STM32L152x6 [STMICROELECTRONICS]

Reset and supply management;
STM32L152x6
型号: STM32L152x6
厂家: ST    ST
描述:

Reset and supply management

文件: 总133页 (文件大小:2086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L151x6/8/B  
STM32L152x6/8/B  
Ultra-low-power 32-bit MCU ARM®-based Cortex®-M3,  
128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC  
Datasheet - production data  
Features  
Ultra-low-power platform  
LQFP100 14 × 14 mm UFBGA100 7 × 7 mm UFQFPN48 7 × 7 mm  
– 1.65 V to 3.6 V power supply  
– -40°C to 85°C/105°C temperature range  
– 0.3 µA Standby mode (3 wakeup pins)  
– 0.9 µA Standby mode + RTC  
LQFP64 10 × 10 mm TFBGA64 5 × 5 mm  
LQFP48 7 × 7 mm  
– Up to 4 Kbytes of true EEPROM with ECC  
– 80-byte backup register  
– 0.57 µA Stop mode (16 wakeup lines)  
LCD Driver (except STM32L151x/6/8/B  
– 1.2 µA Stop mode + RTC  
– 9 µA Low-power run mode  
– 214 µA/MHz Run mode  
– 10 nA ultra-low I/O leakage  
– < 8 µs wakeup time  
devices) for up to 8x40 segments  
– Support contrast adjustment  
– Support blinking mode  
– Step-up converter on board  
®
®
Rich analog peripherals (down to 1.8 V)  
– 12-bit ADC 1 Msps up to 24 channels  
– 12-bit DAC 2 channels with output buffers  
Core: ARM Cortex -M3 32-bit CPU  
– From 32 kHz up to 32 MHz max  
– 1.25 DMIPS/MHz (Dhrystone 2.1)  
– Memory protection unit  
– 2x ultra-low-power-comparators  
(window mode and wake up capability)  
Reset and supply management  
DMA controller 7x channels  
– Ultra-safe, low-power BOR (brownout  
8x peripheral communication interfaces  
– 1x USB 2.0 (internal 48 MHz PLL)  
– 3x USARTs (ISO 7816, IrDA)  
– 2x SPIs 16 Mbit/s  
reset) with 5 selectable thresholds  
– Ultra-low-power POR/PDR  
– Programmable voltage detector (PVD)  
Clock sources  
– 2x I2Cs (SMBus/PMBus)  
– 1 to 24 MHz crystal oscillator  
10x timers: 6x 16-bit with up to 4 IC/OC/PWM  
channels, 2x 16-bit basic timers, 2x watchdog  
timers (independent and window)  
– 32 kHz oscillator for RTC with calibration  
– High Speed Internal 16 MHz factory-  
trimmed RC (+/- 1%)  
Up to 20 capacitive sensing channels  
supporting touchkey, linear and rotary touch  
sensors  
– Internal low-power 37 kHz RC  
– Internal multispeed low-power 65 kHz to  
4.2 MHz  
CRC calculation unit, 96-bit unique ID  
– PLL for CPU clock and USB (48 MHz)  
Pre-programmed bootloader  
Table 1. Device summary  
– USART supported  
Reference  
Part number  
Development support  
– Serial wire debug supported  
– JTAG and trace supported  
STM32L151CB, STM32L151C8,  
STM32L151C6, STM32L151RB,  
STM32L151R8, STM32L151R6,  
STM32L151VB, STM32L151V8  
STM32L151x6/8/B  
Up to 83 fast I/Os (73 I/Os 5V tolerant), all  
mappable on 16 external interrupt vectors  
STM32L152CB, STM32L152C8,  
STM32L152C6, STM32L152RB,  
STM32L152R8, STM32L152R6,  
STM32L152VB, STM32L152V8  
Memories  
STM32L152x6/8/B  
– Up to 128 Kbytes Flash memory with ECC  
– Up to 16 Kbytes RAM  
April 2016  
DocID17659 Rev 12  
1/133  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM32L151x6/8/B STM32L152x6/8/B  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1  
3.2  
3.3  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ARM® Cortex®-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23  
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REFINT  
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 26  
3.13 Routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.14 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Contents  
3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) . 28  
3.15.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 29  
3.16.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.4 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30  
3.18 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4
5
6
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
6.1.8  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Embedded reset and power control block characteristics . . . . . . . . . . . 54  
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Wakeup time from Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DocID17659 Rev 12  
3/133  
4
Contents  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.9  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.15 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.3.17 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.3.18 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6.3.19 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.3.20 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
6.3.21 LCD controller (STM32L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
7.1  
LQFP100 14 x 14 mm, 100-pin low-profile quad flat package  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
7.2  
7.3  
7.4  
7.5  
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package information . 108  
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package information . . . .111  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information . . . . . . . . . . .114  
UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch  
ball grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
7.6  
7.7  
TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball  
grid array package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.7.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
4/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
List of tables  
List of tables  
Table 1.  
Table 2.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B device features and  
peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 15  
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16  
Working mode-dependent functionalities (from Run/active down to standby) . . . . . . . . . . 17  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
STM32L151x6/8/B and STM32L152x6/8/B pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Current consumption in Run mode, code with data processing running from Flash. . . . . . 58  
Current consumption in Run mode, code with data processing running from RAM . . . . . . 59  
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 64  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 66  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Flash memory, data EEPROM endurance and data retention . . . . . . . . . . . . . . . . . . . . . . 78  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DocID17659 Rev 12  
5/133  
6
List of tables  
STM32L151x6/8/B STM32L152x6/8/B  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
SCL frequency (f  
= 32 MHz, V = VDD_I2C = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . 88  
PCLK1 DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Maximum source impedance R  
max . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
AIN  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 106  
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 108  
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data. . . . . . . . . . . . 112  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 115  
UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 117  
UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules . . . . . . . . . . . . . . 118  
TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data. . . . . . . . . . . . . . . . . . . . . 120  
TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules . . . . . . . . . . . . . . . 121  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
6/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram. . . . . . . . . . . . 13  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM32L15xVx UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
STM32L15xVx LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
STM32L15xRx TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32L15xRx LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L15xCx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L15xCx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 13. Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 16. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 17. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 19. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 20. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
2
Figure 21. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 22. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
(1)  
Figure 23. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
(1)  
Figure 24. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Figure 25. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 26. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 27. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 28. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 29. Power supply and reference decoupling (V  
Figure 30. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 98  
). . . . . . . . . . . . . . . . . 98  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 31. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 105  
Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended footprint . . 107  
Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example . . . . . . . . . . . . . . . . . . . . . . . 107  
Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 108  
Figure 36. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended footprint . . . . 109  
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example . . . . . . . . . 110  
Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 111  
Figure 39. LQFP48 7 x 7 mm, 48-pin low-profile quad flat recommended footprint. . . . . . . . . . . . . . 112  
Figure 40. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package top view example . . . . . . . . . . . 113  
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . 115  
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . 116  
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint . . . . . . . . . . . . . . 118  
Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example. . . . . . . . . . . . . . . . . . . 119  
Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
DocID17659 Rev 12  
7/133  
8
List of figures  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 48. TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 49. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example . . . . . . . . . . . . . . . . . . . . 122  
Figure 50. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
8/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
®
®
the STM32L151x6/8/B and STM32L152x6/8/B ultra-low-power ARM Cortex -M3 based  
microcontrollers product line.  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B family includes devices in 3  
different package types: from 48 to 100 pins. Depending on the device chosen, different sets  
of peripherals are included, the description below gives an overview of the complete range  
of peripherals proposed in this family.  
These features make the ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B  
microcontroller family suitable for a wide range of applications:  
Medical and handheld equipment  
Application control and user interface  
PC peripherals, gaming, GPS and sport equipment  
Alarm systems, Wired and wireless sensors, Video intercom  
Utility metering  
This STM32L151x6/8/B and STM32L152x6/8/B datasheet should be read in conjunction  
with the STM32L1xxxx reference manual (RM0038).  
The document "Getting started with STM32L1xxxx hardware development” AN3216 gives a  
hardware implementation overview. Both documents are available from the  
STMicroelectronics website www.st.com.  
®
®
®
For information on the ARM Cortex -M3 core please refer to the Cortex -M3 Technical  
Reference Manual, available from the www.arm.com website.  
Figure 1 shows the general block diagram of the device family.  
Caution:  
This datasheet does not apply to STM32L15xx6/8/B-A covered by a separate datasheet.  
DocID17659 Rev 12  
9/133  
48  
 
Description  
STM32L151x6/8/B STM32L152x6/8/B  
2
Description  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices incorporate the  
®
connectivity power of the universal serial bus (USB) with the high-performance ARM  
®
Cortex -M3 32-bit RISC core operating at 32 MHz frequency (33.3 DMIPS), a memory  
protection unit (MPU), high-speed embedded memories (Flash memory up to 128 Kbytes  
and RAM up to 16 Kbytes) and an extensive range of enhanced I/Os and peripherals  
connected to two APB buses.  
All the devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six general-  
purpose 16-bit timers and two basic timers, which can be used as time bases.  
Moreover, the STM32L151x6/8/B and STM32L152x6/8/B devices contain standard and  
2
advanced communication interfaces: up to two I Cs and SPIs, three USARTs and a USB.  
The STM32L151x6/8/B and STM32L152x6/8/B devices offer up to 20 capacitive sensing  
channels to simply add touch sensing functionality to any application.  
They also include a real-time clock and a set of backup registers that remain powered in  
Standby mode.  
Finally, the integrated LCD controller (except STM32L151x6/8/B devices) has a built-in LCD  
voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of  
the supply voltage.  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices operate from a 1.8  
to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V  
power supply without BOR option. It is available in the -40 to +85 °C temperature range,  
extended to 105°C in low power dissipation state. A comprehensive set of power-saving  
modes allows the design of low-power applications.  
10/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Description  
2.1  
Device overview  
Table 2. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B device features and  
peripheral counts  
Peripheral  
STM32L15xCx  
STM32L15xRx  
STM32L15xVx  
Flash (Kbytes)  
32  
64  
10  
128  
32  
10  
64  
4
128  
64  
10  
128  
16  
Data EEPROM (Kbytes)  
RAM (Kbytes)  
10  
16  
10  
16  
General-  
6
purpose  
Basic  
SPI  
Timers  
2
2
I2C  
2
Communication  
interfaces  
USART  
USB  
3
1
GPIOs  
37  
51  
83  
1
12-bit synchronized ADC  
Number of channels  
1
1
14 channels  
20 channels  
24 channels  
12-bit DAC  
Number of channels  
2
2
LCD (STM32L152xx Only)  
COM x SEG  
4x32  
8x28  
4x44  
8x40  
4x18  
13  
Comparator  
2
Capacitive sensing channels  
Max. CPU frequency  
20  
32 MHz  
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option  
1.65 V to 3.6 V without BOR option  
Operating voltage  
Ambient temperatures: –40 to +85 °C  
Junction temperature: –40 to + 105 °C  
Operating temperatures  
Packages  
LQFP48, UFQFPN48  
LQFP64, BGA64  
LQFP100, BGA100  
DocID17659 Rev 12  
11/133  
48  
 
 
Description  
STM32L151x6/8/B STM32L152x6/8/B  
2.2  
Ultra-low-power device continuum  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices are fully pin-to-pin  
and software compatible. Besides the full compatibility within the family, the devices are part  
of STMicroelectronics microcontrollers ultra-low-power strategy which also includes  
STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a  
continuum of performance, peripherals, system architecture and features.  
They are all based on STMicroelectronics ultra-low leakage process.  
Note:  
The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin  
compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx  
devices. Please refer to the STM32F and STM8L documentation for more information on  
these devices.  
2.2.1  
Performance  
All families incorporate highly energy-efficient cores with both Harvard architecture and  
®
®
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex -M3 core  
for STM32L family. In addition specific care for the design architecture has been taken to  
optimize the mA/DMIPS and mA/MHz ratios.  
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.  
2.2.2  
2.2.3  
Shared peripherals  
STM8L15xxx and STM32L1xxxx share identical peripherals which ensure a very easy  
migration from one family to another:  
Analog peripherals: ADC, DAC and comparators  
Digital peripherals: RTC and some communication interfaces  
Common system strategy  
To offer flexibility and optimize performance, the STM8L15xx and STM32L1xxxx families  
use a common architecture:  
Same power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for  
STM8L15xx devices)  
Architecture optimized to reach ultra-low consumption both in low power modes and  
Run mode  
Fast startup strategy from low power modes  
Flexible system clock  
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,  
brownout reset and programmable voltage detector.  
2.2.4  
Features  
ST ultra-low-power continuum also lies in feature compatibility:  
More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm  
Memory density ranging from 4 to 384 Kbytes  
12/133  
DocID17659 Rev 12  
 
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
3
Functional overview  
Figure 1 shows the block diagram.  
Figure 1. Ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B block diagram  
dZꢃꢄꢀꢄ<͕ꢁdZꢃꢄꢀꢂϬ͕ꢁdZꢃꢄꢀꢂϭ͕ꢁdZꢃꢄꢀꢂϮ͕ꢁdZꢃꢄꢀꢂϯꢁꢁ  
Λsꢂꢂ  
:dꢃ'ꢁΘꢁ^t  
dƌĂĐĞꢁĐŽŶƚƌŽůůĞƌ  
ꢀdD  
sꢄKZꢀ  
WKtꢀZ  
ƉďƵƐ  
s
s
ꢂꢂꢁсꢁϭ͘ϲϱsꢁƚŽꢁϯ͘ϲs  
^^  
sK>d͘ꢁZꢀ'͘  
E:dZ^d  
:dꢂ/  
ꢄŽƌƚĞdžͲDϯꢁꢄWh  
/ďƵƐ  
:dꢄ<ꢁͬꢁ^tꢄ><  
:dD^ꢁͬꢁ^tꢂꢃd  
:dꢂK  
ϭϮϴꢁ<ꢅꢁ&ůĂƐŚ  
ϰꢁ<ꢅꢁĚĂƚĂꢁꢀꢀWZKD  
&
͗ꢁϯϮꢁD,nj  
ŵĂdž  
ꢂďƵƐ  
DWh  
ĂƐꢁꢃ&  
^LJƐƚĞŵ  
ZꢃD  
Es/ꢄ  
ϭϲꢁ<ꢅ  
Λsꢂꢂꢃ  
'WꢂDꢃ  
K^ꢄͺ/E  
K^ꢄͺKhd  
ꢃ,ꢅWꢄ><  
ꢃWꢅWꢄ><  
,ꢄ><  
ydꢃ>ꢁK^ꢄ  
ϭͲϮϰꢁD,nj  
W>>ꢁΘꢁĐůŽĐŬꢁ  
ŵĂŶĂŐĞŵĞŶƚ  
ϳꢁĐŚĂŶŶĞůƐ  
&ꢄ><  
Λsꢂꢂꢃ  
^ƵƉƉůLJ  
ŵŽŶŝƚŽƌŝŶŐꢁꢁ  
Zꢄꢁ,^  
ZꢄꢁD^  
EZ^d  
WŽǁĞƌꢁƌĞƐĞƚ  
/Ŷƚ  
/tꢂ'  
sZꢀ&ꢁKhdWhd  
ꢅKZͬsZꢀ&/Ed  
Zꢄꢁ>^  
^ƚĂŶĚďLJꢁŝŶƚĞƌĨĂĐĞ  
Λsꢂꢂꢃ  
sꢂꢂꢃ  
s^^ꢃ  
ͬ
Wsꢂ  
K^ꢄϯϮͺ/E  
K^ꢄϯϮͺKhd  
ꢄŽŵƉϭ  
ꢄŽŵƉϮ  
ydꢃ>ꢁϯϮŬ,nj  
ꢄKDWϮͺ/EͲͬ/Eн  
Zdꢄͺꢃ&/E  
ZdꢄsϮ  
ꢃth  
WŽǁĞƌͲƵƉͬ  
WŽǁĞƌͲĚŽǁŶ  
ZdꢄͺKhd͕ꢁZdꢄͺd^͕ZdꢄͺdꢃDW  
ꢅĂĐŬƵƉꢁꢁ  
ƌĞŐŝƐƚĞƌ  
Wꢃ΀ϭϱ͗Ϭ΁  
Wꢅ΀ϭϱ͗Ϭ΁  
Wꢄ΀ϭϱ͗Ϭ΁  
Wꢂ΀ϭϱ͗Ϭ΁  
Wꢀ΀ϭϱ͗Ϭ΁  
W,΀Ϯ͗Ϭ΁  
'W/Kꢃ  
'W/Kꢅ  
'W/Kꢄ  
'W/Kꢂ  
'W/Kꢀ  
'W/K,  
ꢅĂĐŬƵƉꢁŝŶƚĞƌĨĂĐĞ  
>ꢄꢂꢁƐƚĞƉͲƵƉ  
ĐŽŶǀĞƌƚĞƌ  
s
>ꢄꢂꢁсꢁϮ͘ϱsꢁƚŽꢁϯ͘ϲs  
ϰꢁꢄŚĂŶŶĞůƐ  
ϰꢁꢄŚĂŶŶĞůƐ  
ϰꢁꢄŚĂŶŶĞůƐ  
d/DϮ  
d/Dϯ  
d/Dϰ  
Zy͕ꢁdy͕ꢁꢄd^͕ꢁZd^͕  
^ŵĂƌƚꢄĂƌĚꢁĂƐꢁꢃ&  
h^ꢃZdꢁϮ  
h^ꢃZdꢁϯ  
^W/Ϯ  
ꢃ,ꢅͬꢃWꢅϮ  
ꢃ,ꢅͬꢃWꢅϭ  
Zy͕ꢁdy͕ꢁꢄd^͕ꢁZd^͕  
^ŵĂƌƚꢄĂƌĚꢁĂƐꢁꢃ&  
ꢀyd͘ꢁ/d  
t<hW  
ϴϯꢁꢃ&  
DK^/͕ꢁD/^K͕ꢁ^ꢄ<͕ꢁE^^  
ꢃƐꢁꢃ&  
DK^/͕ꢁD/^K͕  
^ꢄ<͕ꢁE^^ꢁĂƐꢁꢃ&  
^W/ ϭ  
^ꢄ>͕ꢁ^ꢂꢃ  
ĂƐꢁꢃ&  
^ꢄ>͕ꢁ^ꢂꢃ͕ꢁ^DꢅƵƐ͕ꢁWDꢅƵƐ  
ĂƐꢁꢃ&  
Zy͕ꢁdy͕ꢁꢄd^͕ꢁZd^͕  
^ŵĂƌƚꢄĂƌĚꢁĂƐꢁꢃ&  
/Ϯꢄꢁϭ  
/ϮꢄꢁϮ  
h^ꢃZdꢁϭ  
Λsꢂꢂꢃ  
ϭϮͲďŝƚꢁꢃꢂꢄ  
Ϯϰꢁꢃ&  
sꢂꢂZꢀ&ͺꢃꢂꢄ  
/&  
h^ꢅͺꢂW  
h^ꢅͺꢂD  
h^ꢅꢁϮ͘Ϭꢁ&^ꢁĚĞǀŝĐĞ  
s^^Zꢀ&ͺꢃꢂꢄ  
h^ꢅꢁZꢃDꢁϱϭϮꢅ  
ttꢂ'  
dĞŵƉꢁƐĞŶƐŽƌ  
^ꢀ'ꢁdž  
ꢄKDꢁdž  
>ꢄꢂꢁϴdžϰϬꢁ;ϰdžϰϰͿ  
Λsꢂꢂꢃ  
'ĞŶĞƌĂůꢁƉƵƌƉŽƐĞ  
ƚŝŵĞƌƐ  
ꢅꢃ^/ꢄꢁd/DꢀZ^  
d/Dϲ  
ϮꢁꢄŚĂŶŶĞůƐ  
ϭꢁꢄŚĂŶŶĞů  
ϭꢁꢄŚĂŶŶĞů  
d/Dϵ  
d/DϭϬ  
d/Dϭϭ  
ꢂꢃꢄͺKhdϭꢁĂƐꢁꢃ&  
ꢂꢃꢄͺKhdϮꢁĂƐꢁꢃ&  
ϭϮͲďŝƚ ꢂꢃꢄϭ  
/&
d/Dϳ  
ϭϮͲďŝƚ ꢂꢃꢄϮ  
06Yꢀꢁꢂꢃꢃ9ꢄ  
1. AF = alternate function on I/O port pin.  
DocID17659 Rev 12  
13/133  
48  
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
3.1  
Low power modes  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices support dynamic  
voltage scaling to optimize its power consumption in run mode. The voltage from the internal  
low-drop regulator that supplies the logic can be adjusted according to the system’s  
maximum operating frequency and the external voltage supply:  
In Range 1 (V range limited to 1.71-3.6 V), the CPU runs at up to 32 MHz (refer to  
Table 17 for consumption).  
DD  
In Range 2 (full V range), the CPU runs at up to 16 MHz (refer to Table 17 for  
DD  
consumption)  
In Range 3 (full V range), the CPU runs at up to 4 MHz (generated only with the  
DD  
multispeed internal RC oscillator clock source). Refer to Table 17 for consumption.  
Seven low power modes are provided to achieve the best compromise between low power  
consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Sleep mode power consumption: refer to Table 19.  
Low power run mode  
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the  
minimum clock (65 kHz), execution from SRAM or Flash memory, and internal  
regulator in low power mode to minimize the regulator's operating current. In the Low  
power run mode, the clock frequency and the number of enabled peripherals are both  
limited.  
Low power run mode consumption: refer to Table 20: Current consumption in Low  
power run mode.  
Low power sleep mode  
This mode is achieved by entering the Sleep mode with the internal voltage regulator in  
Low power mode to minimize the regulator’s operating current. In the Low power sleep  
mode, both the clock frequency and the number of enabled peripherals are limited; a  
typical example would be to have a timer running at 32 kHz.  
When wakeup is triggered by an event or an interrupt, the system reverts to the run  
mode with the regulator on.  
Low power sleep mode consumption: refer to Table 21: Current consumption in Low  
power sleep mode.  
Stop mode with RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents and real time clock. All clocks in the V  
domain are stopped, the  
CORE  
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still  
running. The voltage regulator is in the low power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can  
be the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp  
event or the RTC wakeup.  
Stop mode without RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and  
14/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
HSE crystal oscillators are disabled. The voltage regulator is in the low power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can  
also be wakened by the USB wakeup.  
Stop mode consumption: refer to Table 22: Typical and maximum current  
consumptions in Stop mode.  
Standby mode with RTC  
Standby mode is used to achieve the lowest power consumption and real time clock.  
The internal voltage regulator is switched off so that the entire V  
domain is  
CORE  
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched  
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register  
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,  
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG  
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),  
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.  
Standby mode without RTC  
Standby mode is used to achieve the lowest power consumption. The internal voltage  
regulator is switched off so that the entire V  
domain is powered off. The PLL, MSI,  
CORE  
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After  
entering Standby mode, the RAM and register contents are lost except for registers in  
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,  
RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising  
edge on one of the three WKUP pin occurs.  
Standby mode consumption: refer to Table 23.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the  
Stop or Standby mode.  
Table 3. Functionalities depending on the operating power supply range  
Functionalities depending on the operating power supply range  
Operating power  
DAC and ADC  
operation  
Dynamicvoltage  
scaling range  
supply range  
USB  
I/O operation  
Range 2 or  
Range 3  
Degraded speed  
performance  
VDD = 1.65 to 1.71 V  
VDD = 1.71 to 1.8 V(1)  
VDD = 1.8 to 2.0 V(1)  
Not functional  
Not functional  
Not functional  
Not functional  
Not functional  
Range 1,  
Range 2 or  
Range 3  
Degraded speed  
performance  
Range 1,  
Range 2 or  
Range 3  
Conversion time  
up to 500 Ksps  
Degraded speed  
performance  
DocID17659 Rev 12  
15/133  
48  
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
Table 3. Functionalities depending on the operating power supply range (continued)  
Functionalities depending on the operating power supply range  
Operating power  
DAC and ADC  
operation  
Dynamicvoltage  
scaling range  
supply range  
USB  
I/O operation  
Range 1,  
Range 2 or  
Range 3  
Conversion time  
up to 500 Ksps  
VDD = 2.0 to 2.4 V  
Functional(2)  
Functional(2)  
Full speed operation  
Full speed operation  
Range 1,  
Range 2 or  
Range 3  
Conversion time  
up to 1 Msps  
VDD = 2.4 to 3.6 V  
1. The CPU frequency changes from initial to final must respect "FCPU initial < 4*FCPU final" to limit VCORE  
drop due to current consumption peak when frequency increases. It must also respect 5 µs delay between  
two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz,  
wait 5 µs, then switch from 16 MHz to 32 MHz.  
2. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.  
Table 4. CPU frequency range depending on dynamic voltage scaling  
CPU frequency range  
Dynamic voltage scaling range  
16 MHz to 32 MHz (1ws)  
32 kHz to 16 MHz (0ws)  
Range 1  
8 MHz to 16 MHz (1ws)  
32 kHz to 8 MHz (0ws)  
Range 2  
Range 3  
2.1 MHz to 4.2 MHz (1ws)  
32 kHz to 2.1 MHz (0ws)  
16/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
Table 5. Working mode-dependent functionalities (from Run/active down to standby)  
Stop  
Standby  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
capability  
Wakeup  
capability  
CPU  
Flash  
RAM  
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Y
Y
Y
-
Y
Y
Y
Y
-
Y
Y
Y
-
Backup Registers  
EEPROM  
Y
-
Brown-out rest  
(BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
Y
-
-
-
DMA  
Programmable  
Voltage Detector  
(PVD)  
Y
Y
Y
Y
Y
Y
Y
-
Power On Reset  
(POR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
-
Y
Y
-
Y
-
Y
Y
-
-
-
-
-
-
-
-
-
Power Down Rest  
(PDR)  
High Speed  
Internal (HSI)  
-
High Speed  
External (HSE)  
-
-
-
-
-
Low Speed Internal  
(LSI)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Y
Y
-
Low Speed  
External (LSE)  
-
Multi-Speed  
Internal (MSI)  
-
Inter-Connect  
Controller  
-
-
-
RTC  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
RTC Tamper  
Y
Auto Wakeup  
(AWU)  
Y
Y
Y
Y
Y
Y
-
Y
Y
LCD  
USB  
USART  
SPI  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
Y
(1)  
Y
Y
Y
-
Y
Y
Y
-
Y
-
-
(1)  
I2C  
-
ADC  
-
-
DocID17659 Rev 12  
17/133  
48  
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
Table 5. Working mode-dependent functionalities (from Run/active down to standby) (continued)  
Stop  
Standby  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
capability  
Wakeup  
capability  
DAC  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
-
-
-
-
Temperature  
sensor  
-
-
-
Comparators  
Y
-
16-bit and 32-bit  
Timers  
IWDG  
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
-
Y
Y
-
Y
-
Y
-
Y
-
Y
WWDG  
-
Touch sensing  
Systick Timer  
GPIOs  
-
-
-
-
-
Y
Y
Y
Y
Y
Y
-
-
-
Y
Y
-
3 Pins  
Wakeup time to  
Run mode  
0 µs  
0.36 µs  
3 µs  
32 µs  
< 8 µs  
50 µs  
0.5 µA (No  
RTC) VDD=1.8V  
0.3 µA (No RTC)  
VDD=1.8V  
1.4 µA (with  
RTC) VDD=1.8V  
1 µA (with RTC)  
VDD=1.8V  
Consumption  
VDD=1.8V to 3.6V  
(Typ)  
Down to  
214 µA/MHz  
(from Flash)  
Down to  
50 µA/MHz  
(from Flash)  
Down to Down to  
9 µA 4.4 µA  
0.5 µA (No  
RTC) VDD=3.0V  
0.3 µA (No RTC)  
VDD=3.0V  
1.6 µA (with  
1.3 µA (with  
RTC) VDD=3.0V RTC) VDD=3.0V  
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before  
entering run mode.  
3.2  
ARM® Cortex®-M3 core with MPU  
®
®
The ARM Cortex -M3 processor is the industry leading processor for embedded systems.  
It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
®
®
The ARM Cortex -M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The memory protection unit (MPU) improves system reliability by defining the memory  
attributes (such as read/write access permissions) for different memory regions. It provides  
up to eight different regions and an optional predefined background region.  
Owing to its embedded ARM core, the STM32L151x6/8/B and STM32L152x6/8/B devices  
are compatible with all ARM tools and software.  
18/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
Nested vectored interrupt controller (NVIC)  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices embed a nested  
vectored interrupt controller able to handle up to 45 maskable interrupt channels (not  
®
including the 16 interrupt lines of Cortex -M3) and 16 priority levels.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.3  
Reset and supply management  
3.3.1  
Power supply schemes  
V
= 1.65 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs  
SSA DDA  
and PLL (minimum voltage to be applied to V  
is 1.8 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
3.3.2  
Power supply supervisor  
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR) that can be coupled with a brownout reset (BOR) circuitry.  
The device exists in two versions:  
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.  
The other version without BOR operates between 1.65 V and 3.6 V.  
After the V threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or  
DD  
not at power-on), the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable the BOR permanently: in this case, the V min value becomes  
DD  
1.65 V (whatever the version, BOR active or not, at power-on).  
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever  
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the  
power ramp-up should guarantee that 1.65 V is reached on V at least 1 ms after it exits  
DD  
the POR area.  
DocID17659 Rev 12  
19/133  
48  
 
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Stop mode, it is possible to automatically switch off the  
internal reference voltage (V  
) in Stop mode. The device remains in reset mode when  
REFINT  
V
is below a specified threshold, V  
or V  
, without the need for any external  
DD  
POR/PDR  
BOR  
reset circuit.  
Note:  
3.3.3  
3.3.4  
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-  
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive  
at power-up.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
V
/V  
power supply and compares it to the V  
threshold. This PVD offers 7 different  
DD DDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V /V drops below the V threshold and/or when  
DD DDA  
PVD  
V
/V  
is higher than the V  
threshold. The interrupt service routine can then generate  
DD DDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in Run mode (nominal regulation)  
LPR is used in the Low-power run, Low-power sleep and Stop modes  
Power down is used in Standby mode. The regulator output is high impedance, the  
kernel circuitry is powered down, inducing zero consumption but the contents of the  
registers and RAM are lost are lost except for the standby circuitry (wakeup logic,  
IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from Flash memory  
Boot from System Memory  
Boot from embedded RAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1 or USART2. See STM32™ microcontroller system memory boot mode  
AN2606 for details.  
20/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
3.4  
Clock management  
The clock controller distributes the clocks coming from different oscillators to the core and  
the peripherals. It also manages clock gating for low power modes and ensures clock  
robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption, the  
clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock source: three different clock sources can be used to drive the master  
clock:  
1-24 MHz high-speed external crystal (HSE), that can supply a PLL  
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7  
frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz)  
with a consumption proportional to speed, down to 750 nA typical. When a  
32.768 kHz clock source is available in the system (LSE), the MSI frequency can  
be trimmed by software down to a ±0.5% accuracy.  
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive  
the LCD controller and the real-time clock:  
32.768 kHz low-speed external crystal (LSE)  
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock can be measured using the high-speed internal RC oscillator for  
greater precision.  
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock  
the RTC and the LCD, whatever the system clock.  
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply  
the USB interface.  
Startup clock: after reset, the microcontroller restarts by default with an internal  
2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the  
application program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If a HSE clock  
failure occurs, the master clock is automatically switched to HSI and a software  
interrupt is generated if enabled.  
Clock-out capability (MCO: microcontroller clock output): it outputs one of the  
internal clocks for external use by the application.  
Several prescalers allow the configuration of the AHB frequency, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 32 MHz. See Figure 2 for details on the clock tree.  
DocID17659 Rev 12  
21/133  
48  
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 2. Clock tree  
-3) 2#  
-3)  
!$##,+  
TO !$#  
0ERIPHERAL CLOCK  
ENABLE  
ꢁꢈ -(Z  
(3) 2#  
(3)  
ꢆꢇ -(Z  
53"#,+  
TO 53" INTERFACE  
0,,6#/ꢀꢃ  
37  
0,,32#  
0,,-5,  
0,,$)6  
ꢀꢃꢂꢀꢋꢂꢀꢆ  
XꢋꢂXꢆꢂXꢈꢂXꢇ  
XꢁꢃꢂXꢁꢈꢂXꢃꢆ  
XꢋꢃꢂXꢆꢇ  
(3)  
ꢋꢃ  
-(Z  
MAX  
393#,+  
0,,#,+  
/3#?/54  
/3#?).  
ꢁꢐꢃꢆ -(Z  
(3% /3#  
(3%  
#33  
(#,+  
ꢋꢃ -(Z MAX  
TO !(" BUSꢂ COREꢂ  
MEMORY AND $-!  
#LOCK  
%NABLE  
TO #ORTEX 3YSTEM TIMER  
ꢀꢇ  
&#,+ #ORTEX  
FREE RUNNING CLOCK  
!("  
0RESCALER  
ꢀꢁꢂ ꢃꢄꢄꢅꢁꢃ  
!0"ꢁ  
0RESCALER  
ꢀꢁꢂ ꢃꢂ ꢆꢂ ꢇꢂ ꢁꢈ  
ꢋꢃ -(Z MAX  
0#,+ꢁ  
TO !0"ꢁ  
PERIPHERALS  
0ERIPHERAL #LOCK  
%NABLE  
)F ꢍ!0"ꢁ PRESCALER ꢎꢁꢏ Xꢁ  
ELSE Xꢃ  
TO 4)-ꢃꢂꢋꢂꢆꢂꢈ AND ꢌ  
4)-X#,+  
0ERIPHERAL #LOCK  
%NABLE  
!0"ꢃ  
0RESCALER  
ꢋꢃ -(Z MAX  
0#,+ꢃ  
PERIPHERALS TO !0"ꢃ  
ꢀꢁꢂ ꢃꢂ ꢆꢂ ꢇꢂ ꢁꢈ  
0ERIPHERAL #LOCK  
%NABLE  
TO 4)-ꢉꢂ ꢁꢊꢂ AND ꢁꢁ  
4)-X#,+  
)F ꢍ!0"ꢃ PRESCALER ꢎꢁꢏ Xꢁ  
ELSE Xꢃ  
0ERIPHERAL #LOCK  
%NABLE  
TO  
4IMER ꢉꢂ ꢁꢊꢂ ꢁꢁ %42  
ꢀꢃꢂꢆꢂ  
ꢇꢂꢁꢈ  
/3#ꢋꢃ?).  
TO 24#  
TO ,#$  
,3%  
,3% /3#  
ꢋꢃꢄꢌꢈꢇ K(Z  
24##,+  
/3#ꢋꢃ?/54  
24#3%,;ꢁꢑꢊ=  
TO )NDEPENDENT 7ATCHDOG ꢍ)7$'ꢏ  
)7$'#,+  
,3)  
,3) 2#  
ꢋꢌ K(Z  
,EGENDꢀ  
(3% ꢎ (IGHꢐSPEED EXTERNAL CLOCK SIGNAL  
(3) ꢎ (IGHꢐSPEED INTERNAL CLOCK SIGNAL  
,3) ꢎ ,OWꢐSPEED INTERNAL CLOCK SIGNAL  
,3% ꢎ ,OWꢐSPEED EXTERNAL CLOCK SIGNAL  
-3) ꢎ -ULTISPEED INTERNAL CLOCK SIGNAL  
393#,+  
(3)  
ꢀꢁꢂꢃꢂꢆꢂ  
ꢇꢂꢁꢈ  
-3)  
-#/  
(3%  
0,,#,+  
,3)  
,3%  
-#/3%,  
AIꢁꢌꢃꢁꢃC  
22/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
3.5  
Low power real-time clock and backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded  
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made  
automatically. The RTC provides a programmable alarm and programmable periodic  
interrupts with wakeup from Stop and Standby modes.  
The programmable wakeup time ranges from 120 µs to 36 hours  
Stop mode consumption with LSI and Auto-wakeup: 1.2 µA (at 1.8 V) and 1.4 µA (at  
3.0 V)  
Stop mode consumption with LSE, calendar and Auto-wakeup: 1.3 µA (at 1.8V), 1.6 µA  
(at 3.0 V)  
The RTC can be calibrated with an external 512 Hz output, and a digital compensation  
circuit helps reduce drift due to crystal deviation.  
There are twenty 32-bit backup registers provided to store 80 bytes of user application data.  
They are cleared in case of tamper detection.  
3.6  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions, and can be individually  
remapped using dedicated AFIO registers. All GPIOs are high current capable. The  
alternate function configuration of I/Os can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is  
connected to the AHB with a toggling speed of up to 16 MHz.  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge detector lines used to generate  
interrupt/event requests. Each line can be individually configured to select the trigger event  
(rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected  
to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or  
Comparator events.  
DocID17659 Rev 12  
23/133  
48  
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
3.7  
Memories  
The STM32L151x6/8/B and STM32L152x6/8/B devices have the following features:  
Up to 16 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0  
wait states. With the enhanced bus matrix, operating the RAM does not lead to any  
performance penalty during accesses to the system bus (AHB and APB buses).  
The non-volatile memory is divided into three arrays:  
32, 64 or 128 Kbytes of embedded Flash program memory  
4 Kbytes of data EEPROM  
Options bytes  
The options bytes are used to write-protect the memory (with 4 Kbytes granularity)  
and/or readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
®
Level 2: chip readout protection, debug features (Cortex -M3 JTAG and serial  
wire) and boot in RAM selection disabled (JTAG fuse)  
The whole non-volatile memory embeds the error correction code (ECC) feature.  
3.8  
DMA (direct memory access)  
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management, avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with software trigger  
support for each channel. Configuration is done by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose timers  
and ADC.  
3.9  
LCD (liquid crystal display)  
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320  
pixels.  
Internal step-up converter to guarantee functionality and contrast control irrespective of  
. This converter can be deactivated, in which case the V pin is used to provide  
V
DD  
LCD  
the voltage to the LCD  
Supports static, 1/2, 1/3, 1/4 and 1/8 duty  
Supports static, 1/2, 1/3 and 1/4 bias  
Phase inversion to reduce power consumption and EMI  
Up to 8 pixels can be programmed to blink  
Unneeded segments and common pins can be used as general I/O pins  
LCD RAM can be updated at any time owing to a double-buffer  
The LCD controller can operate in Stop mode  
24/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
3.10  
ADC (analog-to-digital converter)  
A 12-bit analog-to-digital converters is embedded into STM32L151x6/8/B and  
STM32L152x6/8/B devices with up to 24 external channels, performing conversions in  
single-shot or scan mode. In scan mode, automatic conversion is performed on a selected  
group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start trigger and injection trigger, to allow the application to synchronize A/D  
conversions and timers. An injection mode allows high priority conversions to be done by  
interrupting a scan mode which runs in as a background task.  
The ADC includes a specific low power mode. The converter is able to operate at maximum  
speed even if the CPU is operating at a very low frequency and has an auto-shutdown  
function. The ADC’s runtime and analog front-end current consumption are thus minimized  
whatever the MCU operating mode.  
3.10.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V  
temperature.  
that varies linearly with  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode, see Table 58:  
Temperature sensor calibration values.  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN17 input channel. It  
REFINT  
enables accurate monitoring of the V value (when no external voltage, VREF+, is  
DD  
available for ADC). The precise voltage of V  
is individually measured for each part by  
REFINT  
ST during production test and stored in the system memory area. It is accessible in read-  
only mode see Table 16: Embedded internal reference voltage.  
3.11  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in non-inverting configuration.  
DocID17659 Rev 12  
25/133  
48  
 
 
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channels’ independent or simultaneous conversions  
DMA capability for each channel (including the underrun interrupt)  
external triggers for conversion  
input reference voltage V  
REF+  
Eight DAC trigger inputs are used in the STM32L151x6/8/B and STM32L152x6/8/B devices.  
The DAC channels are triggered through the timer update outputs that are also connected  
to different DMA channels.  
3.12  
Ultra-low-power comparators and reference voltage  
The STM32L151x6/8/B and STM32L152x6/8/B devices embed two comparators sharing  
the same current bias and reference voltage. The reference voltage can be internal or  
external (coming from an I/O).  
one comparator with fixed threshold  
one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of  
the following:  
DAC output  
External I/O  
Internal reference voltage (V  
) or V  
submultiple (1/4, 1/2, 3/4)  
REFINT  
REFINT  
Both comparators can wake up from Stop mode, and be combined into a window  
comparator.  
The internal reference voltage is available externally via a low power / low current output  
buffer (driving current capability of 1 µA typical).  
3.13  
3.14  
Routing interface  
This interface controls the internal routing of I/Os to TIM2, TIM3, TIM4 and to the  
comparator and reference voltage output.  
Touch sensing  
The STM32L151x6/8/B and STM32L152x6/8/B devices provide a simple solution for adding  
capacitive sensing functionality to any application. These devices offer up to 20 capacitive  
sensing channels distributed over 10 analog I/O groups. Only software capacitive sensing  
acquisition mode is supported.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
26/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. The capacitive sensing acquisition only requires few external components to  
operate.  
Reliable touch sensing functionality can be quickly and easily implemented using the free  
STM32L1xx STMTouch touch sensing firmware library.  
3.15  
Timers and watchdogs  
The ultra-low-power STM32L151x6/8/B and STM32L152x6/8/B devices include six general-  
purpose timers, two basic timers and two watchdog timers.  
Table 6 compares the features of the general-purpose and basic timers.  
Table 6. Timer feature comparison  
Counter  
resolution  
Counter Prescaler DMA request Capture/compare Complementary  
Timer  
type  
factor  
generation  
channels  
outputs  
TIM2,  
TIM3,  
TIM4  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
4
No  
Any integer  
between 1  
and 65536  
TIM9  
Up  
Up  
Up  
No  
No  
2
1
0
No  
No  
No  
Any integer  
between 1  
and 65536  
TIM10,  
TIM11  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
Yes  
DocID17659 Rev 12  
27/133  
48  
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
3.15.1  
General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)  
There are six synchronizable general-purpose timers embedded in the STM32L151x6/8/B  
and STM32L152x6/8/B devices (see Table 6 for differences).  
TIM2, TIM3, TIM4  
These timers are based on a 16-bit auto-reload up/down-counter and a 16-bit prescaler.  
They feature 4 independent channels each for input capture/output compare, PWM or one-  
pulse mode output. This gives up to 12 input captures/output compares/PWMs on the  
largest packages.  
The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11  
and TIM9 general-purpose timers via the Timer Link feature for synchronization or event  
chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers  
can be used to generate PWM outputs.  
TIM2, TIM3, TIM4 all have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
TIM10, TIM11 and TIM9  
These timers are based on a 16-bit auto-reload up-counter and a 16-bit prescaler. They  
include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas  
TIM9 has two independent channels for input capture/output compare, PWM or one-pulse  
mode output. They can be synchronized with the TIM2, TIM3, TIM4 full-featured general-  
purpose timers.  
They can also be used as simple time bases and be clocked by the LSE clock source  
(32.768 kHz) to provide time bases independent from the main CPU clock.  
3.15.2  
3.15.3  
Basic timers (TIM6 and TIM7)  
These timers are mainly used for DAC trigger generation. They can also be used as generic  
16-bit time bases.  
SysTick timer  
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is  
based on a 24-bit down-counter with autoreload capability and a programmable clock  
source. It features a maskable system interrupt generation when the counter reaches 0.  
3.15.4  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit down-counter and 8-bit prescaler. It is  
clocked from an independent 37 kHz internal RC and, as it operates independently of the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes. The counter  
can be frozen in debug mode.  
28/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Functional overview  
3.15.5  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit down-counter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.16  
Communication interfaces  
3.16.1  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
3.16.2  
3.16.3  
Universal synchronous/asynchronous receiver transmitter (USART)  
All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide  
hardware management of the CTS and RTS signals and are ISO 7816 compliant. They  
support IrDA SIR ENDEC and have LIN Master/Slave capability.  
All USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in  
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
Both SPIs can be served by the DMA controller.  
3.16.4  
Universal serial bus (USB)  
The STM32L151x6/8/B and STM32L152x6/8/B devices embed a USB device peripheral  
compatible with the USB full speed 12 Mbit/s. The USB interface implements a full speed  
(12 Mbit/s) function interface. It has software-configurable endpoint setting and supports  
suspend/resume. The dedicated 48 MHz clock is generated from the internal main PLL (the  
clock source must use a HSE crystal oscillator).  
DocID17659 Rev 12  
29/133  
48  
 
 
 
 
 
 
Functional overview  
STM32L151x6/8/B STM32L152x6/8/B  
3.17  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.18  
Development support  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a  
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.  
The JTAG port can be permanently disabled with a JTAG fuse.  
Embedded Trace Macrocell™  
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32L151x6/8/B and STM32L152x6/8/B device through a small number of ETM pins to  
an external hardware trace port analyzer (TPA) device. The TPA is connected to a host  
computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and  
data flow activity can be recorded and then formatted for display on the host computer  
running debugger software. TPA hardware is commercially available from common  
development tool vendors. It operates with third party debugger software tools.  
30/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
4
Pin descriptions  
Figure 3. STM32L15xVx UFBGA100 ballout  
ꢄꢇ  
ꢄꢄ  
ꢄꢅ  
3'ꢁ  
3$ꢄꢅ  
3$ꢄꢄ  
3$ꢄꢇ  
3&ꢂ  
%227ꢇ  
3%ꢋ  
3'ꢋ  
3%ꢀ  
3'ꢀ  
3'ꢅ  
3$ꢄꢀ  
3&ꢄꢇ  
3+ꢅ  
3%ꢃ  
3$ꢄꢁ  
3'ꢄ  
3(ꢄ  
3(ꢅ  
3(ꢁ  
3%ꢆ  
3'ꢆ  
3$ꢄꢆ  
3&ꢄꢅ  
3(ꢀ  
3(ꢆ  
$
%
&
3'ꢊ  
3%ꢂ  
3%ꢊ  
3%ꢁ  
3&ꢄꢀ  
:.83ꢅ  
9''Bꢀ  
3(ꢇ  
3'ꢇ  
3&ꢄꢄ  
3$ꢂ  
3(ꢊ  
:8.3ꢀ  
3&ꢄꢆ  
26&ꢀꢅB,1  
'
(
3$ꢃ  
966Bꢀ  
966Bꢆ  
3&ꢋ  
3&ꢊ  
3&ꢃ  
3&ꢄꢁ  
9/&'  
26&ꢀꢅB287  
3+ꢇ  
966Bꢅ  
966Bꢄ  
)
966Bꢁ  
26&B,1  
3+ꢄ  
*
9''Bꢅ 9''Bꢄ  
9''Bꢁ  
1567  
3&ꢄ  
26&B287  
3'ꢄꢆ  
3'ꢄꢄ  
3%ꢄꢆ  
3'ꢄꢀ  
3'ꢄꢇ  
3%ꢄꢀ  
3%ꢄꢅ  
3(ꢄꢁ  
+
-
3'ꢄꢁ  
3'ꢄꢅ  
3%ꢄꢁ  
3%ꢄꢇ  
3(ꢄꢀ  
3&ꢇ  
9''Bꢆ  
3&ꢅ  
966$  
95()ꢈ  
95()ꢉ  
9''$  
3'ꢂ  
3(ꢄꢇ  
3(ꢂ  
3'ꢃ  
3$ꢁ  
3$ꢊ  
3&ꢆ  
3&ꢁ  
3%ꢇ  
3$ꢅ  
3$ꢀ  
.
/
3&ꢀ  
3%ꢅ  
3%ꢄ  
3(ꢄꢅ  
3(ꢄꢄ  
3%ꢄꢄ  
3(ꢄꢆ  
3(ꢃ  
3(ꢋ  
3$ꢇ  
:.83ꢄ  
3$ꢋ  
3$ꢆ  
3$ꢄ  
0
AIꢁꢌꢊꢉꢈF  
1. This figure shows the package top view.  
DocID17659 Rev 12  
31/133  
48  
 
 
 
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 4. STM32L15xVx LQFP100 pinout  
0%ꢃ  
0%ꢋ  
0%ꢆ  
ꢌꢅ  
ꢌꢆ  
ꢌꢋ  
ꢌꢃ  
ꢌꢁ  
ꢌꢊ  
ꢈꢉ  
ꢈꢇ  
ꢈꢌ  
ꢈꢈ  
ꢈꢅ  
ꢈꢆ  
ꢈꢋ  
ꢈꢃ  
ꢈꢁ  
ꢈꢊ  
ꢅꢉ  
ꢅꢇ  
ꢅꢌ  
ꢅꢈ  
ꢅꢅ  
ꢅꢆ  
ꢅꢋ  
ꢅꢃ  
ꢅꢁ  
6$$?ꢃ  
633?ꢃ  
0(ꢃ  
0!ꢁꢋ  
0!ꢁꢃ  
0!ꢁꢁ  
0!ꢁꢊ  
0!ꢉ  
0!ꢇ  
0#ꢉ  
0#ꢇ  
0#ꢌ  
0#ꢈ  
0$ꢁꢅ  
0$ꢁꢆ  
0$ꢁꢋ  
0$ꢁꢃ  
0$ꢁꢁ  
0$ꢁꢊ  
0$ꢉ  
0%ꢅ  
0%ꢈꢐ7+50ꢋ  
6,#$  
0#ꢁꢋꢐ7+50ꢃ  
0#ꢁꢆꢐ/3#ꢋꢃ?).  
0#ꢁꢅꢐ/3#ꢋꢃ?/54  
633?ꢅ  
ꢁꢊ  
ꢁꢁ  
ꢁꢃ  
ꢁꢋ  
ꢁꢆ  
ꢁꢅ  
ꢁꢈ  
ꢁꢌ  
ꢁꢇ  
ꢁꢉ  
ꢃꢊ  
ꢃꢁ  
ꢃꢃ  
ꢃꢋ  
ꢃꢆ  
ꢃꢅ  
6$$?ꢅ  
0(ꢊꢐ/3#?).  
0(ꢁꢐ/3#?/54  
.234  
,1&0ꢁꢊꢊ  
0#ꢊ  
0#ꢁ  
0#ꢃ  
0#ꢋ  
633!  
62%&ꢐ  
62%&ꢒ  
6$$!  
0$ꢇ  
0"ꢁꢅ  
0"ꢁꢆ  
0"ꢁꢋ  
0"ꢁꢃ  
0!ꢊꢐ7+50ꢁ  
0!ꢁ  
0!ꢃ  
AIꢁꢅꢈꢉꢃC  
1. This figure shows the package top view.  
32/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
Figure 5. STM32L15xRx TFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
OSC32_IN WKUP2  
PC13-  
A
B
C
D
E
F
PB9  
PB8  
PB7  
PB6  
PB4  
BOOT0  
PB5  
PB3  
PD2  
PA15  
PC11  
PA10  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
PC15-  
OSC32_OUT  
VLCD  
PH0-  
OSC_IN  
V
V
PC12  
SS_4  
PH1-  
OSC_OUT  
V
V
V
PA8  
DD_4  
SS_3  
SS_2  
SS_1  
NRST  
PC1  
PC2  
PC0  
PA2  
V
V
V
PC7  
PC8  
DD_3  
DD_2  
DD_1  
V
PA5  
PB0  
PC6  
PB15  
PB14  
SSA  
V
REF+  
G
H
PA0-WKUP1  
PA1  
PA3  
PA4  
PA6  
PA7  
PB1  
PC4  
PB2  
PC5  
PB10  
PB11  
PB13  
PB12  
V
DDA  
AI16090c  
1. This figure shows the package top view.  
DocID17659 Rev 12  
33/133  
48  
 
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 6. STM32L15xRx LQFP64 pinout  
ꢊꢆ ꢊꢀ  ꢊꢄ  ꢁꢂ  ꢁꢋ  ꢁꢁ  ꢁꢀ  ꢁꢄ  ꢆꢂ  
9''Bꢅ  
966Bꢅ  
3$ꢄꢀ  
3$ꢄꢅ  
3$ꢄꢄ  
3$ꢄꢇ  
3$ꢂ  
9
ꢆꢃ  
/&'  
3&ꢄꢀꢈ:.83ꢅ  
ꢆꢋ  
ꢌꢆꢊ  
ꢌꢆꢁ  
ꢌꢆꢆ  
ꢌꢆꢀ  
ꢆꢅ  
ꢆꢄ  
ꢆꢇ  
ꢀꢂ  
ꢀꢃ  
ꢀꢋ  
ꢀꢊ  
ꢀꢁ  
ꢀꢆ  
ꢀꢀ  
3&ꢄꢆꢈ26&ꢀꢅB,1  
3&ꢄꢁꢈ26&ꢀꢅB287  
3+ꢇꢈ26&B,1  
3+ꢄꢈ26&B287  
1567  
ꢊꢌ  
ꢋꢌ  
ꢃꢌ  
ꢂꢌ  
ꢄꢇ  
ꢄꢄ  
ꢄꢅ  
ꢄꢀ  
ꢄꢆ  
ꢄꢁ  
ꢄꢊ  
3$ꢃ  
3&ꢇ  
/4)3ꢊꢆ  
3&ꢂ  
3&ꢄ  
3&ꢃ  
3&ꢅ  
3&ꢋ  
3&ꢀ  
3&ꢊ  
966$  
3%ꢄꢁ  
3%ꢄꢆ  
3%ꢄꢀ  
3%ꢄꢅ  
9''$  
3$ꢇꢈ:.83ꢄ  
3$ꢄ  
3$ꢅ  
ꢄꢋ          ꢅꢋ       
DLꢄꢁꢊꢂꢀG  
1. This figure shows the package top view.  
Figure 7. STM32L15xCx LQFP48 pinout  
ꢆꢃ ꢆꢋ ꢆꢊ ꢆꢁ ꢆꢆ ꢆꢀ ꢆꢅ ꢆꢄ ꢆꢇ ꢀꢂ ꢀꢃ ꢀꢋ  
ꢀꢊ  
9''Bꢅꢌꢌ  
9
/&'  
966Bꢅꢌꢌ  
3$ꢄꢀꢌꢌ  
3$ꢄꢅꢌꢌ  
3$ꢄꢄꢌꢌ  
3$ꢄꢇꢌꢌ  
3$ꢂꢌꢌ  
3&ꢄꢀꢈ:.83ꢅ  
3&ꢄꢆꢈ26&ꢀꢅB,1  
3&ꢄꢁꢈ26&ꢀꢅB287  
3+ꢇꢈ26&B,1  
ꢀꢁ  
ꢀꢆ  
ꢀꢀ  
ꢀꢅ  
ꢀꢄ  
ꢀꢇ  
ꢅꢂ  
ꢅꢃ  
ꢅꢋ  
ꢅꢊ  
ꢅꢁ  
3+ꢄꢈ26&B287 ꢊꢌ  
1567 ꢋꢌ  
/4)3ꢆꢃ  
3$ꢃꢌꢌ  
966$ ꢃꢌ  
9''$ ꢂꢌ  
3%ꢄꢁꢌꢌ  
3%ꢄꢆꢌꢌ  
3%ꢄꢀꢌꢌ  
3%ꢄꢅꢌ  
3$ꢇ ꢈ:.83ꢄ ꢄꢇ  
3$ꢄ ꢄꢄ  
ꢄꢅ  
3$ꢅ  
ꢅꢆ  
ꢄꢀ ꢄꢆ ꢄꢁ ꢄꢊ ꢄꢋ ꢄꢃ ꢄꢂ ꢅꢇ ꢅꢄ ꢅꢅ ꢅꢀ  
DLꢄꢁꢊꢂꢆG  
1. This figure shows the package top view.  
34/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
Figure 8. STM32L15xCx UFQFPN48 pinout  
ꢆꢇ ꢆꢌ ꢆꢈ  
ꢆꢅ ꢆꢆ ꢆꢋ ꢆꢃ ꢆꢁ ꢆꢊ  
ꢋꢉ ꢋꢇ ꢋꢌ  
ꢋꢈ  
6
6
,#$  
$$?ꢃ  
6
0#ꢁꢋꢐ7+50ꢃ  
0#ꢁꢆꢐ/3#ꢋꢃ?).  
0#ꢁꢅꢐ/3#ꢋꢃ?/54  
ꢋꢅ  
33?ꢃ  
0!ꢁꢋ  
0!ꢁꢃ  
0!ꢁꢁ  
0!ꢁꢊ  
0!ꢉ  
ꢋꢆ  
ꢋꢋ  
0(ꢊꢐ/3#?).  
ꢋꢃ  
ꢋꢁ  
0(ꢁꢐ/3#?/54  
5&1&0.ꢆꢇ  
ꢋꢊ  
ꢃꢉ  
.234  
6
0!ꢇ  
33!  
6
ꢃꢇ  
ꢃꢌ  
0"ꢁꢅ  
0"ꢁꢆ  
$$!  
0!ꢊꢐ7+50ꢁ  
0!ꢁ  
ꢁꢊ  
ꢁꢁ  
ꢁꢃ  
ꢃꢈ  
0"ꢁꢋ  
0"ꢁꢃ  
ꢃꢅ  
ꢃꢆ  
0!ꢃ  
ꢁꢋ ꢁꢆ ꢁꢅ ꢁꢈ  
ꢁꢌ ꢁꢇ ꢁꢉ ꢃꢊ  
ꢃꢁ ꢃꢃ ꢃꢋ  
AIꢁꢅꢈꢉꢅD  
1. This figure shows the package top view.  
DocID17659 Rev 12  
35/133  
48  
 
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Table 7. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function  
during and after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Pin type  
I/O  
FT  
TC  
B
Input / output pin  
5 V tolerant I/O  
Standard 3.3 V I/O  
I/O structure  
Notes  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Unless otherwise specified by a note, all I/Os are set as floating inputs during  
and after reset  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
36/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions  
Pins  
Pins functions  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
functions  
Alternate functions  
TRACECLK/LCD_SEG38/  
TIM3_ETR  
1
2
-
-
-
-
B2  
A1  
-
-
PE2  
PE3  
I/O FT  
I/O FT  
PE2  
PE3  
-
-
TRACED0/LCD_SEG39/  
TIM3_CH1  
3
4
5
6
-
-
-
-
-
B1  
C2  
D2  
-
-
PE4  
PE5  
I/O FT  
I/O FT  
PE4  
PE5  
PE6  
VLCD  
TRACED1/TIM3_CH2  
TRACED2/TIM9_CH1  
TRACED3/TIM9_CH2  
-
-
-
-
-
PE6-WKUP3 I/O FT  
WKUP3  
-
(3)  
1
B2 E2  
1
VLCD  
S
RTC_TAMP1/  
RTC_TS/  
PC13-  
WKUP2  
7
2
A2 C1  
2
I/O FT  
PC13  
-
RTC_OUT/  
WKUP2  
PC14-  
8
9
3
4
A1 D1  
B1 E1  
3
4
I/O TC  
PC14  
PC15  
-
-
OSC32_IN  
OSC32_IN(4)  
PC15-  
OSC32_OUT I/O TC  
OSC32_OUT  
(4)  
10  
11  
-
-
-
-
F2  
-
-
VSS_5  
VDD_5  
S
S
-
-
VSS_5  
VDD_5  
-
-
-
-
G2  
PH0-  
12  
5
C1 F1  
5
I/O TC  
PH0  
-
OSC_IN  
OSC_IN(5)  
PH1-  
OSC_OUT  
13  
14  
15  
6
7
8
D1 G1  
E1 H2  
E3 H1  
6
7
-
I/O TC  
I/O RST  
I/O FT  
PH1  
NRST  
PC0  
-
OSC_OUT  
-
NRST  
PC0  
-
ADC_IN10/  
LCD_SEG18  
/COMP1_INP  
ADC_IN11/  
16  
9
E2 J2  
-
-
-
PC1  
PC2  
PC3  
I/O FT  
I/O FT  
I/O TC  
PC1  
PC2  
PC3  
LCD_SEG19  
LCD_SEG20  
LCD_SEG21  
COMP1_INP  
ADC_IN12/  
17 10 F2 J3  
COMP1_INP  
ADC_IN13/  
18 11 -(6)  
K2  
COMP1_INP  
DocID17659 Rev 12  
37/133  
48  
 
 
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Pins functions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)  
Pins  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
Alternate functions  
functions  
19 12 F1 J1  
8
-
VSSA  
S
S
-
-
VSSA  
-
-
-
-
20  
21  
-
-
-
K1  
L1  
VREF-  
VREF-  
G1  
-
VREF+  
VDDA  
S
S
-
-
VREF+  
VDDA  
-
-
-
-
(6)  
22 13 H1 M1  
9
WKUP1/  
ADC_IN0/  
USART2_CTS/  
TIM2_CH1_ETR  
23 14 G2 L2 10 PA0-WKUP1 I/O FT  
PA0  
COMP1_INP  
USART2_RTS/  
ADC_IN1/  
24 15 H2 M2 11  
25 16 F3 K3 12  
26 17 G3 L3 13  
PA1  
PA2  
PA3  
I/O FT  
I/O FT  
I/O TC  
PA1  
PA2  
PA3  
TIM2_CH2/LCD_SEG0  
COMP1_INP  
ADC_IN2/  
USART2_TX/TIM2_CH3/  
TIM9_CH1/LCD_SEG1  
COMP1_INP  
ADC_IN3/  
USART2_RX/TIM2_CH4/  
TIM9_CH2/LCD_SEG2  
COMP1_INP  
27 18 C2 E3  
28 19 D2 H3  
-
-
VSS_4  
VDD_4  
S
S
-
-
VSS_4  
VDD_4  
-
-
-
-
ADC_IN4/  
DAC_OUT1/  
COMP1_INP  
29 20 H3 M3 14  
PA4  
PA5  
I/O TC  
I/O TC  
PA4  
PA5  
SPI1_NSS/USART2_CK  
ADC_IN5/  
DAC_OUT2/  
SPI1_SCK/  
30 21 F4 K4 15  
TIM2_CH1_ETR  
COMP1_INP  
ADC_IN6  
SPI1_MISO/TIM3_CH1/  
LCD_SEG3/TIM10_CH1  
31 22 G4 L4 16  
32 23 H4 M4 17  
PA6  
PA7  
PC4  
PC5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PA6  
PA7  
PC4  
PC5  
/COMP1_INP  
ADC_IN7/  
SPI1_MOSI//TIM3_CH2/  
LCD_SEG4/TIM11_CH1  
COMP1_INP  
ADC_IN14/  
33 24 H5 K5  
34 25 H6 L5  
-
-
LCD_SEG22  
LCD_SEG23  
COMP1_INP  
ADC_IN15/  
COMP1_INP  
38/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)  
Pins  
Pins functions  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
functions  
Alternate functions  
ADC_IN8/  
COMP1_INP/  
35 26 F5 M5 18  
PB0  
PB1  
I/O TC  
I/O FT  
PB0  
PB1  
TIM3_CH3/LCD_SEG5  
TIM3_CH4/LCD_SEG6  
VREF_OUT  
ADC_IN9/  
COMP1_INP/  
36 27 G5 M6 19  
37 28 G6 L6 20  
VREF_OUT  
PB2  
PE7  
I/O FT PB2/BOOT1  
BOOT1  
-
-
ADC_IN22/  
38  
39  
40  
41  
-
-
-
-
-
-
-
-
M7  
L7  
-
-
-
-
I/O TC  
I/O TC  
I/O TC  
I/O TC  
PE7  
PE8  
COMP1_INP  
ADC_IN23/  
PE8  
PE9  
-
COMP1_INP  
ADC_IN24/  
M8  
L8  
PE9  
TIM2_CH1_ETR  
TIM2_CH2  
COMP1_INP  
ADC_IN25/  
PE10  
PE10  
COMP1_INP  
42  
43  
44  
45  
46  
-
-
-
-
-
-
-
-
-
-
M9  
L9  
-
-
-
-
-
PE11  
PE12  
PE13  
PE14  
PE15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH3  
TIM2_CH4/SPI1_NSS  
SPI1_SCK  
-
-
-
-
-
M10  
M11  
M12  
SPI1_MISO  
SPI1_MOSI  
I2C2_SCL/USART3_TX/  
TIM2_CH3/LCD_SEG10  
47 29 G7 L10 21  
48 30 H7 L11 22  
PB10  
PB11  
I/O FT  
I/O FT  
PB10  
PB11  
-
-
I2C2_SDA/USART3_RX/  
TIM2_CH4/LCD_SEG11  
49 31 D6 F12 23  
50 32 E6 G12 24  
VSS_1  
VDD_1  
S
S
-
-
VSS_1  
VDD_1  
-
-
-
-
SPI2_NSS/I2C2_SMBA/  
ADC_IN18/  
51 33 H8 L12 25  
52 34 G8 K12 26  
PB12  
PB13  
I/O FT  
I/O FT  
PB12  
PB13  
USART3_CK/  
LCD_SEG12/TIM10_CH1  
COMP1_INP  
SPI2_SCK/USART3_CTS/  
LCD_SEG13/  
ADC_IN19/  
COMP1_INP  
TIM9_CH1  
DocID17659 Rev 12  
39/133  
48  
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Pins functions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)  
Pins  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
Alternate functions  
functions  
SPI2_MISO/  
ADC_IN20/  
53 35 F8 K11 27  
54 36 F7 K10 28  
PB14  
PB15  
I/O FT  
I/O FT  
PB14  
PB15  
USART3_RTS/  
COMP1_INP  
LCD_SEG14//TIM9_CH2  
ADC_IN21/  
SPI2_MOSI/LCD_SEG15/  
COMP1_INP/  
TIM11_CH1  
RTC_REFIN  
USART3_TX/  
-
55  
56  
57  
58  
-
-
-
-
-
-
-
-
K9  
K8  
-
-
-
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
LCD_SEG28  
USART3_RX/  
-
LCD_SEG29  
USART3_CK/  
J12  
J11  
PD10  
PD11  
PD10  
PD11  
-
LCD_SEG30  
USART3_CTS/  
-
LCD_SEG31  
TIM4_CH1/  
59  
-
-
J10  
-
PD12  
I/O FT  
PD12  
USART3_RTS/  
LCD_SEG32  
-
60  
61  
62  
-
-
-
-
-
-
H12  
H11  
H10  
-
-
-
-
-
-
-
PD13  
PD14  
PD15  
PC6  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD13  
PD14  
PD15  
PC6  
TIM4_CH2/LCD_SEG33  
TIM4_CH3/LCD_SEG34  
TIM4_CH4/LCD_SEG35  
TIM3_CH1/LCD_SEG24  
TIM3_CH2/LCD_SEG25  
TIM3_CH3/LCD_SEG26  
TIM3_CH4/LCD_SEG27  
-
-
-
-
-
-
-
63 37 F6 E12  
64 38 E7 E11  
65 39 E8 E10  
66 40 D8 D12  
PC7  
PC7  
PC8  
PC8  
PC9  
PC9  
USART1_CK/MCO/  
LCD_COM0  
67 41 D7 D11 29  
PA8  
I/O FT  
PA8  
-
68 42 C7 D10 30  
69 43 C6 C12 31  
PA9  
I/O FT  
I/O FT  
PA9  
USART1_TX/LCD_COM1  
USART1_RX/LCD_COM2  
-
-
PA10  
PA10  
USART1_CTS/  
SPI1_MISO  
70 44 C8 B12 32  
PA11  
I/O FT  
PA11  
USB_DM  
40/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Pin descriptions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)  
Pins  
Pins functions  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
functions  
Alternate functions  
USART1_RTS/  
SPI1_MOSI  
71 45 B8 A12 33  
72 46 A8 A11 34  
PA12  
PA13  
I/O FT  
PA12  
USB_DP  
-
JTMS-  
SWDIO  
I/O FT  
I/O FT  
JTMS-SWDIO  
73  
-
-
C11  
-
PH2  
VSS_2  
VDD_2  
PH2  
VSS_2  
VDD_2  
-
-
-
-
-
-
74 47 D5 F11 35  
75 48 E5 G11 36  
S
S
-
-
JTCK  
-SWCLK  
76 49 A7 A10 37  
77 50 A6 A9 38  
PA14  
PA15  
I/O FT  
I/O FT  
JTCK-SWCLK  
-
-
TIM2_CH1_ETR/PA15/  
JTDI  
SPI1_NSS/  
LCD_SEG17  
USART3_TX/LCD_SEG28  
/LCD_SEG40/LCD_COM4  
78 51 B7 B11  
79 52 B6 C10  
80 53 C5 B10  
-
-
-
PC10  
PC11  
PC12  
I/O FT  
I/O FT  
I/O FT  
PC10  
PC11  
PC12  
-
-
-
USART3_RX/LCD_SEG29  
/LCD_SEG41/LCD_COM5  
USART3_CK/LCD_SEG30  
/LCD_SEG42/LCD_COM6  
81  
82  
-
-
-
-
C9  
B9  
-
-
PD0  
PD1  
I/O FT  
I/O FT  
PD0  
PD1  
SPI2_NSS/TIM9_CH1  
SPI2_SCK  
-
-
TIM3_ETR/LCD_SEG31/  
LCD_SEG43/LCD_COM7  
83 54 B5 C8  
-
-
-
PD2  
PD3  
PD4  
I/O FT  
I/O FT  
I/O FT  
PD2  
PD3  
PD4  
-
-
-
USART2_CTS/  
SPI2_MISO  
84  
85  
-
-
-
-
B8  
B7  
USART2_RTS/  
SPI2_MOSI  
86  
87  
88  
-
-
-
-
-
-
A6  
B6  
A5  
-
-
-
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
PD5  
PD6  
PD7  
USART2_TX  
USART2_RX  
-
-
-
USART2_CK/TIM9_CH2  
TIM2_CH2/PB3/  
SPI1_SCK/LCD_SEG7/  
JTDO  
89 55 A5 A8 39  
PB3  
I/O FT  
JTDO  
COMP2_INM  
DocID17659 Rev 12  
41/133  
48  
Pin descriptions  
STM32L151x6/8/B STM32L152x6/8/B  
Pins functions  
Table 8. STM32L151x6/8/B and STM32L152x6/8/B pin definitions (continued)  
Pins  
Main  
Pin name  
function(2)  
(after reset)  
Additional  
Alternate functions  
functions  
TIM3_CH1/PB4/  
90 56 A4 A7 40  
PB4  
I/O FT  
NJTRST  
SPI1_MISO/LCD_SEG8/  
NJTRST  
COMP2_INP  
COMP2_INP  
I2C1_SMBA/TIM3_CH2/  
SPI1_MOSI/LCD_SEG9  
91 57 C4 C5 41  
92 58 D3 B5 42  
PB5  
PB6  
I/O FT  
I/O FT  
I/O FT  
PB5  
PB6  
I2C1_SCL/TIM4_CH1/  
USART1_TX  
I2C1_SDA/TIM4_CH2/  
USART1_RX  
PVD_IN  
93 59 C3 B4 43  
94 60 B4 A4 44  
95 61 B3 A3 45  
PB7  
BOOT0  
PB8  
PB7  
BOOT0  
PB8  
I
B
-
-
-
TIM4_CH3/I2C1_SCL/  
I/O FT  
I/O FT  
LCD_SEG16/TIM10_CH1  
TIM4_CH4/I2C1_SDA/  
LCD_COM3/TIM11_CH1  
96 62 A3 B3 46  
PB9  
PE0  
PB9  
PE0  
-
-
TIM4_ETR/LCD_SEG36/  
TIM10_CH1  
97  
98  
-
-
-
-
C3  
A2  
-
-
I/O FT  
I/O FT  
PE1  
PE1  
LCD_SEG37/TIM11_CH1  
-
-
-
99 63 D4 D3 47  
100 64 E4 C4 48  
VSS_3  
S
S
-
-
VSS_3  
VDD_3  
VDD_3  
-
-
1. I = input, O = output, S = supply.  
2. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1  
and USART1 & USART2, respectively. Refer to Table 2 on page 11.  
3. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to VDD  
.
4. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the  
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose  
PC14/PC15 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over  
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins  
section in the STM32L1xxxx reference manual (RM0038).  
5. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on (by setting the HSEON bit  
in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,  
respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off). The HSE has priority over the GPIO  
function.  
6. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The VREF+ functionality is provided instead.  
42/133  
DocID17659 Rev 12  
Table 9. Alternate function input/output  
Digital alternate function number  
AFIO0  
AFIO1  
TIM2  
AFIO2  
TIM3/4  
AFIO3  
AFIO4  
AFIO5  
SPI1/2  
AFOI6  
AFIO7  
AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14  
AFIO15  
Port name  
Alternate function  
SYSTEM  
TIM9/10/11  
I2C1/2  
N/A  
USART1/2/3  
N/A  
N/A  
LCD  
N/A  
N/A  
RI  
SYSTEM  
BOOT0  
NRST  
PA0-WKUP1  
PA1  
BOOT0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
NRST  
-
-
-
-
-
-
-
TIM2_CH1_ETR  
-
-
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
-
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
-
TIM2_CH2  
-
-
[SEG0]  
[SEG1]  
[SEG2]  
-
PA2  
-
TIM2_CH3  
TIM9_CH1  
-
PA3  
-
TIM2_CH4  
TIM9_CH2  
-
PA4  
-
-
-
-
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
PA5  
-
TIM2_CH1_ETR  
-
PA6  
-
-
-
-
-
-
-
-
TIM3_CH1 TIM10_CH1  
TIM3_CH2 TIM11_CH1  
-
[SEG3]  
[SEG4]  
[COM0]  
[COM1]  
[COM2]  
-
PA7  
-
-
PA8  
MCO  
-
-
-
-
-
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
USART1_CTS  
USART1_RTS  
PA9  
-
-
-
-
-
PA10  
PA11  
PA12  
-
SPI1_MISO  
SPI1_MOSI  
-
JTMS-  
SWDIO  
PA13  
PA14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC2 EVENTOUT  
JTCK-  
SWCLK  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
PA15  
PB0  
PB1  
PB2  
PB3  
PB4  
JTDI  
-
TIM2_CH1_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_NSS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG17  
[SEG5]  
[SEG6]  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM3_CH3  
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
TIM3_CH4  
-
BOOT1  
JTDO  
NJTRST  
-
TIM2_CH2  
-
-
-
-
SPI1_SCK  
SPI1_MISO  
[SEG7]  
[SEG8]  
TIM3_CH1  
 
 
Table 9. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFOI6  
AFIO7  
AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14  
AFIO15  
Port name  
Alternate function  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
USART1/2/3  
N/A  
N/A  
LCD  
N/A  
N/A  
RI  
SYSTEM  
I2C1_  
SMBA  
PB5  
-
-
TIM3_CH2  
-
SPI1_MOSI  
-
-
-
-
[SEG9]  
-
-
-
EVENTOUT  
PB6  
PB7  
PB8  
PB9  
PB10  
PB11  
-
-
-
-
-
-
-
TIM4_CH1  
TIM4_CH2  
-
-
I2C1_SCL  
I2C1_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
USART1_TX  
USART1_RX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
-
-
TIM4_CH3 TIM10_CH1* I2C1_SCL  
TIM4_CH4 TIM11_CH1* I2C1_SDA  
SEG16  
[COM3]  
SEG10  
SEG11  
-
TIM2_CH3  
TIM2_CH4  
-
-
-
-
I2C2_SCL  
I2C2_SDA  
USART3_TX  
USART3_RX  
I2C2_  
SMBA  
PB12  
-
-
-
TIM10_CH1  
SPI2_NSS  
-
USART3_CK  
-
-
SEG12  
-
-
-
EVENTOUT  
PB13  
PB14  
PB15  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM9_CH1  
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_CTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SEG13  
SEG14  
SEG15  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
TIM9_CH2  
SPI2_MISO  
USART3_RTS  
-
TIM11_CH1  
SPI2_MOSI  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
-
-
-
-
-
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
COM4 /  
SEG28 /  
SEG40  
PC10  
-
-
-
-
-
-
-
USART3_TX  
-
-
-
-
TIMx_IC3 EVENTOUT  
Table 9. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1  
AFIO2  
AFIO3  
AFIO4  
AFIO5  
AFOI6  
AFIO7  
AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14  
AFIO15  
Port name  
Alternate function  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
USART1/2/3  
N/A  
N/A  
LCD  
N/A  
N/A  
RI  
SYSTEM  
COM5 /  
SEG29 /  
SEG41  
PC11  
PC12  
-
-
-
-
-
-
-
USART3_RX  
USART3_CK  
-
-
-
-
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
COM6 /  
SEG30 /  
SEG42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC13-  
WKUP2  
-
-
TIMx_IC2 EVENTOUT  
PC14-  
OSC32_IN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
PC15-  
OSC32_OUT  
PD0  
PD1  
-
-
-
-
-
-
TIM9_CH1  
-
-
-
SPI2_NSS  
SPI2_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
COM7 /  
SEG31 /  
SEG43  
PD2  
-
-
TIM3_ETR  
-
-
-
-
-
-
-
-
-
TIMx_IC3 EVENTOUT  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
PD9  
PD10  
PD11  
PD12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_MISO  
-
-
-
-
-
-
-
-
-
-
USART2_CTS  
USART2_RTS  
USART2_TX  
USART2_RX  
USART2_CK  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
USART3_RTS  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
-
-
SPI2_MOSI  
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM9_CH2  
-
-
-
-
-
-
-
-
-
TIM4_CH1  
Table 9. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1  
TIM2  
AFIO2  
TIM3/4  
AFIO3  
AFIO4  
AFIO5  
AFOI6  
AFIO7  
AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14  
AFIO15  
Port name  
Alternate function  
SYSTEM  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
USART1/2/3  
N/A  
N/A  
LCD  
N/A  
N/A  
RI  
SYSTEM  
PD13  
PD14  
PD15  
PE0  
-
-
-
-
-
-
-
-
-
-
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIM4_ETR TIM10_CH1  
TIM11_CH1  
PE1  
TRACEC  
K
PE2  
PE3  
PE4  
PE5  
PE6  
-
-
-
-
-
TIM3_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TRACED  
0
TIM3_CH1  
-
TRACED  
1
TIM3_CH2  
-
TRACED  
2
-
-
TIM9_CH1*  
TIM9_CH2*  
TRACED  
3
PE7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
PE8  
-
-
PE9  
TIM2_CH1_ETR  
-
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH2  
-
TIM2_CH3  
-
TIM2_CH4  
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
-
-
PH0-  
OSC_IN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Table 9. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1  
TIM2  
AFIO2  
TIM3/4  
AFIO3  
AFIO4  
AFIO5  
AFOI6  
AFIO7  
AFIO8 AFIO9 AFIO11 AFIO12 AFIO13 AFIO14  
AFIO15  
Port name  
Alternate function  
SYSTEM  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
USART1/2/3  
N/A  
N/A  
LCD  
N/A  
N/A  
RI  
SYSTEM  
PH1-  
OSC_OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PH2  
Memory mapping  
STM32L151x6/8/B STM32L152x6/8/B  
5
Memory mapping  
The memory map is shown in Figure 9.  
Figure 9. Memory map  
!0" MEMORY SPACE  
ꢀX&&&& &&&&  
RESERVED  
ꢀX%ꢀꢅꢀ ꢀꢀꢀꢀ  
ꢀXꢇꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
RESERVED  
$-!  
ꢀXꢁꢀꢀꢃ ꢇꢁꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢇꢀꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢁꢀꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢄ#ꢀꢀ  
ꢀX&&&& &&&&  
RESERVED  
&LASH )NTERFACE  
2##  
ꢀXꢁꢀꢀꢃ ꢄꢂꢀꢀ  
RESERVED  
ꢀXꢁꢀꢀꢃ ꢄꢁꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢄꢀꢀꢀ  
ꢀX%ꢀꢅꢀ ꢀꢀꢀꢀ  
#ORTEX-ꢋ )NTERNAL  
0ERIPHERALS  
#2#  
ꢀX%ꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
ꢀXꢁꢀꢀꢃ ꢅꢂꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢅꢁꢀꢀ  
0ORT (  
RESERVED  
0ORT $  
ꢀXꢁꢀꢀꢃ ꢅꢀꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢀ#ꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢀꢂꢀꢀ  
ꢀXꢁꢀꢀꢃ ꢀꢁꢀꢀ  
0ORT #  
0ORT "  
ꢀX#ꢀꢀꢀ ꢀꢀꢀꢀ  
0ORT !  
ꢀXꢁꢀꢀꢃ ꢀꢀꢀꢀ  
RESERVED  
ꢀXꢁꢀꢀꢅ ꢄ#ꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢄꢂꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢄꢁꢀꢀ  
53!24ꢁ  
RESERVED  
30)ꢁ  
ꢀX!ꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢄꢀꢀꢀ  
RESERVED  
!$#  
ꢀXꢁꢀꢀꢅ ꢃꢂꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢃꢁꢀꢀ  
RESERVED  
4)-ꢁꢁ  
ꢀXꢁꢀꢀꢅ ꢅꢁꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢅꢀꢀꢀ  
ꢀXꢂꢀꢀꢀ ꢀꢀꢀꢀ  
4)-ꢁꢊ  
4)-ꢉ  
%84)  
ꢀXꢁꢀꢀꢅ ꢀ#ꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢀꢂꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢀꢁꢀꢀ  
ꢀXꢁꢀꢀꢅ ꢀꢀꢀꢀ  
ꢀXꢅ&&ꢂ ꢀꢀꢅ&  
393#&'  
RESERVED  
/PTION "YTES  
RESERVED  
ꢀXꢅ&&ꢂ ꢀꢀꢀꢀ  
ꢀXꢇꢀꢀꢀ ꢀꢀꢀꢀ  
#/-0 ꢒ 2)  
RESERVED  
ꢀXꢁꢀꢀꢀ ꢈ#ꢀꢀ  
ꢀXꢅ&&ꢀ ꢅꢀꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢈꢂꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢈꢁꢀꢀ  
$!#ꢁ ꢓ ꢃ  
072  
3YSTEM MEMORY  
ꢀXꢁꢀꢀꢀ ꢈꢀꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢇꢃꢀꢀ  
RESERVED  
0ERIPHERALS  
ꢀXꢁꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢅ&&ꢀ ꢀꢀꢀꢀ  
ꢅꢁꢃ BYTE  
53"  
53" 2EGISTERS  
ꢀXꢁꢀꢀꢀ ꢇꢀꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢆ#ꢀꢀ  
)ꢃ#ꢃ  
)ꢃ#ꢁ  
ꢀXꢁꢀꢀꢀ ꢆꢂꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢆꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢁ#ꢀꢀ  
RESERVED  
32!-  
ꢀXꢃꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
53!24ꢋ  
ꢀXꢁꢀꢀꢀ ꢁꢂꢀꢀ  
53!24ꢃ  
RESERVED  
ꢀXꢁꢀꢀꢀ ꢁꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢄ#ꢀꢀ  
ꢀXꢀꢂꢀꢂ ꢀꢂꢀꢀ  
ꢀXꢀꢂꢀꢂ ꢀꢀꢀꢀ  
$ATA %%02/-  
RESERVED  
30)ꢃ  
ꢀXꢁꢀꢀꢀ ꢄꢂꢀꢀ  
ꢀXꢀꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
ꢀXꢁꢀꢀꢀ ꢄꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢄꢀꢀꢀ  
ꢀXꢀꢂꢀꢃ ꢀꢀꢀꢀ  
)7$'  
77$'  
24#  
ꢀXꢁꢀꢀꢀ ꢃ#ꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢃꢂꢀꢀ  
&LASH MEMORY  
,#$  
ꢀXꢁꢀꢀꢀ ꢃꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢅ#ꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢅꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢅꢀꢀꢀ  
2ESERVED  
ꢀXꢀꢂꢀꢀ ꢀꢀꢀꢀ  
ꢀXꢀꢀꢀꢀ ꢀꢀꢀꢀ  
RESERVED  
4)-ꢌ  
!LIASED TO &LASH OR SYSTEM  
MEMORY DEPENDING ON  
"//4 PINS  
4)-ꢈ  
RESERVED  
ꢀXꢁꢀꢀꢀ ꢀ#ꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢀꢂꢀꢀ  
4)-ꢆ  
4)-ꢋ  
4)-ꢃ  
ꢀXꢁꢀꢀꢀ ꢀꢁꢀꢀ  
ꢀXꢁꢀꢀꢀ ꢀꢀꢀꢀ  
-3ꢋꢈꢈꢅꢃ6ꢁ  
48/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes. Based on characterization, the minimum and maximum  
values refer to sample tests and represent the mean value plus or minus three times the  
standard deviation (mean±3σ).  
Please refer to device ErrataSheet for possible latest changes of electrical characteristics.  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.6 V (for the  
A
DD  
1.65 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
0&8ꢌSLQ  
0&8ꢌSLQ  
&ꢌ ꢌꢁꢇꢌS)  
9,1  
DLꢄꢋꢃꢁꢅG  
DLꢄꢋꢃꢁꢄF  
DocID17659 Rev 12  
49/133  
104  
 
 
 
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
6WDQGE\ꢈSRZHUꢌFLUFXLWU\  
ꢑ26&ꢀꢅ.ꢐ57&ꢐ  
:DNHꢈXSꢌORJLF  
57&ꢌEDFNXSꢌUHJLVWHUVꢓ  
287  
,1  
,2  
/RJLF  
*3ꢌ,ꢍ2V  
.HUQHOꢌORJLFꢌ  
ꢑ&38ꢐꢌ'LJLWDOꢌ  
ꢒꢌ0HPRULHVꢓꢌꢌ  
9''  
9''ꢄꢍꢅꢍꢎꢎꢎꢍ1  
5HJXODWRU  
1ꢌîꢌꢄꢇꢇꢌQ)ꢌ  
ꢉꢌꢄꢌîꢌꢄꢇꢌ—)  
966ꢄꢍꢅꢍꢎꢎꢎꢍ1  
9''$  
9''$  
95()  
95()ꢉ  
95()ꢈ  
966$  
ꢄꢇꢇꢌQ)ꢌ  
ꢉꢌꢄꢌ—)  
$QDORJꢏꢌ  
5&Vꢐꢌ  
3//ꢐꢎꢎꢎ  
$'&ꢍ  
'$&  
ꢄꢇꢇꢌQ)ꢌ  
ꢉꢌꢄꢌ—)  
06ꢀꢅꢆꢊꢄ9ꢄ  
50/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.1.7  
Optional LCD power supply scheme  
Figure 13. Optional LCD power supply scheme  
VSEL  
VDD  
VDD1/2/.../N  
Step-up  
Converter  
N x 100 nF  
+ 1 x 10 μF  
Option 1  
Option 2  
VLCD  
100 nF  
LCD  
VLCD  
CEXT  
VSS1/2/.../N  
MS32462V1  
1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open.  
2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an  
external capacitance is needed for correct behavior of this converter.  
6.1.8  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
$
1ꢌ[ꢌ9''  
1ꢌ[ꢌꢄꢇꢇꢌQ)  
ꢉꢄꢌ[ꢌꢄꢇꢌ—)  
1ꢌ[ꢌ966  
9/&'  
9''$  
ꢄꢇꢇꢌQ)  
ꢉꢄꢌ—)  
95()ꢉ  
95()ꢈ  
966$  
06ꢀꢀꢇꢅꢃ9ꢄ  
DocID17659 Rev 12  
51/133  
104  
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 10: Voltage characteristics,  
Table 11: Current characteristics, and Table 12: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 10. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDD–VSS  
–0.3  
4.0  
(1)  
(including VDDA and VDD  
)
V
Input voltage on five-volt tolerant pin  
Input voltage on any other pin  
VSS 0.3  
VDD+4.0  
4.0  
(2)  
VIN  
VSS 0.3  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all different ground pins(3)  
-
-
-
50  
mV  
|VSSX VSS  
|
50  
VREF+ VDDA Allowed voltage difference for VREF+ > VDDA  
0.4  
V
-
Electrostatic discharge voltage  
VESD(HBM)  
see Section 6.3.11  
(human body model)  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 11 for maximum allowed injected current values.  
3. Include VREF- pin.  
Table 11. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDDΣ  
IVSSΣ  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current sourced by any I/O and control pin  
Injected current on five-volt tolerant I/O(3)  
80  
80  
25  
IIO  
- 25  
-5/+0  
± 5  
(2)  
IINJ(PIN)  
Injected current on any other pin (4)  
mA  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
± 25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.  
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 10 for maximum allowed input voltage values.  
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 10: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
52/133  
DocID17659 Rev 12  
 
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Symbol  
Electrical characteristics  
Table 12. Thermal characteristics  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
–65 to +150  
150  
°C  
°C  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 13. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
-
0
0
32  
32  
32  
3.6  
-
MHz  
-
0
BOR detector disabled  
1.65  
BOR detector enabled,  
at power on  
1.8  
1.65  
1.65  
1.8  
3.6  
3.6  
3.6  
3.6  
VDD  
Standard operating voltage  
V
V
BOR detector disabled, after  
power on  
Analog operating voltage  
(ADC and DAC not used)  
Must be the same voltage as  
(1)  
VDDA  
(2)  
VDD  
Analog operating voltage  
(ADC or DAC used)  
Input voltage on FT pins(3)  
2.0 V VDD 3.6 V  
–0.3  
–0.3  
0
5.5  
5.25  
1.65 V VDD 2.0 V  
VIN  
V
Input voltage on BOOT0 pin  
Input voltage on any other pin  
5.5  
–0.3  
VDD+0.3  
Power dissipation at  
TA = 85 °C(4)  
PD  
BGA100 package  
-
339  
mW  
Maximum power dissipation  
Low power dissipation(5)  
-40 °C TA 105°C  
–40  
–40  
–40  
85  
TA  
TJ  
Temperature range  
°C  
°C  
105  
105  
Junction temperature range  
1. When the ADC is used, refer to Table 54: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and  
VDDA can be tolerated during power-up and operation.  
3. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 12: Thermal characteristics  
on page 53).  
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max (see Table 12:  
Thermal characteristics on page 53).  
DocID17659 Rev 12  
53/133  
104  
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.2  
Embedded reset and power control block characteristics  
The parameters given in the following table are derived from the tests performed under the  
ambient temperature condition summarized in the following table.  
Table 14. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
BOR detector enabled  
BOR detector disabled  
BOR detector enabled  
BOR detector disabled  
0
0
-
-
VDD rise time rate  
1000  
µs/V  
(1)  
tVDD  
20  
0
-
VDD fall time rate  
-
1000  
V
DD rising, BOR enabled  
-
2
3.3  
ms  
1.6  
(1)  
TRSTTEMPO  
Reset temporization  
VDD rising, BOR disabled(2)  
Falling edge  
Rising edge  
0.4  
1
0.7  
1.5  
1.5  
1.7  
1.65  
V
1.65  
Power on/power down reset  
threshold  
VPOR/PDR  
VBOR0  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
1.3  
1.67  
Falling edge  
Rising edge  
1.74  
1.8  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
1.69 1.76  
Falling edge  
Rising edge  
1.87 1.93 1.97  
1.96 2.03 2.07  
2.22 2.30 2.35  
2.31 2.41 2.44  
2.45 2.55 2.60  
Falling edge  
Rising edge  
V
Falling edge  
Rising edge  
2.54 2.66  
2.7  
Falling edge  
Rising edge  
2.68  
2.78  
2.8  
2.9  
2.85  
2.95  
54/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 14. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions  
Falling edge  
Min  
Typ  
Max Unit  
1.8  
1.85 1.88  
Programmable voltage detector  
threshold 0  
VPVD0  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
BOR0 threshold  
1.88 1.94 1.99  
1.98 2.04 2.09  
2.08 2.14 2.18  
2.20 2.24 2.28  
2.28 2.34 2.38  
2.39 2.44 2.48  
2.47 2.54 2.58  
2.57 2.64 2.69  
2.68 2.74 2.79  
2.77 2.83 2.88  
2.87 2.94 2.99  
2.97 3.05 3.09  
3.08 3.15 3.20  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
V
-
-
40  
-
-
Vhyst  
Hysteresis voltage  
mV  
All BOR and PVD thresholds  
excepting BOR0  
100  
1. Guaranteed by characterization results.  
2. Valid for device version without BOR at power up. Please see option "T" in Ordering information scheme for more details.  
DocID17659 Rev 12  
55/133  
104  
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.3  
Embedded internal reference voltage  
The parameters given in the following table are based on characterization results, unless  
otherwise specified.  
Table 15. Embedded internal reference voltage calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 30 °C, VDDA= 3 V  
VREFINT_CAL  
0x1FF8 0078-0x1FF8 0079  
Table 16. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VREFINT out  
IREFINT  
Internal reference voltage  
– 40 °C < TJ < +105 °C 1.202 1.224 1.242  
V
Internal reference current  
consumption  
-
-
-
-
-
1.4  
2
2.3  
3
µA  
ms  
V
TVREFINT  
Internal reference startup time  
VDDA and VREF+voltage during  
VREFINT factory measure  
VVREF_MEAS  
2.99  
3
3.01  
Including uncertainties  
due to ADC and  
VDDA/VREF+ values  
Accuracy of factory-measured VREF  
value (2)  
AVREF_MEAS  
-
-
±5  
mV  
(3)  
TCoeff  
Temperature coefficient  
Long-term stability  
Voltage coefficient  
–40 °C < TJ < +105 °C  
1000 hours, T= 25 °C  
3.0 V < VDDA < 3.6 V  
-
-
-
25  
-
100  
1000  
2000  
ppm/°C  
ppm  
(3)  
ACoeff  
(3)  
VDDCoeff  
-
ppm/V  
ADC sampling time when reading the  
internal reference voltage  
(3)(4)  
TS_vrefint  
-
-
-
5
-
10  
-
-
µs  
µs  
µA  
Startup time of reference voltage  
buffer for ADC  
(3)  
TADC_BUF  
10  
25  
Consumption of reference voltage  
buffer for ADC  
(3)  
IBUF_ADC  
-
13.5  
(3)  
IVREF_OUT  
VREF_OUT output current(5)  
-
-
-
-
-
-
1
µA  
pF  
(3)  
CVREF_OUT  
VREF_OUT output load  
50  
Consumption of reference voltage  
buffer for VREF_OUT and COMP  
(3)  
ILPBUF  
-
-
730 1200  
nA  
(3)  
VREFINT_DIV1  
VREFINT_DIV2  
VREFINT_DIV3  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
-
-
-
24  
49  
74  
25  
50  
75  
26  
51 % VREFINT  
76  
(3)  
(3)  
1. Tested in production.  
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.  
3. Guaranteed by characterization results.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
5. To guarantee less than 1% VREF_OUT deviation.  
56/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code. The current consumption is measured as described in Figure 14: Current  
consumption measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
The current consumption values are derived from the tests performed under ambient  
temperature TA=25°C and VDD supply voltage conditions summarized in Table 13: General  
operating conditions, unless otherwise specified. The MCU is placed under the following  
conditions:  
The MCU is placed under the following conditions:  
V
= 3.6 V  
DD  
All I/O pins are configured in analog input mode.  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time, 64-bit access and prefetch is adjusted depending on  
fHCLK frequency and voltage range to provide the best CPU performance.  
When the peripherals are enabled f  
= f  
= f  
APB1  
APB2 AHB  
When PLL is ON, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or  
HSE = 16 MHz (if HSE bypass mode is used).  
The HSE user clock applied to OSC_IN input follows the characteristics specified in  
Table 26: High-speed external user clock characteristics.  
DocID17659 Rev 12  
57/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 17. Current consumption in Run mode, code with data processing running from Flash  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
270  
470  
400  
600  
400  
600  
400  
600  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
µA  
890 1025 1025 1025  
fHSE = fHCLK  
up to 16 MHz,  
included  
fHSE = fHCLK/2  
above 16 MHz  
(PLL ON)(2)  
1
2
1.3  
2.5  
5
1.3  
2.5  
5
1.3  
2.5  
5
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz 3.9  
8 MHz 2.16  
16 MHz 4.8  
32 MHz 9.6  
3
3
3
Supply  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
current in  
Run mode,  
code  
executed  
5.5  
11  
5.5  
11  
5.5  
11  
IDD (Run  
from  
Flash)  
Range 2,  
mA  
from Flash  
VCORE=1.5 V  
16 MHz  
4
5
5
5
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
32 MHz 9.4  
11  
11  
11  
VOS[1:0] = 01  
MSI clock, 65 kHz  
65 kHz 0.05 0.085 0.09  
524 kHz 0.15 0.185 0.19  
0.1  
0.2  
1
Range 3,  
MSI clock, 524 kHz VCORE=1.2 V  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
4.2 MHz 0.9  
1
1
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
58/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 18. Current consumption in Run mode, code with data processing running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
16 MHz  
8 MHz  
16 MHz  
32 MHz  
200  
380  
720  
0.9  
1.65  
3.2  
2
300  
500  
860  
1
300  
500  
300  
500  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
µA  
860 860(3)  
fHSE = fHCLK  
up to 16 MHz,  
included  
fHSE = fHCLK/2  
above 16 MHz  
(PLL ON)(2)  
1
1
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
2
2
2
3.7  
2.5  
4.5  
8.5  
3.7  
2.5  
4.5  
8.5  
3.7  
2.5  
4.5  
8.5  
Supply current  
in Run mode,  
code executed  
from RAM,  
Flash switched  
off  
Range 1,  
VCORE=1.8 V  
4
IDD (Run  
VOS[1:0] = 01  
mA  
from  
7.7  
RAM)  
Range 2,  
VCORE=1.5 V  
16 MHz  
3.3  
3.8  
9.2  
3.8  
9.2  
3.8  
9.2  
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
32 MHz  
65 kHz  
7.8  
40  
VOS[1:0] = 01  
MSI clock, 65 kHz  
60  
60  
80  
Range 3,  
MSI clock, 524 kHz VCORE=1.2 V  
524 kHz 110  
4.2 MHz 700  
140  
800  
140  
800  
160  
820  
µA  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
3. Tested in production.  
DocID17659 Rev 12  
59/133  
104  
 
 
Electrical characteristics  
Symbol Parameter  
STM32L151x6/8/B STM32L152x6/8/B  
Table 19. Current consumption in Sleep mode  
Max(1)  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
80  
140  
210  
330  
400  
550  
140  
210  
330  
400  
550  
140  
210  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
150  
280  
280  
450  
330(3)  
fHSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
400  
Range 2,  
VCORE=1.5 V  
550  
above 16 MHz (PLL VOS[1:0] = 10  
Supply  
current in  
Sleep  
mode,  
code  
executed  
from RAM,  
Flash  
switched  
OFF  
16 MHz 900 1050 1050 1050  
8 MHz 550 650 650 650  
ON)(2)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
16 MHz 1050 1200 1200 1200  
32 MHz 2300 2500 2500 2500  
µA  
Range 2,  
VCORE=1.5 V  
16 MHz 1000 1100 1100  
1100  
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
32 MHz 2300 2500 2500 2500  
VOS[1:0] = 01  
MSI clock, 65 kHz  
65 kHz  
30  
50  
50  
60  
80  
Range 3,  
IDD  
MSI clock, 524 kHz VCORE=1.2 V  
524 kHz 50  
4.2 MHz 200  
70  
70  
(Sleep)  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
240  
140  
210  
350  
400  
600  
240  
140  
210  
350  
400  
600  
250  
140  
210  
350  
400  
600  
1100  
650  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
80  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
150  
290  
300  
500  
fHSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
Range 2,  
VCORE=1.5 V  
Supply  
current in  
Sleep  
above 16 MHz (PLL VOS[1:0] = 10  
16 MHz 1000 1100 1100  
8 MHz 550 650 650  
ON)(2)  
mode,  
µA  
Range 1,  
code  
executed  
from Flash  
VCORE=1.8 V  
VOS[1:0] = 01  
16 MHz 1050 1200 1200 1200  
32 MHz 2300 2500 2500 2500  
Range 2,  
VCORE=1.5 V  
16 MHz 1000 1100 1100  
1100  
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
32 MHz 2300 2500 2500 2500  
VOS[1:0] = 01  
60/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 19. Current consumption in Sleep mode (continued)  
Max(1)  
Symbol Parameter  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
Supply  
current in  
Sleep  
MSI clock, 65 kHz  
MSI clock, 524 kHz  
65 kHz  
40  
70  
90  
70  
90  
80  
524 kHz 60  
100  
Range 3,  
IDD  
mode,  
code  
executed  
VCORE=1.2V  
VOS[1:0] = 11  
µA  
(Sleep)  
MSI clock, 4.2 MHz  
4.2 MHz 210  
250  
250  
260  
from Flash  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)  
3. Tested in production  
DocID17659 Rev 12  
61/133  
104  
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 20. Current consumption in Low power run mode  
Max  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
(1)  
TA = -40 °C to 25 °C  
TA = 85 °C  
9
17.5  
31  
14  
22  
35  
37  
37  
37  
48  
24  
33  
48  
31  
40  
54  
48  
54  
56  
70  
12  
24  
46  
17  
29  
51  
42  
42  
42  
65  
32  
42  
64  
40  
48  
70  
58  
63  
65  
90  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
All  
TA = 105 °C  
peripherals  
OFF, code  
executed  
from RAM,  
Flash  
switched  
OFF, VDD  
from 1.65 V  
to 3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
TA = 85 °C  
Supply  
TA = 105 °C  
IDD (LP  
current in  
Low power  
run mode  
Run)  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
µA  
TA = 105 °C  
All  
peripherals  
OFF, code  
executed  
from Flash,  
VDD from  
1.65 V to  
3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
TA = 85 °C  
TA = 105 °C  
Max allowed  
current in  
Low power  
run mode  
IDD Max  
(LP  
VDD from  
1.65 V to  
3.6 V  
-
-
-
200  
Run)(2)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator.  
Consumption of the I/Os is not included in this limitation.  
62/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Symbol Parameter  
Electrical characteristics  
Table 21. Current consumption in Low power sleep mode  
Max  
Conditions  
Typ  
Unit  
(1)  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
Flash OFF  
TA = -40 °C to 25 °C 4.4  
-
TA = -40 °C to 25 °C 17.5 25  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
Flash ON  
TA = 85 °C  
22  
31  
27  
39  
26  
28  
40  
30  
32  
34  
45  
All  
TA = 105 °C  
peripherals  
TA = -40 °C to 25 °C 18  
OFF, VDD  
from1.65 V  
to 3.6 V  
MSI clock, 65 kHz  
TA = 85 °C  
23  
31  
fHCLK = 65 kHz,  
Flash ON  
TA = 105 °C  
TA = -40 °C to 25 °C 22  
MSI clock, 131 kHz  
Supply  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
24  
26  
34  
fHCLK = 131 kHz,  
Flash ON  
current in  
Low power  
sleep  
IDD (LP  
Sleep)  
mode  
TA = -40 °C to 25 °C 17.5 25  
µA  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
TA = 85 °C  
22  
31  
27  
39  
26  
28  
40  
30  
32  
34  
45  
TA = 105 °C  
TIM9 and  
USART1  
enabled,  
Flash ON,  
VDD from  
1.65 V to  
3.6 V  
TA = -40 °C to 25 °C 18  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 85 °C  
23  
31  
TA = 105 °C  
TA = -40 °C to 25 °C 22  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
24  
26  
34  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
Max  
allowed  
current in  
(LP Sleep) Low power  
VDD from  
1.65 V to  
3.6 V  
I
DD Max  
-
-
-
200  
Sleep  
mode  
1. Guaranteed by characterization results, unless otherwise specified.  
DocID17659 Rev 12  
63/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 22. Typical and maximum current consumptions in Stop mode  
Typ Max  
Symbol  
Parameter  
Conditions  
Unit  
(1)  
(1)(2)  
TA = -40°C to 25°C  
VDD = 1.8 V  
1.2 2.75  
TA = -40°C to 25°C 1.4  
4
LCD  
OFF  
TA = 55°C  
TA= 85°C  
TA = 105°C  
2.6  
4.8  
6
10  
23  
6
10.2  
RTC clocked by LSI,  
TA = -40°C to 25°C 3.3  
regulator in LP mode,  
HSI and HSE OFF  
(no independent  
watchdog)  
LCD ON  
(static  
TA = 55°C  
TA= 85°C  
TA = 105°C  
4.5  
6.6  
8
duty)(3)  
12  
27  
10  
12  
16  
40  
4
13.6  
TA = -40°C to 25°C 7.7  
LCD ON  
(1/8  
TA = 55°C  
TA= 85°C  
TA = 105°C  
8.6  
duty)(4)  
10.7  
19.8  
TA = -40°C to 25°C 1.6  
Supply current  
IDD (Stop in Stop mode  
TA = 55°C  
TA= 85°C  
TA = 105°C  
2.7  
4.8  
6
µA  
LCD  
OFF  
with RTC  
enabled  
with RTC)  
10  
23  
6
10.3  
RTC clocked by LSE  
external clock (32.768  
kHz), regulator in LP  
mode, HSI and HSE  
OFF (no independent  
watchdog)  
TA = -40°C to 25°C 3.6  
LCD ON  
(static  
TA = 55°C  
TA= 85°C  
TA = 105°C  
4.6  
6.7  
8
duty)(3)  
12  
23  
10  
12  
16  
40  
10.9  
TA = -40°C to 25°C 7.6  
LCD ON  
(1/8  
TA = 55°C  
TA= 85°C  
TA = 105°C  
8.6  
duty)(4)  
10.7  
19.8  
TA = -40°C to 25°C  
VDD = 1.8 V  
1.45  
1.9  
-
-
-
RTC clocked by LSE  
(no independent  
watchdog)(5)  
LCD  
OFF  
TA = -40°C to 25°C  
VDD = 3.0 V  
TA = -40°C to 25°C  
VDD = 3.6 V  
2.2  
64/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 22. Typical and maximum current consumptions in Stop mode (continued)  
Typ Max  
Symbol  
Parameter  
Conditions  
Unit  
(1)  
(1)(2)  
Regulator in LP mode, HSI and  
HSE OFF, independent  
watchdog and LSI enabled  
TA = -40°C to 25°C 1.1  
TA = -40°C to 25°C 0.5  
2.2  
Supply current  
in Stop mode  
(RTC  
0.9  
5
IDD (Stop)  
µA  
Regulator in LP mode, LSI, HSI  
and HSE OFF (no independent  
watchdog)  
TA = 55°C  
TA= 85°C  
TA = 105°C  
1.9  
disabled)  
3.7  
8
8.9 20(6)  
RMS (root  
MSI = 4.2 MHz  
MSI = 1.05 MHz  
2
-
-
mean square)  
supply current  
duringwakeup  
time when  
exiting from  
Stop mode  
1.45  
IDD (WU  
VDD = 3.0 V  
TA = -40°C to 25°C  
mA  
from Stop)  
MSI = 65 kHz(7)  
1.45  
-
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise  
specified.  
2. Guaranteed by characterization results, unless otherwise specified  
3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected  
4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD  
connected.  
5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY)  
with two 6.8pF loading capacitors.  
6. Tested in production  
7. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the  
remaining time of the wakeup period, the current is similar to the Run mode current.  
DocID17659 Rev 12  
65/133  
104  
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 23. Typical and maximum current consumptions in Standby mode  
Max  
Symbol  
Parameter  
Conditions  
Typ(1)  
Unit  
(1)(2)  
TA = -40 °C to 25 °C  
VDD = 1.8 V  
0.9  
-
TA = -40 °C to 25 °C  
TA = 55 °C  
1.1  
1.8  
2.5  
3
RTC clocked by LSI (no  
independent watchdog)  
1.42  
1.87  
2.78  
TA= 85 °C  
IDD  
TA = 105 °C  
5
Supply current in Standby  
mode with RTC enabled  
(Standby  
TA = -40 °C to 25 °C  
VDD = 1.8 V  
with RTC)  
1
-
TA = -40 °C to 25 °C  
1.33  
1.59  
2.01  
3.27  
2.9  
3.4  
4.3  
6.3  
RTC clocked by LSE (no  
independent watchdog)(3) TA = 55 °C  
µA  
TA= 85 °C  
TA = 105 °C  
Independent watchdog  
and LSI enabled  
TA = -40 °C to 25 °C  
1.1  
1.6  
TA = -40 °C to 25 °C  
TA = 55 °C  
0.3  
0.5  
1
0.55  
0.8  
IDD  
Supply current in Standby  
mode with RTC disabled  
(Standby)  
Independent watchdog  
and LSI OFF  
TA = 85 °C  
1.7  
TA = 105 °C  
2.5  
4(4)  
IDD (WU RMS supply current during  
VDD = 3.0 V  
TA = -40 °C to 25 °C  
wakeup time when exiting  
from Standby mode  
-
1
-
from  
Standby)  
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise specified.  
2. Guaranteed by characterization results, unless otherwise specified.  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF  
loading capacitors.  
4. Tested in production.  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in the following table. The MCU  
is placed under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
66/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
(1)  
Table 24. Peripheral current consumption  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11  
Range 2,  
CORE=1.5 V  
Range 3,  
CORE=1.2 V  
Peripheral  
Unit  
Low power  
sleep and run  
V
V
TIM2  
TIM3  
TIM4  
TIM6  
TIM7  
LCD  
13  
14  
12.5  
5.5  
5.5  
5.5  
4
10.5  
12  
10.5  
4.5  
5
8
9
10.5  
12  
11  
4.5  
4.5  
5
8
3.5  
3.5  
3.5  
2.5  
4
5
WWDG  
3.5  
5
3.5  
5
SPI2  
5.5  
9
µA/MHz  
APB1  
(fHCLK  
)
USART2  
USART3  
I2C1  
8
5.5  
6
8.5  
8
10.5  
8.5  
8.5  
12.5  
4.5  
9
9
7
5.5  
5.5  
6.5  
3
7.5  
6.5  
10  
3.5  
7
I2C2  
7
USB  
10  
4
PWR  
DAC  
7.5  
4
6
COMP  
SYSCFG & RI  
TIM9  
4.5  
3
3.5  
2
4.5  
2.5  
7
2.5  
7.5  
5.5  
6
9
6
TIM10  
TIM11  
ADC(2)  
SPI1  
6.5  
7
4.5  
4.5  
8
5.5  
5.5  
9
µA/MHz  
(fHCLK  
APB2  
)
11.5  
5
9.5  
4.5  
7.5  
3
4
USART1  
9
6
7.5  
DocID17659 Rev 12  
67/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
(1)  
Table 24. Peripheral current consumption (continued)  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11  
Range 2,  
CORE=1.5 V  
Range 3,  
CORE=1.2 V  
Peripheral  
Unit  
Low power  
sleep and run  
V
V
GPIOA  
5
5
4.5  
4.5  
4.5  
4.5  
4.5  
4
3.5  
3.5  
3.5  
3.5  
3.5  
3
4
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
CRC  
4.5  
4.5  
4.5  
4.5  
3.5  
0.5  
18.5  
10.5  
130  
5
5
AHB  
5
µA/MHz  
(fHCLK  
)
4
1
0.5  
11.5  
10  
0.5  
9
FLASH  
DMA1  
13  
12  
166  
8
All enabled  
IDD (RTC)  
IDD (LCD)  
138  
106  
0.47  
3.1  
1450  
340  
0.16  
2
(3)  
IDD (ADC)  
(4)  
IDD (DAC)  
IDD (COMP1)  
IDD (COMP2)  
µA  
Slow mode  
Fast mode  
5
(5)  
IDD (PVD / BOR)  
IDD (IWDG)  
2.6  
0.25  
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock enabled, in the  
following conditions: fHCLK = 32 MHz (Range 1), fHCLK = 16 MHz (Range 2), fHCLK = 4 MHz (Range 3), fHCLK = 64kHz  
(Low power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep  
mode in both cases. No I/O pins toggling.  
2. HSI oscillator is OFF for this measure.  
3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI  
consumption not included).  
4. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of  
VDD/2. DAC is in buffered mode, output is left floating.  
5. Including supply current of internal reference voltage.  
68/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.5  
Wakeup time from Low power mode  
The wakeup times given in the following table are measured with the MSI RC oscillator. The  
clock source used to wake up the device depends on the current operating mode:  
Sleep mode: the clock source is the clock that was set before entering Sleep mode  
Stop mode: the clock source is the MSI oscillator in the range configured before  
entering Stop mode  
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 13.  
Table 25. Low-power mode wakeup timings  
Symbol  
Parameter  
Wakeup from Sleep mode fHCLK = 32 MHz  
HCLK = 262 kHz  
Conditions  
Typ Max(1) Unit  
tWUSLEEP  
0.36  
32  
-
-
f
Wakeup from Low power  
sleep mode  
Flash enabled  
tWUSLEEP_LP  
fHCLK = 262 kHz  
fHCLK = 262 kHz  
34  
8.2  
8.2  
-
-
Flash switched OFF  
Wakeup from Stop mode,  
regulator in Run mode  
fHCLK = fMSI = 4.2 MHz  
fHCLK = fMSI = 4.2 MHz  
Voltage Range 1 and 2  
9.3  
11.2  
fHCLK = fMSI = 4.2 MHz  
Voltage Range 3  
7.8  
10  
µs  
tWUSTOP  
fHCLK = fMSI = 2.1 MHz  
12  
20  
Wakeup from Stop mode,  
regulator in low power  
mode  
fHCLK = fMSI = 1.05 MHz 15.5  
fHCLK = fMSI = 524 kHz  
fHCLK = fMSI = 262 kHz  
29  
53  
35  
63  
f
HCLK = fMSI = 131 kHz  
105  
210  
118  
237  
fHCLK = MSI = 65 kHz  
Wakeup from Standby  
mode  
fHCLK = MSI = 2.1 MHz  
50  
103  
3.2  
FWU bit = 1  
tWUSTDBY  
Wakeup from Standby  
mode  
fHCLK = MSI = 2.1 MHz  
2.5  
ms  
FWU bit = 0  
1. Guaranteed by characterization results, unless otherwise specified  
DocID17659 Rev 12  
69/133  
104  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.6  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The  
external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the  
recommended clock input waveform is shown in Figure 15: High-speed external clock  
source AC timing diagram.  
(1)  
Table 26. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CSS is on or  
PLL is used  
1
User external clock source  
frequency  
fHSE_ext  
8
32  
MHz  
CSS is off, PLL  
not used  
0
VHSEH  
VHSEL  
tw(HSEH)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
-
-
VDD  
V
0.3VDD  
-
OSC_IN high or low time  
OSC_IN rise or fall time  
12  
-
-
-
-
tw(HSEL)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance  
DuCy(HSE) Duty cycle  
-
-
45  
-
2.6  
-
pF  
%
-
-
-
55  
±1  
IL  
OSC_IN Input leakage current  
VSS VIN VDD  
µA  
1. Guaranteed by design.  
Figure 15. High-speed external clock source AC timing diagram  
W
Zꢑ+6(+ꢓ  
9
+6(+  
 
 
9
+6(/  
W
W
W
W
Uꢑ+6(ꢓ  
Iꢑ+6(ꢓ  
Zꢑ+6(/ꢓ  
7
+6(  
06ꢄꢂꢅꢄꢆ9ꢅ  
70/133  
DocID17659 Rev 12  
 
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Low-speed external user clock generated from an external source  
The characteristics given in the following table result from tests performed using a low-  
speed external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 13.  
(1)  
Table 27. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
1
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSEH)  
0.7VDD  
VSS  
465  
-
-
-
-
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
-
OSC32_IN high or low time  
OSC32_IN rise or fall time  
tw(LSEL)  
ns  
tr(LSE)  
tf(LSE)  
10  
CIN(LSE) OSC32_IN input capacitance  
DuCy(LSE) Duty cycle  
-
-
-
45  
-
0.6  
-
pF  
%
-
-
55  
±1  
IL  
OSC32_IN Input leakage current VSS VIN VDD  
µA  
1. Guaranteed by design.  
Figure 16. Low-speed external clock source AC timing diagram  
W
Zꢑ/6(+ꢓ  
9
/6(+  
 
 
9
/6(/  
W
W
W
Uꢑ/6(ꢓ  
Iꢑ/6(ꢓ  
W
Zꢑ/6(/ꢓ  
7
/6(  
06ꢄꢂꢅꢄꢁ9ꢅ  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 28. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
DocID17659 Rev 12  
71/133  
104  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32L151x6/8/B STM32L152x6/8/B  
(1)(2)  
Table 28. HSE oscillator characteristics  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
-
-
1
24  
-
MHz  
RF  
Feedback resistor  
200  
kΩ  
Recommended load  
capacitance versus  
C
RS = 30 Ω  
-
20  
-
pF  
equivalent serial resistance  
of the crystal (RS)(3)  
V
DD= 3.3 V, VIN = VSS  
with 30 pF load  
IHSE  
IDD(HSE)  
gm  
HSE driving current  
-
-
-
-
3
mA  
C = 20 pF  
2.5 (startup)  
fOSC = 16 MHz  
0.7 (stabilized)  
HSE oscillator power  
consumption  
mA  
C = 10 pF  
2.5 (startup)  
-
3.5  
-
-
-
fOSC = 16 MHz  
0.46 (stabilized)  
mA  
/V  
Oscillator transconductance  
Startup time  
Startup  
-
-
tSU(HSE)  
VDD is stabilized  
1
ms  
(4)  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Guaranteed by characterization results.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 17). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
72/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Figure 17. HSE oscillator circuit diagram  
I
ꢌWRꢌFRUH  
+6(  
5
P
5
)
&
2
/
P
&
/ꢄ  
26&B,1  
&
P
J
P
5HVRQDWRU  
&RQVXPSWLRQꢌ  
FRQWURO  
5HVRQDWRU  
670ꢀꢅ  
26&B287  
&
/ꢅ  
DLꢄꢃꢅꢀꢁE  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on  
characterization results obtained with typical external components specified in Table 29. In  
the application, the resonator and the load capacitors have to be placed as close as  
possible to the oscillator pins in order to minimize output distortion and startup stabilization  
time. Refer to the crystal resonator manufacturer for more details on the resonator  
characteristics (frequency, package, accuracy).  
(1)  
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Low speed external oscillator  
frequency  
fLSE  
RF  
C(2)  
ILSE  
-
-
-
-
32.768  
1.2  
-
-
kHz  
Feedback resistor  
MΩ  
Recommended load capacitance  
versus equivalent serial  
RS = 30 kΩ  
-
8
-
pF  
µA  
resistance of the crystal (RS)(3)  
LSE driving current  
VDD = 3.3 V, VIN = VSS  
VDD = 1.8 V  
-
-
-
1.1  
450  
600  
750  
-
-
-
-
-
-
LSE oscillator current  
consumption  
IDD (LSE)  
V
DD = 3.0 V  
-
nA  
VDD = 3.6V  
-
gm  
Oscillator transconductance  
Startup time  
-
3
-
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
1
1. Guaranteed by characterization results.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.  
DocID17659 Rev 12  
73/133  
104  
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer.  
Note:  
For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to  
15 pF range selected to match the requirements of the crystal or resonator (see Figure 18 ).  
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2.  
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray  
where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically,  
it is between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended  
to use a resonator with a load capacitance CL 7 pF. Never use a resonator with a load  
capacitance of 12.5 pF.  
Example: if a resonator is chosen with a load capacitance of CL = 6 pF and Cstray = 2 pF,  
then CL1 = CL2 = 8 pF.  
Figure 18. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢌZLWKꢌ  
LQWHJUDWHGꢌFDSDFLWRUV  
&/ꢄ  
I/6(  
26&ꢀꢅB,1  
%LDVꢌ  
5) FRQWUROOHGꢌ  
JDLQ  
ꢀꢅꢎꢋꢊꢃꢌN+]  
UHVRQDWRU  
670ꢀꢅ/ꢄ[[  
26&ꢀꢅB287  
&/ꢅ  
DLꢄꢋꢃꢁꢀE  
74/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.7  
Internal clock source characteristics  
The parameters given in the following table are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 13.  
DD  
High-speed internal (HSI) RC oscillator  
Table 30. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ Max Unit  
fHSI  
VDD = 3.0 V  
-
-
16  
-
MHz  
%
Trimming code is not a multiple of 16  
Trimming code is a multiple of 16  
0.4 0.7  
HSI user-trimmed  
resolution  
(1)(2)  
TRIM  
-
-
-
-
-
-
-
1.5  
%
V
DDA = 3.0 V, TA = 25 °C  
-1(3)  
-1.5  
-2  
1(3)  
1.5  
2
%
VDDA = 3.0 V, TA = 0 to 55 °C  
VDDA = 3.0 V, TA = -10 to 70 °C  
%
%
Accuracy of the  
factory-calibrated  
HSI oscillator  
(2)  
ACCHSI  
V
DDA = 3.0 V, TA = -10 to 85 °C  
VDDA = 3.0 V, TA = -10 to 105 °C  
DDA = 1.65 V to 3.6 V  
TA = -40 to 105 °C  
-2.5  
-4  
2
%
2
%
V
-4  
-
-
3
6
%
µs  
µA  
HSI oscillator  
startup time  
(2)  
tSU(HSI)  
-
3.7  
100  
HSI oscillator  
power consumption  
(2)  
IDD(HSI)  
-
-
140  
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are  
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).  
2. Guaranteed by characterization results.  
3. Tested in production.  
Low-speed internal (LSI) RC oscillator  
Table 31. LSI oscillator characteristics  
Symbol  
Parameter  
LSI frequency  
Min  
Typ  
Max  
Unit  
(1)  
fLSI  
26  
38  
56  
kHz  
%
LSI oscillator frequency drift  
(2)  
DLSI  
-10  
-
4
0°C TA 85°C  
(3)  
tsu(LSI)  
LSI oscillator startup time  
-
-
-
200  
510  
µs  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
400  
nA  
1. Tested in production.  
2. This is a deviation for an individual part, once the initial frequency has been measured.  
3. Guaranteed by design.  
DocID17659 Rev 12  
75/133  
104  
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Multi-speed internal (MSI) RC oscillator  
Table 32. MSI oscillator characteristics  
Symbol  
Parameter  
Condition  
Typ Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
-
65.5  
131  
262  
524  
1.05  
2.1  
-
-
-
-
-
-
-
-
kHz  
Frequency after factory calibration, done at  
VDD= 3.3 V and TA = 25 °C  
fMSI  
MHz  
4.2  
ACCMSI  
Frequency error after factory calibration  
0.5  
%
%
MSI oscillator frequency drift  
0 °C TA 85 °C  
(1)  
DTEMP(MSI)  
-
-
3
-
-
MSI oscillator frequency drift  
1.65 V VDD 3.6 V, TA = 25 °C  
(1)  
DVOLT(MSI)  
2.5 %/V  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
0.75  
1
-
-
-
1.5  
2.5  
4.5  
8
(2)  
IDD(MSI)  
MSI oscillator power consumption  
-
-
-
-
-
-
-
-
-
-
µA  
15  
30  
20  
15  
10  
6
tSU(MSI)  
MSI oscillator startup time  
µs  
5
MSI range 6,  
Voltage range 1  
and 2  
3.5  
5
-
-
MSI range 6,  
Voltage range 3  
76/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 32. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Condition  
Typ Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
-
-
-
-
-
-
40  
20  
10  
4
2.5  
2
(2)  
tSTAB(MSI)  
MSI oscillator stabilization time  
µs  
MSI range 6,  
Voltage range 1  
and 2  
-
2
MSI range 3,  
Voltage Range 3  
-
-
-
3
4
6
Any range to  
range 5  
fOVER(MSI) MSI oscillator frequency overshoot  
MHz  
Any range to  
range 6  
1. This is a deviation for an individual part, once the initial frequency has been measured.  
2. Guaranteed by characterization results.  
6.3.8  
PLL characteristics  
The parameters given in Table 33 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 13.  
DD  
Table 33. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
2
45  
2
-
-
-
24  
55  
32  
MHz  
%
fPLL_IN  
fPLL_OUT  
PLL input clock duty cycle  
PLL output clock  
MHz  
Worst case PLL lock time  
PLL input = 2 MHz  
tLOCK  
-
100  
130  
µs  
PLL VCO = 96 MHz  
Jitter  
Cycle-to-cycle jitter  
-
-
-
-
± 600  
450  
ps  
IDDA(PLL)  
IDD(PLL)  
Current consumption on VDDA  
Current consumption on VDD  
220  
120  
µA  
150  
1. Guaranteed by characterization results.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
DocID17659 Rev 12  
77/133  
104  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.9  
Memory characteristics  
The characteristics are given at T = -40 to 105 °C unless otherwise specified.  
A
RAM memory  
Table 34. RAM and hardware registers  
Symbol  
Parameter  
Data retention mode(1)  
Conditions  
Min  
1.65  
Typ  
Max Unit  
VRM  
STOP mode (or RESET)  
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware  
registers (only in Stop mode).  
Flash memory and data EEPROM  
Table 35. Flash memory and data EEPROM characteristics  
Symbol  
Parameter  
Operating voltage  
Read / Write / Erase  
Conditions  
Min  
Typ  
Max(1) Unit  
VDD  
-
1.65  
-
3.6  
V
Programming / erasing time for Erasing  
byte / word / double word / half-  
page  
-
-
3.28  
3.28  
3.94  
3.94  
tprog  
ms  
Programming  
Average current during whole  
program/erase operation  
-
-
300  
1.5  
-
µA  
IDD  
TA = 25 °C, VDD = 3.6 V  
Maximum current (peak) during  
program/erase operation  
2.5  
mA  
1. Guaranteed by design.  
Table 36. Flash memory, data EEPROM endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1) Typ Max  
Cycling (erase / write)  
Program memory  
-
-
-
-
-
-
-
-
-
-
-
-
10  
300  
30  
TA = -40°C to  
NCYC(2)  
kcycles  
105 °C  
Cycling (erase / write)  
EEPROM data memory  
Data retention (program memory) after  
10 kcycles at TA = 85 °C  
TRET = +85 °C  
TRET = +105 °C  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 85 °C  
30  
(2)  
tRET  
years  
Data retention (program memory) after  
10 kcycles at TA = 105 °C  
10  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 105 °C  
10  
1. Guaranteed by characterization results.  
2. Characterization is done according to JEDEC JESD22-A117.  
78/133  
DocID17659 Rev 12  
 
 
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 37. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 37. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
conforms to IEC 61000-4-2  
VDD = 3.3 V, LQFP100, TA = +25  
°C,  
fHCLK = 32 MHz  
conforms to IEC 61000-4-4  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VEFTB  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1  
second.  
DocID17659 Rev 12  
79/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 38. EMI characteristics  
Max vs. frequency range  
Monitored  
4 MHz  
16 MHz  
voltage  
32 MHz  
voltage  
Range 1  
Symbol Parameter  
Conditions  
Unit  
frequency band  
voltage  
Range 3 Range 2  
0.1 to 30 MHz  
3
-6  
4
-5  
-7  
-7  
1
VDD = 3.3 V,  
TA = 25 °C,  
LQFP100 package  
compliant with IEC  
61967-2  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
18  
15  
2.5  
dBµV  
-
SEMI  
Peak level  
5
2
6.3.11  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 39. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Packages Class  
Unit  
value(1)  
Electrostatic discharge voltage TA = +25 °C, conforming to  
VESD(HBM)  
All  
All  
2
2000  
(human body model)  
JESD22-A114  
V
Electrostatic discharge voltage TA = +25 °C, conforming to  
VESD(CDM)  
III  
500  
(charge device model)  
JESD22-C101  
1. Guaranteed by characterization results.  
80/133  
DocID17659 Rev 12  
 
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 40. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.12  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard pins) should be avoided during normal product operation.  
DD  
However, in order to give an indication of the robustness of the microcontroller in cases  
when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error, out of spec current  
injection on adjacent pins or other functional failure (for example reset, oscillator frequency  
deviation, LCD levels, etc.).  
The test results are given in Table 41.  
Table 41. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all 5 V tolerant (FT) pins  
Injected current on any other pin  
-5  
-5  
+0  
+5  
IINJ  
mA  
Note:  
It is recommended to add a Schottky diode (pin to ground) to analog pins which may  
potentially inject negative currents.  
DocID17659 Rev 12  
81/133  
104  
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.13  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 42 are derived from tests  
performed under conditions summarized in Table 13. All I/Os are CMOS and TTL compliant.  
Table 42. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(1)  
VIL  
Input low level voltage  
-
-
Standard I/O  
FT I/O  
-
-
0.3VDD  
-
-
-
-
-
VIH  
Input high level voltage  
0.7 VDD  
-
V
(3)  
Standard I/O  
FT I/O  
-
-
10% VDD  
I/O Schmitt trigger voltage  
hysteresis(2)  
Vhys  
(4)  
5% VDD  
-
VSS VIN VDD  
I/Os with LCD  
-
-
±50  
±50  
VSS VIN VDD  
I/Os with analog  
switches  
-
-
VSS VIN VDD  
I/Os with analog  
switches and LCD  
-
±50  
Ilkg  
Input leakage current (5)  
nA  
VSS VIN VDD  
I/Os with USB  
-
-
-
-
-
-
TBD  
TBD  
±50  
FT I/O  
VDD VIN 5V  
VSS VIN VDD  
Standard I/Os  
RPU  
RPD  
CIO  
Weak pull-up equivalent resistor(6)(1)  
Weak pull-down equivalent resistor(6)  
I/O pin capacitance  
VIN = VSS  
VIN = VDD  
30  
30  
-
45  
45  
5
60  
60  
-
kΩ  
kΩ  
pF  
-
-
1. Tested in production  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization.  
3. With a minimum of 200 mV. Based on characterization results.  
4. With a minimum of 100 mV. Based on characterization results.  
5. The max. value may be exceeded if negative current is injected on adjacent pins.  
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
82/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Output driving current  
Electrical characteristics  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ±20 mA (with the non-standard V /V specifications given in Table 43.  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 11).  
VDDΣ  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 11).  
VSSΣ  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 43 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 13. All I/Os are CMOS and TTL compliant.  
Table 43. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
(1)(2)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
0.4  
IIO = 8 mA  
(3)(2)  
2.7 V < VDD < 3.6 V  
VOH  
2.4  
-
0.45  
-
(1)(4)  
VOL  
-
IIO = 4 mA  
V
(3)(4)  
1.65 V < VDD < 2.7 V  
VOH  
VDD-0.45  
-
(1)(4)  
VOL  
1.3  
-
IIO = 20 mA  
(3)(4)  
2.7 V < VDD < 3.6 V  
VOH  
VDD-1.3  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 11 and the sum of  
IIO (I/O ports and control pins) must not exceed IVSS  
.
2. Tested in production.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum  
of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Guaranteed by characterization results.  
DocID17659 Rev 12  
83/133  
104  
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 19 and  
Table 44, respectively.  
Unless otherwise specified, the parameters given in Table 44 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 13.  
(1)  
Table 44. I/O AC characteristics  
OSPEEDRx  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min  
Max(2)  
Unit  
value(1)  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
400  
625  
625  
2
fmax(IO)out Maximum frequency(3)  
kHz  
ns  
00  
01  
10  
tf(IO)out  
Output rise and fall time  
tr(IO)out  
fmax(IO)out Maximum frequency(3)  
MHz  
ns  
1
125  
250  
10  
2
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
ns  
25  
125  
50  
8
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
11  
-
5
tf(IO)out  
Output rise and fall time  
tr(IO)out  
30  
ns  
Pulse width of external  
tEXTIpw  
signals detected by the  
EXTI controller  
-
8
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151x6/8/B and STM32L152x6/8/B  
reference manual for a description of GPIO Port configuration register.  
2. Guaranteed by design.  
3. The maximum frequency is defined in Figure 19.  
84/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Figure 19. I/O AC characteristics definition  
ꢉꢊꢔ  
ꢁꢊꢔ  
ꢅꢊꢔ  
ꢅꢊꢔ  
ꢉꢊꢔ  
ꢁꢊꢔ  
T
T
%84%2.!,  
/54054  
/. ꢅꢊP&  
Rꢍ)/ꢏOUT  
Fꢍ)/ꢏOUT  
4
-AXIMUM FREQUENCY IS ACHIEVED IF ꢍT ꢒ T ꢏ ” ꢃꢀꢋꢏ4 AND IF THE DUTY CYCLE IS ꢍꢆꢅꢐꢅꢅꢔꢏ  
R
F
WHEN LOADED BY ꢅꢊP&  
AIꢁꢆꢁꢋꢁC  
6.3.14  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, RPU (see Table 45).  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 13.  
Table 45. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
(1)  
VIL(NRST)  
NRST input low level voltage  
NRST input high level voltage  
-
-
-
-
-
0.8  
(1)  
VIH(NRST)  
1.4  
IOL = 2 mA  
V
-
-
2.7 V < VDD < 3.6 V  
NRST output low level  
voltage  
(1)  
VOL(NRST)  
0.4  
IOL = 1.5 mA  
-
-
-
10%VDD  
45  
1.65 V < VDD < 2.7 V  
NRST Schmitt trigger voltage  
hysteresis  
(1)  
(2)  
Vhys(NRST)  
RPU  
-
mV  
Weak pull-up equivalent  
resistor(3)  
VIN = VSS  
30  
60  
50  
kΩ  
(1)  
VF(NRST)  
NRST input filtered pulse  
-
-
-
-
-
ns  
ns  
(1)  
VNF(NRST)  
NRST input not filtered pulse  
350  
1. Guaranteed by design.  
2. 200 mV minimum value  
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is around 10%.  
DocID17659 Rev 12  
85/133  
104  
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 20. Recommended NRST pin protection  
9''  
([WHUQDOꢌUHVHWꢌFLUFXLWꢑꢄꢓ  
5
38  
ꢑꢅꢓ  
,QWHUQDOꢌUHVHW  
1567  
)LOWHU  
ꢇꢎꢄꢌ—)  
670ꢀꢅ/ꢄ[[  
DLꢄꢋꢃꢁꢆE  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 45. Otherwise the reset will not be taken into account by the device.  
6.3.15  
TIM timer characteristics  
The parameters given in Table 46 are guaranteed by design.  
Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 46. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 32 MHz 31.25  
-
fTIMxCLK/2  
16  
-
0
0
-
MHz  
MHz  
bit  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 32 MHz  
ResTIM  
Timer resolution  
-
-
16  
16-bit counter clock  
period when internal clock  
is selected (timer’s  
1
65536  
tTIMxCLK  
tCOUNTER  
fTIMxCLK = 32 MHz 0.0312  
2048  
µs  
prescaler disabled)  
-
-
-
65536 × 65536 tTIMxCLK  
134.2  
tMAX_COUNT Maximum possible count  
fTIMxCLK = 32 MHz  
s
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.  
86/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.16  
Communication interfaces  
I2C interface characteristics  
2
I
The STM32L151x6/8/B and STM32L152x6/8/B product line C interface meets the  
2
requirements of the standard I C communication protocol with the following restrictions:  
SDA and SCL are not “true” open-drain I/O pins. When configured as open-drain, the PMOS  
connected between the I/O pin and V is disabled, but is still present.  
DD  
2
The I C characteristics are described in Table 47. Refer also to Section 6.3.12: I/O current  
for more details on the input/output alternate function characteristics  
injection characteristics  
(SDA and SCL)  
.
2
Table 47. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
0
-
-
-
-
1.3  
0.6  
100  
0
-
µs  
-
-
SDA data hold time  
900(3)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
1000  
20 + 0.1Cb  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
-
300  
-
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
0.6  
0.6  
1.3  
-
-
-
-
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
-
400  
-
400  
pF  
Guaranteed by design.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to  
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast  
mode clock.  
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
3.  
DocID17659 Rev 12  
87/133  
104  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
2
Figure 21. I C bus AC waveforms and measurement circuit  
sꢂꢂͺ/Ϯꢄ  
sꢂꢂͺ/Ϯꢄ  
ZW  
ZW  
^dDϯϮ>ϭdždž  
Z^  
Z^  
^ꢂꢃ  
^ꢄ>  
/ϮꢄꢁďƵƐ  
^dꢃZdꢁZꢀWꢀꢃdꢀꢂ  
^dꢃZd  
^dꢃZd  
ƚƐƵ;^dꢃͿ  
^ꢂꢃ  
ƚƌ;^ꢂꢃͿ  
ƚĨ;^ꢂꢃͿ  
ƚƐƵ;^ꢂꢃͿ  
ƚƐƵ;^dꢃ͗^dKͿ  
^dKW  
ƚŚ;^ꢂꢃͿ  
ƚŚ;^dꢃͿ  
ƚǁ;^ꢄ<>Ϳ  
^ꢄ>  
ƚƐƵ;^dKͿ  
ƚƌ;^ꢄ<Ϳ  
ƚǁ;^ꢄ<,Ϳ  
ƚĨ;^ꢄ<Ϳ  
ĂŝϭϳϴϱϱĐ  
1. RS = series protection resistors  
2. RP = pull-up resistors  
3. VDD_I2C = I2C bus supply  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
4.  
(1)(2)  
Table 48. SCL frequency (f  
fSCL (kHz)  
= 32 MHz, VDD = VDD_I2C = 3.3 V)  
I2C_CCR value  
PCLK1  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801B  
0x8024  
0x8035  
0x00A0  
0x0140  
0x0320  
20  
1. RP = External pull-up resistance, fSCL = I2C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
88/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
SPI characteristics  
Electrical characteristics  
Unless otherwise specified, the parameters given in the following table are derived from  
tests performed under ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 13.  
Refer to Section 6.3.12: I/O current injection characteristics for more details on the  
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 49. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max(2) Unit  
-
-
-
16  
fSCK  
1/tc(SCK)  
SPI clock frequency  
Slave mode  
16  
MHz  
Slave transmitter  
12(3)  
(2)  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
Slave mode  
-
6
ns  
%
(2)  
SPI slave input clock duty  
cycle  
DuCy(SCK)  
30  
70  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tHCLK  
2tHCLK  
-
-
(2)  
tw(SCKH)  
tw(SCKL)  
tSCK/2tSCK/2+  
SCK high and low time  
Data input setup time  
Master mode  
(2)  
5
5
6
5
5
3
(2)  
tsu(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
-
(2)  
tsu(SI)  
-
(2)  
th(MI)  
-
ns  
Data input hold time  
(2)  
th(SI)  
-
(4)  
ta(SO)  
Data output access time Slave mode  
0
3tHCLK  
(2)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode  
Master mode  
Slave mode  
Master mode  
-
33  
6.5  
-
(2)  
tv(MO)  
-
(2)  
th(SO)  
17  
0.5  
Data output hold time  
(2)  
th(MO)  
-
1. The characteristics above are given for voltage Range 1.  
2. Guaranteed by characterization results.  
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty  
cycle (DuCy(SCK)) ranging between 40 to 60%.  
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the  
data.  
DocID17659 Rev 12  
89/133  
104  
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 22. SPI timing diagram - slave mode and CPHA = 0  
166ꢌLQSXW  
W68ꢑ166ꢓ  
W
Kꢑ166ꢓ  
WFꢑ6&.ꢓ  
&3+$ ꢇ  
&32/ ꢇ  
W
Zꢑ6&.+ꢓ  
&3+$ ꢇ  
&32/ ꢄ  
WZꢑ6&./ꢓ  
W
WUI66&&..  
W9ꢑ62ꢓ  
WKꢑ62ꢓ  
W
GLVꢑ62ꢓ  
WDꢑ62ꢓ  
0,62  
06%ꢌ287  
%,7ꢊꢌ287  
%,7ꢄꢌ,1  
/6%ꢌ287  
287387  
WVXꢑ6,ꢓ  
026,  
,1387  
06%ꢌ,1  
/6%ꢌ,1  
WKꢑ6,ꢓ  
DLꢄꢆꢄꢀꢆF  
(1)  
Figure 23. SPI timing diagram - slave mode and CPHA = 1  
166ꢌLQSXW  
W68ꢑ166ꢓ  
WKꢑ166ꢓ  
WFꢑ6&.ꢓ  
&3+$ ꢄ  
&32/ ꢇ  
&3+$ ꢄ  
&32/ ꢄ  
WZꢑ6&.+ꢓ  
WZꢑ6&./ꢓ  
WUꢑ6&.ꢓ  
WIꢑ6&.ꢓ  
WKꢑ62ꢓ  
WGLVꢑ62ꢓ  
WYꢑ62ꢓ  
WDꢑ62ꢓ  
0,62  
06%ꢌ287  
06%ꢌ,1  
%,7ꢊꢌ287  
/6%ꢌ287  
287387  
WKꢑ6,ꢓ  
WVXꢑ6,ꢓ  
026,  
,1387  
/6%ꢌ,1  
%,7ꢌꢄꢌ,1  
DLꢄꢆꢄꢀꢁE  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
90/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
(1)  
Figure 24. SPI timing diagram - master mode  
+LJK  
166ꢌLQSXW  
W
Fꢑ6&.ꢓ  
&3+$   
&32/ ꢇ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢇ  
&3+$   
&32/ ꢄ  
W
W
W
W
Zꢑ6&.+ꢓ  
Zꢑ6&./ꢓ  
Uꢑ6&.ꢓ  
W
VXꢑ0,ꢓ  
Iꢑ6&.ꢓ  
0,62  
,1387  
%,7ꢊꢌ,1  
/6%ꢌ,1  
06%ꢌ,1  
W
Kꢑ0,ꢓ  
026,  
287387  
%,7ꢄꢌ287  
/6%ꢌ287  
06%ꢌ287  
W
W
Kꢑ02ꢓ  
Yꢑ02ꢓ  
DLꢄꢆꢄꢀꢊF  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.  
USB characteristics  
The USB interface is USB-IF certified (full speed).  
Table 50. USB startup time  
Symbol  
Parameter  
Max  
Unit  
(1)  
tSTARTUP  
USB transceiver startup time  
1
µs  
1. Guaranteed by design.  
DocID17659 Rev 12  
91/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 51. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
Differential input sensitivity  
-
3.0  
0.2  
0.8  
1.3  
3.6  
-
V
V
(3)  
VDI  
I(USB_DP, USB_DM)  
(3)  
VCM  
Differential common mode range Includes VDI range  
2.5  
2.0  
(3)  
VSE  
Single ended receiver threshold  
-
Output levels  
(4)  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(5)  
-
0.3  
3.6  
V
(4)  
(5)  
RL of 15 kΩ to VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled  
up with a 1.5 kΩresistor to a 3.0-to-3.6 V voltage range.  
3. Guaranteed by characterization results.  
4. Tested in production.  
RL is the load connected on the USB drivers.  
5.  
Figure 25. USB timings: definition of data signal rise and fall time  
&URVVꢌRYHU  
SRLQWV  
'LIIHUHQWLDO  
GDWDꢌOLQHV  
9&56  
966  
WI  
WU  
DLꢄꢆꢄꢀꢋE  
Table 52. USB: full speed electrical characteristics  
Driver characteristics(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
92/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.17  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 54 are guaranteed by design.  
Table 53. ADC clock frequency  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VREF+ = VDDA  
16  
VREF+ < VDDA  
8
4
2.4 V VDDA 3.6 V VREF+ > 2.4 V  
Voltage  
Range 1 &  
2
VREF+ < VDDA  
VREF+ 2.4 V  
ADC clock  
fADC  
0.480  
MHz  
frequency  
V
REF+ = VDDA  
8
4
4
1.8 V VDDA 2.4 V  
VREF+ < VDDA  
Voltage Range 3  
Table 54. ADC characteristics  
Conditions  
Symbol  
Parameter  
Power supply  
Min  
Typ  
Max  
Unit  
VDDA  
-
1.8  
-
3.6  
V
2.4 V VDDA 3.6 V  
VREF+ must be below  
or equal to VDDA  
VREF+  
Positive reference voltage  
1.8(1)  
-
VDDA  
V
VREF-  
IVDDA  
Negative reference voltage  
-
-
-
-
VSSA  
1000  
-
V
Current on the VDDA input  
pin  
1450  
µA  
Peak  
-
700  
450  
VREF+  
1
µA  
µA  
V
Current on the VREF input  
pin  
(2)  
IVREF  
400  
Average  
-
VAIN  
Conversion voltage range(3)  
-
0(4)  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
-
-
-
-
-
-
-
-
-
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
Direct channels  
Multiplexed channels  
12-bit sampling rate  
Msps  
Msps  
Msps  
Msps  
0.76  
1.07  
0.8  
10-bit sampling rate  
8-bit sampling rate  
6-bit sampling rate  
fS  
1.23  
0.89  
1.45  
1
DocID17659 Rev 12  
93/133  
104  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32L151x6/8/B STM32L152x6/8/B  
Table 54. ADC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Direct channels  
0.25  
-
-
2.4 V VDDA 3.6 V  
Multiplexed channels  
0.56  
0.56  
1
-
-
-
-
-
-
2.4 V VDDA 3.6 V  
µs  
tS  
Sampling time(5)  
Direct channels  
1.8 V VDDA 2.4 V  
Multiplexed channels  
1.8 V VDDA 2.4 V  
-
4
1
-
-
384  
1/fADC  
µs  
fADC = 16 MHz  
24.75  
Total conversion time  
(including sampling time)  
4 to 384 (sampling  
phase) +12 (successive  
approximation)  
tCONV  
-
1/fADC  
Direct channels  
-
-
-
Internal sample and hold  
capacitor  
CADC  
16  
pF  
Multiplexed channels  
-
12-bit conversions  
-
-
-
-
-
-
-
-
-
-
-
Tconv+1 1/fADC  
Tconv 1/fADC  
External trigger frequency  
Regular sequencer  
fTRIG  
6/8/10-bit conversions  
-
-
12-bit conversions  
Tconv+2 1/fADC  
Tconv+1 1/fADC  
External trigger frequency  
Injected sequencer  
fTRIG  
RAIN  
tlat  
6/8/10-bit conversions  
-
Signal source impedance(5)  
-
-
50  
281  
4.5  
219  
3.5  
3.5  
κΩ  
ns  
fADC = 16 MHz  
219  
3.5  
156  
2.5  
-
Injection trigger conversion  
latency  
-
1/fADC  
ns  
fADC = 16 MHz  
Regular trigger conversion  
latency  
tlatr  
-
-
1/fADC  
µs  
tSTAB  
Power-up time  
1. The VREF+ input can be grounded iif neither the ADC nor the DAC are used (this allows to shut down an  
external voltage reference).  
2. The current consumption through VREF is composed of two parameters:  
- one constant (max 300 µA)  
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.  
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400  
= 450 µA at 1Msps  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on  
the package. Refer to Section 4: Pin descriptions for further details.  
4. VSSA must be tied to ground.  
5. See Table 56: Maximum source impedance RAIN max for RAIN limitation.  
94/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
(1)(2)  
Table 55. ADC accuracy  
Symbol  
Parameter  
Test conditions  
Min(3)  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
-
2
1
4
2
2.4 V VDDA 3.6 V  
2.4 V VREF+ 3.6 V  
fADC = 8 MHz, RAIN = 50 Ω  
TA = -40 to 105 ° C  
-
Gain error  
-
-
1.5  
1
3.5  
2
LSB  
Differential linearity error  
Integral linearity error  
-
1.7  
10  
3
ENOB Effective number of bits  
9.2  
-
bits  
dB  
2.4 V VDDA 3.6 V  
Signal-to-noise and  
SINAD  
VDDA = VREF+  
57.5  
62  
-
distortion ratio  
fADC = 16 MHz, RAIN = 50 Ω  
TA = -40 to 105 ° C  
1 kHz Finput 100 kHz  
SNR  
THD  
ET  
Signal-to-noise ratio  
Total harmonic distortion  
Total unadjusted error  
Offset error  
57.5  
62  
-75  
4
-
-
-74  
-
-
-
-
-
-
-
-
-
-
6.5  
4
2.4 V VDDA 3.6 V  
1.8 V VREF+ 2.4 V  
EO  
EG  
ED  
EL  
2
Gain error  
4
6
LSB  
LSB  
fADC = 4 MHz, RAIN = 50 Ω  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
1
2
TA = -40 to 105 ° C  
1.5  
2
3
ET  
3
1.8 V VDDA 2.4 V  
1.8 V VREF+ 2.4 V  
fADC = 4 MHz, RAIN = 50 Ω  
TA = -40 to 105 ° C  
EO  
EG  
ED  
EL  
1
1.5  
2
Gain error  
1.5  
1
Differential linearity error  
Integral linearity error  
2
1
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.12 does not affect the ADC  
accuracy.  
3. Guaranteed by characterization results.  
DocID17659 Rev 12  
95/133  
104  
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 26. ADC accuracy characteristics  
ꢑRUꢌꢌꢌꢌꢌ''$ꢌꢌꢌꢌꢌGHSHQGLQJꢌRQꢌSDFNDJHꢓ  
9
9
ꢆꢇꢂꢊ  
5()ꢉ  
>ꢄ/6%ꢌ,'($/ꢌ ꢌ  
ꢆꢇꢂꢊ  
(
*
ꢑꢄꢓꢌ([DPSOHRIꢌDQDFWX DOꢌWUDQVIHUꢌFXUYH  
ꢑꢅꢓꢌ7KHꢌLGHDOꢌWUDQVIHUFXUYH  
ꢑꢀꢓꢌ(QGꢌSRLQWꢌFRUUHODWLRQꢌOLQH  
ꢆꢇꢂꢁ  
ꢆꢇꢂꢆ  
ꢆꢇꢂꢀ  
(
7
ꢌ ꢌ7RWDOꢌXQDGMXVWHGꢌ(UURUꢏꢌPD[LPXPꢌGHYLDWLRQ  
EHWZHHQꢌWKHꢌDFWXDOꢌDQGꢌWKHꢌLGHDOꢌWUDQVIHUꢌFXUYHVꢎ  
ꢌ ꢌ2IIVHWꢌ(UURUꢏꢌGHYLDWLRQꢌEHWZHHQꢌWKHꢌILUVWꢌDFWXDO  
WUDQVLWLRQꢌDQGꢌWKHꢌODVWꢌDFWXDOꢌRQHꢎ  
ꢌ ꢌ*DLQꢌ(UURUꢏꢌGHYLDWLRQꢌEHWZHHQꢌWKHꢌODVWꢌLGHDO  
WUDQVLWLRQꢌDQGꢌWKHꢌODVWꢌDFWXDOꢌRQHꢎ  
ꢌ ꢌ'LIIHUHQWLDOꢌ/LQHDULW\ꢌ(UURUꢏꢌPD[LPXPꢌGHYLDWLRQ  
EHWZHHQꢌDFWXDOꢌVWHSVꢌDQGꢌWKHꢌLGHDOꢌRQHꢎ  
ꢑꢅꢓ  
(
7
 
(
2
ꢑꢄꢓ  
(
*
(
2
(/  
(
'
(/ꢌ ꢌ,QWHJUDOꢌ/LQHDULW\ꢌ(UURUꢏꢌPD[LPXPꢌGHYLDWLRQ  
('  
EHWZHHQꢌDQ\ꢌDFWXDOꢌWUDQVLWLRQꢌDQGꢌWKHꢌHQGꢈSRLQW  
FRUUHODWLRQꢌOLQHꢎ  
ꢄꢌ/6%ꢌ,'($/  
9
ꢆꢇꢂꢀ ꢆꢇꢂꢆ ꢆꢇꢂꢁ ꢆꢇꢂꢊ  
66$  
9''$  
DLꢄꢆꢀꢂꢁH  
Figure 27. Typical connection diagram using the ADC  
9''$  
670ꢀꢅ/[[  
6DPSOHꢌDQGꢌKROGꢌ  
$'&ꢌFRQYHUWHU  
5$,1ꢑꢄꢓ  
$,1[  
SDUDVLWLF  
ꢄꢅꢈELW  
FRQYHUWHU  
,/“ꢌꢁꢇꢌQ$  
&
9$,1  
&
$'&ꢑꢄꢓ  
DLꢄꢋꢃꢁꢊH  
1. Refer to Table 56: Maximum source impedance RAIN max for the value of RAIN and Table 54: ADC  
characteristics for the value of CADC  
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
96/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Figure 28. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion  
Sampling (n cycles)  
Conversion (12 cycles)  
ADC clock  
I
ref+  
700µA  
300µA  
MS36686V1  
(1)  
Table 56. Maximum source impedance R  
RAIN max (kOhm)  
max  
AIN  
Ts (cycles)  
Ts  
(µs)  
Multiplexed channels  
Direct channels  
f
= 16 MHz(2)  
ADC  
2.4 V < VDDA< 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA< 3.3 V 1.8 V < VDDA < 2.4 V  
0.25  
Not allowed  
0.8  
Not allowed  
Not allowed  
0.8  
0.7  
2.0  
Not allowed  
1.0  
4
9
0.5625  
1
1.5  
3
2.0  
4.0  
3.0  
16  
24  
48  
96  
192  
384  
3.0  
1.8  
6.0  
4.5  
6.8  
4.0  
15.0  
30.0  
50.0  
50.0  
10.0  
6
15.0  
32.0  
50.0  
10.0  
20.0  
12  
24  
25.0  
40.0  
50.0  
50.0  
1. Guaranteed by design.  
2. Number of samples calculated for fADC = 16 MHz. For fADC = 8 and 4 MHz the number of sampling cycles can be  
reduced with respect to the minimum sampling time Ts (us).  
General PCB design guidelines  
Power supply decoupling should be performed as shown in The 10 nF capacitors should be  
ceramic (good quality). They should be placed as close as possible to the chip.  
DocID17659 Rev 12  
97/133  
104  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 29. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
670ꢀꢁ/[[  
9
5()ꢉꢌ  
ꢑVHHꢌQRWHꢌꢄꢓ  
ꢄꢌ—)ꢌꢍꢍꢌꢄꢇꢇꢌQ)  
9
''$  
66$  
ꢄꢌ—)ꢌꢍꢍꢌꢄꢇꢇꢌQ)  
9
ꢍ9  
5()±ꢌ  
ꢑVHHꢌQRWHꢌꢄꢓ  
DLꢄꢋꢃꢁꢋE  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Figure 30. Power supply and reference decoupling (V  
connected to V  
)
DDA  
REF+  
670ꢀꢅ/[[  
9
''$  
ꢄꢌ—)ꢌꢍꢍꢌꢄꢇꢇꢌQ)  
9
66$  
DLꢄꢋꢃꢁꢃF  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
98/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
6.3.18  
DAC electrical specifications  
Data guaranteed by design, unless otherwise specified.  
Table 57. DAC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.8  
-
3.6  
V
V
VDDA  
REF+ must always be below  
VREF+  
VREF-  
Reference supply voltage  
Lower reference voltage  
1.8  
-
3.6  
V
-
VSSA  
V
Current consumption on No load, middle code (0x800)  
VREF+ supply  
-
-
130  
220  
210  
320  
220  
350  
320  
520  
µA  
(1)  
IDDVREF+  
No load, worst code (0x000)  
µA  
µA  
µA  
VREF+ = 3.3 V  
Current consumption on No load, middle code (0x800)  
VDDA supply  
-
(1)  
IDDA  
No load, worst code (0xF1C)  
-
VDDA = 3.3 V  
Connected to VSSA  
DACoutput  
5
-
-
-
RL  
Resistive load  
buffer ON  
kΩ  
Connected to VDDA 25  
-
CL  
Capacitive load  
DAC output buffer ON  
-
-
50  
20  
pF  
RO  
Output impedance  
DAC output buffer OFF  
12  
16  
kΩ  
DAC output buffer ON  
0.2  
-
VDDA – 0.2  
V
Voltage on DAC_OUT  
output  
VDAC_OUT  
VREF+  
1LSB  
DAC output buffer OFF  
0.5  
-
-
mV  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
1.5  
3
Differential non  
linearity(2)  
DNL(1)  
No RLOAD, CL 50 pF  
-
-
-
-
-
-
1.5  
2
3
4
DAC output buffer OFF  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
INL(1)  
Integral non linearity(3)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
LSB  
2
4
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
±10  
±5  
±25  
±8  
±5  
Offset error at code  
0x800 (4)  
Offset(1)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
Offset error at code  
0x001(5)  
Offset1(1)  
±1.5  
DocID17659 Rev 12  
99/133  
104  
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
Table 57. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA = 3.3V, TA = 0 to 50 °C  
DAC output buffer OFF  
-20  
-10  
0
Offset error temperature  
coefficient (code 0x800)  
dOffset/dT(1)  
µV/°C  
VDDA = 3.3V, TA = 0 to 50 °C  
DAC output buffer ON  
0
20  
50  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
+0.1 /  
-0.2%  
+0.2 / -  
0.5%  
-
-
Gain(1)  
Gain error(6)  
%
No RLOAD, CL 50 pF  
DAC output buffer OFF  
+0 / -0.2% +0 / -0.4%  
VDDA = 3.3V, TA = 0 to 50 °C  
DAC output buffer OFF  
-10  
-40  
-
-2  
-8  
12  
8
0
0
Gain error temperature  
coefficient  
dGain/dT(1)  
µV/°C  
LSB  
VDDA = 3.3V, TA = 0 to 50 °C  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
30  
12  
TUE(1)  
Total unadjusted error  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
-
Settling time (full scale:  
for a 12-bit code  
transition between the  
lowest and the highest  
input codes till  
DAC_OUT reaches final  
value ±1LSB  
tSETTLING  
CL 50 pF, RL 5 kΩ  
-
-
7
12  
µs  
Max frequency for a  
correct DAC_OUT  
change (95% of final  
value) with 1 LSB  
variation in the input  
code  
Update rate  
CL 50 pF, RL 5 kΩ  
-
1
Msps  
Wakeup time from off  
state (setting the ENx bit  
in the DAC Control  
register)(7)  
tWAKEUP  
CL 50 pF, RL 5 kΩ  
CL 50 pF, RL 5 kΩ  
-
-
9
15  
µs  
VDDA supply rejection  
ratio (static DC  
measurement)  
PSRR+  
-60  
-35  
dB  
1. Guaranteed by characterization results.  
2. Difference between two consecutive codes - 1 LSB.  
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.  
4. Difference between the value measured at Code (0x800) and the ideal value = V/2.  
5. Difference between the value measured at Code (0x001) and the ideal value.  
6. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when  
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.  
7. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
100/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Figure 31. 12-bit buffered /non-buffered DAC  
%XIIHUHGꢍ1RQꢈEXIIHUHGꢌ'$&  
%XIIHUꢑꢄꢓ  
5
/
'$&B287[  
ꢄꢅꢈELWꢌ  
GLJLWDOꢌWR  
DQDORJꢌ  
FRQYHUWHUꢌ  
&
/
AIꢁꢌꢁꢅꢌ6ꢋ  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
6.3.19  
Temperature sensor characteristics  
Table 58. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
TS_CAL1  
0x1FF8 007A-0x1FF8 007B  
VDDA= 3 V  
TS ADC raw data acquired at  
temperature of 110 °C  
VDDA= 3 V  
TS_CAL2  
0x1FF8 007E-0x1FF8 007F  
Table 59. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
-
1.48  
612  
-
1
1.61  
626.8  
3.4  
2
1.75  
641.5  
6
°C  
mV/°C  
mV  
Avg_Slope(1) Average slope  
V110  
Voltage at 110°C ±5°C(2)  
(3)  
IDDA(TEMP)  
Current consumption  
Startup time  
µA  
(3)  
tSTART  
-
-
10  
µs  
ADC sampling time when reading the  
temperature  
(4)(3)  
TS_temp  
10  
-
-
1. Guaranteed by characterization results.  
2. Measured at VDD = 3 V ±10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.  
3. Guaranteed by design.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
DocID17659 Rev 12  
101/133  
104  
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.20  
Comparator  
Table 60. Comparator 1 characteristics  
Symbol  
Parameter  
Conditions  
Min(1) Typ  
Max(1)  
Unit  
VDDA  
R400K  
R10K  
Analog supply voltage  
R400K value  
-
-
-
1.65  
3.6  
V
-
-
400  
10  
-
-
kΩ  
R10K value  
Comparator 1 input  
voltage range  
VIN  
-
0.6  
-
VDDA  
V
tSTART  
td  
Comparator startup time  
Propagation delay(2)  
Comparator offset  
-
-
-
-
-
-
7
3
3
10  
10  
10  
µs  
Voffset  
mV  
VDDA = 3.6 V  
VIN+ = 0 V  
Comparator offset  
dVoffset/dt variation in worst voltage  
stress conditions  
0
-
1.5  
10  
mV/1000 h  
nA  
VIN- = VREFINT  
TA = 25 °C  
ICOMP1  
Current consumption(3)  
-
160  
260  
1. Guaranteed by characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage not included.  
102/133  
DocID17659 Rev 12  
 
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Electrical characteristics  
Table 61. Comparator 2 characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max(1) Unit  
VDDA  
VIN  
Analog supply voltage  
-
-
1.  
-
3.6  
VDDA  
20  
25  
3.5  
6
V
V
Comparator 2 input voltage range  
0
-
Fast mode  
-
-
-
-
-
-
-
15  
20  
1.8  
2.5  
0.8  
1.2  
4
tSTART  
Comparator startup time  
Slow mode  
1. V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
1. V VDDA 2.7 V  
2.7 V VDDA 3.6 V  
-
td slow  
Propagation delay(2) in slow mode  
µs  
2
td fast  
Propagation delay(2) in fast mode  
Comparator offset error  
4
Voffset  
20  
mV  
VDDA = 3.3V  
TA = 0 to 50 °C  
dThreshold/ Threshold voltage temperature  
V- = VREFINT  
3/4 VREFINT  
1/2 VREFINT  
,
ppm  
/°C  
-
15  
100  
dt  
coefficient  
,
,
1/4 VREFINT  
Fast mode  
Slow mode  
-
-
3.5  
0.5  
5
2
ICOMP2  
Current consumption(3)  
µA  
1. Guaranteed by characterization results.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not  
included.  
DocID17659 Rev 12  
103/133  
104  
 
 
Electrical characteristics  
STM32L151x6/8/B STM32L152x6/8/B  
6.3.21  
LCD controller (STM32L152xx only)  
The STM32L152xx embeds a built-in step-up converter to provide a constant LCD reference  
voltage independently from the V voltage. An external capacitor C must be connected  
DD  
ext  
to the V  
pin to decouple this converter.  
LCD  
Table 62. LCD controller characteristics  
Symbol  
Parameter  
LCD external voltage  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
Cext  
-
-
2.6  
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
-
-
-
2.73  
2.86  
2.98  
3.12  
3.26  
3.4  
-
-
-
-
-
V
-
-
-
-
-
-
-
3.55  
-
-
0.1  
2
µF  
µA  
Supply current at VDD = 2.2 V  
-
3.3  
-
(1)  
ILCD  
Supply current at VDD = 3.0 V  
-
3.1  
-
(2)  
RHtot  
Low drive resistive network overall value  
High drive resistive network total value  
Segment/Common highest level voltage  
Segment/Common 3/4 level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
5.28  
6.6  
7.92  
MΩ  
kΩ  
V
(2)  
RL  
192  
240  
288  
V44  
V34  
V23  
V12  
V13  
V14  
V0  
-
-
-
VLCD  
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
-
-
-
-
-
-
-
-
-
V
-
-
0
Segment/Common level voltage error  
ΔVxx(3)  
-
-
50  
mV  
TA = -40 to 85 °C  
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD  
connected  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
104/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specification  
s, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
LQFP100 14 x 14 mm, 100-pin low-profile quad flat package  
information  
Figure 32. LQFP100 14 x 14 mm, 100-pin low-profile quad flat package outline  
3%!4).' 0,!.%  
#
ꢊꢄꢃꢅ MM  
'!5'% 0,!.%  
CCC  
ꢌꢅ  
#
$
,
$ꢁ  
$ꢋ  
,ꢁ  
ꢅꢁ  
ꢅꢊ  
ꢌꢈ  
ꢁꢊꢊ  
ꢃꢈ  
0). ꢁ  
)$%.4)&)#!4)/.  
ꢃꢅ  
E
ꢁ,?-%?6ꢅ  
1. Drawing is not to scale.  
DocID17659 Rev 12  
105/133  
132  
 
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
Table 63. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package mechanical  
data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
-
16.200  
14.200  
-
0.6220  
0.5433  
-
0.6378  
0.5591  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0.0°  
-
7.0°  
0.0°  
7.0°  
ccc  
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
106/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
Figure 33. LQPF100 14 x 14 mm, 100-pin low-profile quad flat package recommended  
footprint  
ꢌꢅ  
ꢅꢁ  
ꢌꢈ  
ꢅꢊ  
ꢊꢄꢅ  
ꢊꢄꢋ  
ꢁꢈꢄꢌ ꢁꢆꢄꢋ  
ꢁꢊꢊ  
ꢃꢈ  
ꢁꢄꢃ  
ꢃꢅ  
ꢁꢃꢄꢋ  
ꢁꢈꢄꢌ  
AIꢁꢆꢉꢊꢈC  
1. Dimensions are in millimeters.  
LQFP100 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 34. LQFP100 14 x 14 mm, 100-pin package top view example  
3URGXFWꢌLGHQWLILFDWLRQꢑꢄꢓ  
670ꢀꢁ/ꢂꢃꢂ  
9ꢄ7ꢅꢆꢆꢆꢆ5  
5HYLVLRQꢌFRGH  
'DWHꢌFRGH  
<
::  
3LQꢌꢄꢌ  
LQGHQWLILHU  
06Yꢀꢊꢊꢄꢇ9ꢅ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID17659 Rev 12  
107/133  
132  
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
7.2  
LQFP64 10 x 10 mm, 64-pin low-profile quad flat package  
information  
Figure 35. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package outline  
6($7,1*ꢌ3/$1(  
&
ꢇꢎꢅꢁꢌPP  
*$8*(ꢌ3/$1(  
FFF  
&
'
'ꢄ  
'ꢀ  
/
/ꢄ  
ꢀꢀ  
ꢆꢃ  
ꢀꢅ  
ꢆꢂ  
ꢊꢆ  
E
ꢄꢋ  
ꢄꢊ  
3,1ꢌꢄ  
H
,'(17,),&$7,21  
ꢁ:B0(B9ꢀ  
1. Drawing is not to scale.  
Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical  
data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Typ  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
108/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
Table 64. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package mechanical  
data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Typ  
Min  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package recommended  
footprint  
ꢆꢇ  
ꢋꢋ  
ꢊꢄꢋ  
ꢊꢄꢅ  
ꢆꢉ  
ꢋꢃ  
ꢁꢃꢄꢌ  
ꢁꢊꢄꢋ  
ꢁꢊꢄꢋ  
ꢌꢄꢇ  
ꢁꢌ  
ꢈꢆ  
ꢁꢄꢃ  
ꢁꢈ  
ꢁꢃꢄꢌ  
AIꢁꢆꢉꢊꢉC  
1. Dimensions are in millimeters.  
DocID17659 Rev 12  
109/133  
132  
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
LQFP64 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 37. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example  
3URGXFWꢌLGHQWLILFDWLRQꢑꢄꢓ  
5HYLVLRQꢌFRGH  
5
670ꢀꢁ/ꢂꢃꢂ  
5ꢄ7ꢅ  
'DWHꢌFRGH  
< ::  
3LQꢌꢄꢌ  
LQGHQWLILHU  
06Yꢀꢊꢊꢄꢄ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
110/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
7.3  
LQFP48 7 x 7 mm, 48-pin low-profile quad flat package  
information  
Figure 38. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢊꢄꢃꢅ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢁ  
$ꢋ  
,ꢁ  
ꢋꢈ  
ꢃꢅ  
ꢋꢌ  
ꢃꢆ  
B
ꢆꢇ  
ꢁꢋ  
0). ꢁ  
)$%.4)&)#!4)/.  
ꢁꢃ  
E
ꢅ"?-%?6ꢃ  
1. Drawing is not to scale.  
DocID17659 Rev 12  
111/133  
132  
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
Table 65. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 39. LQFP48 7 x 7 mm, 48-pin low-profile quad flat recommended footprint  
ꢊꢄꢅꢊ  
ꢁꢄꢃꢊ  
ꢊꢄꢋꢊ  
ꢋꢈ  
ꢃꢅ  
ꢋꢌ  
ꢃꢆ  
ꢊꢄꢃꢊ  
ꢌꢄꢋꢊ  
ꢉꢄꢌꢊ ꢅꢄꢇꢊ  
ꢌꢄꢋꢊ  
ꢆꢇ  
ꢁꢋ  
ꢁꢃ  
ꢁꢄꢃꢊ  
ꢅꢄꢇꢊ  
ꢉꢄꢌꢊ  
AIꢁꢆꢉꢁꢁD  
1. Dimensions are in millimeters.  
112/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
LQFP48 device marking  
Package information  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 40. LQFP48 7 x 7 mm, 48-pin low-profile quad flat package top view example  
3URGXFW  
ꢑꢄꢓ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-  
ꢂꢃꢂ$ꢄ5ꢅ  
'DWHꢌFRGH  
: 88  
3LQꢌꢄꢌ  
LGHQWLILFDWLRQ  
5HYLVLRQꢌFRGH  
3
06ꢀꢊꢊꢄꢅ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID17659 Rev 12  
113/133  
132  
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
7.4  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package information  
Figure 41. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline  
3LQꢌꢄꢌLGHQWLILHU  
ODVHUꢌPDUNLQJꢌDUHD  
'
$
(
<
(
6HDWLQJꢌ  
SODQH  
7
GGG  
$ꢄ  
E
H
'HWDLOꢌ<  
'
([SRVHGꢌSDGꢌ  
DUHD  
'ꢅ  
/
ꢆꢃ  
&ꢌꢇꢎꢁꢇꢇ[ꢆꢁƒ  
SLQꢄꢌFRUQHU  
5ꢌꢇꢎꢄꢅꢁꢌW\Sꢎ  
'HWDLOꢌ=  
(ꢅ  
ꢆꢃ  
=
$ꢇ%ꢂB0(B9ꢀ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
114/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
Table 66. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
A1  
D
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 42. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package recommended footprint  
ꢌꢄꢋꢊ  
ꢈꢄꢃꢊ  
ꢆꢇ  
ꢋꢌ  
ꢋꢈ  
ꢅꢄꢈꢊ  
ꢊꢄꢃꢊ  
ꢌꢄꢋꢊ  
ꢅꢄꢇꢊ  
ꢈꢄꢃꢊ  
ꢅꢄꢈꢊ  
ꢊꢄꢋꢊ  
ꢁꢃ  
ꢃꢅ  
ꢁꢋ  
ꢃꢆ  
ꢊꢄꢌꢅ  
ꢊꢄꢅꢊ  
ꢊꢄꢅꢅ  
ꢅꢄꢇꢊ  
!ꢊ"ꢉ?&0?6ꢃ  
1. Dimensions are in millimeters.  
DocID17659 Rev 12  
115/133  
132  
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
UFQFPN48 device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 43. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package top view example  
3URGXFW  
ꢑꢄꢓ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-  
ꢂꢃꢂ$ꢄ6ꢅ  
'DWHꢌFRGH  
: 88  
3LQꢌꢄꢌ  
LGHQWLILFDWLRQ  
5HYLVLRQꢌFRGH  
3
06ꢀꢊꢊꢄꢀ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
116/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
7.5  
UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch  
ball grid array package information  
Figure 44. UFBGA100, 7 x 7 mm, 0.5 mm pitch, package outline  
= 6HDWLQJꢌSODQH  
GGG =  
$ꢆ  
$ꢅ  
$
$ꢀ  
$ꢄ  
$
(ꢄ  
;
$ꢄꢌEDOOꢌ  
$ꢄꢌEDOOꢌ  
(
LGHQWLILHU LQGH[ꢌDUHD  
H
)
)
'ꢄ  
'
H
<
0
ꢄꢅ  
‘EꢌꢑꢄꢇꢇꢌEDOOVꢓ  
‘ HHH 0 = < ;  
‘ III 0 =  
%27720ꢌ9,(:  
723ꢌ9,(:  
$ꢇ&ꢅB0(B9ꢆ  
1. Drawing is not to scale.  
Table 67. UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A3  
A4  
b
-
-
0.6  
0.11  
0.5  
-
-
0.0236  
0.0043  
0.0197  
0.0071  
0.0146  
0.0118  
0.2776  
0.2185  
0.2776  
0.2185  
-
0.05  
0.4  
0.08  
0.27  
0.2  
6.95  
5.45  
6.95  
5.45  
-
0.08  
0.45  
0.13  
0.32  
0.25  
7
0.002  
0.0157  
0.0031  
0.0106  
0.0079  
0.2736  
0.2146  
0.2736  
0.2146  
-
0.0031  
0.0177  
0.0051  
0.0126  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
0.0295  
-
0.18  
0.37  
0.3  
D
7.05  
5.55  
7.05  
5.55  
-
D1  
E
5.5  
7
E1  
e
5.5  
0.5  
0.75  
-
F
0.7  
-
0.8  
0.0276  
-
0.0315  
0.0039  
ddd  
0.1  
DocID17659 Rev 12  
117/133  
132  
 
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
Table 67. UFBGA100 7 x 7 mm, 0.5 mm pitch, package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
eee  
fff  
-
-
-
-
0.15  
0.05  
-
-
-
-
0.0059  
0.002  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 45. UFBGA100 7 x 7 mm, 0.5 mm pitch, package recommended footprint  
'SDG  
'VP  
$ꢇ&ꢅB)3B9ꢄ  
Table 68. UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
0.280 mm  
Between 0.100 mm and 0.125 mm  
118/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
UFBGA100 device marking  
Package information  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 46. UFBGA100 7 x 7 mm, 0.5 mm pitch, package top view example  
3URGXFW  
ꢑꢄꢓ  
LGHQWLILFDWLRQ  
45.ꢀꢁ-ꢂꢃꢂ  
7ꢄ)ꢅ  
'DWHꢌFRGH  
: 88  
%DOOꢌ$ꢄꢌ  
LGHQWLILFDWLRQ  
5HYLVLRQꢌFRGH  
3
06ꢀꢊꢊꢄꢆ9ꢅ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID17659 Rev 12  
119/133  
132  
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
7.6  
TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-pitch ball  
grid array package information  
Figure 47. TFBGA64 5 x 5 mm, 0.5 mm pitch, package outline  
$
(ꢄ  
(
)
H
+
)
H
'
'ꢄ  
‘EꢌꢑꢊꢆꢌEDOOVꢓ  
‘ HHH 0 & % $  
‘ III 0 &  
%
$
$ꢄꢌEDOOꢌ  
$ꢄꢌEDOOꢌ  
723ꢌ9,(:  
6,'(ꢌ9,(:  
%27720ꢌ9,(:  
LQGH[ꢌDUHD  
LGHQWLILHU  
& 6HDWLQJꢌSODQH  
GGG &  
$ꢆ  
$ꢅ  
$ꢄ  
$
5ꢃB0(B9ꢆ  
1. Drawing is not to scale.  
Table 69. TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A4  
b
-
-
1.200  
-
-
0.0472  
0.150  
-
-
0.0059  
-
-
-
0.200  
-
-
-
0.0079  
-
-
-
0.600  
-
0.0236  
0.250  
0.300  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
-
0.350  
0.0098  
0.0118  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
-
0.0138  
D
4.850  
5.150  
0.1909  
0.2028  
D1  
E
-
-
-
-
4.850  
5.150  
0.1909  
0.2028  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
ddd  
0.080  
0.0031  
120/133  
DocID17659 Rev 12  
 
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
Table 69. TFBGA64 5 x 5 mm, 0.5 mm pitch, package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
eee  
fff  
-
-
-
-
0.15  
0.05  
-
-
-
-
0.0059  
0.002  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 48. TFBGA64, 5 x 5 mm, 0.5 mm pitch, recommended footprint  
'SDG  
'VP  
06ꢄꢃꢂꢊꢁ9ꢅ  
Table 70. TFBGA64 5 x 5 mm, 0.5 mm pitch, recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.27 mm  
0.35 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter.  
DocID17659 Rev 12  
121/133  
132  
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
TFBGA64 device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
Figure 49. TFBGA64 5 x 5 mm, 0.5 mm pitch, package top view example  
3URGXFWꢌLGHQWLILFDWLRQꢑꢄꢓ  
/ꢂꢃꢂ5ꢄ+ꢅ  
'DWHꢌFRGH  
<
::  
5HYLVLRQꢌFRGH  
%DOOꢌ$ꢄꢌ  
LQGHQWLILHU  
5
06Yꢀꢊꢊꢄꢁ9ꢄ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
122/133  
DocID17659 Rev 12  
 
STM32L151x6/8/B STM32L152x6/8/B  
Package information  
7.7  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in ° C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 71. Thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
BGA100 - 7 x 7 mm  
59  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm / 0.5 mm pitch  
46  
65  
45  
55  
16  
Thermal resistance junction-ambient  
TFBGA64 - 5 x 5 mm  
Θ
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch  
DocID17659 Rev 12  
123/133  
132  
 
 
Package information  
STM32L151x6/8/B STM32L152x6/8/B  
Figure 50. Thermal resistance  
ꢀꢇꢇꢇꢎꢇꢇ  
)RUELGGHQꢌDUHD  
7-ꢌ!ꢌ7-ꢌPD[  
ꢅꢁꢇꢇꢎꢇꢇ  
ꢅꢇꢇꢇꢎꢇꢇ  
84)3ꢆꢃꢌꢋ[ꢋꢌPP  
/4)3ꢆꢃꢌꢋ[ꢋꢌPP  
3'ꢌꢑP:ꢓ  
ꢄꢁꢇꢇꢎꢇꢇ  
ꢄꢇꢇꢇꢎꢇꢇ  
ꢁꢇꢇꢇ  
/4)3ꢊꢆꢌꢄꢇ[ꢄꢇꢌPP  
/4)3ꢄꢇꢇꢌꢄꢆ[ꢄꢆꢌPP  
8)%*$ꢄꢇꢇꢌꢋ[ꢋꢌPP  
7)%*$ꢊꢆꢌꢁ[ꢁꢌPP  
   
ꢄꢇꢇ  
ꢋꢁ  
ꢅꢁ  
ꢁꢇ  
7HPSHUDWXUHꢌꢑΣꢄꢓꢌꢌ  
06Yꢀꢁꢂꢃꢊ9ꢄꢌ  
7.7.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
124/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Ordering information  
8
Ordering information  
Table 72. Ordering information scheme  
Example:  
STM32 L 151 C 8  
T
6
T
TR  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
L = Low power  
Device subfamily  
151: Devices without LCD  
152: Devices with LCD  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
U = UFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
Options  
No character = VDD range: 1.8 to 3.6 V and BOR enabled  
T = VDD range: 1.65 to 3.6 V and BOR disabled  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
DocID17659 Rev 12  
125/133  
132  
 
 
Revision history  
STM32L151x6/8/B STM32L152x6/8/B  
9
Revision history  
Table 73. Document revision history  
Date  
Revision  
Changes  
02-Jul-2010  
1
Initial release.  
Removed 5 V tolerance (FT) from PA3, PB0 and PC3 in Table 8:  
STM32L15xx6/8/B pin definitions  
Updated Table 14: Embedded reset and power control block  
characteristics  
01-Oct-2010  
16-Dec-2010  
2
3
Updated Table 16: Embedded internal reference voltage  
Added Table 53: ADC clock frequency  
Updated Table 54: ADC characteristics  
Modified consumptions on page 1 and in Section 3.1: Low power  
modes  
LED_SEG8 removed on PB6.  
Updated Section 6: Electrical characteristics  
VFQFPN48 replaced by UFQFPN48  
Section 3.3.2: Power supply supervisor: updated note.  
Table 8: STM32L15xx6/8/B pin definitions: modified main function  
(after reset) and alternate function for OSC_IN and OSC_OUT pins;  
modified footnote 5; added footnote to OSC32_IN and OSC32_OUT  
pins; C1 and D1 removed on PD0 and PD1 pins (TFBGA64  
column).  
Section 3.11: DAC (digital-to-analog converter): updated bullet list.  
Table 10: Voltage characteristics on page 52: updated footnote 3  
regarding IINJ(PIN)  
.
Table 11: Current characteristics on page 52: updated footnote 4  
regarding positive and negative injection.  
Table 14: Embedded reset and power control block characteristics  
on page 54: updated typ and max values for TRSTTEMPO (VDD  
rising, BOR enabled).  
Table 17: Current consumption in Run mode, code with data  
processing running from Flash on page 58: removed values for HSI  
clock source (16 MHz), Range 3.  
25-Feb-2011  
4
Table 18: Current consumption in Run mode, code with data  
processing running from RAM on page 59: removed values for HSI  
clock source (16 MHz), Range 3.  
Table 19: Current consumption in Sleep mode on page 60 removed  
values for HSI clock source (16 MHz), Range 3 for both RAM and  
Flash; changed units.  
Table 20: Current consumption in Low power run mode on page 62:  
updated parameter and max value of IDD Max (LP Run).  
Table 21: Current consumption in Low power sleep mode on  
page 63: updated symbol, parameter, and max value of IDD Max (LP  
Sleep).  
Table 22: Typical and maximum current consumptions in Stop mode  
on page 64 updated values for IDD (Stop with RTC) - RTC clocked by  
LSE external clock (32.768 kHz), regulator in LP mode, HSI and  
HSE OFF (no independent watchdog).  
126/133  
DocID17659 Rev 12  
 
 
STM32L151x6/8/B STM32L152x6/8/B  
Revision history  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Table 23: Typical and maximum current consumptions in  
Standby mode on page 66 (IDD (WU from Standby) instead of (IDD  
(WU from Stop).  
Table 25: Low-power mode wakeup timings on page 69: updated  
condition for Wakeup from Stop mode, regulator in Run mode;  
updated max values for Wakeup from Stop mode, regulator in low  
power mode; updated max values for tWUSTDBY  
.
Table 24: Peripheral current consumption on page 67: updated  
values for column Low power sleep and run; updated Flash values;  
renamed ADC1 to ADC; updated IDD (LCD) value; updated units;  
added values for IDD (RTC) and IDD (IWDG); updated footnote 1 and 3;  
added foot note 2 concerning ADC.  
Table 26: High-speed external user clock characteristics on  
page 70: added min value for tw(HSE) w(HSE)  
time; added max value for tr(HSE)/tf(HSE) OSC_IN rise or fall time;  
updated IL for typ and max values.  
/t  
OSC_IN high or low  
Table 27: Low-speed external user clock characteristics on page 71:  
updated max value for IL.  
Table 28: HSE oscillator characteristics on page 72: renamed i2 as  
IHSE and updated max value; updated max values for IDD(HSE)  
Table 29: LSE oscillator characteristics (fLSE = 32.768 kHz) on  
page 73: updated max value for ILSE  
Table 30: HSI oscillator characteristics on page 75: updated some  
.
.
4
25-Feb-2011  
(continued)  
min and max values for ACCHSI  
Table 32: MSI oscillator characteristics on page 76: updated  
parameter, typ, and max values for DVOLT(MSI)  
Table 35: Flash memory and data EEPROM characteristics on  
page 78: updated typ values for tprog  
.
.
.
Table 44: I/O AC characteristics on page 84: updated some max  
values for 01, 10, and 11; updated min value; updated footnotes.  
Table 55: ADC accuracy on page 95: updated typ values and some  
of the test conditions for ENOB, SINAD, SNR, and THD.  
Table 57: DAC characteristics on page 99: updated footnote 7 and  
added footnote 8.  
Updated leakage value in Figure 27: Typical connection diagram  
using the ADC.  
Added Figure 28: Maximum dynamic current consumption on  
VREF+ supply pin during ADC conversion.  
Added Table 56: RAIN max for fADC = 16 MHz on page 98  
Figure 29: Power supply and reference decoupling (VREF+ not  
connected to VDDA): replaced all 10 nF capacitors with 100 nF  
capacitors.  
Figure 30: Power supply and reference decoupling (VREF+  
connected to VDDA): replaced 10 nF capacitor with 100 nF  
capacitor.  
DocID17659 Rev 12  
127/133  
132  
Revision history  
STM32L151x6/8/B STM32L152x6/8/B  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Modified 1st page (low power features)  
Added STM32L15xC6 and STM32L15xR6 devices (32 Kbytes of  
Flash memory).  
Modified Section 3.6: GPIOs (general-purpose inputs/outputs) on  
page 22  
17-June-2011  
5
Modified Section 6.3: Operating conditions on page 53  
Modified Table 55: ADC accuracy on page 95, Table 57: DAC  
characteristics on page 99 and Table 60: Comparator 1  
characteristics on page 102  
Features: updated internal multispeed low power RC.  
Table 2: Ultralow power STM32L15xx6/8/B device features and  
peripheral counts: LCD 4x44 and 8x40 available for both 64- and  
128-Kbyte devices; two comparators available for all devices.  
Table 3: Functionalities depending on the operating power supply  
range: added footnote 1.  
Figure 8: STM32L15xCx UFQFPN48 pinout: replaced VFQPN48 by  
UFQFPN48 as name of package.  
Table 8: STM32L15xx6/8/B pin definitions: replaced PH0/PH1 by  
PC14/PC15.  
Table 9: Alternate function input/output: removed EVENT OUT from  
PH2 port, AFIO15 column.  
Table 19: Current consumption in Sleep mode: updated MSI  
conditions and fHCLK  
.
Table 20: Current consumption in Low power run mode: updated  
some temperature conditions; added footnote 2.  
Table 21: Current consumption in Low power sleep mode: updated  
some temperature conditions and one of the MSI clock conditions.  
Table 22: Typical and maximum current consumptions in Stop  
mode: updated IDD (WU from Stop) parameter.  
25-Jan-2012  
6
Table 23: Typical and maximum current consumptions in Standby  
mode: updated IDD (WU from Standby) parameter.  
Table 25: Low-power mode wakeup timings: updated fHCLK value  
for tWUSLEEP_LP; updated typical value of parameter “Wakeup from  
Stop mode, regulator in Run mode”.  
Table 24: Peripheral current consumption: replaced GPIOF by  
GPIOH.  
Table 33: PLL characteristics: updated “PLL output clock”  
Table 35: Flash memory and data EEPROM characteristics:  
updated all information for IDD  
.
Figure 19: I/O AC characteristics definition: replaced the falling  
edge “tr(IO)out” by “tf(IO)out”.  
Table 47: I2C characteristics: amended footnote 2.  
Table 54: ADC characteristics: updated fS max value for direct  
channels, 6-bit sampling rate.  
Table 55: ADC accuracy: Updated the first, third and fourth fADC test  
condition.  
Table 59: Temperature sensor characteristics: updated typ, min,  
and max values of the TS_temp parameter.  
128/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Revision history  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Updated cover page.  
Updated Section 3.10: ADC (analog-to-digital converter)  
Updated Table 3: Functionalities depending on the operating power  
supply range, added Table 4: CPU frequency range depending on  
dynamic voltage scaling and Table 5: Working mode-dependent  
functionalities (from Run/active down to standby).  
Updated Table 27: Low-speed external user clock  
characteristicsAdded footnote 2. in Table 14: Embedded reset and  
power control block characteristics  
Updated Table 22: Typical and maximum current consumptions in  
Stop mode and Table 23: Typical and maximum current  
consumptions in Standby mode  
Updated footnote 4. in Table 22: Typical and maximum current  
consumptions in Stop mode  
26-Oct-2012  
7
Updated Table 44: I/O AC characteristics  
Updated Table 47: I2C characteristics  
Updated Table 49: SPI characteristics  
Updated Section 6.3.9: Memory characteristics  
Updated “non-robust” Table 54: ADC characteristics  
Removed the note “position of 4.7 µf capacitor” in Section 6.1.6:  
Power supply scheme  
Updated Table 66: UFQFPN48 7 x 7 mm, 0.5 mm pitch, ultra thin  
fine-pitch quad flat no-lead package mechanical data  
Updated Table 65: LQFP48 7 x 7 mm, 48-pin low-profile quad flat  
package mechanical data  
Added the resistance of TFBGA in Table 71: Thermal characteristics  
Added Figure 50: Thermal resistance  
Removed AHB1/AHB2 in Figure 1: Ultralow power  
STM32L15xx6/8/B block diagram  
Added IWDG and WWDG rows in Table 5: Working mode-  
dependent functionalities (from Run/active down to standby).  
Updated IDD (Supply current during wakeup time from Standby  
mode) in Table 23: Typical and maximum current consumptions in  
Standby mode  
The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16  
MHz)" replaced by "fHSE = fHCLK up to 16 MHz included, fHSE =  
fHCLK/2 above 16 MHz (PLL ON)(2)” in Table 19: Current  
consumption in Sleep mode  
07-Feb-2013  
8
Updated Stop mode current to 1.2 µA in Ultra-low-power platform  
Updated entire Section 7: Package information  
Removed alternate function “I2C2_SMBA” for GPIO pin “PH2” in  
Table 8: STM32L15xx6/8/B pin definitions  
Updated Table 27: Low-speed external user clock characteristics  
and definition of symbol “RAIN” in Table 54: ADC characteristics  
Removed first sentence in I2C interface characteristics  
DocID17659 Rev 12  
129/133  
132  
Revision history  
STM32L151x6/8/B STM32L152x6/8/B  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Changed voltage Range 1 minimum to 1.71 V and updated dynamic  
voltage scaling range in Table 3: Functionalities depending on the  
operating power supply range  
Updated LCD and ADC features in Table 2: Ultralow power  
STM32L15xx6/8/B device features and peripheral counts.  
Updated Table 3: Functionalities depending on the operating power  
supply range.  
Updated Table 5: Working mode-dependent functionalities (from  
Run/active down to standby).  
Updated Figure 3: STM32L15xVx UFBGA100 ballout  
Added Table 7: Legend/abbreviations used in the pinout table.  
Updated Table 8: STM32L15xx6/8/B pin definitions  
Updated Figure 10: Pin loading conditions and Figure 11: Pin input  
voltage. Updated Figure 12: Power supply scheme.  
Replaced “Σ” by “σ” in Section 6.1.1 and Section 6.1.2.  
Updated Table 10: Voltage characteristics.  
Updated Table 13: General operating conditions.  
Added Section 6.1.7: Optional LCD power supply scheme.  
Updated Table 16: Embedded internal reference voltage.  
Added this Note in Section : High-speed external clock generated  
from a crystal/ceramic resonator  
Updated Section : Functional susceptibility to I/O current injection.  
This Section 6.3.5: Wakeup time from Low power mode was  
previously a paragraph in Section 6.3.4: Supply current  
characteristics.  
12-Nov-2013  
9
Updated fHSE conditions in Table 17: Current consumption in Run  
mode, code with data processing running from Flash and Table 18:  
Current consumption in Run mode, code with data processing  
running from RAM. Fixed IDD unit in Table 23: Typical and  
maximum current consumptions in Standby mode.  
This Figure 15: High-speed external clock source AC timing  
diagram was moved up (was previously after Figure 16: Low-speed  
external clock source AC timing diagram.  
Updated first sentence in Section 6.3.14: NRST pin characteristics.  
Updated Table 25: Low-power mode wakeup timings title.  
Updated Table 26: High-speed external user clock characteristics  
Updated Table 28: HSE oscillator characteristics and Table 29: LSE  
oscillator characteristics (fLSE = 32.768 kHz).  
Updated Section 6.3.11: Electrical sensitivity characteristics title.  
Updated Table 39: ESD absolute maximum ratings.  
Updated Table 41: I/O current injection susceptibility and Table 42:  
I/O static characteristics.  
Updated Figure 21: I2C bus AC waveforms and measurement  
circuit.  
Removed any occurrence of “when 8 pins are sourced at same  
time” in Table 43: Output voltage characteristics.  
Updated section link in second paragraph of Section 6.3.15: TIM  
timer characteristics.  
130/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
Revision history  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Table 54: ADC characteristics and Figure 27: Typical  
connection diagram using the ADC.  
Table 58: Temperature sensor calibration values was previously in  
Section 3.10.1: Temperature sensor. Updated Table 59:  
Temperature sensor characteristics.  
In Table 61: Comparator 2 characteristics, parameter dThreshold/dt,  
replaced any occurrence of “VREF+” by “VREFINT”Updated  
Table 63: LQPF100 14 x 14 mm, 100-pin low-profile quad flat  
package mechanical data, Table 64: LQFP64 10 x 10 mm 64-pin  
low-profile quad flat package mechanical data, Table 65: LQFP48 7  
x 7 mm, 48-pin low-profile quad flat package mechanical data and  
Table 66: UFQFPN48 7 x 7 mm, 0.5 mm pitch, ultra thin fine-pitch  
quad flat no-lead package mechanical data.  
9
12-Nov-2013  
(continued)  
Updated Figure 33: LQFP100 recommended footprint.  
Updated Figure 46: TFBGA64 - 5.0x5.0x1.2 mm, 0.5 mm pitch, thin  
fine-pitch ball grid array package outline title.  
Remove minimum and typical values of A dimension in Table 67:  
UFBGA100 7 x 7 x 0.6 mm 0.5 mm pitch, ultra thin fine-pitch ball  
grid array package mechanical data  
Deleted second footnote in Figure 42: UFQFPN48 recommended  
footprint.  
Updated Section 8: Ordering information title and added first  
sentence.  
Changed BOR disabled option identifier in Table 72: Ordering  
information scheme.  
Updated Figure 14, Figure 15.  
Updated Table 5.  
22-Jul-2014  
10  
Updated Figure 6.3.4.  
Updated note 5 inside Table 54.  
Updated Ro value inside Table 54.  
DocID17659 Rev 12  
131/133  
132  
Revision history  
STM32L151x6/8/B STM32L152x6/8/B  
Table 73. Document revision history (continued)  
Date  
Revision  
Changes  
Updated DMIPS features in cover page and Section 2: Description.  
Updated Table 8: STM32L151x6/8/B and STM32L152x6/8/B pin  
definitions and Table 9: Alternate function input/output putting  
additional functions.  
Updated package top view marking in Section 7.1: Package  
mechanical data.  
30-Jan-2015  
11  
Updated Figure 9: Memory map.  
Updated Table 56: Maximum source impedance RAIN max adding  
note 2.  
Updated Table 72: Ordering information scheme.  
Updated Section 7: Package information structure: Paragraph titles  
and paragraph heading level.  
Updated Section 7: Package information for all package device  
markings, adding text for device orientation versus pin 1/ ball A1  
identifier.  
Updated Figure 34: LQFP100 14 x 14 mm, 100-pin package top  
view example removing gate mark.  
Updated Table 64: LQFP64 10 x 10 mm, 64-pin low-profile quad flat  
package mechanical data.  
Updated Section 7.5: UFBGA100 7 x 7 mm, 0.5 mm pitch, ultra thin  
fine-pitch ball grid array package information adding Table 68:  
UFBGA100 7 x 7 mm, 0.5 mm pitch, recommended PCB design  
rules and Figure 45: UFBGA100 7 x 7 mm, 0.5 mm pitch, package  
recommended footprint.  
Updated Section 7.6: TFBGA64 5 x 5 mm, 0.5 mm pitch, thin fine-  
pitch ball grid array package information adding Table 70: TFBGA64  
5 x 5 mm, 0.5 mm pitch, recommended PCB design rules and  
changing Figure 48: TFBGA64, 5 x 5 mm, 0.5 mm pitch,  
recommended footprint.  
28-Apr-2016  
12  
Updated Table 16: Embedded internal reference voltage  
temperature coefficient at 100ppm/°C.  
Updated note 3 below Table 16.  
Updated Table 61: Comparator 2 characteristics new maximum  
threshold voltage temperature coefficient at 100ppm/°C.  
Updated Table 39: ESD absolute maximum ratings CDM class.  
Updated all the notes, removing ‘not tested in production’.  
Updated Table 10: Voltage characteristics adding note about VREF-  
pin.  
Updated Table 5: Working mode-dependent functionalities (from  
Run/active down to standby) LSI and LSE functionalities putting “Y”  
in Standby mode.  
Removed note 1 below Figure 2: Clock tree.  
Updated Table 57: DAC characteristics resistive load.  
132/133  
DocID17659 Rev 12  
STM32L151x6/8/B STM32L152x6/8/B  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2016 STMicroelectronics – All rights reserved  
DocID17659 Rev 12  
133/133  
133  
 
 

相关型号:

STM32L152x8

Reset and supply management
STMICROELECTR

STM32L152xB

Reset and supply management
STMICROELECTR

STM32L152XD

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 384KB Flash, 48KB SRAM, 12KB EEPROM, LCD, USB, ADC, DAC, memory I/F
STMICROELECTR

STM32L152xE

Ultra-low-power platform
STMICROELECTR

STM32L152xx

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC
STMICROELECTR

STM32L152ZC

Ultra-low-power platform
STMICROELECTR

STM32L152ZCT6

Ultra-low-power platform
STMICROELECTR

STM32L152ZD

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 384KB Flash
STMICROELECTR

STM32L152ZE

Ultra-low-power platform
STMICROELECTR

STM32L156

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC
STMICROELECTR

STM32L15PRIM-D

Raisonance STM32 and STM8 Primers for fun, easy evaluation and development with STM32 and STM8
STMICROELECTR

STM32L15PRIMER

Raisonance STM32 and STM8 Primers for fun, easy evaluation and development with STM32 and STM8
STMICROELECTR