STM32L073RBH7DTR [STMICROELECTRONICS]

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs;
STM32L073RBH7DTR
型号: STM32L073RBH7DTR
厂家: ST    ST
描述:

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 CD 静态存储器
文件: 总157页 (文件大小:2182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L073x8 STM32L073xB  
STM32L073xZ  
®
®
Ultra-low-power 32-bit MCU Arm -based Cortex -M0+, up to 192KB  
Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs  
Datasheet - production data  
Features  
FBGA  
FBGA  
Ultra-low-power platform  
– 1.65 V to 3.6 V power supply  
UFQFPN48  
-40 to 125 °C temperature range  
UFBGA100  
7x7 mm  
LQFP48 (7 x 7 mm)  
LQFP64 (10x10 mm)  
LQFP100 (14x14 mm)  
(7x7 mm)  
TFBGA64  
5x5 mm  
– 0.29 µA Standby mode (3 wakeup pins)  
– 0.43 µA Stop mode (16 wakeup lines)  
– 0.86 µA Stop mode + RTC + 20-Kbyte  
RAM retention  
– Down to 93 µA/MHz in Run mode  
WLCSP49  
(3.294x3.258 mm)  
– 5 µs wakeup time (from Flash memory)  
– 41 µA 12-bit ADC conversion at 10 ksps  
Pre-programmed bootloader  
– USB, USART supported  
Development support  
®
®
Core: Arm 32-bit Cortex -M0+ with MPU  
– From 32 kHz up to 32 MHz max.  
– 0.95 DMIPS/MHz  
– Serial wire debug supported  
Memories  
LCD driver for up to 4x52 or 8x48 segments  
– Support contrast adjustment  
– Support blinking mode  
– Up to 192-Kbyte Flash memory with ECC  
(2 banks with read-while-write capability)  
– 20-Kbyte RAM  
– Step-up converted on board  
– 6 Kbytes of data EEPROM with ECC  
– 20-byte backup register  
Rich Analog peripherals  
– 12-bit ADC 1.14 Msps up to 16 channels  
(down to 1.65 V)  
– Sector protection against R/W operation  
Up to 84 fast I/Os (78 I/Os 5V tolerant)  
Reset and supply management  
– 2 x 12-bit channel DACs with output buffers  
(down to 1.8 V)  
– Ultra-safe, low-power BOR (brownout  
reset) with 5 selectable thresholds  
– 2x ultra-low-power comparators (window  
mode and wake up capability, down to  
1.65 V)  
– Ultra-low-power POR/PDR  
– Programmable voltage detector (PVD)  
Clock sources  
Up to 24 capacitive sensing channels  
supporting touchkey, linear and rotary touch  
sensors  
– 1 to 25 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
7-channel DMA controller, supporting ADC,  
– High speed internal 16 MHz factory-  
trimmed RC (+/- 1%)  
SPI, I2C, USART, DAC, Timers  
– Internal low-power 37 kHz RC  
– Internal multispeed low-power 65 kHz to  
4.2 MHz RC  
– Internal self calibration of 48 MHz RC for  
USB  
– PLL for CPU clock  
August 2020  
DS10685 Rev 6  
1/157  
This is information on a product in full production.  
www.st.com  
 
STM32L073xx  
11x peripheral communication interfaces  
11x timers: 2x 16-bit with up to 4 channels, 2x  
16-bit with up to 2 channels, 1x 16-bit ultra-low-  
power timer, 1x SysTick, 1x RTC, 2x 16-bit  
basic for DAC, and 2x watchdogs  
– 1x USB 2.0 crystal-less, battery charging  
detection and LPM  
– 4x USART (2 with ISO 7816, IrDA), 1x  
UART (low power)  
(independent/window)  
CRC calculation unit, 96-bit unique ID  
True RNG and firewall protection  
All packages are ECOPACK2  
– Up to 6x SPI 16 Mbits/s  
– 3x I2C (2 with SMBus/PMBus)  
Table 1. Device summary  
Reference  
Part number  
STM32L073x8  
STM32L073xB  
STM32L073xZ  
STM32L073V8  
STM32L073VB, STM32L073RB, STM32L073CB  
STM32L073VZ, STM32L073RZ, STM32L073CZ  
2/157  
DS10685 Rev 6  
 
STM32L073xx  
Contents  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Arm® Cortex®-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.4.1  
3.4.2  
3.4.3  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 28  
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.11 Liquid crystal display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.12 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.13 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.13.1 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
REFINT  
3.13.2  
V
voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
LCD  
3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.15 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 32  
3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3.17.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 34  
3.17.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.17.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
DS10685 Rev 6  
3/157  
5
Contents  
STM32L073xx  
3.17.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.17.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.17.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.18 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.18.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.18.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 37  
3.18.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 37  
3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 38  
3.18.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.19 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.20 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 39  
3.21 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4
5
6
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Embedded reset and power control block characteristics . . . . . . . . . . . 71  
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
4/157  
DS10685 Rev 6  
STM32L073xx  
Contents  
6.3.9  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.3.16 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
6.3.18 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.21 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
7.8.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
DS10685 Rev 6  
5/157  
5
List of tables  
STM32L073xx  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ultra-low-power STM32L073xxx device features and peripheral counts . . . . . . . . . . . . . . 13  
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 19  
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 19  
Functionalities depending on the working mode  
(from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
STM32L073xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Capacitive sensing GPIOs available on STM32L073xx devices . . . . . . . . . . . . . . . . . . . . 33  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
2
STM32L073xx I C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
STM32L073xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Current consumption in Run mode, code with data processing running from  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Current consumption in Run mode vs code type,  
Table 31.  
code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Current consumption in Run mode, code with data processing running from RAM . . . . . . 76  
Current consumption in Run mode vs code type,  
Table 32.  
Table 33.  
code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 81  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 82  
Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 86  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
6/157  
DS10685 Rev 6  
STM32L073xx  
List of tables  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 96  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
R
max for f  
= 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
AIN  
ADC  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
Table 83.  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 133  
LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
Table 84.  
Table 85.  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid  
Table 86.  
array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 139  
WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
Table 87.  
Table 88.  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 143  
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 145  
UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
Table 89.  
Table 90.  
Table 91.  
DS10685 Rev 6  
7/157  
8
List of tables  
STM32L073xx  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Table 92.  
Table 93.  
8/157  
DS10685 Rev 6  
STM32L073xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32L073xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
STM32L073xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
STM32L073xx UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
STM32L073xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
STM32L073xx TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
STM32L073xx WLCSP49 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
STM32L073xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
STM32L073xx UFQFPN48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Figure 12. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Figure 13. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 15. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from  
Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 16. IDD vs VDD, at TA= 25/55/85/105 °C, Run mode, code running from  
Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 17. IDD vs VDD, at TA= 25 °C, Low-power run mode, code running  
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 18. IDD vs VDD, at TA= 25/55/ 85/105/125 °C, Stop mode with RTC enabled  
and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 19. IDD vs VDD, at TA= 25/55/85/105/125 °C, Stop mode with RTC disabled,  
all clocks OFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 20. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 21. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 22. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 23. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 24. HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 25. VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 26. VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 27. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 29. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 30. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 31. Power supply and reference decoupling (V  
Figure 32. Power supply and reference decoupling (V  
not connected to V  
) . . . . . . . . . . . . 110  
). . . . . . . . . . . . . . . . 111  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 33. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
(1)  
Figure 35. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
(1)  
Figure 36. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
2
(1)  
Figure 37. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
2
(1)  
Figure 38. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 39. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 129  
Figure 41. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Figure 42. LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
DS10685 Rev 6  
9/157  
10  
List of figures  
STM32L073xx  
Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 44. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Figure 45. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 46. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 135  
Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 136  
Figure 48. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball  
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 50. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball  
,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 51. TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Figure 52. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Figure 53. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 54. WLCSP49 marking example (package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Figure 55. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 144  
Figure 56. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 145  
Figure 57. LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 58. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Figure 59. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Figure 60. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 61. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
10/157  
DS10685 Rev 6  
STM32L073xx  
Introduction  
1
Introduction  
The ultra-low-power STM32L073xx are offered in 7 different package types from 48 to 100  
pins. Depending on the device chosen, different sets of peripherals are included, the  
description below gives an overview of the complete range of peripherals proposed in this  
family.  
These features make the ultra-low-power STM32L073xx microcontrollers suitable for a wide  
range of applications:  
Gas/water meters and industrial sensors  
Healthcare and fitness equipment  
Remote control and user interface  
PC peripherals, gaming, GPS equipment  
Alarm system, wired and wireless sensors, video intercom  
This STM32L073xx datasheet should be read in conjunction with the STM32L0x3xx  
reference manual (RM0367).  
®(a)  
For information on the Arm  
Cortex®-M0+ core please refer to the Cortex®-M0+ Technical  
Reference Manual, available from the www.arm.com website.  
Figure 1 shows the general block diagram of the device family.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS10685 Rev 6  
11/157  
39  
 
 
Description  
STM32L073xx  
2
Description  
The ultra-low-power STM32L073xx microcontrollers incorporate the connectivity power of  
the universal serial bus (USB 2.0 crystal-less) with the high-performance Arm Cortex-M0+  
32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-  
speed embedded memories (up to 192 Kbytes of Flash program memory,  
6 Kbytes of data  
EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and  
peripherals.  
The STM32L073xx devices provide high power efficiency for a wide range of performance.  
It is achieved with a large choice of internal and external clock sources, an internal voltage  
adaptation and several low-power modes.  
The STM32L073xx devices offer several analog features, one 12-bit ADC with hardware  
oversampling, two DACs, two ultra-low-power comparators, several timers, one low-power  
timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one  
SysTick which can be used as timebases. They also feature two watchdogs, one watchdog  
with independent clock and window capability and one window watchdog based on bus  
clock.  
Moreover, the STM32L073xx devices embed standard and advanced communication  
interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART  
(LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels  
to simply add touch sensing functionality to any application.  
The STM32L073xx also include a real-time clock and a set of backup registers that remain  
powered in Standby mode.  
Finally, their integrated LCD controller has a built-in LCD voltage generator that allows to  
drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.  
The ultra-low-power STM32L073xx devices operate from a 1.8 to 3.6 V power supply (down  
to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR  
option. They are available in the -40 to +125 °C temperature range. A comprehensive set of  
power-saving modes allows the design of low-power applications.  
12/157  
DS10685 Rev 6  
 
STM32L073xx  
Description  
2.1  
Device overview  
Table 2. Ultra-low-power STM32L073xxx device features and peripheral counts  
STM32L073 STM32L073 STM32L073 STM32L073 STM32L073 STM32L073 STM32L073  
Peripheral  
V8  
CB  
VB  
RB  
CZ  
VZ  
RZ  
Flash (Kbytes)  
64 Kbytes  
3 Kbytes  
128 Kbytes  
192 Kbytes  
Data EEPROM (Kbytes)  
RAM (Kbytes)  
6 Kbytes  
20 Kbytes  
4
General-  
purpose  
Timers  
Basic  
2
LPTIMER  
RTC/SYSTICK/IWDG/WWDG  
SPI/I2S  
1
1/1/1/1  
6(4)(1)/1  
3
I2C  
Commu-  
nication  
USART  
4
interfaces  
LPUART  
1
USB/(VDD_USB)  
1/(1)  
51(2)  
GPIOs  
84  
37  
84  
37(3)  
84  
51(2)  
Clocks:  
HSE/LSE/HSI/MSI/LSI  
1/1/1/1/1  
12-bit synchronized ADC  
Number of channels  
1
16  
1
10  
1
1
1
16(2)  
10(3)  
16(2)  
12-bit DAC  
Number of channels  
2
2
1
1
1
1
1
LCD  
COM x SEG  
1
4x18  
1
4x52 or  
8x48  
4x52 or  
8x48  
4x32 or  
8x28(2)  
4x18 or  
4x21(3)  
4x32 or  
8x28(2)  
4x52 or 8x48  
Comparators  
2
Capacitive sensing  
channels  
24  
17  
24  
24(2)  
17(3)  
24  
24(2)  
Max. CPU frequency  
Operating voltage  
32 MHz  
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option  
Ambient temperature: –40 to +125 °C  
Junction temperature: –40 to +130 °C  
Operating temperatures  
Packages  
LQFP48,  
UFQFPN48,  
WLCSP49  
LQFP100,  
LQFP100,  
LQFP100,  
LQFP48,  
UFQFPN48  
LQFP64,  
LQFP64,  
TFBGA64  
TFBGA64  
UFBGA100  
UFBGA100  
UFBGA100  
1. 4 SPI interfaces are USARTs operating in SPI master mode.  
DS10685 Rev 6  
13/157  
39  
 
 
 
Description  
STM32L073xx  
2. TFBGA64 has one GPIO, one ADC input, one capacitive sensing channel and one COMxSEG (4x31 or 8x27) less than  
LQFP64.  
3. LQFP48 has three GPIOs, three ADC channels, two capacitive sensing channel and three COMxSEG (4x18) less than  
WLCSP49.  
14/157  
DS10685 Rev 6  
STM32L073xx  
Description  
Figure 1. STM32L073xx block diagram  
Temp  
sensor  
SWD  
SWD  
FLASH  
EEPROM  
BOOT  
ADC1  
SPI1  
AINx  
MISO, MOSI,  
SCK, NSS  
FIREWALL  
CORTEX M0+ CPU  
Fmax:32MHz  
RAM  
RX, TX, RTS,  
CTS, CK  
USART1  
TIM21  
MPU  
A
P
B
2
DBG  
EXTI  
DMA1  
2ch  
NVIC  
TIM22  
COMP1  
COMP2  
2ch  
BRIDGE  
INP, INM, OUT  
INP, INM, OUT  
TSC  
CRC  
RNG  
GPIO PORT A  
PA[0:15]  
PB[0:15]  
PC[0:15]  
GPIO PORT B  
GPIO PORT C  
IN1, IN2,  
ETR, OUT  
LPTIM1  
BRIDGE  
RAM 1K  
TIM6  
DP, DM, OE,  
CRS_SYNC,  
VDD_USB  
USB 2.0 FS  
GPIO PORT D  
GPIO PORT E  
PD[0:15]  
PE[0:15]  
DAC1  
DAC2  
I2C1  
OUT1  
OUT1  
TIM7  
SCL, SDA,  
SMBA  
WWDG  
GPIO PORT H  
PH[0:1], [9:10]  
I2C2  
I2C3  
SCL, SDA  
SCL, SDA,  
SMBA  
A
P
B
1
RX, TX, RTS,  
CTS, CK  
USART2  
USART4  
HSI 48M  
LSI  
CRS  
IWDG  
RTC  
OSC_IN,  
OSC_OUT  
RX, TX, RTS,  
CTS, CK  
HSE  
PLL  
HSI 16M  
RX, TX, RTS,  
CTS, CK  
RX, TX, RTS,  
CTS  
USART5  
MSI  
LPUART1  
MISO/MCK,  
MOSI/SD,  
SCK/CK, NSS/  
WS  
SPI2/I2S  
TIM2  
BCKP REG  
WKUPx  
RESET & CLK  
4ch  
OSC32_IN,  
LSE  
TIM3  
LCD  
4ch  
OSC32_OUT  
PVD_IN  
VREF_OUT  
COMx, SEGx,  
LCD_VLCDx  
PMU  
NRST  
VDDA  
REGULATOR  
VDD  
MSv35410V1  
DS10685 Rev 6  
15/157  
39  
 
Description  
STM32L073xx  
2.2  
Ultra-low-power device continuum  
The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary  
core up to Arm® Cortex®-M4, including Arm® Cortex®-M3 and Arm® Cortex®-M0+. The  
STM32Lx series are the best choice to answer your needs in terms of ultra-low-power  
features. The STM32 ultra-low-power series are the best solution for applications such as  
gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in  
features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers,  
128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly  
cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and  
long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all  
STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other  
hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to  
respond to the latest market feature and efficiency requirements.  
16/157  
DS10685 Rev 6  
 
STM32L073xx  
Functional overview  
3
Functional overview  
3.1  
Low-power modes  
The ultra-low-power STM32L073xx support dynamic voltage scaling to optimize its power  
consumption in Run mode. The voltage from the internal low-drop regulator that supplies  
the logic can be adjusted according to the system’s maximum operating frequency and the  
external voltage supply.  
There are three power consumption ranges:  
Range 1 (V range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz  
DD  
Range 2 (full V range), with a maximum CPU frequency of 16 MHz  
DD  
Range 3 (full V range), with a maximum CPU frequency limited to 4.2 MHz  
DD  
Seven low-power modes are provided to achieve the best compromise between low-power  
consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at  
16 MHz is about 1 mA with all peripherals off.  
Low-power run mode  
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the low-  
speed clock (max 131 kHz), execution from SRAM or Flash memory, and internal  
regulator in low-power mode to minimize the regulator's operating current. In Low-  
power run mode, the clock frequency and the number of enabled peripherals are both  
limited.  
Low-power sleep mode  
This mode is achieved by entering Sleep mode with the internal voltage regulator in  
low-power mode to minimize the regulator’s operating current. In Low-power sleep  
mode, both the clock frequency and the number of enabled peripherals are limited; a  
typical example would be to have a timer running at 32 kHz.  
When wakeup is triggered by an event or an interrupt, the system reverts to the Run  
mode with the regulator on.  
Stop mode with RTC  
The Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents and real time clock. All clocks in the V  
domain are stopped, the  
CORE  
PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still  
running. The voltage regulator is in the low-power mode.  
Some peripherals featuring wakeup capability can enable the HSI RC during Stop  
mode to detect their wakeup condition.  
The device can be woken up from Stop mode by any of the EXTI line, in 3.5 µs, the  
processor can serve the interrupt or resume the code. The EXTI line source can be any  
GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event  
(if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup  
events, the USB/USART/I2C/LPUART/LPTIMER wakeup events.  
DS10685 Rev 6  
17/157  
39  
 
 
Functional overview  
STM32L073xx  
Stop mode without RTC  
The Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and  
LSE crystal oscillators are disabled.  
Some peripherals featuring wakeup capability can enable the HSI RC during Stop  
mode to detect their wakeup condition.  
The voltage regulator is in the low-power mode. The device can be woken up from Stop  
mode by any of the EXTI line, in 3.5 µs, the processor can serve the interrupt or  
resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the  
comparator 1 event or comparator 2 event (if internal reference voltage is on). It can  
also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events.  
Standby mode with RTC  
The Standby mode is used to achieve the lowest power consumption and real time  
clock. The internal voltage regulator is switched off so that the entire V  
domain is  
CORE  
powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched  
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register  
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,  
RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register).  
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG  
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),  
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.  
Standby mode without RTC  
The Standby mode is used to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire V  
domain is powered off. The  
CORE  
PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off.  
After entering Standby mode, the RAM and register contents are lost except for  
registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz  
oscillator, RCC_CSR register).  
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising  
edge on one of the three WKUP pin occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by  
entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop  
mode.  
18/157  
DS10685 Rev 6  
STM32L073xx  
Functional overview  
Table 3. Functionalities depending on the operating power supply range  
Functionalities depending on the operating power supply  
range  
Operating power supply  
range(1)  
DAC and ADC  
operation  
Dynamic voltage  
scaling range  
USB  
ADC only, conversion  
time up to 570 ksps  
Range 2 or  
range 3  
V
DD = 1.65 to 1.71 V  
Not functional  
Functional(3)  
Functional(3)  
Functional(3)  
Functional(3)  
ADC only, conversion  
time up to 1.14 Msps  
Range 1, range 2 or  
range 3  
VDD = 1.71 to 1.8 V(2)  
VDD = 1.8 to 2.0 V(2)  
VDD = 2.0 to 2.4 V  
VDD = 2.4 to 3.6 V  
Conversion time up to  
1.14 Msps  
Range1, range 2 or  
range 3  
Conversion time up to  
1.14 Msps  
Range 1, range 2 or  
range 3  
Conversion time up to  
1.14 Msps  
Range 1, range 2 or  
range 3  
1. GPIO speed depends on VDD voltage range. Refer to Table 62: I/O AC characteristics for more information  
about I/O speed.  
2. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5  
μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2  
MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.  
3. To be USB compliant from the I/O voltage standpoint, the minimum VDD_USB is 3.0 V.  
Table 4. CPU frequency range depending on dynamic voltage scaling  
CPU frequency range  
Dynamic voltage scaling range  
16 MHz to 32 MHz (1ws)  
32 kHz to 16 MHz (0ws)  
Range 1  
8 MHz to 16 MHz (1ws)  
32 kHz to 8 MHz (0ws)  
Range 2  
Range 3  
32 kHz to 4.2 MHz (0ws)  
DS10685 Rev 6  
19/157  
39  
 
 
 
Functional overview  
STM32L073xx  
Standby  
Table 5. Functionalities depending on the working mode  
(1)(2)  
(from Run/active down to standby)  
Stop  
Low-  
power  
run  
Low-  
power  
sleep  
IPs  
Run/Active  
Sleep  
Wakeup  
capability  
Wakeup  
capability  
CPU  
Y
O
Y
Y
O
--  
O
Y
Y
O
Y
O
Y
Y
O
--  
O
Y
Y
O
--  
--  
Y
Y
--  
--  
--  
--  
Y
--  
Flash memory  
RAM  
Backup registers  
EEPROM  
Brown-out reset  
(BOR)  
O
O
O
O
O
O
O
O
O
--  
O
O
--  
O
DMA  
Programmable  
Voltage Detector  
(PVD)  
O
O
O
O
O
O
Y
-
Power-on/down  
reset (POR/PDR)  
Y
O
O
O
O
O
Y
Y
O
O
O
O
O
Y
Y
--  
O
O
O
Y
Y
Y
--  
O
O
O
Y
Y
Y
Y
--  
--  
O
O
--  
--  
Y
High Speed  
Internal (HSI)  
(3)  
High Speed  
External (HSE)  
--  
O
O
--  
Y
Low Speed Internal  
(LSI)  
Low Speed  
External (LSE)  
Multi-Speed  
Internal (MSI)  
Inter-Connect  
Controller  
RTC  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
RTC Tamper  
O
O
Auto WakeUp  
(AWU)  
O
O
O
O
O
O
O
LCD  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
--  
O
O
O
--  
--  
O
--  
O
--  
--  
--  
--  
--  
--  
--  
--  
USB  
O
O
O
USART  
LPUART  
SPI  
O
O
O
--  
O(4)  
O(4)  
--  
I2C  
O(5)  
O
ADC  
--  
--  
20/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Functional overview  
Standby  
Table 5. Functionalities depending on the working mode  
(1)(2)  
(from Run/active down to standby) (continued)  
Stop  
Low-  
power  
run  
Low-  
power  
sleep  
IPs  
Run/Active  
Sleep  
Wakeup  
Wakeup  
capability  
capability  
DAC  
O
O
O
O
O
O
O
O
O
O
--  
--  
Temperature  
sensor  
Comparators  
16-bit timers  
LPTIMER  
IWDG  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
--  
O
--  
--  
O
O
--  
O
O
O
--  
O
WWDG  
Touch sensing  
controller (TSC)  
O
O
--  
--  
--  
--  
--  
SysTick Timer  
GPIOs  
O
O
O
O
O
O
O
O
O
O
2 pins  
50 µs  
Wakeup time to  
Run mode  
0 µs  
0.36 µs  
3 µs  
32 µs  
3.5 µs  
0.4 µA (No  
0.28 µA (No  
RTC) VDD=1.8 V RTC) VDD=1.8 V  
0.8 µA (with 0.65 µA (with  
RTC) VDD=1.8 V RTC) VDD=1.8 V  
Down to  
140 µA/MHz  
(from Flash  
memory)  
Down to  
37 µA/MHz  
(from Flash  
memory)  
Consumption  
Down to Down to  
8 µA 4.5 µA  
VDD=1.8 to 3.6 V  
0.4 µA (No  
0.29 µA (No  
(Typ)  
RTC) VDD=3.0 V RTC) VDD=3.0 V  
1 µA (with RTC)  
DD=3.0 V  
0.85 µA (with  
RTC) VDD=3.0 V  
V
1. Legend:  
“Y” = Yes (enable).  
“O” = Optional can be enabled/disabled by software)  
“-” = Not available  
2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.  
3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the  
peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need  
it anymore.  
4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup  
on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep  
running the HSI clock.  
5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up  
the HSI during reception.  
DS10685 Rev 6  
21/157  
39  
Functional overview  
STM32L073xx  
3.2  
Interconnect matrix  
Several peripherals are directly interconnected. This allows autonomous communication  
between peripherals, thus saving CPU resources and power consumption. In addition,  
these hardware connections allow fast and predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power  
run, Low-power sleep and Stop modes.  
Table 6. STM32L073xx peripherals interconnect matrix  
Low-  
Low-  
Interconnect Interconnect  
Interconnect action  
Run Sleep power power Stop  
source  
destination  
run  
sleep  
Timer input channel,  
trigger from analog  
signals comparison  
TIM2,TIM21,  
TIM22  
Y
Y
Y
Y
Y
Y
-
COMPx  
Timer input channel,  
trigger from analog  
signals comparison  
LPTIM  
Y
Y
Y
Timer triggered by other  
timer  
TIMx  
RTC  
TIMx  
TIM21  
LPTIM  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Timer triggered by Auto  
wake-up  
Timer triggered by RTC  
event  
Y
Clock source used as  
input channel for RC  
measurement and  
trimming  
All clock  
source  
TIMx  
Y
Y
Y
Y
Y
-
Y
-
-
-
the clock recovery  
system trims the HSI48  
based on USB SOF  
CRS/HSI48  
USB  
USB_SOF is channel  
input for calibration  
TIM3  
TIMx  
Y
Y
Y
Y
-
-
-
-
Timer input channel and  
trigger  
Y
Y
GPIO  
Timer input channel and  
trigger  
LPTIM  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
ADC,DAC  
Conversion trigger  
22/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Functional overview  
3.3  
Arm® Cortex®-M0+ core with MPU  
The Cortex-M0+ processor is an entry-level 32-bit Arm Cortex processor designed for a  
broad range of embedded applications. It offers significant benefits to developers, including:  
a simple architecture that is easy to learn and program  
ultra-low power, energy-efficient operation  
excellent code density  
deterministic, high-performance interrupt handling  
upward compatibility with Cortex-M processor family  
platform security robustness, with integrated Memory Protection Unit (MPU).  
The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor  
core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional  
energy efficiency through a small but powerful instruction set and extensively optimized  
design, providing high-end processing hardware including a single-cycle multiplier.  
The Cortex-M0+ processor provides the exceptional performance expected of a modern 32-  
bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.  
Owing to its embedded Arm core, the STM32L073xx are compatible with all Arm tools and  
software.  
Nested vectored interrupt controller (NVIC)  
The ultra-low-power STM32L073xx embed a nested vectored interrupt controller able to  
handle up to 32 maskable interrupt channels and 4 priority levels.  
The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt  
Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:  
includes a Non-Maskable Interrupt (NMI)  
provides zero jitter interrupt option  
provides four interrupt priority levels  
The tight integration of the processor core and NVIC provides fast execution of Interrupt  
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved  
through the hardware stacking of registers, and the ability to abandon and restart load-  
multiple and store-multiple operations. Interrupt handlers do not require any assembler  
wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also  
significantly reduces the overhead when switching from one ISR to another.  
To optimize low-power designs, the NVIC integrates with the sleep modes, that include a  
deep sleep function that enables the entire device to enter rapidly stop or standby mode.  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
DS10685 Rev 6  
23/157  
39  
 
Functional overview  
STM32L073xx  
3.4  
Reset and supply management  
3.4.1  
Power supply schemes  
V
= 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided  
DD  
externally through V pins.  
DD  
V
, V  
= 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs  
DDA  
SSA  
and PLL. V  
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
V
= 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11)  
DD_USB  
and USB_DP (PA12). To guarantee a correct voltage level for USB communication  
must be above 3.0V. If USB is not used this pin must be tied to V or V .  
SS  
V
DD_USB  
DD  
On packages without VDD_USB pin, V  
voltage.  
voltage is internally connected to V  
DD_USB  
DD  
3.4.2  
Power supply supervisor  
The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR) that can be coupled with a brownout reset (BOR) circuitry.  
Two versions are available:  
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.  
The other version without BOR operates between 1.65 V and 3.6 V.  
After the V threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or  
DD  
not at power-on), the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes  
1.65 V (whatever the version, BOR active or not, at power-on).  
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever  
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the  
power ramp-up should guarantee that 1.65 V is reached on V at least 1 ms after it exits  
DD  
the POR area.  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Stop mode, it is possible to automatically switch off the  
internal reference voltage (V  
) in Stop mode. The device remains in reset mode when  
REFINT  
V
is below a specified threshold, V  
or V  
, without the need for any external  
DD  
POR/PDR  
BOR  
reset circuit.  
Note:  
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-  
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive  
at power-up.  
The devices feature an embedded programmable voltage detector (PVD) that monitors the  
V
power supply and compares it to the V  
threshold. This PVD offers 7 different  
DD/VDDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V drops below the V threshold and/or when  
DD/VDDA  
PVD  
V
is higher than the V  
threshold. The interrupt service routine can then generate  
DD/VDDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
24/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Functional overview  
3.4.3  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in Run mode (nominal regulation)  
LPR is used in the Low-power run, Low-power sleep and Stop modes  
Power down is used in Standby mode. The regulator output is high impedance, the  
kernel circuitry is powered down, inducing zero consumption but the contents of the  
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,  
LSI, LSE crystal 32 KHz oscillator, RCC_CSR).  
3.5  
Clock management  
The clock controller distributes the clocks coming from different oscillators to the core and  
the peripherals. It also manages clock gating for low-power modes and ensures clock  
robustness. It features:  
Clock prescaler  
To get the best trade-off between speed and current consumption, the clock frequency  
to the CPU and peripherals can be adjusted by a programmable prescaler.  
Safe clock switching  
Clock sources can be changed safely on the fly in Run mode through a configuration  
register.  
Clock management  
To reduce power consumption, the clock controller can stop the clock to the core,  
individual peripherals or memory.  
System clock source  
Three different clock sources can be used to drive the master clock SYSCLK:  
1-25 MHz high-speed external crystal (HSE), that can supply a PLL  
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can  
supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able  
to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1  
MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE),  
the MSI frequency can be trimmed by software down to a ±0.5% accuracy.  
Auxiliary clock source  
Two ultra-low-power clock sources that can be used to drive the LCD controller and the  
real-time clock:  
32.768 kHz low-speed external crystal (LSE)  
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock can be measured using the high-speed internal RC oscillator for  
greater precision.  
RTC and LCD clock source  
The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever  
the system clock.  
USB clock source  
A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface.  
DS10685 Rev 6  
25/157  
39  
 
 
Functional overview  
STM32L073xx  
Startup clock  
After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI).  
The prescaler ratio and clock source can be changed by the application program as  
soon as the code execution starts.  
Clock security system (CSS)  
This feature can be enabled by software. If an HSE clock failure occurs, the master  
clock is automatically switched to HSI and a software interrupt is generated if enabled.  
Another clock security system can be enabled, in case of failure of the LSE it provides  
an interrupt or wakeup event which is generated if enabled.  
Clock-out capability (MCO: microcontroller clock output)  
It outputs one of the internal clocks for external use by the application.  
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and  
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See  
Figure 2 for details on the clock tree.  
26/157  
DS10685 Rev 6  
STM32L073xx  
Functional overview  
Figure 2. Clock tree  
@V33  
Enable Watchdog  
Legend:  
Watchdog LS  
LSI RC  
LSI tempo  
HSE = High-speed external clock signal  
HSI = High-speed internal clock signal  
LSI = Low-speed internal clock signal  
LSE = Low-speed external clock signal  
MSI = Multispeed internal clock signal  
RTCSEL  
RTC2 enable  
RTC  
LSE OSC  
LSE tempo  
LCD enable  
LSU LSD LSD LSD  
1 MHz  
@V18  
LCDCLK  
MCOSEL  
@V33  
ADC enable  
ADCCLK  
LSI  
MSI RC  
LSE  
MSI  
Level shifters  
@V18  
MCO  
not deepsleep  
/ 1,2,4,8,16  
/ 2,4,8,16  
CK_PWR  
@V33  
not deepsleep  
HSI16 RC  
Level shifters  
@V18  
ck_rchs  
HSI16  
/ 1,4  
FCLK  
not (sleep or  
deepsleep)  
System  
Clock  
HCLK  
not (sleep or  
deepsleep)  
/ 8  
MSI  
HSI16  
HSE  
SysTick  
Timer  
@V33  
AHB  
HSE OSC  
Level shifters  
@V18  
PRESC  
PCLK1 to APB1  
peripherals  
/ 1,2,…, 512  
32 MHz  
max.  
PLLSRC  
@V3P3 LLCLK  
APB1  
PRESC  
ck_pllin  
PLL  
/ 1,2,4,8,16  
LSU  
LSD  
X
Peripheral  
@V33  
3,4,6,8,12,16,  
24,32,48  
clock enable  
to TIMx  
1 MHz Clock  
Detector  
If (APB1 presc=1) x1  
else x2)  
/ 2,3,4  
Level shifters  
@VDDCORE  
Peripheral  
clock enable  
HSE present or not  
Clock  
Source  
Control  
PCLK2 to APB2  
peripherals  
32 MHz  
max.  
Dedicated 48MHz PLL output  
HSI48MSEL  
APB2  
PRESC  
/ 1,2,4,8,16  
Peripheral  
clock enable  
@V33  
to TIMx  
RC 48MHz  
Level shifters  
If (APB2 presc=1) x1  
HSI48  
else x2)  
@V18  
Peripheral  
LSI  
clock enable  
SYSCLK  
Clock  
Recovery  
System  
LPTIMCLK  
Peripheral  
clock enable  
LSE  
HSI16  
LPUART/  
UARTCLK  
Peripheral  
clock enable  
PCLK  
I2CCLK  
usb_en  
rng_en  
48MHz  
USBCLK  
48MHz RNG  
MSv35411V1  
DS10685 Rev 6  
27/157  
39  
 
Functional overview  
STM32L073xx  
3.6  
Low-power real-time clock and backup registers  
The real time clock (RTC) and the 5 backup registers are supplied in all modes including  
standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user  
application data. They are not reset by a system reset, or when the device wakes up from  
Standby mode.  
The RTC is an independent BCD timer/counter. Its main features are the following:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format  
Automatically correction for 28, 29 (leap year), 30, and 31 day of the month  
Two programmable alarms with wake up from Stop and Standby mode capability  
Periodic wakeup from Stop and Standby with programmable resolution and period  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal  
inaccuracy  
2 anti-tamper detection pins with programmable filter. The MCU can be woken up from  
Stop and Standby modes on tamper event detection.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be  
woken up from Stop and Standby modes on timestamp event detection.  
The RTC clock sources can be:  
A 32.768 kHz external crystal  
A resonator or oscillator  
The internal low-power RC oscillator (typical frequency of 37 kHz)  
The high-speed external clock  
3.7  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions, and can be individually  
remapped using dedicated alternate function registers. All GPIOs are high current capable.  
Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate  
function configuration of I/Os can be locked if needed following a specific sequence in order  
to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated  
IO bus with a toggling speed of up to 32 MHz.  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 29 edge detector lines used to generate  
interrupt/event requests. Each line can be individually configured to select the trigger event  
(rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected  
to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC,  
USB, USARTs, I2C, LPUART, LPTIMER or comparator events.  
28/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Functional overview  
3.8  
Memories  
The STM32L073xx devices have the following features:  
20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states. With the enhanced bus matrix, operating the RAM does not lead to any  
performance penalty during accesses to the system bus (AHB and APB buses).  
The non-volatile memory is divided into three arrays:  
64, 128 or 192 Kbytes of embedded Flash program memory  
6 Kbytes of data EEPROM  
Information block containing 32 user and factory options bytes plus 8 Kbytes of  
system memory  
Flash program and data EEPROM are divided into two banks. This allows writing in one  
bank while running code or reading data from the other bank.  
The user options bytes are used to write-protect or read-out protect the memory (with  
4 Kbyte granularity) and/or readout-protect the whole memory with the following options:  
Level 0: no protection  
Level 1: memory readout protected.  
The Flash memory cannot be read from or written to if either debug features are  
connected or boot in RAM is selected  
Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in  
RAM selection disabled (debugline fuse)  
The firewall protects parts of code/data from access by the rest of the code that is executed  
outside of the protected area. The granularity of the protected code segment or the non-  
volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the  
volatile data segment (RAM).  
The whole non-volatile memory embeds the error correction code (ECC) feature.  
3.9  
Boot modes  
At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:  
Boot from Flash memory  
Boot from System memory  
Boot from embedded RAM  
The boot loader is located in System memory. It is used to reprogram the Flash memory by  
using USB (PA11, PA12), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32  
microcontroller system memory boot mode AN2606 for details.  
DS10685 Rev 6  
29/157  
39  
 
 
Functional overview  
STM32L073xx  
3.10  
Direct memory access (DMA)  
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management, avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with software trigger  
support for each channel. Configuration is done by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, LPUART,  
general-purpose timers, DAC, and ADC.  
3.11  
Liquid crystal display (LCD)  
The LCD drives up to 8 common terminals and 48 segment terminals to drive up to 384  
pixels.  
Internal step-up converter to guarantee functionality and contrast control irrespective of  
. This converter can be deactivated, in which case the V pin is used to provide  
V
DD  
LCD  
the voltage to the LCD  
Supports static, 1/2, 1/3, 1/4 and 1/8 duty  
Supports static, 1/2, 1/3 and 1/4 bias  
Phase inversion to reduce power consumption and EMI  
Up to 8 pixels can be programmed to blink  
Unneeded segments and common pins can be used as general I/O pins  
LCD RAM can be updated at any time owing to a double-buffer  
The LCD controller can operate in Stop mode  
V
rails decoupling capability  
LCD  
3.12  
Analog-to-digital converter (ADC)  
A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital  
converter is embedded into STM32L073xx device. It has up to 16 external channels and 3  
internal channels (temperature sensor, voltage reference, V  
voltage measurement).  
LCD  
Three channels, PA0, PA4 and PA5, are fast channels, while the others are standard  
channels.  
The ADC performs conversions in single-shot or scan mode. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
The ADC frequency is independent from the CPU frequency, allowing maximum sampling  
rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all  
frequencies (~25 µA at 10 kSPS, ~240 µA at 1MSPS). An auto-shutdown function  
guarantees that the ADC is powered off except during the active conversion phase.  
The ADC can be served by the DMA controller. It can operate from a supply voltage down to  
1.65 V.  
The ADC features a hardware oversampler up to 256 samples, this improves the resolution  
to 16 bits (see AN2668).  
30/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Functional overview  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all scanned channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.  
3.13  
Temperature sensor  
The temperature sensor (T  
temperature.  
) generates a voltage V  
that varies linearly with  
SENSE  
SENSE  
The temperature sensor is internally connected to the ADC_IN18 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 7. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
VDDA= 3 V  
TSENSE_CAL1  
0x1FF8 007A - 0x1FF8 007B  
TS ADC raw data acquired at  
temperature of 130 °C  
TSENSE_CAL2  
0x1FF8 007E - 0x1FF8 007F  
VDDA= 3 V  
3.13.1  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN17 input channel. It  
REFINT  
enables accurate monitoring of the V value (when no external voltage, V  
, is available  
DD  
REF+  
for ADC). The precise voltage of V  
is individually measured for each part by ST during  
REFINT  
production test and stored in the system memory area. It is accessible in read-only mode.  
Table 8. Internal voltage reference measured values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 25 °C  
VREFINT_CAL  
0x1FF8 0078 - 0x1FF8 0079  
VDDA = 3 V  
DS10685 Rev 6  
31/157  
39  
 
 
 
 
Functional overview  
STM32L073xx  
3.13.2  
V
voltage monitoring  
LCD  
This embedded hardware feature allows the application to measure the V  
supply voltage  
LCD  
using the internal ADC channel ADC_IN16. As the V  
voltage may be higher than V  
,
LCD  
DDA  
and thus outside the ADC input range, the ADC input is connected to LCD_VLCD1 (which  
provides 1/3V when the LCD is configured 1/3Bias and 1/4V when the LCD is  
LCD  
LCD  
configured 1/4Bias or 1/2Bias).  
3.14  
Digital-to-analog converter (DAC)  
Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal  
output. An optional amplifier can be used to reduce the output signal impedance.  
This digital Interface supports the following features:  
One data holding register (for each channel)  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channels with independent or simultaneous conversions  
DMA capability (including the underrun interrupt)  
External triggers for conversion  
Input reference voltage V  
REF+  
Six DAC trigger inputs are used in the STM32L073xx. The DAC channels are triggered  
through the timer update outputs that are also connected to different DMA channels.  
3.15  
Ultra-low-power comparators and reference voltage  
The STM32L073xx embed two comparators sharing the same current bias and reference  
voltage. The reference voltage can be internal or external (coming from an I/O).  
One comparator with ultra low consumption  
One comparator with rail-to-rail inputs, fast or slow mode.  
The threshold can be one of the following:  
DAC output  
External I/O pins  
Internal reference voltage (V  
)
REFINT  
submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail  
comparator.  
Both comparators can wake up the devices from Stop mode, and be combined into a  
window comparator.  
The internal reference voltage is available externally via a low-power / low-current output  
buffer (driving current capability of 1 µA typical).  
32/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Functional overview  
3.16  
Touch sensing controller (TSC)  
The STM32L073xx provide a simple solution for adding capacitive sensing functionality to  
any application. These devices offer up to 24 capacitive sensing channels distributed over 8  
analog I/O groups.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the  
hardware touch sensing controller and only requires few external components to operate.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library, which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
Table 9. Capacitive sensing GPIOs available on STM32L073xx devices  
Capacitive sensing  
signal name  
Pin  
name  
Capacitive sensing  
signal name  
Pin  
name  
Group  
Group  
TSC_G1_IO1  
TSC_G1_IO2  
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
TSC_G2_IO3  
TSC_G2_IO4  
TSC_G3_IO1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
TSC_G4_IO4  
PA0  
PA1  
TSC_G5_IO1  
TSC_G5_IO2  
TSC_G5_IO3  
TSC_G5_IO4  
TSC_G6_IO1  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
TSC_G7_IO1  
TSC_G7_IO2  
TSC_G7_IO3  
TSC_G7_IO4  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
PB3  
PB4  
PB6  
PB7  
PB11  
PB12  
PB13  
PB14  
PC0  
PC1  
PC2  
PC3  
PC6  
PC7  
PC8  
PC9  
1
5
PA2  
PA3  
PA4(1)  
PA5  
2
3
4
6
7
8
PA6  
PA7  
PC5  
PB0  
PB1  
PB2  
PA9  
PA10  
PA11  
PA12  
1. This GPIO offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling  
capacitor I/O.  
DS10685 Rev 6  
33/157  
39  
 
 
Functional overview  
STM32L073xx  
3.17  
Timers and watchdogs  
The ultra-low-power STM32L073xx devices include three general-purpose timers, one low-  
power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.  
Table 10 compares the features of the general-purpose and basic timers.  
Table 10. Timer feature comparison  
DMA  
Counter  
resolution  
Capture/compare Complementary  
Timer  
Counter type  
Prescaler factor  
request  
channels  
outputs  
generation  
TIM2,  
TIM3  
Up, down,  
up/down  
Any integer between  
1 and 65536  
16-bit  
16-bit  
16-bit  
Yes  
No  
4
2
0
No  
No  
No  
TIM21,  
TIM22  
Up, down,  
up/down  
Any integer between  
1 and 65536  
TIM6,  
TIM7  
Any integer between  
1 and 65536  
Up  
Yes  
3.17.1  
General-purpose timers (TIM2, TIM3, TIM21 and TIM22)  
There are four synchronizable general-purpose timers embedded in the STM32L073xx  
device (see Table 10 for differences).  
TIM2, TIM3  
TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit  
prescaler. It features four independent channels each for input capture/output compare,  
PWM or one-pulse mode output.  
The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22  
general-purpose timers via the Timer Link feature for synchronization or event chaining.  
Their counter can be frozen in debug mode. Any of the general-purpose timers can be used  
to generate PWM outputs.  
TIM2/TIM3 have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
TIM21 and TIM22  
TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit  
prescaler. They have two independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3,  
full-featured general-purpose timers.  
They can also be used as simple time bases and be clocked by the LSE clock source  
(32.768 kHz) to provide time bases independent from the main CPU clock.  
34/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Functional overview  
3.17.2  
Low-power Timer (LPTIM)  
The low-power timer has an independent clock and is running also in Stop mode if it is  
clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous / one shot mode  
Selectable software / hardware input trigger  
Selectable clock source  
Internal clock source: LSE, LSI, HSI or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by the Pulse Counter Application)  
Programmable digital glitch filter  
Encoder mode  
3.17.3  
3.17.4  
Basic timer (TIM6, TIM7)  
These timers can be used as a generic 16-bit timebase.  
SysTick timer  
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is  
based on a 24-bit downcounter with autoreload capability and a programmable clock  
source. It features a maskable system interrupt generation when the counter reaches ‘0’.  
3.17.5  
3.17.6  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 37 kHz internal RC and, as it operates independently of the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
DS10685 Rev 6  
35/157  
39  
 
 
 
 
 
Functional overview  
STM32L073xx  
3.18  
Communication interfaces  
2
3.18.1  
I C bus  
2
Up to three I C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.  
2
Each I C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to  
400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.  
7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with  
configurable mask) are also supported as well as programmable analog and digital noise  
filters.  
Table 11. Comparison of I2C analog and digital filters  
Analog filter  
Digital filter  
Pulse width of  
suppressed spikes  
Programmable length from 1 to 15  
I2C peripheral clocks  
50 ns  
1. Extra filtering capability vs.  
standard requirements.  
2. Stable length  
Benefits  
Available in Stop mode  
Wakeup from Stop on address  
match is not available when digital  
filter is enabled.  
Variations depending on  
temperature, voltage, process  
Drawbacks  
In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP  
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts  
verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain  
independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop  
mode on address match.  
Each I2C interface can be served by the DMA controller.  
Refer to Table 12 for an overview of I2C interface features.  
2
Table 12. STM32L073xx I C implementation  
I2C features(1)  
I2C1  
I2C2  
I2C3  
7-bit addressing mode  
X
X
X
X
X
X
X
X
X
X
X
X
10-bit addressing mode  
Standard mode (up to 100 kbit/s)  
Fast mode (up to 400 kbit/s)  
Fast Mode Plus with 20 mA output drive I/Os (up to 1  
Mbit/s)  
X
X(2)  
X
Independent clock  
SMBus  
X
X
X
-
-
-
X
X
X
Wakeup from STOP  
1. X = supported.  
2. See Table 16: STM32L073xx pin definition on page 46 for the list of I/Os that feature Fast Mode Plus  
capability  
36/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Functional overview  
3.18.2  
Universal synchronous/asynchronous receiver transmitter (USART)  
The four USART interfaces (USART1, USART2, USART4 and USART5) are able to  
communicate at speeds of up to 4 Mbit/s.  
They provide hardware management of the CTS, RTS and RS485 driver enable (DE)  
signals, multiprocessor communication mode, master synchronous communication and  
single-wire half-duplex communication mode. USART1 and USART2 also support  
SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto  
baud rate feature and has a clock domain independent from the CPU clock, allowing to  
wake up the MCU from Stop mode using baudrates up to 42 Kbaud.  
All USART interfaces can be served by the DMA controller.  
Table 13 for the supported modes and features of USART interfaces.  
Table 13. USART implementation  
USART modes/features(1)  
USART1 and USART2 USART4 and USART5  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode(2)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Smartcard mode  
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
X
-
LIN mode  
-
Dual clock domain and wakeup from Stop mode  
Receiver timeout interrupt  
Modbus communication  
-
-
-
Auto baud rate detection (4 modes)  
Driver Enable  
-
X
1. X = supported.  
2. This mode allows using the USART as an SPI master.  
3.18.3  
Low-power universal asynchronous receiver transmitter (LPUART)  
The devices embed one Low-power UART. The LPUART supports asynchronous serial  
communication with minimum power consumption. It supports half duplex single wire  
communication and modem operations (CTS/RTS). It allows multiprocessor  
communication.  
The LPUART has a clock domain independent from the CPU clock. It can wake up the  
system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop  
mode are programmable and can be:  
Start bit detection  
Or any received data frame  
Or a specific programmed data frame  
DS10685 Rev 6  
37/157  
39  
 
 
 
 
 
Functional overview  
STM32L073xx  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600  
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while  
having an extremely low energy consumption. Higher speed clock can be used to reach  
higher baudrates.  
LPUART interface can be served by the DMA controller.  
3.18.4  
Serial peripheral interface (SPI)/Inter-integrated sound (I2S)  
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in  
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
The USARTs with synchronous capability can also be used as SPI master.  
One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or  
slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output  
channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the  
I2S interfaces is configured in master mode, the master clock can be output to the external  
DAC/CODEC at 256 times the sampling frequency.  
The SPIs can be served by the DMA controller.  
Refer to Table 14 for the differences between SPI1 and SPI2.  
Table 14. SPI/I2S implementation  
SPI features(1)  
SPI1  
SPI2  
Hardware CRC calculation  
I2S mode  
X
-
X
X
X
TI mode  
X
1. X = supported.  
3.18.5  
Universal serial bus (USB)  
The STM32L073xx embed a full-speed USB device peripheral compliant with the USB  
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP  
pull-up and also battery charging detection according to Battery Charging Specification  
Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with  
added support for USB 2.0 Link Power Management. It has software-configurable endpoint  
setting with packet memory up to 1 Kbyte and suspend/resume support. It requires a  
precise 48 MHz clock which can be generated from the internal main PLL (the clock source  
must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming  
mode. The synchronization for this oscillator can be taken from the USB data stream itself  
(SOF signalization) which allows crystal-less operation.  
38/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Functional overview  
3.19  
Clock recovery system (CRS)  
The STM32L073xx embed a special block which allows automatic trimming of the internal  
48 MHz oscillator to guarantee its optimal accuracy over the whole device operational  
range. This automatic trimming is based on the external synchronization signal, which could  
be either derived from USB SOF signalization, from LSE oscillator, from an external signal  
on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also  
possible to combine automatic trimming with manual trimming action.  
3.20  
Cyclic redundancy check (CRC) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at  
linktime and stored at a given memory location.  
3.21  
Serial wire debug port (SW-DP)  
An Arm SW-DP interface is provided to allow a serial wire debugging tool to be connected to  
the MCU.  
DS10685 Rev 6  
39/157  
39  
 
 
 
Pin descriptions  
STM32L073xx  
4
Pin descriptions  
Figure 3. STM32L073xx LQFP100 pinout  
PE2  
1
2
3
4
5
6
7
8
9
10  
75  
74  
73  
72  
71  
70  
69  
VDD_USB  
PE3  
VSS  
PE4  
VDD  
PA13  
PA12  
PA 11  
PA10  
PA9  
PE5  
PE6  
VLCD  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH9  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA8  
PC9  
PH10 11  
PC8  
12  
13  
PH0-OSC_IN  
PC7  
PH1-OSC_OUT  
PC6  
LQFP100  
NRST 14  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
15  
16  
PC2 17  
PC3  
18  
19  
20  
21  
22  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0 23  
PA1  
PA2  
24  
25  
MSv35413V2  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USB are shown in grey.  
40/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Pin descriptions  
Figure 4. STM32L073xx UFBGA100 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PB8  
PD5 PB4  
PB3  
PA14 PA13  
PA12  
PA11  
PA10  
PE3 PE1  
BOOT0 PD7  
PA15  
A
B
PE2  
PB9 PB7  
PB6  
PB5  
PD4  
PD3 PD1  
PC10  
PD2 PD0 PC11 VDD  
PE4  
PD6  
PC12  
PC13  
PE5 PE0 VDD  
C
PC14-  
D
OSC32 PE6  
VSS  
PC9  
PC6  
PA9  
PC8  
PA8  
PC7  
_IN  
PC15-  
OSC32 VLCD VSS  
_OUT  
E
F
PH0-  
OSC_IN  
PH9  
VSS  
VSS  
PH1-  
OSC_ PH10  
OUT  
VDD_  
USB  
VDD  
G
PD15 PD14  
PD12 PD11  
PD13  
PC0 NRST VDD  
H
J
VSSA PC1  
PC2  
PD10  
VREF  
PC3  
-
K
L
PA5  
PA6  
PC4  
PC5  
PD8 PB15 PB14  
PB13  
PB12  
PA2  
PA3  
PD9  
VREF  
PA0  
PE10  
PB10  
PB2  
PE8  
PE7  
PE12  
PB11  
+
VDDA  
PA1  
PA4  
PB0 PB1  
PE13 PE14  
M
PA7  
PE9 PE11  
PE15  
MSv35414V3  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USBare shown in grey.  
DS10685 Rev 6  
41/157  
62  
 
Pin descriptions  
STM32L073xx  
Figure 5. STM32L073xx LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_USB  
VSS  
V
48  
1
2
3
4
5
6
7
8
LCD  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PC13  
PA13  
PA12  
PA11  
PA10  
PA9  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0 -OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PA8  
LQFP64  
PC9  
PC1  
9
PC8  
PC2  
10  
11  
12  
13  
14  
15  
16  
PC7  
PC3  
PC6  
VSSA  
PB15  
PB14  
PB13  
PB12  
VDDA  
PA0  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
MS31485V3  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USB are shown in grey.  
42/157  
DS10685 Rev 6  
 
STM32L073xx  
Pin descriptions  
Figure 6. STM32L073xx TFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
OSC32  
_IN  
PC13  
PB9  
PB4  
PB3  
PA15  
PA14  
PA13  
A
B
PC15-  
OSC32  
_OUT  
BOOT  
0
VLCD  
VSS  
PB8  
PB7  
PD2  
PC11  
PA10  
PC10  
PA9  
PA12  
PA11  
PH0-  
OSC_IN  
PB5  
PC12  
C
D
E
PH1-  
OSC_  
OUT  
VDD  
PC1  
PB6  
PC0  
VSS  
VDD  
VSS  
VDD  
VSS  
PA8  
PC7  
PC9  
PC8  
VDD_  
USB  
NRST  
VSSA  
PC2  
PA2  
PA5  
PB0  
PC6  
PB15  
PB14  
F
G
H
VREF  
+
PA0  
PA1  
PA3  
PA4  
PA6  
PA7  
PB1  
PC4  
PB2  
PC5  
PB10  
PB11  
PB13  
PB12  
VDDA  
MSv37829V2  
1. The above figure shows the package top view.  
2. the I/O pins supplied by VDD_USB are shown in grey.  
DS10685 Rev 6  
43/157  
62  
 
Pin descriptions  
STM32L073xx  
Figure 7. STM32L073xx WLCSP49 ballout  
1
2
3
4
5
6
7
VDD_  
USB  
VDD  
A
B
C
D
E
F
PA15  
PB3  
PB5  
BOOT0  
PB9  
PC13  
PA12  
PA10  
PA14  
PA13  
PB4  
PB7  
PB6  
PC1  
PB8  
PC0  
VLCD  
PC15-  
OSC32  
_OUT  
PC14-  
OSC32  
_IN  
PH1-  
OSC_  
OUT  
PH0-  
OSC_IN  
PA8  
PA11  
PA9  
PB1  
PB2  
VSS  
PA1  
NRST  
PA0  
PC2  
VDDA  
PA3  
PB15  
VREF+  
PA2  
PB13  
VDD  
PB11  
PB10  
PA7  
PB0  
PB14  
PB12  
PA4  
PA6  
G
PA5  
MSv66802V1  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USB are shown in grey.  
44/157  
DS10685 Rev 6  
 
STM32L073xx  
Pin descriptions  
Figure 8. STM32L073xx LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_USB  
V
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
LCD  
VSS  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
PA9  
LQFP48  
PA8  
VSSA  
PB15  
PB14  
PB13  
PB12  
VDDA  
9
PA0  
10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
MS31484V3  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USB are shown in grey.  
Figure 9. STM32L073xx UFQFPN48  
VLCD  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD_USB  
2
VSS  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
3
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
UFQFPN48  
7
VSSA  
8
PA8  
VDDA  
9
PB15  
PB14  
PB13  
PB12  
PA0  
10  
11  
12  
PA1  
PA2  
MSv62439V1  
1. The above figure shows the package top view.  
2. The I/O pins supplied by VDD_USB are shown in grey.  
DS10685 Rev 6  
45/157  
62  
 
 
Pin descriptions  
STM32L073xx  
Table 15. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
FTf  
TC  
B
Input / output pin  
5 V tolerant I/O  
5 V tolerant I/O, FM+ capable  
Standard 3.3V I/O  
I/O structure  
Notes  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during and after  
reset.  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 16. STM32L073xx pin definition  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
LCD_SEG38,  
TIM3_ETR  
-
-
-
-
-
-
-
-
1
2
B2  
A1  
PE2  
PE3  
I/O FT  
I/O FT  
-
-
-
-
TIM22_CH1,  
LCD_SEG39,  
TIM3_CH1  
TIM22_CH2,  
TIM3_CH2  
-
-
-
-
-
-
-
-
3
4
B1  
C2  
PE4  
PE5  
I/O FT  
I/O FT  
-
-
-
-
TIM21_CH1,  
TIM3_CH3  
46/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Pin descriptions  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
TIM21_CH2,  
TIM3_CH4  
-
-
-
-
5
6
D2  
E2  
PE6  
I/O FT  
S
-
-
RTC_TAMP3/WKUP3  
1
B6  
1
B2  
VLCD  
-
RTC_TAMP1/RTC_T  
S/  
RTC_OUT/WKUP2  
2
3
4
B7  
C6  
C7  
2
3
4
A2  
A1  
B1  
7
8
9
C1  
D1  
E1  
PC13  
I/O FT  
-
-
-
-
PC14-  
OSC32_IN I/O FT  
(PC14)  
-
-
OSC32_IN  
PC15-  
OSC32_OU I/O TC  
T (PC15)  
OSC32_OUT  
-
-
-
-
-
-
-
-
10  
11  
F2  
PH9  
I/O FT  
I/O FT  
-
-
-
-
-
-
G2  
PH10  
PH0-  
OSC_IN  
(PH0)  
5
D6  
5
C1 12  
F1  
I/O TC  
-
USB_CRS_SYNC  
OSC_IN  
PH1-  
6
7
D7  
D5  
6
7
D1 13  
E1 14  
G1  
H2  
OSC_OUT I/O TC  
(PH1)  
-
-
-
-
OSC_OUT  
-
NRST  
PC0  
I/O  
-
LPTIM1_IN1,  
LCD_SEG18,  
EVENTOUT,  
TSC_G7_IO1,  
LPUART1_RX,  
I2C3_SCL  
-
-
C5  
C4  
8
9
E3 15  
H1  
J2  
I/O FTf  
-
-
ADC_IN10  
ADC_IN11  
LPTIM1_OUT,  
LCD_SEG19,  
EVENTOUT,  
TSC_G7_IO2,  
LPUART1_TX,  
I2C3_SDA  
E2 16  
PC1  
I/O FTf  
DS10685 Rev 6  
47/157  
62  
Pin descriptions  
STM32L073xx  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
LPTIM1_IN2,  
LCD_SEG20,  
SPI2_MISO/I2S2_MCK  
, TSC_G7_IO3  
-
-
E7 10 F2 17  
J3  
PC2  
PC3  
I/O FTf  
I/O FT  
-
-
ADC_IN12  
ADC_IN13  
LPTIM1_ETR,  
LCD_SEG21,  
SPI2_MOSI/I2S2_SD,  
TSC_G7_IO4  
-
11  
-
18  
K2  
8
-
-
-
12 F1 19  
J1  
K1  
L1  
VSSA  
VREF-  
VREF+  
VDDA  
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
20  
-
E6  
G1 21  
9
F7 13 H1 22  
M1  
TIM2_CH1,  
TSC_G1_IO1,  
USART2_CTS,  
TIM2_ETR,  
USART4_TX,  
COMP1_OUT  
COMP1_INM,  
ADC_IN0,  
RTC_TAMP2/WKUP1  
10 E5 14 G2 23  
L2  
PA0  
I/O TC  
-
EVENTOUT,  
LCD_SEG0,  
TIM2_CH2,  
TSC_G1_IO2,  
USART2_RTS/  
USART2_DE,  
TIM21_ETR,  
USART4_RX  
COMP1_INP,  
ADC_IN1  
11 E4 15 H2 24  
M2  
PA1  
I/O FT  
-
TIM21_CH1,  
LCD_SEG1,  
TIM2_CH3,  
TSC_G1_IO3,  
USART2_TX,  
LPUART1_TX,  
COMP2_OUT  
COMP2_INM,  
ADC_IN2  
12 F6 16 F3 25  
K3  
PA2  
I/O FT  
-
48/157  
DS10685 Rev 6  
STM32L073xx  
Pin descriptions  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
TIM21_CH2,  
LCD_SEG2,  
TIM2_CH4,  
TSC_G1_IO4,  
USART2_RX,  
LPUART1_RX  
COMP2_INP,  
ADC_IN3  
13 G7 17 G3 26  
L3  
PA3  
I/O FT  
-
-
-
-
-
18 C2 27  
19 D2 28  
E3  
H3  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
SPI1_NSS,  
TSC_G2_IO1,  
USART2_CK,  
TIM22_ETR  
COMP1_INM,  
COMP2_INM,  
ADC_IN4,  
(1)  
14 F5 20 H3 29  
M3  
K4  
PA4  
PA5  
I/O TC  
I/O TC  
DAC_OUT1  
COMP1_INM,  
COMP2_INM,  
ADC_IN5,  
SPI1_SCK, TIM2_ETR,  
TSC_G2_IO2,  
15 G6 21 F4 30  
-
TIM2_CH1  
DAC_OUT2  
SPI1_MISO,  
LCD_SEG3,  
TIM3_CH1,  
TSC_G2_IO3,  
LPUART1_CTS,  
TIM22_CH1,  
EVENTOUT,  
COMP1_OUT  
16 G5 22 G4 31  
L4  
PA6  
I/O FT  
-
ADC_IN6  
SPI1_MOSI,  
LCD_SEG4,  
TIM3_CH2,  
17 F4 23 H4 32  
M4  
K5  
PA7  
PC4  
I/O FT  
-
-
TSC_G2_IO4,  
TIM22_CH2,  
EVENTOUT,  
COMP2_OUT  
ADC_IN7  
EVENTOUT,  
LCD_SEG22,  
LPUART1_TX  
-
-
24 H5 33  
I/O FT  
ADC_IN14  
DS10685 Rev 6  
49/157  
62  
Pin descriptions  
STM32L073xx  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
LCD_SEG23,  
LPUART1_RX,  
TSC_G3_IO1  
-
-
25 H6 34  
L5  
PC5  
PB0  
I/O FT  
I/O FT  
-
-
ADC_IN15  
EVENTOUT,  
LCD_SEG5,  
TIM3_CH3,  
LCD_VLCD3,  
ADC_IN8,  
VREF_OUT  
18 G4 26 F5 35  
M5  
TSC_G3_IO2  
LCD_SEG6,  
TIM3_CH4,  
TSC_G3_IO3,  
LPUART1_RTS/  
LPUART1_DE  
ADC_IN9,  
VREF_OUT  
19 D3 27 G5 36  
M6  
L6  
PB1  
PB2  
I/O FT  
I/O FT  
-
-
LPTIM1_OUT,  
TSC_G3_IO4,  
I2C3_SMBA  
20 E3 28 G6 37  
LCD_VLCD2  
LCD_SEG45,  
USART5_CK/  
USART5_RTS/  
USART5_DE  
-
-
-
-
-
-
-
-
-
-
-
-
38  
39  
40  
M7  
L7  
PE7  
PE8  
PE9  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
LCD_SEG46,  
USART4_TX  
TIM2_CH1,  
LCD_SEG47,  
TIM2_ETR,  
M8  
USART4_RX  
TIM2_CH2,  
LCD_SEG40,  
USART5_TX  
-
-
-
-
41  
L8  
PE10  
I/O FT  
-
-
TIM2_CH3,  
USART5_RX  
-
-
-
-
-
-
-
-
-
-
-
-
42  
43  
M9  
L9  
PE11  
PE12  
PE13  
I/O FT  
I/O FT  
I/O FT  
-
-
-
LCD_VLCD1  
LCD_VLCD3  
-
TIM2_CH4, SPI1_NSS  
LCD_SEG41,  
SPI1_SCK  
44 M10  
50/157  
DS10685 Rev 6  
STM32L073xx  
Pin descriptions  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
LCD_SEG42,  
SPI1_MISO  
-
-
-
-
-
-
-
-
45 M11  
46 M12  
PE14  
PE15  
I/O FT  
I/O FT  
-
-
-
-
LCD_SEG43,  
SPI1_MOSI  
LCD_SEG10,  
TIM2_CH3,  
TSC_SYNC,  
21 G3 29 G7 47 L10  
PB10  
PB11  
I/O FT  
-
-
-
-
LPUART1_TX,  
SPI2_SCK, I2C2_SCL,  
LPUART1_RX  
EVENTOUT,  
LCD_SEG11,  
TIM2_CH4,  
TSC_G6_IO1,  
LPUART1_RX,  
I2C2_SDA,  
22 F3 30 H7 48  
L11  
I/O FT  
LPUART1_TX  
23 D4 31 D6 49 F12  
24 G2 32 E5 50 G12  
VSS  
VDD  
S
S
-
-
-
-
-
-
SPI2_NSS/I2S2_WS,  
LCD_SEG12,  
LPUART1_RTS/  
LPUART1_DE,  
TSC_G6_IO2,  
I2C2_SMBA,  
25 G1 33 H8 51 L12  
PB12  
PB13  
I/O FT  
-
-
LCD_VLCD1  
EVENTOUT  
SPI2_SCK/I2S2_CK,  
LCD_SEG13, MCO,  
TSC_G6_IO3,  
26 F2 34 G8 52 K12  
I/O FTf  
-
LPUART1_CTS,  
I2C2_SCL, TIM21_CH1  
DS10685 Rev 6  
51/157  
62  
Pin descriptions  
STM32L073xx  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
SPI2_MISO/I2S2_MCK  
, LCD_SEG14,  
RTC_OUT,  
TSC_G6_IO4,  
LPUART1_RTS/  
LPUART1_DE,  
I2C2_SDA,  
27 F1 35 F8 53 K11  
PB14  
I/O FTf  
-
-
TIM21_CH2  
SPI2_MOSI/I2S2_SD,  
LCD_SEG15,  
28 E1 36 F7 54 K10  
PB15  
PD8  
I/O FT  
I/O FT  
-
-
-
-
RTC_REFIN  
LPUART1_TX,  
LCD_SEG28  
-
-
-
-
55  
56  
K9  
K8  
LPUART1_RX,  
LCD_SEG29  
-
-
-
-
-
-
-
-
-
-
-
-
PD9  
PD10  
PD11  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
57 J12  
58 J11  
LCD_SEG30  
LPUART1_CTS,  
LCD_SEG31  
LPUART1_RTS/  
LPUART1_DE,  
LCD_SEG32  
-
-
-
-
59 J10  
PD12  
I/O FT  
-
-
-
-
-
-
-
-
-
-
60 H12  
61 H11  
PD13  
PD14  
I/O FT  
I/O FT  
-
-
LCD_SEG33  
LCD_SEG34  
-
-
USB_CRS_SYNC,  
LCD_SEG35  
-
-
-
-
62 H10  
PD15  
I/O FT  
-
-
TIM22_CH1,  
LCD_SEG24,  
TIM3_CH1,  
-
-
37 F6 63 E12  
PC6  
I/O FT  
-
-
TSC_G8_IO1  
TIM22_CH2,  
LCD_SEG25,  
TIM3_CH2,  
-
-
38 E7 64 E11  
PC7  
I/O FT  
-
-
TSC_G8_IO2  
52/157  
DS10685 Rev 6  
STM32L073xx  
Pin descriptions  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
TIM22_ETR,  
LCD_SEG26,  
TIM3_CH3,  
-
-
-
-
39 E8 65 E10  
PC8  
PC9  
I/O FT  
I/O FTf  
-
-
-
-
TSC_G8_IO3  
TIM21_ETR,  
LCD_SEG27,  
USB_NOE/TIM3_CH4,  
TSC_G8_IO4,  
40 D8 66 D12  
I2C3_SDA  
MCO, LCD_COM0,  
USB_CRS_SYNC,  
EVENTOUT,  
29 D1 41 D7 67 D11  
PA8  
I/O FTf  
-
-
-
USART1_CK,  
I2C3_SCL  
MCO, LCD_COM1,  
TSC_G4_IO1,  
USART1_TX,  
I2C1_SCL,  
30 E2 42 C7 68 D10  
31 C1 43 C6 69 C12  
32 D2 44 C8 70 B12  
PA9  
PA10  
PA11  
I/O FTf  
I/O FTf  
I/O FT  
-
I2C3_SMBA  
LCD_COM2,  
TSC_G4_IO2,  
USART1_RX,  
I2C1_SDA  
-
-
SPI1_MISO,  
EVENTOUT,  
TSC_G4_IO3,  
USART1_CTS,  
COMP1_OUT  
(2)  
USB_DM  
SPI1_MOSI,  
EVENTOUT,  
TSC_G4_IO4,  
USART1_RTS/  
USART1_DE,  
COMP2_OUT  
(2)  
33 B1 45 B8 71 A12  
PA12  
PA13  
I/O FT  
I/O FT  
USB_DP  
SWDIO, USB_NOE,  
LPUART1_RX  
34 C2 46 A8 72 A11  
-
-
DS10685 Rev 6  
53/157  
62  
Pin descriptions  
STM32L073xx  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
-
-
-
-
-
73 C11  
VDD  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
35  
47 D5 74 F11  
36 A1 48 E6 75 G11  
37 B2 49 A7 76 A10  
VDD_USB  
SWCLK, USART2_TX,  
LPUART1_TX  
PA14  
I/O FT  
-
-
SPI1_NSS,  
LCD_SEG17,  
TIM2_ETR,  
EVENTOUT,  
USART2_RX,  
TIM2_CH1,  
38 A2 50 A6 77  
A9  
PA15  
I/O FT  
-
-
USART4_RTS/  
USART4_DE  
LPUART1_TX,  
LCD_COM4/LCD_SEG  
28/LCD_SEG48,  
USART4_TX  
-
-
-
-
-
-
51 B7 78 B11  
52 B6 79 C10  
53 C5 80 B10  
PC10  
PC11  
PC12  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
LPUART1_RX,  
LCD_COM5/LCD_SEG  
29/LCD_SEG49,  
USART4_RX  
LCD_COM6/LCD_SEG  
30/LCD_SEG50,  
USART5_TX,  
USART4_CK  
TIM21_CH1,  
SPI2_NSS/I2S2_WS  
-
-
-
-
-
-
-
-
81  
82  
C9  
B9  
PD0  
PD1  
I/O FT  
I/O FT  
-
-
-
-
SPI2_SCK/I2S2_CK  
LPUART1_RTS/  
LPUART1_DE,  
LCD_COM7/LCD_SEG  
31/LCD_SEG51,  
TIM3_ETR,  
-
-
54 B5 83  
C8  
PD2  
I/O FT  
-
-
USART5_RX  
54/157  
DS10685 Rev 6  
STM32L073xx  
Pin descriptions  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
USART2_CTS,  
LCD_SEG44,  
SPI2_MISO/I2S2_MCK  
-
-
-
-
-
-
-
-
84  
85  
B8  
B7  
PD3  
PD4  
I/O FT  
I/O FT  
-
-
-
-
USART2_RTS/  
USART2_DE,  
SPI2_MOSI/I2S2_SD  
-
-
-
-
-
-
-
-
86  
87  
A6  
B6  
PD5  
PD6  
I/O FT  
I/O FT  
-
-
USART2_TX  
USART2_RX  
-
-
USART2_CK,  
TIM21_CH2  
-
-
-
-
88  
A5  
PD7  
I/O FT  
-
-
SPI1_SCK,  
LCD_SEG7,  
TIM2_CH2,  
TSC_G5_IO1,  
EVENTOUT,  
USART1_RTS/  
USART1_DE,  
USART5_TX  
39 A3 55 A5 89  
A8  
PB3  
I/O FT  
-
COMP2_INM  
SPI1_MISO,  
LCD_SEG8,  
TIM3_CH1,  
TSC_G5_IO2,  
TIM22_CH1,  
USART1_CTS,  
USART5_RX,  
I2C3_SDA  
40 B3 56 A4 90  
A7  
PB4  
I/O FTf  
-
COMP2_INP  
SPI1_MOSI,  
LCD_SEG9,  
LPTIM1_IN1,  
I2C1_SMBA,  
41 A4 57 C4 91  
C5  
PB5  
I/O FT  
-
TIM3_CH2/TIM22_CH2  
, USART1_CK,  
USART5_CK,  
COMP2_INP  
USART5_RTS/  
USART5_DE  
DS10685 Rev 6  
55/157  
62  
Pin descriptions  
STM32L073xx  
Table 16. STM32L073xx pin definition (continued)  
Pin number  
Pin name  
(function  
Alternate functions  
Additional functions  
after reset)  
USART1_TX,  
I2C1_SCL,  
LPTIM1_ETR,  
TSC_G5_IO3  
42 B4 58 D3 92  
B5  
B4  
PB6  
PB7  
I/O FTf  
I/O FTf  
-
-
COMP2_INP  
USART1_RX,  
I2C1_SDA,  
LPTIM1_IN2,  
TSC_G5_IO4,  
USART4_CTS  
43 C3 59 C3 93  
COMP2_INP, PVD_IN  
44 A5 60 B4 94  
45 B5 61 B3 95  
A4  
A3  
BOOT0  
PB8  
I
-
-
-
-
-
LCD_SEG16,  
TSC_SYNC, I2C1_SCL  
I/O FTf  
LCD_COM3,  
EVENTOUT,  
I2C1_SDA,  
46 A6 62 A3 96  
B3  
C3  
PB9  
I/O FTf  
-
-
SPI2_NSS/I2S2_WS  
LCD_SEG36,  
EVENTOUT  
-
-
-
-
-
-
97  
98  
PE0  
PE1  
I/O FT  
I/O FT  
-
-
-
-
LCD_SEG37,  
EVENTOUT  
-
-
-
A2  
D3  
47  
63 D4 99  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
48 A7 64 E4 100 C4  
1. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O.  
2. These pins are powered by VDD_USB. For all characteristics that refer to VDD, VDD_USB must be used instead.  
56/157  
DS10685 Rev 6  
Table 17. Alternate functions port A  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/I2S2/  
USART1/2/  
LPUART1/USB/ SPI1/SPI2/I2S2/  
LPTIM1/TSC/  
TIM2/21/22/  
EVENTOUT/  
SYS_AF  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/L  
PTIM1/TIM2/3/E  
VENTOUT/  
I2C1/2/  
LPUART1/  
USART4/  
UASRT5/TIM21  
/
I2C1/USART1/2  
/LPUART1/  
TIM3/22/  
SPI2/I2S2/I2C2/  
USART1/  
TIM2/21/22  
I2C3/LPUART1/  
COMP1/2/  
TIM3  
Port  
I2C1/TSC/  
EVENTOUT  
I2C1/LCD/  
TIM2/21  
EVENTOUT  
SYS_AF  
EVENTOUT  
PA0  
-
-
TIM2_CH1  
TIM2_CH2  
TSC_G1_IO1  
TSC_G1_IO2  
USART2_CTS  
TIM2_ETR  
USART4_TX  
USART4_RX  
COMP1_OUT  
-
USART2_RTS/  
USART2_DE  
PA1  
EVENTOUT  
LCD_SEG0  
TIM21_ETR  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
TIM21_CH1  
TIM21_CH2  
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
LCD_SEG1  
LCD_SEG2  
-
TIM2_CH3  
TIM2_CH4  
-
TSC_G1_IO3  
TSC_G1_IO4  
TSC_G2_IO1  
TSC_G2_IO2  
USART2_TX  
USART2_RX  
USART2_CK  
-
LPUART1_TX  
COMP2_OUT  
-
LPUART1_RX  
-
TIM22_ETR  
TIM2_CH1  
TIM22_CH1  
TIM22_CH2  
-
-
-
TIM2_ETR  
TIM3_CH1  
TIM3_CH2  
-
-
LCD_SEG3  
LCD_SEG4  
TSC_G2_IO3 LPUART1_CTS  
EVENTOUT  
EVENTOUT  
COMP1_OUT  
COMP2_OUT  
TSC_G2_IO4  
EVENTOUT  
-
USB_CRS_  
SYNC  
PA8  
MCO  
LCD_COM0  
USART1_CK  
-
-
I2C3_SCL  
PA9  
PA10  
PA11  
MCO  
LCD_COM1  
LCD_COM2  
-
-
TSC_G4_IO1  
TSC_G4_IO2  
TSC_G4_IO3  
USART1_TX  
USART1_RX  
USART1_CTS  
-
-
-
I2C1_SCL  
I2C1_SDA  
-
I2C3_SMBA  
-
-
-
SPI1_MISO  
EVENTOUT  
COMP1_OUT  
USART1_RTS/  
USART1_DE  
PA12  
SPI1_MOSI  
-
EVENTOUT  
TSC_G4_IO4  
-
-
COMP2_OUT  
PA13  
PA14  
SWDIO  
SWCLK  
-
-
USB_NOE  
-
-
-
-
-
-
LPUART1_RX  
LPUART1_TX  
-
-
USART2_TX  
USART4_RTS/  
USART4_DE  
PA15  
SPI1_NSS  
LCD_SEG17  
TIM2_ETR  
EVENTOUT  
USART2_RX  
TIM2_CH1  
-
 
Table 18. Alternate functions port B  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/I2S2/  
USART1/2/  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/L  
PTIM1/TIM2/3/E  
VENTOUT/  
I2C1/2/  
LPUART1/  
USART4/  
UASRT5/TIM21/  
EVENTOUT  
I2C1/USART1/2/  
LPUART1/  
TIM3/22/  
EVENTOUT  
Port  
LPUART1/USB/  
LPTIM1/TSC/  
TIM2/21/22/  
EVENTOUT/  
SYS_AF  
SPI1/SPI2/I2S2/I  
2C1/LCD/  
SPI2/I2S2/I2C2/  
USART1/  
TIM2/21/22  
I2C3/LPUART1/  
COMP1/2/  
TIM3  
I2C1/TSC/  
EVENTOUT  
TIM2/21  
SYS_AF  
PB0  
EVENTOUT  
LCD_SEG5  
LCD_SEG6  
-
TIM3_CH3  
TIM3_CH4  
LPTIM1_OUT  
TIM2_CH2  
TIM3_CH1  
TSC_G3_IO2  
TSC_G3_IO3  
TSC_G3_IO4  
TSC_G5_IO1  
TSC_G5_IO2  
-
-
-
-
-
-
LPUART1_RTS/  
LPUART1_DE  
PB1  
PB2  
PB3  
PB4  
-
-
-
-
-
-
I2C3_SMBA  
-
USART1_RTS/  
USART1_DE  
SPI1_SCK  
SPI1_MISO  
LCD_SEG7  
LCD_SEG8  
EVENTOUT  
TIM22_CH1  
USART5_TX  
USART5_RX  
USART1_CTS  
I2C3_SDA  
USART5_CK,  
USART5_RTS/  
USART5_DE  
TIM3_CH2/  
TIM22_CH2  
PB5  
SPI1_MOSI  
LCD_SEG9  
LPTIM1_IN1  
I2C1_SMBA  
USART1_CK  
-
PB6  
PB7  
PB8  
USART1_TX  
USART1_RX  
-
I2C1_SCL  
I2C1_SDA  
LPTIM1_ETR  
LPTIM1_IN2  
-
TSC_G5_IO3  
TSC_G5_IO4  
TSC_SYNC  
-
-
-
-
-
-
-
-
-
USART4_CTS  
-
LCD_SEG16  
I2C1_SCL  
SPI2_NSS/  
I2S2_WS  
PB9  
-
LCD_COM3  
EVENTOUT  
-
I2C1_SDA  
-
-
PB10  
PB11  
-
LCD_SEG10  
LCD_SEG11  
TIM2_CH3  
TIM2_CH4  
TSC_SYNC  
LPUART1_TX  
LPUART1_RX  
SPI2_SCK  
-
I2C2_SCL  
I2C2_SDA  
LPUART1_RX  
LPUART1_TX  
EVENTOUT  
TSC_G6_IO1  
LPUART1_RTS/  
LPUART1_DE  
PB12 SPI2_NSS/I2S2_WS  
PB13 SPI2_SCK/I2S2_CK  
LCD_SEG12  
LCD_SEG13  
LCD_SEG14  
TSC_G6_IO2  
TSC_G6_IO3  
TSC_G6_IO4  
I2C2_SMBA  
I2C2_SCL  
I2C2_SDA  
EVENTOUT  
TIM21_CH1  
TIM21_CH2  
-
-
-
MCO  
LPUART1_CTS  
SPI2_MISO/  
PB14  
LPUART1_RTS/  
LPUART1_DE  
RTC_OUT  
I2S2_MCK  
SPI2_MOSI/  
I2S2_SD  
PB15  
LCD_SEG15  
RTC_REFIN  
-
-
-
-
-
 
Table 19. Alternate functions port C  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/I2S2/  
USART1/2/  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/  
I2C1/2/  
LPUART1/  
USART4/  
I2C1/USART1/2/  
LPUART1/  
TIM3/22/  
EVENTOUT  
SPI2/I2S2  
/I2C2/  
USART1/  
TIM2/21/22  
Port  
LPUART1/USB/  
LPTIM1/TSC/  
TIM2/21/22/  
EVENTOUT/  
SYS_AF  
SPI1/SPI2/I2S2/I2C1/  
LCD/  
I2C3/LPUART1/  
COMP1/2/  
TIM3  
I2C1/TSC/  
EVENTOUT  
TIM2/21  
LPTIM1/TIM2/3  
/EVENTOUT/SYS_AF  
UASRT5/TIM21/E  
VENTOUT  
PC0  
LPTIM1_IN1  
LPTIM1_OUT  
LCD_SEG18  
LCD_SEG19  
EVENTOUT  
EVENTOUT  
TSC_G7_IO1  
TSC_G7_IO2  
LPUART1_RX  
LPUART1_TX  
I2C3_SCL  
I2C3_SDA  
PC1  
PC2  
SPI2_MISO/  
I2S2_MCK  
LPTIM1_IN2  
LCD_SEG20  
LCD_SEG21  
TSC_G7_IO3  
TSC_G7_IO4  
SPI2_MOSI/  
I2S2_SD  
PC3  
LPTIM1_ETR  
EVENTOUT  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
LCD_SEG22  
LCD_SEG23  
LCD_SEG24  
LCD_SEG25  
LCD_SEG26  
LCD_SEG27  
LPUART1_TX  
LPUART1_RX  
TIM3_CH1  
TSC_G3_IO1  
TSC_G8_IO1  
TSC_G8_IO2  
TSC_G8_IO3  
TSC_G8_IO4  
TIM22_CH1  
TIM22_CH2  
TIM22_ETR  
TIM21_ETR  
TIM3_CH2  
TIM3_CH3  
USB_NOE/TIM3_CH4  
I2C3_SDA  
LCD_COM4/LCD_SEG  
28/LCD_SEG48  
PC10  
PC11  
PC12  
LPUART1_TX  
LPUART1_RX  
USART4_TX  
USART4_RX  
USART4_CK  
LCD_COM5/LCD_SEG  
29/LCD_SEG49  
LCD_COM6/LCD_SEG  
30/LCD_SEG50  
USART5_TX  
PC13  
PC14  
PC15  
 
Table 20. Alternate functions port D  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/I2S2/  
USART1/2/  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/  
LPTIM1/TIM2/3  
/EVENTOUT/  
SYS_AF  
I2C1/2/  
LPUART1/  
USART4/  
I2C1/USART1/2/  
LPUART1/  
TIM3/22/  
EVENTOUT  
SPI2/I2S2  
/I2C2/  
USART1/  
TIM2/21/22  
Port  
LPUART1/USB/  
LPTIM1/TSC/  
TIM2/21/22/  
EVENTOUT/  
SYS_AF  
SPI1/SPI2/I2S2/I2C1/  
LCD/TIM2/21  
I2C1/TSC/  
EVENTOUT  
I2C3/LPUART1/  
COMP1/2/TIM3  
UASRT5/TIM21/E  
VENTOUT  
PD0  
TIM21_CH1  
-
SPI2_NSS/I2S2_WS  
SPI2_SCK/I2S2_CK  
-
-
-
-
-
-
-
-
-
-
-
-
PD1  
LCD_COM7/  
LCD_SEG31/  
LCD_SEG51  
LPUART1_RTS/  
LPUART1_DE  
PD2  
TIM3_ETR  
-
-
-
USART5_RX  
-
SPI2_MISO/  
I2S2_MCK  
PD3  
PD4  
USART2_CTS  
LCD_SEG44  
-
-
-
-
-
-
-
-
-
-
USART2_RTS/  
USART2_DE  
SPI2_MOSI/I2S2_SD  
-
PD5  
PD6  
PD7  
PD8  
PD9  
PD10  
PD11  
USART2_TX  
USART2_RX  
USART2_CK  
LPUART1_TX  
LPUART1_RX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM21_CH2  
LCD_SEG28  
LCD_SEG29  
LCD_SEG30  
LCD_SEG31  
LPUART1_CTS  
LPUART1_RTS/  
LPUART1_DE  
PD12  
LCD_SEG32  
-
-
-
-
-
-
PD13  
PD14  
-
-
LCD_SEG33  
LCD_SEG34  
LCD_SEG35  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD15 USB_CRS_SYNC  
 
Table 21. Alternate functions port E  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/I2S2/  
USART1/2/  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/  
LPTIM1/TIM2/3  
/EVENTOUT/  
SYS_AF  
I2C1/2/  
LPUART1/  
USART4/  
UASRT5/TIM21/  
EVENTOUT  
I2C1/USART1/2/  
LPUART1/  
TIM3/22/  
EVENTOUT  
SPI2/I2S2  
/I2C2/  
USART1/  
TIM2/21/22  
Port  
LPUART1/USB/  
LPTIM1/TSC/  
TIM2/21/22/  
EVENTOUT/  
SYS_AF  
SPI1/SPI2/I2S2/I2C1  
/LCD/TIM2/21  
I2C1/TSC/  
EVENTOUT  
I2C3/LPUART1/  
COMP1/2/TIM3  
PE0  
-
LCD_SEG36  
EVENTOUT  
EVENTOUT  
TIM3_ETR  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
-
LCD_SEG37  
-
LCD_SEG38  
TIM22_CH1  
TIM22_CH2  
TIM21_CH1  
TIM21_CH2  
LCD_SEG39  
-
-
-
USART5_CK,  
USART5_RTS/  
USART5_DE  
PE7  
-
LCD_SEG45  
-
-
-
-
-
PE8  
PE9  
-
LCD_SEG46  
LCD_SEG47  
LCD_SEG40  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART4_TX  
-
-
-
-
-
-
-
-
TIM2_CH1  
TIM2_ETR  
-
USART4_RX  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH2  
USART5_TX  
TIM2_CH3  
-
USART5_RX  
TIM2_CH4  
-
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
-
-
-
-
-
-
LCD_SEG41  
LCD_SEG42  
LCD_SEG43  
 
Table 22. Alternate functions port H  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI1/SPI2/  
I2S2/USART1/2/  
LPUART1/USB/  
LPTIM1/TSC/  
TIM2/21/22/  
SPI1/SPI2/I2S2/  
LPUART1/  
USART5/USB/  
LPTIM1/TIM2/3/  
EVENTOUT/  
SYS_AF  
I2C1/2/  
LPUART1/  
USART4/  
I2C1/USART1/2/  
LPUART1/  
TIM3/22/  
EVENTOUT  
I2C3/  
LPUART1/  
COMP1/2/  
TIM3  
Port  
SPI2/I2S2/I2C2/  
USART1/  
TIM2/21/22  
SPI1/SPI2/I2S2  
/I2C1/LCD/TIM2/21  
I2C1/TSC/  
EVENTOUT  
UASRT5/TIM21/  
EVENTOUT  
EVENTOUT/  
SYS_AF  
PH0  
PH1  
USB_CRS_SYNC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 
STM32L073xx  
Memory mapping  
5
Memory mapping  
Refer to the product line reference manual for details on the memory mapping as well as the  
boundary addresses for all peripherals.  
DS10685 Rev 6  
63/157  
63  
 
 
Electrical characteristics  
STM32L073xx  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.6 V (for the  
A
DD  
1.65 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
ai17851c  
ai17852c  
64/157  
DS10685 Rev 6  
 
 
 
 
 
 
 
 
 
 
STM32L073xx  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
Standby-power circuitry  
(OSC32,RTC,Wake-up  
logic, RTC backup  
registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital &  
Memories)  
VDD  
VDD  
Regulator  
N × 100 nF  
+ 1 × 10 μF  
VSS  
VDDA  
VDDA  
VREF  
VREF+  
Analog:  
RC,PLL,COMP,  
….  
100 nF  
+ 1 μF  
ADC/  
DAC  
100 nF  
+ 1 μF  
VREF-  
VSSA  
VLCD  
VSS  
LCD  
VSS  
USB  
transceiver  
VDD_USB  
MSv33790V1  
DS10685 Rev 6  
65/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
6.1.7  
Optional LCD power supply scheme  
Figure 13. Optional LCD power supply scheme  
VSEL  
VDD  
VDD  
Step-up  
Converter  
N x 100 nF  
+ 1 x 10 μF  
Option 1  
Option 2  
VLCD  
100 nF  
LCD  
VLCD  
CEXT  
VSS  
MSv33791V1  
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.  
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an  
external capacitance is needed for correct behavior of this converter.  
6.1.8  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
VDDA  
IDD  
NxVDD  
N × 100 nF  
+ 1 × 10 μF  
NxVSS  
MSv34711V1  
66/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 23: Voltage characteristics,  
Table 24: Current characteristics, and Table 25: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Device mission profile (application conditions)  
is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are  
available on demand.  
Table 23. Voltage characteristics  
Symbol  
Definition  
Min  
Max  
Unit  
External main supply voltage  
(including VDDA, VDD_USB, VDD  
VDD–VSS  
–0.3  
4.0  
(1)  
)
Input voltage on FT and FTf pins  
Input voltage on TC pins  
VSS 0.3  
VSS 0.3  
VSS  
VDD+4.0  
4.0  
V
(2)  
VIN  
Input voltage on BOOT0  
VDD + 4.0  
4.0  
Input voltage on any other pin  
Variations between different VDDx power pins  
VSS 0.3  
-
|ΔVDD  
|VDDA-VDDx  
|ΔVSS  
|
50  
Variations between any VDDx and VDDA power  
pins(3)  
|
-
300  
mV  
V
Variations between all different ground pins  
including VREF- pin  
|
-
-
50  
V
REF+ –VDDA Allowed voltage difference for VREF+ > VDDA  
0.4  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
see Section 6.3.11  
1. All main power (VDD,VDD_USB, VDDA) and ground (VSS, VSSA) pins must always be connected to the  
external power supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 24 for maximum allowed injected current values.  
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and device operation. VDD_USB is independent  
from VDD and VDDA: its value does not need to respect this rule.  
DS10685 Rev 6  
67/157  
128  
 
 
 
 
Electrical characteristics  
Symbol  
STM32L073xx  
Table 24. Current characteristics  
Ratings  
Max.  
Unit  
(2)  
ΣIVDD  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Total current into VDD_USB power lines (source)  
105  
105  
25  
(2)  
ΣIVSS  
ΣIVDD_USB  
IVDD(PIN)  
IVSS(PIN)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
100  
100  
Output current sunk by any I/O and control pin except FTf  
pins  
16  
IIO  
Output current sunk by FTf pins  
22  
Output current sourced by any I/O and control pin  
-16  
mA  
Total output current sunk by sum of all IOs and control pins  
except PA11 and PA12(2)  
90  
25  
ΣIIO(PIN)  
Total output current sunk by PA11 and PA12  
Total output current sourced by sum of all IOs and control  
pins(2)  
-90  
Injected current on FT, FTf, RST and B pins  
Injected current on TC pin  
-5/+0(3)  
± 5(4)  
± 25  
IINJ(PIN)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
LQFP packages.  
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 23 for maximum allowed input voltage values.  
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 23: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Table 25. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
68/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 26. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK Internal AHB clock frequency  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
-
-
0
0
32  
32  
MHz  
0
32  
BOR detector disabled  
BOR detector enabled, at power-on  
1.65  
1.8  
3.6  
3.6  
3.6  
VDD  
Standard operating voltage  
V
BOR detector disabled, after power-on 1.65  
Analog operating voltage (DAC not  
used)  
(1)  
VDDA  
VDDA  
Must be the same voltage as VDD  
1.65  
1.8  
3.6  
3.6  
V
V
Analog operating voltage (all  
features)  
(1)  
Must be the same voltage as VDD  
USB peripheral used  
USB peripheral not used  
2.0 V VDD 3.6 V  
1.65 V VDD 2.0 V  
-
3.0  
3.6  
3.6  
VDD_ Standard operating voltage, USB  
V
V
domain(2)  
USB  
0
-0.3  
5.5  
Input voltage on FT, FTf and RST  
pins(3)  
-0.3  
5.2  
VIN  
Input voltage on BOOT0 pin  
0
5.5  
Input voltage on TC pin  
-
-0.3  
VDD+0.3  
351  
488  
313  
435  
417  
370  
714  
88  
UFBGA100  
LQFP100  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TFBGA64  
Power dissipation at TA = 85 °C  
LQFP64  
(range 6) or TA = 105 °C (range 7) (4)  
WLCSP49  
LQFP48  
UFQFPN48  
UFBGA100  
LQFP100  
PD  
mW  
122  
78  
TFBGA64  
Power dissipation at TA = 125 °C  
(range 3) (4)  
WLCSP49  
LQFP64  
104  
109  
93  
LQFP48  
UFQFPN48  
179  
DS10685 Rev 6  
69/157  
128  
 
 
 
 
Electrical characteristics  
STM32L073xx  
Table 26. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Maximum power dissipation (range 6)  
Maximum power dissipation (range 7)  
Maximum power dissipation (range 3)  
–40  
–40  
–40  
–40  
–40  
–40  
85  
TA  
Temperature range  
105  
125  
105  
125  
130  
°C  
Junction temperature range (range 6) -40 °C TA 85 °  
Junction temperature range (range 7) -40 °C TA 105 °C  
Junction temperature range (range 3) -40 °C TA 125 °C  
TJ  
1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA  
can be tolerated during power-up and normal operation.  
2. VDD_USB must respect the following conditions:  
- When VDD is powered-on (VDD < VDD_min), VDD_USB should be always lower than VDD.  
- When VDD is powered-down (VDD < VDD_min), VDD_USB should be always lower than VDD.  
- In operating mode, VDD_USB could be lower or higher VDD.  
- If the USB is not used, VDD_USB must range from VDD_min to VDD_max to be able to use PA11 and PA12 as standard I/Os.  
- If the USB is not used and PA11/PA12 are not used as standard I/Os, VDD_USB must be connected to a VSS or VDD power  
supply voltage (VDD_USB must not be left floating).  
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 92: Thermal characteristics on  
page 150).  
70/157  
DS10685 Rev 6  
 
STM32L073xx  
Electrical characteristics  
6.3.2  
Embedded reset and power control block characteristics  
The parameters given in the following table are derived from the tests performed under the  
ambient temperature condition summarized in Table 26.  
Table 27. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
BOR detector enabled  
BOR detector disabled  
BOR detector enabled  
BOR detector disabled  
0
0
-
-
VDD rise time rate  
1000  
µs/V  
(1)  
tVDD  
20  
0
-
VDD fall time rate  
-
1000  
V
DD rising, BOR enabled  
-
2
3.3  
ms  
1.6  
(1)  
TRSTTEMPO  
Reset temporization  
VDD rising, BOR disabled(2)  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
0.4  
1
0.7  
1.5  
1.5  
1.7  
1.65  
1.65  
1.74  
1.8  
Power-on/power down reset  
threshold  
VPOR/PDR  
VBOR0  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
1.3  
1.67  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
1.69 1.76  
1.87 1.93 1.97  
1.96 2.03 2.07  
2.22 2.30 2.35  
2.31 2.41 2.44  
2.45 2.55  
2.54 2.66  
2.6  
2.7  
2.68  
2.78  
1.8  
2.8  
2.9  
2.85  
2.95  
V
1.85 1.88  
Programmable voltage detector  
threshold 0  
1.88 1.94 1.99  
1.98 2.04 2.09  
2.08 2.14 2.18  
2.20 2.24 2.28  
2.28 2.34 2.38  
2.39 2.44 2.48  
2.47 2.54 2.58  
2.57 2.64 2.69  
2.68 2.74 2.79  
2.77 2.83 2.88  
2.87 2.94 2.99  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
DS10685 Rev 6  
71/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
Table 27. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Falling edge  
Min  
Typ  
Max Unit  
2.97 3.05 3.09  
3.08 3.15 3.20  
VPVD6  
PVD threshold 6  
V
Rising edge  
BOR0 threshold  
-
-
40  
-
-
Vhyst  
Hysteresis voltage  
mV  
All BOR and PVD thresholds  
excepting BOR0  
100  
1. Guaranteed by characterization results.  
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.  
6.3.3  
Embedded internal reference voltage  
The parameters given in Table 29 are based on characterization results, unless otherwise  
specified.  
Table 28. Embedded internal reference voltage calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 25 °C  
VREFINT_CAL  
0x1FF8 0078 - 0x1FF8 0079  
VDDA= 3 V  
(1)  
Table 29. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(2)  
VREFINT out  
Internal reference voltage  
– 40 °C < TJ < +125 °C 1.202  
1.224  
2
1.242  
3
V
TVREFINT  
Internal reference startup time  
-
-
-
ms  
VDDA and VREF+ voltage during  
VREFINT factory measure  
VVREF_MEAS  
2.99  
3
-
3.01  
±5  
V
Including uncertainties  
due to ADC and  
Accuracy of factory-measured  
VREFINT value(3)  
AVREF_MEAS  
-
mV  
VDDA/VREF+ values  
(4)  
TCoeff  
Temperature coefficient  
Long-term stability  
Voltage coefficient  
–40 °C < TJ < +125 °C  
1000 hours, T= 25 °C  
3.0 V < VDDA < 3.6 V  
-
-
-
25  
-
100  
1000  
2000  
ppm/°C  
ppm  
(4)  
ACoeff  
(4)  
VDDCoeff  
-
ppm/V  
ADC sampling time when  
reading the internal reference  
voltage  
(4)(5)  
TS_vrefint  
-
5
10  
-
µs  
Startup time of reference  
voltage buffer for ADC  
(4)  
TADC_BUF  
-
-
-
-
-
10  
25  
µs  
Consumption of reference  
voltage buffer for ADC  
(4)  
IBUF_ADC  
13.5  
µA  
(4)  
IVREF_OUT  
VREF_OUT output current(6)  
-
-
-
-
-
-
1
µA  
pF  
(4)  
CVREF_OUT  
VREF_OUT output load  
50  
72/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Symbol  
Electrical characteristics  
(1)  
Table 29. Embedded internal reference voltage (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Consumption of reference  
voltage buffer for VREF_OUT  
and COMP  
(4)  
ILPBUF  
-
-
730  
1200  
nA  
(4)  
VREFINT_DIV1  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
-
-
-
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
(4)  
VREFINT_DIV2  
VREFINT  
(4)  
VREFINT_DIV3  
1. Refer to Table 41: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current  
consumption (IREFINT).  
2. Guaranteed by test in production.  
3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.  
4. Guaranteed by design.  
5. Shortest sampling time can be determined in the application by multiple iterations.  
6. To guarantee less than 1% VREF_OUT deviation.  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, temperature, I/O pin loading, device software configuration, operating  
frequencies, I/O pin switching rate, program location in memory and executed binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified  
otherwise.  
The current consumption values are derived from the tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 26: General operating  
DD  
conditions unless otherwise specified.  
The MCU is placed under the following conditions:  
All I/O pins are configured in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time and prefetch is adjusted depending on fHCLK  
frequency and voltage range to provide the best CPU performance unless otherwise  
specified.  
When the peripherals are enabled f  
= f  
= f  
APB1  
APB2 APB  
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or  
HSE = 16 MHz (if HSE bypass mode is used)  
The HSE user clock applied to OSCI_IN input follows the characteristic specified in  
Table 43: High-speed external user clock characteristics  
For maximum current consumption V = V  
= 3.6 V is applied to all supply pins  
DD  
DDA  
For typical current consumption V = V  
= 3.0 V is applied to all supply pins if not  
DDA  
DD  
specified otherwise  
The parameters given in Table 51, Table 26 and Table 27 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 26.  
DD  
DS10685 Rev 6  
73/157  
128  
 
Electrical characteristics  
STM32L073xx  
Table 30. Current consumption in Run mode, code with data processing running from  
Flash memory  
fHCLK  
(MHz)  
Symbol  
Parameter  
Condition  
Typ  
Max(1) Unit  
1
2
190  
345  
650  
0,8  
250  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
380  
670  
0,86  
1,7  
µA  
4
4
fHSE = fHCLK up to  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16MHz included,  
fHSE = fHCLK/2 above  
16 MHz (PLL ON)(2)  
8
1,55  
2,95  
1,9  
16  
8
3,1  
mA  
2,1  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
16  
32  
0,065  
0,524  
4,2  
3,55  
6,65  
39  
3,8  
IDD (Run  
from Flash  
memory)  
Supply current in Run  
mode code executed  
from Flash memory  
7,2  
130  
210  
770  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
MSI clock source  
115  
700  
µA  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16  
32  
2,9  
3,2  
7,4  
HSI clock source  
(16MHz)  
mA  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
7,15  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
74/157  
DS10685 Rev 6  
 
STM32L073xx  
Symbol Parameter  
Supply  
Electrical characteristics  
Table 31. Current consumption in Run mode vs code type,  
code with data processing running from Flash memory  
Conditions  
fHCLK  
Typ  
Unit  
Dhrystone  
CoreMark  
650  
655  
485  
385  
Range 3,  
VCORE=1.2 V,  
VOS[1:0]=11  
Fibonacci  
4 MHz  
µA  
while(1)  
IDD  
(Run  
from  
current in  
Run mode,  
code  
while(1), 1WS,  
prefetch OFF  
fHSE = fHCLK up to  
16 MHz included, fHSE  
= fHCLK/2 above 16  
MHz (PLL ON)(1)  
375  
Dhrystone  
CoreMark  
Fibonacci  
while(1)  
6,65  
6,9  
Flash executed  
memory) from Flash  
memory  
Range 1,  
VCORE=1.8 V,  
VOS[1:0]=01  
6,75  
5,8  
32 MHz  
mA  
while(1), prefetch  
OFF  
5,5  
1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
Figure 15. I vs V , at T = 25/55/85/105 °C, Run mode, code running from  
DD  
DD  
A
Flash memory, Range 2, HSE, 1WS  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
VDD (V)  
1.65  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
125 °C  
MSv37843V1  
DS10685 Rev 6  
75/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
Figure 16. I vs V , at T = 25/55/85/105 °C, Run mode, code running from  
DD  
DD  
A
Flash memory, Range 2, HSI16, 1WS  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
VDD (V)  
1.65  
1.8  
2
2.2  
2.4  
2.6  
-40 °C  
2.8  
3
3.2  
3.4  
3.6  
25 °C  
55 °C  
85 °C  
105 °C  
125 °C  
MSv37844V1  
Table 32. Current consumption in Run mode, code with data processing running from RAM  
fHCLK  
Symbol  
Parameter  
Condition  
Typ  
Max(1)  
Unit  
(MHz)  
1
2
175  
315  
570  
0,71  
1,35  
2,7  
230  
360  
630  
0,78  
1,6  
3
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
µA  
4
4
fHSE = fHCLK up to  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16 MHz included,  
fHSE = fHCLK/2 above  
16 MHz (PLL ON)(2)  
8
16  
8
mA  
1,7  
1,9  
3,7  
7,1  
98  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
Supply current in Run  
mode code executed  
from RAM, Flash  
16  
32  
0,065  
0,524  
4,2  
3,2  
I
DD (Run  
6,65  
38  
from RAM)  
memory switched off  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
MSI clock  
105  
615  
160  
710  
µA  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16  
32  
2,85  
6,85  
3
HSI clock source  
(16 MHz)  
mA  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
7,3  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
76/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
Table 33. Current consumption in Run mode vs code type,  
(1)  
code with data processing running from RAM  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ Unit  
Dhrystone  
CoreMark  
Fibonacci  
while(1)  
570  
Range 3,  
VCORE=1.2 V,  
VOS[1:0]=11  
670  
µA  
410  
4 MHz  
Supply current in  
Run mode, code  
executed from  
RAM, Flash  
fHSE = fHCLK up to  
16 MHz included,  
IDD (Run  
from  
RAM)  
375  
fHSE = fHCLK/2 above  
Dhrystone  
CoreMark  
Fibonacci  
while(1)  
6,65  
memory switched 16 MHz (PLL ON)(2)  
off  
Range 1,  
6,95  
mA  
5,9  
VCORE=1.8 V,  
32 MHz  
VOS[1:0]=01  
5,2  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
DS10685 Rev 6  
77/157  
128  
 
Electrical characteristics  
STM32L073xx  
Table 34. Current consumption in Sleep mode  
Symbol  
Parameter  
Condition  
fHCLK (MHz)  
Typ  
Max(1)  
Unit  
1
2
43,5  
72  
110  
140  
200  
220  
380  
690  
460  
840  
2000  
93  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
4
130  
160  
305  
590  
370  
715  
1650  
18  
4
fHSE = fHCLK up to  
16 MHz included,  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
8
fHSE = fHCLK/2 above  
16 MHz (PLL ON)(2)  
16  
8
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
Supply current in  
Sleep mode, Flash  
memory switched  
OFF  
16  
32  
0,065  
0,524  
4,2  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
MSI clock  
31,5  
140  
110  
230  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16  
32  
665  
850  
HSI clock source  
(16 MHz)  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
1750  
2100  
IDD  
(Sleep)  
µA  
1
2
57,5  
84  
130  
160  
220  
240  
400  
710  
470  
860  
2000  
110  
120  
240  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
4
150  
170  
315  
605  
380  
730  
1650  
29,5  
44,5  
150  
4
fHSE = fHCLK up to  
16MHz included,  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
8
fHSE = fHCLK/2 above  
16 MHz (PLL ON)(2)  
16  
8
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
Supply current in  
Sleep mode, Flash  
memory switched  
ON  
16  
32  
0,065  
0,524  
4,2  
Range3,  
Vcore=1.2 V  
VOS[1:0]=11  
MSI clock  
Range2,  
Vcore=1.5 V  
VOS[1:0]=10  
16  
32  
680  
930  
HSI clock source  
(16MHz)  
Range1,  
Vcore=1.8 V  
VOS[1:0]=01  
1750  
2200  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
78/157  
DS10685 Rev 6  
 
STM32L073xx  
Electrical characteristics  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
Table 35. Current consumption in Low-power run mode  
fHCLK  
(MHz)  
Symbol Parameter  
Condition  
Typ Max(1) Unit  
TA = 40 to 25°C  
TA = 85°C  
9,45  
14  
12  
58  
MSI clock = 65 kHz,  
fHCLK= 32 kHz  
0,032  
0,065  
TA = 105°C  
TA = 125°C  
TA = 40 to 25°C  
TA = 85°C  
21  
64  
36,5  
14,5  
19,5  
26  
160  
18  
All peripherals  
OFF, code  
executed from  
RAM, Flash  
memory switched  
OFF, VDD from  
1.65 to 3.6 V  
60  
MSI clock = 65 kHz,  
fHCLK= 65kHz  
TA = 105°C  
TA = 125°C  
TA = 40 to 25°C  
TA = 55°C  
65  
42  
160  
30  
26,5  
27,5  
31  
60  
MSI clock=131 kHz,  
fHCLK= 131 kHz  
TA = 85°C  
0,131  
66  
TA = 105°C  
TA = 125°C  
TA = 40 to 25°C  
TA = 85°C  
37,5  
53,5  
24,5  
30  
77  
Supply  
current in  
(LP Run) Low-power  
run mode  
170  
34  
IDD  
µA  
82  
MSI clock = 65 kHz,  
fHCLK= 32 kHz  
0,032  
0,065  
TA = 105°C  
TA = 125°C  
TA = 40 to 25°C  
TA = 85°C  
38,5  
58  
90  
120  
40  
30,5  
36,5  
45  
All peripherals  
OFF, code  
executed from  
Flash memory,  
VDD from 1.65 V  
to 3.6 V  
88  
MSI clock = 65 kHz,  
fHCLK= 65 kHz  
TA = 105°C  
TA = 125°C  
TA = 40 to 25°C  
TA = 55°C  
96  
64,5  
45  
120  
56  
48  
96  
MSI clock =  
131 kHz,  
fHCLK= 131 kHz  
TA = 85°C  
0,131  
51  
110  
120  
150  
TA = 105°C  
TA = 125°C  
59,5  
79,5  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
DS10685 Rev 6  
79/157  
128  
 
Electrical characteristics  
STM32L073xx  
Figure 17. I vs V , at T = 25 °C, Low-power run mode, code running  
DD  
DD  
A
from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS  
IDD (mA)  
4,5E-02  
4,0E-02  
3,5E-02  
3,0E-02  
2,5E-02  
2,0E-02  
1,5E-02  
1,0E-02  
5,0E-03  
0
VDD (V)  
3,6  
1,65  
1,8  
2
2,2  
2,4  
2,6  
-40  
2,8  
3
3,2  
3,4  
25  
55  
85  
105  
125  
MSv37845V2  
Table 36. Current consumption in Low-power sleep mode  
Max  
Symbol  
Parameter  
Condition  
Typ  
Unit  
(1)  
MSI clock = 65 kHz,  
f
HCLK= 32 kHz,  
TA = 40 to 25°C 4,7  
TA = 40 to 25°C 17  
-
Flash memory OFF  
24  
30  
47  
70  
24  
31  
47  
70  
27  
28  
33  
50  
73  
TA = 85°C  
TA= 105°C  
TA= 125°C  
19,5  
23  
MSI clock = 65 kHz,  
fHCLK= 32 kHz  
32,5  
All peripherals  
OFF, code  
executed from  
TA= 40 to 25°C 17  
Supply current in  
Low-power sleep  
mode  
IDD  
(LP Sleep)  
µA  
TA= 85°C  
TA = 105°C  
TA = 125°C  
20  
MSI clock = 65 kHz,  
fHCLK= 65 kHz  
Flash memory, VDD  
from 1.65 to 3.6 V  
23,5  
32,5  
TA= 40 to 25°C 19,5  
TA = 55°C  
TA = 85°C  
TA = 105°C  
TA= 125°C  
20,5  
22,5  
26  
MSI clock = 131kHz,  
fHCLK= 131 kHz  
35  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
80/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
Table 37. Typical and maximum current consumptions in Stop mode  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
TA = 40 to 25°C  
TA = 55°C  
0,43  
0,735  
2,25  
5,3  
1,00  
2,50  
IDD (Stop) Supply current in Stop mode  
TA= 85°C  
4,90  
13,00  
28,00  
µA  
TA = 105°C  
TA = 125°C  
12,5  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified.  
Figure 18. I vs V , at T = 25/55/ 85/105/125 °C, Stop mode with RTC enabled  
DD  
DD  
A
and running on LSE Low drive  
1.6E-02  
1.4E-02  
1.2E-02  
1.0E-02  
8.0E-03  
6.0E-03  
4.0E-03  
2.0E-03  
0
VDD (V)  
1.65  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
125 °C  
MSv37846V1  
DS10685 Rev 6  
81/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
Figure 19. I vs V , at T = 25/55/85/105/125 °C, Stop mode with RTC disabled,  
DD  
DD  
A
all clocks OFF  
1.4E-02  
1.2E-02  
1.0E-02  
8.0E-03  
6.0E-03  
4.0E-03  
2.0E-03  
0
VDD (V)  
3.6  
1.65  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
-40 °C  
25 °C  
55 °C  
85 °C  
105 °C  
125 °C  
MSv37847V1  
Table 38. Typical and maximum current consumptions in Standby mode  
Symbol  
Parameter  
Conditions  
TA = 40 to 25°C  
Typ  
Max(1) Unit  
0,855  
-
1,70  
2,90  
3,30  
4,10  
TA = 55 °C  
TA= 85 °C  
Independent watchdog  
and LSI enabled  
-
TA = 105 °C  
TA = 125 °C  
TA = 40 to 25°C  
TA = 55 °C  
-
-
8,50  
µA  
0,60  
IDD  
(Standby)  
Supply current in Standby  
mode  
0,29  
0,32  
0,5  
0,94  
2,6  
1,20  
2,30  
3,00  
7,00  
Independent watchdog  
and LSI OFF  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
1. Guaranteed by characterization results at 125 °C, unless otherwise specified  
82/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Symbol  
Electrical characteristics  
Table 39. Average current consumption during Wakeup  
Current  
parameter  
System frequency  
consumption  
during wakeup  
Unit  
HSI  
HSI/4  
1
0,7  
0,7  
0,4  
0,1  
0,21  
IDD (Wakeup from Supply current during Wakeup from  
MSI clock = 4,2 MHz  
MSI clock = 1,05 MHz  
MSI clock = 65 KHz  
-
Stop)  
Stop mode  
mA  
I
DD (Reset)  
Reset pin pulled down  
BOR ON  
I
DD (Power-up)  
-
0,23  
With Fast wakeup set  
MSI clock = 2,1 MHz  
MSI clock = 2,1 MHz  
0,5  
IDD (Wakeup from  
StandBy)  
With Fast wakeup disabled  
0,12  
DS10685 Rev 6  
83/157  
128  
 
Electrical characteristics  
STM32L073xx  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in the following tables. The  
MCU is placed under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked OFF  
with only one peripheral clocked on  
(1)  
Table 40. Peripheral current consumption in Run or Sleep mode  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
Range 2,  
Range 3,  
Low-power  
Peripheral  
Unit  
VCORE=1.8 V  
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11  
V
CORE=1.5 V  
V
CORE=1.2 V  
sleep and  
run  
CRS  
2.5  
4
2
3.5  
9.5  
9
2
3
2
2.5  
9
DAC1/2  
I2C1  
11  
11  
4
7.5  
7
I2C3  
9
LCD1  
3.5  
8.5  
6.5  
4.5  
12  
4
3
2.5  
8
LPTIM1  
LPUART1  
SPI2  
10  
8
6.5  
5.5  
3.5  
9.5  
3
6
9
4
µA/MHz  
APB1  
USART2  
USART4  
USART5  
USB  
14.5  
5
11  
5
(fHCLK  
)
5
4
3
5
8.5  
10.5  
12  
3.5  
3.5  
3
4.5  
8.5  
10  
3
4
4.5  
9
TIM2  
7
TIM3  
8
11  
2
TIM6  
2.5  
2.5  
2
TIM7  
3
2
WWDG  
2
2
84/157  
DS10685 Rev 6  
 
STM32L073xx  
Electrical characteristics  
(1)  
Table 40. Peripheral current consumption in Run or Sleep mode (continued)  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11  
Range 2,  
CORE=1.5 V  
Range 3,  
CORE=1.2 V  
Low-power  
sleep and  
run  
Peripheral  
Unit  
V
V
ADC1(2)  
SPI1  
5.5  
4
5
3
3.5  
3
4
2.5  
12  
5.5  
6
USART1  
TIM21  
14.5  
7.5  
7
11.5  
6
9.5  
5
µA/MHz  
APB2  
(fHCLK  
)
TIM22  
6
5
FIREWALL  
DBGMCU  
SYSCFG  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
CRC  
1.5  
1.5  
2.5  
3.5  
3.5  
8.5  
1
1
1
0.5  
0.5  
1.5  
2.5  
2.5  
7
1
1
2
2
3
2.5  
2
2.5  
6.5  
0.5  
6
Cortex-  
M0+ core  
I/O port  
5.5  
0.5  
5
µA/MHz  
(fHCLK  
)
0.5  
6
8
1.5  
1.5  
0(3)  
10  
5.5  
3
1
1
0.5  
1
1
1
FLASH  
DMA1  
0(3)  
0(3)  
6.5  
0.5  
2
0(3)  
8.5  
0.5  
3
µA/MHz  
(fHCLK  
AHB  
8
)
RNG  
1
TSC  
2.5  
µA/MHz  
(fHCLK  
All enabled  
PWR  
204  
2.5  
162  
2
130  
2
202  
1
)
µA/MHz  
(fHCLK  
)
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock  
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz  
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for  
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.  
2. HSI oscillator is OFF for this measure.  
3. Current consumption is negligible and close to 0 µA.  
DS10685 Rev 6  
85/157  
128  
 
Electrical characteristics  
STM32L073xx  
(1)  
Table 41. Peripheral current consumption in Stop and Standby mode  
Typical consumption, TA = 25 °C  
Symbol  
Peripheral  
Unit  
VDD=1.8 V  
VDD=3.0 V  
IDD(PVD / BOR)  
-
0.7  
-
1.2  
1.7  
IREFINT  
-
LSE Low drive(2)  
LSI  
-
-
-
0.11  
0.27  
0.2  
0,13  
0.31  
0.3  
IWDG  
-
-
LPTIM1, Input 100 Hz  
LPTIM1, Input 1 MHz  
0.01  
11  
0,01  
12  
µA  
-
-
-
LPUART1  
RTC  
-
0,5  
0,3  
0.16  
0.15  
LCD1 (static duty)  
0.15  
µA  
-
LCD1 (1/8 duty)  
1.6  
2.6  
1. LCD, LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.  
2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN  
and OSC32_OUT.-  
6.3.5  
Wakeup time from low-power mode  
The wakeup times given in the following table are measured with the MSI or HSI16 RC  
oscillator. The clock source used to wake up the device depends on the current operating  
mode:  
Sleep mode: the clock source is the clock that was set before entering Sleep mode  
Stop mode: the clock source is either the MSI oscillator in the range configured before  
entering Stop mode, the HSI16 or HSI16/4.  
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 26.  
86/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Symbol  
Electrical characteristics  
Table 42. Low-power mode wakeup timings  
Parameter Conditions  
fHCLK = 32 MHz  
Typ  
Max  
Unit  
tWUSLEEP Wakeup from Sleep mode  
7
8
fHCLK = 262 kHz  
Flash memory enabled  
Number  
of clock  
cycles  
7
9
8
tWUSLEEP_ Wakeup from Low-power sleep mode,  
fHCLK = 262 kHz  
LP  
f
HCLK = 262 kHz  
10  
Flash memory switched OFF  
fHCLK = fMSI = 4.2 MHz  
fHCLK = fHSI = 16 MHz  
fHCLK = fHSI/4 = 4 MHz  
5.0  
4.9  
8.0  
8
7
Wakeup from Stop mode, regulator in Run  
mode  
11  
fHCLK = fMSI = 4.2 MHz  
Voltage range 1  
5.0  
5.0  
5.0  
8
8
8
fHCLK = fMSI = 4.2 MHz  
Voltage range 2  
f
HCLK = fMSI = 4.2 MHz  
Voltage range 3  
f
HCLK = fMSI = 2.1 MHz  
7.3  
13  
13  
23  
38  
65  
120  
260  
7
Wakeup from Stop mode, regulator in low-  
power mode  
fHCLK = fMSI = 1.05 MHz  
fHCLK = fMSI = 524 kHz  
tWUSTOP  
µs  
28  
f
HCLK = fMSI = 262 kHz  
51  
fHCLK = fMSI = 131 kHz  
fHCLK = MSI = 65 kHz  
100  
190  
4.9  
8.0  
4.9  
7.9  
4.7  
f
HCLK = fHSI = 16 MHz  
fHCLK = fHSI/4 = 4 MHz  
fHCLK = fHSI = 16 MHz  
11  
7
Wakeup from Stop mode, regulator in low-  
power mode, code running from RAM  
f
HCLK = fHSI/4 = 4 MHz  
10  
8
fHCLK = fMSI = 4.2 MHz  
fHCLK = MSI = 2.1 MHz  
Wakeup from Standby mode  
FWU bit = 1  
65  
130  
3
tWUSTDBY  
Wakeup from Standby mode  
FWU bit = 0  
f
HCLK = MSI = 2.1 MHz  
2.2  
ms  
µs  
Wakeup time required to calculate the  
maximum USART/LPUART baudrate  
while waking up from Stop mode using the mode  
USART/LPUART  
tWUUSART  
Stop mode, regulator in Run  
tWUSTOP  
tWULPUART  
DS10685 Rev 6  
87/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The  
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the  
recommended clock input waveform is shown in Figure 20.  
(1)  
Table 43. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CSS is ON or  
PLL is used  
1
8
32  
MHz  
User external clock source  
frequency  
fHSE_ext  
CSS is OFF,  
PLL not used  
0
8
32  
MHz  
V
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
0.3VDD  
OSC_IN high or low time  
OSC_IN rise or fall time  
12  
-
-
-
-
tw(HSE)  
-
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance  
DuCy(HSE) Duty cycle  
-
45  
-
2.6  
-
pF  
%
-
-
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design.  
Figure 20. High-speed external clock source AC timing diagram  
VHSEH  
90%  
10%  
VHSEL  
t
tW(HSE)  
tr(HSE)  
tf(HSE)  
tW(HSE)  
THSE  
fHSE_ext  
EXTERNAL  
IL  
STM32Lxx  
OSC _IN  
CLOCK SOURCE  
ai18232c  
88/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
Low-speed external user clock generated from an external source  
The characteristics given in the following table result from tests performed using a low-  
speed external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 26.  
(1)  
Table 44. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
1
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
465  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
-
OSC32_IN high or low time  
OSC32_IN rise or fall time  
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
10  
CIN(LSE) OSC32_IN input capacitance  
DuCy(LSE) Duty cycle  
-
-
-
45  
-
0.6  
-
pF  
%
-
-
55  
±1  
IL  
OSC32_IN Input leakage current VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production  
Figure 21. Low-speed external clock source AC timing diagram  
VLSEH  
90%  
10%  
VLSEL  
t
tW(LSE)  
tr(LSE)  
tf(LSE)  
tW(LSE)  
TLSE  
fLSE_ext  
EXTERNAL  
IL  
STM32Lxx  
OSC32_IN  
CLOCK SOURCE  
ai18233c  
DS10685 Rev 6  
89/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 45. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 45. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
fOSC_IN Oscillator frequency  
-
-
1
-
25 MHz  
RF  
Feedback resistor  
200  
-
-
kΩ  
Maximum critical crystal  
transconductance  
µA  
/V  
Gm  
Startup  
-
-
700  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
-
ms  
(2)  
1. Guaranteed by design.  
2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is  
enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard  
crystal resonator and it can vary significantly with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 22). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
Figure 22. HSE oscillator circuit diagram  
f
to core  
HSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM32  
OSC_OUT  
C
L2  
ai18235b  
90/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 46. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 46. LSE oscillator characteristics  
Symbol  
Parameter  
Conditions(2)  
Min(2) Typ  
Max Unit  
fLSE  
LSE oscillator frequency  
-
-
32.768  
-
-
kHz  
µA/V  
s
LSEDRV[1:0]=00  
lower driving capability  
0.5  
LSEDRV[1:0]= 01  
medium low driving capability  
-
-
-
-
0.75  
1.7  
Maximum critical crystal  
transconductance  
Gm  
LSEDRV[1:0] = 10  
medium high driving capability  
LSEDRV[1:0]=11  
higher driving capability  
-
-
-
2.7  
-
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software)  
to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 23. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
DS10685 Rev 6  
91/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
6.3.7  
Internal clock source characteristics  
The parameters given in Table 47 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 26.  
DD  
High-speed internal 16 MHz (HSI16) RC oscillator  
Table 47. 16 MHz HSI16 oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ Max Unit  
fHSI16  
VDD = 3.0 V  
-
-
16  
-
MHz  
%
Trimming code is not a multiple of 16  
Trimming code is a multiple of 16  
VDDA = 3.0 V, TA = 25 °C  
0.4 0.7  
HSI16 user-  
trimmed resolution  
(1)(2)  
TRIM  
-
-
-
-
-
-
-
1.5  
%
-1(3)  
-1.5  
-2  
1(3)  
1.5  
2
%
VDDA = 3.0 V, TA = 0 to 55 °C  
VDDA = 3.0 V, TA = -10 to 70 °C  
%
%
Accuracy of the  
factory-calibrated  
HSI16 oscillator  
ACCHSI16  
(2)  
V
DDA = 3.0 V, TA = -10 to 85 °C  
VDDA = 3.0 V, TA = -10 to 105 °C  
DDA = 1.65 V to 3.6 V  
-2.5  
-4  
2
%
2
%
V
-5.45  
-
3.25  
6
%
µs  
µA  
TA = 40 to 125 °C  
HSI16 oscillator  
startup time  
(2)  
tSU(HSI16)  
-
-
-
3.7  
100  
HSI16 oscillator  
power consumption  
(2)  
IDD(HSI16)  
-
140  
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are  
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).  
2. Guaranteed by characterization results.  
3. Guaranteed by test in production.  
Figure 24. HSI16 minimum and maximum value versus temperature  
4.00%  
3.00%  
2.00%  
1.00%  
1.65V min  
3V typ  
0.00%  
-20  
-60  
-40  
0
20  
40  
60  
80  
100  
120  
140  
-1.00%  
-2.00%  
-3.00%  
-4.00%  
-5.00%  
-6.00%  
3.6V max  
1.65V max  
3.6V min  
MSv34791V1  
92/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 48. HSI48 oscillator characteristics  
Symbol  
Parameter  
Frequency  
HSI48 user-trimming step  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
-
48  
0.14  
-
-
MHz  
%
0.09(2)  
45(2)  
0.2(2)  
55(2)  
DuCy(HSI48) Duty cycle  
Accuracy of the HSI48  
ACCHSI48 oscillator (factory calibrated TA = 25 °C  
before CRS calibration)  
%
-4(3)  
-
4(3)  
%
tsu(HSI48) HSI48 oscillator startup time  
-
-
-
6(2)  
µs  
HSI48 oscillator power  
IDDA(HSI48)  
330  
380(2)  
µA  
consumption  
1.  
VDDA = 3.3 V, TA = –40 to 125 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
Low-speed internal (LSI) RC oscillator  
Table 49. LSI oscillator characteristics  
Symbol  
Parameter  
LSI frequency  
Min  
Typ  
Max  
Unit  
(1)  
fLSI  
26  
38  
56  
4
kHz  
%
LSI oscillator frequency drift  
0°C TA 85°C  
(2)  
DLSI  
-10  
-
(3)  
tsu(LSI)  
LSI oscillator startup time  
-
-
-
200  
510  
µs  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
400  
nA  
1. Guaranteed by test in production.  
2. This is a deviation for an individual part, once the initial frequency has been measured.  
3. Guaranteed by design.  
Multi-speed internal (MSI) RC oscillator  
Table 50. MSI oscillator characteristics  
Symbol  
Parameter  
Condition  
Typ  
Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
65.5  
131  
262  
524  
1.05  
2.1  
-
-
kHz  
-
Frequency after factory calibration, done at  
VDD= 3.3 V and TA = 25 °C  
fMSI  
-
-
-
-
MHz  
4.2  
DS10685 Rev 6  
93/157  
128  
 
 
 
Electrical characteristics  
STM32L073xx  
Typ Max Unit  
Table 50. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Condition  
ACCMSI  
Frequency error after factory calibration  
-
0.5  
3
-
-
%
MSI oscillator frequency drift  
0 °C TA 85 °C  
-
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
8.9  
7.1  
6.4  
6.2  
5.2  
4.8  
4.7  
+7.0  
+5.0  
+4.0  
+3.0  
+3.0  
+2.0  
+2.0  
(1)  
DTEMP(MSI)  
%
MSI oscillator frequency drift  
VDD = 3.3 V, 40 °C TA 110 °C  
MSI oscillator frequency drift  
1.65 V VDD 3.6 V, TA = 25 °C  
(1)  
DVOLT(MSI)  
-
-
2.5 %/V  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
0.75  
1
-
-
-
1.5  
2.5  
4.5  
8
(2)  
IDD(MSI)  
MSI oscillator power consumption  
-
-
-
-
-
-
-
-
-
-
µA  
15  
30  
20  
15  
10  
6
tSU(MSI)  
MSI oscillator startup time  
µs  
5
MSI range 6,  
Voltage range 1  
and 2  
3.5  
5
-
-
MSI range 6,  
Voltage range 3  
94/157  
DS10685 Rev 6  
STM32L073xx  
Electrical characteristics  
Table 50. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Condition  
Typ  
Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
-
-
-
-
-
-
40  
20  
10  
4
2.5  
µs  
2
(2)  
tSTAB(MSI)  
MSI oscillator stabilization time  
MSI range 6,  
Voltage range 1  
and 2  
-
2
3
MSI range 3,  
Voltage range 3  
-
-
-
Any range to  
range 5  
4
fOVER(MSI) MSI oscillator frequency overshoot  
MHz  
6
Any range to  
range 6  
1. This is a deviation for an individual part, once the initial frequency has been measured.  
2. Guaranteed by characterization results.  
6.3.8  
PLL characteristics  
The parameters given in Table 51 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 26.  
DD  
Table 51. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
2
45  
2
-
-
-
24  
55  
32  
MHz  
%
fPLL_IN  
fPLL_OUT  
tLOCK  
PLL input clock duty cycle  
PLL output clock  
MHz  
PLL input = 16 MHz  
PLL VCO = 96 MHz  
-
115  
160  
µs  
ps  
Jitter  
Cycle-to-cycle jitter  
-
-
-
600  
450  
150  
IDDA(PLL)  
IDD(PLL)  
Current consumption on VDDA  
Current consumption on VDD  
220  
120  
µA  
1. Guaranteed by characterization results.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
DS10685 Rev 6  
95/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
6.3.9  
Memory characteristics  
RAM memory  
Table 52. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM Data retention mode(1)  
STOP mode (or RESET)  
1.65  
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware  
registers (only in Stop mode).  
Flash memory and data EEPROM  
Table 53. Flash memory and data EEPROM characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
Operating voltage  
VDD  
-
1.65  
-
3.6  
V
Read / Write / Erase  
Erasing  
-
-
3.28  
3.28  
3.94  
3.94  
Programming time for  
word or half-page  
tprog  
ms  
Programming  
Average current during  
the whole programming /  
erase operation  
-
-
500  
1.5  
700  
2.5  
µA  
IDD  
TA = 25 °C, VDD = 3.6 V  
Maximum current (peak)  
during the whole  
programming / erase  
operation  
mA  
1. Guaranteed by design.  
Table 54. Flash memory and data EEPROM endurance and retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Cycling (erase / write)  
Program memory  
10  
TA = -40°C to 105 °C  
Cycling (erase / write)  
EEPROM data memory  
100  
0.2  
2
(2)  
NCYC  
kcycles  
Cycling (erase / write)  
Program memory  
TA = -40°C to 125 °C  
Cycling (erase / write)  
EEPROM data memory  
96/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Electrical characteristics  
Table 54. Flash memory and data EEPROM endurance and retention (continued)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Data retention (program memory) after  
10 kcycles at TA = 85 °C  
30  
TRET = +85 °C  
Data retention (EEPROM data memory)  
after 100 kcycles at TA = 85 °C  
30  
10  
Data retention (program memory) after  
10 kcycles at TA = 105 °C  
(2)  
tRET  
TRET = +105 °C  
years  
Data retention (EEPROM data memory)  
after 100 kcycles at TA = 105 °C  
Data retention (program memory) after  
200 cycles at TA = 125 °C  
TRET = +125 °C  
Data retention (EEPROM data memory)  
after 2 kcycles at TA = 125 °C  
1. Guaranteed by characterization results.  
2. Characterization is done according to JEDEC JESD22-A117.  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 55. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 55. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
3B  
4A  
conforms to IEC 61000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
conforms to IEC 61000-4-4  
VEFTB  
DS10685 Rev 6  
97/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 56. EMI characteristics  
Max vs.  
Monitored  
frequency band  
frequency  
range at  
32 MHz  
Symbol Parameter  
Conditions  
Unit  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1 GHz  
EMI Level  
-7  
14  
9
VDD = 3.6 V,  
TA = 25 °C,  
LQFP100 package  
compliant with IEC 61967-2  
dBµV  
-
SEMI  
Peak level  
2
98/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 57. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
TA = +25 °C,  
Electrostatic discharge  
voltage (human body model)  
VESD(HBM)  
conforming to  
2
2000  
ANSI/JEDEC JS-001  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
TA = +25 °C,  
conforming to  
C4  
500  
ANSI/ESD STM5.3.1.  
1. Guaranteed by characterization results.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 58. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
II level A  
LU  
Static latch-up class  
TA = +125 °C conforming to JESD78A  
DS10685 Rev 6  
99/157  
128  
 
 
 
Electrical characteristics  
STM32L073xx  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard pins) should be avoided during normal product operation.  
DD  
However, in order to give an indication of the robustness of the microcontroller in cases  
when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator  
frequency deviation).  
The test results are given in the Table 59.  
Table 59. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on BOOT0  
-0  
-5  
NA(1)  
Injected current on PA0, PA4, PA5, PC15,  
PH0 and PH1  
0
IINJ  
mA  
Injected current on any other FT, FTf pins  
Injected current on any other pins  
-5 (2)  
-5 (2)  
NA(1)  
+5  
1. Current injection is not possible.  
2. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject  
negative currents.  
100/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 60 are derived from tests  
performed under the conditions summarized in Table 26. All I/Os are CMOS and TTL  
compliant.  
Note:  
For information on GPIO configuration, refer to application note AN4899 “STM32 GPIO  
configuration for hardware settings and low-power consumption” available from the ST  
website www.st.com.  
Table 60. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TC, FT, FTf, RST  
I/Os  
-
-
0.3VDD  
VIL  
Input low level voltage  
Input high level voltage  
(1)  
BOOT0 pin  
All I/Os  
-
-
-
0.14VDD  
V
VIH  
0.7 VDD  
-
-
-
(3)  
Standard I/Os  
BOOT0 pin  
-
-
10% VDD  
0.01  
I/O Schmitt trigger voltage hysteresis  
Vhys  
(2)  
VSS VIN VDD  
All I/Os except for  
PA11, PA12, BOOT0  
and FTf I/Os  
-
-
±50  
nA  
VSS VIN VDD  
PA11 and PA12 I/Os  
,
-
-
-
-
-50/+250  
±100  
VSS VIN VDD  
FTf I/Os  
Ilkg  
Input leakage current (4)  
VDDVIN 5 V  
All I/Os except for  
PA11, PA12, BOOT0  
and FTf I/Os  
-
-
200  
nA  
µA  
VDDVIN 5 V  
-
-
-
-
500  
10  
FTf I/Os  
VDDVIN 5 V  
PA11, PA12 and  
BOOT0  
RPU  
RPD  
CIO  
Weak pull-up equivalent resistor(5)  
Weak pull-down equivalent resistor(5)  
I/O pin capacitance  
VIN = VSS  
VIN = VDD  
-
25  
25  
-
45  
45  
5
65  
65  
-
kΩ  
kΩ  
pF  
1. Guaranteed by characterization.  
2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.  
3. With a minimum of 200 mV. Guaranteed by characterization results.  
4. The max. value may be exceeded if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
DS10685 Rev 6  
101/157  
128  
 
 
 
 
Electrical characteristics  
STM32L073xx  
Figure 25. V /V versus VDD (CMOS I/Os)  
IH IL  
VIL/VIH (V)  
VIHmin 2.0  
1.3  
Input range not  
guaranteed  
CMOS standard requirements VILmax = 0.3VDD  
VILmax 0.7  
0.6  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MSv34789V1  
Figure 26. V /V versus VDD (TTL I/Os)  
IH IL  
VIL/VIH (V)  
TTL standard requirements VIHmin = 2 V  
VIHmin 2.0  
1.3  
Input range not  
guaranteed  
VILmax 0.8  
0.7  
TTL standard requirements VILmax = 0.8 V  
VDD (V)  
2.0  
2.7  
3.0  
3.3  
3.6  
MSv34790V1  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ±15 mA with the non-standard V /V specifications given in Table 61.  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 24).  
VDD(Σ)  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 24).  
VSS(Σ)  
102/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 61 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 26. All I/Os are CMOS and TTL compliant.  
Table 61. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for an I/O  
pin  
(1)  
CMOS port(2)  
IIO = +8 mA  
2.7 V VDD 3.6 V  
,
VOL  
-
0.4  
Output high level voltage for an I/O  
pin  
(3)  
VOH  
VDD-0.4  
-
TTL port(2)  
IIO =+ 8 mA  
2.7 V VDD 3.6 V  
,
Output low level voltage for an I/O  
pin  
(1)  
VOL  
-
0.4  
TTL port(2)  
IIO = -6 mA  
2.7 V VDD 3.6 V  
,
Output high level voltage for an I/O  
pin  
(3)(4)  
VOH  
2.4  
-
-
Output low level voltage for an I/O  
pin  
IIO = +15 mA  
2.7 V VDD 3.6 V  
(1)(4)  
VOL  
1.3  
V
Output high level voltage for an I/O  
pin  
IIO = -15 mA  
2.7 V VDD 3.6 V  
(3)(4)  
VOH  
V
DD-1.3  
-
0.45  
-
Output low level voltage for an I/O  
pin  
IIO = +4 mA  
1.65 V VDD < 3.6 V  
(1)(4)  
VOL  
-
Output high level voltage for an I/O  
pin  
IIO = -4 mA  
1.65 V VDD 3.6 V  
(3)(4)  
VOH  
VDD-0.45  
IIO = 20 mA  
2.7 V VDD 3.6 V  
-
-
0.4  
0.4  
Output low level voltage for an FTf  
I/O pin in Fm+ mode  
(1)(4)  
VOLFM+  
I
IO = 10 mA  
1.65 V VDD 3.6 V  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 24.  
The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and  
must not exceed ΣIIO(PIN)  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be  
respected and must not exceed ΣIIO(PIN)  
.
4. Guaranteed by characterization results.  
DS10685 Rev 6  
103/157  
128  
 
Electrical characteristics  
STM32L073xx  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 27 and  
Table 62, respectively.  
Unless otherwise specified, the parameters given in Table 62 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 26.  
(1)  
Table 62. I/O AC characteristics  
OSPEEDRx[1:0]  
bit value(1)  
Symbol  
Parameter  
Conditions  
Min Max(2) Unit  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
100  
125  
320  
2
fmax(IO)out Maximum frequency(3)  
kHz  
ns  
00  
01  
10  
11  
tf(IO)out  
Output rise and fall time  
tr(IO)out  
fmax(IO)out Maximum frequency(3)  
MHz  
ns  
0.6  
30  
65  
10  
2
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
ns  
13  
28  
35  
10  
6
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
tf(IO)out  
Output rise and fall time  
tr(IO)out  
ns  
MHz  
ns  
17  
1
fmax(IO)out Maximum frequency(3)  
tf(IO)out  
Output fall time  
CL = 50 pF, VDD = 2.5 V to 3.6 V  
10  
30  
350  
15  
60  
tr(IO)out  
Output rise time  
Fm+  
configuration(4)  
fmax(IO)out Maximum frequency(3)  
KHz  
ns  
tf(IO)out  
tr(IO)out  
Output fall time  
Output rise time  
CL = 50 pF, VDD = 1.65 V to 3.6 V  
Pulse width of external  
signals detected by the  
EXTI controller  
-
tEXTIpw  
-
8
-
ns  
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port  
configuration register.  
2. Guaranteed by design.  
3. The maximum frequency is defined in Figure 27.  
4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed  
description of Fm+ I/O configuration.  
104/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
Figure 27. I/O AC characteristics definition  
90%  
10%  
50%  
50%  
90%  
t
10%  
t
EXTERNAL  
OUTPUT  
ON CL  
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t ) ≤ (2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by CL specified in the table “ I/O AC characteristics”.  
ai14131d  
6.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R , except when it is internally driven low (see Table 63).  
PU  
Unless otherwise specified, the parameters given in Table 63 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 26.  
Table 63. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
(1)  
VIL(NRST)  
NRST input low level voltage  
NRST input high level voltage  
-
-
VSS  
1.4  
-
-
0.8  
(1)  
VIH(NRST)  
VDD  
IOL = 2 mA  
2.7 V < VDD < 3.6 V  
V
-
-
-
NRST output low level  
voltage  
(1)  
VOL(NRST)  
0.4  
IOL = 1.5 mA  
1.65 V < VDD < 2.7 V  
-
10%VDD  
45  
NRST Schmitt trigger voltage  
hysteresis  
(1)  
(2)  
Vhys(NRST)  
RPU  
-
-
-
mV  
Weak pull-up equivalent  
resistor(3)  
VIN = VSS  
25  
65  
kΩ  
(1)  
VF(NRST)  
NRST input filtered pulse  
-
-
-
-
-
50  
-
ns  
ns  
(1)  
VNF(NRST)  
NRST input not filtered pulse  
350  
1. Guaranteed by design.  
2. 200 mV minimum value  
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is around 10%.  
DS10685 Rev 6  
105/157  
128  
 
 
 
 
Electrical characteristics  
STM32L073xx  
Figure 28. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢅFLUFXLWꢆꢀꢇ  
9''  
538  
1567ꢆꢈꢇ  
,QWHUQDOꢅUHVHW  
)LOWHU  
ꢉꢊꢀꢅ—)  
06ꢀꢁꢂꢃꢂ9ꢄ  
1. The reset network protects the device against parasitic resets.  
2. The external capacitor must be placed as close as possible to the device.  
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 63. Otherwise the reset will not be taken into account by the device.  
6.3.15  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 64 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage conditions  
PCLK  
DDA  
summarized in Table 26: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
Table 64. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Fast channel  
Standard channel  
-
1.65  
-
-
3.6  
Analog supply voltage for  
ADC ON  
VDDA  
V
V
1.75(1)  
3.6  
VREF+  
VREF-  
Positive reference voltage  
Negative reference voltage  
1.65  
VDDA  
-
-
0
200  
40  
70  
1
-
1.14 Msps  
-
-
-
Current consumption of the  
ADC on VDDAand VREF+  
10 ksps  
-
-
IDDA (ADC)  
µA  
1.14 Msps  
-
Current consumption of the  
(2)  
ADC on VDD  
10 ksps  
-
-
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 3  
12-bit resolution  
0.14  
0.14  
0.14  
0.01  
-
16  
8
fADC  
ADC clock frequency  
-
MHz  
-
4
(3)  
fS  
Sampling rate  
-
1.14  
MHz  
kHz  
fADC = 16 MHz,  
12-bit resolution  
-
-
941  
(3)  
External trigger frequency  
Conversion voltage range  
fTRIG  
-
-
-
-
-
17  
1/fADC  
V
VAIN  
0
VREF+  
106/157  
DS10685 Rev 6  
 
 
 
 
 
 
STM32L073xx  
Electrical characteristics  
Table 64. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
50  
1
Unit  
kΩ  
See Equation 1 and  
Table 65 for details  
(3)  
RAIN  
External input impedance  
Sampling switch resistance  
-
-
-
-
-
-
(3)(4)  
-
-
kΩ  
RADC  
Internal sample and hold  
capacitor  
(3)  
8
pF  
CADC  
f
ADC = 16 MHz  
5.2  
83  
µs  
(3)(5)  
Calibration time  
tCAL  
-
1/fADC  
1.5 ADC  
cycles + 3  
fPCLK cycles  
1.5 ADC  
cycles + 2  
PCLK cycles  
ADC clock = HSI16  
-
-
f
ADC_DR register write  
latency  
(6)  
fPCLK  
cycle  
WLATENCY  
ADC clock = PCLK/2  
ADC clock = PCLK/4  
-
-
4.5  
8.5  
-
-
fPCLK  
cycle  
fADC = fPCLK/2 = 16 MHz  
fADC = fPCLK/2  
0.266  
8.5  
µs  
1/fPCLK  
µs  
(3)  
Trigger conversion latency fADC = fPCLK/4 = 8 MHz  
fADC = fPCLK/4  
0.516  
16.5  
-
tlatr  
1/fPCLK  
µs  
fADC = fHSI16 = 16 MHz  
0.252  
-
0.260  
-
ADC jitter on trigger  
fADC = fHSI16  
JitterADC  
1
1/fHSI16  
conversion  
f
ADC = 16 MHz  
0.093  
1.5  
-
-
-
10.03  
160.5  
10  
µs  
(3)  
Sampling time  
tS  
-
-
-
1/fADC  
µs  
(3)(5)  
tUP_LDO  
Internal LDO power-up time  
ADC stabilization time  
-
(3)(5)  
tSTAB  
14  
1/fADC  
fADC = 16 MHz,  
12-bit resolution  
0.875  
-
10.81  
µs  
Total conversion time  
(including sampling time)  
(3)  
tConV  
14 to 173 (tS for sampling +12.5  
for successive approximation)  
12-bit resolution  
1/fADC  
1. VDDA minimum value can be decreased in specific temperature conditions. Refer to Table 65: RAIN max for fADC = 16 MHz.  
2. A current consumption proportional to the APB clock frequency has to be added (see Table 40: Peripheral current  
consumption in Run or Sleep mode).  
3. Guaranteed by design.  
4. Standard channels have an extra protection resistance which depends on supply voltage. Refer to Table 65: RAIN max for  
fADC = 16 MHz.  
5. This parameter only includes the ADC timing. It does not take into account register access latency.  
6. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the  
conversion is complete and has the same latency.  
DS10685 Rev 6  
107/157  
128  
 
 
 
Electrical characteristics  
Equation 1: R  
STM32L073xx  
max formula  
AIN  
TS  
RAIN < ------------------------------------------------------------- – RADC  
fADC × CADC × ln(2N + 2  
)
The simplified formula above (Equation 1) is used to determine the maximum external  
impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).  
(1)  
Table 65. R  
max for f  
= 16 MHz  
AIN  
ADC  
RAIN max for standard channels (kΩ)  
RAIN max for  
fast channels  
(kΩ)  
Ts  
tS  
VDD > 1.65 V  
and  
V
DD > 1.65 V  
VDD  
2.7 V  
>
VDD  
2.4 V  
>
VDD  
2.0 V  
>
VDD  
1.8 V  
>
VDD >  
1.75 V  
(cycles) (µs)  
and  
TA > 10 °C  
TA > 25 °C  
1.5  
3.5  
0.09  
0.22  
0.47  
0.78  
1.22  
2.47  
4.97  
0.5  
1
< 0.1  
0.2  
NA  
< 0.1  
1.5  
3
NA  
NA  
< 0.1  
1
NA  
NA  
NA  
NA  
NA  
NA  
< 0.1  
32  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
< 0.1  
5
7.5  
2.5  
4
1.7  
NA  
NA  
12.5  
19.5  
39.5  
79.5  
3.2  
NA  
NA  
6.5  
13  
27  
50  
5.7  
5.5  
12  
3.5  
10  
NA  
NA  
12.2  
26.2  
49.2  
NA  
NA  
26  
24  
NA  
NA  
19  
160.5 10.03  
49  
47  
< 0.1  
< 0.1  
42  
1. Guaranteed by design.  
(1)(2)(3)  
Table 66. ADC accuracy  
Symbol  
Parameter  
Total unadjusted error  
Conditions  
Min  
Typ  
Max  
Unit  
ET  
EO  
EG  
EL  
-
2
1
4
Offset error  
Gain error  
-
2.5  
2
-
1
LSB  
Integral linearity error  
Differential linearity error  
Effective number of bits  
-
-
1.5  
1
2.5  
1.5  
ED  
10.2  
11  
1.65 V < VDDA = VREF+< 3.6 V,  
range 1/2/3  
ENOB  
bits  
dB  
Effective number of bits (16-bit mode  
oversampling with ratio =256)(4)  
11.3 12.1  
-
SINAD Signal-to-noise distortion  
63  
63  
69  
69  
-
-
Signal-to-noise ratio  
SNR  
Signal-to-noise ratio (16-bit mode  
70  
-
76  
-
oversampling with ratio =256)(4)  
THD  
Total harmonic distortion  
-85  
-73  
108/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Symbol  
Electrical characteristics  
(1)(2)(3)  
Table 66. ADC accuracy  
(continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ET  
EO  
EG  
EL  
Total unadjusted error  
-
-
-
-
-
2
1
5
2.5  
2
Offset error  
Gain error  
1
LSB  
Integral linearity error  
1.5  
1
3
1.65 V < VREF+ <VDDA < 3.6 V,  
range 1/2/3  
ED  
Differential linearity error  
2
ENOB Effective number of bits  
SINAD Signal-to-noise distortion  
10.0 11.0  
-
bits  
dB  
62  
61  
-
69  
69  
-
SNR  
THD  
Signal-to-noise ratio  
-
Total harmonic distortion  
-85  
-65  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input  
pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog  
input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject  
negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC  
accuracy.  
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.  
4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.  
Figure 29. ADC accuracy characteristics  
VSSA  
4095  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
4094  
4093  
(3) End point correlation line  
ET = total unajusted error: maximum deviation  
between the actual and ideal transfer curves.  
EO = offset error: maximum deviation  
between the first actual transition and  
the first ideal one.  
EG = gain error: deviation between the last  
ideal transition and the last actual one.  
ED = differential linearity error: maximum  
deviation between actual steps and the ideal ones.  
EL = integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line.  
(2)  
ET  
(3)  
7
(1)  
6
5
4
3
2
1
EO  
EL  
ED  
1 LSB IDEAL  
0
4096  
VDDA  
4094 4095  
7
4093  
2
3
4
5
6
1
MS19880V2  
DS10685 Rev 6  
109/157  
128  
 
Electrical characteristics  
STM32L073xx  
Figure 30. Typical connection diagram using the ADC  
V
DDA  
Sample and hold ADC  
converter  
V
T
(1)  
R
R
AIN  
ADC  
AINx  
parasitic  
12-bit  
converter  
IL 50nA  
C
V
T
V
AIN  
C
ADC  
MSv34712V1  
1. Refer to Table 64: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 31 or Figure 32,  
depending on whether V  
is connected to V  
or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed as close as possible to the chip.  
Figure 31. Power supply and reference decoupling (V not connected to V  
)
DDA  
REF+  
STM32Lxx  
V
REF+  
1 μF // 100 nF  
V
DDA  
1 μF // 100 nF  
V
/ V  
SSA REF–  
MS39601V1  
110/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Electrical characteristics  
Figure 32. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
STM32Lxx  
VREF+/VDDA  
1 μF // 100 nF  
VREF–/VSSA  
MS39602V1  
DS10685 Rev 6  
111/157  
128  
 
Electrical characteristics  
STM32L073xx  
6.3.16  
DAC electrical characteristics  
Data guaranteed by design, not tested in production, unless otherwise specified.  
Table 67. DAC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.8  
-
3.6  
V
V
REF+ must always be  
VREF+  
VREF-  
Reference supply voltage  
Lower reference voltage  
1.8  
-
3.6  
V
V
below VDDA  
-
VSSA  
No load, middle code  
(0x800)  
-
-
-
-
130  
220  
210  
320  
220  
350  
320  
520  
Current consumption on VREF+  
supply  
VREF+ = 3.3 V  
(1)  
IDDVREF+  
µA  
µA  
No load, worst code  
(0x000)  
No load, middle code  
(0x800)  
Current consumption on VDDA  
supply,  
VDDA = 3.3 V  
(2)  
IDDA  
No load, worst code  
(0xF1C)  
RL  
connected  
to VSSA  
5
-
-
-
-
DAC output  
ON  
(3)  
RL  
Resistive load  
kΩ  
RL  
connected  
to VDDA  
25  
(3)  
CL  
Capacitive load  
DAC output buffer ON  
DAC output buffer OFF  
-
-
50  
20  
pF  
RO  
Output impedance  
12  
16  
kΩ  
DAC output buffer ON  
DAC output buffer OFF  
0.2  
0.5  
-
-
V
DDA – 0.2  
V
VDAC_OUT  
Voltage on DAC_OUT output  
VREF+  
1LSB  
mV  
112/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Symbol  
Electrical characteristics  
Table 67. DAC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
-
1.5  
3
DNL(2)  
Differential non linearity(4)  
Integral non linearity(5)  
No RLOAD, CL 50 pF  
-
-
-
-
-
-
1.5  
2
3
4
DAC output buffer OFF  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
INL(2)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
LSB  
2
4
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
±10  
±5  
±25  
±8  
±5  
Offset(2)  
Offset error at code 0x800 (6)  
Offset error at code 0x001(7)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
Offset1(2)  
±1.5  
VDDA = 3.3V  
VREF+= 3.0 V  
TA = 0 to 50 °C  
DAC output buffer OFF  
-20  
0
-10  
20  
0
Offset error temperature  
coefficient (code 0x800)  
dOffset/dT(2)  
µV/°C  
VDDA = 3.3V  
VREF+= 3.0 V  
TA = 0 to 50 °C  
DAC output buffer ON  
50  
CL 50 pF, RL 5 kΩ  
-
-
+0.1 / -0.2% +0.2 / -0.5%  
+0 / -0.2% +0 / -0.4%  
DAC output buffer ON  
Gain(2)  
Gain error(8)  
%
No RLOAD, CL 50 pF  
DAC output buffer OFF  
VDDA = 3.3V  
VREF+= 3.0 V  
TA = 0 to 50 °C  
DAC output buffer OFF  
-10  
-40  
-2  
-8  
0
0
Gain error temperature  
coefficient  
dGain/dT(2)  
µV/°C  
VDDA = 3.3V  
VREF+= 3.0 V  
TA = 0 to 50 °C  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
-
-
12  
8
30  
12  
DAC output buffer ON  
TUE(2)  
Total unadjusted error  
LSB  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
DS10685 Rev 6  
113/157  
128  
Electrical characteristics  
STM32L073xx  
Table 67. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Settling time (full scale: for a  
12-bit code transition between  
the lowest and the highest  
input codes till DAC_OUT  
reaches final value ±1LSB  
tSETTLING  
CL 50 pF, RL 5 kΩ  
-
7
12  
µs  
Max frequency for a correct  
DAC_OUT change (95% of  
final value) with 1 LSB  
Update rate  
CL 50 pF, RL 5 kΩ  
-
-
1
Msps  
variation in the input code  
Wakeup time from off state  
tWAKEUP  
PSRR+  
(setting the ENx bit in the DAC CL 50 pF, RL 5 kΩ  
-
-
9
15  
µs  
Control register)(9)  
VDDA supply rejection ratio  
CL 50 pF, RL 5 kΩ  
-60  
-35  
dB  
(static DC measurement)  
1. Guaranteed by characterization results.  
2. Guaranteed by design, not tested in production.  
3. Connected between DAC_OUT and V  
.
SSA  
4. Difference between two consecutive codes - 1 LSB.  
5. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.  
6. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.  
7. Difference between the value measured at Code (0x001) and the ideal value.  
8. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when  
buffer is OFF, and from code giving 0.2 V and (V  
– 0.2) V when buffer is ON.  
DDA  
9. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
Figure 33. 12-bit buffered/non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
L
12-bit  
digital to  
analog  
DAC_OUTx  
converter  
C
L
MSv45341V1  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
114/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
6.3.17  
Temperature sensor characteristics  
Table 68. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C, VDDA= 3 V  
TS_CAL1  
0x1FF8 007A - 0x1FF8 007B  
TS ADC raw data acquired at  
temperature of 130 °C, VDDA= 3 V  
TS_CAL2  
0x1FF8 007E - 0x1FF8 007F  
Table 69. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1.48  
640  
-
1
1.61  
670  
3.4  
-
2
°C  
Avg_Slope(1) Average slope  
V130  
Voltage at 130°C ±5°C(2)  
IDDA  
1.75 mV/°C  
700  
6
mV  
µA  
(3)  
Current consumption  
(TEMP)  
(3)  
tSTART  
Startup time  
-
10  
-
µs  
(4)(3)  
TS_temp  
ADC sampling time when reading the temperature  
10  
-
1. Guaranteed by characterization results.  
2. Measured at VDD = 3 V ±10 mV. V130 ADC conversion result is stored in the TS_CAL2 byte.  
3. Guaranteed by design.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
6.3.18  
Comparators  
Table 70. Comparator 1 characteristics  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1)  
Unit  
VDDA  
Analog supply voltage  
-
1.65  
3.6  
V
Comparator 1 input voltage  
range  
VIN  
-
0.6  
-
VDDA  
V
tSTART  
td  
Comparator startup time  
Propagation delay(2)  
Comparator offset  
-
-
-
-
-
-
7
3
3
10  
10  
10  
µs  
Voffset  
mV  
mV/1000 h  
nA  
Comparator offset variation in VDDA = 3.6 V, VIN+ = 0 V,  
worst voltage stress conditions VIN- = VREFINT, TA = 25 °C  
Current consumption(3)  
dVoffset/dt  
ICOMP1  
0
-
1.5  
10  
-
160  
260  
1. Guaranteed by characterization.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to  
the reference.  
3. Comparator consumption only. Internal reference voltage not included.  
DS10685 Rev 6  
115/157  
128  
 
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32L073xx  
Table 71. Comparator 2 characteristics  
Parameter  
Conditions  
Min Typ Max(1) Unit  
VDDA  
VIN  
Analog supply voltage  
-
-
1.65  
-
3.6  
VDDA  
20  
25  
3.5  
6
V
V
Comparator 2 input voltage range  
0
-
-
-
-
-
-
-
-
Fast mode  
15  
20  
1.8  
2.5  
0.8  
1.2  
4
tSTART  
Comparator startup time  
Slow mode  
1.65 V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
1.65 V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
td slow  
Propagation delay(2) in slow mode  
µs  
2
td fast  
Propagation delay(2) in fast mode  
Comparator offset error  
4
Voffset  
20  
mV  
VDDA = 3.3V, TA = 0 to 50 °C,  
V- = VREFINT  
,
dThreshold/ Threshold voltage temperature  
ppm  
/°C  
3/4 VREFINT  
1/2 VREFINT  
1/4 VREFINT  
,
,
.
-
15  
30  
dt  
coefficient  
Fast mode  
Slow mode  
-
-
3.5  
0.5  
5
2
ICOMP2  
Current consumption(3)  
µA  
1. Guaranteed by characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to  
the reference.  
3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.  
116/157  
DS10685 Rev 6  
 
STM32L073xx  
Electrical characteristics  
6.3.19  
Timer characteristics  
TIM timer characteristics  
The parameters given in the Table 72 are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 72. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
1
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 32 MHz 31.25  
0
-
fTIMxCLK/2  
16  
MHz  
MHz  
bit  
Timer external clock frequency on CH1  
to CH4  
fEXT  
f
TIMxCLK = 32 MHz  
0
ResTIM  
Timer resolution  
-
-
16  
16-bit counter clock period when  
1
65536  
tTIMxCLK  
tCOUNTER internal clock is selected (timer’s  
prescaler disabled)  
fTIMxCLK = 32 MHz 0.0312  
2048  
µs  
-
-
-
65536 × 65536 tTIMxCLK  
134.2  
tMAX_COUNT Maximum possible count  
fTIMxCLK = 32 MHz  
s
1. TIMx is used as a general term to refer to the TIM2, TIM6, TIM21, and TIM22 timers.  
6.3.20  
Communications interfaces  
I2C interface characteristics  
2
2
I
I
The C interface meets the timings requirements of the C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm) : with a bit rate up to 100 kbit/s  
Fast-mode (Fm) : with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+) : with a bit rate up to 1 Mbit/s.  
2
2
I
I
The C timing requirements are guaranteed by design when the C peripheral is properly  
configured (refer to the reference manual for details). The SDA and SCL I/O requirements  
are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain.  
When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is  
disabled, but is still present. Only FTf I/O pins support Fm+ low level output current  
maximum requirement (refer to Section 6.3.13: I/O port characteristics for the I2C I/Os  
characteristics).  
2
I
All C SDA and SCL I/Os embed an analog filter (see Table 73 for the analog filter  
characteristics).  
DS10685 Rev 6  
117/157  
128  
 
 
 
Electrical characteristics  
STM32L073xx  
2
I
The analog spike filter is compliant with C timings requirements only for the following  
voltage ranges:  
Fast mode Plus: 2.7 V V 3.6 V and voltage scaling Range 1  
Fast mode:  
DD  
2 V V 3.6 V and voltage scaling Range 1 or Range 2.  
DD  
V
< 2 V, voltage scaling Range 1 or Range 2, C  
< 200 pF.  
load  
DD  
In other ranges, the analog filter should be disabled. The digital filter can be used instead.  
Note:  
In Standard mode, no spike filter is required.  
(1)  
Table 73. I2C analog filter characteristics  
Symbol  
Parameter  
Conditions  
Range 1  
Min  
Max  
Unit  
100(3)  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
Range 2  
Range 3  
50(2)  
-
-
ns  
1. Guaranteed by characterization results.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI characteristics  
Unless otherwise specified, the parameters given in the following tables are derived from  
tests performed under ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 26.  
Refer to Section 6.3.12: I/O current injection characteristics for more details on the  
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 74. SPI characteristics in voltage Range 1  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
16  
-
-
Slave mode  
receiver  
16  
Slave mode  
Transmitter  
1.71<VDD<3.6V  
fSCK  
1/tc(SCK)  
12(2)  
SPI clock frequency  
MHz  
-
-
Slave mode  
Transmitter  
2.7<VDD<3.6V  
-
-
16(2)  
70  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
118/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
(1)  
Table 74. SPI characteristics in voltage Range 1  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Slave mode, SPI  
presc = 2  
tsu(NSS)  
NSS setup time  
4*Tpclk  
-
-
-
Slave mode, SPI  
presc = 2  
th(NSS)  
NSS hold time  
2*Tpclk  
-
tw(SCKH)  
tw(SCKL)  
Tpclk+  
2
SCK high and low time  
Master mode  
Tpclk-2 Tpclk  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
0
3
-
-
-
-
-
-
-
-
Data input setup time  
Data input hold time  
7
-
th(SI)  
3.5  
15  
10  
-
ns  
ta(SO  
Data output access time  
Data output disable time  
36  
30  
tdis(SO)  
Slave mode  
1.65 V<VDD<3.6 V  
-
-
18  
18  
41  
25  
tv(SO)  
Data output valid time  
Data output hold time  
Slave mode  
2.7 V<VDD<3.6 V  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
Slave mode  
Master mode  
-
10  
0
4
-
7
-
-
-
1. Guaranteed by characterization results.  
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI)  
which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be  
achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.  
DS10685 Rev 6  
119/157  
128  
Electrical characteristics  
STM32L073xx  
(1)  
Table 75. SPI characteristics in voltage Range 2  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
8
Slave mode Transmitter  
1.65<VDD<3.6V  
fSCK  
1/tc(SCK)  
8
SPI clock frequency  
-
-
MHz  
Slave mode Transmitter  
2.7<VDD<3.6V  
8(2)  
70  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
tw(SCKL)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
4*Tpclk  
2*Tpclk  
-
-
-
-
SCK high and low time  
Data input setup time  
Master mode  
Tpclk-2 Tpclk Tpclk+2  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
0
3
-
-
-
-
-
-
-
-
11  
4.5  
18  
12  
-
Data input hold time  
ns  
th(SI)  
-
ta(SO  
Data output access time  
Data output disable time  
52  
42  
tdis(SO)  
tv(SO)  
Slave mode  
-
20  
56.5  
Data output valid time  
Data output hold time  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
Slave mode  
Master mode  
-
5
-
9
-
13  
3
-
-
1. Guaranteed by characterization results.  
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit  
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates  
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.  
120/157  
DS10685 Rev 6  
 
STM32L073xx  
Symbol  
Electrical characteristics  
(1)  
Table 76. SPI characteristics in voltage Range 3  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
Slave mode  
2
fSCK  
1/tc(SCK)  
SPI clock frequency  
-
-
MHz  
2(2)  
Duty cycle of SPI clock  
frequency  
Duty(SCK)  
Slave mode  
30  
50  
70  
%
tsu(NSS)  
th(NSS)  
tw(SCKH)  
tw(SCKL)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2 4*Tpclk  
Slave mode, SPI presc = 2 2*Tpclk  
-
-
-
-
SCK high and low time  
Data input setup time  
Master mode  
Tpclk-2  
Tpclk  
Tpclk+2  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
1.5  
6
-
-
-
-
-
-
-
-
13.5  
16  
-
Data input hold time  
ns  
th(SI)  
-
ta(SO  
Data output access time  
Data output disable time  
30  
70  
80  
tdis(SO)  
40  
tv(SO)  
Slave mode  
-
30  
70  
Data output valid time  
Data output hold time  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
Slave mode  
Master mode  
-
7
-
9
-
25  
8
-
-
1. Guaranteed by characterization results.  
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit  
into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates  
with a master having tsu(MI) = 0 while Duty(SCK) = 50%.  
DS10685 Rev 6  
121/157  
128  
 
Electrical characteristics  
STM32L073xx  
Figure 34. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
(1)  
Figure 35. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
122/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Electrical characteristics  
(1)  
Figure 36. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136d  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
DS10685 Rev 6  
123/157  
128  
 
Electrical characteristics  
STM32L073xx  
I2S characteristics  
(1)  
Table 77. I2S characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
fMCK  
I2S Main clock output  
I2S clock frequency  
-
256 x 8K  
256xFs (2)  
64xFs  
MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
fCK  
MHz  
%
64xFs  
I2S clock frequency duty  
cycle  
DCK  
Slave receiver  
30  
70  
tv(WS)  
th(WS)  
WS valid time  
WS hold time  
WS setup time  
WS hold time  
Master mode  
Master mode  
Slave mode  
-
11  
6
15  
-
tsu(WS)  
-
th(WS)  
Slave mode  
2
-
tsu(SD_MR)  
tsu(SD_SR)  
th(SD_MR)  
th(SD_SR)  
tv(SD_ST)  
tv(SD_MT)  
th(SD_ST)  
th(SD_MT)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
0
-
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
6.5  
18  
15.5  
-
-
ns  
-
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
77  
8
-
-
18  
1.5  
-
1. Guaranteed by characterization results.  
2. 256xFs maximum value is equal to the maximum clock frequency.  
Note:  
Refer to the I2S section of the product reference manual for more details about the sampling  
frequency (Fs), f , f and D values. These values reflect only the digital peripheral  
MCK CK  
CK  
behavior, source clock precision might slightly change them. DCK depends mainly on the  
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of  
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.  
124/157  
DS10685 Rev 6  
 
STM32L073xx  
Electrical characteristics  
2
(1)  
Figure 37. I S slave timing diagram (Philips protocol)  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 38. I S master timing diagram (Philips protocol)  
1. Guaranteed by characterization results.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DS10685 Rev 6  
125/157  
128  
 
 
Electrical characteristics  
STM32L073xx  
USB characteristics  
The USB interface is USB-IF certified (full speed).  
Table 78. USB startup time  
Parameter  
USB transceiver startup time  
Symbol  
Max  
Unit  
(1)  
tSTARTUP  
1
µs  
1. Guaranteed by design.  
Table 79. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage  
Differential input sensitivity  
-
3.0  
0.2  
0.8  
1.3  
3.6  
-
V
V
(2)  
VDI  
I(USB_DP, USB_DM)  
(2)  
VCM  
Differential common mode range Includes VDI range  
2.5  
2.0  
(2)  
VSE  
Single ended receiver threshold  
-
Output levels  
(3)  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(4)  
-
0.3  
3.6  
V
(3)  
(4)  
RL of 15 kΩ to VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. Guaranteed by characterization results.  
3. Guaranteed by test in production.  
RL is the load connected on the USB drivers.  
4.  
Figure 39. USB timings: definition of data signal rise and fall time  
Cross over  
points  
Differential  
data lines  
VCRS  
VSS  
tf  
tr  
ai14137b  
126/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Electrical characteristics  
Table 80. USB: full speed electrical characteristics  
Driver characteristics(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
Output signal crossover voltage  
90  
1.3  
110  
2.0  
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
6.3.21  
LCD controller  
The devices embed a built-in step-up converter to provide a constant LCD reference voltage  
independently from the V voltage. An external capacitor C must be connected to the  
DD  
ext  
V
pin to decouple this converter.  
LCD  
Table 81. LCD controller characteristics  
Symbol  
Parameter  
LCD external voltage  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
Cext  
-
-
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
-
2.6  
2.73  
2.86  
2.98  
3.12  
3.26  
3.4  
3.55  
-
-
-
-
-
-
-
-
V
-
-
-
-
-
-
-
0.1  
-
-
2
µF  
µA  
Supply current at VDD = 2.2 V  
3.3  
3.1  
6.6  
240  
-
-
(1)  
ILCD  
Supply current at VDD = 3.0 V  
-
-
(2)  
RHtot  
Low drive resistive network overall value  
High drive resistive network total value  
Segment/Common highest level voltage  
5.28  
192  
-
7.92  
288  
VLCD  
MΩ  
kΩ  
V
(2)  
RL  
V44  
DS10685 Rev 6  
127/157  
128  
 
 
 
Electrical characteristics  
Symbol  
STM32L073xx  
Table 81. LCD controller characteristics (continued)  
Parameter  
Min  
Typ  
Max  
Unit  
V34  
V23  
V12  
V13  
V14  
V0  
Segment/Common 3/4 level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
-
-
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
-
-
-
-
-
-
-
-
V
-
-
0
Segment/Common level voltage error  
ΔVxx(3)  
-
-
50  
mV  
TA = -40 to 85 °C  
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD  
connected.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
128/157  
DS10685 Rev 6  
STM32L073xx  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at www.st.com. ECOPACK  
is an ST trademark.  
7.1  
LQFP100 package information  
Figure 40. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
75  
C
D
D1  
D3  
L
L1  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V5  
1. Drawing is not to scale. Dimensions are in millimeters.  
Table 82. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
-
-
-
1.600  
0.150  
-
-
-
0.0630  
0.0059  
A1  
0.050  
0.0020  
DS10685 Rev 6  
129/157  
152  
 
 
 
 
Package information  
STM32L073xx  
Table 82. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package  
mechanical data (continued)  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A2  
b
1.350  
0.170  
0.090  
15.800  
13.800  
-
1.400  
0.220  
-
1.450  
0.270  
0.200  
16.200  
14.200  
-
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
0.0551  
0.0087  
-
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
-
16.200  
14.200  
-
0.6220  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0.0°  
-
7.0°  
0.0°  
7.0°  
ccc  
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 41. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat  
recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906c  
1. Dimensions are expressed in millimeters.  
130/157  
DS10685 Rev 6  
 
STM32L073xx  
Package information  
Device marking for LQFP100  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 42. LQFP100 marking example (package top view)  
Product identification(1)  
STM32L073  
Revision code  
VZT6D  
R
Date code  
YWW  
Pin 1  
indentifier  
MS34771V3  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS10685 Rev 6  
131/157  
152  
 
Package information  
STM32L073xx  
7.2  
UFBGA100 package information  
Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package outline  
Seating plane  
Z
ddd Z  
A4  
A2  
A
A3  
A1 A  
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
Z
e
Z
D1  
D
e
Y
M
12  
1
Øb (100 balls)  
BOTTOM VIEW  
TOP VIEW  
eee M  
Ø
Z Y X  
M
Øfff  
Z
A0C2_ME_V5  
1. Drawing is not to scale.  
Table 83. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
A3  
A4  
b
-
-
0.600  
-
-
0.0236  
-
-
0.110  
-
-
0.0043  
-
0.450  
0.130  
0.320  
0.290  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
-
-
0.0177  
0.0051  
0.0126  
0.0114  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
-
-
-
-
0.0094  
-
-
-
-
0.240  
0.340  
0.0094  
0.0134  
D
6.850  
7.150  
0.2697  
0.2815  
D1  
E
-
-
-
-
6.850  
7.150  
0.2697  
0.2815  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
Z
-
132/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Package information  
Table 83. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array  
package mechanical data (continued)  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
ddd  
eee  
fff  
-
-
-
-
-
-
0.080  
0.150  
0.050  
-
-
-
-
-
-
0.0031  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 44. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball  
grid array package recommended footprint  
Dpad  
Dsm  
A0C2_FP_V1  
Table 84. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
DS10685 Rev 6  
133/157  
152  
 
 
Package information  
STM32L073xx  
Device marking for UFBGA100  
The following figure gives an example of topside marking versus ball A 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 45. UFBGA100 marking example (package top view)  
Product identification(1)  
STM32L  
073VZI6  
Date code  
YWW  
Ball 1  
indentifier  
Revision code  
R
MSv37821V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
134/157  
DS10685 Rev 6  
 
STM32L073xx  
Package information  
7.3  
LQFP64 package information  
Figure 46. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 85. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
DS10685 Rev 6  
135/157  
152  
 
 
 
Package information  
STM32L073xx  
Table 85. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat  
package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are expressed in millimeters.  
136/157  
DS10685 Rev 6  
 
STM32L073xx  
Package information  
Device marking for LQFP64  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 48. LQFP64 marking example (package top view)  
Product identification(1)  
Revision code  
R
STM32L  
073RZT6  
Date code  
YWW  
Pin 1  
indentifier  
MSv36150V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS10685 Rev 6  
137/157  
152  
 
Package information  
STM32L073xx  
7.4  
TFBGA64 package information  
Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball  
grid array package outline  
A
E1  
E
F
e
H
F
e
D
D1  
Øb (64 balls)  
Øeee M C B A  
Øfff M C  
B
A
1
8
A1 ball  
A1 ball  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
index area  
identifier  
C Seating plane  
ddd C  
A4  
A2  
A1  
A
R8_ME_V4  
1. Drawing is not to scale.  
Table 86. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid  
array package outline  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A4  
b
-
-
1.200  
-
-
0.0472  
0.150  
-
-
0.0059  
-
-
-
0.200  
-
-
-
0.0079  
-
-
-
0.600  
-
0.0236  
0.250  
0.300  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.350  
0.0098  
0.0118  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0138  
D
4.850  
5.150  
0.1909  
0.2028  
D1  
E
-
-
-
-
4.850  
5.150  
0.1909  
0.2028  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
F
138/157  
DS10685 Rev 6  
 
 
 
 
STM32L073xx  
Package information  
Table 86. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid  
array package outline (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
ddd  
eee  
fff  
-
-
-
-
-
-
0.080  
0.150  
0.050  
-
-
-
-
-
-
0.0031  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 50. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball  
,grid array recommended footprint  
Dpad  
Dsm  
R8_FP_V1  
Table 87. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 1.125 mm  
0.100 mm  
DS10685 Rev 6  
139/157  
152  
 
 
 
 
Package information  
STM32L073xx  
Device marking for TFBGA64  
The following figure gives an example of topside marking versus ball A 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 51. TFBGA64 marking example (package top view)  
Product identification(1)  
L073RBH6  
Date code = Year + week  
Y WW  
Revision  
code  
Ball A1  
R
MSv37820V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
140/157  
DS10685 Rev 6  
 
STM32L073xx  
Package information  
7.5  
WLCSP49 package information  
Figure 52. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
package outline  
bbb  
e1  
Z
F
A1 ball location  
A1  
G
e
Detail A  
e2  
E
e
A
D
A2  
Bottom view  
Bump side  
Side view  
A2  
A3  
b
Bump  
Front view  
A1  
eee  
Z
Z
b49x  
ccc  
ddd  
Z
Z
X
Y
E
Seating plane  
Note 1  
Detail A  
(rotated 90 )  
Note 2  
A1  
Orientation  
reference  
aaa  
(4x)  
D
Top view  
Wafer back side  
A038_ME_V1  
1. Drawing is not to scale.  
DS10685 Rev 6  
141/157  
152  
 
 
Package information  
STM32L073xx  
Table 88. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
0.555  
0.175  
0.380  
0.025  
0.250  
3.294  
3.258  
0.400  
2.400  
2.400  
0.447  
0.429  
-
Max  
Min  
Typ  
0.0219  
0.0069  
0.0150  
0.0010  
0.0098  
0.1297  
0.1283  
0.0157  
0.0945  
0.0945  
0.0176  
0.0169  
-
Max  
A
A1  
A2  
A3(2)  
b(3)  
D
0.525  
0.585  
0.0207  
0.0230  
-
-
-
-
-
-
-
-
-
-
-
-
0.220  
0.280  
3.329  
3.293  
-
0.0087  
0.0110  
0.1311  
0.1296  
-
3.259  
0.1283  
E
3.223  
0.1269  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
-
-
e2  
-
-
F
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. Back side coating  
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
Figure 53. WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale  
recommended footprint  
Dpad  
Dsm  
MS18965V2  
142/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Package information  
Table 89. WLCSP49 recommended PCB design rules (0.4 mm pitch)  
Dimension  
Recommended values  
Pitch  
Dpad  
0.4  
260 µm max. (circular)  
220 µm recommended  
Dsm  
300 µm min. (for 260 µm diameter pad)  
Non-solder mask defined via underbump allowed.  
PCB pad design  
Device marking for WLCSP49  
The following figure gives an example of topside marking versus ball A 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 54. WLCSP49 marking example (package top view  
Ball 1  
indentifier  
Product identification(1)  
L073CZ6  
Revision code  
Date code  
Y WW R  
MSv66803V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS10685 Rev 6  
143/157  
152  
 
 
Package information  
STM32L073xx  
7.6  
LQFP48 package information  
Figure 55. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
144/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Package information  
Table 90. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 56. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Dimensions are expressed in millimeters.  
DS10685 Rev 6  
145/157  
152  
 
 
Package information  
STM32L073xx  
Device marking for LQFP48  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 57. LQFP48 marking example (package top view)  
Product identification(1)  
STM32L  
073CZT6  
Date code  
YWW  
Revision code  
Pin 1  
indentifier  
R
MSv37819V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
146/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Package information  
7.7  
UFQFPN48 package information  
Figure 58. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
DS10685 Rev 6  
147/157  
152  
 
 
Package information  
STM32L073xx  
Table 91. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 59. UFQFPN48 - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
148/157  
DS10685 Rev 6  
 
 
STM32L073xx  
Package information  
Device marking for UFQFPN48  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 60. UFQFPN48 marking example (package top view)  
Product identification(1)  
STM32L073  
CZU6D  
Date code  
YWW  
Revision code  
Pin 1  
indentifier  
R
MSv62438V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS10685 Rev 6  
149/157  
152  
 
Package information  
STM32L073xx  
7.8  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 92. Thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
54  
LQFP48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
28  
46  
64  
48  
41  
57  
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
TFBGA64 - 5 x 5 mm / 0.5 mm pitch  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
WLCSP49 - 0.4 mm pitch  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFBGA100 - 7 x 7 mm / 0.5 mm pitch  
150/157  
DS10685 Rev 6  
 
 
 
STM32L073xx  
Package information  
Figure 61. Thermal resistance  
UFQFPN48  
LQFP48  
PD (mW)  
WLCSP49  
Temperature (°C)  
MSv35427V6  
7.8.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DS10685 Rev 6  
151/157  
152  
 
 
Ordering information  
STM32L073xx  
8
Ordering information  
Example:  
STM32 L  
073  
R
8
T
6
D TR  
Device family  
STM32 = Arm-based 32-bit microcontroller  
Product type  
L = Low power  
Device subfamily  
073 = USB + LCD  
Pin count  
C = 48/49 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
8 = 64 Kbytes  
B = 128 Kbytes  
Z = 192 Kbytes  
Package  
T = LQFP  
H = TFBGA  
I = UFBGA  
U = UFQFPN  
Y = Standard WLCSP  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
7 = Industrial temperature range, –40 to 105 °C  
3 = Industrial temperature range, –40 to 125 °C  
Options  
No character = VDD range: 1.8 to 3.6 V and BOR enabled  
D = VDD range: 1.65 to 3.6 V and BOR disabled  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
152/157  
DS10685 Rev 6  
 
STM32L073xx  
Revision history  
9
Revision history  
Table 93. Document revision history  
Changes  
Date  
Revision  
03-Aug-2015  
1
Initial release  
Changed confidentiality level to public.  
Updated datasheet status to “production data”.  
Modified ultra-low-power platform features on cover page.  
Changed number of GPIOs for LQFP48 for 37 in Table 2: Ultra-low-  
power STM32L073xxx device features and peripheral counts.  
Changed LCD_VLCD1 into LCD_VLCD2 in Section 3.13.2: VLCD  
voltage monitoring.  
In Section 6: Electrical characteristics, updated notes related to  
values guaranteed by characterization.  
26-Oct-2015  
2
Updated |ΔVSS| definition to include VREF- in Table 23: Voltage  
characteristics.  
Added ΣVDD_USB and updated ΣIIO(PIN) in Figure 24: Current  
characteristics.  
Updated Table 56: EMI characteristics.  
Updated fTRIG and VAIN maximum value, added VREF+ and VREF- in  
Table 64: ADC characteristics.  
Updated Section 7.2: UFBGA100 package information. Updated  
Figure 60: UFQFPN48 marking example (package top view).  
DS10685 Rev 6  
153/157  
156  
 
 
Revision history  
STM32L073xx  
Table 93. Document revision history (continued)  
Date  
Revision  
Changes  
Updated number of SPIs on cover page and in Table 2: Ultra-low-  
power STM32L073xxx device features and peripheral counts.  
Changed minimum comparator supply voltage to 1.65 V on cover  
page. Added minimum DAC supply voltage on cover page.  
Added number of fast and standard channels in Section 3.12:  
Analog-to-digital converter (ADC).  
Updated Section 3.18.2: Universal synchronous/asynchronous  
receiver transmitter (USART) and Section 3.18.4: Serial peripheral  
interface (SPI)/Inter-integrated sound (I2S) to mention the fact that  
USARTs with synchronous mode feature can be used as SPI master  
interfaces.  
Added baudrate allowing to wake up the MCU from Stop mode in  
Section 3.18.2: Universal synchronous/asynchronous receiver  
transmitter (USART) and Section 3.18.3: Low-power universal  
asynchronous receiver transmitter (LPUART).  
22-Mar-2016  
3
Section 6.3.15: 12-bit ADC characteristics:  
Table 64: ADC characteristics:  
Distinction made between VDDA for fast and standard channels;  
added note 1.  
Added note 4. related to RADC  
.
Updated fTRIG..  
Updated tS and tCONV  
.
– Updated equation 1 description.  
– Updated Table 65: RAIN max for fADC = 16 MHz for fADC = 16 MHz  
and distinction made between fast and standard channels.  
Updated RO and added Note 2. in Table 67: DAC characteristics.  
Added Table 71: USART/LPUART characteristics.  
154/157  
DS10685 Rev 6  
STM32L073xx  
Revision history  
Table 93. Document revision history (continued)  
Date  
Revision  
Changes  
Memories and I/Os moved after Core in Features.  
Removed column "I/O operation" from Table 3: Functionalities  
depending on the operating power supply range and added note  
related to GPIO speed.  
Updated VDD_USB in Section 3.4.1: Power supply schemes.  
In Section 4: Pin descriptions, renamed USB_OE into USB_NOE.  
In Section 5: Memory mapping, replaced memory mapping  
schematic by reference to the reference manual.  
Added mission profile compliance with JEDEC JESD47 in  
Section 6.2: Absolute maximum ratings.  
Updated minimum and maximum values of I/O weak pull-up  
equivalent resistor (RPU) and weak pull-down equivalent resistor  
(RPD) in Table 60: I/O static characteristics.  
Updated minimum and maximum values of NRST weak pull-up  
equivalent resistor (RPU) in Table 63: NRST pin characteristics.  
Added note 2. related to the position of the external capacitor below  
Figure 28: Recommended NRST pin protection.  
12-Sep-2017  
4
Updated RAIN in Table 64: ADC characteristics.  
Updated Figure 33: 12-bit buffered/non-buffered DAC and added  
note below figure.  
Updated tAF maximum value for range 1 in Table 73: I2C analog filter  
characteristics.  
Removed Table 90: USART/LPUART characteristics.  
NSS timing waveforms updated in Figure 34: SPI timing diagram -  
slave mode and CPHA = 0 and Figure 35: SPI timing diagram - slave  
mode and CPHA = 1(1)  
.
Updated Figure 49: TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin  
profile fine pitch ball grid array package outline.  
Added reference to optional marking or inset/upset marks in all  
package device marking sections. Updated note below marking  
schematics.  
DS10685 Rev 6  
155/157  
156  
Revision history  
STM32L073xx  
Table 93. Document revision history (continued)  
Date  
Revision  
Changes  
Added UFQFPN48 package.  
Updated Arm logo and added Arm word mark notice in Section 1:  
Introduction.  
Removed Cortex logo.  
Updated Table 5: Functionalities depending on the working mode  
(from Run/active down to standby) to change I2C functionality to  
disabled in Low-power Run and Low-power Sleep modes.  
Updated VDD_USB description in Section 3.4.1: Power supply  
schemes.  
Replaced LCD_VLCD2 by LCD_VLCD1 in Section 3.13.2: VLCD  
voltage monitoring.  
Changed USARTx_RTS, USARTx_RTS_DE into  
USARTx_RTS/USARTx_DE, and LPUART1_RTS,  
LPUART1_RTS_DE into LPUART1_RTS/LPUART1_DE in  
Section 4: Pin descriptions and in all alternate function tables. In  
Table 16: STM32L073xx pin definition changed PB2 and PB12/PE11  
additional functions to LCD_VLCD2 and LCD_VLCD1, respectively.  
08-Oct-2019  
5
Updated VDD_USB and note 2. in Table 26: General operating  
conditions.  
Updated tAF maximum value for range 1 in Table 73: I2C analog filter  
characteristics.  
Updated paragraph introducing all package marking schematics to  
add the new sentence “The printed markings may differ depending  
on the supply chain.”  
Updated Figure 49: TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin  
profile fine pitch ball grid array package outline, Figure 50: TFBGA64  
– 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid  
array recommended footprint and Figure 87: TFBGA64  
recommended PCB design rules (0.5 mm pitch BGA).  
Added WLCSP49 package.  
Added tWUUSART and tWULPUART in Table 42: Low-power mode  
wakeup timings.  
19-Aug-2020  
6
Added reference to AN4899 in Section 6.3.13: I/O port  
characteristics.  
Removed R10K and R400K from Table 70: Comparator 1  
characteristics.  
156/157  
DS10685 Rev 6  
STM32L073xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS10685 Rev 6  
157/157  
157  
 
 

相关型号:

STM32L073RBI3DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBI6DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBI7DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBT3DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBT6DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBT7DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBU3DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBU6DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBU7DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L073RBY3DTR

Ultra-low-power 32-bit MCU Arm®-based Cortex®-M0, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR