STM32L151UC [STMICROELECTRONICS]

Reset and supply management;
STM32L151UC
型号: STM32L151UC
厂家: ST    ST
描述:

Reset and supply management

文件: 总136页 (文件大小:2032K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L15xCC STM32L15xRC  
STM32L15xUC STM32L15xVC  
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3,  
256KB Flash, 32KB SRAM, 8KB EEPROM, LCD, USB, ADC, DAC  
Datasheet - production data  
Features  
Ultra-low-power platform  
WLCSP63  
UFQFPN48  
UFBGA100  
(7 x 7 mm)  
– 1.65 V to 3.6 V power supply  
-40 °C to 105 °C temperature range  
– 0.29µA Standby mode (3 wakeup pins)  
1.15 µA Standby mode + RTC  
– 0.44 µA Stop mode (16 wakeup lines)  
– 1.4 µA Stop mode + RTC  
(0.4 mm pitch) (7x7 mm)  
LQFP100 (14 × 14 mm)  
LQFP64 (10 × 10 mm)  
LQFP48 (7 x 7 mm)  
Memories  
– 256 KB Flash memory with ECC  
– 32 KB RAM  
– 8 KB of true EEPROM with ECC  
– 128-byte backup register  
– 8.6 µA Low-power run mode  
– 185 µA/MHz Run mode  
LCD Driver (except STM32L151xC devices) up  
to 8x40 segments, contrast adjustment,  
blinking mode, step-up converter  
– 10 nA ultra-low I/O leakage  
– 8 µs wakeup time  
Rich analog peripherals (down to 1.8 V)  
– 2x operational amplifiers  
®
®
Core: ARM Cortex -M3 32-bit CPU  
– From 32 kHz up to 32 MHz max  
– 1.25 DMIPS/MHz (Dhrystone 2.1)  
– Memory protection unit  
– 12-bit ADC 1Msps up to 25 channels  
– 12-bit DAC 2 channels with output buffers  
– 2x ultra-low-power-comparators  
(window mode and wake up capability)  
Reset and supply management  
DMA controller 12x channels  
– Low-power, ultrasafe BOR (brownout reset)  
with 5 selectable thresholds  
9x peripheral communication interfaces  
– 1x USB 2.0 (internal 48 MHz PLL)  
– 3x USARTs  
– Ultra-low-power POR/PDR  
– Programmable voltage detector (PVD)  
– Up to 8x SPIs (2x I2S, 3x 16 Mbit/s)  
Clock sources  
– 2x I2Cs (SMBus/PMBus)  
– 1 to 24 MHz crystal oscillator  
11x timers: 1x 32-bit, 6x 16-bit with up to 4  
IC/OC/PWM channels, 2x 16-bit basic timers,  
2x watchdog timers (independent and window)  
– 32 kHz oscillator for RTC with calibration  
– High Speed Internal 16 MHz  
factory-trimmed RC (+/- 1%)  
Up to 23 capacitive sensing channels  
CRC calculation unit, 96-bit unique ID  
– Internal Low-power 37 kHz RC  
– Internal multispeed low-power 65 kHz to  
4.2 MHz PLL for CPU clock and USB  
(48 MHz)  
Table 1. Device summary  
Reference  
Part number  
STM32L151CC  
STM32L151CCT6, STM32L151CCU6  
STM32L151RCT6  
STM32L151UCY6  
Pre-programmed bootloader  
(1)  
STM32L151RC  
STM32L151UC  
– USB and USART supported  
(1)  
STM32L151VC  
STM32L151VCT6, STM32L151VCH6  
Development support  
STM32L152CC  
STM32L152RC  
STM32L152UC  
STM32L152CCT6, STM32L152CCU6  
STM32L152RCT6  
STM32L152UCY6  
(1)  
– Serial wire debug supported  
– JTAG and trace supported  
(1)  
STM32L152VC  
STM32L152VCT6, STM32L152VCH6  
Up to 83 fast I/Os (70 I/Os 5V tolerant), all  
1. For sales types ending with “A” and STM32L15xxC products  
in WLCSP64 package, please refer to STM32L15xxC/C-A  
datasheet.  
mappable on 16 external interrupt vectors  
March 2016  
DocID022799 Rev 12  
1/136  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32L151xC STM32L152xC  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Common system strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23  
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REFINT  
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.12 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.13 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27  
3.14 System configuration controller and routing interface . . . . . . . . . . . . . . . 27  
3.15 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Contents  
3.16 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and  
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.16.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 30  
3.17.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.17.4 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.17.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.18 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30  
3.19 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.19.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.19.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4
5
6
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
6.3.1  
6.3.2  
6.3.3  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Embedded reset and power control block characteristics . . . . . . . . . . . 57  
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DocID022799 Rev 12  
3/136  
4
Contents  
STM32L151xC STM32L152xC  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
6.3.16 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
6.3.19 Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
6.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.3.21 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.3.22 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.1  
7.2  
7.3  
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
7.4  
7.5  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . .119  
UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid  
array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
7.6  
7.7  
WLCSP63, 0.400 mm pitch wafer level chip size package  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
7.7.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
8
9
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
4/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
List of tables  
List of tables  
Table 1.  
Table 2.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ultra-low-power STM32L151xC and STM32L152xC device features  
and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15  
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16  
Functionalities depending on the working mode (from Run/active down to  
Table 3.  
Table 4.  
Table 5.  
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 6.  
V
rail decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LCD  
Table 7.  
Table 8.  
Table 9.  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
STM32L151xC and STM32L152xC pin definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Current consumption in Run mode, code with data processing running from Flash. . . . . . 61  
Current consumption in Run mode, code with data processing running from RAM . . . . . . 62  
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 66  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 68  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 81  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
DocID022799 Rev 12  
5/136  
6
List of tables  
STM32L151xC STM32L152xC  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
2
SCL frequency (f  
= 32 MHz, V = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 91  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Maximum source impedance R  
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
AIN  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 110  
LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 113  
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 117  
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,  
0.5 mm pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data . . . . . . . . . . . . . . . . . . . 122  
UFBGA100, 7 x 7 mm, 0.50 mm pitch, recommended PCB design rules . . . . . . . . . . . . 123  
WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . . 126  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
STM32L151xC and STM32L152xC ordering information scheme . . . . . . . . . . . . . . . . . . 130  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
6/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Ultra-low-power STM32L151xC and STM32L152xC block diagram . . . . . . . . . . . . . . . . . 13  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM32L15xVC UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
STM32L15xVC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32L15xRC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L15xUC WLCSP63 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
STM32L15xCC UFQFPN48 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
STM32L15xCC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 13. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 17. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 19. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 20. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
2
Figure 21. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 22. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
(1)  
Figure 23. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
(1)  
Figure 24. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 25. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
2
(1)  
Figure 26. I S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
2
(1)  
Figure 27. I S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 28. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 29. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 30. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 31. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Figure 32. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 110  
Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Figure 34. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example . . . . . . 112  
Figure 35. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 113  
Figure 36. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . 115  
Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 116  
Figure 39. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 40. LQFP48 package top view example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 42. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 43. UFQFPN48 package top view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 45. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint. . . . . . . . . . . . . . 123  
DocID022799 Rev 12  
7/136  
8
List of figures  
STM32L151xC STM32L152xC  
Figure 46. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . 124  
Figure 47. WLCSP63, 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . . 125  
Figure 48. WLCSP63 device marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 49. Thermal resistance suffix 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Figure 50. Thermal resistance suffix 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
8/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
®
®
the STM32L151xC and STM32L152xC ultra-low-power ARM Cortex -M3 based  
microcontroller product line with a Flash memory of 256 Kbytes.  
The ultra-low-power STM32L151xC and STM32L152xC family includes devices in 6  
different package types: from 48 pins to 100 pins. Depending on the device chosen,  
different sets of peripherals are included, the description below gives an overview of the  
complete range of peripherals proposed in this family.  
These features make the ultra-low-power STM32L151xC and STM32L152xC  
microcontroller family suitable for a wide range of applications:  
Medical and handheld equipment  
Application control and user interface  
PC peripherals, gaming, GPS and sport equipment  
Alarm systems, wired and wireless sensors, video intercom  
Utility metering  
This STM32L151xC and STM32L152xC datasheet should be read in conjunction with the  
STM32L1xxxx reference manual (RM0038). The application note “Getting started with  
STM32L1xxxx hardware development” (AN3216) gives a hardware implementation  
overview. Both documents are available from the STMicroelectronics website www.st.com.  
®
®
®
®
For information on the ARM Cortex -M3 core please refer to the ARM Cortex -M3  
technical reference manual, available from the www.arm.com website. Figure 1 shows the  
general block diagram of the device family.  
DocID022799 Rev 12  
9/136  
51  
 
Description  
STM32L151xC STM32L152xC  
2
Description  
The ultra-low-power STM32L151xC and STM32L152xC devices incorporate the  
®
connectivity power of the universal serial bus (USB) with the high-performance ARM  
®
Cortex -M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory  
protection unit (MPU), high-speed embedded memories (Flash memory up to 256 Kbytes  
and RAM up to 32 Kbytes) and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses.  
The STM32L151xC and STM32L152xC devices offer two operational amplifiers, one 12-bit  
ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six  
general-purpose 16-bit timers and two basic timers, which can be used as time bases.  
Moreover, the STM32L151xC and STM32L152xC devices contain standard and advanced  
communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs and an USB.  
The STM32L151xC and STM32L152xC devices offer up to 23 capacitive sensing channels  
to simply add a touch sensing functionality to any application.  
They also include a real-time clock and a set of backup registers that remain powered in  
Standby mode.  
Finally, the integrated LCD controller (except STM32L151xC devices) has a built-in LCD  
voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast  
independent of the supply voltage.  
The ultra-low-power STM32L151xC and STM32L152xC devices operate from a 1.8 to 3.6 V  
power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power  
supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C  
temperature ranges. A comprehensive set of power-saving modes allows the design of low-  
power applications.  
10/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Description  
2.1  
Device overview  
Table 2. Ultra-low-power STM32L151xC and STM32L152xC device features  
and peripheral counts  
STM32L15xUC  
STM32L15xRC  
Peripheral  
Flash (Kbytes)  
STM32L15xCC  
STM32L15xVC  
256  
8
Data EEPROM (Kbytes)  
RAM (Kbytes)  
32  
1
32 bit  
General-  
purpose  
Timers  
6
Basic  
SPI  
2
8(3)(1)  
I2S  
2
2
Communica  
tion interfaces  
I2C  
USART  
USB  
3
1
GPIOs  
37  
51  
2
83  
Operation amplifiers  
12-bit synchronized ADC  
Number of channels  
1
14  
1
21  
1
25  
12-bit DAC  
Number of channels  
2
2
LCD (2)  
1
1
1
COM x SEG  
4x18  
4x32 or 8x28  
4x44 or 8x40  
Comparators  
2
Capacitive sensing channels  
Max. CPU frequency  
16  
23  
32 MHz  
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option  
1.65 V to 3.6 V without BOR option  
Operating voltage  
Operating temperatures  
Packages  
Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C  
Junction temperature: –40 to + 110 °C  
LQFP48,  
LQFP64,  
LQFP100,  
UFQFPN48  
WLCSP63  
UFBGA100  
1. 5 SPIs are USART configured in synchronous mode emulating SPI master.  
2. STM32L152xx devices only.  
DocID022799 Rev 12  
11/136  
51  
 
 
 
Description  
STM32L151xC STM32L152xC  
2.2  
Ultra-low-power device continuum  
The ultra-low-power family offers a large choice of cores and features. From proprietary 8-  
bit to up to Cortex-M3, including the Cortex-M0+, the STM32Lx series are the best choice to  
answer the user needs, in terms of ultra-low-power features. The STM32 ultra-low-power  
series are the best fit, for instance, for gas/water meter, keyboard/mouse or fitness and  
healthcare, wearable applications. Several built-in features like LCD drivers, dual-bank  
memory, Low-power run mode, op-amp, AES 128-bit, DAC, USB crystal-less and many  
others will clearly allow to build very cost-optimized applications by reducing BOM.  
Note:  
STMicroelectronics as a reliable and long-term manufacturer ensures as much as possible  
the pin-to-pin compatibility between any STM8Lxxxxx and STM32Lxxxxx devices and  
between any of the STM32Lx and STM32Fx series. Thanks to this unprecedented  
scalability, the old applications can be upgraded to respond to the latest market features and  
efficiency demand.  
2.2.1  
Performance  
All the families incorporate highly energy-efficient cores with both Harvard architecture and  
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex-M3 core for  
STM32L family. In addition specific care for the design architecture has been taken to  
optimize the mA/DMIPS and mA/MHz ratios.  
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.  
2.2.2  
2.2.3  
Shared peripherals  
STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a  
very easy migration from one family to another:  
Analog peripherals: ADC, DAC and comparators  
Digital peripherals: RTC and some communication interfaces  
Common system strategy.  
To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and  
STM32L162xx family uses a common architecture:  
Same power supply range from 1.65 V to 3.6 V  
Architecture optimized to reach ultra-low consumption both in low-power modes and  
Run mode  
Fast startup strategy from low-power modes  
Flexible system clock  
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,  
brownout reset and programmable voltage detector  
2.2.4  
Features  
ST ultra-low-power continuum also lies in feature compatibility:  
More than 15 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm  
Memory density ranging from 2 to 512 Kbytes  
12/136  
DocID022799 Rev 12  
 
 
 
 
 
STM32L151xC STM32L152xC  
Functional overview  
3
Functional overview  
Figure 1. Ultra-low-power STM32L151xC and STM32L152xC block diagram  
75$&(&.ꢑꢅ75$&('ꢉꢑꢅ75$&('ꢂꢑꢅ75$&('ꢆꢑꢅ75$&('ꢁ  
#ꢅ9''ꢅꢀꢀ  
32:(5  
-7$*ꢅꢇꢅ6:  
9''ꢅ&25(  
7UDFHꢅ&RQWUROOHUꢅ(70  
SEXV  
9''ꢀꢀ ꢂꢄꢌꢏ9ꢅWRꢅꢀꢄꢌ9  
9VV  
92/7ꢄꢅ5(*ꢄ  
1-7567  
-7',  
-7&.ꢅꢐꢅ6:&/.  
LEXV  
0ꢀꢅ&38  
((3520ꢅꢌꢁꢅ%LW  
9UHI  
-706ꢅꢐꢅ6:'$7  
-7'2  
'EXV  
ꢆꢏꢌꢅ.%ꢅ352*5$0  
ꢋꢅ.%ꢅ'$7$  
ꢋ.%ꢅ%227  
)PD[ꢈꢅꢀꢆꢅ0+]  
6XSSO\ꢅPRQLWRULQJ  
DVꢅ$)  
0 3 8  
1567  
6\VWHP  
3'5  
65$0ꢅꢀꢆ.  
3 ' 5  
19,&  
#ꢅ9''ꢅꢀꢀ  
*3ꢅ'0$ꢅꢃꢅFKDQQHOV  
*3ꢅ'0$ꢆꢅꢏꢅFKDQQHOV  
26&B,1  
;7$/ꢅ26&  
ꢂꢎꢆꢁꢅ0+]  
26&B287  
#9''$  
$+%3&/.  
$3%3&/.  
+&/.  
3//ꢅꢇ  
&ORFN  
0JPW  
)&/.  
:'*ꢅꢀꢆ.  
6WDQGE\  
LQWHUIDFH  
6XSSO\  
5&ꢅ+6,  
5&ꢅ06,  
5&ꢅ/6,  
PRQLWRULQJꢅꢅ  
9''$ꢅꢐ  
966$  
%25ꢅꢐꢅ%JDS  
%25  
,QW  
26&ꢀꢆB,1  
;7$/ꢅꢀꢆꢅN+]  
26&ꢀꢆB287  
39'  
57&B287  
&DSꢄꢅVHQV  
*3ꢅ&RPS  
57&ꢅ9ꢆ  
$:8  
%DFNXSꢅ  
5HJꢅꢂꢆꢋ  
7$03(5  
&203[B,1[  
%DFNXSꢅLQWHUIDFH  
#9''ꢅꢀꢀ  
38ꢅꢐꢅ3'  
#9''$  
3$>ꢂꢏꢈꢉ@  
3%>ꢂꢏꢈꢉ@  
*3,2ꢅ3257ꢅ$  
*3,2ꢅ3257ꢅ%  
9/&'ꢅ ꢅꢆꢄꢏ9ꢅWRꢅꢀꢄꢌ9  
/&'ꢅ%RRVWHU  
ꢁꢅFKDQQHOV  
ꢁꢅFKDQQHOV  
7,0(5ꢆ  
7,0(5ꢀ  
3&>ꢂꢏꢈꢉ@  
*3,2ꢅ3g57ꢅ&  
*3,2ꢅ3257ꢅ'  
*3,2ꢅ3257ꢅ(  
*3,2ꢅ3257ꢅ+  
3'>ꢂꢏꢈꢉ@  
3(>ꢂꢏꢈꢉ@  
7,0(5ꢁ  
ꢁꢅFKDQQHOV  
ꢁꢅFKDQQHOV  
7,0(56ꢅꢊꢀꢆꢅELWVꢍ  
86$57ꢆ  
3+>ꢆꢈꢉ@  
5;ꢑꢅ7;ꢑꢅ&76ꢑꢅ576ꢑꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ  
6PDUW&DUGꢅDVꢅ$)ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ  
5;ꢑꢅ7;ꢑꢅ&76ꢑꢅ576ꢑꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ  
6PDUW&DUGꢅDVꢅ$)ꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅ  
86$57ꢀ  
(;7,7  
:.83  
ꢂꢂꢏꢅ$)  
$+%ꢐ$3%ꢆ  
$+%ꢐ$3%ꢂ  
026,ꢑꢅ0,62ꢑ  
6&.ꢑꢅ166ꢅDVꢅ$)  
63,ꢂ  
026,ꢑꢅ0,62ꢑꢅ6&.ꢑ166ꢑ:6ꢑꢅ&.  
0&.ꢑꢅ6'ꢅDVꢅ$)  
63,ꢆꢐ,ꢆ6  
5;ꢑꢅ7;ꢑꢅ&76ꢑꢅ576ꢑꢅ  
6PDUW&DUGꢅDVꢅ$)  
86$57ꢂ  
026,ꢑꢅ0,62ꢑꢅ6&.ꢑ166ꢑ:6ꢑꢅ&.  
0&.ꢑꢅ6'ꢅDVꢅ$)  
63,ꢀꢐ,ꢆ6  
86%ꢅ65$0ꢅꢏꢂꢆꢅ%  
#9''$  
ꢁꢉꢅ$)  
9''5()B$'&ꢓ  
9665()B$'&  
,ꢆ&ꢂ  
,ꢆ&ꢆ  
6&/ꢑꢅ6'$  
$Vꢅ$)  
:LQ:$7&+'2*  
ꢂꢆELWꢅ$'&  
,)  
6&/ꢑꢅ6'$ꢑꢅ60%XVꢑꢅ30%XV  
$Vꢅ$)  
7HPSꢅVHQVRU  
7,0(5ꢌ  
7,0(5ꢃ  
86%B'3  
86%B'0  
86%ꢆꢄꢉꢅ)6ꢅGHYLFH  
&DSꢄꢅVHQVLQJ  
3[  
*HQHUDOꢅSXUSRVH  
WLPHUV  
6(*[  
&20[  
/&'ꢅꢋ[ꢁꢉ  
#9''$  
23$03ꢂ  
ꢆꢅFKDQQHOV  
ꢂꢅFKDQQHO  
7,0(5ꢒ  
23$03ꢆ  
7,0(5ꢂꢉ  
'$&B287ꢂꢅDVꢅ$)  
'$&B287ꢆꢅDVꢅ$)  
ꢂꢆELWꢅ'$&ꢂ  
ꢂꢅFKDQQHO  
7,0(5ꢂꢂ  
,)
ꢂꢆELWꢅ'$&ꢆ  
9,13  
9,10  
9287  
9,13  
9,10  
9287  
06Yꢀꢁꢂꢃꢃ9ꢂ  
DocID022799 Rev 12  
13/136  
51  
 
 
Functional overview  
STM32L151xC STM32L152xC  
3.1  
Low-power modes  
The ultra-low-power STM32L151xC and STM32L152xC devices support dynamic voltage  
scaling to optimize its power consumption in run mode. The voltage from the internal low-  
drop regulator that supplies the logic can be adjusted according to the system’s maximum  
operating frequency and the external voltage supply.  
There are three power consumption ranges:  
Range 1 (V range limited to 1.71 V - 3.6 V), with the CPU running at up to 32 MHz  
DD  
Range 2 (full V range), with a maximum CPU frequency of 16 MHz  
DD  
Range 3 (full V range), with a maximum CPU frequency limited to 4 MHz (generated  
DD  
only with the multispeed internal RC oscillator clock source)  
Seven low-power modes are provided to achieve the best compromise between low-power  
consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at  
16 MHz is about 1 mA with all peripherals off.  
Low-power run mode  
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the  
minimum clock (131 kHz), execution from SRAM or Flash memory, and internal  
regulator in low-power mode to minimize the regulator's operating current. In low-power  
run mode, the clock frequency and the number of enabled peripherals are both limited.  
Low-power sleep mode  
This mode is achieved by entering Sleep mode with the internal voltage regulator in  
Low-power mode to minimize the regulator’s operating current. In Low-power sleep  
mode, both the clock frequency and the number of enabled peripherals are limited; a  
typical example would be to have a timer running at 32 kHz.  
When wakeup is triggered by an event or an interrupt, the system reverts to the run  
mode with the regulator on.  
Stop mode with RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents and real time clock. All clocks in the V  
domain are stopped, the  
CORE  
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still  
running. The voltage regulator is in the low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can  
be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp  
event or the RTC wakeup.  
14/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Functional overview  
Stop mode without RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and  
HSE crystal oscillators are disabled. The voltage regulator is in the low-power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can  
also be wakened by the USB wakeup.  
Standby mode with RTC  
Standby mode is used to achieve the lowest power consumption and real time clock.  
The internal voltage regulator is switched off so that the entire V  
domain is  
CORE  
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched  
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register  
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,  
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG  
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),  
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.  
Standby mode without RTC  
Standby mode is used to achieve the lowest power consumption. The internal voltage  
regulator is switched off so that the entire V  
domain is powered off. The PLL, MSI  
CORE  
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After  
entering Standby mode, the RAM and register contents are lost except for registers in  
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,  
RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising  
edge on one of the three WKUP pin occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by  
entering Stop or Standby mode.  
Table 3. Functionalities depending on the operating power supply range  
Functionalities depending on the operating power supply range  
Operating power supply  
DAC and ADC  
operation  
Dynamic voltage  
scaling range  
USB  
I/O operation  
range  
Range 2 or  
Range 3  
Degraded speed  
performance  
VDD= VDDA = 1.65 to 1.71 V  
VDD=VDDA= 1.71 to 1.8 V(1)  
VDD=VDDA= 1.8 to 2.0 V(1)  
Not functional  
Not functional  
Not functional  
Not functional  
Not functional  
Range 1, Range 2  
or Range 3  
Degraded speed  
performance  
Range 1, Range 2  
Conversion time up  
to 500 Ksps  
Degraded speed  
performance  
or  
Range 3  
DocID022799 Rev 12  
15/136  
51  
 
Functional overview  
STM32L151xC STM32L152xC  
Table 3. Functionalities depending on the operating power supply range (continued)  
Functionalities depending on the operating power supply range  
Operating power supply  
range  
DAC and ADC  
operation  
Dynamic voltage  
scaling range  
USB  
I/O operation  
Conversion time up  
to 500 Ksps  
Range 1, Range 2  
or Range 3  
VDD=VDDA = 2.0 to 2.4 V  
Functional(2)  
Functional(2)  
Full speed operation  
Full speed operation  
Conversion time up  
to 1 Msps  
Range 1, Range 2  
or Range 3  
VDD=VDDA = 2.4 to 3.6 V  
1. CPU frequency changes from initial to final must respect “FCPU initial < 4*FCPU final” to limit VCORE drop due to current  
consumption peak when frequency increases. It must also respect 5 µs delay between two changes. For example to switch  
from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.  
2. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.  
Table 4. CPU frequency range depending on dynamic voltage scaling  
CPU frequency range  
Dynamic voltage scaling range  
16 MHz to 32 MHz (1ws)  
32 kHz to 16 MHz (0ws)  
Range 1  
8 MHz to 16 MHz (1ws)  
32 kHz to 8 MHz (0ws)  
Range 2  
Range 3  
2.1MHz to 4.2 MHz (1ws)  
32 kHz to 2.1 MHz (0ws)  
16/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Functional overview  
Table 5. Functionalities depending on the working mode (from Run/active down to  
standby)  
Stop  
Standby  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
capability  
Wakeup  
capability  
CPU  
Flash  
RAM  
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
--  
Y
Y
Y
--  
--  
--  
--  
--  
--  
--  
--  
Y
--  
--  
--  
--  
--  
--  
Backup Registers  
EEPROM  
Brown-out rest  
(BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
--  
Y
--  
--  
--  
DMA  
Programmable  
Voltage Detector  
(PVD)  
Y
Y
Y
Y
Y
Y
Y
--  
Power On Reset  
(POR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
--  
--  
Y
--  
--  
--  
--  
--  
--  
--  
Y
Y
--  
--  
Y
Y
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Power Down Rest  
(PDR)  
High Speed  
Internal (HSI)  
High Speed  
External (HSE)  
Low Speed Internal  
(LSI)  
Low Speed  
External (LSE)  
Multi-Speed  
Internal (MSI)  
Inter-Connect  
Controller  
RTC  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
RTC Tamper  
Auto WakeUp  
(AWU)  
Y
Y
Y
Y
Y
Y
--  
Y
Y
LCD  
USB  
USART  
SPI  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Y
(1)  
--  
(1)  
I2C  
DocID022799 Rev 12  
17/136  
51  
 
 
Functional overview  
STM32L151xC STM32L152xC  
Table 5. Functionalities depending on the working mode (from Run/active down to  
standby) (continued)  
Stop  
Standby  
Wakeup  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
capability  
capability  
ADC  
DAC  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
--  
--  
--  
Y
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Tempsensor  
OP amp  
Comparators  
16-bit and 32-bit  
Timers  
Y
Y
Y
Y
--  
--  
--  
--  
IWDG  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
--  
--  
Y
--  
--  
--  
Y
Y
--  
--  
--  
--  
Y
--  
WWDG  
Touch sensing  
Systic Timer  
GPIOs  
--  
--  
Y
3 pins  
Wakeup time to  
Run mode  
0 µs  
0.4 µs  
3 µs  
46 µs  
< 8 µs  
58 µs  
0.43 µA  
(no RTC)  
VDD=1.8V  
0.29 µA  
(no RTC)  
VDD=1.8V  
1.15 µA  
0.9 µA  
(with RTC)  
(with RTC)  
VDD=1.8V  
Consumption  
VDD=1.8 to 3.6 V  
(Typ)  
Down to 185  
µA/MHz (from  
Flash)  
Down to 34.5  
µA/MHz (from  
Flash)  
VDD=1.8V  
Down to Down to  
8.6 µA 4.4 µA  
0.44 µA  
(no RTC)  
0.29 µA  
(no RTC)  
VDD=3.0V  
VDD=3.0V  
1.4 µA  
(with RTC)  
DD=3.0V  
1.15 µA  
(with RTC)  
VDD=3.0V  
V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before  
entering run mode.  
3.2  
ARM® Cortex®-M3 core with MPU  
®
®
The ARM Cortex -M3 processor is the industry leading processor for embedded systems.  
It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The ARM Cortex -M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
18/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Functional overview  
The memory protection unit (MPU) improves system reliability by defining the memory  
attributes (such as read/write access permissions) for different memory regions. It provides  
up to eight different regions and an optional predefined background region.  
Owing to its embedded ARM core, the STM32L151xC and STM32L152xC devices are  
compatible with all ARM tools and software.  
Nested vectored interrupt controller (NVIC)  
The ultra-low-power STM32L151xC and STM32L152xC devices embed a nested vectored  
interrupt controller able to handle up to 53 maskable interrupt channels (not including the 16  
®
®
interrupt lines of ARM Cortex -M3) and 16 priority levels.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.3  
Reset and supply management  
3.3.1  
Power supply schemes  
V
= 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided  
DD  
externally through V pins.  
DD  
V
, V  
= 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs  
SSA DDA  
and PLL (minimum voltage to be applied to V  
is 1.8 V when the ADC is used). V  
DDA  
DDA  
and V  
must be connected to V and V , respectively.  
SSA  
DD SS  
3.3.2  
Power supply supervisor  
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR) that can be coupled with a brownout reset (BOR) circuitry.  
The device exists in two versions:  
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.  
The other version without BOR operates between 1.65 V and 3.6 V.  
After the V threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or  
DD  
not at power-on), the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable the BOR permanently: in this case, the V min value becomes  
DD  
1.65 V (whatever the version, BOR active or not, at power-on).  
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever  
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the  
DocID022799 Rev 12  
19/136  
51  
 
 
 
Functional overview  
STM32L151xC STM32L152xC  
power ramp-up should guarantee that 1.65 V is reached on V at least 1 ms after it exits  
DD  
the POR area.  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Stop mode, it is possible to automatically switch off the  
internal reference voltage (V  
) in Stop mode. The device remains in reset mode when  
REFINT  
V
is below a specified threshold, V  
or V  
, without the need for any external  
DD  
POR/PDR  
BOR  
reset circuit.  
Note:  
3.3.3  
3.3.4  
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-  
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive  
at power-up.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
V
/V  
power supply and compares it to the V  
threshold. This PVD offers 7 different  
DD DDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V /V drops below the V threshold and/or when  
DD DDA  
PVD  
V
/V  
is higher than the V  
threshold. The interrupt service routine can then generate  
DD DDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
Voltage regulator  
The regulator has three operation modes: main (MR), low-power (LPR) and power down.  
MR is used in Run mode (nominal regulation)  
LPR is used in the Low-power run, Low-power sleep and Stop modes  
Power down is used in Standby mode. The regulator output is high impedance, the  
kernel circuitry is powered down, inducing zero consumption but the contents of the  
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,  
LSI, LSE crystal 32K osc, RCC_CSR).  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from Flash memory  
Boot from System memory  
Boot from embedded RAM  
The boot loader is located in System memory. It is used to reprogram the Flash memory by  
using USART1, USART2 or USB. See Application note “STM32 microcontroller system  
memory boot mode” (AN2606) for details.  
20/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Functional overview  
3.4  
Clock management  
The clock controller distributes the clocks coming from different oscillators to the core and  
the peripherals. It also manages clock gating for low-power modes and ensures clock  
robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption, the  
clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock source: three different clock sources can be used to drive the master  
clock SYSCLK:  
1-24 MHz high-speed external crystal (HSE), that can supply a PLL  
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7  
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).  
When a 32.768 kHz clock source is available in the system (LSE), the MSI  
frequency can be trimmed by software down to a ±0.5% accuracy.  
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive  
the LCD controller and the real-time clock:  
32.768 kHz low-speed external crystal (LSE)  
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock can be measured using the high-speed internal RC oscillator for  
greater precision.  
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock  
the RTC and the LCD, whatever the system clock.  
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply  
the USB interface.  
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz  
clock (MSI). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If a HSE clock  
failure occurs, the master clock is automatically switched to HSI and a software  
interrupt is generated if enabled.  
Clock-out capability (MCO: microcontroller clock output): it outputs one of the  
internal clocks for external use by the application.  
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and  
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See  
Figure 2 for details on the clock tree.  
DocID022799 Rev 12  
21/136  
51  
 
Functional overview  
STM32L151xC STM32L152xC  
Figure 2. Clock tree  
3TANDBY SUPPLIED VOLTAGE DOMAIN  
ENABLE  
7ATCHDOG  
7ATCHDOG  
,3  
,3) 2#  
,3) TEMPO  
24# ENABLE  
24#  
,3% /3#  
,3% TEMPO  
2ADIO 3LEEP 4IMER  
2ADIO 3LEEP 4IMER ENABLE  
,3  
,3 ,3  
,3  
 6  
$$#/2%  
#+?,#$  
 -(Z  
,#$ ENABLE  
 6ꢃꢃ  
#+?!$#  
!$# ENABLE  
-3) 2#  
CK?LSI  
CK?LSE  
LEVEL SHIFTERS  
-#/  
 6  
$$#/2%  
 ꢀꢄꢇꢄꢅꢄꢁꢄꢀꢆ  
NOT DEEPSLEEP  
NOT DEEPSLEEP  
 ꢇꢄꢅꢄꢁꢄꢀꢆ  
#+?072  
#+?&#,+  
#+?#05  
 6ꢃꢃ  
(3) 2#  
NOT ꢋSLEEP OR  
DEEPSLEEP  
LEVEL SHIFTERS  
 6  
$$#/2%  
3YSTEM  
CLOCK  
NOT ꢋSLEEP OR  
DEEPSLEEPꢍ  
 6ꢃꢃ  
CK?MSI  
CK?HSI  
CK?HSE  
(3%  
/3#  
#+?4)-393  
   
!("  
PRESCALER  
 ꢀꢄꢇꢄꢉꢉꢂꢀꢇ  
LEVEL SHIFTERS  
 6  
$$#/2%  
CK?PLL  
 6ꢃꢃ  
0,,  
!0"ꢀ  
!0"ꢇ  
CK?PLLIN  
8 ꢃꢄꢅꢄꢆꢄꢁꢄꢀꢇ  
PRESCALER PRESCALER  
 ꢀꢄꢇꢄꢅꢄꢁꢄꢀꢆ  ꢀꢄꢇꢄꢅꢄꢁꢄꢀꢆ  
,3  
ꢀꢆꢄꢇꢅꢄꢃꢇꢄꢅꢁ  
 6ꢃꢃ  
 -(Z CLOCK  
DETECTOR  
 ꢇꢄ ꢃꢄ   
LEVEL SHIFTERS  
#LOCK  
 6  
$$#/2%  
SOURCE  
CONTROL  
(3% PRESENT OR NOT  
,3  
USBEN AND ꢋNOT DEEPSLEEPꢍ  
#+?53"ꢅꢁ  
CK?USB  6CO   ꢋ6CO MUST BE ATZꢍꢆ -(  
TIMERꢌEN AND ꢋNOT DEEPSLEEPꢍ  
#+?4)-4'/  
#+?!0"ꢀ  
IF ꢋ!0"ꢀ PRESC  ꢀꢍXꢀ  
Xꢇ  
ELSE  
APBꢀ PERIPHEN AND ꢋNOT DEEPSLEEPꢍ  
APBꢇ PERIPHEN AND ꢋNOT DEEPSLEEPꢍ  
#+?!0"ꢇ  
-3ꢀꢁꢂꢁꢃ6ꢀ  
22/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Functional overview  
3.5  
Low-power real-time clock and backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD  
(binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the  
month are made automatically. The RTC provides two programmable alarms and  
programmable periodic interrupts with wakeup from Stop and Standby modes.  
The programmable wakeup time ranges from 120 µs to 36 hours.  
The RTC can be calibrated with an external 512 Hz output, and a digital compensation  
circuit helps reduce drift due to crystal deviation.  
The RTC can also be automatically corrected with a 50/60Hz stable powerline.  
The RTC calendar can be updated on the fly down to sub second precision, which enables  
network system synchronization.  
A time stamp can record an external event occurrence, and generates an interrupt.  
There are thirty-two 32-bit backup registers provided to store 128 bytes of user application  
data. They are cleared in case of tamper detection.  
Three pins can be used to detect tamper events. A change on one of these pins can reset  
backup register and generate an interrupt. To prevent false tamper event, like ESD event,  
these three tamper inputs can be digitally filtered.  
3.6  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions, and can be individually  
remapped using dedicated AFIO registers. All GPIOs are high current capable. The  
alternate function configuration of I/Os can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is  
connected to the AHB with a toggling speed of up to 16 MHz.  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 24 edge detector lines used to generate  
interrupt/event requests. Each line can be individually configured to select the trigger event  
(rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected  
to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB,  
comparator events or capacitive sensing acquisition.  
DocID022799 Rev 12  
23/136  
51  
 
 
Functional overview  
STM32L151xC STM32L152xC  
3.7  
Memories  
The STM32L151xC and STM32L152xC devices have the following features:  
32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait  
states. With the enhanced bus matrix, operating the RAM does not lead to any  
performance penalty during accesses to the system bus (AHB and APB buses).  
The non-volatile memory is divided into three arrays:  
256 Kbytes of embedded Flash program memory  
8 Kbytes of data EEPROM  
Options bytes  
The options bytes are used to write-protect or read-out protect the memory (with 4  
Kbytes granularity) and/or readout-protect the whole memory with the following  
options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
Level 2: chip readout protection, debug features (ARM Cortex-M3 JTAG and serial  
wire) and boot in RAM selection disabled (JTAG fuse)  
The whole non-volatile memory embeds the error correction code (ECC) feature.  
The user area of the Flash memory can be protected against Dbus read access by  
PCROP feature (see RM0038 for details).  
3.8  
DMA (direct memory access)  
The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management, avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with software trigger  
support for each channel. Configuration is done by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose timers,  
DAC and ADC.  
24/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Functional overview  
3.9  
LCD (liquid crystal display)  
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320  
pixels.  
Internal step-up converter to guarantee functionality and contrast control irrespective of  
. This converter can be deactivated, in which case the V pin is used to provide  
V
DD  
LCD  
the voltage to the LCD  
Supports static, 1/2, 1/3, 1/4 and 1/8 duty  
Supports static, 1/2, 1/3 and 1/4 bias  
Phase inversion to reduce power consumption and EMI  
Up to 8 pixels can be programmed to blink  
Unneeded segments and common pins can be used as general I/O pins  
LCD RAM can be updated at any time owing to a double-buffer  
The LCD controller can operate in Stop mode  
V
rail decoupling capability  
LCD  
Table 6. V  
rail decoupling  
LCD  
Bias  
1/3  
Pin  
1/2  
1/4  
VLCDRAIL1  
VLCDRAIL2  
VLCDRAIL3  
1/2 VLCD  
N/A  
2/3 VLCD  
1/3 VLCD  
N/A  
1/2 VLCD  
1/4 VLCD  
3/4 VLCD  
PB2  
PB12  
PB0  
PE11  
PE12  
N/A  
3.10  
ADC (analog-to-digital converter)  
A 12-bit analog-to-digital converters is embedded into STM32L151xC and STM32L152xC  
devices with up to 25 external channels, performing conversions in single-shot or scan  
mode. In scan mode, automatic conversion is performed on a selected group of analog  
inputs with up to 24 external channels in a group.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all scanned channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.  
An injection mode allows high priority conversions to be done by interrupting a scan mode  
which runs in as a background task.  
The ADC includes a specific low-power mode. The converter is able to operate at maximum  
speed even if the CPU is operating at a very low frequency and has an auto-shutdown  
function. The ADC’s runtime and analog front-end current consumption are thus minimized  
whatever the MCU operating mode.  
DocID022799 Rev 12  
25/136  
51  
 
 
 
Functional overview  
STM32L151xC STM32L152xC  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode. See Table 61:  
Temperature sensor calibration values.  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN17 input channel. It  
REFINT  
enables accurate monitoring of the V value (when no external voltage, VREF+, is  
DD  
available for ADC). The precise voltage of V  
is individually measured for each part by  
REFINT  
ST during production test and stored in the system memory area. It is accessible in read-  
only mode. See Table 16: Embedded internal reference voltage calibration values.  
3.11  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in non-inverting configuration.  
This dual digital Interface supports the following features:  
Two DAC converters: one for each output channel  
8-bit or 12-bit monotonic output  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channels, independent or simultaneous conversions  
DMA capability for each channel (including the underrun interrupt)  
External triggers for conversion  
Input reference voltage V  
REF+  
Eight DAC trigger inputs are used in the STM32L151xC and STM32L152xC devices. The  
DAC channels are triggered through the timer update outputs that are also connected to  
different DMA channels.  
26/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Functional overview  
3.12  
Operational amplifier  
The STM32L151xC and STM32L152xC devices embed two operational amplifiers with  
external or internal follower routing capability (or even amplifier and filter capability with  
external components). When one operational amplifier is selected, one external ADC  
channel is used to enable output measurement.  
The operational amplifiers feature:  
Low input bias current  
Low offset voltage  
Low-power mode  
Rail-to-rail input  
3.13  
Ultra-low-power comparators and reference voltage  
The STM32L151xC and STM32L152xC devices embed two comparators sharing the same  
current bias and reference voltage. The reference voltage can be internal or external  
(coming from an I/O).  
One comparator with fixed threshold  
One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of  
the following:  
DAC output  
External I/O  
Internal reference voltage (V  
) or a sub-multiple (1/4, 1/2, 3/4)  
REFINT  
Both comparators can wake up from Stop mode, and be combined into a window  
comparator.  
The internal reference voltage is available externally via a low-power / low-current output  
buffer (driving current capability of 1 µA typical).  
3.14  
3.15  
System configuration controller and routing interface  
The system configuration controller provides the capability to remap some alternate  
functions on different I/O ports.  
The highly flexible routing interface allows the application firmware to control the routing of  
different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of  
internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage  
V
.
REFINT  
Touch sensing  
The STM32L151xC and STM32L152xC devices provide a simple solution for adding  
capacitive sensing functionality to any application. These devices offer up to 23 capacitive  
sensing channels distributed over 10 analog I/O groups. Both software and timer capacitive  
sensing acquisition modes are supported.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation  
DocID022799 Rev 12  
27/136  
51  
 
 
 
 
Functional overview  
STM32L151xC STM32L152xC  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. The capacitive sensing acquisition only requires few external components to  
operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups  
(see Section 3.14: System configuration controller and routing interface).  
Reliable touch sensing functionality can be quickly and easily implemented using the free  
STM32L1xx STMTouch touch sensing firmware library.  
3.16  
Timers and watchdogs  
The ultra-low-power STM32L151xC and STM32L152xC devices include seven general-  
purpose timers, two basic timers, and two watchdog timers.  
Table 7 compares the features of the general-purpose and basic timers.  
Table 7. Timer feature comparison  
DMA  
Counter  
resolution  
Capture/compare Complementary  
Timer  
Counter type  
Prescaler factor  
request  
channels  
outputs  
generation  
TIM2,  
TIM3,  
TIM4  
Up, down,  
up/down  
Any integer between  
1 and 65536  
16-bit  
Yes  
4
No  
Up, down,  
up/down  
Any integer between  
1 and 65536  
TIM5  
TIM9  
32-bit  
16-bit  
16-bit  
16-bit  
Yes  
No  
4
2
1
0
No  
No  
No  
No  
Up, down,  
up/down  
Any integer between  
1 and 65536  
TIM10,  
TIM11  
Any integer between  
1 and 65536  
Up  
Up  
No  
TIM6,  
TIM7  
Any integer between  
1 and 65536  
Yes  
3.16.1  
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and  
TIM11)  
There are seven synchronizable general-purpose timers embedded in the STM32L151xC  
and STM32L152xC devices (see Table 7 for differences).  
TIM2, TIM3, TIM4, TIM5  
TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32-  
bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four  
independent channels each for input capture/output compare, PWM or one-pulse mode  
output. This gives up to 16 input captures/output compares/PWMs on the largest packages.  
TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10,  
TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or  
event chaining. Their counter can be frozen in debug mode. Any of the general-purpose  
timers can be used to generate PWM outputs.  
28/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Functional overview  
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
TIM10, TIM11 and TIM9  
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit  
auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one  
independent channel, whereas TIM9 has two independent channels for input capture/output  
compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3,  
TIM4, TIM5 full-featured general-purpose timers.  
They can also be used as simple time bases and be clocked by the LSE clock source  
(32.768 kHz) to provide time bases independent from the main CPU clock.  
3.16.2  
3.16.3  
Basic timers (TIM6 and TIM7)  
These timers are mainly used for DAC trigger generation. They can also be used as generic  
16-bit time bases.  
SysTick timer  
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is  
based on a 24-bit downcounter with autoreload capability and a programmable clock  
source. It features a maskable system interrupt generation when the counter reaches 0.  
3.16.4  
3.16.5  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 37 kHz internal RC and, as it operates independently of the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.17  
Communication interfaces  
3.17.1  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
DocID022799 Rev 12  
29/136  
51  
 
 
 
 
 
 
 
Functional overview  
STM32L151xC STM32L152xC  
3.17.2  
Universal synchronous/asynchronous receiver transmitter (USART)  
The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They  
support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide  
hardware management of the CTS and RTS signals and are ISO 7816 compliant.  
All USART interfaces can be served by the DMA controller.  
3.17.3  
Serial peripheral interface (SPI)  
Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in  
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
The SPIs can be served by the DMA controller.  
2
3.17.4  
Inter-integrated sound (I S)  
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can  
operate in master or slave mode, and can be configured to operate with a 16-/32-bit  
resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192  
kHz are supported. When either or both of the I2S interfaces is/are configured in master  
mode, the master clock can be output to the external DAC/CODEC at 256 times the  
sampling frequency.  
The I2Ss can be served by the DMA controller.  
3.17.5  
Universal serial bus (USB)  
The STM32L151xC and STM32L152xC devices embed a USB device peripheral  
compatible with the USB full-speed 12 Mbit/s. The USB interface implements a full-speed  
(12 Mbit/s) function interface. It has software-configurable endpoint setting and supports  
suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the  
clock source must use a HSE crystal oscillator).  
3.18  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
30/136  
DocID022799 Rev 12  
 
 
 
 
 
STM32L151xC STM32L152xC  
Functional overview  
3.19  
Development support  
3.19.1  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a  
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.  
The JTAG port can be permanently disabled with a JTAG fuse.  
3.19.2  
Embedded Trace Macrocell™  
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32L151xC and STM32L152xC device through a small number of ETM pins to an  
external hardware trace port analyzer (TPA) device. The TPA is connected to a host  
computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and  
data flow activity can be recorded and then formatted for display on the host computer  
running debugger software. TPA hardware is commercially available from common  
development tool vendors. It operates with third party debugger software tools.  
DocID022799 Rev 12  
31/136  
51  
 
 
 
Pin descriptions  
STM32L151xC STM32L152xC  
4
Pin descriptions  
Figure 3. STM32L15xVC UFBGA100 ballout  
ꢂꢉ  
ꢂꢂ  
ꢂꢆ  
3'ꢏ  
3$ꢂꢆ  
3$ꢂꢂ  
3$ꢂꢉ  
3&ꢒ  
%227ꢉ  
3%ꢃ  
3'ꢃ  
3%ꢀ  
3'ꢀ  
3'ꢆ  
3$ꢂꢀ  
3&ꢂꢉ  
3+ꢆ  
3%ꢋ  
3$ꢂꢏ  
3'ꢂ  
3(ꢂ  
3(ꢆ  
3(ꢏ  
3%ꢁ  
3'ꢁ  
3$ꢂꢁ  
3&ꢂꢆ  
3(ꢀ  
3(ꢁ  
$
%
&
3'ꢌ  
3%ꢒ  
3%ꢌ  
3%ꢏ  
3&ꢂꢀ  
:.83ꢆ  
9''Bꢀ  
3(ꢉ  
3'ꢉ  
3&ꢂꢂ  
3$ꢒ  
3(ꢌ  
:8.3ꢀ  
3&ꢂꢁ  
26&ꢀꢆB,1  
'
(
3$ꢋ  
966Bꢀ  
966Bꢁ  
3&ꢃ  
3&ꢌ  
3&ꢋ  
3&ꢂꢏ  
9/&'  
26&ꢀꢆB287  
3+ꢉ  
966Bꢆ  
966Bꢂ  
)
966Bꢏ  
26&B,1  
3+ꢂ  
*
9''Bꢆ 9''Bꢂ  
9''Bꢏ  
1567  
3&ꢂ  
26&B287  
3'ꢂꢁ  
3'ꢂꢂ  
3%ꢂꢁ  
3'ꢂꢀ  
3'ꢂꢉ  
3%ꢂꢀ  
3%ꢂꢆ  
3(ꢂꢏ  
+
-
3'ꢂꢏ  
3'ꢂꢆ  
3%ꢂꢏ  
3%ꢂꢉ  
3(ꢂꢀ  
3&ꢉ  
9''Bꢁ  
3&ꢆ  
966$  
95()ꢎ  
95()ꢔ  
9''$  
3'ꢒ  
3(ꢂꢉ  
3(ꢒ  
3'ꢋ  
3$ꢏ  
3$ꢌ  
3&ꢁ  
3&ꢏ  
3%ꢉ  
3$ꢆ  
3$ꢀ  
.
/
3&ꢀ  
3%ꢆ  
3%ꢂ  
3(ꢂꢆ  
3(ꢂꢂ  
3%ꢂꢂ  
3(ꢂꢁ  
3(ꢋ  
3(ꢃ  
3$ꢉ  
:.83ꢂ  
3$ꢃ  
3$ꢁ  
3$ꢂ  
0
AIꢀꢎꢏꢌꢆF  
1. This figure shows the package top view.  
32/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Pin descriptions  
Figure 4. STM32L15xVC LQFP100 pinout  
0%ꢇ  
0%ꢃ  
0%ꢅ  
ꢎꢂ  
ꢎꢅ  
ꢎꢃ  
ꢎꢇ  
ꢎꢀ  
ꢎꢏ  
ꢆꢌ  
ꢆꢁ  
ꢆꢎ  
ꢆꢆ  
ꢆꢂ  
ꢆꢅ  
ꢆꢃ  
ꢆꢇ  
ꢆꢀ  
ꢆꢏ  
ꢂꢌ  
ꢂꢁ  
ꢂꢎ  
ꢂꢆ  
ꢂꢂ  
ꢂꢅ  
ꢂꢃ  
ꢂꢇ  
ꢂꢀ  
6$$?ꢇ  
633?ꢇ  
0(ꢇ  
0!ꢀꢃ  
0!ꢀꢇ  
0!ꢀꢀ  
0!ꢀꢏ  
0!  
0!  
0#ꢌ  
0#ꢁ  
0#ꢎ  
0#ꢆ  
0$ꢀꢂ  
0$ꢀꢅ  
0$ꢀꢃ  
0$ꢀꢇ  
0$ꢀꢀ  
0$ꢀꢏ  
0$ꢌ  
0%ꢂ  
0%ꢆꢐ7+50ꢃ  
6,#$  
0#ꢀꢃꢐ7+50ꢇ  
0#ꢀꢅꢐ/3#ꢃꢇ?).  
0#ꢀꢂꢐ/3#ꢃꢇ?/54  
633?ꢂ  
ꢀꢏ  
ꢀꢀ  
ꢀꢇ  
ꢀꢃ  
ꢀꢅ  
ꢀꢂ  
ꢀꢆ  
ꢀꢎ  
ꢀꢁ  
ꢀꢌ  
ꢇꢏ  
ꢇꢀ  
ꢇꢇ  
ꢇꢃ  
ꢇꢅ  
ꢇꢂ  
6$$?ꢂ  
0(ꢏꢐ/3#?).  
0(ꢀꢐ/3#?/54  
.234  
,1&0ꢀꢏꢏ  
0#ꢏ  
0#ꢀ  
0#ꢇ  
0#ꢃ  
633!  
62%&ꢐ  
62%&ꢑ  
6$$!  
0$ꢁ  
0"ꢀꢂ  
0"ꢀꢅ  
0"ꢀꢃ  
0"ꢀꢇ  
0!ꢏꢐ7+50ꢀ  
0!  
0!  
AIꢀꢂꢆꢌꢇC  
1. This figure shows the package top view.  
DocID022799 Rev 12  
33/136  
51  
 
Pin descriptions  
STM32L151xC STM32L152xC  
Figure 5. STM32L15xRC LQFP64 pinout  
ꢌꢁ ꢌꢀ ꢌꢆ ꢌꢂ ꢌꢉ ꢏꢒ ꢏꢋ ꢏꢃ ꢏꢌ ꢏꢏ ꢏꢁ ꢏꢀ ꢏꢆ ꢏꢂ ꢏꢉ ꢁꢒ  
ꢁꢋ  
6$$?ꢇ  
6
,#$  
633?  
0#ꢀꢃꢐ7+50ꢇ  
0#ꢀꢅꢐ/3#ꢃꢇ?).  
0#ꢀꢂꢐ/3#ꢃꢇ?/54  
0(ꢏ ꢐ/3#?).  
0(ꢀꢐ/3#?/54  
.234  
ꢁꢃ  
ꢅꢁꢌ  
ꢅꢁꢏ  
ꢅꢁꢁ  
ꢅꢁꢀ  
ꢁꢆ  
ꢁꢂ  
ꢁꢉ  
ꢀꢒ  
ꢀꢋ  
ꢀꢃ  
ꢀꢌ  
ꢀꢏ  
ꢀꢁ  
ꢀꢀ  
0!ꢀꢃ  
0!ꢀꢇ  
0!ꢀꢀ  
0!ꢀꢏ  
0!  
ꢌꢅ  
ꢃꢅ  
ꢋꢅ  
ꢒꢅ  
ꢂꢉ  
 
ꢂꢆꢅ  
ꢂꢀ  
ꢂꢁ  
ꢂꢏ  
ꢂꢌ  
0!  
0#ꢌ  
0#ꢁ  
0#ꢎ  
0#ꢏ  
0#ꢀ  
0#ꢇ  
0#ꢃ  
,1&0ꢆꢅ  
0#ꢆ  
633!  
6$$!  
0!ꢏꢐ7+50ꢀ  
0"ꢀꢂ  
0"ꢀꢅ  
0"ꢀꢃ  
0"ꢀꢇ  
0!  
0!  
ꢂꢃ ꢂꢋ ꢂꢒ ꢆꢉ ꢆꢂ ꢆꢆ ꢆꢀ ꢆꢁ ꢆꢏ ꢆꢌ ꢆꢃ ꢆꢋ ꢆꢒ ꢀꢉ ꢀꢂ ꢀꢆ  
AIꢀꢂꢆꢌꢃC  
1. This figure shows the package top view.  
34/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Pin descriptions  
Figure 6. STM32L15xUC WLCSP63 ballout  
0!ꢀꢂ  
0#ꢀꢀ  
0$ꢇ  
0#ꢀꢇ  
0"ꢃ  
0"ꢂ  
0"ꢆ  
0"ꢎ  
"//4ꢏ  
0"ꢁ  
633?ꢃ  
6$$?ꢃ  
6,#$  
633?ꢇ  
0!ꢀꢀ  
0!  
!
"
#
6$$?ꢇ 0#ꢀꢏ  
0!ꢀꢃ  
0!ꢀꢅ  
0"ꢌ  
$
%
0#ꢁ  
0#ꢎ  
0#ꢆ  
0!ꢀꢏ  
0#ꢌ  
0!ꢀꢇ  
0!  
0#ꢀꢂ  
0#ꢏ  
0(ꢏ  
0#ꢀꢅ  
.234  
0(ꢀ  
0#ꢀꢃ  
0"ꢅ  
0!  
0#ꢅ  
0#ꢀ  
&
0"ꢀꢂ  
0"ꢀꢅ  
633!  
'
0#ꢇ  
0"ꢀꢃ  
0"ꢀꢇ  
0"ꢇ  
0!  
0!  
0#ꢃ  
(
*
6$$!  
0!  
6$$?ꢀ 0"ꢀꢀ  
633?ꢀ 0"ꢀꢏ  
0"ꢀ  
0"ꢏ  
0!  
0#ꢂ  
633  
0!  
0!  
0!  
-3ꢃꢀꢏꢎꢀ6ꢀ  
1. This figure shows the package top view.  
DocID022799 Rev 12  
35/136  
51  
 
Pin descriptions  
STM32L151xC STM32L152xC  
Figure 7. STM32L15xCC UFQFPN48 pinout  
ꢅꢁ ꢅꢎ ꢅꢆ  
ꢅꢂ ꢅꢅ ꢅꢃ ꢅꢇ ꢅꢀ ꢅꢏ  
ꢃꢌ ꢃꢁ ꢃꢎ  
ꢃꢆ  
6
6
6
,#$  
$$?ꢇ  
33?ꢇ  
0#ꢀꢃꢐ7+50ꢇ  
ꢃꢂ  
0!ꢀꢃ  
0!ꢀꢇ  
0!ꢀꢀ  
0!ꢀꢏ  
0!  
0#ꢀꢅꢐ/3#ꢃꢇ?).  
ꢃꢅ  
ꢃꢃ  
0#ꢀꢂꢐ/3#ꢃꢇ?/54  
0(ꢏꢐ/3#?).  
ꢃꢇ  
ꢃꢀ  
0(ꢀꢐ/3#?/54  
5&1&0.ꢅꢁ  
ꢃꢏ  
ꢇꢌ  
.234  
6
0!  
33!  
6
ꢇꢁ  
ꢇꢎ  
0"ꢀꢂ  
0"ꢀꢅ  
$$!  
0!ꢏꢐ7+50ꢀ  
0!  
ꢀꢏ  
ꢀꢀ  
ꢀꢇ  
ꢇꢆ  
0"ꢀꢃ  
0"ꢀꢇ  
ꢇꢂ  
ꢇꢅ  
0!  
ꢀꢃ ꢀꢅ ꢀꢂ ꢀꢆ  
ꢀꢎ ꢀꢁ ꢀꢌ ꢇꢏ  
ꢇꢀ ꢇꢇ ꢇꢃ  
AIꢀꢂꢆꢌꢂD  
1. This figure shows the package top view.  
36/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Pin descriptions  
Figure 8. STM32L15xCC LQFP48 pinout  
ꢁꢋ ꢁꢃ ꢁꢌ ꢁꢏ ꢁꢁ ꢁꢀ ꢁꢆ ꢁꢂ ꢁꢉ ꢀꢒ ꢀꢋ ꢀꢃ  
ꢀꢌ  
ꢀꢏ  
ꢀꢁ  
ꢀꢀ  
ꢀꢆ  
ꢀꢂ  
ꢀꢉ  
9/&'  
ꢅ3&ꢂꢀꢎ:.83ꢆ  
9''Bꢆ  
966Bꢆ  
3$ꢂꢀ  
3$ꢂꢆ  
3$ꢂꢂ  
ꢅ3&ꢂꢁꢎ26&ꢀꢆB,1  
ꢅ3&ꢂꢏꢎ26&ꢀꢆB287  
ꢅ3+ꢉꢎ26&B,1  
ꢅ3+ꢂꢎ26&B287  
ꢅ1567  
3$ꢂꢉ  
/4)3ꢁꢋ  
3$ꢒ  
3$ꢋ  
3%ꢂꢏ  
3%ꢂꢁ  
3%ꢂꢀ  
ꢆꢒ  
ꢆꢋ  
ꢆꢃ  
ꢆꢌ  
ꢆꢏ  
ꢅ966$  
9''$  
3$ꢉꢎ:.83ꢂ  
3$ꢂ  
ꢂꢉ  
ꢂꢂ  
ꢂꢆ  
3%ꢂꢆ  
3$ꢆ  
ꢆꢁ  
ꢂꢀ ꢂꢁ ꢂꢏ ꢂꢌ ꢂꢃ ꢂꢋ ꢂꢒ ꢆꢉ ꢆꢂ ꢆꢆ ꢆꢀ  
06ꢀꢁꢂꢃꢋ9ꢂ  
1. This figure shows the package top view.  
DocID022799 Rev 12  
37/136  
51  
 
Pin descriptions  
STM32L151xC STM32L152xC  
Table 8. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function  
during and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TC  
B
Input / output pin  
5 V tolerant I/O  
Standard 3.3 V I/O  
I/O structure  
Notes  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during  
and after reset  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 9. STM32L151xC and STM32L152xC pin definitions  
Pin functions  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
TIM3_ETR/LCD_SEG38  
/TRACECLK  
B2  
A1  
1
2
-
-
-
-
-
-
PE2  
PE3  
I/O FT  
I/O FT  
PE2  
PE3  
-
-
TIM3_CH1/LCD_SEG39  
/TRACED0  
B1  
C2  
3
4
-
-
-
-
-
-
PE4  
PE5  
I/O FT  
I/O FT  
PE4  
PE5  
TIM3_CH2/TRACED1  
TIM9_CH1/TRACED2  
TIM9_CH2/ TRACED3  
-
-
PE6-  
WKUP3  
WKUP3/  
RTC_TAMP3  
D2  
E2  
5
6
-
-
-
I/O FT  
PE6  
(3)  
1
C7  
1
VLCD  
S
-
VLCD  
-
-
38/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Pin descriptions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pin functions  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
WKUP2/  
RTC_TAMP1/  
RTC_TS/RTC_OUT  
PC13-  
WKUP2  
C1  
7
2
D5  
2
I/O FT  
PC13  
-
PC14-  
D1  
E1  
8
9
3
4
D7  
D6  
3
4
I/O  
PC14  
PC15  
-
-
OSC32_IN  
TC  
OSC32_IN(4)  
PC15-  
OSC32_OUT  
I/O  
OSC32_OUT  
TC  
F2 10  
G2 11  
-
-
-
-
-
-
VSS_5  
VDD_5  
S
S
-
-
VSS_5  
VDD_5  
-
-
-
-
PH0-  
F1 12  
5
F6  
5
I/O  
I/O  
PH0  
-
OSC_IN  
TC  
TC  
OSC_IN(5)  
PH1-  
G1 13  
H2 14  
H1 15  
6
7
8
F7  
E7  
E6  
6
7
-
PH1  
NRST  
PC0  
-
OSC_OUT  
-
OSC_OUT(5)  
NRST  
PC0  
I/O RST  
I/O FT  
-
ADC_IN10/  
COMP1_INP  
LCD_SEG18  
ADC_IN11/  
COMP1_INP  
J2 16  
9
E5  
-
-
-
PC1  
PC2  
PC3  
I/O FT  
I/O FT  
PC1  
PC2  
PC3  
LCD_SEG19  
LCD_SEG20  
LCD_SEG21  
ADC_IN12/  
COMP1_INP  
J3 17 10 G7  
ADC_IN13/  
COMP1_INP  
18 11 G6  
I/O  
TC  
K2  
J1 19 12 F5  
8
-
VSSA  
VREF-  
VREF+  
VDDA  
S
S
S
S
-
-
-
-
VSSA  
VREF-  
VREF+  
VDDA  
-
-
-
-
-
-
-
-
K1 20  
L1 21  
-
-
-
-
-
M1 22 13 H7  
9
WKUP1/  
RTC_TAMP2/  
ADC_IN0/  
TIM2_CH1_ETR/  
TIM5_CH1/  
USART2_CTS  
L2 23 14 E4 10 PA0-WKUP1 I/O FT  
PA0  
COMP1_INP  
DocID022799 Rev 12  
39/136  
51  
Pin descriptions  
STM32L151xC STM32L152xC  
Pin functions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
TIM2_CH2/TIM5_CH2/  
USART2_RTS/  
LCD_SEG0  
ADC_IN1/  
COMP1_INP/  
OPAMP1_VINP  
M2 24 15 G5 11  
K3 25 16 H6 12  
L3 26 17 J7 13  
PA1  
PA2  
PA3  
I/O FT  
I/O FT  
PA1  
PA2  
PA3  
TIM2_CH3/TIM5_CH3/  
TIM9_CH1/USART2_TX  
/LCD_SEG1  
ADC_IN2/  
COMP1_INP/  
OPAMP1_VINM  
TIM2_CH4/TIM5_CH4/  
TIM9_CH2/USART2_RX  
/LCD_SEG2  
ADC_IN3/  
COMP1_INP/  
OPAMP1_VOUT  
I/O  
TC  
E3 27 18  
H3 28 19  
-
-
-
-
VSS_4  
VDD_4  
S
S
-
-
VSS_4  
VDD_4  
-
-
-
-
SPI1_NSS/SPI3_NSS/  
I2S3_WS/  
ADC_IN4/  
DAC_OUT1/  
COMP1_INP  
M3 29 20 J6 14  
K4 30 21 H4 15  
L4 31 22 G4 16  
M4 32 23 J5 17  
PA4  
PA5  
PA6  
PA7  
I/O  
I/O  
PA4  
PA5  
PA6  
PA7  
TC  
TC  
USART2_CK  
ADC_IN5/  
DAC_OUT2/  
COMP1_INP  
TIM2_CH1_ETR/  
SPI1_SCK  
ADC_IN6/  
COMP1_INP/  
OPAMP2_VINP  
TIM3_CH1/TIM10_CH1/  
SPI1_MISO/LCD_SEG3  
I/O FT  
I/O FT  
ADC_IN7/  
COMP1_INP/  
OPAMP2_VINM  
TIM3_CH2/TIM11_CH1/  
SPI1_MOSI/LCD_SEG4  
ADC_IN14/  
COMP1_INP  
K5 33 24 F4  
L5 34 25 J4  
-
-
PC4  
PC5  
I/O FT  
I/O FT  
PC4  
PC5  
LCD_SEG22  
LCD_SEG23  
ADC_IN15/  
COMP1_INP  
ADC_IN8/  
COMP1_INP/  
OPAMP2_VOUT/  
VLCDRAIL3/  
VREF_OUT  
M5 35 26 J3 18  
PB0  
I/O  
PB0  
TIM3_CH3/LCD_SEG5  
TC  
40/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Pin descriptions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pin functions  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
ADC_IN9/  
COMP1_INP/  
VREF_OUT  
M6 36 27 H3 19  
L6 37 28 G3 20  
PB1  
I/O FT  
I/O FT  
PB1  
TIM3_CH4/LCD_SEG6  
PB2  
/BOOT1  
VLCDRAIL1/  
ADCIN0b  
PB2  
PE7  
PE8  
PE9  
PE10  
BOOT1  
ADC_IN22/  
COMP1_INP  
M7 38  
L7 39  
M8 40  
L8 41  
-
-
-
-
-
-
-
-
-
-
-
-
I/O  
PE7  
PE8  
-
-
TC  
ADC_IN23/  
COMP1_INP  
I/O  
TC  
TIM2_CH1_ETR/  
TIM5_ETR  
ADC_IN24/  
COMP1_INP  
-
PE9  
TC  
ADC_IN25/  
COMP1_INP  
I/O  
PE10  
TIM2_CH2  
TC  
M9 42  
L9 43  
M10 44  
M11 45  
M12 46  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE11  
PE12  
PE13  
PE14  
PE15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH3  
TIM2_CH4/SPI1_NSS  
SPI1_SCK  
VLCDRAIL2  
VLCDRAIL3  
-
-
-
SPI1_MISO  
SPI1_MOSI  
TIM2_CH3/I2C2_SCL/  
USART3_TX/  
L10 47 29 J2 21  
L11 48 30 H2 22  
PB10  
PB11  
I/O FT  
I/O FT  
PB10  
PB11  
-
-
LCD_SEG10  
TIM2_CH4/I2C2_SDA/  
USART3_RX/  
LCD_SEG11  
-
-
-
H5  
-
VSS  
S
S
S
-
-
-
VSS  
-
-
-
-
-
-
F12 49 31 J1 23  
G12 50 32 H1 24  
VSS_1  
VDD_1  
VSS_1  
VDD_1  
DocID022799 Rev 12  
41/136  
51  
Pin descriptions  
STM32L151xC STM32L152xC  
Pin functions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
TIM10_CH1  
/I2C2_SMBA/  
SPI2_NSS/I2S2_WS/  
USART3_CK/  
ADC_IN18/  
COMP1_INP/  
VLCDRAIL2  
L12 51 33 G2 25  
PB12  
PB13  
I/O FT  
I/O FT  
PB12  
PB13  
LCD_SEG12  
TIM9_CH1/SPI2_SCK/  
I2S2_CK/  
ADC_IN19/  
COMP1_INP  
K12 52 34 G1 26  
USART3_CTS/  
LCD_SEG13  
TIM9_CH2/SPI2_MISO/  
USART3_RTS/  
ADC_IN20/  
COMP1_INP  
K11 53 35 F3 27  
K10 54 36 F2 28  
PB14  
PB15  
I/O FT  
I/O FT  
PB14  
PB15  
LCD_SEG14  
ADC_IN21/  
COMP1_INP/  
RTC_REFIN  
TIM11_CH1/SPI2_MOSI  
/I2S2_SD/LCD_SEG15  
USART3_TX/  
LCD_SEG28  
K9 55  
K8 56  
J12 57  
J11 58  
-
-
-
-
-
-
-
-
-
-
-
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
-
-
-
-
USART3_RX/  
LCD_SEG29  
USART3_CK/  
LCD_SEG30  
PD10  
PD11  
PD10  
PD11  
USART3_CTS/  
LCD_SEG31  
TIM4_CH1/  
USART3_RTS/  
LCD_SEG32  
J10 59  
-
-
-
PD12  
I/O FT  
PD12  
-
H12 60  
H11 61  
H10 62  
-
-
-
-
-
-
-
-
-
PD13  
PD14  
PD15  
I/O FT  
I/O FT  
I/O FT  
PD13  
PD14  
PD15  
TIM4_CH2/LCD_SEG33  
TIM4_CH3/LCD_SEG34  
TIM4_CH4/LCD_SEG35  
-
-
-
TIM3_CH1/I2S2_MCK/  
LCD_SEG24  
E12 63 37 F1  
-
PC6  
I/O FT  
PC6  
-
42/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Pin descriptions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pin functions  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
TIM3_CH2/I2S3_MCK/  
LCD_SEG25  
E11 64 38 E1  
-
PC7  
I/O FT  
PC7  
-
E10 65 39 D1  
D12 66 40 E2  
-
-
PC8  
PC9  
I/O FT  
I/O FT  
PC8  
PC9  
TIM3_CH3/LCD_SEG26  
TIM3_CH4/LCD_SEG27  
-
-
USART1_CK/MCO/  
LCD_COM0  
D11 67 41 E3 29  
D10 68 42 C1 30  
C12 69 43 D2 31  
B12 70 44 B1 32  
A12 71 45 D3 33  
A11 72 46 C2 34  
PA8  
PA9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PA8  
PA9  
-
USART1_TX/  
LCD_COM1  
-
USART1_RX/  
LCD_COM2  
PA10  
PA11  
PA12  
PA13  
PA10  
PA11  
PA12  
-
USART1_CTS/  
SPI1_MISO  
USB_DM  
USB_DP  
-
USART1_RTS/  
SPI1_MOSI  
JTMS-  
SWDIO  
I/O FT  
I/O FT  
JTMS-SWDIO  
C11 73  
-
-
-
PH2  
VSS_2  
VDD_2  
PH2  
VSS_2  
VDD_2  
-
-
-
-
-
-
F11 74 47 A1 35  
G11 75 48 B2 36  
S
S
-
-
JTCK-  
SWCLK  
A10 76 49 C3 37  
PA14  
I/O FT  
JTCK-SWCLK  
-
TIM2_CH1_ETR/  
SPI1_NSS/  
SPI3_NSS/I2S3_WS/  
LCD_SEG17/JTDI  
A9 77 50 A2 38  
PA15  
I/O FT  
JTDI  
-
SPI3_SCK/I2S3_CK/  
USART3_TX/  
LCD_SEG28/  
LCD_SEG40/  
LCD_COM4  
B11 78 51 B3  
-
PC10  
I/O FT  
PC10  
-
DocID022799 Rev 12  
43/136  
51  
Pin descriptions  
STM32L151xC STM32L152xC  
Pin functions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
SPI3_MISO/  
USART3_RX/  
LCD_SEG29/  
LCD_SEG41/  
LCD_COM5  
C10 79 52 A3  
-
-
PC11  
PC12  
I/O FT  
PC11  
PC12  
-
-
SPI3_MOSI/I2S3_SD/  
USART3_CK/  
LCD_SEG30/  
B10 80 53 B4  
I/O FT  
LCD_SEG42/  
LCD_COM6  
TIM9_CH1/SPI2_NSS/  
I2S2_WS  
C9 81  
B9 82  
-
-
-
-
-
-
PD0  
PD1  
I/O FT  
I/O FT  
PD0  
PD1  
-
-
SPI2_SCK/I2S2_CK  
TIM3_ETR/LCD_SEG31  
/LCD_SEG43/  
C8 83 54 A4  
-
PD2  
I/O FT  
PD2  
-
LCD_COM7  
SPI2_MISO/  
USART2_CTS  
B8 84  
B7 85  
-
-
-
-
-
-
PD3  
PD4  
I/O FT  
I/O FT  
PD3  
PD4  
-
-
SPI2_MOSI/I2S2_SD/  
USART2_RTS  
A6 86  
B6 87  
A5 88  
-
-
-
-
-
-
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
PD5  
PD6  
PD7  
USART2_TX  
USART2_RX  
-
-
-
-
-
TIM9_CH2/USART2_CK  
TIM2_CH2/SPI1_SCK/  
SPI3_SCK/I2S3_CK/  
LCD_SEG7/JTDO  
COMP2_INM  
A8 89 55 C4 39  
A7 90 56 D4 40  
C5 91 57 A5 41  
PB3  
PB4  
PB5  
I/O FT  
I/O FT  
I/O FT  
JTDO  
TIM3_CH1/SPI1_MISO/  
NJTRST SPI3_MISO/LCD_SEG8  
/NJTRST  
COMP2_INP  
TIM3_CH2/I2C1_SMBA/  
SPI1_MOSI/SPI3_MOSI  
/I2S3_SD/LCD_SEG9  
PB5  
COMP2_INP  
44/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Pin descriptions  
Table 9. STM32L151xC and STM32L152xC pin definitions (continued)  
Pin functions  
Pins  
Main  
function(2)  
(after  
Pin name  
Alternate functions  
Additional functions  
reset)  
TIM4_CH1/I2C1_SCL/  
USART1_TX  
B5 92 58 B5 42  
PB6  
I/O FT  
I/O FT  
PB6  
COMP2_INP  
TIM4_CH2/I2C1_SDA/  
USART1_RX  
B4 93 59 C5 43  
A4 94 60 A6 44  
A3 95 61 B6 45  
PB7  
BOOT0  
PB8  
PB7  
BOOT0  
PB8  
COMP2_INP/PVD_IN  
I
B
-
-
-
TIM4_CH3/TIM10_CH1/  
I2C1_SCL/LCD_SEG16  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
TIM4_CH4/TIM11_CH1/  
I2C1_SDA/LCD_COM3  
B3 96 62 C6 46  
PB9  
PE0  
PE1  
PB9  
PE0  
PE1  
-
-
-
TIM4_ETR/TIM10_CH1/  
LCD_SEG36  
C3 97  
A2 98  
-
-
-
-
-
-
TIM11_CH1/  
LCD_SEG37  
D3 99 63 A7 47  
C4 100 64 B7 48  
VSS_3  
VDD_3  
S
S
-
-
VSS_3  
VDD_3  
-
-
-
-
1. I = input, O = output, S = supply.  
2. Function availability depends on the chosen device.  
3. Applicable to STM32L152xC devices only. In STM32L151xC devices, this pin should be connected to VDD  
.
4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the  
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose  
PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over  
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins  
section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).  
5. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON  
bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,  
respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off ). The HSE has priority over the GPIO  
function.  
DocID022799 Rev 12  
45/136  
51  
Alternate functions  
Table 10. Alternate function input/output  
Digital alternate function number  
.
.
.
.
AFIO0  
AFIO1  
TIM2  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFIO6  
AFIO7  
AFIO11  
LCD  
AFIO14 AFIO15  
Port  
name  
Alternate function  
TIM9/  
10/11  
SYSTEM  
TIM3/4/5  
I2C1/2  
SPI1/2  
SPI3  
USART1/2/3  
CPRI  
SYSTEM  
BOOT0  
NRST  
BOOT0  
NRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENT OUT  
-
PA0-  
WKUP1  
-
TIM2_CH1_ ETR TIM5_CH1  
-
-
-
-
-
USART2_CTS  
-
TIMx_IC1  
EVENT OUT  
PA1  
PA2  
PA3  
-
-
-
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
TIM5_CH2  
-
-
-
-
-
-
-
-
-
USART2_RTS  
USART2_TX  
USART2_RX  
SEG0  
SEG1  
SEG2  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
EVENT OUT  
EVENT OUT  
EVENT OUT  
TIM5_CH3 TIM9_CH1  
TIM5_CH4 TIM9_CH2  
SPI3_NSS  
I2S3_WS  
PA4  
-
-
-
-
-
-
-
SPI1_NSS  
USART2_CK  
-
TIMx_IC1  
EVENT OUT  
PA5  
-
-
-
TIM2_CH1_ETR  
-
-
-
-
-
-
-
-
-
-
SPI1_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVEN TOUT  
PA6  
-
-
-
-
-
-
-
-
-
TIM3_CH1 TIM10_ CH1  
TIM3_CH2 TIM11_ CH1  
SPI1_MISO  
-
SEG3  
PA7  
SPI1_MOSI  
-
SEG4  
PA8  
MCO  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
-
COM0  
PA9  
-
-
-
-
-
COM1  
PA10  
PA11  
PA12  
PA13  
PA14  
-
COM2  
SPI1_MISO  
-
-
-
-
SPI1_MOSI  
JTMS-SWDIO  
JTCK-SWCLK  
-
-
-
SPI3_NSS  
I2S3_WS  
PA15  
JTDI  
TIM2_CH1_ETR  
-
-
-
SPI1_NSS  
-
SEG17  
TIMx_IC4  
EVEN TOUT  
 
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
.
.
.
.
AFIO0  
AFIO1  
TIM2  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFIO6  
AFIO7  
AFIO11  
LCD  
AFIO14 AFIO15  
Port  
name  
Alternate function  
TIM9/  
10/11  
SYSTEM  
TIM3/4/5  
I2C1/2  
SPI1/2  
SPI3  
USART1/2/3  
CPRI  
SYSTEM  
PB0  
-
-
-
-
-
TIM3_CH3  
TIM3_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG5  
SEG6  
-
-
-
-
EVEN TOUT  
EVENT OUT  
EVENT OUT  
PB1  
PB2  
BOOT1  
SPI3_SCK  
I2S3_CK  
PB3  
PB4  
PB5  
JTDO  
NJTRST  
-
TIM2_CH2  
-
-
-
-
-
-
SPI1_SCK  
-
-
-
SEG7  
SEG8  
SEG9  
-
-
-
EVENT OUT  
EVENT OUT  
EVENT OUT  
-
-
TIM3_CH1  
TIM3_CH2  
SPI1_MISO SPI3_MISO  
SPI3_MOSI  
I2S3_SD  
I2C1_SMBA SPI1_MOSI  
PB6  
PB7  
PB8  
PB9  
PB10  
PB11  
-
-
-
-
-
-
TIM4_CH1  
TIM4_CH2  
-
-
I2C1_SCL  
I2C1_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
USART1_TX  
USART1_RX  
-
-
-
-
-
-
-
-
-
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
-
-
-
TIM4_CH3 TIM10_CH1 I2C1_SCL  
SEG16  
COM3  
SEG10  
SEG11  
TIM4_CH4 TIM11_CH1  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
-
TIM2_CH3  
TIM2_CH4  
-
-
-
-
USART3_TX  
USART3_RX  
SPI2_NSS  
I2S2_WS  
PB12  
-
-
-
TIM10_CH1 I2C2_SMBA  
-
USART3_CK  
SEG12  
-
EVENT OUT  
SPI2_SCK  
I2S2_CK  
PB13  
PB14  
PB15  
-
-
-
-
-
-
-
-
-
TIM9_CH1  
TIM9_CH2  
TIM11_CH1  
-
-
-
-
-
-
USART3_CTS  
SEG13  
SEG14  
SEG15  
-
-
-
EVENT OUT  
EVENT OUT  
EVENT OUT  
SPI2_MISO  
USART3_RTS  
-
SPI2_MOSI  
I2S2_SD  
PC0  
PC1  
PC2  
PC3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG18  
SEG19  
SEG20  
SEG21  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
.
.
.
.
AFIO0  
AFIO1  
TIM2  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFIO6  
AFIO7  
AFIO11  
LCD  
AFIO14 AFIO15  
Port  
name  
Alternate function  
TIM9/  
10/11  
SYSTEM  
TIM3/4/5  
I2C1/2  
SPI1/2  
SPI3  
USART1/2/3  
CPRI  
SYSTEM  
PC4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
PC5  
PC6  
PC7  
PC8  
PC9  
-
-
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
I2S2_MCK  
-
-
-
-
I2S3_MCK  
-
-
COM4/  
SEG28/  
SEG40  
SPI3_SCK  
I2S3_CK  
PC10  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_TX  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
EVENT OUT  
EVENT OUT  
EVENT OUT  
COM5/  
SEG29  
/SEG41  
SPI3_MISO USART3_RX  
COM6/  
SEG30/  
SEG42  
SPI3_MOSI  
USART3_CK  
I2S3_SD  
PC13-  
WKUP2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC2  
TIMx_IC3  
EVENT OUT  
EVENT OUT  
PC14  
OSC32_IN  
PC15  
OSC32_  
OUT  
-
-
-
-
-
-
-
-
-
TIMx_IC4  
EVENT OUT  
SPI2_NSS  
I2S2_WS  
PD0  
PD1  
-
-
-
-
-
-
TIM9_CH1  
-
-
-
-
-
-
-
-
-
TIMx_IC1  
TIMx_IC2  
EVENT OUT  
EVENT OUT  
SPI2 SCK  
I2S2_CK  
COM7/  
SEG31/  
SEG43  
PD2  
-
-
TIM3_ETR  
-
-
-
-
-
TIMx_IC3  
EVENT OUT  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
.
.
.
.
AFIO0  
AFIO1  
TIM2  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFIO6  
AFIO7  
AFIO11  
LCD  
AFIO14 AFIO15  
Port  
name  
Alternate function  
TIM9/  
10/11  
SYSTEM  
TIM3/4/5  
I2C1/2  
SPI1/2  
SPI3  
USART1/2/3  
CPRI  
SYSTEM  
PD3  
-
-
-
-
-
-
-
-
-
-
-
SPI2_MISO  
-
-
USART2_CTS  
USART2_RTS  
-
-
TIMx_IC4  
TIMx_IC1  
EVENT OUT  
EVENT OUT  
SPI2_MOSI  
I2S2_SD  
PD4  
PD5  
PD6  
PD7  
PD8  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PE0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_TX  
-
-
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_RX  
-
-
TIM9_CH2  
USART2_CK  
-
-
-
-
-
-
-
-
-
-
-
USART3_TX  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG 38  
SEG 39  
-
-
-
USART3_RX  
-
-
USART3_CK  
-
-
USART3_CTS  
-
TIM4_CH1  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
USART3_RTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM4_ETR TIM10_CH1  
PE1  
-
-
TIM11_CH1  
PE2  
TRACECK  
TRACED0  
TRACED1  
TRACED2  
TIM3_ETR  
TIM3_CH1  
TIM3_CH2  
-
-
PE3  
-
-
-
-
-
-
-
-
-
-
PE4  
-
PE5  
TIM9_CH1  
-
PE6-  
WKUP3  
TRACED3  
-
-
-
-
-
TIM9_CH2  
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC3  
TIMx_IC4  
EVENT OUT  
EVENT OUT  
PE7  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
.
.
.
.
AFIO0  
AFIO1  
TIM2  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFIO6  
AFIO7  
AFIO11  
LCD  
AFIO14 AFIO15  
Port  
name  
Alternate function  
TIM9/  
10/11  
SYSTEM  
TIM3/4/5  
I2C1/2  
SPI1/2  
SPI3  
USART1/2/3  
CPRI  
SYSTEM  
PE8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
TIMx_IC1  
TIMx_IC2  
TIMx_IC3  
TIMx_IC4  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
EVENT OUT  
PE9  
TIM2_CH1_ETR  
TIM5_ETR  
-
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH2  
-
-
-
-
-
-
-
TIM2_CH3  
-
TIM2_CH4  
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
-
-
PH0OSC  
_IN  
-
-
-
-
-
-
-
-
-
-
-
PH1OSC_  
OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PH2  
STM32L151xC STM32L152xC  
Memory mapping  
5
Memory mapping  
Figure 9. Memory map  
ꢏXꢅꢏꢏꢇ ꢆꢎ&&  
ꢏXꢅꢏꢏꢇ ꢆꢅꢏꢏ  
$-!ꢇ  
$-!ꢀ  
ꢏXꢅꢏꢏꢇ ꢆꢏꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢅꢏꢏꢏ  
RESERVED  
&LASH )NTERFACE  
ꢏXꢅꢏꢏꢇ ꢃ#ꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢃꢁꢏꢏ  
2##  
ꢏX&&&& &&&&  
RESERVED  
ꢏXꢅꢏꢏꢇ ꢃꢅꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢃꢏꢏꢏ  
#2#  
RESERVED  
ꢏX%ꢏꢀꢏ ꢏꢏꢏꢏ  
#ORTEX- )NTERNAL  
0ERIPHERALS  
ꢏXꢅꢏꢏꢇ ꢀꢁꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢀꢅꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢀꢏꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢏ#ꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢏꢁꢏꢏ  
ꢏXꢅꢏꢏꢇ ꢏꢅꢏꢏ  
ꢏX%ꢏꢏꢏ ꢏꢏꢏꢏ  
0ORT (  
0ORT %  
0ORT $  
0ORT #  
0ORT "  
ꢏX#ꢏꢏꢏ ꢏꢏꢏꢏ  
0ORT !  
ꢏXꢅꢏꢏꢇ ꢏꢏꢏꢏ  
RESERVED  
ꢏXꢅꢏꢏꢀ ꢃ#ꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢃꢁꢏꢏ  
53!24  
RESERVED  
ꢏXꢅꢏꢏꢀ ꢃꢅꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢃꢏꢏꢏ  
30)ꢀ  
RESERVED  
!$#  
ꢏX!ꢏꢏꢏ ꢏꢏꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢇꢁꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢇꢅꢏꢏ  
RESERVED  
4)-ꢀꢀ  
ꢏXꢅꢏꢏꢀ ꢀꢅꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢀꢏꢏꢏ  
ꢏXꢁꢏꢏꢏ ꢏꢏꢏꢏ  
4)-ꢀꢏ  
4)-ꢌ  
%84)  
ꢏXꢅꢏꢏꢀ ꢏ#ꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢏꢁꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢏꢅꢏꢏ  
ꢏXꢀ&&ꢁ ꢏꢏꢌ&  
RESERVED  
ꢏXꢀ&&ꢁ ꢏꢏꢇꢏ  
393#&'  
RESERVED  
/PTION BYTE  
ꢏXꢀ&&ꢁ ꢏꢏꢏꢏ  
ꢏXꢅꢏꢏꢀ ꢏꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢁꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢎ#ꢏꢏ  
ꢏXꢆꢏꢏꢏ ꢏꢏꢏꢏ  
#/-0  2)  
RESERVED  
RESERVED  
ꢏXꢅꢏꢏꢏ ꢎꢁꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢎꢅꢏꢏ  
$!#ꢀ    
072  
ꢏXꢀ&&ꢏ ꢇꢏꢏꢏ  
3YSTEM MEMORY  
ꢏXꢀ&&ꢏ ꢏꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢎꢏꢏꢏ  
RESERVED  
0ERIPHERALS  
ꢏXꢅꢏꢏꢏ ꢏꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢆꢅꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢆꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢂ#ꢏꢏ  
ꢂꢀꢇ BYTE 53"  
53" 2EGISTERS  
)ꢇ#ꢇ  
)ꢇ#ꢀ  
ꢏXꢅꢏꢏꢏ ꢂꢁꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢂꢅꢏꢏ  
RESERVED  
32!-  
ꢏXꢇꢏꢏꢏ ꢏꢏꢏꢏ  
RESERVED  
ꢏXꢅꢏꢏꢏ ꢅ#ꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢅꢁꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢅꢅꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢅꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢃ#ꢏꢏ  
53!24  
53!24  
.ONꢐ  
ꢏXꢏꢁꢏꢁ ꢇꢏꢏꢏ  
VOLATILE  
$ATA %%02/-  
ꢏXꢏꢁꢏꢁ ꢏꢏꢏꢏ  
MEMORY  
RESERVED  
30)ꢃ  
ꢏXꢏꢏꢏꢏ ꢏꢏꢏꢏ  
RESERVED  
30)ꢇ  
ꢏXꢅꢏꢏꢏ ꢃꢁꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢃꢅꢏꢏ  
RESERVED  
ꢏXꢏꢁꢏꢅ ꢏꢏꢏꢏ  
)7$'  
ꢏXꢅꢏꢏꢏ ꢃꢏꢏꢏ  
77$'  
&LASH MEMORY  
ꢏXꢅꢏꢏꢏ ꢇ#ꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢇꢁꢏꢏ  
2ESERVED  
ꢏXꢏꢁꢏꢏ ꢏꢏꢏꢏ  
24#  
,#$  
!LIASED TO &LASH OR SYSTEM  
MEMORY DEPENDING ON  
ꢏXꢅꢏꢏꢏ ꢇꢅꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢀ#ꢏꢏ  
"//4 PINS  
ꢏXꢏꢏꢏꢏ ꢏꢏꢏꢏ  
RESERVED  
4)-ꢎ  
ꢏXꢅꢏꢏꢏ ꢀꢅꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢀꢏꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢏ#ꢏꢏ  
4)-ꢆ  
4)-ꢂ  
4)-ꢅ  
4)-ꢃ  
4)-ꢇ  
ꢏXꢅꢏꢏꢏ ꢏꢁꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢏꢅꢏꢏ  
ꢏXꢅꢏꢏꢏ ꢏꢏꢏꢏ  
-3ꢃꢎꢂꢇꢃ6ꢀ  
DocID022799 Rev 12  
51/136  
51  
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes. Based on characterization, the minimum and maximum  
values refer to sample tests and represent the mean value plus or minus three times the  
standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.6 V (for the  
A
DD  
1.65 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
0&8ꢅSLQ  
0&8ꢅSLQ  
&ꢅ ꢅꢏꢉꢅS)  
9,1  
DLꢂꢃꢋꢏꢂF  
DLꢂꢃꢋꢏꢆG  
52/136  
DocID022799 Rev 12  
 
 
 
 
 
 
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
6WDQGE\ꢎSRZHUꢅFLUFXLWU\  
ꢊ/6(ꢑ57&ꢑ:DNHꢎXSꢅ  
ORJLFꢑꢅ57&ꢅEDFNXSꢅ  
UHJLVWHUVꢍ  
287  
,1  
,2  
/RJLF  
*3ꢅ,ꢐ2V  
.HUQHOꢅORJLFꢅ  
ꢊ&38ꢑꢅ  
'LJLWDOꢅꢇꢅ  
0HPRULHVꢍꢅꢅ  
9''  
9''  
5HJXODWRU  
1ꢅîꢅꢂꢉꢉꢅQ)ꢅꢔꢅ  
ꢂꢅîꢅꢁꢄꢃꢅ—)  
966  
9''$  
9''$  
95()  
95()ꢔ  
$QDORJꢈꢅ  
26&ꢑ3//ꢑ&203  
«ꢄ  
ꢂꢉꢉꢅQ)ꢅ  
ꢔꢅꢂꢅ—)  
$'&ꢐ  
'$&  
ꢂꢉꢉꢅQ)ꢅ  
ꢔꢅꢂꢅ—)  
95()ꢎ  
966$  
1ꢅ±ꢅQXPEHUꢅRIꢅ  
9''ꢐ966ꢅSDLUV  
06ꢀꢆꢁꢌꢂ9ꢀ  
DocID022799 Rev 12  
53/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6.1.7  
Optional LCD power supply scheme  
Figure 13. Optional LCD power supply scheme  
96(  
/
9''  
9''ꢂꢐꢆꢐꢄꢄꢄꢐ
6WHSꢎXS  
&RQYHUWHU  
1ꢅ[ꢅꢂꢉꢉꢅQ)  
ꢔꢅꢂꢅ[ꢅꢂꢉꢅ—)  
2SWLRQꢅꢂ  
2SWLRQꢅꢆ  
9/&'  
ꢂꢉꢉꢅ  
Q)  
9/&'  
&
(;7  
/&'  
9/&'UDLOꢀ  
9/&'UDLOꢆ  
9/&'UDLOꢂ  
3%ꢉꢅRUꢅ3(ꢂꢆ  
3%ꢆ  
3%ꢂꢆꢅRUꢅ3(ꢂꢂ  
&
&
&
UDLOꢀ  
UDLOꢆ  
UDLOꢂ  
966ꢂꢐꢆꢐꢄꢄꢄ
06ꢀꢆꢁꢋꢏ9ꢂ  
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.  
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an  
external capacitance is needed for correct behavior of this converter.  
6.1.8  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
$
1ꢅ[ꢅ9''  
1ꢅ[ꢅꢂꢉꢉꢅQ)  
ꢔꢂꢅ[ꢅꢂꢉꢅ—)  
1ꢅ[ꢅ966  
9/&'  
9''$  
ꢂꢉꢉꢅQ)  
ꢔꢂꢅ—)  
95()ꢔ  
95()ꢎ  
966$  
06ꢀꢀꢉꢆꢋ9ꢂ  
54/136  
DocID022799 Rev 12  
 
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,  
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 11. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDD–VSS  
–0.3  
4.0  
(1)  
(including VDDA and VDD  
)
V
Input voltage on five-volt tolerant pin  
Input voltage on any other pin  
VSS 0.3  
VDD+4.0  
4.0  
(2)  
VIN  
VSS 0.3  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all different ground pins(3)  
-
-
-
50  
mV  
V
|VSSX VSS  
|
50  
V
REF+ –VDDA Allowed voltage difference for VREF+ > VDDA  
0.4  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
see Section 6.3.11  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. VIN maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.  
3. Include VREF- pin.  
Table 12. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDD(Σ)  
Total current into sum of all VDD_x power lines (source)(1)  
Total current out of sum of all VSS_x ground lines (sink)(1)  
Maximum current into each VDD_x power pin (source)(1)  
Maximum current out of each VSS_x ground pin (sink)(1)  
Output current sunk by any I/O and control pin  
100  
100  
70  
(2)  
IVSS(Σ)  
IVDD(PIN)  
IVSS(PIN)  
-70  
25  
IIO  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all IOs and control pins(2)  
Total output current sourced by sum of all IOs and control pins(2)  
Injected current on five-volt tolerant I/O(4), RST and B pins  
Injected current on any other pin (5)  
- 25  
60  
mA  
ΣIIO(PIN)  
-60  
-5/+0  
± 5  
(3)  
IINJ(PIN)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the  
permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.  
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.  
DocID022799 Rev 12  
55/136  
109  
 
 
 
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
4. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 11 for maximum allowed input voltage values.  
5. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be  
exceeded. Refer to Table 11: Voltage characteristics for the maximum allowed input voltage values.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and  
negative injected currents (instantaneous values).  
Table 13. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
150  
°C  
°C  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 14. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK Internal AHB clock frequency  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
0
0
32  
32  
32  
3.6  
-
MHz  
-
0
BOR detector disabled  
1.65  
BOR detector enabled, at  
power on  
1.8  
3.6  
3.6  
3.6  
VDD  
Standard operating voltage  
V
BOR detector disabled, after  
power on  
1.65  
1.65  
Analog operating voltage  
(ADC and DAC not used)  
Must be the same voltage as  
(1)  
VDDA  
V
V
(2)  
VDD  
Analog operating voltage  
(ADC or DAC used)  
1.8  
3.6  
FT pins; 2.0 V VDD  
FT pins; VDD < 2.0 V  
BOOT0 pin  
-0.3  
5.5(3)  
-0.3  
5.25(3)  
VIN  
I/O input voltage  
0
5.5  
Any other pin  
-0.3  
VDD+0.3  
LQFP48 package  
LQFP100 package  
LQFP64 package  
UFQFPN48 package  
UFBGA100  
-
-
-
-
-
-
364  
465  
435  
Power dissipation at TA = 85 °C for  
suffix 6 or TA = 105 °C for suffix 7(4)  
PD  
mW  
625  
339  
WLCSP63 package  
408  
56/136  
DocID022799 Rev 12  
 
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 14. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Ambient temperature for 6 suffix version Maximum power dissipation(5)  
Ambient temperature for 7 suffix version Maximum power dissipation  
–40  
–40  
–40  
–40  
85  
TA  
°C  
105  
105  
110  
6 suffix version  
Junction temperature range  
TJ  
°C  
7 suffix version  
1. When the ADC is used, refer to Table 56: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
V
DDA can be tolerated during power-up and up to 140 mV in operation.  
3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 73: Thermal characteristics  
on page 128).  
5. In low-power dissipation state, TA can be extended to -40°C to 105°C temperature range as long as TJ does not exceed TJ  
max (see Table 73: Thermal characteristics on page 128).  
6.3.2  
Embedded reset and power control block characteristics  
The parameters given in the following table are derived from the tests performed under the  
conditions summarized in Table 14.  
Table 15. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BOR detector enabled  
BOR detector disabled  
BOR detector enabled  
BOR detector disabled  
0
0
-
1000  
VDD rise time rate  
-
(1)  
tVDD  
µs/V  
20  
-
VDD fall time rate  
0
-
1000  
3.3  
VDD rising, BOR enabled  
-
2
(1)  
TRSTTEMPO  
Reset temporization  
ms  
VDD rising, BOR disabled(2)  
0.4  
1
0.7  
1.5  
1.5  
1.7  
1.76  
1.93  
2.03  
2.30  
2.41  
1.6  
Falling edge  
1.65  
1.65  
1.74  
1.8  
Power on/power down reset  
threshold  
VPOR/PDR  
Rising edge  
1.3  
1.67  
1.69  
1.87  
1.96  
2.22  
2.31  
Falling edge  
VBOR0  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Rising edge  
V
Falling edge  
1.97  
2.07  
2.35  
2.44  
VBOR1  
Rising edge  
Falling edge  
VBOR2  
Rising edge  
DocID022799 Rev 12  
57/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 15. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Falling edge  
Min  
Typ  
Max  
Unit  
2.45  
2.54  
2.68  
2.78  
1.8  
2.55  
2.66  
2.8  
2.6  
2.7  
VBOR3  
Brown-out reset threshold 3  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
BOR0 threshold  
2.85  
2.95  
1.88  
1.99  
2.09  
2.18  
2.28  
2.38  
2.48  
2.58  
2.69  
2.79  
2.88  
2.99  
3.09  
3.20  
-
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Brown-out reset threshold 4  
2.9  
1.85  
1.94  
2.04  
2.14  
2.24  
2.34  
2.44  
2.54  
2.64  
2.74  
2.83  
2.94  
3.05  
3.15  
40  
Programmable voltage detector  
threshold 0  
1.88  
1.98  
2.08  
2.20  
2.28  
2.39  
2.47  
2.57  
2.68  
2.77  
2.87  
2.97  
3.08  
-
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
V
Vhyst  
Hysteresis voltage  
mV  
All BOR and PVD  
thresholds excepting BOR0  
-
100  
-
1. Guaranteed by characterization results.  
2. Valid for device version without BOR at power up. Please see option “D” in Ordering information scheme for more details.  
58/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.3  
Embedded internal reference voltage  
The parameters given in Table 17 are based on characterization results, unless otherwise  
specified.  
Table 16. Embedded internal reference voltage calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
VREFINT_CAL  
temperature of 30 °C ±5 °C  
0x1FF8 00F8 - 0x1FF8 00F9  
VDDA= 3 V ±10 mV  
Table 17. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VREFINT out  
IREFINT  
Internal reference voltage  
– 40 °C < TJ < +110 °C 1.202 1.224 1.242  
V
Internal reference current  
consumption  
-
-
-
-
-
1.4  
2
2.3  
3
µA  
ms  
V
TVREFINT  
Internal reference startup time  
VDDA and VREF+ voltage during  
VREFINT factory measure  
VVREF_MEAS  
2.99  
3
3.01  
Including uncertainties  
due to ADC and  
VDDA/VREF+ values  
Accuracy of factory-measured VREF  
value(2)  
AVREF_MEAS  
-
-
-
±5  
mV  
ppm/°  
C
(3)  
TCoeff  
Temperature coefficient  
–40 °C < TJ < +110 °C  
25  
100  
(3)  
ACoeff  
Long-term stability  
Voltage coefficient  
1000 hours, T= 25 °C  
3.0 V < VDDA < 3.6 V  
-
-
-
-
1000  
2000  
ppm  
(3)  
VDDCoeff  
ppm/V  
ADC sampling time when reading  
the internal reference voltage  
(3)  
TS_vrefint  
-
-
-
4
-
-
-
-
µs  
µs  
µA  
Startup time of reference voltage  
buffer for ADC  
(3) (4)  
TADC_BUF  
10  
25  
Consumption of reference voltage  
buffer for ADC  
(3)  
IBUF_ADC  
-
13.5  
(3)  
IVREF_OUT  
VREF_OUT output current (5)  
-
-
-
-
-
-
1
µA  
pF  
(3)  
CVREF_OUT  
VREF_OUT output load  
50  
Consumption of reference voltage  
buffer for VREF_OUT and COMP  
(3)  
ILPBUF  
-
-
730  
1200  
nA  
(3)  
VREFINT_DIV1  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
-
-
-
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
VREFIN  
(3)  
VREFINT_DIV2  
T
(3)  
VREFINT_DIV3  
1. Guaranteed by test in production.  
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.  
3. Guaranteed by characterization results.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
DocID022799 Rev 12  
59/136  
109  
 
 
 
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
5. To guarantee less than 1% VREF_OUT deviation.  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, temperature, I/O pin loading, device software configuration, operating  
frequencies, I/O pin switching rate, program location in memory and executed binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to the Dhrystone 2.1 code, unless  
otherwise specified. The current consumption values are derived from tests performed  
under ambient temperature T = 25 °C and V supply voltage conditions summarized in  
A
DD  
Table 14: General operating conditions, unless otherwise specified.  
The MCU is placed under the following conditions:  
All I/O pins are configured in analog input mode  
All peripherals are disabled except when explicitly mentioned.  
The Flash memory access time, 64-bit access and prefetch is adjusted depending on  
f
frequency and voltage range to provide the best CPU performance.  
HCLK  
When the peripherals are enabled f  
= f  
= f  
.
APB1  
APB2  
AHB  
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or  
HSE = 16 MHz (if HSE bypass mode is used).  
The HSE user clock applied to OSCI_IN input follows the characteristic specified in  
Table 27: High-speed external user clock characteristics.  
For maximum current consumption V = V  
= 3.6 V is applied to all supply pins.  
DD  
DDA  
For typical current consumption V = V  
= 3.0 V is applied to all supply pins if not  
DDA  
DD  
specified otherwise.  
60/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 18. Current consumption in Run mode, code with data processing running from Flash  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ  
Max(1) Unit  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
16 MHz  
8 MHz  
16 MHz  
32 MHz  
215  
400  
725  
0.915  
1.75  
3.4  
400  
Range 3, VCORE=1.2 V  
VOS[1:0] = 11  
600  
960  
1.1  
2.1  
3.9  
2.8  
4.9  
9.4  
µA  
mA  
µA  
fHSE = fHCLK up to 16  
MHz included, fHSE  
=
Range 2, VCORE=1.5 V  
fHCLK/2 above 16 MHz VOS[1:0] = 10  
(PLL ON)(2)  
Supply  
2.1  
IDD  
current in  
Run mode,  
code  
executed  
from Flash  
Range 1, VCORE=1.8 V  
VOS[1:0] = 01  
(Run  
from  
Flash)  
4.2  
8.25  
Range 2, VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz  
32 MHz  
3.5  
8.2  
4
HSI clock source (16  
MHz)  
Range 1, VCORE=1.8 V  
VOS[1:0] = 01  
9.6  
MSI clock, 65 kHz  
MSI clock, 524 kHz  
MSI clock, 4.2 MHz  
65 kHz  
524 kHz  
4.2 MHz  
40.5  
125  
775  
110  
190  
900  
Range 3, VCORE=1.2 V  
VOS[1:0] = 11  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
DocID022799 Rev 12  
61/136  
109  
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 19. Current consumption in Run mode, code with data processing running from RAM  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ  
Max(1) Unit  
1 MHz  
185  
345  
645  
0.755  
1.5  
240  
Range 3,  
VCORE=1.2 V VOS[1:0] 2 MHz  
410  
880(3)  
1.4  
µA  
mA  
µA  
= 11  
4 MHz  
f
HSE = fHCLK  
4 MHz  
up to 16 MHz,  
included  
Range 2,  
VCORE=1.5 V VOS[1:0] 8 MHz  
2.1  
fHSE = fHCLK/2 above  
16 MHz  
= 10  
16 MHz  
3
3.5  
(PLL ON)(2)  
8 MHz  
1.8  
2.8  
Range 1,  
Supply current in  
DD (Run Run mode, code  
VCORE=1.8 V  
16 MHz  
32 MHz  
3.6  
4.1  
I
VOS[1:0] = 01  
from  
RAM)  
executed from  
RAM, Flash  
switched off  
7.15  
8.3  
Range 2,  
VCORE=1.5 V VOS[1:0] 16 MHz  
2.95  
7.15  
3.5  
8.4  
= 10  
HSI clock source (16  
MHz)  
Range 1,  
VCORE=1.8 V VOS[1:0] 32 MHz  
= 01  
MSI clock, 65 kHz  
MSI clock, 524 kHz  
MSI clock, 4.2 MHz  
65 kHz  
38.5  
110  
690  
85  
Range 3,  
VCORE=1.2 V VOS[1:0] 524 kHz  
= 11  
160  
810  
4.2 MHz  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
3. Guaranteed by test in production.  
62/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 20. Current consumption in Sleep mode  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ  
Max(1)  
Unit  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
16 MHz  
8 MHz  
16 MHz  
32 MHz  
50  
78.5  
140  
165  
310  
590  
350  
680  
1600  
130  
195  
310  
310  
440  
830  
550  
990  
2100  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
f
HSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
Range 2,  
VCORE=1.5 V  
above 16 MHz (PLL VOS[1:0] = 10  
ON)(2)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
Supplycurrent  
in Sleep  
mode, Flash  
OFF  
Range 2,  
V
CORE=1.5 V  
16 MHz  
32 MHz  
640  
890  
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
1600  
2200  
VOS[1:0] = 01  
MSI clock, 65 kHz  
65 kHz  
524 kHz  
4.2 MHz  
1 MHz  
19  
33  
60  
99  
Range 3,  
MSI clock, 524 kHz VCORE=1.2 V  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
145  
60.5  
89.5  
150  
180  
320  
605  
380  
695  
1600  
210  
130  
190  
320  
320  
460  
840  
540  
1000  
2100  
IDD (Sleep)  
µA  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
2 MHz  
4 MHz  
fHSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
4 MHz  
Range 2,  
VCORE=1.5 V  
8 MHz  
above 16 MHz (PLL VOS[1:0] = 10  
16 MHz  
8 MHz  
ON)(2)  
Supplycurrent  
in Sleep  
mode, Flash  
ON  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
16 MHz  
32 MHz  
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz  
32 MHz  
650  
910  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
1600  
2200  
VOS[1:0] = 01  
MSI clock, 65 kHz  
65 kHz  
524 kHz  
4.2 MHz  
30  
44  
90  
96  
Supplycurrent  
in Sleep  
mode, Flash  
ON  
Range 3,  
MSI clock, 524 kHz VCORE=1.2V  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
155  
220  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)  
DocID022799 Rev 12  
63/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 21. Current consumption in Low-power run mode  
Symbol Parameter  
Conditions  
Typ  
Max(1)  
Unit  
TA = -40 °C to 25 °C  
TA = 85 °C  
8.6  
19  
35  
14  
24  
40  
26  
28  
36  
52  
20  
32  
49  
26  
38  
55  
41  
44  
56  
73  
12  
25  
47  
16  
29  
51  
29  
31  
42  
64  
24  
37  
61  
30  
44  
67  
46  
50  
87  
110  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
All  
TA = 105 °C  
peripherals  
OFF, code  
executed  
from RAM,  
Flash  
switched  
OFF, VDD  
from 1.65 V  
to 3.6 V  
TA =-40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
f
HCLK = 131 kHz  
TA = 85 °C  
Supply  
TA = 105 °C  
IDD (LP  
current in  
Low-power  
run mode  
Run)  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
µA  
TA = 105 °C  
All  
peripherals  
OFF, code  
executed  
from Flash,  
VDD from  
1.65 V to  
3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
f
HCLK = 131 kHz  
TA = 85 °C  
TA = 105 °C  
Max allowed  
DD max current in  
(LP Run) Low-power  
run mode  
VDD from  
1.65 V to  
3.6 V  
I
-
-
-
200  
1. Guaranteed by characterization results, unless otherwise specified.  
64/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 22. Current consumption in Low-power sleep mode  
Symbol  
Parameter  
Conditions  
Typ  
Max(1)  
Unit  
MSI clock, 65 kHz  
f
HCLK = 32 kHz  
TA = -40 °C to 25 °C  
4.4  
-
Flash OFF  
TA = -40 °C to 25 °C  
TA = 85 °C  
14  
19  
27  
15  
20  
28  
17  
18  
22  
30  
14  
19  
27  
15  
20  
28  
17  
18  
22  
30  
16  
23  
33  
17  
23  
33  
19  
21  
25  
35  
16  
22  
32  
17  
23  
33  
19  
21  
25  
36  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
Flash ON  
TA = 105 °C  
All peripherals  
OFF, VDD from  
1.65 V to 3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
f
HCLK = 65 kHz,  
Flash ON  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
fHCLK = 131 kHz,  
Flash ON  
Supply  
TA = 85 °C  
IDD  
current in  
(LP Sleep) Low-power  
sleep mode  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 85 °C  
µA  
MSI clock, 65 kHz  
f
HCLK = 32 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 85 °C  
TIM9 and  
USART1  
enabled, Flash  
ON, VDD from  
1.65 V to 3.6 V  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
f
HCLK = 131 kHz  
TA = 85 °C  
TA = 105 °C  
Max  
allowed  
current in  
Low-power  
IDD max  
(LP Sleep)  
VDD from 1.65 V  
to 3.6 V  
-
-
-
200  
sleep mode  
1. Guaranteed by characterization results, unless otherwise specified.  
DocID022799 Rev 12  
65/136  
109  
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 23. Typical and maximum current consumptions in Stop mode  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
TA = -40°C to 25°C  
VDD = 1.8 V  
1.15  
-
TA = -40°C to 25°C  
TA = 55°C  
1.4  
2
-
LCD  
OFF  
-
TA= 85°C  
3.4  
10  
23  
6
RTC clocked by LSI  
TA = 105°C  
6.35  
1.55  
2.15  
3.55  
6.3  
or LSE external clock  
(32.768kHz),  
regulator in LP mode,  
HSI and HSE OFF  
(no independent  
watchdog)  
TA = -40°C to 25°C  
TA = 55°C  
LCD  
ON  
7
(static  
TA= 85°C  
12  
27  
10  
11  
16  
44  
-
duty)(2)  
TA = 105°C  
TA = -40°C to 25°C  
TA = 55°C  
3.9  
LCD  
4.65  
6.25  
9.1  
ON (1/8  
duty)(3)  
TA= 85°C  
TA = 105°C  
TA = -40°C to 25°C  
TA = 55°C  
1.5  
Supply current in  
Stop mode with RTC  
enabled  
IDD (Stop  
with RTC)  
2.15  
3.7  
-
-
-
-
-
-
-
-
-
-
-
µA  
LCD  
OFF  
TA= 85°C  
TA = 105°C  
6.75  
1.6  
TA = -40°C to 25°C  
TA = 55°C  
LCD  
ON  
2.3  
(static  
TA= 85°C  
3.8  
RTC clocked by LSE  
external quartz  
duty)(2)  
TA = 105°C  
6.85  
4
(32.768kHz),  
regulator in LP mode,  
HSI and HSE OFF  
(no independent  
watchdog(4)  
TA = -40°C to 25°C  
TA = 55°C  
LCD  
4.85  
6.5  
ON (1/8  
duty)(3)  
TA= 85°C  
TA = 105°C  
9.1  
TA = -40°C to 25°C  
VDD = 1.8V  
1.2  
1.5  
-
-
-
LCD  
OFF  
TA = -40°C to 25°C  
VDD = 3.0V  
TA = -40°C to 25°C  
VDD = 3.6V  
1.75  
66/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 23. Typical and maximum current consumptions in Stop mode (continued)  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
Regulator in LP mode, HSI and  
HSE OFF, independent  
TA = -40°C to 25°C  
1.8  
2.2  
watchdog and LSI enabled  
Supply current in  
IDD (Stop) Stop mode (RTC  
disabled)  
TA = -40°C to 25°C 0.435  
1
µA  
Regulator in LP mode, LSI, HSI  
and HSE OFF (no independent  
watchdog)  
TA = 55°C  
TA= 85°C  
TA = 105°C  
0.99  
2.4  
3
9
5.5  
22(5)  
MSI = 4.2 MHz  
MSI = 1.05 MHz  
MSI = 65 kHz(6)  
2
-
IDD  
(WU from wakeup from Stop  
Stop) mode  
Supply current during  
TA = -40°C to 25°C  
1.45  
1.45  
-
-
mA  
1. Guaranteed by characterization results, unless otherwise specified.  
2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.  
3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.  
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF  
loading capacitors.  
5. Guaranteed by test in production.  
6. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part  
of the wakeup period, the current corresponds the Run mode current.  
DocID022799 Rev 12  
67/136  
109  
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 24. Typical and maximum current consumptions in Standby mode  
Symbol  
Parameter  
Conditions  
Typ  
Max(1)  
Unit  
TA = -40 °C to 25 °C  
VDD = 1.8 V  
0.905  
-
TA = -40 °C to 25 °C  
1.15  
1.5  
1.9  
2.2  
RTC clocked by LSI (no  
independent watchdog) TA = 55 °C  
TA= 85 °C  
1.75  
2.1  
4
8.3(2)  
IDD  
Supply current in  
TA = 105 °C  
(Standby Standby mode with RTC  
with RTC) enabled  
TA = -40 °C to 25 °C  
0.98  
-
VDD = 1.8 V  
TA = -40 °C to 25 °C  
TA = 55 °C  
RTC clocked by LSE  
external quartz (no  
independent  
1.3  
1.7  
-
-
-
-
µA  
watchdog)(3)  
TA= 85 °C  
2.05  
2.45  
TA = 105 °C  
Independent watchdog  
and LSI enabled  
TA = -40 °C to 25 °C  
1
1.7  
TA = -40 °C to 25 °C  
TA = 55 °C  
0.29  
0.345  
0.575  
1.45  
0.6  
0.9  
Supply current in  
Standby mode (RTC  
disabled)  
IDD  
(Standby)  
Independent watchdog  
and LSI OFF  
TA = 85 °C  
2.75  
7(2)  
TA = 105 °C  
IDD  
Supply current during  
(WU from wakeup time from  
Standby) Standby mode  
-
TA = -40 °C to 25 °C  
1
-
mA  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Guaranteed by test in production.  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF  
loading capacitors.  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in the following table. The MCU  
is placed under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
68/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
(1)  
Table 25. Peripheral current consumption  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1, Range 2, Range 3,  
VCORE  
1.8 V  
=
VCORE  
1.5 V  
=
VCORE  
1.2 V  
=
Low-power  
sleep and  
run  
Peripheral  
Unit  
VOS[1:0] = VOS[1:0] = VOS[1:0] =  
01  
10  
11  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
LCD  
11.2  
11.2  
12.9  
14.4  
4.0  
8.9  
9.0  
10.4  
11.5  
3.1  
3.0  
4.6  
2.3  
5.2  
4.6  
7.0  
6.8  
5.8  
6.3  
10.6  
2.2  
4.9  
3.8  
7.0  
7.1  
8.2  
9.0  
2.4  
2.3  
3.6  
1.8  
4.1  
3.6  
5.5  
5.3  
4.6  
5.0  
8.3  
1.8  
3.9  
3.0  
8.9  
9.0  
10.4  
11.5  
3.1  
3.0  
4.6  
2.3  
5.2  
4.6  
7.0  
6.8  
5.8  
6.3  
10.6  
2.2  
4.9  
3.8  
3.8  
5.8  
WWDG  
2.9  
SPI2  
6.5  
µA/MHz  
APB1  
(fHCLK  
)
SPI3  
5.9  
USART2  
USART3  
I2C1  
8.8  
8.4  
7.3  
I2C2  
7.9  
USB  
13.3  
2.8  
PWR  
DAC  
6.1  
COMP  
4.8  
DocID022799 Rev 12  
69/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
(1)  
Table 25. Peripheral current consumption (continued)  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1, Range 2, Range 3,  
VCORE  
1.8 V  
=
VCORE  
1.5 V  
=
VCORE  
1.2 V  
=
Low-power  
sleep and  
run  
Peripheral  
Unit  
VOS[1:0] = VOS[1:0] = VOS[1:0] =  
01  
10  
11  
SYSCFG &  
RI  
2.6  
2.0  
1.6  
2.0  
TIM9  
7.9  
5.9  
6.4  
4.7  
4.6  
8.3  
3.4  
7.1  
3.3  
3.5  
3.2  
3.3  
3.4  
3.0  
0.6  
9.4  
12.7  
13.4  
154  
5.0  
3.8  
3.7  
6.6  
2.8  
5.6  
2.6  
2.8  
2.5  
2.5  
2.7  
2.3  
0.5  
8
6.4  
4.7  
4.6  
8.3  
3.4  
7.1  
3.3  
3.5  
3.2  
3.3  
3.4  
3.0  
0.6  
TIM10  
TIM11  
ADC(2)  
SPI1  
APB2  
5.9  
10.5  
4.3  
USART1  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
CRC  
8.8  
4.3  
µA/MHz  
4.3  
(fHCLK  
)
4.0  
4.1  
4.2  
AHB  
3.7  
0.8  
(3)  
FLASH  
DMA1  
DMA2  
11.1  
15.6  
16.3  
187  
-
10  
12.7  
13.4  
10.5  
120  
All enabled  
IDD (RTC)  
IDD (LCD)  
144.6  
0.4  
3.1  
1450  
340  
0.16  
2
(4)  
IDD (ADC)  
(5)  
IDD (DAC)  
IDD (COMP1)  
IDD (COMP2)  
µA  
Slow mode  
Fast mode  
5
(6)  
IDD (PVD / BOR)  
IDD (IWDG)  
2.6  
0.25  
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock  
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz  
(range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for  
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.  
2. HSI oscillator is OFF for this measure.  
70/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Electrical characteristics  
3. In Low-power sleep and run mode, the Flash memory must always be in power-down mode.  
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC  
conversion (HSI consumption not included).  
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC  
conversion of VDD/2. DAC is in buffered mode, output is left floating.  
6. Including supply current of internal reference voltage.  
6.3.5  
Wakeup time from low-power mode  
The wakeup times given in the following table are measured with the MSI RC oscillator. The  
clock source used to wake up the device depends on the current operating mode:  
Sleep mode: the clock source is the clock that was set before entering Sleep mode  
Stop mode: the clock source is the MSI oscillator in the range configured before  
entering Stop mode  
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz  
All timings are derived from tests performed under the conditions summarized in Table 14.  
Table 26. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Max(1) Unit  
tWUSLEEP  
Wakeup from Sleep mode  
fHCLK = 32 MHz  
0.4  
46  
-
-
fHCLK = 262 kHz  
Flash enabled  
Wakeup from Low-power sleep  
mode, fHCLK = 262 kHz  
tWUSLEEP_LP  
fHCLK = 262 kHz  
Flash switched OFF  
46  
-
-
Wakeup from Stop mode,  
regulator in Run mode  
fHCLK = fMSI = 4.2 MHz  
8.2  
ULP bit = 1 and FWU bit = 1  
fHCLK = fMSI = 4.2 MHz  
Voltage range 1 and 2  
7.7  
8.2  
8.9  
µs  
fHCLK = fMSI = 4.2 MHz  
Voltage range 3  
13.1  
tWUSTOP  
f
HCLK = fMSI = 2.1 MHz  
10.2  
16  
13.4  
20  
Wakeup from Stop mode,  
regulator in low-power mode  
fHCLK = fMSI = 1.05 MHz  
fHCLK = fMSI = 524 kHz  
ULP bit = 1 and FWU bit = 1  
31  
37  
fHCLK = fMSI = 262 kHz  
57  
66  
fHCLK = fMSI = 131 kHz  
fHCLK = MSI = 65 kHz  
112  
221  
123  
236  
Wakeup from Standby mode  
ULP bit = 1 and FWU bit = 1  
fHCLK = MSI = 2.1 MHz  
fHCLK = MSI = 2.1 MHz  
58  
104  
tWUSTDBY  
Wakeup from Standby mode  
FWU bit = 0  
2.6  
3.25  
ms  
1. Guaranteed by characterization, unless otherwise specified  
DocID022799 Rev 12  
71/136  
109  
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The  
external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the  
recommended clock input waveform is shown in Figure 15.  
(1)  
Table 27. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CSS is on or  
PLL is used  
1
8
32  
MHz  
User external clock source  
frequency  
fHSE_ext  
CSS is off, PLL  
not used  
0
8
32  
MHz  
V
VHSEH  
VHSEL  
tw(HSEH)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
0.3VDD  
OSC_IN high or low time  
OSC_IN rise or fall time  
12  
-
-
tw(HSEL)  
-
ns  
pF  
tr(HSE)  
tf(HSE)  
-
-
-
20  
-
Cin(HSE) OSC_IN input capacitance  
1. Guaranteed by design.  
2.6  
Figure 15. High-speed external clock source AC timing diagram  
W
Zꢊ+6(+ꢍ  
9
+6(+  
 
 
9
+6(/  
W
W
W
W
Uꢊ+6(ꢍ  
Iꢊ+6(ꢍ  
Zꢊ+6(/ꢍ  
7
+6(  
06ꢂꢒꢆꢂꢁ9ꢆ  
72/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Low-speed external user clock generated from an external source  
The characteristics given in the following table result from tests performed using a low-  
speed external clock source, and under the conditions summarized in Table 14.  
(1)  
Table 28. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
1
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
0.7VDD  
VSS  
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
-
-
tw(LSEH)  
tw(LSEL)  
OSC32_IN high or low time  
OSC32_IN rise or fall time  
465  
ns  
tr(LSE)  
tf(LSE)  
-
-
-
10  
-
CIN(LSE) OSC32_IN input capacitance  
1. Guaranteed by design.  
0.6  
pF  
Figure 16. Low-speed external clock source AC timing diagram  
W
Zꢊ/6(+ꢍ  
9
/6(+  
 
 
9
/6(/  
W
W
W
Uꢊ/6(ꢍ  
Iꢊ/6(ꢍ  
W
Zꢊ/6(/ꢍ  
7
/6(  
06ꢂꢒꢆꢂꢏ9ꢆ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 29. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID022799 Rev 12  
73/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
(1)(2)  
Table 29. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
fOSC_IN  
RF  
Oscillator frequency  
Feedback resistor  
-
-
1
24  
-
MHz  
-
-
200  
20  
kΩ  
Recommended load  
capacitance versus  
equivalent serial  
resistance of the crystal  
(RS)(3)  
C
RS = 30 Ω  
-
pF  
mA  
mA  
VDD= 3.3 V,  
VIN = VSS with 30 pF  
load  
IHSE  
HSE driving current  
-
-
3
2.5 (startup)  
C = 20 pF  
OSC = 16 MHz  
-
-
-
-
f
0.7 (stabilized)  
HSE oscillator power  
consumption  
IDD(HSE)  
2.5 (startup)  
C = 10 pF  
fOSC = 16 MHz  
Startup  
0.46 (stabilized)  
Oscillator  
transconductance  
gm  
3.5  
-
-
-
-
mA /V  
ms  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
1
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by characterization results.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid  
environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into  
account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 17). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
74/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Figure 17. HSE oscillator circuit diagram  
I
ꢅWRꢅFRUH  
+6(  
5
P
5
)
&
2
/
P
&
/ꢂ  
26&B,1  
&
P
J
P
5HVRQDWRU  
&RQVXPSWLRQꢅ  
FRQWURO  
5HVRQDWRU  
670ꢀꢆ  
26&B287  
&
/ꢆ  
DLꢂꢋꢆꢀꢏE  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 30. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 30. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Low speed external oscillator  
frequency  
fLSE  
RF  
C(2)  
ILSE  
-
-
-
-
32.768  
1.2  
-
-
kHz  
Feedback resistor  
MΩ  
Recommended load capacitance  
versus equivalent serial  
RS = 30 kΩ  
-
8
-
pF  
µA  
resistance of the crystal (RS)(3)  
LSE driving current  
VDD = 3.3 V, VIN = VSS  
-
-
-
1.1  
V
DD = 1.8 V  
450  
600  
750  
-
-
-
-
-
-
LSE oscillator current  
consumption  
IDD (LSE)  
VDD = 3.0 V  
-
nA  
V
DD = 3.6V  
-
gm  
Oscillator transconductance  
Startup time  
-
3
-
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
1
1. Guaranteed by characterization results.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.  
DocID022799 Rev 12  
75/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer.  
Note:  
For C and C , it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1 L2  
15 pF range selected to match the requirements of the crystal or resonator (see Figure 18).  
and C are usually the same size. The crystal manufacturer typically specifies a load  
C
L1  
L2,  
capacitance which is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if the user chooses a resonator with a load capacitance of C = 6 pF and C  
=
stray  
L
2 pF, then C = C = 8 pF.  
L1  
L2  
Figure 18. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢅZLWKꢅ  
LQWHJUDWHGꢅFDSDFLWRUV  
&/ꢂ  
I/6(  
26&ꢀꢆB,1  
%LDVꢅ  
5) FRQWUROOHGꢅ  
JDLQ  
ꢀꢆꢄꢃꢌꢋꢅN+]  
UHVRQDWRU  
670ꢀꢆ/ꢂ[[  
26&ꢀꢆB28 7  
&/ꢆ  
DLꢂꢃꢋꢏꢀE  
76/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.7  
Internal clock source characteristics  
The parameters given in Table 31 are derived from tests performed under the conditions  
summarized in Table 14.  
High-speed internal (HSI) RC oscillator  
Table 31. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ Max Unit  
fHSI  
VDD = 3.0 V  
-
-
16  
-
MHz  
%
Trimming code is not a multiple of 16  
Trimming code is a multiple of 16  
VDDA = 3.0 V, TA = 25 °C  
0.4 0.7  
HSI user-trimmed  
resolution  
(1)(2)  
TRIM  
-
-
-
-
-
-
-
1.5  
%
-1(3)  
-1.5  
-2  
1(3)  
1.5  
2
%
VDDA = 3.0 V, TA = 0 to 55 °C  
VDDA = 3.0 V, TA = -10 to 70 °C  
%
%
Accuracy of the  
factory-calibrated  
HSI oscillator  
(2)  
ACCHSI  
V
DDA = 3.0 V, TA = -10 to 85 °C  
VDDA = 3.0 V, TA = -10 to 105 °C  
DDA = 1.65 V to 3.6 V  
-2.5  
-4  
2
%
2
%
V
-4  
-
-
3
6
%
µs  
µA  
TA = -40 to 105 °C  
HSI oscillator  
startup time  
(2)  
tSU(HSI)  
-
3.7  
100  
HSI oscillator  
power consumption  
(2)  
IDD(HSI)  
-
-
140  
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are  
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).  
2. Guaranteed by characterization results.  
3. Guaranteed by test in production.  
Low-speed internal (LSI) RC oscillator  
Table 32. LSI oscillator characteristics  
Symbol  
Parameter  
LSI frequency  
Min  
Typ  
Max  
Unit  
(1)  
fLSI  
26  
38  
56  
kHz  
%
LSI oscillator frequency drift  
0°C TA 105°C  
(2)  
DLSI  
-10  
-
4
(3)  
tsu(LSI)  
LSI oscillator startup time  
-
-
-
200  
510  
µs  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
400  
nA  
1. Guaranteed by test in production.  
2. This is a deviation for an individual part, once the initial frequency has been measured.  
3. Guaranteed by design.  
DocID022799 Rev 12  
77/136  
109  
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Multi-speed internal (MSI) RC oscillator  
Table 33. MSI oscillator characteristics  
Symbol  
Parameter  
Condition  
Typ  
Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
-
65.5  
131  
262  
524  
1.05  
2.1  
-
-
kHz  
-
Frequency after factory calibration, done at  
VDD= 3.3 V and TA = 25 °C  
fMSI  
-
-
-
-
-
MHz  
4.2  
ACCMSI  
Frequency error after factory calibration  
0.5  
%
%
MSI oscillator frequency drift  
0 °C TA 105 °C  
(1)  
DTEMP(MSI)  
-
-
3
-
-
MSI oscillator frequency drift  
1.65 V VDD 3.6 V, TA = 25 °C  
(1)  
DVOLT(MSI)  
2.5 %/V  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
0.75  
1
-
-
-
1.5  
2.5  
4.5  
8
(2)  
IDD(MSI)  
MSI oscillator power consumption  
-
-
-
-
-
-
-
-
-
-
µA  
15  
30  
20  
15  
10  
6
tSU(MSI)  
MSI oscillator startup time  
µs  
5
MSI range 6,  
Voltage range 1  
and 2  
3.5  
5
-
-
MSI range 6,  
Voltage range 3  
78/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Symbol  
Electrical characteristics  
Table 33. MSI oscillator characteristics (continued)  
Parameter  
Condition  
Typ  
Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
-
-
-
-
-
-
40  
20  
10  
4
2.5  
µs  
2
(2)  
tSTAB(MSI)  
MSI oscillator stabilization time  
MSI range 6,  
Voltage range 1  
and 2  
-
2
3
MSI range 3,  
Voltage range 3  
-
-
-
Any range to  
range 5  
4
fOVER(MSI) MSI oscillator frequency overshoot  
MHz  
6
Any range to  
range 6  
1. This is a deviation for an individual part, once the initial frequency has been measured.  
2. Guaranteed by characterization results.  
DocID022799 Rev 12  
79/136  
109  
Electrical characteristics  
STM32L151xC STM32L152xC  
6.3.8  
PLL characteristics  
The parameters given in Table 34 are derived from tests performed under the conditions  
summarized in Table 14.  
Table 34. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
2
45  
2
-
-
-
24  
55  
32  
MHz  
%
fPLL_IN  
fPLL_OUT  
tLOCK  
PLL input clock duty cycle  
PLL output clock  
MHz  
PLL lock time  
PLL input = 16 MHz  
PLL VCO = 96 MHz  
-
115  
160  
µs  
Jitter  
Cycle-to-cycle jitter  
-
-
-
-
600  
450  
150  
ps  
I
DDA(PLL)  
Current consumption on VDDA  
Current consumption on VDD  
220  
120  
µA  
IDD(PLL)  
1. Guaranteed by characterization results.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
6.3.9  
Memory characteristics  
The characteristics are given at TA = -40 to 105 °C unless otherwise specified.  
RAM memory  
Table 35. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM Data retention mode(1)  
STOP mode (or RESET)  
1.65  
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware  
registers (only in Stop mode).  
80/136  
DocID022799 Rev 12  
 
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Flash memory and data EEPROM  
Table 36. Flash memory and data EEPROM characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
Operating voltage  
VDD  
-
1.65  
-
3.6  
V
Read / Write / Erase  
Programming/ erasing  
time for byte / word /  
double word / half-page  
Erasing  
-
-
3.28  
3.28  
3.94  
3.94  
tprog  
ms  
Programming  
Average current during  
the whole programming /  
erase operation  
-
-
600  
1.5  
900  
2.5  
µA  
IDD  
TA = 25 °C, VDD = 3.6 V  
Maximum current (peak)  
during the whole  
programming / erase  
operation  
mA  
1. Guaranteed by design.  
Table 37. Flash memory and data EEPROM endurance and retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1) Typ Max  
Cycling (erase / write)  
Program memory  
-
-
-
-
-
-
-
-
-
-
-
-
10  
300  
30  
TA = -40°C to  
(2)  
NCYC  
kcycles  
105 °C  
Cycling (erase / write)  
EEPROM data memory  
Data retention (program memory) after  
10 kcycles at TA = 85 °C  
TRET = +85 °C  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 85 °C  
30  
(2)  
tRET  
years  
Data retention (program memory) after  
10 kcycles at TA = 105 °C  
10  
TRET = +105 °C  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 105 °C  
10  
1. Guaranteed by characterization results.  
2. Characterization is done according to JEDEC JESD22-A117.  
DocID022799 Rev 12  
81/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 38. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 38. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
conforms to IEC 61000-4-2  
VDD = 3.3 V, LQFP100, TA = +25  
°C,  
fHCLK = 32 MHz  
conforms to IEC 61000-4-4  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1  
second.  
82/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 39. EMI characteristics  
Max vs. frequency range  
Monitored  
4 MHz 16 MHz  
32MHz  
voltage  
range 1  
Symbol Parameter  
Conditions  
Unit  
frequency band  
voltage voltage  
range 3 range 2  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
3
-6  
4
-5  
-7  
-7  
1
VDD = 3.3 V,  
TA = 25 °C,  
LQFP100 package  
compliant with IEC  
61967-2  
18  
15  
2.5  
dBµV  
-
SEMI  
Peak level  
5
2
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.  
Table 40. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic  
VESD(HBM) discharge voltage  
(human body model)  
TA = +25 °C, conforming  
to JESD22-A114  
2
2000  
V
Electrostatic  
VESD(CDM) discharge voltage  
(charge device model)  
TA = +25 °C, conforming  
to ANSI/ESD STM5.3.1.  
C4  
500  
V
1. Guaranteed by characterization results.  
DocID022799 Rev 12  
83/136  
109  
 
 
 
 
Electrical characteristics  
Static latch-up  
STM32L151xC STM32L152xC  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 41. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard pins) should be avoided during normal product operation.  
DD  
However, in order to give an indication of the robustness of the microcontroller in cases  
when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence oscillator  
frequency deviation, LCD levels).  
The test results are given in the Table 42.  
Table 42. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all 5 V tolerant (FT) pins  
Injected current on BOOT0  
-5 (1)  
NA  
NA  
+5  
IINJ  
-0  
mA  
Injected current on any other pin  
-5 (1)  
1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject  
negative currents.  
84/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 49 are derived from tests  
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL  
compliant.  
Table 43. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)(2)  
TC and FT I/O  
BOOT0  
-
-
0.3 VDD  
VIL  
Input low level voltage  
(2)  
-
-
0.14 VDD  
TC I/O  
0.45 VDD+0.38(2)  
-
-
-
-
-
-
VIH  
Input high level voltage  
FT I/O  
0.39 VDD+0.59(2)  
-
-
V
BOOT0  
0.15 VDD+0.56(2)  
(3)  
TC and FT I/O  
BOOT0  
-
-
10% VDD  
0.01  
I/O Schmitt trigger voltage  
hysteresis(2)  
Vhys  
VSS VIN VDD  
I/Os with LCD  
-
-
-
-
±50  
±50  
VSS VIN VDD  
I/Os with analog  
switches  
VSS VIN VDD  
I/Os with analog  
switches and LCD  
nA  
-
-
±50  
Ilkg  
Input leakage current (4)  
VSS VIN VDD  
I/Os with USB  
-
-
-
-
±250  
±50  
±10  
60  
VSS VIN VDD  
TC and FT I/Os  
FT I/O  
-
-
µA  
VDD VIN 5V  
Weak pull-up equivalent  
resistor(5)(1)  
RPU  
VIN = VSS  
30  
45  
kΩ  
Weak pull-down equivalent  
resistor(5)  
RPD  
CIO  
VIN = VDD  
30  
-
45  
5
60  
-
kΩ  
I/O pin capacitance  
-
pF  
1. Guaranteed by test in production  
2. Guaranteed by design.  
3. With a minimum of 200 mV.  
4. The max. value may be exceeded if negative current is injected on adjacent pins.  
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
DocID022799 Rev 12  
85/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ±20 mA with the non-standard V /V specifications given in Table 44.  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 12).  
Σ
VDD( )  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 12).  
Σ
VSS( )  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 44 are derived from tests  
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL  
compliant.  
Table 44. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
(1)(2)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
0.4  
-
I
IO = 8 mA  
(2)(3)  
2.7 V < VDD < 3.6 V  
VOH  
VDD-0.4  
(3)(4)  
VOL  
-
0.45  
IIO = 4 mA  
V
(3)(4)  
1.65 V < VDD < 3.6 V  
VOH  
VDD-0.45  
-
-
(1)(4)  
VOL  
1.3  
-
I
IO = 20 mA  
2.7 V < VDD < 3.6 V  
(3)(4)  
VOH  
VDD-1.3  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. Guaranteed by test in production.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Guaranteed by characterization results.  
86/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 19 and  
Table 45, respectively.  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under the conditions summarized in Table 14.  
(1)  
Table 45. I/O AC characteristics  
OSPEEDRx  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min Max(2) Unit  
value(1)  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
400  
625  
625  
2
fmax(IO)out Maximum frequency(3)  
kHz  
ns  
00  
01  
10  
tf(IO)out  
Output rise and fall time  
tr(IO)out  
fmax(IO)out Maximum frequency(3)  
MHz  
ns  
1
125  
250  
10  
2
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
ns  
25  
125  
50  
8
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
11  
-
5
tf(IO)out  
Output rise and fall time  
tr(IO)out  
30  
ns  
Pulse width of external  
tEXTIpw  
signals detected by the  
EXTI controller  
-
8
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx  
reference manual for a description of GPIO Port configuration register.  
2. Guaranteed by design.  
3. The maximum frequency is defined in Figure 19.  
DocID022799 Rev 12  
87/136  
109  
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Figure 19. I/O AC characteristics definition  
ꢌꢏꢓ  
ꢀꢏꢓ  
ꢂꢏꢓ  
ꢂꢏꢓ  
ꢌꢏꢓ  
ꢀꢏꢓ  
T
T
%84%2.!,  
/54054  
/. ꢂꢏP&  
Rꢋ)/ꢍOUT  
Fꢋ)/ꢍOUT  
4
-AXIMUM FREQUENCY IS ACHIEVED IF ꢋT  T  ” ꢇꢈꢃꢍ4 AND IF THE DUTY CYCLE IS ꢋꢅꢂꢐꢂꢂꢓꢍ  
R
F
WHEN LOADED BY ꢂꢏP&  
AIꢀꢅꢀꢃꢀC  
6.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 46)  
PU  
Unless otherwise specified, the parameters given in Table 46 are derived from tests  
performed under the conditions summarized in Table 14.  
Table 46. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input low level  
voltage  
(1)  
VIL(NRST)  
-
-
-
0.3 VDD  
NRST input high  
level voltage  
(1)  
(1)  
VIH(NRST)  
-
0.39VDD+0.59  
-
-
V
IOL = 2 mA  
2.7 V < VDD < 3.6 V  
-
-
-
NRST output low  
level voltage  
VOL(NRST)  
0.4  
IOL = 1.5 mA  
1.65 V < VDD < 2.7 V  
-
NRST Schmitt trigger  
voltage hysteresis  
(1)  
(2)  
Vhys(NRST)  
RPU  
-
-
10%VDD  
-
mV  
kΩ  
ns  
Weak pull-up  
VIN = VSS  
30  
-
45  
-
60  
50  
-
equivalent resistor(3)  
NRST input filtered  
pulse  
(1)  
VF(NRST)  
-
-
NRST input not  
filtered pulse  
(3)  
VNF(NRST)  
350  
-
ns  
1. Guaranteed by design.  
2. With a minimum of 200 mV.  
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is around 10%.  
88/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Figure 20. Recommended NRST pin protection  
9''  
([WHUQDOꢅUHVHWꢅFLUFXLWꢊꢂꢍ  
5
38  
ꢊꢆꢍ  
,QWHUQDOꢅUHVHW  
1567  
)LOWHU  
ꢉꢄꢂꢅ—)  
670ꢀꢆ/ꢂ[[  
DLꢂꢃꢋꢏꢁE  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 46. Otherwise the reset will not be taken into account by the device.  
6.3.15  
TIM timer characteristics  
The parameters given in the Table 47 are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output ction  
characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 47. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 32 MHz 31.25  
-
fTIMxCLK/2  
16  
-
0
0
MHz  
MHz  
bit  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 32 MHz  
ResTIM  
Timer resolution  
-
-
16  
16-bit counter clock  
period when internal clock  
is selected (timer’s  
1
65536  
tTIMxCLK  
tCOUNTER  
fTIMxCLK = 32 MHz 0.0312  
2048  
µs  
prescaler disabled)  
-
-
-
65536 × 65536 tTIMxCLK  
tMAX_COUNT Maximum possible count  
fTIMxCLK = 32 MHz  
134.2  
s
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.  
DocID022799 Rev 12  
89/136  
109  
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6.3.16  
Communications interfaces  
I2C interface characteristics  
2
2
I
The device C interface meets the requirements of the standard I C communication  
protocol with the following restrictions: SDA and SCL are not “true” open-drain I/O pins.  
When configured as open-drain, the PMOS connected between the I/O pin and V is  
DD  
disabled, but is still present.  
2
The I C characteristics are described in Table 48. Refer also to Section 6.3.13: I/O port  
for more details on the input/output ction characteristics (SDA and SCL)  
characteristics  
.
2
Table 48. I C characteristics  
Standard mode  
Fast mode I2C(1)(2)  
I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
-
-
1.3  
0.6  
100  
-
-
µs  
-
-
-
-
SDA data hold time  
3450(3)  
900(3)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
-
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
-
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
pF  
ns  
Pulse width of spikes that  
are suppressed by the  
analog filter  
tSP  
0
50(4)  
0
50(4)  
Guaranteed by design.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to  
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast  
mode clock.  
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
3.  
4. The minimum width of the spikes filtered by the analog filter is above tSP(max)  
.
90/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
2
Figure 21. I C bus AC waveforms and measurement circuit  
sꢁꢁͺ/Ϯꢂ  
ZW  
sꢁꢁͺ/Ϯꢂ  
ZW  
^dDϯϮ>ϭdždž  
Z^  
Z^  
^ꢁꢀ  
^ꢂ>  
/ϮꢂꢃďƵƐ  
^dꢀZdꢃZꢄWꢄꢀdꢄꢁ  
^dꢀZd  
^dꢀZd  
ƚƐƵ;^dꢀͿ  
^ꢁꢀ  
ƚĨ;^ꢁꢀͿ  
ƚƌ;^ꢁꢀͿ  
ƚƐƵ;^ꢁꢀͿ  
ƚƐƵ;^dꢀ͗^dKͿ  
^dKW  
ƚŚ;^ꢁꢀͿ  
ƚŚ;^dꢀͿ  
ƚǁ;^ꢂ<>Ϳ  
^ꢂ>  
ƚƐƵ;^dKͿ  
ƚƌ;^ꢂ<Ϳ  
ƚǁ;^ꢂ<,Ϳ  
ƚĨ;^ꢂ<Ϳ  
ĂŝϭϳϴϱϱĐ  
1. RS = series protection resistor.  
2. RP = external pull-up resistor.  
3. VDD_I2C is the I2C bus power supply.  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
4.  
(1)(2)  
Table 49. SCL frequency (f  
fSCL (kHz)  
= 32 MHz, VDD = VDD_I2C = 3.3 V)  
I2C_CCR value  
PCLK1  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801B  
0x8024  
0x8035  
0x00A0  
0x0140  
0x0320  
20  
1. RP = External pull-up resistance, fSCL = I2C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
DocID022799 Rev 12  
91/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
SPI characteristics  
Unless otherwise specified, the parameters given in the following table are derived from  
tests performed under the conditions summarized in Table 14.  
Refer to Section 6.3.12: I/O current injection characteristics for more details on the  
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 50. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max(2)  
Unit  
-
-
-
16  
16  
fSCK  
1/tc(SCK)  
SPI clock frequency  
Slave mode  
MHz  
Slave transmitter  
12(3)  
(2)  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
Capacitive load: C = 30 pF  
-
6
ns  
%
(2)  
DuCy(SCK)  
tsu(NSS)  
SPI slave input clock duty cycle Slave mode  
30  
70  
-
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tHCLK  
2tHCLK  
th(NSS)  
-
(2)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Data input setup time  
Master mode  
tSCK/25 tSCK/2+3  
(2)  
(2)  
tsu(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
5
6
5
5
-
(2)  
tsu(SI)  
-
(2)  
th(MI)  
-
ns  
Data input hold time  
(2)  
th(SI)  
-
(4)  
ta(SO)  
Data output access time  
Data output valid time  
Data output valid time  
0
3tHCLK  
(2)  
tv(SO)  
-
33  
6.5  
-
(2)  
tv(MO)  
-
(2)  
th(SO)  
17  
0.5  
Data output hold time  
(2)  
th(MO)  
-
1. The characteristics above are given for voltage range 1.  
2. Guaranteed by characterization results.  
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK))  
ranging between 40 to 60%.  
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.  
92/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Figure 22. SPI timing diagram - slave mode and CPHA = 0  
166ꢅLQSXW  
W68ꢊ166ꢍ  
W
Kꢊ166ꢍ  
WFꢊ6&.ꢍ  
&3+$ ꢉ  
&32/ ꢉ  
W
Zꢊ6&.+ꢍ  
&3+$ ꢉ  
&32/ ꢂ  
WZꢊ6&./ꢍ  
W
WUI66&&..  
W9ꢊ62ꢍ  
WKꢊ62ꢍ  
W
GLVꢊ62ꢍ  
WDꢊ62ꢍ  
0,62  
06%ꢅ287  
%,7ꢌꢅ287  
%,7ꢂꢅ,1  
/6%ꢅ287  
287387  
WVXꢊ6,ꢍ  
026,  
,1387  
06%ꢅ,1  
/6%ꢅ,1  
WKꢊ6,ꢍ  
DLꢂꢁꢂꢀꢁF  
(1)  
Figure 23. SPI timing diagram - slave mode and CPHA = 1  
166ꢅLQSXW  
W68ꢊ166ꢍ  
WKꢊ166ꢍ  
WFꢊ6&.ꢍ  
&3+$ ꢂ  
&32/ ꢉ  
&3+$ ꢂ  
&32/ ꢂ  
WZꢊ6&.+ꢍ  
WZꢊ6&./ꢍ  
WUꢊ6&.ꢍ  
WIꢊ6&.ꢍ  
WKꢊ62ꢍ  
WGLVꢊ62ꢍ  
WYꢊ62ꢍ  
WDꢊ62ꢍ  
0,62  
06%ꢅ287  
06%ꢅ,1  
%,7ꢌꢅ287  
/6%ꢅ287  
287387  
WKꢊ6,ꢍ  
WVXꢊ6,ꢍ  
026,  
,1387  
/6%ꢅ,1  
%,7ꢅꢂꢅ,1  
DLꢂꢁꢂꢀꢏE  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
DocID022799 Rev 12  
93/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
(1)  
Figure 24. SPI timing diagram - master mode  
+LJK  
166ꢅLQSXW  
W
Fꢊ6&.ꢍ  
&3+$   
&32/ ꢉ  
&3+$   
&32/ ꢂ  
&3+$   
&32/ ꢉ  
&3+$   
&32/ ꢂ  
W
W
W
W
Zꢊ6&.+ꢍ  
Zꢊ6&./ꢍ  
Uꢊ6&.ꢍ  
Iꢊ6&.ꢍ  
W
VXꢊ0,ꢍ  
0,62  
,1387  
%,7ꢌꢅ,1  
/6%ꢅ,1  
06%ꢅ,1  
W
Kꢊ0,ꢍ  
026,  
287387  
%,7ꢂꢅ287  
/6%ꢅ287  
06%ꢅ287  
W
W
Kꢊ02ꢍ  
Yꢊ02ꢍ  
DLꢂꢁꢂꢀꢌF  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
94/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
USB characteristics  
Electrical characteristics  
The USB interface is USB-IF certified (full speed).  
Table 51. USB startup time  
Parameter  
USB transceiver startup time  
Symbol  
Max  
Unit  
(1)  
tSTARTUP  
1
µs  
1. Guaranteed by design.  
Table 52. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage  
Differential input sensitivity  
-
3.0  
0.2  
0.8  
1.3  
3.6  
-
V
V
(2)  
VDI  
I(USB_DP, USB_DM)  
(2)  
VCM  
Differential common mode range Includes VDI range  
2.5  
2.0  
(2)  
VSE  
Single ended receiver threshold  
-
Output levels  
(3)  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(4)  
-
0.3  
3.6  
V
(3)  
(4)  
RL of 15 kΩ to VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. Guaranteed by characterization results.  
3. Guaranteed by test in production.  
RL is the load connected on the USB drivers.  
4.  
Figure 25. USB timings: definition of data signal rise and fall time  
&URVVRYHU  
SRLQWV  
'LIIHUHQWLDO  
GDWDꢅOLQHV  
9&56  
966  
W
W
U
I
DLꢂꢁꢂꢀꢃ  
Table 53. USB: full speed electrical characteristics  
Driver characteristics(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
4
4
20  
20  
ns  
ns  
DocID022799 Rev 12  
95/136  
109  
 
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 53. USB: full speed electrical characteristics (continued)  
Driver characteristics(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
trfm  
Rise/ fall time matching  
tr/tf  
90  
110  
2.0  
%
V
VCRS  
Output signal crossover voltage  
1.3  
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
I2S characteristics  
Table 54. I2S characteristics  
Conditions  
Symbol  
Parameter  
I2S Main Clock Output  
Min  
Max  
Unit  
fMCK  
256 x 8K 256xFs (1) MHz  
Master data: 32 bits  
Slave data: 32 bits  
-
-
64xFs  
fCK  
I2S clock frequency  
MHz  
%
64xFs  
DCK  
tr(CK)  
tf(CK)  
tv(WS)  
th(WS)  
I2S clock frequency duty cycle Slave receiver, 48KHz  
30  
70  
8
8
24  
-
I2S clock rise time  
Capacitive load CL=30pF  
I2S clock fall time  
-
WS valid time  
WS hold time  
Master mode  
Master mode  
Slave mode  
4
0
tsu(WS) WS setup time  
th(WS) WS hold time  
15  
0
-
Slave mode  
-
tsu(SD_MR) Data input setup time  
tsu(SD_SR) Data input setup time  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
8
-
9
-
ns  
th(SD_MR)  
Data input hold time  
th(SD_SR)  
5
-
4
-
Slave transmitter  
(after enable edge)  
tv(SD_ST) Data output valid time  
th(SD_ST) Data output hold time  
tv(SD_MT) Data output valid time  
-
22  
-
64  
-
Slave transmitter  
(after enable edge)  
Master transmitter  
(after enable edge)  
12  
-
Master transmitter  
(after enable edge)  
th(SD_MT) Data output hold time  
1. The maximum for 256xFs is 8 MHz  
8
Note:  
Refer to the I2S section of the product reference manual for more details about the sampling  
frequency (Fs), f , f and D values. These values reflect only the digital peripheral  
MCK CK  
CK  
behavior, source clock precision might slightly change them. DCK depends mainly on the  
96/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of  
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.  
2
(1)  
Figure 26. I S slave timing diagram (Philips protocol)  
W
Fꢊ&.ꢍ  
&32/ꢅ ꢅꢉ  
&32/ꢅ ꢅꢂ  
:6ꢅLQSXW  
W
W
W
W
Zꢊ&./ꢍ  
Kꢊ:6ꢍ  
Zꢊ&.+ꢍ  
W
W
W
Yꢊ6'B67ꢍ  
Kꢊ6'B67ꢍ  
VXꢊ:6ꢍ  
6'  
WUDQVPLW  
UHFHLYH  
ꢊꢆꢍ  
/6%ꢅWUDQVPLW  
06%ꢅWUDQVPLW  
06%ꢅUHFHLYH  
%LWQꢅWUDQVPLW  
/6%ꢅWUDQVPLW  
W
VXꢊ6'B65ꢍ  
ꢊꢆꢍ  
Kꢊ6'B65ꢍ  
/6%ꢅUHFHLYH  
%LWQꢅUHFHLYH  
/6%ꢅUHFHLYH  
6'  
DLꢂꢁꢋꢋꢂE  
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD  
.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
2
(1)  
Figure 27. I S master timing diagram (Philips protocol)  
T
T
Rꢋ#+ꢍ  
Fꢋ#+ꢍ  
T
Cꢋ#+ꢍ  
#0/,    
#0/,    
73 OUTPUT  
T
Wꢋ#+(ꢍ  
T
T
Hꢋ73ꢍ  
T
Vꢋ73ꢍ  
Wꢋ#+,ꢍ  
T
T
Vꢋ3$?-4ꢍ  
Hꢋ3$?-4ꢍ  
ꢋꢇꢍ  
3$  
TRANSMIT  
RECEIVE  
,3" TRANSMIT  
T
-3" TRANSMIT  
-3" RECEIVE  
"ITN TRANSMIT  
,3" TRANSMIT  
T
Hꢋ3$?-2ꢍ  
SUꢋ3$?-2ꢍ  
ꢋꢇꢍ  
3$  
,3" RECEIVE  
"ITN RECEIVE  
,3" RECEIVE  
AIꢀꢅꢁꢁꢅB  
1. Guaranteed by characterization results.  
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first  
byte.  
DocID022799 Rev 12  
97/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
6.3.17  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 56 are guaranteed by design.  
Table 55. ADC clock frequency  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VREF+ = VDDA  
16  
VREF+ < VDDA  
8
4
2.4 V VDDA 3.6 V  
VREF+ > 2.4 V  
Voltage  
range 1 & 2  
VREF+ < VDDA  
VREF+ 2.4 V  
ADC clock  
fADC  
0.480  
MHz  
frequency  
V
REF+ = VDDA  
8
4
4
1.8 V VDDA 2.4 V  
VREF+ < VDDA  
Voltage range 3  
Table 56. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
-
1.8  
-
3.6  
VDDA  
-
VREF+ Positive reference voltage  
VREF- Negative reference voltage  
IVDDA Current on the VDDA input pin  
-
1.8(1)  
-
V
-
-
VSSA  
1000  
-
-
1450  
700  
450  
VREF+  
1
µA  
Peak  
-
(2)  
IVREF  
Current on the VREF input pin  
Conversion voltage range(3)  
12-bit sampling rate  
400  
Average  
-
VAIN  
-
0(4)  
-
-
-
-
-
-
-
-
-
V
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
-
-
-
-
-
-
-
-
Msps  
0.76  
1.07  
0.8  
10-bit sampling rate  
8-bit sampling rate  
6-bit sampling rate  
Msps  
Msps  
Msps  
fS  
1.23  
0.89  
1.45  
1
98/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Table 56. ADC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Direct channels  
2.4 V VDDA 3.6 V  
0.25  
-
-
Multiplexed channels  
2.4 V VDDA 3.6 V  
0.56  
0.56  
1
-
-
-
-
-
-
µs  
(5)  
tS  
Sampling time  
Direct channels  
1.8 V VDDA 2.4 V  
Multiplexed channels  
1.8 V VDDA 2.4 V  
-
4
1
-
-
384  
1/fADC  
µs  
f
ADC = 16 MHz  
24.75  
Total conversion time  
tCONV  
4 to 384 (sampling phase) +12  
(successive approximation)  
(including sampling time)  
-
1/fADC  
Direct channels  
Multiplexed channels  
12-bit conversions  
6/8/10-bit conversions  
12-bit conversions  
6/8/10-bit conversions  
-
-
-
Internal sample and hold  
capacitor  
CADC  
fTRIG  
fTRIG  
16  
pF  
-
-
-
-
-
-
-
-
-
-
-
-
Tconv+1 1/fADC  
Tconv 1/fADC  
Tconv+2 1/fADC  
Tconv+1 1/fADC  
External trigger frequency  
Regular sequencer  
-
-
External trigger frequency  
Injected sequencer  
-
(6)  
RAIN  
Signal source impedance  
-
50  
281  
4.5  
219  
3.5  
3.5  
kΩ  
ns  
fADC = 16 MHz  
219  
3.5  
156  
2.5  
-
Injection trigger conversion  
latency  
tlat  
-
1/fADC  
ns  
fADC = 16 MHz  
Regular trigger conversion  
latency  
tlatr  
-
-
1/fADC  
µs  
tSTAB  
Power-up time  
1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an external voltage  
reference).  
2. The current consumption through VREF is composed of two parameters:  
- one constant (max 300 µA)  
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses  
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at  
1Msps  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 4: Pin descriptions for further details.  
4. VSSA or VREF- must be tied to ground.  
5. Minimum sampling time is reached for an external input impedance limited to a value as defined in Table 58: Maximum  
source impedance RAIN max.  
6. External impedance has another high value limitation when using short sampling time as defined in Table 58: Maximum  
source impedance RAIN max.  
DocID022799 Rev 12  
99/136  
109  
Electrical characteristics  
STM32L151xC STM32L152xC  
(1)(2)  
Table 57. ADC accuracy  
Test conditions  
Symbol  
Parameter  
Min(3)  
Typ Max(3) Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
-
2
1
4
2
-
-
2.4 V VDDA 3.6 V  
2.4 V VREF+ 3.6 V  
fADC = 8 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
Gain error  
1.5  
1
3.5  
2
LSB  
Differential linearity error  
Integral linearity error  
-
-
1.7  
10  
3
ENOB Effective number of bits  
9.2  
-
bits  
dB  
2.4 V VDDA 3.6 V  
VDDA = VREF+  
fADC = 16 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
Finput=10kHz  
Signal-to-noise and  
SINAD  
57.5  
62  
-
distortion ratio  
SNR  
THD  
Signal-to-noise ratio  
57.5  
-
62  
-70  
10  
-
-65  
-
Total harmonic distortion  
ENOB Effective number of bits  
9.2  
bits  
dB  
1.8 V VDDA 2.4 V  
VDDA = VREF+  
fADC = 8 MHz or 4 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
Finput=10kHz  
Signal-to-noise and  
SINAD  
57.5  
62  
-
distortion ratio  
SNR  
THD  
ET  
Signal-to-noise ratio  
Total harmonic distortion  
Total unadjusted error  
Offset error  
57.5  
62  
-70  
4
-
-65  
6.5  
4
-
-
-
-
-
-
-
-
-
-
-
EO  
EG  
ED  
EL  
2
2.4 V VDDA 3.6 V  
1.8 V VREF+ 2.4 V  
fADC = 4 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
Gain error  
4
6
LSB  
LSB  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
1
2
1.5  
2
3
ET  
3
EO  
EG  
ED  
EL  
1
1.5  
2
1.8 V VDDA 2.4 V  
1.8 V VREF+ 2.4 V  
Gain error  
1.5  
1
f
ADC = 4 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
Differential linearity error  
Integral linearity error  
2
1
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as  
this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to  
add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC  
accuracy.  
3. Guaranteed by characterization results.  
100/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Electrical characteristics  
Figure 28. ADC accuracy characteristics  
9''$  
95()ꢔ  
>ꢂ/6%ꢅ,'($/ꢅ ꢅ  
ꢊRUꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅꢅGHSHQGLQJꢅRQꢅSDFNDJHꢍ  
ꢁꢉꢒꢌ  
ꢁꢉꢒꢌ  
(*  
ꢊꢂꢍꢅ([DPSOHRIꢅDQDFWX DOꢅWUDQVIHUꢅFXUYH  
ꢊꢆꢍꢅ7KHꢅLGHDOꢅWUDQVIHUFXUYH  
ꢊꢀꢍꢅ(QGꢅSRLQWꢅFRUUHODWLRQꢅOLQH  
ꢁꢉꢒꢏ  
ꢁꢉꢒꢁ  
ꢁꢉꢒꢀ  
(7ꢅ ꢅ7RWDOꢅXQDGMXVWHGꢅ(UURUꢈꢅPD[LPXPꢅGHYLDWLRQ  
EHWZHHQꢅWKHꢅDFWXDOꢅDQGꢅWKHꢅLGHDOꢅWUDQVIHUꢅFXUYHVꢄ  
(2ꢅ ꢅ2IIVHWꢅ(UURUꢈꢅGHYLDWLRQꢅEHWZHHQꢅWKHꢅILUVWꢅDFWXDO  
WUDQVLWLRQꢅDQGꢅWKHꢅODVWꢅDFWXDOꢅRQHꢄ  
ꢊꢆꢍ  
(7  
 
ꢊꢂꢍ  
(*ꢅ ꢅ*DLQꢅ(UURUꢈꢅGHYLDWLRQꢅEHWZHHQꢅWKHꢅODVWꢅLGHDO  
WUDQVLWLRQꢅDQGꢅWKHꢅODVWꢅDFWXDOꢅRQHꢄ  
(2  
(/  
('ꢅ ꢅ'LIIHUHQWLDOꢅ/LQHDULW\ꢅ(UURUꢈꢅPD[LPXPꢅGHYLDWLRQ  
EHWZHHQꢅDFWXDOꢅVWHSVꢅDQGꢅWKHꢅLGHDOꢅRQHꢄ  
(/ꢅ ꢅ,QWHJUDOꢅ/LQHDULW\ꢅ(UURUꢈꢅPD[LPXPꢅGHYLDWLRQ  
EHWZHHQꢅDQ\ꢅDFWXDOꢅWUDQVLWLRQꢅDQGꢅWKHꢅHQGꢎSRLQW  
FRUUHODWLRQꢅOLQHꢄ  
('  
ꢂꢅ/6%ꢅ,'($/  
ꢁꢉꢒꢀ ꢁꢉꢒꢁ ꢁꢉꢒꢏ ꢁꢉꢒꢌ  
9''$  
966$  
DLꢂꢁꢀꢒꢏH  
Figure 29. Typical connection diagram using the ADC  
9''$  
670ꢀꢆ/[[  
6DPSOHꢅDQGꢅKROGꢅ  
$'&ꢅFRQYHUWHU  
5$,1ꢊꢂꢍ  
$,1[  
SDUDVLWLF  
ꢂꢆꢎELW  
FRQYHUWHU  
,/“ꢅꢏꢉꢅQ$  
&
9$,1  
&
$'&ꢊꢂꢍ  
DLꢂꢃꢋꢏꢌH  
1. Refer to Table 58: Maximum source impedance RAIN max for the value of RAIN and Table 56: ADC  
characteristics for the value of CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
DocID022799 Rev 12  
101/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Figure 30. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion  
Sampling (n cycles)  
Conversion (12 cycles)  
ADC clock  
I
ref+  
700µA  
300µA  
MS36686V1  
(1)  
Table 58. Maximum source impedance R  
max  
AIN  
RAIN max (kΩ)  
Ts (cycles)  
ADC=16 MHz(2)  
Ts  
(µs)  
Multiplexed channels  
Direct channels  
f
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V  
0.25  
Not allowed  
0.8  
Not allowed  
Not allowed  
0.8  
0.7  
2.0  
Not allowed  
1.0  
4
9
0.5625  
1
1.5  
3
2.0  
4.0  
3.0  
16  
24  
48  
96  
192  
384  
3.0  
1.8  
6.0  
4.5  
6.8  
4.0  
15.0  
30.0  
50.0  
50.0  
10.0  
6
15.0  
32.0  
50.0  
10.0  
20.0  
12  
24  
25.0  
40.0  
50.0  
50.0  
1. Guaranteed by design.  
2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be reduced  
with respect to the minimum sampling time Ts (µs),  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 12. The applicable  
procedure depends on whether V  
is connected to V  
or not. The 100 nF capacitors  
REF+  
DDA  
should be ceramic (good quality). They should be placed as close as possible to the chip.  
102/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.18  
DAC electrical specifications  
Data guaranteed by design, unless otherwise specified.  
Table 59. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.8  
-
3.6  
Reference supply  
voltage  
VREF+ must always be below  
VDDA  
V
VREF+  
VREF-  
1.8  
-
3.6  
Lower reference voltage  
-
VSSA  
Current consumption on No load, middle code (0x800)  
VREF+ supply  
-
-
-
-
130  
220  
210  
320  
220  
350  
320  
520  
(1)  
IDDVREF+  
No load, worst code (0x000)  
VREF+ = 3.3 V  
µA  
Current consumption on No load, middle code (0x800)  
VDDA supply  
No load, worst code (0xF1C)  
VDDA = 3.3 V  
(1)  
IDDA  
(2)  
RL  
Resistive load  
5
-
-
-
-
kΩ  
pF  
kΩ  
DAC output buffer ON  
Capacitive load  
(2)  
CL  
50  
20  
RO  
Output impedance  
DAC output buffer OFF  
12  
16  
DAC output buffer ON  
0.2  
-
VDDA – 0.2  
V
Voltage on DAC_OUT  
output  
VDAC_OUT  
VREF+  
1LSB  
DAC output buffer OFF  
0.5  
-
-
mV  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
1.5  
3
Differential non  
linearity(3)  
DNL(1)  
No RL, CL 50 pF  
DAC output buffer OFF  
-
-
-
-
-
-
1.5  
2
3
4
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
INL(1)  
Integral non linearity(4)  
No RL, CL 50 pF  
DAC output buffer OFF  
LSB  
2
4
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
±10  
±5  
±25  
±8  
±5  
Offset error at code  
0x800 (5)  
Offset(1)  
No RL, CL 50 pF  
DAC output buffer OFF  
Offset error at code  
0x001(6)  
No RL, CL 50 pF  
DAC output buffer OFF  
Offset1(1)  
±1.5  
DocID022799 Rev 12  
103/136  
109  
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 59. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA = 3.3V  
VREF+ = 3.0V  
-20  
-10  
0
TA = 0 to 50 ° C  
DAC output buffer OFF  
Offset error temperature  
coefficient (code 0x800)  
dOffset/dT(1)  
µV/°C  
VDDA = 3.3V  
VREF+ = 3.0V  
0
20  
50  
TA = 0 to 50 ° C  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
-
-
+0.1 / -0.2% +0.2 / -0.5%  
DAC output buffer ON  
Gain(1)  
Gain error(7)  
%
No RL, CL 50 pF  
DAC output buffer OFF  
+0 / -0.2%  
-2  
+0 / -0.4%  
0
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 ° C  
DAC output buffer OFF  
-10  
-40  
Gain error temperature  
coefficient  
dGain/dT(1)  
µV/°C  
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 ° C  
DAC output buffer ON  
-8  
0
CL 50 pF, RL 5 kΩ  
-
-
12  
8
30  
12  
DAC output buffer ON  
TUE(1)  
Total unadjusted error  
LSB  
No RL, CL 50 pF  
DAC output buffer OFF  
Settling time (full scale:  
for a 12-bit code  
transition between the  
lowest and the highest  
input codes till  
DAC_OUT reaches final  
value ±1LSB  
tSETTLING  
CL 50 pF, RL 5 kΩ  
-
-
7
12  
µs  
Max frequency for a  
correct DAC_OUT  
change (95% of final  
value) with 1 LSB  
variation in the input  
code  
Update rate  
CL 50 pF, RL 5 kΩ  
-
1
Msps  
Wakeup time from off  
state (setting the ENx bit  
in the DAC Control  
register)(8)  
tWAKEUP  
CL 50 pF, RL 5 kΩ  
CL 50 pF, RL 5 kΩ  
-
-
9
15  
µs  
VDDA supply rejection  
ratio (static DC  
measurement)  
PSRR+  
-60  
-35  
dB  
1. Data based on characterization results.  
2. Connected between DAC_OUT and V  
.
SSA  
3. Difference between two consecutive codes - 1 LSB.  
104/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Electrical characteristics  
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.  
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.  
6. Difference between the value measured at Code (0x001) and the ideal value.  
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when  
buffer is OFF, and from code giving 0.2 V and (V  
– 0.2) V when buffer is ON.  
DDA  
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
Figure 31. 12-bit buffered /non-buffered DAC  
%XIIHUHGꢐ1RQꢎEXIIHUHGꢅ'$&  
%XIIHUꢊꢂꢍ  
5
/
'$&B287[  
ꢂꢆꢎELWꢅ  
GLJLWDOꢅWR  
DQDORJꢅ  
FRQYHUWHUꢅ  
&
/
AIꢀꢎꢀꢂꢎ6ꢃ  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
6.3.19  
Operational amplifier characteristics  
Table 60. Operational amplifier characteristics  
Symbol  
Parameter  
Condition(1)  
Min(2)  
Typ  
Max(2)  
Unit  
CMIR  
Common mode input range  
-
0
-
VDD  
Maximum  
calibration range  
-
-
-
-
-
-
15  
VIOFFSET  
Input offset voltage  
mV  
After offset  
calibration  
1.5  
Normal mode  
-
-
-
-
-
-
-
-
40  
80  
1
µV/°C  
Input offset voltage  
drift  
ΔVIOFFSET  
Low-power mode  
Dedicated input  
IIB  
Input current bias  
75 °C  
nA  
General purpose  
input  
-
-
10  
Normal mode  
-
-
-
-
-
-
-
-
-
500  
100  
220  
60  
-
ILOAD  
Drive current  
Consumption  
µA  
µA  
dB  
Low-power mode  
Normal mode  
-
100  
30  
-85  
-90  
No load,  
IDD  
quiescent mode  
Low-power mode  
Normal mode  
-
-
Common mode  
rejection ration  
CMRR  
Low-power mode  
-
DocID022799 Rev 12  
105/136  
109  
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
Table 60. Operational amplifier characteristics (continued)  
Symbol  
Parameter  
Normal mode  
Condition(1)  
Min(2)  
Typ  
Max(2)  
Unit  
-
-85  
-90  
-
Power supply  
rejection ratio  
PSRR  
DC  
dB  
Low-power mode  
Normal mode  
-
-
400  
150  
200  
70  
1000  
300  
500  
150  
3000  
800  
2200  
800  
VDD>2.4 V  
Low-power mode  
Normal mode  
GBW  
Bandwidth  
kHZ  
V
DD<2.4 V  
Low-power mode  
VDD>2.4 V  
Normal mode  
(between 0.1 V and  
VDD-0.1 V)  
-
700  
-
SR  
AO  
Slew rate  
V/ms  
dB  
Low-power mode  
Normal mode  
V
DD>2.4 V  
-
-
100  
300  
50  
100  
110  
-
-
-
V
DD<2.4 V  
Low-power mode  
Normal mode  
-
-
55  
65  
4
-
Open loop gain  
Low-power mode  
Normal mode  
-
-
RL  
CL  
Resistive load  
Capacitive load  
VDD<2.4 V  
kΩ  
Low-power mode  
20  
-
-
-
-
-
50  
pF  
VDD  
100  
-
Normal mode  
-
-
High saturation  
voltage  
VOHSAT  
VOLSAT  
ILOAD = max or  
RL = min  
Low-power mode  
Normal mode  
VDD-50  
-
-
-
100  
50  
-
mV  
-
-
-
-
Low saturation  
voltage  
Low-power mode  
-
ϕm  
Phase margin  
Gain margin  
-
-
60  
-12  
°
GM  
-
dB  
Offset trim time: during calibration,  
minimum time needed between two  
steps to have 1 mV accuracy  
tOFFTRIM  
-
-
1
-
ms  
µs  
CL 50 pf,  
RL 4 kΩ  
Normal mode  
Wakeup time  
-
-
10  
30  
-
-
tWAKEUP  
CL 50 pf,  
Low-power mode  
RL 20 kΩ  
1. Operating conditions are limited to junction temperature (0 °C to 105 °C) when VDD is below 2 V. Otherwise to the full  
ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).  
2. Guaranteed by characterization results.  
106/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.20  
Temperature sensor characteristics  
Table 61. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C 5 °C  
TS_CAL1  
0x1FF8 00FA - 0x1FF8 00FB  
VDDA= 3 V 10 mV  
TS ADC raw data acquired at  
temperature of 110 °C 5 °C  
TS_CAL2  
0x1FF8 00FE - 0x1FF8 00FF  
VDDA= 3 V 10 mV  
Table 62. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1.48  
612  
-
1
1.61  
626.8  
3.4  
2
1.75  
641.5  
6
°C  
mV/°C  
mV  
Avg_Slope(1) Average slope  
V110  
Voltage at 110°C ±5°C(2)  
IDDA  
(3)  
Current consumption  
Startup time  
µA  
(TEMP)  
(3)  
tSTART  
-
-
10  
µs  
ADC sampling time when reading the  
temperature  
(3)  
TS_temp  
4
-
-
1. Guaranteed by characterization results.  
2. Measured at VDD = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.  
3. Guaranteed by design.  
6.3.21  
Comparator  
Table 63. Comparator 1 characteristics  
Symbol  
Parameter  
Conditions  
Min(1)  
Typ  
Max(1)  
Unit  
VDDA  
R400K  
R10K  
Analog supply voltage  
R400K value  
-
-
-
1.65  
3.6  
V
-
-
400  
10  
-
-
kΩ  
R10K value  
Comparator 1 input  
voltage range  
VIN  
-
0.6  
-
VDDA  
V
tSTART  
td  
Comparator startup time  
Propagation delay(2)  
Comparator offset  
-
-
-
-
-
-
7
3
3
10  
10  
10  
µs  
Voffset  
mV  
VDDA = 3.6 V  
VIN+ = 0 V  
VIN- = VREFINT  
TA = 25 °C  
Comparator offset  
dVoffset/dt variation in worst voltage  
stress conditions  
0
-
1.5  
10  
mV/1000 h  
nA  
ICOMP1  
Current consumption(3)  
-
160  
260  
DocID022799 Rev 12  
107/136  
109  
 
 
 
 
 
 
 
Electrical characteristics  
STM32L151xC STM32L152xC  
1. Guaranteed by characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage not included.  
Table 64. Comparator 2 characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max(1) Unit  
VDDA  
VIN  
Analog supply voltage  
-
-
1.65  
-
3.6  
VDDA  
20  
25  
3.5  
6
V
V
Comparator 2 input voltage range  
0
-
-
-
-
-
-
-
-
Fast mode  
15  
20  
1.8  
2.5  
0.8  
1.2  
4
tSTART  
Comparator startup time  
Slow mode  
1.65 V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
1.65 V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
td slow  
Propagation delay(2) in slow mode  
µs  
2
td fast  
Propagation delay(2) in fast mode  
Comparator offset error  
4
Voffset  
20  
mV  
VDDA = 3.3V  
TA = 0 to 50 °C  
dThreshold/ Threshold voltage temperature  
V- =VREFINT  
3/4 VREFINT  
1/2 VREFINT  
1/4 VREFINT  
,
ppm  
/°C  
-
15  
100  
dt  
coefficient  
,
,
.
Fast mode  
Slow mode  
-
-
3.5  
0.5  
5
2
ICOMP2  
Current consumption(3)  
µA  
1. Guaranteed by characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not  
included.  
108/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Electrical characteristics  
6.3.22  
LCD controller  
The device embeds a built-in step-up converter to provide a constant LCD reference voltage  
independently from the V voltage. An external capacitor C must be connected to the  
DD  
ext  
V
pin to decouple this converter.  
LCD  
Table 65. LCD controller characteristics  
Symbol  
Parameter  
LCD external voltage  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
Cext  
-
-
2.6  
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
-
-
-
2.73  
2.86  
2.98  
3.12  
3.26  
3.4  
-
-
-
-
-
V
-
-
-
-
-
-
-
3.55  
-
-
0.1  
2
µF  
µA  
Supply current at VDD = 2.2 V  
-
3.3  
-
(1)  
ILCD  
Supply current at VDD = 3.0 V  
-
3.1  
-
(2)  
RHtot  
Low drive resistive network overall value  
High drive resistive network total value  
Segment/Common highest level voltage  
Segment/Common 3/4 level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
5.28  
6.6  
7.92  
MΩ  
kΩ  
V
(2)  
RL  
192  
240  
288  
V44  
V34  
V23  
V12  
V13  
V14  
V0  
-
-
-
VLCD  
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
-
-
-
-
-
-
-
-
-
V
-
-
0
Segment/Common level voltage error  
ΔVxx(3)  
-
-
50  
mV  
TA = -40 to 105 °C  
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD  
connected.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
DocID022799 Rev 12  
109/136  
109  
 
 
Package information  
STM32L151xC STM32L152xC  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package  
information  
Figure 32. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢏꢉꢇꢂ MM  
'!5'% 0,!.%  
CCC  
ꢎꢂ  
#
$
,
$ꢀ  
$ꢃ  
,ꢀ  
ꢂꢀ  
ꢂꢏ  
ꢎꢆ  
ꢀꢏꢏ  
ꢇꢆ  
0).   
)$%.4)&)#!4)/.  
ꢇꢂ  
E
ꢀ,?-%?6ꢂ  
1. Drawing is not to scale.  
Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical  
data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
-
-
-
1.600  
0.150  
1.450  
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.050  
1.350  
0.0020  
0.0531  
-
1.400  
0.0551  
110/136  
DocID022799 Rev 12  
 
 
 
 
STM32L151xC STM32L152xC  
Package information  
Table 66. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical  
data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
b
c
0.170  
0.220  
-
0.270  
0.200  
16.200  
14.200  
-
0.0067  
0.0087  
-
0.0106  
0.0079  
0.6378  
0.5591  
-
0.090  
0.0035  
D
15.800  
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6220  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
13.800  
0.5433  
-
-
15.800  
16.200  
14.200  
-
0.6220  
0.6378  
0.5591  
-
E1  
E3  
e
13.800  
0.5433  
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
7.0°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 33. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package  
recommended footprint  
ꢎꢂ  
ꢂꢀ  
ꢎꢆ  
ꢂꢏ  
ꢏꢉꢂ  
ꢏꢉꢃ  
ꢀꢆꢉꢎ ꢀꢅꢉꢃ  
ꢀꢏꢏ  
ꢇꢆ  
ꢀꢉꢇ  
ꢇꢂ  
ꢀꢇꢉꢃ  
ꢀꢆꢉꢎ  
06ꢀꢁꢂꢃꢒ9ꢂ  
1. Dimensions are in millimeters.  
DocID022799 Rev 12  
111/136  
135  
 
Package information  
STM32L151xC STM32L152xC  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 34. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view  
example  
3URGXFWꢅLGHQWLILFDWLRQꢊꢂꢍ  
670ꢀꢁ/ꢂꢃꢂ  
9&7ꢄꢅꢅꢅꢅ5  
5HYLVLRQꢅFRGH  
'DWHꢅFRGH  
<
::  
3LQꢅꢂꢅ  
LQGHQWLILHU  
06Yꢀꢌꢌꢒꢏ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
112/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Package information  
7.2  
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package  
information  
Figure 35. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline  
6($7,1*ꢅ3/$1(  
&
ꢉꢄꢆꢏꢅPP  
*$8*(ꢅ3/$1(  
FFF  
&
'
'ꢂ  
'ꢀ  
/
/ꢂ  
ꢀꢀ  
ꢁꢋ  
ꢀꢆ  
ꢁꢒ  
ꢌꢁ  
E
ꢂꢃ  
ꢂꢌ  
3,1ꢅꢂ  
H
,'(17,),&$7,21  
ꢏ:B0(B9ꢀ  
1. Drawing is not to scale.  
Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical  
data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
DocID022799 Rev 12  
113/136  
135  
 
 
 
Package information  
STM32L151xC STM32L152xC  
Table 67. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data  
(continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package  
recommended footprint  
ꢅꢁ  
ꢃꢃ  
ꢏꢉꢃ  
ꢏꢉꢂ  
ꢅꢌ  
ꢃꢇ  
ꢀꢇꢉꢎ  
ꢀꢏꢉꢃ  
ꢀꢏꢉꢃ  
ꢎꢉꢁ  
ꢀꢎ  
ꢆꢅ  
ꢀꢉꢇ  
ꢀꢆ  
ꢀꢇꢉꢎ  
AIꢀꢅꢌꢏꢌC  
1. Dimensions are in millimeters.  
114/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Package information  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example  
3URGXFWꢅLGHQWLILFDWLRQꢊꢂꢍ  
5HYLVLRQꢅFRGH  
5
670ꢀꢁ/ꢂꢃꢂ  
5&7ꢄ  
'DWHꢅFRGH  
< ::  
3LQꢅꢂꢅ  
LQGHQWLILHU  
06Yꢀꢃꢏꢉꢂ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
DocID022799 Rev 12  
115/136  
135  
 
Package information  
STM32L151xC STM32L152xC  
7.3  
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package  
information  
Figure 38. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢏꢉꢇꢂ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢀ  
$ꢃ  
,ꢀ  
ꢃꢆ  
ꢇꢂ  
ꢃꢎ  
ꢇꢅ  
B
ꢅꢁ  
ꢀꢃ  
0).   
)$%.4)&)#!4)/.  
ꢀꢇ  
E
ꢂ"?-%?6ꢇ  
1. Drawing is not to scale.  
116/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Package information  
Table 68. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 39. LQFP48 recommended footprint  
ꢏꢉꢂꢏ  
ꢀꢉꢇꢏ  
ꢏꢉꢃꢏ  
ꢃꢆ  
ꢇꢂ  
ꢃꢎ  
ꢇꢅ  
ꢏꢉꢇꢏ  
ꢎꢉꢃꢏ  
ꢌꢉꢎꢏ ꢂꢉꢁꢏ  
ꢎꢉꢃꢏ  
ꢅꢁ  
ꢀꢃ  
ꢀꢇ  
ꢀꢉꢇꢏ  
ꢂꢉꢁꢏ  
ꢌꢉꢎꢏ  
AIꢀꢅꢌꢀꢀD  
1. Dimensions are in millimeters.  
DocID022799 Rev 12  
117/136  
135  
 
 
Package information  
STM32L151xC STM32L152xC  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 40. LQFP48 package top view example  
3URGXFW  
ꢊꢂꢍ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-  
ꢂꢃꢂ$$5ꢄ  
'DWHꢅFRGH  
: 88  
3LQꢅꢂꢅ  
LGHQWLILFDWLRQ  
5HYLVLRQꢅFRGH  
3
06ꢀꢃꢏꢉꢀ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
118/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Package information  
7.4  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information  
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline  
3LQꢅꢂꢅLGHQWLILHU  
ODVHUꢅPDUNLQJꢅDUHD  
'
$
(
<
(
6HDWLQJꢅ  
SODQH  
7
GGG  
$ꢂ  
E
H
'HWDLOꢅ<  
'
([SRVHGꢅSDGꢅ  
DUHD  
'ꢆ  
/
ꢁꢋ  
&ꢅꢉꢄꢏꢉꢉ[ꢁꢏƒ  
SLQꢂꢅFRUQHU  
5ꢅꢉꢄꢂꢆꢏꢅW\Sꢄ  
'HWDLOꢅ=  
(ꢆ  
ꢁꢋ  
=
$ꢉ%ꢒB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
DocID022799 Rev 12  
119/136  
135  
 
 
Package information  
STM32L151xC STM32L152xC  
Table 69. UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm,  
0.5 mm pitch package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 42. UFQFPN48 recommended footprint  
ꢎꢉꢃꢏ  
ꢆꢉꢇꢏ  
ꢅꢁ  
ꢃꢎ  
ꢃꢆ  
ꢂꢉꢆꢏ  
ꢏꢉꢇꢏ  
ꢎꢉꢃꢏ  
ꢂꢉꢁꢏ  
ꢆꢉꢇꢏ  
ꢂꢉꢆꢏ  
ꢏꢉꢃꢏ  
ꢀꢇ  
ꢇꢂ  
ꢀꢃ  
ꢇꢅ  
ꢏꢉꢎꢂ  
ꢏꢉꢂꢏ  
ꢏꢉꢂꢂ  
ꢂꢉꢁꢏ  
!ꢏ"ꢌ?&0?6ꢇ  
1. Dimensions are in millimeters.  
120/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Package information  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 43. UFQFPN48 package top view example  
3URGXFW  
ꢊꢂꢍ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-  
ꢂꢃꢂ$$6ꢄ  
'DWHꢅFRGH  
: 88  
3LQꢅꢂꢅ  
LGHQWLILFDWLRQ  
5HYLVLRQꢅFRGH  
3
06ꢀꢃꢏꢉꢁ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
DocID022799 Rev 12  
121/136  
135  
 
Package information  
STM32L151xC STM32L152xC  
7.5  
UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid  
array package information  
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch package outline  
=
6HDWLQJꢅSODQH  
GGG =  
$ꢁ  
$ꢀ $ꢆ  
$ꢂ  
$
(ꢂ  
;
$ꢂꢅEDOOꢅ  
$ꢂꢅEDOOꢅ  
(
LGHQWLILHU LQGH[ꢅDUHD  
H
)
$
)
'ꢂ  
'
H
<
0
ꢂꢆ  
‘EꢅꢊꢂꢉꢉꢅEDOOVꢍ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢅ9,(:  
723ꢅ9,(:  
$ꢉ&ꢆB0(B9ꢁ  
1. Drawing is not to scale.  
Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
0.080  
0.270  
0.200  
6.950  
5.450  
6.950  
5.450  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.250  
7.000  
5.500  
7.000  
5.500  
0.500  
0.750  
-
0.600  
0.110  
0.500  
0.180  
0.370  
0.300  
7.050  
5.550  
7.050  
5.550  
-
0.0181  
0.0020  
0.0157  
0.0031  
0.0106  
0.0079  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
-
0.0236  
0.0043  
0.0197  
0.0071  
0.0146  
0.0118  
0.2776  
0.2185  
0.2776  
0.2185  
-
D
D1  
E
E1  
e
F
0.700  
-
0.800  
0.100  
0.0276  
-
0.0315  
0.0039  
ddd  
122/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Package information  
Table 70. UFBGA100, 7 x 7 mm, 0.5 mm pitch package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
eee  
fff  
-
-
-
-
0.150  
0.050  
-
-
-
-
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 45. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package recommended footprint  
'SDG  
'VP  
$ꢉ&ꢆB)3B9ꢂ  
Table 71. UFBGA100, 7 x 7 mm, 0.50 mm pitch, recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
DocID022799 Rev 12  
123/136  
135  
 
 
Package information  
STM32L151xC STM32L152xC  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 46. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package top view example  
3URGXFW  
ꢊꢂꢍ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-  
ꢂꢃꢂ7$)ꢄ  
'DWHꢅFRGH  
: 88  
%DOOꢅ$ꢂꢅ  
LGHQWLILHU  
5HYLVLRQꢅFRGH  
3
06ꢀꢃꢏꢉꢒ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
124/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Package information  
7.6  
WLCSP63, 0.400 mm pitch wafer level chip size package  
information  
Figure 47. WLCSP63, 0.400 mm pitch wafer level chip size package outline  
Hꢂ  
EEE  
$ꢂꢅ%DOOꢅORFDWLRQ  
)
*
'HWDLOꢅ$  
Hꢆ  
H
*
$
)
H
$ꢆ  
$ꢀ  
%RWWRPꢅYLHZ  
%XPEꢅVLGH  
6LGHꢅYLHZ  
'
%XPS  
HHH  
$ꢀ  
$ꢂ  
(
$ꢂꢅUHIHUHQFH  
ORFDWLRQ  
E
FFF  
GGG  
= ; <  
=
6HDWLQJꢅSODQH  
DDD  
'HWDLOꢅ$  
URWDWHGꢅꢒꢉƒ  
7RSꢅYLHZꢅ  
:DIHUꢅEDFNꢅ6LGH  
$ꢉ7*B0(B9ꢆ  
1. Drawing is not to scale.  
DocID022799 Rev 12  
125/136  
135  
 
 
Package information  
STM32L151xC STM32L152xC  
Table 72. WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
Øb  
D
0.540  
0.570  
0.190  
0.380  
0.025  
0.270  
3.228  
4.164  
0.400  
2.400  
3.200  
0.414  
0.482  
-
0.600  
0.0213  
0.0224  
0.0075  
0.0150  
0.0010  
0.0106  
0.1271  
0.1639  
0.0157  
0.0945  
0.1260  
0.0163  
0.0190  
-
0.0236  
-
-
-
-
-
-
-
-
-
-
-
-
0.240  
0.300  
3.263  
4.199  
-
0.0094  
0.0118  
0.1285  
0.1653  
-
3.193  
0.1257  
E
4.129  
0.1626  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F
-
-
-
-
-
-
G
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.100  
0.100  
0.100  
0.050  
0.050  
-
-
-
-
-
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
126/136  
DocID022799 Rev 12  
 
STM32L151xC STM32L152xC  
Package information  
Marking of engineering samples  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 48. WLCSP63 device marking example  
ꢊꢂꢍ  
3URGXFWꢅLGHQWLILFDWLRQ  
-ꢂꢃꢂ6$:ꢄ  
'DWHꢅFRGH  
5HYLVLRQꢅFRGH  
: 88 3  
%DOOꢅ$ꢂ  
LGHQWLILHU  
06ꢀꢃꢏꢂꢌ9ꢂ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity  
DocID022799 Rev 12  
127/136  
135  
 
Package information  
STM32L151xC STM32L152xC  
7.7  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 73. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
UFBGA100 - 7 x 7 mm  
59  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm / 0.5 mm pitch  
43  
46  
49  
55  
33  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm / 0.5 mm pitch  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
WLCSP63 - 0.400 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch  
128/136  
DocID022799 Rev 12  
 
 
 
STM32L151xC STM32L152xC  
Package information  
Figure 49. Thermal resistance suffix 6  
ꢀꢉꢉꢉꢄꢉꢉ  
ꢆꢏꢉꢉꢄꢉꢉ  
ꢆꢉꢉꢉꢄꢉꢉ  
ꢂꢏꢉꢉꢄꢉꢉ  
&ŽƌďŝĚĚĞŶꢃĂƌĞĂ  
d:ꢃхꢃd:ꢃŵĂdž  
:/&63ꢌꢀ  
3'ꢅꢊP:ꢍ  
/4)3ꢌꢁꢅꢂꢉ[ꢂꢉPP  
8)%*$ꢂꢉꢉꢅꢃ[ꢃPP  
/4)3ꢂꢉꢉꢅꢂꢁ[ꢂꢁPP  
8)4)31ꢁꢋꢅꢃ[ꢃPP  
/4)3ꢁꢋꢅꢃ[ꢃPP  
ꢂꢉꢉꢉꢄꢉꢉ  
ϱϬϬ͘ϬϬ  
Ϭ͘ϬϬ  
ꢂꢉꢉ  
ꢃꢏ  
ꢏꢉ  
ꢆꢏ  
Ϭ
7HPSHUDWXUHꢅꢊƒ&ꢍ  
D^ϯϭϰϬϱsϱ  
Figure 50. Thermal resistance suffix 7  
ꢀꢉꢉꢉꢄꢉꢉ  
ꢆꢏꢉꢉꢄꢉꢉ  
ꢆꢉꢉꢉꢄꢉꢉ  
)RUELGGHQꢅDUHD  
7-ꢅ!ꢅ7-ꢅPD[  
:/&63ꢌꢀ  
3'ꢅꢊP:ꢍ  
/4)3ꢌꢁꢅꢂꢉ[ꢂꢉPP  
8)%*$ꢂꢉꢉꢅꢃ[ꢃPP  
ꢂꢏꢉꢉꢄꢉꢉ  
ꢂꢉꢉꢉꢄꢉꢉ  
ꢏꢉꢉꢄꢉꢉ  
ꢉꢄꢉꢉ  
/4)3ꢂꢉꢉꢅꢂꢁ[ꢂꢁPP  
8)4)31ꢁꢋꢅꢃ[ꢃPP  
/4)3ꢁꢋꢅꢃ[ꢃPP  
ꢂꢉꢏ  
ꢃꢏ  
ꢏꢉ  
ꢆꢏ  
7HPSHUDWXUHꢅꢊƒ&ꢍ  
06Yꢀꢁꢂꢋꢀ9ꢂ  
7.7.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
DocID022799 Rev 12  
129/136  
135  
 
 
 
Part numbering  
STM32L151xC STM32L152xC  
8
Part numbering  
Table 74. STM32L151xC and STM32L152xC ordering information scheme  
Example:  
STM32 L 151 R  
C
T
6
D
TR  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
L = Low-power  
Device subfamily  
151: Devices without LCD  
152: Devices with LCD  
Pin count  
C = 48 pins  
U = 63 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
C = 256 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
Y = WLCSP  
U = UFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
7 = Industrial temperature range, –40 to 105 °C  
Options  
No character = VDD range: 1.8 to 3.6 V and BOR enabled  
D = V range: 1.65 to 3.6 V and BOR disabled  
DD  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact the nearest ST sales office.  
130/136  
DocID022799 Rev 12  
 
 
STM32L151xC STM32L152xC  
Revision History  
9
Revision History  
Table 75. Document revision history  
Changes  
Date  
Revision  
21-Feb-2012  
1
Initial release.  
Added WLCSP63 package.  
Updated Figure 1: Ultra-low-power STM32L162xC block diagram.  
Changed maximum number of touch sensing channels to 34, and  
updated Table 2: Ultralow power STM32L15xxC device features and  
peripheral counts.  
Added Table 4: Functionalities depending on the working mode (from  
Run/active down to standby), and Table 3: ange depending on  
dynamic voltage scaling.  
Updated Section 3.10: ADC (analog-to-digital converter) to add  
Section 3.10.1: Temperature sensor and Section 3.10.2: Internal  
voltage reference (VREFINT).  
Updated Figure 3: STM32L162VC LQFP100 pinout.  
Table 10: STM32L15xxC pin definitions: updated name of reference  
manual in footnote 5.  
Changed I2C1_SMBAI into I2C1_SMBA in Table 10: STM32L15xxC  
pin definitions.  
Modified PB10/11/12 for AFIO4 alternate function, and replaced LBAR  
by NADV for AFIO12 in Table 10: Alternate function input/output.  
12-Oct-2012  
2
Removed caution note below Figure 8: Power supply scheme.  
Added Note 2 in Table 15: Embedded reset and power control block  
characteristics.  
Updated Table 14: General operating conditions.  
Updated Table 22: Typical and maximum current consumptions in Stop  
mode and added Note 6. Updated Table 23: Typical and maximum  
current consumptions in Standby mode. Updated tWUSTOP in Table : .  
Updated Table 26: Peripheral current consumption.  
Updated Table 60: SPI characteristics, added Note 1 and Note 3, and  
applied Note 2 to tr(SCK), tf(SCK), tw(SCKH), tw(SCKL), tsu(MI), tsu(SI), th(MI)  
and th(SI)  
Added Table 61: I2S characteristics, Figure 29: I2S slave timing  
,
.
diagram (Philips protocol)(1) and Figure 30: I2S master timing diagram  
(Philips protocol)(1).  
Updated Table 72: Temperature sensor characteristics.  
Added Figure 40: Thermal resistance.  
DocID022799 Rev 12  
131/136  
135  
 
 
Revision History  
STM32L151xC STM32L152xC  
Table 75. Document revision history (continued)  
Date  
Revision  
Changes  
Removed AHB1/AHB2 and corrected typo on APB1/APB2 in:Figure 1:  
Ultra-low-power STM32L162xC block diagram-low-power  
STM32L162xC block diagram  
Updated “OP amp” line in Table 4: Functionalities depending on the  
working mode (from Run/active down to standby)  
Added IWDG and WWDG rows in Table 4: Functionalities depending  
on the working mode (from Run/active down to standby)  
Updated address range in Table 7: Internal voltage reference  
measured values  
The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)"  
replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2  
above 16 MHz (PLL ON)(2)” in table Table 27: Current consumption in  
Sleep mode  
01-Feb-2013  
3
replaced pin names D7,C7,C6,C8,B8,A8 respectively by  
D11,D10,C12,B12,A12,A11 in column UFBGA100 of Table 9:  
STM32L15xxC pin definitionsAdded more alternate functions  
supported on pin K3 and M4 for UFBGA100 package in Table 9:  
STM32L15xxC pin definitions  
Added part number STM32L151CC in Table 1: Device summary  
Updated Stop mode current to 1.5 µA in Ultra-low-power platform  
Updated entire Section 7: Package information  
Removed UFBGA132 and LQFP144 packages  
Removed first sentence in Section : I2C interface characteristics  
Added Section Table 5.: VLCD rail decoupling  
Added VRAIL functions in Table 9: STM32L15xxC pin definitions  
Updated PH0-OSC_IN and PH1-OSC_OUT type in Table 9:  
STM32L15xxC pin definitions.  
Added Table 6.1.7: Optional LCD power supply scheme.  
Updated consumption data in Table 6.3.4: Supply current  
characteristics  
Updated Table 7: Pin loading conditions  
Updated Table 8: Pin input voltage Updated Table 15: Typical  
application with a 32.768 kHz crystal  
02-Sep-2013  
4
Updated Table 25: Recommended NRST pin protection  
Table 26: I2C bus AC waveforms and measurement circuitUpdated  
Table 35: Typical connection diagram using the ADC and  
definition of symbol “RAIN” in Table 77: ADC characteristics  
Updated dThreshold/dt conditions in Table 85: Comparator 2  
characteristics.  
Updated Table 49: Thermal resistance suffix 6.  
Added D2 and E2 in Table 69: UFQFPN48 – ultra thin fine pitch quad  
flat pack no-lead 7 × 7 mm, 0.5 mm pitch package mechanical data  
Fixed columns inversion in Table 67: LQFP64, 10 x 10 mm 64-pin low-  
profile quad flat package mechanical data and Table 70: UFBGA100, 7  
x 7 mm, 0.5 mm pitch package mechanical data  
132/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Revision History  
Table 75. Document revision history (continued)  
Revision Changes  
Date  
Updated Section 3.15: Touch sensing.  
Added VDD= 1.71 to 1.8 V operating power supply range in Table 4:  
Functionalities depending on the working mode (from Run/active down  
to standby)  
Renamed "I/O Level" to "I/O structure" in Table 9: STM32L15xxC pin  
definitions, added the I/O structure for PC14, PC15, PC3, PH0, PH1,  
PA3, PA4, PA5, PB0, PE7, PE8, PE9, PE10, NRST and BOOT0  
Updated Table 10: Voltage characteristics added row  
Updated Table 11: Current characteristics replaced with the one inside  
STM32L15xxBxxA datasheet.  
Updated Table 13: General operating conditions, footnote and added  
row.  
Updated Table 15: Embedded internal reference voltage calibration  
values and moved inside Section 6.3.3: Embedded internal reference  
voltage  
Updated Section 6.3.4: Supply current characteristics.  
Updated Table 19: Current consumption in Run mode, code with data  
processing running from Flash.  
Updated Table 22: Current consumption in Run mode, code with data  
processing running from RAM.  
Created Section 6.3.5: Wakeup time from low-power mode..  
Updated Table 38: High-speed external user clock characteristics.  
Moved Figure 12: High-speed external clock source AC timing diagram  
after Table 38: High-speed external user clock characteristics.  
12-Nov-2013  
5
Updated Table 40: HSE oscillator characteristics.  
Updated Section 6.3.12: Electrical sensitivity characteristics (title).  
Updated Section 6.3.13: I/O current injection characteristics.  
Updated Table 61: I/O current injection susceptibility and added  
footnote.  
Updated Table 63: I/O static characteristics  
Updated Section 6.3.15: NRST pin characteristics.  
Updated Table 77: ADC characteristics.  
Added footnote(5) and (6) in Table 77: ADC characteristics  
Updated THD values and added 4 more rows ENOB, SINAD, SNR,  
THD in Table 78: ADC accuracy  
Updated “SDA data hold time” and “SDA and SCL rise time” values  
and added “Pulse width of spikes that are suppressed by the analog  
filter” row in Table 68: I2C characteristics  
Updated direct channels VDDA range in Table 79: RAIN max for fADC  
=
16 MHz  
Moved Table 82: Temperature sensor calibration values and moved  
inside Section 6.3.23: Temperature sensor characteristics  
Updated IDD (WU from Standby) unit in Table 31: Typical and  
maximum current consumptions in Standby mode.  
Updated Table 67: LQFP64, 10 x 10 mm 64-pin low-profile quad flat  
package mechanical data  
Updated Chapter 8: Part numbering (title).  
DocID022799 Rev 12  
133/136  
135  
Revision History  
STM32L151xC STM32L152xC  
Table 75. Document revision history (continued)  
Date  
Revision  
Changes  
Apply footnote 1 also to VDD= 1.8 to 2.0 V in Table 2: Functionalities  
depending on the operating power supply range.  
Updated Iinj pin in Table 11: Current characteristics.  
Added Input Voltage in Table 13: General operating conditions.  
Updated Input leakage current conditions in Table 63: I/O static  
09-Dec-2013  
6
characteristics  
Removed minimum value for fSin Table 77: ADC characteristics.  
Removed Finput for ENOB,SINAD,SNR,THD in Table 78: ADC  
accuracy.  
Added tolerance for TS_CAL1 and TS_CAL2 in Table 82: Temperature  
sensor calibration values.  
Updated Section 3.7: Memories, Table 33: Peripheral current  
consumption : updated Flash value, Table 61: I/O current injection  
susceptibility, Table 63: I/O static characteristics:added BOOT0 pin  
Table 66: NRST pin characteristics, Chapter 2.2: Ultra-low-power  
device continuum. removed figures “Power supply and reference  
decoupling (VREF+ not connected to VDDA) and “Power supply and  
reference decoupling(VREF+ connected to VDDA). Updated Table 19:  
Current consumption in Run mode, code with data processing running  
from Flash  
13-Mar-2014  
7
Updated Section 6.3.1: General operating conditions.  
Updated Table 80: DAC characteristics  
Added marking for LQFP48/UFQFPN48 packages  
Updated Table 66: NRST pin characteristics  
Updated Table 63: I/O static characteristics  
Updated IIO in Table 12: Current characteristics.  
Updated conditions in Table 44: Output voltage characteristics.  
Removed note 4 in Table 62: Temperature sensor characteristics  
Updated the conditions in Table 26: Low-power mode wakeup timings.  
16-May-2014  
8
Removed ambiguity of “ambient temperature” in the electrical  
characteristics description.  
Updated Section 3.17: Communication interfaces putting I2S  
characteristics inside.  
Updated DMIPS features in cover page and Section 2: Description.  
Updated max temperature at 105°C instead of 85°C in the whole  
datasheet.  
13-Oct-2014  
06-Mar-2015  
9
Updated current consumption in Table 20: Current consumption in  
Sleep mode.  
Updated Table 25: Peripheral current consumption with new measured  
current values.  
Updated Table 58: Maximum source impedance RAIN max adding  
note 2.  
Updated Section 7: Package information with new package device  
marking.  
10  
Updated Figure 9: Memory map.  
134/136  
DocID022799 Rev 12  
STM32L151xC STM32L152xC  
Revision History  
Table 75. Document revision history (continued)  
Revision Changes  
Date  
Updated Table 17: Embedded internal reference voltage temperature  
coefficient at 100ppm/°C and table footnote 3: “guaranteed by design”  
changed by “guaranteed by characterization results”.  
20-Aug-2015  
11  
Updated Table 64: Comparator 2 characteristics new maximum  
threshold voltage temperature coefficient at 100ppm/°C.  
Updated cover page putting eight SPIs in the peripheral  
communication interface list.  
Updated Table 2: Ultra-low-power STM32L151xC and STM32L152xC  
device features and peripheral counts SPI and I2S lines.  
Updated Table 40: ESD absolute maximum ratings CDM class.  
Updated all the notes, removing ‘not tested in production’.  
10-Mar-2016  
12  
Updated thermal resistance for UFQFPN48 to value of 33 °C/W.  
Updated Table 11: Voltage characteristics adding note about VREF- pin.  
Updated Table 5: Functionalities depending on the working mode (from  
Run/active down to standby) LSI and LSE functionalities putting “Y” in  
Standby mode.  
Removed note 1 below Figure 2: Clock tree.  
DocID022799 Rev 12  
135/136  
135  
STM32L151xC STM32L152xC  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
136/136  
DocID022799 Rev 12  

相关型号:

STM32L151UCY6

Reset and supply management

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V6H6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V6T6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V6U6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V8

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V8H6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V8H6TR

32-BIT, FLASH, 32MHz, RISC MICROCONTROLLER, PBGA100, 7 X 7 MM, 0.50 MM PITCH, ROHS COMPLIANT, UFBGA-100

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V8T6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151V8U6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151VB

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151VBH6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L151VBT6

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR