guaranteed by design unless otherwise specified.  
DS13313 Rev 2  
171/227  
208  
Electrical characteristics  
STM32H723xE/G  
2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).  
3. Refer to Table 50: I/O static characteristics.  
4. TON is the refresh phase duration, while TOFF is the hold phase duration. Refer to the product reference manual for more  
details.  
(1)  
Table 86. DAC accuracy  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON  
DAC output buffer OFF  
10 bits  
2  
2  
-
-
-
-
2
2
-
Differential non  
linearity(2)  
DNL  
-
LSB  
-
Monotonicity  
DAC output buffer ON, CL 50 pF,  
RL 5 ㏀  
4  
-
4
INL  
Integral non linearity(3)  
LSB  
DAC output buffer OFF,  
4  
-
-
4
CL 50 pF, no RL  
DAC output  
buffer ON,  
CL 50 pF,  
RL 5 ㏀  
V
REF+ = 3.6 V  
-
±12  
Offset error at code  
0x800 (3)  
VREF+ = 1.8 V  
-
-
-
-
±25  
±8  
Offset  
LSB  
DAC output buffer OFF,  
CL 50 pF, no RL  
Offset error at code  
0x001(4)  
DAC output buffer OFF,  
Offset1  
-
-
-
-
±5  
±5  
LSB  
LSB  
CL 50 pF, no RL  
DAC output  
VREF+ = 3.6 V  
Offset error at code  
0x800 after factory  
calibration  
buffer ON,  
OffsetCal  
CL 50 pF,  
RL 5 ㏀  
VREF+ = 1.8 V  
-
-
±7  
DAC output buffer ON,CL 50 pF,  
RL 5 ㏀  
-
-
-
-
-
-
±1  
±1  
Gain  
Gain error(5)  
%
DAC output buffer OFF,  
CL 50 pF, no RL  
DAC output buffer ON, CL 50 pF,  
RL 5 ㏀  
±30  
±12  
±23  
-
TUE  
Total unadjusted error  
DAC output buffer OFF, CL  
50 pF, no RL  
LSB  
Total unadjusted error DAC output buffer ON, CL 50 pF,  
TUECal  
-
-
-
after calibration  
RL 5 ㏀  
DAC output buffer ON,CL 50 pF,  
RL 5 , 1 kHz, BW = 500 KHz  
67.8  
SNR  
Signal-to-noise ratio(6)  
dB  
DAC output buffer OFF,  
CL 50 pF, no RL,1 kHz, BW =  
500 KHz  
-
67.8  
-
172/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 86. DAC accuracy (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON, CL 50 pF,  
RL 5 , 1 kHz  
-
78.6  
-
Total harmonic  
distortion(6)  
THD  
dB  
DAC output buffer OFF,  
-
-
-
-
-
78.6  
67.5  
67.5  
10.9  
10.9  
-
-
-
-
-
CL 50 pF, no RL, 1 kHz  
DAC output buffer ON, CL 50 pF,  
RL 5 , 1 kHz  
Signal-to-noise and  
distortion ratio(6)  
SINAD  
ENOB  
dB  
DAC output buffer OFF,  
CL 50 pF, no RL, 1 kHz  
DAC output buffer ON,  
CL 50 pF, RL 5 , 1 kHz  
Effective number of  
bits  
bits  
DAC output buffer OFF,  
CL 50 pF, no RL, 1 kHz  
1. Guaranteed by characterization results.  
2. Difference between two consecutive codes minus 1 LSB.  
3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and  
last Code 4095.  
4. Difference between the value measured at Code (0x001) and the ideal value.  
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF  
when the buffer is OFF, and from code giving 0.2 V and (VREF+ - 0.2 V) when the buffer is ON.  
6. Signal is 0.5dBFS with Fsampling=1 MHz.  
Figure 41. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
L
DAC_OUTx  
12-bit  
digital to  
analog  
converter  
C
L
ai17157V3  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
DS13313 Rev 2  
173/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.24  
Voltage reference buffer characteristics  
(1)  
Table 87. VREFBUF characteristics  
Conditions  
Symbol  
Parameter  
Min  
2.8  
Typ  
Max  
3.6  
Unit  
VSCALE = 000  
3.3  
VSCALE = 001  
Normal mode,  
2.4  
-
-
-
-
-
-
-
3.6  
VDDA = 3.3 V  
VSCALE = 010  
VSCALE = 011  
VSCALE = 000  
VSCALE = 001  
VSCALE = 010  
VSCALE = 011  
2.1  
3.6  
1.8  
3.6  
VDDA  
Analog supply voltage  
1.62  
1.62  
1.62  
1.62  
2.80  
2.40  
2.10  
1.80  
Degraded mode(2)  
VSCALE = 000 2.4980 2.5000 2.5035  
VSCALE = 001 2.0460 2.0490 2.0520  
VSCALE = 010 1.8010 1.8040 1.8060  
VSCALE = 011 1.4995 1.5015 1.5040  
V
Normal mode at 30 °C,  
Iload = 100 µA  
VDDA  
150 mV  
Voltage Reference  
Buffer Output, at 30 °C,  
Iload= 100 µA  
VSCALE = 000  
VSCALE = 001  
VSCALE = 010  
VSCALE = 011  
-
-
-
-
VDDA  
VDDA  
VDDA  
VDDA  
VREFBUF  
_OUT  
VDDA  
150 mV  
Degraded mode(2)  
VDDA  
150 mV  
VDDA  
150 mV  
TRIM  
CL  
Trim step resolution  
Load capacitor  
-
-
-
-
-
±0.05  
1
±0.1  
1.50  
%
0.5  
µF  
Equivalent Serial  
Resistor of CL  
esr  
-
-
-
-
-
-
2
ILOAD  
Static load current  
-
-
-
-
4
-
mA  
I
load = 500 µA  
Iload = 4 mA  
200  
100  
Iline_reg  
Line regulation  
2.8 V VDDA 3.6 V  
ppm/V  
-
ppm/  
mA  
Iload_reg  
Load regulation  
500 µA ILOAD 4 mA Normal mode  
40 °C < TJ < +130 °C  
-
-
50  
-
-
Tcoeff  
VREFINT  
+ 100  
ppm/  
°C  
Tcoeff  
Temperature coefficient  
DC  
-
-
-
-
60  
40  
-
-
PSRR  
Power supply rejection  
dB  
100KHz  
174/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 87. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
CL=0.5 µF  
Min  
Typ  
300  
500  
650  
Max  
Unit  
-
-
-
-
-
-
-
-
-
tSTART  
Start-up time  
CL=1 µF  
µs  
CL=1.5 µF  
Control of maximum  
DC current drive on  
VREFBUF_OUT during  
startup phase(3)  
IINRUSH  
-
-
8
-
mA  
µA  
ILOAD = 0 µA  
-
-
-
-
-
-
15  
16  
32  
25  
30  
50  
VREFBUF  
consumption from  
VDDA  
IDDA  
ILOAD = 500 µA  
(VREFBUF)  
I
LOAD = 4 mA  
1. Guaranteed by design, unless otherwise specified.  
2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (VDDAdrop voltage).  
3. To properly control VREFBUF IINRUSH current during the startup phase and the change of scaling, VDDA voltage should be in  
the range of 1.8 V-3.6 V, 2.1 V-3.6 V, 2.4 V-3.6 V and 2.8 V-3.6 V for VSCALE = 011, 010, 001 and 000, respectively.  
6.3.25  
Analog temperature sensor characteristics  
Table 88. Temperature sensor characteristics  
Symbol  
Parameter  
Min Typ Max Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
-
-
3
°C  
mV/°C  
V
Avg_Slope(2) Average slope  
2
-
(3)  
V30  
Voltage at 30°C ± 5 °C  
-
0.62  
-
25.2  
-
tstart_run  
Startup time in Run mode (buffer startup)  
ADC sampling time when reading the temperature  
Sensor consumption  
-
-
-
µs  
(1)  
tS_temp  
9
-
(1)  
Isens  
0.18 0.31  
3.8 6.5  
µA  
(1)  
Isensbuf  
Sensor buffer consumption  
-
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1  
byte.  
Table 89. Temperature sensor calibration values  
Symbol  
Parameter  
Memory address  
Temperature sensor raw data acquired value at  
30 °C, VDDA=3.3 V  
TS_CAL1  
0x1FF1 E820 -0x1FF1 E821  
Temperature sensor raw data acquired value at  
110 °C, VDDA=3.3 V  
TS_CAL2  
0x1FF1 E840 - 0x1FF1 E841  
DS13313 Rev 2  
175/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.26  
Digital temperature sensor characteristics  
(1)  
Table 90. Digital temperature sensor characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
(2)  
fDTS  
Output Clock frequency  
-
500  
750  
1150 kHz  
Hz/°  
(2)  
TLC  
Temperature linearity coefficient  
VOS2  
1660  
2100  
-
2750  
C
TJ = 40°C to  
13  
4
30°C  
TTOTAL_ERROR  
Temperature offset  
measurement, all VOS  
°C  
(2)  
TJ = 30°C to  
Tjmax  
7  
0
-
-
2
VOS2  
0
Additional error due to supply  
variation  
TVDD_CORE  
°C  
1
VOS0, VOS1,  
VOS3  
1  
-
-
tTRIM  
Calibration time  
-
-
-
2
ms  
116.00 μs  
70.0 μA  
Wake-up time from off state until  
DTS ready bit is set  
tWAKE_UP  
-
67  
DTS consumption on  
VDD_CORE  
IDDCORE_DTS  
-
8.5  
30  
1. Guaranteed by design, unless otherwise specified.  
2. Guaranteed by characterization results.  
6.3.27  
Temperature and V  
monitoring  
BAT  
Table 91. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
26  
4
-
KΩ  
-
Ratio on VBAT measurement  
Error on Q  
-
-
Er(1)  
–10  
-
+10  
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading VBAT input  
High supply monitoring  
9
-
-
-
-
-
VBAThigh  
VBATlow  
3.55  
1.36  
V
Low supply monitoring  
-
1. Guaranteed by design.  
Table 92. V  
charging characteristics  
BAT  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBRS in PWR_CR3= 0  
VBRS in PWR_CR3= 1  
-
5
-
-
RBC  
Battery charging resistor  
KΩ  
1.5  
176/227  
DS13313 Rev 2  
 
 
 
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
Table 93. Temperature monitoring characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPhigh  
TEMPlow  
High temperature monitoring  
Low temperature monitoring  
-
-
117  
-
-
°C  
25  
6.3.28  
Voltage booster for analog switch  
(1)  
Table 94. Voltage booster for analog switch characteristics  
Symbol  
VDD  
Parameter  
Supply voltage  
Condition  
Min Typ Max Unit  
-
1.62 2.6 3.6  
V
Booster startup time  
-
-
-
-
-
-
-
50  
µs  
tSU(BOOST)  
1.62 V VDD 2.7 V  
2.7 V < VDD < 3.6 V  
125  
250  
Booster consumption  
µA  
IDD(BOOST)  
1. Guaranteed by characterization results.  
6.3.29  
Comparator characteristics  
(1)  
Table 95. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
-
-
1.62  
3.3  
3.6  
Comparator input voltage  
range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
VSC  
Scaler input voltage  
Scaler offset voltage  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
0.2  
0.8  
140  
2
±10  
0.3  
1
mV  
µA  
µs  
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
Scaler static consumption  
from VDDA  
IDDA(SCALER)  
tSTART_SCALER Scaler startup time  
250  
5
High-speed mode  
Medium mode  
Comparator startup time to  
reach propagation delay  
specification  
tSTART  
5
20  
80  
80  
0.9  
7
µs  
Ultra-low-power mode  
High-speed mode  
Medium mode  
15  
50  
0.5  
2.5  
50  
0.5  
2.5  
±5  
ns  
µs  
Propagation delay for  
200 mV step with 100 mV  
overdrive  
Ultra-low-power mode  
High-speed mode  
Medium mode  
(3)  
tD  
120  
1.2  
7
ns  
Propagation delay for step  
> 200 mV with 100 mV  
overdrive only on positive  
inputs  
µs  
Ultra-low-power mode  
Full common mode range  
Voffset  
Comparator offset error  
±20  
mV  
DS13313 Rev 2  
177/227  
208  
 
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 95. COMP characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
No hysteresis  
Low hysteresis  
-
4
0
-
10  
20  
30  
400  
22  
37  
52  
600  
Vhys  
Comparator hysteresis  
mV  
Medium hysteresis  
High hysteresis  
Static  
8
16  
-
Ultra-low-  
power mode  
With 50 kHz  
±100 mV overdrive  
square signal  
nA  
µA  
-
-
-
-
-
800  
5
-
Static  
7
Comparator consumption  
from VDDA  
With 50 kHz  
±100 mV overdrive  
square signal  
IDDA(COMP)  
Medium mode  
6
-
100  
-
Static  
70  
75  
High-speed  
mode  
With 50 kHz  
±100 mV overdrive  
square signal  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 17: Embedded reference voltage.  
3. Guaranteed by characterization results.  
6.3.30  
Operational amplifier characteristics  
(1)  
Table 96. Operational amplifier characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
Range  
VDDA  
CMIR  
-
2
3.3  
3.6  
V
Common Mode Input  
Range  
-
0
-
-
VDDA  
±1.5  
±2.5  
-
25°C, no load on output  
-
-
VIOFFSET  
Input offset voltage  
mV  
All voltages and  
temperature, no load  
-
ΔVIOFFSET  
Input offset voltage drift  
-
-
±3.0  
μV/°C  
Offset trim step at low  
common input voltage  
TRIMOFFSETP  
-
-
-
1.1  
1.1  
1.5  
1.5  
TRIMLPOFFSETP  
(0.1*VDDA  
)
mV  
Offset trim step at high  
common input voltage  
TRIMOFFSETN  
-
TRIMLPOFFSETN  
(0.9*VDDA  
)
ILOAD  
Drive current  
-
-
-
-
-
-
500  
270  
μA  
ILOAD_PGA  
Drive current in PGA mode  
178/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)  
Table 96. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CLOAD  
Capacitive load  
-
-
-
50  
pF  
Common mode rejection  
ratio  
CMRR  
PSRR  
-
-
80  
66  
-
-
dB  
dB  
CLOAD 50pf /  
RLOAD 4 k(2) at 1 kHz,  
Vcom=VDDA/2  
Power supply rejection  
ratio  
50  
4
Gain bandwidth for high  
supply range  
200 mV Output dynamic  
range VDDA - 200 mV  
GBW  
SR  
7.3  
12.3  
MHz  
V/µs  
dB  
Normal mode  
-
-
3
-
-
Slew rate (from 10% and  
90% of output voltage)  
High-speed mode  
24  
200 mV Output dynamic  
range VDDA - 200 mV  
AO  
Open loop gain  
59  
90  
129  
φm  
Phase margin  
Gain margin  
-
-
-
-
55  
12  
-
-
°
GM  
dB  
I
load=max or RLOAD=min,  
Input at VDDA  
VDDA  
100 mV  
VOHSAT  
High saturation voltage  
Low saturation voltage  
-
-
-
mV  
Iload=max or RLOAD=min,  
Input at 0 V  
VOLSAT  
-
-
100  
CLOAD 50pf,  
Normal RLOAD 4 k,  
mode  
0.8  
0.9  
3.2  
2.8  
follower  
configuration  
Wake up time from OFF  
state  
tWAKEUP  
µs  
CLOAD 50pf,  
RLOAD 4 k,  
follower  
High  
speed  
mode  
-
configuration  
PGA gain = 2  
1  
2  
-
-
-
-
-
-
-
-
-
-
-
-
1
2
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
PGA gain = 2  
PGA gain = 4  
PGA gain = 8  
PGA gain = 16  
Non inverting gain error  
value  
2.5  
3  
2.5  
3
1  
1
1  
1
PGA gain  
Inverting gain error value  
%
2  
2
3  
3
1  
1
3  
3
External non-inverting gain  
error value  
3.5  
4  
3.5  
4
DS13313 Rev 2  
179/227  
208  
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 96. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PGA Gain=2  
PGA Gain=4  
-
-
-
-
-
-
-
-
10/10  
30/10  
70/10  
150/10  
10/10  
30/10  
70/10  
150/10  
-
-
-
-
-
-
-
-
R2/R1 internal resistance  
values in non-inverting  
PGA mode(3)  
PGA Gain=8  
PGA Gain=16  
PGA Gain = -1  
PGA Gain = -3  
PGA Gain = -7  
PGA Gain = -15  
k/  
kꢁ  
Rnetwork  
R2/R1 internal resistance  
values in inverting PGA  
mode(3)  
Resistance variation (R1  
or R2)  
Delta R  
-
15  
-
15  
%
Gain=2  
Gain=4  
-
-
-
-
-
-
-
-
GBW/2  
GBW/4  
GBW/8  
GBW/16  
5.00  
-
-
-
-
-
-
-
-
PGA bandwidth for  
different non inverting gain  
MHz  
Gain=8  
Gain=16  
Gain = -1  
Gain = -3  
Gain = -7  
Gain = -15  
PGA BW  
3.00  
PGA bandwidth for  
different inverting gain  
MHz  
1.50  
0.80  
at  
1 KHz  
-
-
-
140  
55  
-
-
output loaded  
with 4 kꢁ  
nV/√  
Hz  
en  
Voltage noise density  
at  
10 KHz  
Normal  
mode  
570  
1000  
no Load,  
quiescent mode,  
follower  
OPAMP consumption from  
VDDA  
IDDA(OPAMP)  
µA  
High-  
speed  
mode  
-
610  
1200  
1. Guaranteed by design, unless otherwise specified.  
2. RLOAD is the resistive load connected to VSSA or to VDDA  
.
3. R2 is the internal resistance between the OPAMP output and th OPAMP inverting input. R1 is the internal resistance  
between the OPAMP inverting input and ground. PGA gain = 1 + R2/R1.  
180/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
6.3.31  
Digital filter for Sigma-Delta Modulators (DFSDM) characteristics  
Unless otherwise specified, the parameters given in Table 97 for DFSDM are derived from  
tests performed under the ambient temperature, fPCLKx frequency and supply voltage  
conditions summarized in Table 12: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS0  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (DìFSDM_CKINx, DFSDM_DATINx, DFSDM_CKOUT for DFSDM).  
Table 97. DFSDM measured timing  
Symbol  
fDFSDMCLK  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DFSDM  
clock  
1.62 < VDD < 3.6 V  
-
-
fSYSCLK  
SPI mode  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0)  
-
-
20  
fCKIN  
(1/TCKIN  
Input clock  
frequency  
MHz  
)
SPI mode  
(SITP[1:0] = 0,1),  
Internal clock mode  
(SPICKSEL[1:0] # 0)  
-
-
-
-
20  
20  
55  
Output clock  
frequency  
fCKOUT  
1.62 < VDD < 3.6 V  
Even  
division,  
CKOUTDIV  
45  
50  
Output clock  
frequency  
duty cycle  
= n, 1, 3, 5..  
1.62 < VDD  
DuCyCKOUT  
%
< 3.6 V  
Odd  
division,  
CKOUTDIV  
= n, 2, 4, 6..  
(((n/2+1)/(n+1)) (((n/2+1)/(n+1)) (((n/2+1)/(n+1))  
*100)5 *100) *100)+5  
DS13313 Rev 2  
181/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
Table 97. DFSDM measured timing (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI mode  
Input clock  
high and low  
time  
twh(CKIN)  
twl(CKIN)  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0)  
TCKIN/20.5  
TCKIN/2  
-
SPI mode  
Data input  
setup time  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0)  
tsu  
2
1
-
-
-
-
-
ns  
SPI mode  
Data input  
hold time  
(SITP[1:0] = 0,1),  
External clock mode  
(SPICKSEL[1:0] = 0)  
th  
Manchester  
data period  
(recovered  
clock period)  
Manchester mode  
(SITP[1:0] = 2,3),  
Internal clock mode  
(SPICKSEL[1:0] # 0)  
(CKOUTDIV+1)  
* TDFSDMCLK  
(2*CKOUTDIV)  
* TDFSDMCLK  
TManchester  
182/227  
DS13313 Rev 2  
STM32H723xE/G  
Electrical characteristics  
Figure 42. Channel transceiver timing diagrams  
(SPICKSEL=0)  
SITP = 00  
tr  
tf  
twl  
twh  
tsu  
th  
tsu  
th  
SITP = 01  
SPICKSEL=3  
SPICKSEL=2  
SPICKSEL=1  
tr  
tf  
twl  
twh  
tsu  
th  
SITP = 0  
SITP = 1  
tsu  
th  
SITP = 2  
SITP = 3  
recovered clock  
recovered data  
0
0
1
1
0
MS30766V2  
DS13313 Rev 2  
183/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
6.3.32  
Camera interface (DCMI) timing specifications  
Unless otherwise specified, the parameters given in Table 98 for DCMI are derived from  
tests performed under the ambient temperature, f  
frequency and VDD supply voltage  
HCLK  
summarized in Table 12: General operating conditions, with the following configuration:  
DCMI_PIXCLK polarity: falling  
DCMI_VSYNC and DCMI_HSYNC polarity: high  
Data formats: 14 bits  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS0  
DD  
(1)  
Table 98. DCMI characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
-
Frequency ratio DCMI_PIXCLK/fHCLK  
Pixel Clock input  
-
-
0.4  
110  
70  
-
-
DCMI_PIXCLK  
Dpixel  
MHz  
%
Pixel Clock input duty cycle  
Data input setup time  
30  
2
t
su(DATA)  
th(DATA)  
Data hold time  
1
-
tsu(HSYNC),  
tsu(VSYNC)  
ns  
DCMI_HSYNC/ DCMI_VSYNC input setup time  
DCMI_HSYNC/ DCMI_VSYNC input hold time  
2
1
-
-
th(HSYNC),  
th(VSYNC)  
1. Guaranteed by characterization results.  
Figure 43. DCMI timing diagram  
1/DCMI_PIXCLK  
DCMI_PIXCLK  
DCMI_HSYNC  
DCMI_VSYNC  
DATA[0:13]  
th(HSYNC)  
tsu(HSYNC)  
th(HSYNC)  
tsu(VSYNC)  
tsu(DATA) th(DATA)  
MS32414V2  
184/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
6.3.33  
Parallel synchronous slave interface (PSSI) characteristics  
Unless otherwise specified, the parameters given in Table 99 and Table 100 for PSSI are  
derived from tests performed under the ambient temperature, f  
frequency and VDD  
HCLK  
supply voltage summarized in Table 12: General operating conditions.  
(1)  
Table 99. PSSI transmit characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency ratio  
PSSI_PDCK/fHCLK  
-
-
0.4  
-
-
-
50  
35(2)  
70  
PSSI_PDCK  
PSSI Clock input  
MHz  
%
Dpixel  
tov(DATA)  
-
PSSI Clock input duty cycle  
Data output valid time  
-
30  
-
10  
(2)  
14  
-
toh(DATA)  
tov((DE)  
Data output hold time  
DE output valid time  
DE output hold time  
RDY input setup time  
RDY input hold time  
4.5  
-
-
10  
-
ns  
t
oh(DE)  
4
tsu(RDY)  
th(RDY)  
0
-
0
-
1. Guaranteed by characterization results.  
2. This value is obtained by using PA9, PA10 or PH4 I/O.  
(1)  
Table 100. PSSI receive characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency ratio  
PSSI_PDCK/fHCLK  
-
-
0.4  
-
PSSI_PDCK  
Dpixel  
PSSI Clock input  
PSSI Clock input duty cycle  
Data input setup time  
Data input hold time  
DE input setup time  
DE input hold time  
-
110  
MHz  
%
30  
1.5  
0.5  
2
70  
-
tsu(DATA)  
th(DATA)  
tsu((DE)  
-
-
ns  
th(DE)  
1
-
tov(RDY)  
toh(RDY)  
RDY output valid time  
RDY output hold time  
-
15  
-
5.5  
1. Guaranteed by characterization results.  
DS13313 Rev 2  
185/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.34  
LCD-TFT controller (LTDC) characteristics  
Unless otherwise specified, the parameters given in Table 101 for LCD-TFT are derived  
from tests performed under the ambient temperature, f  
frequency and VDD supply  
HCLK  
voltage summarized in Table 12: General operating conditions, with the following  
configuration:  
LCD_CLK polarity: high  
LCD_DE polarity: low  
LCD_VSYNC and LCD_HSYNC polarity: high  
Pixel formats: 24 bits  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5VDD  
IO Compensation cell activated.  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS0  
(1)  
Table 101. LTDC characteristics  
Symbol  
Parameter  
2.7<VD <3.6 V, 20 pF  
Min  
Max  
Unit  
150  
133  
D
LTDC clock  
output  
frequency  
fCLK  
2.7<VD <3.6 V  
D
-
MHz  
%
1.62<VD <3.6 V  
D
90/76.5(2)  
DCLK  
LTDC clock output duty cycle  
45  
55  
tw(CLKH),  
tw(CLKL)  
Clock High time, low time  
tw(CLK)//20.5  
tw(CLK)/2+0.5  
2.7<VD <3.6 V  
2.0  
D
tv(DATA)  
th(DATA)  
Data output valid time  
-
1.62<VD <3.6 V  
D
2.5/6.5(2)  
Data output hold time  
0
-
-
ns  
tv(HSYNC),  
tv(VSYNC),  
tv(DE)  
2.7<VD <3.6 V  
1.5  
D
HSYNC/VSYNC/DE output  
valid time  
1.62<VD <3.6 V  
-
2.0  
D
th(HSYNC),  
HSYNC/VSYNC/DE output hold time  
0
-
th(VSYNC)  
,
th(DE)  
1. Guaranteed by characterization results.  
2. This value is valid when PA[9], PA[10], PA[11], PA[12], PA[15], PB[11], PH[4], PJ[8], PJ[9], PJ[10], PJ[11], PK[0], PK[1] or  
PK[2] is used.  
186/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 44. LCD-TFT horizontal timing diagram  
tCLK  
LCD_CLK  
LCD_VSYNC  
tv(HSYNC)  
tv(HSYNC)  
LCD_HSYNC  
th(DE)  
tv(DE)  
LCD_DE  
tv(DATA)  
LCD_R[0:7]  
LCD_G[0:7]  
LCD_B[0:7]  
Pixel Pixel  
1
Pixel  
N
2
th(DATA)  
Active width  
HSYNCHorizontal  
width back porch  
Horizontal  
back porch  
One line  
MS32749V1  
Figure 45. LCD-TFT vertical timing diagram  
tCLK  
LCD_CLK  
tv(VSYNC)  
tv(VSYNC)  
LCD_VSYNC  
LCD_R[0:7]  
LCD_G[0:7]  
LCD_B[0:7]  
M lines data  
VSYNC Vertical  
width back porch  
Active width  
One frame  
Vertical  
back porch  
MS32750V1  
DS13313 Rev 2  
187/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
6.3.35  
Timer characteristics  
The parameters given in Table 102 are guaranteed by design.  
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 102. TIMx characteristics  
Conditions(3)  
Symbol  
Parameter  
Min  
Max  
Unit  
AHB/APBx prescaler=1  
or 2 or 4, fTIMxCLK  
=
tTIMxCLK  
1
-
275 MHz  
tres(TIM)  
Timer resolution time  
AHB/APBx  
prescaler>4, fTIMxCLK  
=
tTIMxCLK  
1
-
137.5 MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK/2  
16/32  
0
-
MHz  
bit  
f
TIMxCLK = 240 MHz  
ResTIM  
Timer resolution  
Maximum possible count  
with 32-bit counter  
65536 ×  
65536  
tMAX_COUNT  
tTIMxCLK  
-
-
1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.  
2. Guaranteed by design.  
3. The maximum timer frequency on APB1 or APB2 is up to 275 MHz, by setting the TIMPRE bit in the  
RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4x  
rcc_pclkx1 or TIMxCLK = 4x Frcc_pclkx2  
F
.
6.3.36  
Low-power timer characteristics  
The parameters given in Table 103 are guaranteed by design.  
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)(2)  
Table 103. LPTIMx characteristics  
Symbol  
tres(TIM)  
Parameter  
Timer resolution time  
Min  
1
Max  
-
Unit  
tTIMxCLK  
fLPTIMxCLK  
Timer kernel clock  
0
137.5  
MHz  
Timer external clock frequency on Input1 and  
Input2  
fEXT  
fLPTIMxCLK/2  
0
ResTIM  
Timer resolution  
-
-
16  
bit  
tMAX_COUNT  
tTIMxCLK  
Maximum possible count  
65536  
1. LPTIMx is used as a general term to refer to the LPTIM1 to LPTIM5 timers.  
2. Guaranteed by design.  
188/227  
DS13313 Rev 2  
 
 
 
 
STM32H723xE/G  
Electrical characteristics  
6.3.37  
Communication interfaces  
I2C interface characteristics  
2
The I C interface meets the timings requirements of the I2C-bus specification and user  
manual revision 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
2
The I C timings requirements are guaranteed by design when the I C peripheral is properly  
configured (refer to RM0399 reference manual) and when the i2c_ker_ck frequency is  
greater than the minimum shown in the table below:  
2
Table 104. Minimum i2c_ker_ck frequency in all I C modes  
Symbol  
Parameter  
Condition  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
Analog Filtre ON  
DNF=0  
8
9
MHz  
Analog Filtre OFF  
DNF=1  
I2CCLK  
frequency  
f(I2CCLK)  
Analog Filtre ON  
DNF=0  
17  
16  
Fast-mode Plus  
Analog Filtre OFF  
DNF=1  
-
The SDA and SCL I/O requirements are met with the following restrictions:  
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,  
the PMOS connected between the I/O pin and V is disabled, but still present.  
DD  
The 20 mA output drive requirement in Fast-mode Plus is not supported. This limits the  
maximum load C  
supported in Fm+, which is given by these formulas:  
Load  
t
=0.8473xR  
C
r(SDA/SCL)  
P * Load  
R
= (V -V  
)/I  
P(min)  
DD OL(max) OL(max)  
Where R is the I2C lines pull-up. Refer to Section 6.3.16: I/O port characteristics for  
P
2
the I C I/Os characteristics.  
2
All I C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog fil-  
ter characteristics:  
2
(1)  
Table 105. I C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes  
that are suppressed by analog  
filter  
tAF  
50(2)  
80(3)  
ns  
1. Guaranteed by characterization results.  
2. Spikes with widths below tAF(min) are filtered.  
DS13313 Rev 2  
189/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
3. Spikes with widths above tAF(max) are not filtered.  
USART interface characteristics  
Unless otherwise specified, the parameters given in Table 106 for USART are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, CK, TX, RX for USART).  
(1)  
Table 106. USART characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode,  
1.62 V < VDD < 3.6 V  
17.0  
-
-
Slave receiver mode,  
1.62 V < VDD < 3.6 V  
45.0  
27.0  
37.0  
fCK  
USART clock frequency  
MHz  
Slave transmitter mode,  
1.62 V < VDD < 3.6 V  
-
-
Slave transmitter mode,  
2.5 V < VDD < 3.6 V  
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
tker+1  
2
-
-
-
-
,
CK high and low time  
Data input setup time  
Master mode  
1/fCK/2-2  
1/fCK/2  
1/fCK/2+2  
tw(SCKL)  
Master mode  
Slave mode  
Master mode  
Slave mode  
16  
1.0  
0
-
-
-
-
-
-
-
-
tsu(RX)  
th(RX)  
Data input hold time  
Data output valid time  
Data output hold time  
ns  
2.0  
Slave mode, ,  
1.62 V < VDD < 3.6 V  
-
-
12.0  
12.0  
18  
tv(TX)  
Slave mode, ,  
2.5 V < VDD < 3.6 V  
13.5  
Master mode  
Slave mode  
Master mode  
-
0.5  
1
-
9
0
-
-
th(TX)  
-
1. Guaranteed by characterization results.  
190/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 46. USART timing diagram in Master mode  
High  
NSS input  
tc(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tsu(RX)  
tr(SCK)/tf(SCK)  
LSB IN  
tw(SCKL)  
MSB IN  
th(RX)  
RX  
BIT6 IN  
INPUT  
TX  
OUTPUT  
BIT1 OUT  
th(TX)  
LSB OUT  
MSB OUT  
tv(TX)  
MSv65386V1  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
Figure 47. USART timing diagram in Slave mode  
NSS  
input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(TX)  
tw(SCKL)  
tv(TX)  
th(TX)  
tf(SCK)  
Last bit OUT  
tdis(TX)  
TX output  
RX input  
First bit OUT  
th(RX)  
Next bits OUT  
tsu(RX)  
First bit IN  
Next bits IN  
Last bit IN  
MSv65387V1  
DS13313 Rev 2  
191/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 107 for SPI are derived from tests  
performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)(2)  
Table 107. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode,  
2.7 V < VDD < 3.6 V, SPI1, 2, 3  
125  
Master mode,  
1.62 V < VDD < 3.6 V, SPI1, 2,  
3
80/66(3)  
68.5  
Master mode,  
1.62 V < VDD < 3.6 V, SPI4, 5,  
6
Slave receiver mode,  
1.62 V < VDD < 3.6 V, SPI1, 2,  
3
fSCK  
SPI clock frequency  
-
-
MHz  
100  
Slave receiver mode,  
1.62 V < VDD < 3.6 V, SPI4, 5,  
6
68.5  
Slave mode transmitter/full  
duplex, 2.7 V < VDD < 3.6 V  
45  
Slave mode transmitter/full  
duplex, 1.62 V < VDD < 3.6 V  
42.5/31(4)  
tsu(NSS)  
th(NSS)  
tw(SCKH)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
2
1
-
-
-
-
-
,
SCK high and low time  
Master mode  
tSCK/2-1(5) tSCK/2(5) tSCK/2+1(5)  
tw(SCKL)  
192/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
(1)(2)  
Table 107. SPI characteristics  
(continued)  
Min  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
tsu(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
Slave mode,  
2.5  
1
-
-
-
-
Data input setup time  
tsu(SI)  
th(MI)  
3
-
-
Data input hold time  
th(SI)  
1.5  
9
-
-
ta(SO)  
tdis(SO)  
Data output access time  
Data output disable time  
13  
1
27  
5
0
ns  
-
-
-
7.5  
7.5  
1
11  
2.7 V < VDD < 3.6 V  
tv(SO)  
Slave mode,  
1.62 V < VDD < 3.6 V  
Data output valid time  
12/16(4)  
1.5/5.5(6)  
Master mode,  
1.62 V < VDD < 3.6 V  
tv(MO)  
th(SO)  
th(MO)  
Slave mode  
7
-
-
-
-
Data output hold time  
Master mode  
0.5  
1. Guaranteed by characterization results.  
2. The values given in the above table might be degraded when PC3_C/PC2_C I/Os are used (not available on all packages).  
3. This value is obtained by using PA9 or PA12 I/O.  
4. This value is obtained by using PC2 or PJ11 I/O.  
5. tSCK = tker_ck * baud rate prescaler.  
6. This value is obtained by using PC3 or PJ10 I/O.  
Figure 48. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
DS13313 Rev 2  
193/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Figure 49. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
(1)  
Figure 50. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.  
194/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
I2S Interface characteristics  
2
Unless otherwise specified, the parameters given in Table 108 for I S are derived from tests  
performed under the ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK,SD,WS).  
2
(1)  
Table 108. I S dynamic characteristics  
Parameter Conditions  
Symbol  
Min  
Max  
Unit  
-
-
-
50  
Master transmitter  
I2S main clock output Master receiver  
Slave transmitter  
50/40(2)  
fMCK  
-
50/40(2)  
MHz  
-
41.5/31(3)  
Slave receiver  
-
50  
tv(WS)  
th(WS)  
WS valid time  
Master mode  
WS hold time  
-
2/6(4)  
1
-
-
-
-
-
-
-
tsu(WS)  
WS setup time  
Slave mode  
WS hold time  
3
th(WS)  
1
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
Master receiver  
Data input setup time  
2.5  
1
Slave receiver  
Master receiver  
Data input hold time  
3
ns  
Slave receiver  
1.5  
Slave transmitter (after enable  
edge)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
-
12/16(3)  
Data output valid time  
Data output hold time  
Master transmitter (after  
enable edge)  
-
2/6(5)  
Slave transmitter (after enable  
edge)  
6.5  
0.5  
-
-
Master transmitter (after  
enable edge)  
1. Guaranteed by characterization results.  
2. This value is obtained when PA9 or PA12 are used.  
3. This value is obtained when PC2 is used.  
4. This value is obtained when PA11 or PA15 are used.  
DS13313 Rev 2  
195/227  
208  
 
 
 
 
Electrical characteristics  
STM32H723xE/G  
5. This value is obtained when PC3 is used.  
2
(1)  
Figure 51. I S slave timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 52. I S master timing diagram (Philips protocol)  
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
196/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 109 for SAI are derived from tests  
performed under the ambient temperature, f frequency and VDD supply voltage  
PCLKx  
conditions summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
L
IO Compensation cell activated.  
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS0  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
alternate function characteristics (SCK,SD,WS).  
(1)  
Table 109. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fMCK  
SAI Main clock output  
-
-
-
-
-
-
-
-
50  
45  
Master transmitter, 2.7 V VDD 3.6 V  
Master transmitter, 1.62 V VDD 3.6 V  
Master receiver, 1.62 V VDD 3.6 V  
Slave transmitter, 2.7 V VDD 3.6 V  
Slave transmitter, 1.62 V VDD 3.6 V  
Slave receiver, 1.62 V VDD 3.6 V  
32  
32  
MHz  
fCK  
SAI clock frequency(2)  
47.5  
41.5  
50  
DS13313 Rev 2  
197/227  
208  
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 109. SAI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode, 2.7 V VDD 3.6 V  
-
-
11  
tv(FS)  
tsu(FS)  
th(FS)  
FS valid time  
Master mode, 1.62 V VDD 3.6 V  
Slave mode  
15.5  
FS setup time  
FS hold time  
2.5  
6
-
-
-
-
-
-
-
Master mode  
Slave mode  
0.5  
3
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
3.5  
3.5  
0
Master receiver  
Slave receiver  
ns  
Slave transmitter (after enable edge),  
-
10.5  
2.7 V VDD 3.6 V  
tv(SD_B_ST)  
th(SD_B_ST)  
tv(SD_A_MT)  
th(SD_A_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave transmitter (after enable edge),  
-
6.5  
-
12  
-
1.62 V VDD 3.6 V  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge),  
10.5  
2.7 V VDD 3.6 V  
Master transmitter (after enable edge),  
-
14.5  
-
1.62 V VDD 3.6 V  
Master transmitter (after enable edge)  
6
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
Figure 53. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
h(FS)  
SAI_FS_X  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
198/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Electrical characteristics  
Figure 54. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
MDIO characteristics  
Unless otherwise specified, the parameters given in Table 110 for the MDIO are derived  
from tests performed under the ambient temperature, f frequency and VDD supply  
PCLKx  
voltage conditions summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
I/O Compensation cell activated.  
Measurement points are done at CMOS levels: 0.5V  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS0  
Table 110. MDIO Slave timing parameters  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
FMDC  
td(MDIO)  
tsu(MDIO)  
th(MDIO)  
Management Data Clock  
-
-
10  
-
30  
18  
-
MHz  
Management Data Iput/output output valid time  
Management Data Iput/output setup time  
Management Data Iput/output hold time  
8
1
1
ns  
-
-
DS13313 Rev 2  
199/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
Figure 55. MDIO Slave timing diagram  
tMDC)  
td(MDIO)  
tsu(MDIO)  
th(MDIO)  
MSv40460V1  
SD/SDIO MMC card host interface (SDMMC) characteristics  
Unless otherwise specified, the parameters given in Table 111 and Table 112 for SDIO are  
derived from tests performed under the ambient temperature, f frequency and VDD  
PCLKx  
supply voltage summarized in Table 12: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when V 2.7 V  
DD  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
(1)(2)  
Table 111. Dynamics characteristics: SD / MMC characteristics, V =2.7 to 3.6 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Clock frequency in data transfer  
mode  
fPP  
-
-
0
-
120 MHz  
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
8/3  
-
tW(CKL)  
tW(CKH)  
8.5  
8.5  
9.5  
9.5  
-
-
fPP =52MHz  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
-
-
-
2.5  
0.5  
1.5  
-
-
-
-
-
-
ns  
ns  
(3)  
tIDW  
Input valid window (variable window)  
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR/DDR mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
-
-
5.5  
-
6
-
4.5  
200/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
(1)(2)  
Table 111. Dynamics characteristics: SD / MMC characteristics, V =2.7 to 3.6 V  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
CMD, D inputs (referenced to CK) in SD default mode  
Input setup time SD  
Input hold time SD  
-
-
1.5  
0.5  
-
tISUD  
tIHD  
ns  
-
CMD, D outputs (referenced to CK) in SD default mode  
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
-
-
-
1
-
1
ns  
0
-
1. Guaranteed by characterization results.  
2. Above 100 MHz, CL = 20 pF.  
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.  
(1)(2)  
Table 112. Dynamics characteristics: eMMC characteristics VDD=1.71V to 1.9V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock frequency in data transfer  
mode  
fPP  
-
-
0
-
85  
MHz  
-
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
8/3  
tW(CKL)  
tW(CKH)  
8.5  
8.5  
9.5  
9.5  
-
-
fPP =52 MHz  
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
-
-
1.5  
1.5  
-
-
-
-
Input valid window (variable  
window)  
(3)  
tIDW  
-
3.5  
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOVD  
tOHD  
Output valid time HS  
Output hold time HS  
-
-
-
6
-
6.5  
-
5.5  
1. Guaranteed by characterization results.  
2. CL = 20 pF.  
3. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.  
DS13313 Rev 2  
201/227  
208  
 
Electrical characteristics  
STM32H723xE/G  
Figure 56. SDIO high-speed mode  
Figure 57. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
Figure 58. DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
202/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
USB OTG_FS characteristics  
Unless otherwise specified, the parameters given in Table 114 for ULPI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
summarized in Table 12: General operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =20 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
Table 113. USB OTG_FS electrical characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD33US  
USB transceiver operating voltage  
-
3.0(1)  
-
3.6  
V
B
Embedded USB_DP pull-up value  
during idle  
RPUI  
RPUR  
ZDRV  
-
-
900  
1400  
28  
1250  
2300  
36  
1600  
3200  
44  
Embedded USB_DP pull-up value  
during reception  
Driver high  
and low  
Output driver impedance(2)  
1. The USB functionality is ensured down to 2.7 V. However, not all USB electrical characteristics are  
degraded in the 2.7 to 3.0 V voltage range.  
2. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
USB OTG_HS characteristics  
Unless otherwise specified, the parameters given in Table 114 for ULPI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
summarized in Table 12: General operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =20 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
VOS level set to VOS0  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics.  
DS13313 Rev 2  
203/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 114. Dynamics characteristics: USB ULPI  
Symbol  
Parameter  
Condition  
Min Typ Max Unit  
Control in (ULPI_DIR , ULPI_NXT)  
setup time  
tSC  
-
5.5  
0
-
-
-
-
Control in (ULPI_DIR, ULPI_NXT) hold  
time  
tHC  
-
tSD  
tHD  
Data in setup time  
Data in hold time  
-
-
2.5  
0
-
-
-
-
ns  
2.7 V < VDD < 3.6 V,  
CL = 20 pF  
-
-
6.0  
6.0  
8.0  
12  
t
DC/tDD  
Control/Datal output delay  
1.71 V < VDD < 3.6 V  
, CL = 15 pF  
1. Guaranteed by characterization results.  
Figure 59. ULPI timing diagram  
Clock  
t
t
HC  
SC  
Control In  
(ULPI_DIR,  
ULPI_NXT)  
t
t
HD  
SD  
data In  
(8-bit)  
t
t
DC  
DC  
Control out  
(ULPI_STP)  
t
DD  
data out  
(8-bit)  
ai17361c  
204/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Electrical characteristics  
Ethernet interface characteristics  
Unless otherwise specified, the parameters given in Table 115, Table 116 and Table 117 for  
SMI, RMII and MII are derived from tests performed under the ambient temperature,  
f
frequency and V supply voltage conditions summarized in Table 12: General  
rcc_c_ck  
DD  
operating conditions, with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C =20 pF  
L
Measurement points are done at CMOS levels: 0.5V  
IO Compensation cell activated.  
DD  
HSLV activated when VDD 2.7 V  
VOS level set to VOS1  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics:  
(1)  
Table 115. Dynamics characteristics: Ethernet MAC signals for SMI  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tMDC  
MDC cycle time( 2.5 MHz)  
Write data valid time  
Read data setup time  
Read data hold time  
400  
0.5  
12.5  
0
400  
403  
Td(MDIO)  
tsu(MDIO)  
th(MDIO)  
1.5  
4
-
ns  
-
-
-
1. Guaranteed by characterization results.  
Figure 60. Ethernet SMI timing diagram  
tMDC  
ETH_MDC  
td(MDIO)  
ETH_MDIO(O)  
ETH_MDIO(I)  
tsu(MDIO)  
th(MDIO)  
MS31384V1  
DS13313 Rev 2  
205/227  
208  
 
 
 
Electrical characteristics  
STM32H723xE/G  
(1)  
Table 116. Dynamics characteristics: Ethernet MAC signals for RMII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(CRS)  
tih(CRS)  
td(TXEN)  
td(TXD)  
Receive data setup time  
Receive data hold time  
2
2
-
-
-
-
-
Carrier sense setup time  
Carrier sense hold time  
1.5  
1.5  
8
-
ns  
-
-
Transmit enable valid delay time  
Transmit data valid delay time  
0
8
10.5  
9.5  
7
1. Guaranteed by characterization results.  
Figure 61. Ethernet RMII timing diagram  
RMII_REF_CLK  
t
t
d(TXEN)  
d(TXD)  
RMII_TX_EN  
RMII_TXD[1:0]  
t
t
t
t
su(RXD)  
su(CRS)  
ih(RXD)  
ih(CRS)  
RMII_RXD[1:0]  
RMII_CRS_DV  
ai15667b  
(1)  
Table 117. Dynamics characteristics: Ethernet MAC signals for MII  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tsu(RXD)  
tih(RXD)  
tsu(DV)  
tih(DV)  
Receive data setup time  
Receive data hold time  
Data valid setup time  
Data valid hold time  
2.0  
2.0  
1.5  
1.5  
1.5  
0.5  
9.0  
8.5  
-
-
-
-
-
-
-
-
ns  
tsu(ER)  
tih(ER)  
td(TXEN)  
td(TXD)  
Error setup time  
-
-
Error hold time  
-
-
Transmit enable valid delay time  
Transmit data valid delay time  
11  
10  
19  
19  
1. Guaranteed by characterization results.  
206/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Electrical characteristics  
Figure 62. Ethernet MII timing diagram  
MII_RX_CLK  
t
t
t
t
t
t
su(RXD)  
su(ER)  
su(DV)  
ih(RXD)  
ih(ER)  
ih(DV)  
MII_RXD[3:0]  
MII_RX_DV  
MII_RX_ER  
MII_TX_CLK  
t
t
d(TXEN)  
d(TXD)  
MII_TX_EN  
MII_TXD[3:0]  
ai15668b  
JTAG/SWD interface characteristics  
Unless otherwise specified, the parameters given in Table 118 and Table 119 for JTAG/SWD  
are derived from tests performed under the ambient temperature, f frequency and  
rcc_c_ck  
V
supply voltage summarized in Table 12: General operating conditions, with the  
DD  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C =30 pF  
L
Measurement points are done at CMOS levels: 0.5V  
VOS level set to VOS0  
DD  
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output  
characteristics:  
Table 118. Dynamics JTAG characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fpp  
2.7V <VDD< 3.6 V  
-
-
-
-
37  
TCK clock frequency  
1/tc(TCK)  
tisu(TMS)  
tih(TMS)  
tisu(TDI)  
tih(TDI)  
1.62 <VDD< 3.6 V  
27.5  
MHz  
TMS input setup time  
TMS input hold time  
TDI input setup time  
TDI input hold time  
-
2.5  
1
-
-
-
-
-
-
1.5  
1
-
-
-
-
-
-
-
-
-
-
2.7V <VDD< 3.6 V  
1.62 <VDD< 3.6 V  
-
-
8
8
-
13.5  
18  
-
tov(TDO)  
toh(TDO)  
TDO output valid time  
TDO output hold time  
-
7
DS13313 Rev 2  
207/227  
208  
 
 
 
Electrical characteristics  
Symbol  
STM32H723xE/G  
Table 119. Dynamics SWD characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fpp  
2.7V <VDD< 3.6 V  
-
-
-
-
71  
52.5  
-
SWCLK clock frequency  
MHz  
1/tc(SWCLK)  
tisu(SWDIO)  
tih(SWDIO)  
1.62 <VDD< 3.6 V  
SWDIO input setup time  
SWDIO input hold time  
-
2.5  
1
-
-
-
-
-
-
-
2.7V <VDD< 3.6 V  
1.62 <VDD< 3.6 V  
-
8.5  
14  
tov(SWDIO)  
SWDIO output valid time  
SWDIO output hold time  
-
8.5  
-
19  
-
-
-
toh(SWDIO)  
-
8
Figure 63. JTAG timing diagram  
tc(TCK)  
TCK  
TDI/TMS  
TDO  
tsu(TMS/TDI)  
th(TMS/TDI)  
tw(TCKL)  
tw(TCKH)  
tov(TDO)  
toh(TDO)  
MSv40458V1  
Figure 64. SWD timing diagram  
tc(SWCLK)  
SWCLK  
tsu(SWDIO)  
th(SWDIO)  
twSWCLKL)  
tw(SWCLKH)  
SWDIO  
(receive)  
tov(SWDIO)  
toh(SWDIO)  
SWDIO  
(transmit)  
MSv40459V1  
208/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at www.st.com. ECOPACK  
is an ST trademark.  
7.1  
LQFP100 package information  
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.  
Figure 65. LQFP100 package outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
75  
C
D
D1  
D3  
L
L1  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V5  
1. Drawing is not to scale.  
DS13313 Rev 2  
209/227  
225  
 
 
 
Package information  
STM32H723xE/G  
Table 120. LQPF100 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
-
0.0630  
0.0059  
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
1.400  
0.220  
-
0.0551  
0.0087  
-
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
-
16.200  
14.200  
-
0.6220  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0.0°  
-
7.0°  
0.0°  
7.0°  
ccc  
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
210/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Package information  
Figure 66. LQFP100 package recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906c  
1. Dimensions are expressed in millimeters.  
DS13313 Rev 2  
211/227  
225  
 
Package information  
STM32H723xE/G  
Device marking for LQFP100  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 67. LQFP100 marking example (package top view)  
Product identification(1)  
STM32H723  
VGT6  
Revision code  
R
Date code  
WW  
Y
Pin 1  
indentifier  
MSv53061V3  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
212/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Package information  
7.2  
TFBGA100 package information  
TFBGA100 is a 100-ball, 8 x 8 mm, 0.8 mm pitch, thin fine-pitch ball grid array package.  
Figure 68. TFBGA100 package outline  
SEATING  
PLANE  
C
A1 ball  
index  
area  
A1 ball  
identifier  
D1  
D
e
F
A
B
C
D
E
F
G
H
J
A
K
10 9 8 7 6 5 4 3 2 1  
BOTTOM VIEW  
TOP VIEW  
b(100 BALLS)  
eee  
fff  
C
C
A B  
A08Q_ME_V1  
1. Drawing is not to scale.  
DS13313 Rev 2  
213/227  
225  
 
 
Package information  
STM32H723xE/G  
Table 121. TFBGA100 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.100  
-
-
-
-
0.0433  
-
0.150  
-
0.0059  
-
0.760  
0.400  
8.000  
7.200  
8.000  
7.200  
0.800  
0.400  
0.400  
-
-
-
0.0299  
0.0157  
0.3150  
0.2835  
0.3150  
0.2835  
0.0315  
0.0157  
0.0157  
-
-
0.350  
0.450  
8.150  
0.0138  
0.0177  
D
7.850  
0.3091  
0.3209  
D1  
E
-
-
-
7.850  
8.150  
0.3091  
0.3209  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
G
-
-
ddd  
eee  
fff  
0.100  
0.150  
0.080  
0.0039  
0.0059  
0.0031  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 69. TFBGA100 package recommended footprint  
Dpad  
Dsm  
A08Q_FP_V1  
1. Dimensions are expressed in millimeters.  
214/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Package information  
Table 122. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.8  
0.400 mm  
0.470 mm typ (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
0.400 mm  
Stencil thickness  
Pad trace width  
Between 0.100 mm and 0.125 mm  
0.120 mm  
Device marking for TFBGA100  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 70. TFBGA100 marking example (package top view)  
Product  
identification(1)  
STM32H723  
Revision code  
VGH6  
R
Date code  
Ball  
A1identifier  
Y WW  
MSv53063V2  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS13313 Rev 2  
215/227  
225  
 
 
 
Package information  
STM32H723xE/G  
7.3  
LQFP144 package information  
LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.  
Figure 71. LQFP144 package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
108  
73  
109  
72  
37  
144  
1
36  
PIN 1  
IDENTIFICATION  
e
1A_ME_V4  
1. Drawing is not to scale.  
216/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Package information  
Table 123. LQFP144 package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.8740  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.6890  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DS13313 Rev 2  
217/227  
225  
 
Package information  
STM32H723xE/G  
Figure 72. LQFP144 package recommended footprint  
1.35  
108  
73  
109  
72  
0.35  
0.5  
19.9  
17.85  
22.6  
144  
37  
1
36  
19.9  
22.6  
ai14905e  
1. Dimensions are expressed in millimeters.  
218/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Package information  
Device marking for LQFP144  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 73. LQFP144 marking example (package top view)  
Product  
ES32H723ZGT6  
identification(1)  
Revision code  
R
Date code  
Y WW  
Pin 1 identifier  
MSv53065V2  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS13313 Rev 2  
219/227  
225  
 
 
Package information  
STM32H723xE/G  
7.4  
UFBGA144 package information  
UFBGA144 is a 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.  
Figure 74. UFBGA144 package outline  
Z Seating plane  
ddd Z  
A4  
A2  
A
A3  
A1  
A
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
e
F
F
D1  
D
e
Y
M
12  
1
Øb (144 balls)  
Øeee M Z Y X  
Øfff M Z  
BOTTOM VIEW  
TOP VIEW  
A0AS_ME_V2  
1. Drawing is not to scale.  
Table 124. UFBGA144 package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
0.600  
0.110  
0.500  
-
0.0181  
0.0020  
0.0157  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
-
0.270  
0.230  
6.950  
5.450  
6.950  
5.450  
-
0.370  
0.320  
7.050  
5.550  
7.050  
5.550  
-
0.0106  
0.0091  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0146  
0.0126  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
220/227  
DS13313 Rev 2  
 
 
 
STM32H723xE/G  
Package information  
Table 124. UFBGA144 package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.100  
0.150  
0.050  
-
-
-
-
-
-
0.0039  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 75. UFBGA144 package recommended footprint  
Dpad  
Dsm  
BGA_WLCSP_FT_V1  
Table 125. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.50 mm  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.120 mm  
DS13313 Rev 2  
221/227  
225  
 
 
Package information  
STM32H723xE/G  
Device marking for UFBGA144  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 76. UFBGA144 marking example (package top view  
STM32H  
Product identification(1)  
723ZGI6  
Revision code  
Date code  
Y
WW  
R
Ball A1  
identifier  
MSv53067V2  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
222/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
Package information  
7.5  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 126. Thermal characteristics  
Parameter  
Symbol  
Definition  
Value  
Unit  
Thermal resistance junction-ambient  
43.8  
LQFP100 - 14 x 14 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
43.2  
44.8  
TBD  
19.8  
24.8  
24.4  
TBD  
7.3  
TFBGA100 - 8 x 8 mm /0.8 mm pitch  
Thermal resistance  
junction-ambient  
ΘJA  
ΘJB  
ΘJC  
°C/W  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA144 - 7 x 7 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA100 - 8 x 8 mm /0.8 mm pitch  
Thermal resistance  
junction-board  
°C/W  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA144 - 7 x 7 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
13.2  
7.4  
TFBGA100 - 8 x 8 mm /0.8 mm pitch  
Thermal resistance  
junction-case  
°C/W  
Thermal resistance junction-ambient  
LQFP144 - 20 x 20 mm /0.5 mm pitch  
Thermal resistance junction-ambient  
TBD  
UFBGA144 - 7 x 7 mm /0.5 mm pitch  
DS13313 Rev 2  
223/227  
225  
 
 
 
Package information  
STM32H723xE/G  
7.5.1  
Reference documents  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
For information on thermal management, refer to application note “Thermal  
management guidelines for STM32 applications” (AN5036) available from www.st.com.  
224/227  
DS13313 Rev 2  
 
STM32H723xE/G  
Ordering information  
8
Ordering information  
Example:  
STM32 H  
723  
V
G
T
6
TR  
Device family  
STM32 = Arm-based 32-bit microcontroller  
Product type  
H = High performance  
Device subfamily  
723 = STM32H723  
Pin count  
V = 100 pins  
Z = 144 pins  
Flash memory size  
E = 512 Kbytes  
G = 1024 Kbytes  
Package  
T = LQFP ECOPACK2  
I = UFBGA pitch 0.5 mm ECOPACK2  
H = TFBGA ECOPACK2  
Temperature range  
6 = Industrial temperature range –40 to 85 °C  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DS13313 Rev 2  
225/227  
225  
 
Revision history  
STM32H723xE/G  
9
Revision history  
Table 127. Document revision history  
Date  
Revision  
Changes  
10-Jul-2020  
1
Initial release.  
Renamed Section 3.30 into True random number  
generator (RNG).  
Replaced VDDIOx by VDD in Section 6: Electrical  
characteristics.  
Updated IIO in Table 10: Current characteristics.  
Updated Table 24: Typical current consumption in  
Autonomous mode, Table 27: Typical current  
consumption in Standby mode and Table 28: Typical and  
maximum current consumption in VBAT mode.  
03-Sep-2020  
2
Added Section 6.3.15: I/O current injection  
characteristics.  
Removed reference to PI8 in Table 51: Output voltage  
characteristics for all I/Os except PC13, PC14 and PC15  
and Table 52: Output voltage characteristics for PC13,  
PC14 and PC15.  
Added Section 6.3.15: I/O current injection  
characteristics.  
Added Section : Analog switch between ports Pxy_C  
and Pxy.  
226/227  
DS13313 Rev 2  
 
 
STM32H723xE/G  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13313 Rev 2  
227/227  
227  
 
 

相关型号:

STM32H723VGT6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZE

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZEH6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZEI6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZET6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZG

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZGH6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZGI6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H723ZGT6TR

32-bit Arm® Cortex®-M7 550 MHz MCU, up to 1 MB Flash memory, 564 KB RAM, 35 comms peripherals and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H742AG

32-bit Arm® Cortex®-M7 480MHz MCUs, up to 2MB Flash, up to 1MB RAM, 46 com. and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H742AI

32-bit Arm® Cortex®-M7 480MHz MCUs, up to 2MB Flash, up to 1MB RAM, 46 com. and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32H742BG

32-bit Arm® Cortex®-M7 480MHz MCUs, up to 2MB Flash, up to 1MB RAM, 46 com. and analog interfaces

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR