STM32L412RBY6PXXX [STMICROELECTRONICS]

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS;
STM32L412RBY6PXXX
型号: STM32L412RBY6PXXX
厂家: ST    ST
描述:

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

静态存储器
文件: 总192页 (文件大小:2689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L412xx  
Ultra-low-power Arm® Cortex®-M4 32-bit MCU+FPU, 100DMIPS,  
up to 128KB Flash, 40KB SRAM, analog, ext. SMPS  
Datasheet - production data  
Features  
Ultra-low-power with FlexPowerControl  
– 1.71 V to 3.6 V power supply  
WLCSP36  
(2.6x3.1 mm)  
LQFP32 (7x7 mm)  
LQFP48 (7x7 mm)  
LQFP64 (10x10 mm)  
UFQFPN32 (5x5 mm)  
UFQFPN48 (7x7 mm)  
UFBGA64 (5x5 mm)  
– -40 °C to 85/125 °C temperature range  
– 300 nA in V  
mode: supply for RTC and  
BAT  
– PLL for system clock  
32x32-bit backup registers  
Up to 52 fast I/Os, most 5 V-tolerant  
– 16 nA Shutdown mode (4 wakeup pins)  
– 32 nA Standby mode (4 wakeup pins)  
– 245 nA Standby mode with RTC  
– 0.7 µA Stop 2 mode, 0.95 µA with RTC  
– 79 µA/MHz run mode (LDO Mode)  
RTC with HW calendar, alarms and calibration  
Up to 12 capacitive sensing channels: support  
touchkey, linear and rotary touch sensors  
10x timers: 1x 16-bit advanced motor-control,  
1x 32-bit and 2x 16-bit general purpose, 1x 16-  
bit basic, 2x low-power 16-bit timers (available  
in Stop mode), 2x watchdogs, SysTick timer  
– 28 μA/MHz run mode (@3.3 V SMPS  
Mode)  
– Batch acquisition mode (BAM)  
– 4 µs wakeup from Stop mode  
– Brown out reset (BOR)  
Memories  
– 128 KB single bank Flash, proprietary code  
readout protection  
– Interconnect matrix  
®
®
– 40 KB of SRAM including 8 KB with  
hardware parity check  
Core: Arm 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
– Quad SPI memory interface with XIP  
capability  
Accelerator™) allowing 0-wait-state execution  
from Flash memory, frequency up to 80 MHz,  
MPU, 100DMIPS and DSP instructions  
Rich analog peripherals (independent supply)  
Performance benchmark  
– 2x 12-bit ADC 5 Msps, up to 16-bit with  
hardware oversampling, 200 µA/Msps  
– 1.25 DMIPS/MHz (Drystone 2.1)  
®
– 2x operational amplifiers with built-in PGA  
– 1x ultra-low-power comparator  
– 273.55 CoreMark (3.42 CoreMark/MHz @  
80 MHz)  
– Accurate 2.5 V or 2.048 V reference  
voltage buffered output  
Energy benchmark  
®
– 442 ULPMark-CP  
®
12x communication interfaces  
– 165 ULPMark-PP  
– USB 2.0 full-speed crystal less solution  
with LPM and BCD  
Clock Sources  
– 4 to 48 MHz crystal oscillator  
– 3x I2C FM+(1 Mbit/s), SMBus/PMBus  
– 3x USARTs (ISO 7816, LIN, IrDA, modem)  
– 1x LPUART (Stop 2 wake-up)  
– 2x SPIs (and 1x Quad SPI)  
– 32 kHz crystal oscillator for RTC (LSE)  
– Internal 16 MHz factory-trimmed RC (±1%)  
– Internal low-power 32 kHz RC (±5%)  
– Internal multispeed 100 kHz to 48 MHz  
oscillator, auto-trimmed by LSE (better than  
±0.25 % accuracy)  
– IRTIM (Infrared interface)  
14-channel DMA controller  
– Internal 48 MHz with clock recovery  
True random number generator  
November 2020  
DS12469 Rev 8  
1/192  
This is information on a product in full production.  
www.st.com  
 
STM32L412xx  
CRC calculation unit, 96-bit unique ID  
All packages are ECOPACK2 compliant  
Development support: serial wire debug  
(SWD), JTAG, Embedded Trace Macrocell™  
Table 1. Device summary  
Reference  
STM32L412xx  
Part numbers  
STM32L412CB, STM32L412KB, STM32L412RB, STM32L412TB  
STM32L412C8, STM32L412K8, STM32L412R8, STM32L412T8  
2/192  
DS12469 Rev 8  
 
STM32L412xx  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 16  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Firewall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 19  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
3.9.6  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.10 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.12 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.13 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.14 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.14.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 36  
3.14.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 36  
3.15 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.15.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.15.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.15.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.16 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DS12469 Rev 8  
3/192  
6
Contents  
STM32L412xx  
3.17 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.18 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.19 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.20.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.20.2 General-purpose timers (TIM2, TIM15, TIM16) . . . . . . . . . . . . . . . . . . . 41  
3.20.3 Basic timer (TIM6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20.4 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20.5 Infrared interface (IRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.20.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.20.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.20.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.21 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 43  
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.23 Universal synchronous/asynchronous receiver transmitter (USART) . . . 45  
3.24 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 46  
3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.26 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.27 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.28 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.29 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.29.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.29.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
4/192  
DS12469 Rev 8  
STM32L412xx  
Contents  
6.1.7  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 79  
Embedded reset and power control block characteristics . . . . . . . . . . . 79  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Wakeup time from low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
6.3.7  
6.3.8  
6.3.9  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
6.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
6.3.16 Extended interrupt and event controller input (EXTI) characteristics . . 137  
6.3.17 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
6.3.18 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 138  
6.3.19 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
6.3.20 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 152  
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.22  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
BAT  
6.3.23 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
6.3.24 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 157  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
UFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
WLCSP36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
DS12469 Rev 8  
5/192  
6
Contents  
STM32L412xx  
7.7  
7.8  
LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
7.8.1  
7.8.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 187  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
6/192  
DS12469 Rev 8  
STM32L412xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32L412xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 13  
Access status versus readout protection level and execution modes. . . . . . . . . . . . . . . . . 17  
STM32L412xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32L412xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
STM32L412xx USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
STM32L412xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
STM32L412xx memory map and peripheral register boundary addresses . . . . . . . . . . . . 70  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 85  
Current consumption in Run modes, code with data processing running from Flash,  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
Table 26.  
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current consumption in Run modes, code with data processing running from Flash,  
ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . 88  
Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Current consumption in Run, code with data processing running from  
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . . . . 90  
Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 91  
Typical current consumption in Run, with different codes running from Flash,  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Typical current consumption in Run, with different codes running from Flash,  
Table 33.  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
(VDD12 = 1.00 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Typical current consumption in Run modes, with different codes running from  
Table 34.  
Table 35.  
DS12469 Rev 8  
7/192  
9
List of tables  
STM32L412xx  
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . 93  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Typical current consumption in Run modes, with different codesrunning from  
Flash, ART disable and power supplied by external SMPS (VDD12 = 1.00 V). . . . . . . . . 94  
Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Typical current consumption in Run, with different codes running from  
SRAM1 and power supplied by external SMPS (VDD12 = 1.10 V). . . . . . . . . . . . . . . . . . 95  
Typical current consumption in Run, with different codes running from  
SRAM1 and power supplied by external SMPS (VDD12 = 1.00 V). . . . . . . . . . . . . . . . . . 95  
Current consumption in Sleep and Low-power sleep modes, Flash ON . . . . . . . . . . . . . . 96  
Current consumption in Sleep, Flash ON and power supplied by external SMPS  
Table 40.  
Table 41.  
(VDD12 = 1.10 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Current consumption in Low-power sleep modes, Flash in power-down . . . . . . . . . . . . . . 97  
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Current consumption in Stop 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
LSE  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
EXTI Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
8/192  
DS12469 Rev 8  
STM32L412xx  
List of tables  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
BAT  
BAT  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
WWDG min/max timeout value at 80 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
LQFP64 - Mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
UFBGA64 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . 170  
LQFP48 - Mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
WLCSP36 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Table 100. WLCSP36 - Recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Table 101. UFQFPN32 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Table 102. LQFP32 - Mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Table 103. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Table 104. STM32L412xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
Table 105. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
DS12469 Rev 8  
9/192  
9
List of figures  
STM32L412xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32L412xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
(1)  
STM32L412Rx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
(1)  
STM32L412Rx, external SMPS, LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
(1)  
STM32L412Rx UFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
(1)  
STM32L412Rx UFBGA64, external SMPS, ballout  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
(1)  
STM32L412Cx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
(1)  
Figure 10. STM32L412Cx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 11. STM32L412Tx WLCSP36 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 12. STM32L412Tx, external SMPS, WLCSP36 ballout  
Figure 13. STM32L412Kx LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
(1)  
(1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
(1)  
(1)  
Figure 14. STM32L412Kx UFQFPN32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 15. STM32L412xx memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 16. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Figure 18. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 19. Current consumption measurement scheme with and without external  
SMPS power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 20. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 21. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 22. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 23. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Figure 24. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 25. HSI16 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Figure 26. Typical current consumption versus MSI frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 27. HSI48 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 28. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
(1)  
Figure 29. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 30. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 31. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 32. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Figure 33. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Figure 34. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 35. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 36. Quad SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 37. Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Figure 38. LQFP64 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Figure 39. LQFP64 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 40. LQFP64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Figure 41. LQFP64 (external SMPS device) marking (package top view). . . . . . . . . . . . . . . . . . . . . 168  
Figure 42. UFBGA64 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Figure 43. UFBGA64 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 44. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 45. UFBGA64 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 46. LQFP48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 47. LQFP48 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
10/192  
DS12469 Rev 8  
STM32L412xx  
List of figures  
Figure 48. LQFP48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Figure 49. UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 50. UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 51. UFQFPN48 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 52. WLCSP36 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 53. WLCSP36 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 54. WLCSP36 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 55. UFQFPN32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Figure 56. UFQFPN32 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Figure 57. UFQFPN32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Figure 58. LQFP32 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Figure 59. LQFP32 - Recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Figure 60. LQFP32 marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
DS12469 Rev 8  
11/192  
11  
Introduction  
STM32L412xx  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32L412xx microcontrollers.  
This document should be read in conjunction with the STM32L41x, STM32L42x,  
STM32L43x, STM32L44x, STM32L45x, STM32L46x reference manual (RM0394), available  
from the STMicroelectronics website www.st.com.  
®(a)  
®
®
For information on the Arm  
Cortex -M4 core, refer to the Cortex -M4 Technical  
Reference Manual, available from the www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
12/192  
DS12469 Rev 8  
 
STM32L412xx  
Description  
2
Description  
The STM32L412xx devices are ultra-low-power microcontrollers based on the  
®
®
high-performance Arm Cortex -M4 32-bit RISC core operating at a frequency of up to  
80 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision that  
®
supports all Arm single-precision data-processing instructions and data types. It also  
implements a full set of DSP instructions and a memory protection unit (MPU) which  
enhances application security.  
The STM32L412xx devices embed high-speed memories (Flash memory up to 128  
Kbyte,40 Kbyte of SRAM), a Quad SPI Flash memories interface (available on all packages)  
and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two  
AHB buses and a 32-bit multi-AHB bus matrix.  
The STM32L412xx devices embed several protection mechanisms for embedded Flash  
memory and SRAM: readout protection, write protection, proprietary code readout  
protection and Firewall.  
The devices offer two fast 12-bit ADC (5 Msps), two comparators, one operational amplifier,  
a low-power RTC, one general-purpose 32-bit timer, one 16-bit PWM timer dedicated to  
motor control, four general-purpose 16-bit timers, and two 16-bit low-power timers.  
In addition, up to 12 capacitive sensing channels are available.  
They also feature standard and advanced communication interfaces, namely three I2Cs,  
two SPIs, three USARTs and one Low-Power UART, one USB full-speed device crystal  
less.  
The STM32L412xx operates in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C  
(+130 °C junction) temperature ranges from a 1.71 to 3.6 V V power supply when using  
DD  
internal LDO regulator and a 1.00 to 1.32V V  
power supply when using external SMPS  
DD12  
supply. A comprehensive set of power-saving modes makes possible the design of low-  
power applications.  
Some independent power supplies are supported: analog independent supply input for  
ADC, OPAMP and comparator. A VBAT input makes it possible to backup the RTC and  
backup registers. Dedicated V  
power supplies can be used to bypass the internal LDO  
DD12  
regulator when connected to an external SMPS.  
The STM32L412xx family offers six packages from 32 to 64-pin packages.  
Table 2. STM32L412xx family device features and peripheral counts  
Peripheral  
Flash memory  
128KB  
64KB  
128KB  
64KB  
Yes  
128KB  
40KB  
64KB  
128KB  
64KB  
SRAM  
Quad SPI  
DS12469 Rev 8  
13/192  
49  
 
 
 
Description  
STM32L412xx  
Table 2. STM32L412xx family device features and peripheral counts (continued)  
Peripheral  
Advanced  
control  
1 (16-bit)  
2 (16-bit)  
1 (32-bit)  
General  
purpose  
Basic  
1 (16-bit)  
2 (16-bit)  
1
Timers  
Low -power  
SysTick timer  
Watchdog  
timers  
(independent,  
window)  
2
SPI  
I2C  
2
3
1
2
Comm.  
interfac  
es  
USART  
LPUART  
3
1
2
1
USB FS  
Yes  
Yes  
RTC  
Tamper pins  
2
2
1
2
Random generator  
GPIOs(1)  
Wakeup pins  
Yes  
52  
4
38  
3
30  
2
26  
2
Capacitive sensing  
Number of channels  
12  
6
2
12-bit ADC  
2
2
2
Number of channels  
10  
10  
10  
16  
Internal voltage  
reference buffer  
No  
Analog comparator  
Operational amplifiers  
Max. CPU frequency  
Operating voltage (VDD  
Operating voltage  
1
1
80 MHz  
1.71 to 3.6 V  
)
1.00 to 1.32 V  
(VDD12  
)
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C  
Junction temperature: -40 to 105 °C / -40 to 130 °C  
Operating temperature  
Packages  
LQFP64  
LQFP48  
UFQFPN32  
LQFP32  
WLCSP36  
UFBGA64  
UFQFPN48  
1. In case external SMPS package type is used, 2 GPIO's are replaced by VDD12 pins to connect the SMPS  
power supplies hence reducing the number of available GPIO's by 2.  
14/192  
DS12469 Rev 8  
STM32L412xx  
Description  
Figure 1. STM32L412xx block diagram  
D0[3:0],  
NJTRST, JTDI,  
JTCK/SWCLK  
JTDO/SWD, JTDO  
D1[3:0],  
CLK0,  
CLK1  
CS  
Quad SPI memory interface  
MPU  
JTAG & SW  
ETM  
NVIC  
TRACECLK  
D-BUS  
TRACED[3:0]  
ARM Cortex-M4  
80 MHz  
I-BUS  
S-BUS  
FPU  
RNG  
Flash  
up to  
128 KB  
SRAM2 8 KB  
SRAM1 32 KB  
Power management  
VDD  
AHB2 80 MHz  
DMA2  
Voltage  
regulator  
3.3 to 1.2 V  
VDD = 1.71 to 3.6 V  
VSS  
DMA1  
@ VDD  
@ VDD  
Supply  
supervision  
reset  
Int  
MSI  
7 Groups of  
VDDUSB  
RC HSI  
RC LSI  
Touch sensing controller  
GPIO PORT A  
BOR  
4 channels max as AF  
VDDA, VSSA  
VDD, VSS, NRST  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD2  
PVD, PVM  
@VDD  
PLL 1&2  
HSI48  
GPIO PORT B  
GPIO PORT C  
OSC_IN  
OSC_OUT  
XTAL OSC  
4- 16MHz  
IWDG  
VBAT = 1.55 to 3.6 V  
GPIO PORT D  
GPIO PORT H  
Standby  
interface  
@VBAT  
PH[1:0],  
PH[3]  
Reset & clock  
control  
OSC32_IN  
XTAL 32 kHz  
RTC  
AWU  
Backup register  
OSC32_OUT  
@ VDD  
RTC_TS  
RTC_TAMPx  
RTC_OUT  
Temperature sensor  
TIM2  
32b  
4 channels, ETR as AF  
CRC  
@ VDDA  
ADC1  
@ VDDUSB  
DP  
DM  
NOE  
16 external analog inputs  
16 external analog inputs  
USB FS  
ITF  
ADC2  
CRS_SYNC  
CRS  
@ VDDA  
smcard  
IrDA  
USART2  
RX, TX, CK, CTS, RTS as AF  
RX, TX, CK, CTS, RTS as AF  
VREF+  
83 AF  
VREF Buffer  
AHB/APB2  
AHB/APB1  
smcard  
IrDA  
USART3  
EXT IT. WKUP  
TIM1 / PWM  
3 compl. channels (TIM1_CH[1:3]N),  
4 channels (TIM1_CH[1:4]),  
ETR, BKIN, BKIN2 as AF  
16b  
SPI2  
MOSI, MISO, SCK, NSS as AF  
WWDG  
I2C1/SMBUS  
I2C2/SMBUS  
I2C3/SMBUS  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
2 channels,  
16b  
16b  
TIM15  
TIM16  
1 compl. channel, BKIN as AF  
1 channel,  
1 compl. channel, BKIN as AF  
smcard  
IrDA  
RX, TX, CK,CTS,  
RTS as AF  
USART1  
TIM6  
16b  
MOSI, MISO,  
SCK, NSS as AF  
SPI1  
@VDDA  
VOUT, VINM, VINP  
OpAmp1  
LPUART1  
RX, TX, CTS, RTS as AF  
@ VDDA  
COMP1  
INP, INM, OUT  
LPTIM1  
LPTIM2  
IN1, IN2, OUT, ETR as AF  
IN1, OUT, ETR as AF  
FIREWALL  
MSv45999V2  
Note:  
AF: alternate function on I/O pins.  
DS12469 Rev 8  
15/192  
49  
 
Functional overview  
STM32L412xx  
3
Functional overview  
3.1  
Arm® Cortex®-M4 core with FPU  
®
®
®
The Arm Cortex -M4 with FPU processor is the latest generation of Arm processors for  
embedded systems, developed to provide a low-cost platform that meets the needs of MCU  
implementation with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced response to interrupts.  
®
®
The Arm Cortex -M4 with FPU 32-bit RISC processor features exceptional code-  
®
efficiency, delivering the high-performance expected from an Arm core in the memory size  
usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions enabling efficient signal processing and  
complex algorithm execution.  
Its single precision FPU speeds up software development by using metalanguage  
development tools, while avoiding saturation.  
®
®
With its embedded Arm core, the STM32L412xx family is compatible with all Arm tools  
and software.  
Figure 1 shows the general block diagram of the STM32L412xx family devices.  
3.2  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator optimized for STM32 industry-standard  
®
®
®
Arm Cortex -M4 processors. It balances the inherent performance advantage of the Arm  
®
Cortex -M4 over Flash memory technologies, which normally requires the processor to wait  
for the Flash memory at higher frequencies.  
To release the processor near 100 DMIPS performance at 80 MHz, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 80 MHz.  
3.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole  
4 Gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
16/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Functional overview  
3.4  
Embedded Flash memory  
STM32L412xx devices feature 128Kbyte of embedded Flash memory available for storing  
programs and data in single bank architecture.The Flash memory contains 64 pages of 2  
Kbyte  
Flexible protections can be configured thanks to option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels are available:  
Level 0: no readout protection  
Level 1: memory readout protection: the Flash memory cannot be read from or  
written to if either debug features are connected, boot in RAM or bootloader is  
selected  
Level 2: chip readout protection: debug features (Cortex-M4 JTAG and serial  
wire), boot in RAM and bootloader selection are disabled (JTAG fuse). This  
selection is irreversible.  
Table 3. Access status versus readout protection level and execution modes  
Debug, boot from RAM or boot  
User execution  
Protection  
level  
from system memory (loader)  
Area  
Read  
Write  
Erase  
Read  
Write  
Erase  
1
2
1
2
1
2
1
2
1
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
N/A  
Yes  
N/A  
Yes  
N/A  
No  
No  
N/A  
No  
No  
N/A  
No  
Main  
memory  
System  
memory  
No  
No  
N/A  
Yes  
N/A  
No  
N/A  
Yes  
Yes  
No  
Yes  
No  
Option  
bytes  
N/A  
N/A(1)  
N/A  
No(1)  
N/A  
Yes  
Yes  
Yes  
Yes  
N/A(1)  
N/A  
Yes(1)  
Yes  
Backup  
registers  
N/A  
No  
N/A  
No  
SRAM2  
N/A  
N/A  
1. Erased when RDP change from Level 1 to Level 0.  
Write protection (WRP): the protected area is protected against erasing and  
programming. Two areas can be selected, with 2-Kbyte granularity.  
Proprietary code readout protection (PCROP): a part of the flash memory can be  
protected against read and write from third parties. The protected area is execute-only:  
it can only be reached by the STM32 CPU, as an instruction code, while all other  
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.  
The PCROP area granularity is 64-bit wide. An additional option bit (PCROP_RDP)  
allows the user to select if the PCROP area is erased or not when the RDP protection  
is changed from Level 1 to Level 0.  
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:  
single error detection and correction  
double error detection.  
DS12469 Rev 8  
17/192  
49  
 
 
Functional overview  
STM32L412xx  
The address of the ECC fail can be read in the ECC register.  
3.5  
Embedded SRAM  
STM32L412xx devices feature 40 Kbyte of embedded SRAM, split into two blocks:  
32 Kbyte mapped at address 0x2000 0000 (SRAM1)  
8 Kbyte located at address 0x1000 0000 with hardware parity check (SRAM2).  
This memory is also mapped at address 0x2000 8000, offering a contiguous address  
space with the SRAM1 (8 Kbyte aliased by bit band)  
This block is accessed through the ICode/DCode buses for maximum performance.  
These 8 Kbyte SRAM can also be retained in Standby mode.  
The SRAM2 can be write-protected with 1 Kbyte granularity.  
The memory can be accessed in read/write at CPU clock speed with 0 wait states.  
3.6  
Firewall  
The device embeds a Firewall which protects code sensitive and secure data from any  
access performed by a code executed outside of the protected areas.  
Each illegal access generates a reset which kills immediately the detected intrusion.  
The Firewall main features are the following:  
Three segments can be protected and defined thanks to the Firewall registers:  
Code segment (located in Flash or SRAM1 if defined as executable protected  
area)  
Non-volatile data segment (located in Flash)  
Volatile data segment (located in SRAM1)  
The start address and the length of each segments are configurable:  
Code segment: up to 1024 Kbyte with granularity of 256 bytes  
Non-volatile data segment: up to 1024 Kbyte with granularity of 256 bytes  
Volatile data segment: up to 128 Kbyte with a granularity of 64 bytes  
Specific mechanism implemented to open the Firewall to get access to the protected  
areas (call gate entry sequence)  
Volatile data segment can be shared or not with the non-protected code  
Volatile data segment can be executed or not depending on the Firewall configuration  
The Flash readout protection must be set to level 2 in order to reach the expected level of  
protection.  
3.7  
Boot modes  
At startup, BOOT0 pin or nSWBOOT0 option bit, and BOOT1 option bit are used to select  
one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
18/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Functional overview  
BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on the  
value of a user option bit to free the GPIO pad if needed.  
A Flash empty check mechanism is implemented to force the boot from system flash if the  
first flash memory location is not programmed and if the boot selection is configured to boot  
from main flash.  
The boot loader is located in system memory. It is used to reprogram the Flash memory by  
using USART, I2C, SPI or USB FS in Device mode through DFU (device firmware upgrade).  
3.8  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator polynomial value and size.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.9  
Power supply management  
3.9.1  
Power supply schemes  
V
= 1.71 to 3.6 V: external power supply for I/Os (V  
), the internal regulator and  
DD  
DDIO1  
the system analog such as reset, power management and internal clocks. It is provided  
externally through VDD pins.  
V
= 1.00 to 1.32 V: external power supply bypassing internal regulator when  
DD12  
connected to an external SMPS. It is provided externally through VDD12 pins and only  
available on packages with the external SMPS supply option. VDD12 does not require  
any external decoupling capacitance and cannot support any external load.  
V
= 1.62 V (ADC/COMP) / 1.8 (OPAMP) to 3.6 V: external analog power supply for  
DDA  
ADC, OPAMP, Comparator. The V  
voltage.  
voltage level is independent from the V  
DDA  
DD  
V
V
= 3.0 to 3.6 V: external independent power supply for USB transceivers. The  
DDUSB  
DDUSB  
voltage level is independent from the V voltage.  
DD  
V
= 1.55 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and  
BAT  
backup registers (through power switch) when V is not present.  
DD  
Note:  
Note:  
Note:  
When the functions supplied by V  
are not used, this supply should preferably be shorted  
DDA  
to V  
.
DD  
If these supplies are tied to ground, the I/Os supplied by these power supplies are not 5 V  
tolerant.  
V
V
is the I/Os general purpose digital functions supply. V  
represents V , with  
DDIO1  
DDIOx  
DDIO1  
DDIOx  
= V  
.
DD  
DS12469 Rev 8  
19/192  
49  
 
 
 
Functional overview  
STM32L412xx  
Figure 2. Power supply overview  
VDDA domain  
A/D converters  
VDDA  
VSSA  
Comparators  
Operational amplifiers  
Voltage reference buffer  
VDDUSB  
VSS  
USB transceivers  
VDD domain  
VDDIO1  
I/O ring  
VDD  
Reset block  
Temp. sensor  
PLL, HSI, MSI, HSI48  
VSS  
Standby circuitry  
(Wakeup logic, IWDG)  
VCORE domain  
Core  
VCORE  
Voltage regulator  
Memories  
Digital peripherals  
VDD12  
Low voltage detector  
Backup domain  
LSE crystal 32 K osc  
BKP registers  
RCC BDCR register  
RTC  
VBAT  
MS49685V1  
During power-up and power-down phases, the following power sequence requirements  
must be respected:  
When V is below 1 V, other power supplies (V  
300 mV.  
V
) must remain below V  
+
DD  
DD  
DDA DDUSB  
When V is above 1 V, all power supplies are independent.  
DD  
During the power-down phase, V can temporarily become lower than other supplies only  
DD  
if the energy provided to the MCU remains below 1 mJ; this allows external decoupling  
capacitors to be discharged with different time constants during the power-down transient  
phase.  
20/192  
DS12469 Rev 8  
 
STM32L412xx  
Functional overview  
Figure 3. Power-up/down sequence  
V
3.6  
(1)  
VDDX  
VDD  
VBOR0  
1
0.3  
Power-on  
Invalid supply area  
Operating mode  
Power-down  
VDDX independent from VDD  
time  
VDDX < VDD + 300 mV  
MSv47490V1  
1. VDDX refers to any power supply among VDDA, VDDUSB  
.
3.9.2  
Power supply supervisor  
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes  
except Shutdown and ensuring proper operation after power-on and during power down.  
The device remains in reset mode when the monitored supply voltage V is below a  
DD  
specified threshold, without the need for an external reset circuit.  
The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected  
through option bytes.The device features an embedded programmable voltage detector  
(PVD) that monitors the V power supply and compares it to the VPVD threshold. An  
DD  
interrupt can be generated when V drops below the VPVD threshold and/or when V is  
DD  
DD  
higher than the VPVD threshold. The interrupt service routine can then generate a warning  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
In addition, the device embeds a Peripheral Voltage Monitor which compares the  
independent supply voltage V  
with a fixed threshold in order to ensure that the  
DDA  
peripheral is in its functional supply range.  
DS12469 Rev 8  
21/192  
49  
 
 
Functional overview  
STM32L412xx  
3.9.3  
Voltage regulator  
Two embedded linear voltage regulators supply most of the digital circuitries: the main  
regulator (MR) and the low-power regulator (LPR).  
The MR is used in the Run and Sleep modes and in the Stop 0 mode.  
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is  
also used to supply the 8 Kbyte SRAM2 in Standby with SRAM2 retention.  
Both regulators are in power-down in Standby and Shutdown modes: the regulator  
output is in high impedance, and the kernel circuitry is powered down thus inducing  
zero consumption.  
The ultralow-power STM32L412xx supports dynamic voltage scaling to optimize its power  
consumption in run mode. The voltage from the Main Regulator that supplies the logic  
(V  
) can be adjusted according to the system’s maximum operating frequency.  
CORE  
There are two power consumption ranges:  
Range 1 with the CPU running at up to 80 MHz.  
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also  
limited to 26 MHz.  
The V  
can be supplied by the low-power regulator, the main regulator being switched  
CORE  
off. The system is then in Low-power run mode.  
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with  
independent clock can be clocked by HSI16.  
3.9.4  
Low-power modes  
The ultra-low-power STM32L412xx supports seven low-power modes to achieve the best  
compromise between low-power consumption, short startup time, available peripherals and  
available wakeup sources.  
22/192  
DS12469 Rev 8  
 
 
Table 4. STM32L412xx modes overview  
Mode  
Regulator(1)  
CPU Flash SRAM Clocks  
DMA and Peripherals(2)  
Wakeup source  
Consumption(3)  
Wakeup time  
MR range 1  
SMPS range 2 high  
MR range2  
91 µA/MHz  
34 µA/MHz  
79 µA/MHz  
28 µA/MHz  
All  
Run  
Yes ON(4)  
ON  
ON  
Any  
N/A  
N/A  
N/A  
All except USB_FS, RNG  
All except USB_FS, RNG  
SMPS range 2 low  
Any  
except  
PLL  
to Range 1: 4 µs  
to Range 2: 64 µs  
LPRun  
Sleep  
LPR  
Yes ON(4)  
83 µA/MHz  
MR range 1  
SMPS range 2 high  
MR range2  
21 µA/MHz  
7.5 µA/MHz  
20 µA/MHz  
7 µA/MHz  
All  
Any interrupt or  
event  
No  
No  
ON(4) ON(5)  
Any  
6 cycles  
6 cycles  
All except USB_FS, RNG  
SMPS range 2 low  
Any  
Any interrupt or  
event  
LPSleep  
LPR  
ON(4) ON(5)  
All except USB_FS, RNG  
83 µA/MHz  
except  
PLL  
BOR, PVD, PVM  
RTC, IWDG  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
MR Range 1  
COMP1, OPAMP1  
USARTx (x=1...3)(6)  
LPUART1(6)  
I2Cx (x=1...3)(7)  
LPTIMx (x=1,2)  
***  
COMP1  
LSE  
LSI  
2.47 µs in SRAM  
4.1 µs in Flash  
Stop 0  
No  
OFF  
ON  
USARTx (x=1...3)(6)  
LPUART1(6)  
105 µA  
I2Cx (x=1...3)(7)  
LPTIMx (x=1,2)  
USB_FS(8)  
All other peripherals are  
frozen.  
MR Range 2  
 
Table 4. STM32L412xx modes overview (continued)  
Mode  
Regulator(1)  
CPU Flash SRAM Clocks  
DMA and Peripherals(2)  
Wakeup source  
Consumption(3)  
Wakeup time  
BOR, PVD, PVM  
RTC, IWDG  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
COMP1, OPAMP1  
USARTx (x=1...3)(6)  
COMP1  
LSE  
LSI  
LPUART1(6)  
5.7 µs in SRAM  
7 µs in Flash  
3.25 µA w/o RTC  
3.65 µA w RTC  
USARTx (x=1...3)(6)  
Stop 1  
LPR  
No  
Off  
ON  
I2Cx (x=1...3)(7)  
LPTIMx (x=1,2)  
***  
LPUART1(6)  
I2Cx (x=1...3)(7)  
LPTIMx (x=1,2)  
USB_FS(8)  
All other peripherals are  
frozen.  
BOR, PVD, PVM  
RTC, IWDG  
COMP1  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
COMP1  
I2C3(7)  
LSE  
LSI  
5.8 µs in SRAM  
8.3 µs in Flash  
710 nA w/o RTC  
950 nA w RTC  
LPUART1(6)  
LPTIMx (x = 1, 2)  
***  
Stop 2  
LPR  
No  
Off  
ON  
I2C3(7)  
LPUART1(6)  
LPTIMx (x = 1, 2)  
All other peripherals are  
frozen.  
Table 4. STM32L412xx modes overview (continued)  
Mode  
Regulator(1)  
CPU Flash SRAM Clocks  
DMA and Peripherals(2)  
Wakeup source  
Consumption(3)  
Wakeup time  
SRAM  
2 ON  
BOR, RTC, IWDG  
***  
LPR  
195 nA  
Reset pin  
5 I/Os (WKUPx)(9)  
All other peripherals are  
powered off.  
LSE  
LSI  
Power  
ed Off  
Standby  
Off  
16.1 µs  
Power  
ed  
***  
BOR, RTC, IWDG  
OFF  
OFF  
105 nA  
Off  
I/O configuration can be  
floating, pull-up or pull-down  
RTC  
***  
All other peripherals are  
powered off.  
Reset pin  
5 I/Os (WKUPx)(9)  
RTC  
Power  
ed  
Power  
ed Off  
Shutdown  
Off  
LSE  
18 nA  
256 µs  
***  
Off  
I/O configuration can be  
floating, pull-up or pull-  
down(10)  
1. LPR means Main regulator is OFF and Low-power regulator is ON.  
2. All peripherals can be active or clock gated to save power consumption.  
3. Typical current at VDD = 1.8 V, 25°C. Consumptions values provided running from SRAM, Flash memory Off, 80 MHz in Range 1, 26 MHz in Range 2, 2 MHz in  
LPRun/LPSleep.  
4. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.  
5. The SRAM1 and SRAM2 clocks can be gated on or off independently.  
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.  
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
8. USB_FS wakeup by resume from suspend and attach detection protocol event.  
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PA2, PC5.  
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.  
Functional overview  
STM32L412xx  
By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the  
user to select one of the low-power modes described below:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Low-power run mode  
This mode is achieved with V  
supplied by the low-power regulator to minimize the  
CORE  
regulator's operating current. The code can be executed from SRAM or from Flash,  
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can  
be clocked by HSI16.  
Low-power sleep mode  
This mode is entered from the low-power run mode. Only the CPU clock is stopped.  
When wakeup is triggered by an event or an interrupt, the system reverts to the low-  
power run mode.  
Stop 0, Stop 1 and Stop 2 modes  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the V  
domain are stopped, the PLL, the MSI  
CORE  
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still  
running.  
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).  
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode  
to detect their wakeup condition.  
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,  
most of the V  
domain is put in a lower leakage mode.  
CORE  
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller  
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator  
remains ON, allowing a very fast wakeup time but with much higher consumption.  
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI  
up to 48 MHz or HSI16, depending on software configuration.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption with BOR. The  
internal regulator is switched off so that the V  
domain is powered off. The PLL, the  
CORE  
MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.  
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).  
The brown-out reset (BOR) always remains active in Standby mode.  
The state of each I/O during standby mode can be selected by software: I/O with  
internal pull-up, internal pull-down or floating.  
After entering Standby mode, SRAM1 and register contents are lost except for registers  
in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in  
Standby mode, supplied by the low-power Regulator (Standby with SRAM2 retention  
mode).  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,  
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,  
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).  
The system clock after wakeup is MSI up to 8 MHz.  
26/192  
DS12469 Rev 8  
STM32L412xx  
Functional overview  
Shutdown mode  
The Shutdown mode permits to achieve the lowest power consumption. The internal  
regulator is switched off so that the V domain is powered off. The PLL, the HSI16,  
CORE  
the MSI, the LSI and the HSE oscillators are also switched off.  
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).  
The BOR is not available in Shutdown mode. No power voltage monitoring is possible  
in this mode, therefore the switch to Backup domain is not supported.  
SRAM1, SRAM2 and register contents are lost except for registers in the Backup  
domain.  
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin  
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic  
wakeup, timestamp, tamper).  
The system clock after wakeup is MSI at 4 MHz.  
DS12469 Rev 8  
27/192  
49  
Functional overview  
STM32L412xx  
(1)  
Table 5. Functionalities depending on the working mode  
Stop 0/1 Stop 2 Standby Shutdown  
Low-  
Low-  
Peripheral  
Run  
Sleep power power  
VBAT  
-
-
-
-
run  
sleep  
CPU  
Y
-
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Flash memory (up to  
128 KB)  
O(2)  
O(2)  
O(2)  
O(2)  
SRAM1 (32 KB)  
SRAM2 (8 KB)  
Quad SPI  
Y
Y
O
Y
Y(3)  
Y(3)  
O
Y
Y
O
Y
Y(3)  
Y(3)  
O
Y
Y
-
-
-
-
-
Y
Y
-
-
-
-
-
-
O(4)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Backup registers  
Y
Y
Y
Y
Y
Y
Y
Brown-out reset  
(BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
-
-
Programmable  
voltage detector  
(PVD)  
O
O
O
O
O
O
O
O
Peripheral voltage  
monitor (PVMx;  
x=1,3,4)  
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA  
O
O
O
O
O
O
O
O
O
O
-
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
High speed Internal  
(HSI16)  
(5)  
(5)  
Oscillator RC48  
-
-
-
-
High speed external  
(HSE)  
O
O
Low speed internal  
(LSI)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
O
O
-
-
-
-
-
O
O
-
-
-
-
-
-
O
-
-
-
-
-
-
O
-
Low speed external  
(LSE)  
Multi-Speed internal  
(MSI)  
Clock security  
system (CSS)  
-
-
-
-
-
Clock security  
system on LSE  
O
O
2
O
O
2
O
O
2
O
O
2
O
O
2
O
O
O
O
O
2
-
O
O
O
-
O
O
2
-
O
O
O
-
-
O
2
-
-
-
O
2
-
RTC / Auto wakeup  
O
O
-
Number of RTC  
Tamper pins  
USARTx (x=1,2,3)  
O
O
O
O
O(6) O(6)  
28/192  
DS12469 Rev 8  
 
STM32L412xx  
Functional overview  
(1)  
Table 5. Functionalities depending on the working mode (continued)  
Stop 0/1 Stop 2 Standby Shutdown  
Low-  
Low-  
Peripheral  
Run  
Sleep power power  
VBAT  
-
-
-
-
run  
sleep  
Low-power UART  
(LPUART)  
O
O
O
O
O(6) O(6) O(6) O(6)  
O(7) O(7)  
O(7) O(7) O(7) O(7)  
-
-
-
-
-
I2Cx (x=1,2)  
I2C3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPIx (x=1,2)  
ADCx (x=1,2)  
OPAMPx (x=1)  
COMP1  
-
-
-
-
-
-
-
-
O
O
-
-
-
-
O
-
O
-
O
-
Temperature sensor  
Timers (TIMx)  
-
-
-
-
Low-power timer 1  
(LPTIM1)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
Low-power timer 2  
(LPTIM2)  
Independent  
watchdog (IWDG)  
O
O
Window watchdog  
(WWDG)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SysTick timer  
Touch sensing  
controller (TSC)  
Random number  
generator (RNG)  
O(8)  
O
O(8)  
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CRC calculation unit  
O
O
-
-
4
4
(9)  
(11)  
GPIOs  
O
O
O
O
O
O
O
O
pins  
pins  
-
(10)  
(10)  
1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.  
2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.  
3. The SRAM clock can be gated on or off.  
4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.  
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by  
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not  
need it anymore.  
6. LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame  
event.  
DS12469 Rev 8  
29/192  
49  
 
Functional overview  
STM32L412xx  
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
8. Voltage scaling Range 1 only.  
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.  
10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.  
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when  
exiting the Shutdown mode.  
3.9.5  
3.9.6  
Reset mode  
In order to improve the consumption under reset, the I/Os state under and after reset is  
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
VBAT operation  
The VBAT pin permits to power the device VBAT domain from an external battery, an  
external supercapacitor, or from V when no external battery and an external  
DD  
supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup  
registers. Two anti-tamper detection pins are available in VBAT mode.  
VBAT operation is automatically activated when V is not present.  
DD  
An internal VBAT battery charging circuit is embedded and can be activated when V is  
DD  
present.  
Note:  
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events  
do not exit it from VBAT operation.  
3.10  
Interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU resources thus power supply  
consumption. In addition, these hardware connections allow fast and predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run  
and sleep, Stop 0, Stop 1 and Stop 2 modes.  
Table 6. STM32L412xx peripherals interconnect matrix  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIMx  
Timers synchronization or chaining  
Conversion triggers  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
ADCx  
TIMx  
DMA  
Memory to memory transfer trigger  
Comparator output blanking  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
COMPx  
30/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Functional overview  
Table 6. STM32L412xx peripherals interconnect matrix (continued)  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIM15/TIM16  
COMPx  
IRTIM  
Infrared interface output generation  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
TIM1  
TIM2  
Timer input channel, trigger, break from  
analog signals comparison  
Low-power timer triggered by analog  
signals comparison  
LPTIMERx  
Y
Y
Y
Y
Y
Y
ADCx  
RTC  
TIM1  
Timer triggered by analog watchdog  
Timer input channel from RTC events  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
TIM16  
Low-power timer triggered by RTC alarms  
or tampers  
LPTIMERx  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
TIM2  
All clocks sources (internal  
and external)  
Clock source used as input channel for  
RC measurement and trimming  
TIM15, 16  
CSS  
CPU (hard fault)  
RAM (parity error)  
TIM1  
Timer break  
Y
Y
Y
Y
-
-
Flash memory (ECC error) TIM15,16  
COMPx  
PVD  
TIMx  
External trigger  
External trigger  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
LPTIMERx  
Y
Y
GPIO  
ADCx  
Conversion external trigger  
Y
Y
Y
Y
-
-
DS12469 Rev 8  
31/192  
49  
Functional overview  
STM32L412xx  
3.11  
Clocks and startup  
The clock controller (see Figure 4) distributes the clocks coming from different oscillators to  
the core and the peripherals. It also manages clock gating for low-power modes and  
ensures clock robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption,  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock source: four different clock sources can be used to drive the master  
clock SYSCLK:  
4-48 MHz high-speed external crystal or ceramic resonator (HSE), that can supply  
a PLL. The HSE can also be configured in bypass mode for an external clock.  
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate  
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is  
available in the system (LSE), the MSI frequency can be automatically trimmed by  
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.  
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency  
at 80 MHz.  
RC48 with clock recovery system (HSI48): internal RC48 MHz clock source can be  
used to drive the USB or the RNG peripherals. This clock can be output on the MCO.  
Auxiliary clock source: two ultralow-power clock sources that can be used to drive  
the real-time clock:  
32.768 kHz low-speed external crystal (LSE), supporting four drive capability  
modes. The LSE can also be configured in bypass mode for an external clock.  
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock accuracy is ±5% accuracy.  
Peripheral clock sources: Several peripherals (RNG, USARTs, I2Cs, LPTimers) have  
their own independent clock whatever the system clock. PLL having three independent  
outputs allowing the highest flexibility, can generate independent clocks for the RNG.  
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz  
clock (MSI). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If a HSE clock  
failure occurs, the master clock is automatically switched to HSI16 and a software  
32/192  
DS12469 Rev 8  
 
STM32L412xx  
Functional overview  
interrupt is generated if enabled. LSE failure can also be detected and generated an  
interrupt.  
Clock-out capability:  
MCO: microcontroller clock output: it outputs one of the internal clocks for  
external use by the application. Low frequency clocks (LSI, LSE) are available  
down to Stop 1 low power state.  
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes  
down to Standby mode. LSE can also be output on LSCO in Shutdown mode.  
LSCO is not available in VBAT mode.  
Several prescalers permit to configure the AHB frequency, the high speed APB (APB2) and  
the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB  
domains is 80 MHz.  
DS12469 Rev 8  
33/192  
49  
Functional overview  
STM32L412xx  
Figure 4. Clock tree  
to IWDG  
to RTC  
LSI RC 32 kHz  
LSCO  
OSC32_OUT  
OSC32_IN  
LSE OSC  
32.768 kHz  
/32  
LSE  
LSI  
HSE  
MCO  
/ 1→16  
to PWR  
to AHB bus, core, memory and DMA  
FCLK Cortex free running clock  
to Cortex system timer  
SYSCLK  
HSI16  
HSI48  
Clock  
source  
control  
HCLK  
AHB PRESC  
/ 1,2,..512  
MSI  
PLLCLK  
OSC_OUT  
OSC_IN  
HSE OSC  
4-48 MHz  
HSE  
/ 8  
Clock  
detector  
MSI  
SYSCLK  
PCLK1  
to APB1 peripherals  
APB1 PRESC  
/ 1,2,4,8,16  
HSI16  
x1 or x2  
HSI RC  
16 MHz  
to TIMx  
x=2,6,7  
LSE  
HSI16  
SYSCLK  
to USARTx  
x=2..3  
to LPUART1  
HSI16  
MSI RC  
100 kHz – 48 MHz  
to I2Cx  
x=1,2,3  
SYSCLK  
LSI  
LSE  
to LPTIMx  
x=1,2  
HSI16  
MSI  
PCLK2  
HSI16  
PLL  
/ M  
APB2 PRESC  
/ 1,2,4,8,16  
HSE  
to APB2 peripherals  
/ P  
PLL48M1CLK  
PLLCLK  
/ Q  
/ R  
x1 or x2  
to TIMx  
x=1,15,16  
LSE  
HSI16  
to  
SYSCLK  
USART1  
MSI  
48 MHz clock to USB, RNG  
to ADCx, x=1,2  
HSI RC  
48 MHz  
SYSCLK  
CRS  
MSv46900V3  
34/192  
DS12469 Rev 8  
 
STM32L412xx  
Functional overview  
3.12  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be  
achieved thanks to their mapping on the AHB2 bus.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
3.13  
Direct memory access controller (DMA)  
The device embeds 2 DMAs. Refer to Table 7: DMA implementation for the features  
implementation.  
Direct memory access (DMA) is used in order to provide high-speed data transfer between  
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA  
without any CPU actions. This keeps CPU resources free for other operations.  
The two DMA controllers have 14 channels in total, each dedicated to managing memory  
access requests from one or more peripherals. Each has an arbiter for handling the priority  
between DMA requests.  
The DMA supports:  
14 independently configurable channels (requests)  
Each channel is connected to dedicated hardware DMA requests, software trigger is  
also supported on each channel. This configuration is done by software.  
Priorities between requests from channels of one DMA are software programmable (4  
levels consisting of very high, high, medium, low) or hardware in case of equality  
(example: request 1 has priority over request 2)  
Independent source and destination transfer size (byte, half word, word), emulating  
packing and unpacking. Source/destination addresses must be aligned on the data  
size.  
Support for circular buffer management  
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)  
logically ORed together in a single interrupt request for each channel  
Memory-to-memory transfer  
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral  
transfers  
Access to Flash, SRAM, APB and AHB peripherals as source and destination  
Programmable number of data to be transferred: up to 65536.  
Table 7. DMA implementation  
DMA features  
DMA1  
7
DMA2  
7
Number of regular channels  
DS12469 Rev 8  
35/192  
49  
 
 
 
Functional overview  
STM32L412xx  
3.14  
Interrupts and events  
3.14.1  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
®
and handle up to 67 maskable interrupt channels plus the 16 interrupt lines of the Cortex -  
M4.  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved on interrupt entry, and restored on interrupt exit,  
with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.14.2  
Extended interrupt/event controller (EXTI)  
The extended interrupt/event controller consists of 37 edge detector lines used to generate  
interrupt/event requests and wake-up the system from Stop mode. Each external line can be  
independently configured to select the trigger event (rising edge, falling edge, both) and can  
be masked independently. A pending register maintains the status of the interrupt requests.  
The internal lines are connected to peripherals with wakeup from Stop mode capability. The  
EXTI can detect an external line with a pulse width shorter than the internal clock period. Up  
to 52 GPIOs can be connected to the 16 external interrupt lines.  
36/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Functional overview  
3.15  
Analog to digital converter (ADC)  
The device embeds 2 successive approximation analog-to-digital converter with the  
following features:  
12-bit native resolution, with built-in calibration  
5.33 Msps maximum conversion rate with full resolution  
Down to 18.75 ns sampling time  
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit  
resolution)  
Up to 16 external channels, some of them shared between ADC1 and ADC2.  
3 internal channels: internal reference voltage, temperature sensor, VBAT/3.  
One external reference pin is available on some package, allowing the input voltage  
range to be independent from the power supply  
Single-ended and differential mode inputs  
Low-power design  
Capable of low-current operation at low conversion rate (consumption decreases  
linearly with speed)  
Highly versatile digital interface  
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups  
of analog signals conversions can be programmed to differentiate background and  
high-priority real-time conversions  
Handles two ADC converters for dual mode operation (simultaneous or  
interleaved sampling modes)  
Each ADC supports multiple trigger inputs for synchronization with on-chip timers  
and external signals  
Results stored into 2 data register or in RAM with DMA controller support  
Data pre-processing: left/right alignment and per channel offset compensation  
Built-in oversampling unit for enhanced SNR  
Channel-wise programmable sampling time  
Three analog watchdog for automatic voltage monitoring, generating interrupts  
and trigger for selected timers  
Hardware assistant to prepare the context of the injected channels to allow fast  
context switching  
3.15.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADC1_IN17 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
DS12469 Rev 8  
37/192  
49  
 
 
Functional overview  
STM32L412xx  
Table 8. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
TS_CAL1  
TS_CAL2  
0x1FFF 75A8 - 0x1FFF 75A9  
0x1FFF 75CA - 0x1FFF 75CB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
TS ADC raw data acquired at a  
temperature of 130 °C (± 5 °C),  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.15.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for  
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input  
channel. The precise voltage of VREFINT is individually measured for each part by ST  
during production test and stored in the system memory area. It is accessible in read-only  
mode.  
Table 9. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT  
temperature of 30 °C (± 5 °C),  
0x1FFF 75AA - 0x1FFF 75AB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.15.3  
VBAT battery voltage monitoring  
This embedded hardware feature allows the application to measure the V  
battery voltage  
BAT  
using the internal ADC channel ADC1_IN18 or ADC3_IN18. As the V  
voltage may be  
BAT  
higher than V  
, and thus outside the ADC input range, the VBAT pin is internally  
DDA  
connected to a bridge divider by 3. As a consequence, the converted digital value is one  
third the V voltage.  
BAT  
3.16  
Comparators (COMP)  
The STM32L412xx devices embed one rail-to-rail comparator with programmable reference  
voltage (internal or external), hysteresis and speed (low speed for low-power) and with  
selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers  
and can be also combined into a window comparator.  
3.17  
Operational amplifier (OPAMP)  
The STM32L412xx embeds one operational amplifier with external or internal follower  
routing and PGA capability.  
38/192  
DS12469 Rev 8  
 
 
 
 
 
 
 
STM32L412xx  
Functional overview  
The operational amplifier features:  
Low input bias current  
Low offset voltage  
Low-power mode  
Rail-to-rail input  
3.18  
Touch sensing controller (TSC)  
The touch sensing controller provides a simple solution for adding capacitive sensing  
functionality to any application. Capacitive sensing technology is able to detect finger  
presence near an electrode which is protected from direct touch by a dielectric (such as  
glass or plastic). The capacitive variation introduced by the finger (or any conductive object)  
is measured using a proven implementation based on a surface charge transfer acquisition  
principle.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
The main features of the touch sensing controller are the following:  
Proven and robust surface charge transfer acquisition principle  
Supports up to 12 capacitive sensing channels  
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good  
response time  
Spread spectrum feature to improve system robustness in noisy environments  
Full hardware management of the charge transfer acquisition sequence  
Programmable charge transfer frequency  
Programmable sampling capacitor I/O pin  
Programmable channel I/O pin  
Programmable max count value to avoid long acquisition when a channel is faulty  
Dedicated end of acquisition and max count error flags with interrupt capability  
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system  
components  
Compatible with proximity, touchkey, linear and rotary touch sensor implementation  
Designed to operate with STMTouch touch sensing firmware library  
Note:  
The number of capacitive sensing channels is dependent on the size of the packages and  
subject to I/O availability.  
3.19  
Random number generator (RNG)  
All devices embed an RNG that delivers 32-bit random numbers generated by an integrated  
analog circuit.  
DS12469 Rev 8  
39/192  
49  
 
 
Functional overview  
STM32L412xx  
3.20  
Timers and watchdogs  
The STM32L412xx includes one advanced control timers, up to five general-purpose timers,  
two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table  
below compares the features of the advanced control, general purpose and basic timers.  
Table 10. Timer feature comparison  
DMA  
request  
generation channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
Any integer  
between 1  
and 65536  
Advanced  
control  
Up, down,  
Up/down  
TIM1  
TIM2  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
2
1
0
3
No  
1
Any integer  
between 1  
and 65536  
General-  
purpose  
Up, down,  
Up/down  
Any integer  
between 1  
and 65536  
General-  
purpose  
TIM15  
TIM16  
TIM6  
Up  
Up  
Up  
Any integer  
between 1  
and 65536  
General-  
purpose  
1
Any integer  
between 1  
and 65536  
Basic  
No  
3.20.1  
Advanced-control timer (TIM1)  
The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6  
channels. They have complementary PWM outputs with programmable inserted dead-  
times. They can also be seen as complete general-purpose timers. The 4 independent  
channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability (0-  
100%)  
One-pulse mode output  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switches driven by these outputs.  
Many features are shared with those of the general-purpose TIMx timers (described in  
Section 3.20.2) using the same architecture, so the advanced-control timer can work  
together with the TIMx timers via the Timer Link feature for synchronization or event  
chaining.  
40/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Functional overview  
3.20.2  
General-purpose timers (TIM2, TIM15, TIM16)  
There are up to three synchronizable general-purpose timers embedded in the  
STM32L412xx (see Table 10 for differences). Each general-purpose timer can be used to  
generate PWM outputs, or act as a simple time base.  
TIM2  
It is a full-featured general-purpose timers:  
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler.  
This timers feature 4 independent channels for input capture/output compare, PWM or  
one-pulse mode output. They can work with the other general-purpose timers via the  
Timer Link feature for synchronization or event chaining.  
The counters can be frozen in debug mode.  
All have independent DMA request generation and support quadrature encoder.  
TIM15 and 16  
They are general-purpose timers with mid-range features:  
They have 16-bit auto-reload upcounters and 16-bit prescalers.  
TIM15 has 2 channels and 1 complementary channel  
TIM16 has 1 channel and 1 complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse mode  
output.  
The timers can work together via the Timer Link feature for synchronization or event  
chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.20.3  
3.20.4  
Basic timer (TIM6)  
The basic timer can be used as generic 16-bit timebase.  
Low-power timer (LPTIM1 and LPTIM2)  
The devices embed two low-power timers. These timers have an independent clock and are  
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to  
wakeup the system from Stop mode.  
Both LPTIM1 and LPTIM2 are active in Stop 0, Stop 1 and Stop 2 modes.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous/ one shot mode  
Selectable software/hardware input trigger  
Selectable clock source  
Internal clock sources: LSE, LSI, HSI16 or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by pulse counter application).  
Programmable digital glitch filter  
Encoder mode (LPTIM1 only)  
DS12469 Rev 8  
41/192  
49  
 
 
 
Functional overview  
STM32L412xx  
3.20.5  
Infrared interface (IRTIM)  
The STM32L412xx includes one infrared interface (IRTIM), which can be used with an  
infrared LED to perform remote control functions. It uses TIM15 and TIM16 output channels  
to generate output signal waveforms on IR_OUT pin.  
3.20.6  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently  
from the main clock, it can operate in Stop and Standby modes. It can be used either as a  
watchdog to reset the device when a problem occurs, or as a free running timer for  
application timeout management. It is hardware or software configurable through the option  
bytes. The counter can be frozen in debug mode.  
3.20.7  
3.20.8  
System window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated to real-time operating systems, but can also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0  
Programmable clock source  
42/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Functional overview  
3.21  
Real-time clock (RTC) and backup registers  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Two anti-tamper detection pins with programmable filter.  
Timestamp feature, which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
VBAT mode.  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 32 backup registers are supplied through a switch that takes power either  
from the V supply when present or from the VBAT pin.  
DD  
The backup registers are 32-bit registers used to store 128 bytes of user application data  
when V power is not present. They are not reset by a system or power reset, or when the  
DD  
device wakes up from Standby or Shutdown mode.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE) divided by 32.  
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the  
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in  
all low-power modes except Shutdown mode.  
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt  
and wakeup the device from the low-power modes.  
DS12469 Rev 8  
43/192  
49  
 
Functional overview  
STM32L412xx  
3.22  
Inter-integrated circuit interface (I2C)  
The device embeds three I2C. Refer to Table 11: I2C implementation for the features  
implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming. Refer to  
Figure 4: Clock tree.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 11. I2C implementation  
I2C features(1)  
I2C1  
I2C2  
I2C3  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
Independent clock  
Wakeup from Stop 1 mode on address match  
Wakeup from Stop 2 mode on address match  
1. X: supported  
44/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Functional overview  
3.23  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The STM32L412xx devices have three embedded universal synchronous receiver  
transmitters (USART1, USART2 and USART3).  
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN Master/Slave capability. They provide hardware management of the CTS and RTS  
signals, and RS485 Driver Enable, and are able to communicate at speeds of up to  
10 Mbit/s.  
USART1, USART2 and USART3 also provide Smart Card mode (ISO 7816 compliant) and  
SPI-like communication capability.  
All USART have a clock domain independent from the CPU clock, allowing the USARTx  
(x=1,2,3) to wake up the MCU from Stop mode using baudrates up to 204 Kbaud. The wake  
up events from Stop mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
All USART interfaces can be served by the DMA controller.  
Table 12. STM32L412xx USART/UART/LPUART features  
USART modes/features(1)  
USART1 USART2 USART3 LPUART1  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
-
X
X
X
-
X
X
X
Smartcard mode  
X
-
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
-
X
X
-
Dual clock domain  
X
X
X
X
-
Wakeup from Stop 0 / Stop 1 modes  
Wakeup from Stop 2 mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver Enable  
X
-
X
X
X
X
X
X
X (4 modes)  
X
-
-
X
X
X
LPUART/USART data length  
1. X = supported.  
7, 8 and 9 bits  
DS12469 Rev 8  
45/192  
49  
 
 
Functional overview  
STM32L412xx  
3.24  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The device embeds one Low-Power UART. The LPUART supports asynchronous serial  
communication with minimum power consumption. It supports half duplex single wire  
communication and modem operations (CTS/RTS). It allows multiprocessor  
communication.  
The LPUART has a clock domain independent from the CPU clock, and can wakeup the  
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop  
mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600  
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while  
having an extremely low energy consumption. Higher speed clock can be used to reach  
higher baudrates.  
LPUART interface can be served by the DMA controller.  
46/192  
DS12469 Rev 8  
 
STM32L412xx  
Functional overview  
3.25  
Serial peripheral interface (SPI)  
Three SPI interfaces allow communication up to 40 Mbits/s in master and up to 24 Mbits/s  
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8  
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI  
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.  
All SPI interfaces can be served by the DMA controller.  
3.26  
Universal serial bus (USB)  
The STM32L412xx devices embed a full-speed USB device peripheral compliant with the  
USB specification version 2.0. The internal USB PHY supports USB FS signaling,  
embedded DP pull-up and also battery charging detection according to Battery Charging  
Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function  
interface with added support for USB 2.0 Link Power Management. It has software-  
configurable endpoint setting with packet memory up-to 1 KB and suspend/resume support.  
It requires a precise 48 MHz clock which can be generated from the internal main PLL (the  
clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in  
automatic trimming mode. The synchronization for this oscillator can be taken from the USB  
data stream itself (SOF signalization) which allows crystal less operation.  
3.27  
3.28  
Clock recovery system (CRS)  
The STM32L412xx devices embed a special block which allows automatic trimming of the  
internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device  
operational range. This automatic trimming is based on the external synchronization signal,  
which could be either derived from LSE oscillator, from an external signal on CRS_SYNC  
pin or generated by user software. For faster lock-in during startup it is also possible to  
combine automatic trimming with manual trimming action.  
Quad SPI memory interface (QUADSPI)  
The Quad SPI is a specialized communication interface targeting single, dual or quad SPI  
Flash memories. It can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the QUADSPI registers  
Status polling mode: the external Flash memory status register is periodically read and  
an interrupt can be generated in case of flag setting  
Memory-mapped mode: the external Flash is memory mapped and is seen by the  
system as if it were an internal memory  
Both throughput and capacity can be increased two-fold using dual-flash mode, where two  
Quad SPI flash memories are accessed simultaneously.  
DS12469 Rev 8  
47/192  
49  
 
 
 
 
Functional overview  
STM32L412xx  
The Quad SPI interface supports:  
Three functional modes: indirect, status-polling, and memory-mapped  
Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two  
flash memories in parallel.  
SDR and DDR support  
Fully programmable opcode for both indirect and memory mapped mode  
Fully programmable frame format for both indirect and memory mapped mode  
Each of the five following phases can be configured independently (enable, length,  
single/dual/quad communication)  
Instruction phase  
Address phase  
Alternate bytes phase  
Dummy cycles phase  
Data phase  
Integrated FIFO for reception and transmission  
8, 16, and 32-bit data accesses are allowed  
DMA channel for indirect mode operations  
Programmable masking for external flash flag management  
Timeout management  
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and  
access error  
48/192  
DS12469 Rev 8  
STM32L412xx  
Functional overview  
3.29  
Development support  
3.29.1  
Serial wire JTAG debug port (SWJ-DP)  
®
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins  
can be reused as GPIO with alternate function): the JTAG TMS and TCK pins are shared  
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
3.29.2  
Embedded Trace Macrocell™  
®
The Arm Embedded Trace Macrocell™ provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32L412xx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell™ operates with third party debugger software tools.  
DS12469 Rev 8  
49/192  
49  
 
 
 
Pinouts and pin description  
STM32L412xx  
4
Pinouts and pin description  
(1)  
Figure 5. STM32L412Rx LQFP64 pinout  
VBAT  
1
2
48  
47  
VDDUSB  
VSS  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC0  
PC1  
PC2  
PC3  
LQFP64  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PC6  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MSv46920V1  
1. The above figure shows the package top view.  
(1)  
Figure 6. STM32L412Rx, external SMPS, LQFP64 pinout  
VBAT  
PC13  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDUSB  
VSS  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC0  
PC1  
PC2  
PC3  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PC6  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MS46959V1  
1. The above figure shows the package top view.  
50/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Pinouts and pin description  
(1)  
Figure 7. STM32L412Rx UFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
A
B
C
D
E
F
PC13  
VBAT  
VSS  
VDD  
PC1  
PC2  
PA0  
PB9  
PB8  
PB7  
PB6  
PC0  
PA2  
PA3  
PA4  
PB4  
PB3  
PA15  
PC11  
PA10  
VSS  
VDD  
PC6  
PB2  
PC5  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
OSC32_IN  
PC15-  
OSC32_OUT  
PH3-BOOT0  
PB5  
PD2  
PH0-OSC_IN  
PC12  
VSS  
PH1-  
OSC_OUT  
VSS  
PA8  
NRST  
VSSA/VREF-  
PC3  
VDD  
VDDUSB  
PB0  
PC7  
PC8  
PA5  
PB15  
PB10  
PB11  
PB14  
PB13  
PB12  
G
H
PA6  
PB1  
VDDA/VREF+  
PA1  
PA7  
PC4  
MSv46919V1  
1. The above figure shows the package top view.  
(1)  
Figure 8. STM32L412Rx UFBGA64, external SMPS, ballout  
1
2
3
4
5
6
7
8
PC14-  
A
B
C
D
E
F
PC13  
VBAT  
VSS  
VDD  
PC1  
PC2  
PA0  
PB9  
PB8  
PB7  
PB6  
PC0  
PA2  
PA3  
PA4  
PB4  
PB3  
PA15  
PC11  
PA10  
VSS  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
OSC32_IN  
PC15-  
OSC32_OUT  
PH3-BOOT0  
PB5  
VDD12  
PC12  
VSS  
PH0-OSC_IN  
PH1-  
OSC_OUT  
VSS  
PA8  
NRST  
VSSA/VREF-  
PC3  
VDD  
VDDUSB  
PB0  
VDD  
PC6  
PC7  
PC8  
PA5  
PB15  
PB10  
PB11  
PB14  
PB13  
PB12  
G
H
PA6  
PB1  
PB2  
VDDA/VREF+  
PA1  
PA7  
PC4  
VDD12  
MS53656V1  
1. The above figure shows the package top view.  
DS12469 Rev 8  
51/192  
72  
 
 
 
Pinouts and pin description  
STM32L412xx  
(1)  
Figure 9. STM32L412Cx LQFP48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDDUSB  
VSS  
2
PC14/OSC32_IN  
3
PA13  
PA12  
PA11  
PA10  
PA9  
PC15/OSC32_OUT  
PH0/OSC_IN  
PH1/OSC_OUT  
NRST  
4
5
6
LQFP48  
7
VSSA  
8
PA8  
VDDA  
9
PB15  
PB14  
PB13  
PB12  
PA0/CK_IN  
PA1  
10  
11  
12  
PA2  
MSv46916V1  
1. The above figure shows the package top view.  
(1)  
Figure 10. STM32L412Cx UFQFPN48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDDUSB  
2
VSS  
PC14/OSC32_IN  
PC15/OSC32_OUT  
PH0/OSC_IN  
PH1/OSC_OUT  
NRST  
3
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
UFQFPN48  
7
VSSA  
8
PA8  
VDDA  
9
PB15  
PB14  
PB13  
PB12  
PA0/CK_IN  
PA1  
10  
11  
12  
PA2  
MSv46917V1  
1. The above figure shows the package top view.  
52/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Pinouts and pin description  
(1)  
Figure 11. STM32L412Tx WLCSP36 ballout  
1
2
3
4
5
6
PA12  
PA11  
PA9  
PA14  
PA13  
PA10  
PB1  
PB4  
PB3  
PA15  
PA6  
PA7  
PB0  
PB7  
PB6  
PB5  
PA1  
PA5  
PA4  
VSS  
PB8  
VDD  
PC14  
PC15  
NRST  
VREF+  
VDDA  
A
B
C
D
E
F
PH3  
BOOT0  
PA8  
PA0  
PA2  
PA3  
VDD  
VSS  
PB2  
PB10  
MS49688V1  
1. The above figure shows the package top view.  
(1)  
Figure 12. STM32L412Tx, external SMPS, WLCSP36 ballout  
1
2
3
4
5
VSS  
VDD12  
PH3  
PA1  
6
PA12  
PA11  
PA9  
PA14  
PA13  
PA10  
PB1  
PB4  
PB3  
PA15  
PA6  
PB0  
PB2  
PB7  
PB6  
PB5  
PA2  
PA5  
PA7  
VDD  
PC14  
PC15  
NRST  
A
B
C
D
E
F
PA8  
VDDA/  
VREF+  
VDD  
VSS  
PB10  
VDD12  
PA3  
PA4  
PA0  
MS51459V1  
1. The above figure shows the package top view.  
DS12469 Rev 8  
53/192  
72  
 
 
 
Pinouts and pin description  
STM32L412xx  
(1)  
Figure 13. STM32L412Kx LQFP32 pinout  
VDD  
PC14-OSC32_IN  
PC15-OSC32_OUT  
NRST  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
LQFP32  
VDDA/VREF+  
PA0-CK_IN  
PA1  
PA8  
PA2  
VDD  
MSv46914V1  
1. The above figure shows the package top view.  
(1)  
Figure 14. STM32L412Kx UFQFPN32 pinout  
VDD  
PC14-OSC32_IN  
PC15-OSC32_OUT  
NRST  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
UFQFPN32  
VDDA/VREF+  
PA0-CK_IN  
PA1  
PA8  
PA2  
VDD  
MSv46915V1  
1. The above figure shows the package top view.  
54/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Pinouts and pin description  
Table 13. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
TT  
RST  
Input / output pin  
5 V tolerant I/O  
3.6 V tolerant I/O  
Bidirectional reset pin with embedded weak pull-up resistor  
I/O structure  
Option for TT or FT I/Os  
_f (1)  
_u (2)  
_a (3)  
I/O, Fm+ capable  
I/O, with USB function supplied by VDDUSB  
I/O, with Analog switch function supplied by VDDA  
Notes  
Alternate  
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
1. The related I/O structures in Table 14 are: FT_f, FT_fa.  
2. The related I/O structures in Table 14 are: FT_u, FT_fu.  
3. The related I/O structures in Table 14 are: FT_a, FT_fa, TT_a.  
DS12469 Rev 8  
55/192  
72  
 
Table 14. STM32L412xx pin definitions  
Pin Number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
-
-
-
-
-
-
-
-
1
2
1
2
1
2
1
2
B2  
A2  
B2  
A2  
VBAT  
PC13  
S
-
-
-
-
-
RTC_TAMP1/RTC_TS/RT  
C_OUT1/WKUP2  
I/O  
FT  
EVENTOUT  
PC14-OSC32_IN  
(PC14)  
2
3
-
2
3
-
B6  
C6  
-
B6  
C6  
-
3
4
5
3
4
5
3
4
5
3
4
5
A1  
B1  
C1  
A1  
B1  
C1  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
OSC32_IN  
OSC32_OUT  
OSC_IN  
PC15-  
OSC32_OUT  
(PC15)  
PH0-OSC_IN  
(PH0)  
PH1-OSC_OUT  
(PH1)  
-
-
-
-
6
7
6
7
6
7
6
7
D1  
E1  
D1  
E1  
I/O  
I/O  
FT  
-
-
EVENTOUT  
-
OSC_OUT  
-
4
4
D6  
D6  
NRST  
RST  
TRACECK, LPTIM1_IN1,  
I2C3_SCL, LPUART1_RX,  
LPTIM2_IN1, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
8
9
8
9
E3  
E2  
E3  
E2  
PC0  
I/O  
I/O  
FT_fa  
FT_fa  
-
-
ADC12_IN1  
ADC12_IN2  
TRACED0, LPTIM1_OUT,  
I2C3_SDA, LPUART1_TX,  
EVENTOUT  
PC1  
LPTIM1_IN2, SPI2_MISO,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
10  
11  
10  
11  
F2  
F2  
PC2  
PC3  
I/O  
I/O  
FT_a  
FT_a  
-
-
ADC12_IN3  
ADC12_IN4  
LPTIM1_ETR, SPI2_MOSI,  
LPTIM2_ETR, EVENTOUT  
G1  
G1  
-
-
-
-
-
-
8
-
8
-
12  
-
12  
-
F1  
-
F1  
-
VSSA/VREF-  
VREF+  
S
S
-
-
-
-
-
-
-
-
E6  
E6  
 
 
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
-
-
-
F6  
-
-
-
-
-
-
-
VDDA  
S
S
-
-
-
-
-
-
5
5
E6  
9
9
13  
13  
H1  
H1  
VDDA/VREF+  
-
-
TIM2_CH1, USART2_CTS,  
OPAMP1_VINP,  
-
-
-
-
10 10 14  
14  
-
G2  
-
G2  
-
PA0  
I/O  
FT_a  
-
COMP1_OUT, TIM2_ETR, COMP1_INM, ADC1_IN5,  
EVENTOUT  
RTC_TAMP2/WKUP1  
OPAMP1_VINP,  
COMP1_INM, ADC1_IN5,  
RTC_TAMP2/WKUP1,  
CK_IN  
TIM2_CH1, USART2_CTS,  
COMP1_OUT, TIM2_ETR,  
EVENTOUT  
6
6
F6  
D5  
-
-
-
PA0-CK_IN  
I/O  
FT_a  
-
TIM2_CH2, I2C1_SMBA,  
SPI1_SCK,  
USART2_RTS_DE,  
TIM15_CH1N, EVENTOUT  
OPAMP1_VINM,  
COMP1_INP, ADC1_IN6  
7
8
9
7
8
9
D5  
D4  
F5  
D4 11 11 15  
15  
16  
17  
H2  
F3  
G3  
H2  
F3  
G3  
PA1  
PA2  
PA3  
I/O  
I/O  
I/O  
FT_a  
FT_a  
TT_a  
-
-
-
TIM2_CH3, USART2_TX,  
LPUART1_TX,  
QUADSPI_BK1_NCS,  
TIM15_CH1, EVENTOUT  
ADC12_IN7,  
WKUP4/LSCO  
E5  
F5  
12 12 16  
TIM2_CH4, USART2_RX,  
LPUART1_RX,  
OPAMP1_VOUT,  
ADC12_IN8  
13 13 17  
QUADSPI_CLK,  
TIM15_CH2, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
18  
19  
18  
19  
C2  
D2  
C2  
D2  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
SPI1_NSS, USART2_CK,  
LPTIM2_OUT, EVENTOUT  
10 10  
F5  
F4  
14 14 20  
20  
H3  
H3  
PA4  
I/O  
TT_a  
COMP1_INM, ADC12_IN9  
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM2_CH1, TIM2_ETR,  
SPI1_SCK, LPTIM2_ETR,  
EVENTOUT  
COMP1_INM,  
ADC12_IN10  
11 11  
E4  
E4  
15 15 21  
21  
22  
F4  
F4  
PA5  
PA6  
I/O  
I/O  
TT_a  
FT_a  
TIM1_BKIN, SPI1_MISO,  
COMP1_OUT,  
USART3_CTS,  
LPUART1_CTS,  
QUADSPI_BK1_IO3,  
TIM16_CH1, EVENTOUT  
12 12 D3  
D3 16 16 22  
G4  
G4  
ADC12_IN11  
ADC12_IN12  
TIM1_CH1N, I2C3_SCL,  
SPI1_MOSI,  
QUADSPI_BK1_IO2,  
EVENTOUT  
13 13  
F4  
E3  
17 17 23  
23  
H4  
H4  
PA7  
I/O  
FT_fa  
COMP1_INM,  
ADC12_IN13  
-
-
-
-
-
-
-
-
-
-
-
-
24  
-
24  
25  
H5  
H6  
H5  
-
PC4  
PC5  
I/O  
I/O  
FT_a  
FT_a  
USART3_TX, EVENTOUT  
USART3_RX, EVENTOUT  
COMP1_INP,  
ADC12_IN14, WKUP5  
TRACED0, TIM1_CH2N,  
SPI1_NSS, USART3_CK,  
QUADSPI_BK1_IO1,  
14 14  
E3  
F3  
18 18 25  
26  
F5  
F5  
PB0  
I/O  
FT_a  
ADC12_IN15  
COMP1_OUT, EVENTOUT  
TRACED1, TIM1_CH3N,  
USART3_RTS_DE,  
LPUART1_RTS_DE,  
QUADSPI_BK1_IO0,  
LPTIM2_IN1, EVENTOUT  
COMP1_INM,  
ADC12_IN16  
15 15 D2  
D2 19 19 26  
27  
28  
G5  
G6  
G5  
G6  
PB1  
PB2  
I/O  
I/O  
FT_a  
FT_a  
LPTIM1_OUT, I2C3_SMBA,  
EVENTOUT  
-
-
F3  
E2  
20 20 27  
COMP1_INP, RTC_OUT2  
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM2_CH3, I2C2_SCL,  
SPI2_SCK, USART3_TX,  
LPUART1_RX, TSC_SYNC,  
QUADSPI_CLK,  
-
-
E2  
-
F2  
-
21 21 28  
29  
30  
G7  
H7  
G7  
H7  
PB10  
PB11  
I/O  
I/O  
FT_f  
FT_f  
-
-
COMP1_OUT, EVENTOUT  
TIM2_CH4, I2C2_SDA,  
USART3_RX,LPUART1_TX,  
QUADSPI_BK1_NCS,  
EVENTOUT  
-
-
-
-
22 22 29  
F2  
F1  
E1  
-
-
-
30  
-
-
H6  
D6  
E6  
VDD12  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
16 16  
17 17  
F1  
E1  
23 23 31  
24 24 32  
31  
32  
D6  
E6  
VDD  
TIM1_BKIN, I2C2_SMBA,  
SPI2_NSS, USART3_CK,  
LPUART1_RTS_DE,  
TSC_G1_IO1, TIM15_BKIN,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
25 25 33  
26 26 34  
27 27 35  
33  
34  
35  
H8  
G8  
F8  
H8  
G8  
F8  
PB12  
PB13  
PB14  
I/O  
I/O  
I/O  
FT  
-
-
-
-
-
-
TIM1_CH1N, I2C2_SCL,  
SPI2_SCK, USART3_CTS,  
LPUART1_CTS,  
TSC_G1_IO2, TIM15_CH1N,  
EVENTOUT  
FT_f  
FT_f  
TIM1_CH2N, I2C2_SDA,  
SPI2_MISO,  
USART3_RTS_DE,  
TSC_G1_IO3, TIM15_CH1,  
EVENTOUT  
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
RTC_REFIN, TIM1_CH3N,  
SPI2_MOSI, TSC_G1_IO4,  
TIM15_CH2, EVENTOUT  
-
-
-
-
28 28 36  
36  
F7  
F7  
PB15  
I/O  
FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
37  
38  
39  
37  
38  
39  
F6  
E7  
E8  
F6  
E7  
E8  
PC6  
PC7  
PC8  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
TSC_G4_IO1, EVENTOUT  
TSC_G4_IO2, EVENTOUT  
TSC_G4_IO3, EVENTOUT  
-
-
-
TSC_G4_IO4, USB_NOE,  
EVENTOUT  
-
-
-
-
-
-
40  
40  
D8  
D8  
PC9  
I/O  
FT  
-
-
MCO, TIM1_CH1,  
USART1_CK, LPTIM2_OUT,  
EVENTOUT  
18 18 D1  
19 19 C1  
D1 29 29 41  
C1 30 30 42  
41  
D7  
D7  
PA8  
I/O  
FT  
-
-
TIM1_CH2, I2C1_SCL,  
USART1_TX, TIM15_BKIN,  
EVENTOUT  
42  
43  
C7  
C6  
C7  
C6  
PA9  
I/O  
I/O  
FT_f  
FT_f  
-
-
-
-
TIM1_CH3, I2C1_SDA,  
USART1_RX,  
USB_CRS_SYNC,  
EVENTOUT  
20 20 C2  
C2 31 31 43  
PA10  
TIM1_CH4, TIM1_BKIN2,  
SPI1_MISO, COMP1_OUT,  
USART1_CTS, USB_DM,  
TIM1_BKIN2_COMP1,  
EVENTOUT  
21 21  
22 22  
B1  
A1  
B1  
A1  
32 32 44  
44  
45  
C8  
B8  
C8  
B8  
PA11  
PA12  
I/O  
I/O  
FT_u  
FT_u  
-
-
-
-
TIM1_ETR, SPI1_MOSI,  
USART1_RTS_DE,  
33 33 45  
USB_DP, EVENTOUT  
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
PA13  
(JTMS/SWDIO)  
JTMS/SWDIO, IR_OUT,  
USB_NOE, EVENTOUT  
23 23  
B2  
B2  
34 34 46  
46  
A8  
A8  
I/O  
FT  
-
-
-
-
-
-
-
-
-
-
35 35 47  
36 36 48  
47  
48  
D5  
E5  
D5  
E5  
VSS  
S
S
-
-
-
-
-
-
-
-
VDDUSB  
JTCK/SWCLK,  
LPTIM1_OUT, I2C1_SMBA,  
EVENTOUT  
PA14  
(JTCK/SWCLK)  
24 24  
A2  
A2  
37 37 49  
49  
A7  
A7  
I/O  
FT  
-
-
JTDI, TIM2_CH1,  
TIM2_ETR, USART2_RX,  
SPI1_NSS,  
25 25 C3  
C3 38 38 50  
50  
A6  
A6  
PA15 (JTDI)  
I/O  
FT  
-
-
USART3_RTS_DE,  
TSC_G3_IO1, EVENTOUT  
TRACED1, USART3_TX,  
TSC_G3_IO2, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
51  
52  
53  
51  
52  
53  
B7  
B6  
C5  
B7  
B6  
C5  
PC10  
PC11  
PC12  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
-
-
-
USART3_RX, TSC_G3_IO3,  
EVENTOUT  
TRACED3, USART3_CK,  
TSC_G3_IO4, EVENTOUT  
TRACED2,  
-
-
-
-
-
-
-
54  
55  
B5  
A5  
-
PD2  
PB3  
I/O  
FT  
-
-
USART3_RTS_DE,  
TSC_SYNC, EVENTOUT  
-
-
JTDO/TRACESWO,  
TIM2_CH2, SPI1_SCK,  
USART1_RTS_DE,  
EVENTOUT  
26 26  
B3  
B3  
39 39 54  
A5 (JTDO/TRACESW I/O  
O)  
FT_a  
Table 14. STM32L412xx pin definitions (continued)  
Pin name  
Pin Number  
(function after  
reset)  
Alternate functions  
Additional functions  
NJTRST, I2C3_SDA,  
SPI1_MISO, USART1_CTS,  
TSC_G2_IO1, EVENTOUT  
27 27  
A3  
A3  
40 40 55  
56  
57  
A4  
C4  
A4  
C4  
PB4 (NJTRST)  
PB5  
I/O  
I/O  
FT_fa  
FT  
-
-
-
-
TRACED2, LPTIM1_IN1,  
I2C1_SMBA, SPI1_MOSI,  
USART1_CK, TSC_G2_IO2,  
TIM16_BKIN, EVENTOUT  
28 28 C4  
C4 41 41 56  
TRACED3, LPTIM1_ETR,  
I2C1_SCL, USART1_TX,  
TSC_G2_IO3, TIM16_CH1N,  
EVENTOUT  
29 29  
30 30  
B4  
A4  
B4  
A4  
42 42 57  
43 43 58  
58  
59  
D3  
C3  
D3  
C3  
PB6  
PB7  
I/O  
I/O  
FT_fa  
FT_fa  
-
-
-
TRACECK, LPTIM1_IN2,  
I2C1_SDA, USART1_RX,  
TSC_G2_IO4, EVENTOUT  
PVD_IN  
PH3-BOOT0  
(BOOT0)  
31 31 C5  
C5 44 44 59  
60  
61  
62  
B4  
B3  
A3  
B4  
B3  
A3  
I/O  
I/O  
I/O  
FT  
-
-
-
EVENTOUT  
-
-
-
I2C1_SCL, TIM16_CH1,  
EVENTOUT  
-
-
-
-
B5  
-
45 45 60  
46 46 61  
PB8  
PB9  
FT_f  
FT_f  
IR_OUT, I2C1_SDA,  
SPI2_NSS, EVENTOUT  
-
-
-
-
B5  
A5  
A6  
-
-
-
62  
-
-
B5  
D4  
E4  
VDD12  
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
32 32  
A5  
A6  
47 47 63  
48 48 64  
63  
64  
D4  
E4  
1
1
VDD  
(1)  
Table 15. Alternate function AF0 to AF7  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
Port  
TIM1/TIM2/LPT  
IM1  
USART1/USA  
RT2/USART3  
SYS_AF  
TIM1/TIM2  
USART2  
I2C1/I2C2/I2C3  
SPI1/SPI2  
COMP1  
PA0  
PA1  
-
-
TIM2_CH1  
TIM2_CH2  
-
-
-
-
-
-
-
-
USART2_CTS  
USART2_RTS_  
DE  
I2C1_SMBA  
SPI1_SCK  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
PA8  
PA9  
-
TIM2_CH3  
TIM2_CH4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART2_TX  
USART2_RX  
USART2_CK  
-
-
-
-
-
-
SPI1_NSS  
-
TIM2_CH1  
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM1_CH4  
TIM2_ETR  
SPI1_SCK  
-
-
SPI1_MISO  
COMP1_OUT USART3_CTS  
-
-
I2C3_SCL  
SPI1_MOSI  
-
-
-
-
-
Port A  
MCO  
-
-
USART1_CK  
USART1_TX  
USART1_RX  
-
-
-
-
I2C1_SCL  
I2C1_SDA  
-
-
PA10  
PA11  
-
-
TIM1_BKIN2  
SPI1_MISO  
COMP1_OUT USART1_CTS  
USART1_RTS_  
PA12  
-
TIM1_ETR  
-
-
-
SPI1_MOSI  
-
DE  
PA13 JTMS/SWDAT  
PA14 JTCK/SWCLK  
IR_OUT  
-
-
-
-
-
-
-
-
-
-
-
LPTIM1_OUT  
I2C1_SMBA  
USART3_RTS_  
DE  
PA15  
JTDI  
TIM2_CH1  
TIM2_ETR  
USART2_RX  
-
SPI1_NSS  
-
 
(1)  
Table 15. Alternate function AF0 to AF7  
(continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
Port  
TIM1/TIM2/LPT  
IM1  
USART1/USA  
RT2/USART3  
SYS_AF  
TIM1/TIM2  
USART2  
I2C1/I2C2/I2C3  
SPI1/SPI2  
COMP1  
PB0  
TRACED0  
TRACED1  
-
TIM1_CH2N  
TIM1_CH3N  
LPTIM1_OUT  
TIM2_CH2  
-
-
-
-
-
-
-
-
-
SPI1_NSS  
-
-
-
-
USART3_CK  
USART3_RTS_  
DE  
PB1  
PB2  
PB3  
-
-
I2C3_SMBA  
-
-
-
JTDO/TRACES  
WO  
USART1_RTS_  
DE  
SPI1_SCK  
PB4  
PB5  
NJTRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_SDA  
I2C1_SMBA  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
I2C2_SMBA  
I2C2_SCL  
SPI1_MISO  
-
-
-
-
-
-
-
-
-
-
USART1_CTS  
USART1_CK  
USART1_TX  
USART1_RX  
-
TRACED2  
LPTIM1_IN1  
LPTIM1_ETR  
LPTIM1_IN2  
-
SPI1_MOSI  
PB6  
TRACED3  
-
PB7  
TRACECK  
-
Port B  
PB8  
-
-
-
-
-
-
-
PB9  
IR_OUT  
SPI2_NSS  
SPI2_SCK  
-
PB10  
PB11  
PB12  
PB13  
TIM2_CH3  
TIM2_CH4  
TIM1_BKIN  
TIM1_CH1N  
USART3_TX  
USART3_RX  
USART3_CK  
USART3_CTS  
SPI2_NSS  
SPI2_SCK  
USART3_RTS_  
DE  
PB14  
PB15  
-
TIM1_CH2N  
TIM1_CH3N  
-
-
-
-
I2C2_SDA  
-
SPI2_MISO  
SPI2_MOSI  
-
-
RTC_REFIN  
-
(1)  
Table 15. Alternate function AF0 to AF7  
(continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
Port  
TIM1/TIM2/LPT  
IM1  
USART1/USA  
RT2/USART3  
SYS_AF  
TIM1/TIM2  
USART2  
I2C1/I2C2/I2C3  
SPI1/SPI2  
COMP1  
PC0  
TRACECK  
LPTIM1_IN1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3_SCL  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC1  
PC2  
TRACED0  
LPTIM1_OUT  
I2C3_SDA  
-
-
-
LPTIM1_IN2  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_MISO  
-
PC3  
-
LPTIM1_ETR  
SPI2_MOSI  
-
PC4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_TX  
PC5  
-
USART3_RX  
PC6  
-
-
PC7  
-
-
Port C  
PC8  
-
-
PC9  
-
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
TRACED1  
USART3_TX  
-
USART3_RX  
TRACED3  
USART3_CK  
-
-
-
-
-
-
USART3_RTS_  
DE  
Port D PD2  
TRACED2  
-
-
-
-
-
-
PH0  
Port H PH1  
PH3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1. Refer to Table 16 for AF8 to AF15.  
(1)  
Table 16. Alternate function AF8 to AF15  
AF8  
AF9  
TSC  
AF10  
AF11  
AF12  
AF13  
-
AF14  
AF15  
Port  
TIM2/TIM15/  
TIM16/LPTIM2  
LPUART1  
QUADSPI  
-
COMP1  
EVENOUT  
PA0  
PA1  
-
-
-
-
-
-
-
-
COMP1_OUT  
-
-
-
TIM2_ETR  
EVENTOUT  
EVENTOUT  
TIM15_CH1N  
QUADSPI_BK1  
_NCS  
PA2 LPUART1_TX  
PA3 LPUART1_RX  
-
-
-
-
TIM15_CH1  
EVENTOUT  
-
-
-
QUADSPI_CLK  
-
-
-
-
-
-
-
-
-
TIM15_CH2  
LPTIM2_OUT  
LPTIM2_ETR  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PA4  
PA5  
-
-
-
-
QUADSPI_BK1  
_IO3  
PA6 LPUART1_CTS  
-
-
-
-
-
-
-
-
TIM16_CH1  
-
EVENTOUT  
EVENTOUT  
QUADSPI_BK1  
_IO2  
PA7  
-
Port A  
PA8  
PA9  
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM2_OUT  
TIM15_BKIN  
EVENTOUT  
EVENTOUT  
USB_CRS_SY  
NC  
PA10  
PA11  
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
TIM1_BKIN2_C  
OMP1  
USB_DM  
PA12  
PA13  
PA14  
PA15  
-
-
-
-
-
USB_DP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
USB_NOE  
-
-
-
TSC_G3_IO1  
 
 
(1)  
Table 16. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
TSC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
TIM2/TIM15/  
TIM16/LPTIM2  
LPUART1  
QUADSPI  
-
COMP1  
-
EVENOUT  
QUADSPI_BK1  
_IO1  
PB0  
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
LPUART1_RTS  
_DE  
QUADSPI_BK1  
_IO0  
PB1  
COMP1_OUT  
LPTIM2_IN1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
-
TSC_G2_IO1  
-
-
TSC_G2_IO2  
-
TIM16_BKIN  
TSC_G2_IO3  
-
TIM16_CH1N  
TSC_G2_IO4  
-
-
Port B  
-
-
-
-
TIM16_CH1  
-
-
-
PB10 LPUART1_RX  
QUADSPI_CLK  
QUADSPI_BK1  
_NCS  
PB11 LPUART1_TX TSC_SYNC  
LPUART1_RTS  
-
-
COMP1_OUT  
-
-
-
-
EVENTOUT  
EVENTOUT  
PB12  
TSC_G1_IO1  
-
TIM15_BKIN  
_DE  
PB13 LPUART1_CTS TSC_G1_IO2  
-
-
-
-
-
-
-
-
-
-
-
-
TIM15_CH1N  
TIM15_CH1  
TIM15_CH2  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PB14  
PB15  
-
-
TSC_G1_IO3  
TSC_G1_IO4  
(1)  
Table 16. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
TSC  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
TIM2/TIM15/  
TIM16/LPTIM2  
LPUART1  
QUADSPI  
-
COMP1  
-
EVENOUT  
PC0 LPUART1_RX  
PC1 LPUART1_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM2_IN1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
-
-
-
PC2  
PC3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM2_ETR  
PC4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC5  
-
-
PC6  
TSC_G4_IO1  
-
PC7  
TSC_G4_IO2  
-
Port C  
PC8  
TSC_G4_IO3  
-
PC9  
TSC_G4_IO4  
USB_NOE  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
TSC_G3_IO2  
-
-
-
-
-
-
-
-
-
-
TSC_G3_IO3  
TSC_G3_IO4  
-
-
-
Port D PD2  
PH0  
TSC_SYNC  
-
-
-
Port H PH1  
PH3  
EVENTOUT  
1. Refer to Table 15 for AF0 to AF7.  
STM32L412xx  
Memory mapping  
5
Memory mapping  
Figure 15. STM32L412xx memory map  
0xFFFF FFFF  
0xE000 0000  
0xC000 0000  
0xBFFF FFFF  
Reserved  
Cortex™-M4  
0xA000 1400  
0xA000 1000  
with FPU  
Internal  
7
6
QUADSPI registers  
Peripherals  
0x5FFF FFFF  
0x5006 0C00  
0x4800 0000  
0x4002 4400  
Reserved  
AHB2  
Reserved  
QUADSPI  
registers  
AHB1  
5
4
0x4002 0000  
Reserved  
0xA000 1000  
0xA000 0000  
0x4001 5800  
0x4001 0000  
0x4000 9800  
APB2  
Reserved  
APB1  
QUADSPI Flash  
bank  
0x9000 0000  
0x8000 0000  
0x4000 0000  
0x1FFF FFFF  
3
2
Reserved  
0x6000 0000  
0x1FFF 7810  
Options Bytes  
Reserved  
0x1FFF 7800  
0x1FFF 7400  
Peripherals  
OTP area  
0x4000 0000  
0x1FFF 7000  
System memory  
Reserved  
0x2000 A000  
0x2000 8000  
1
0
0x1FFF 0000  
0x1000 2000  
SRAM2  
SRAM1  
SRAM2  
0x2000 0000  
0x1000 0000  
0x0802 0000  
Reserved  
CODE  
Flash memory  
Reserved  
0x0800 0000  
0x0002 0000  
0x0000 0000  
Flash, system memory  
or SRAM, depending on  
BOOT configuration  
0x0000 0000  
Reserved  
MSv45997V1  
DS12469 Rev 8  
69/192  
72  
 
 
Memory mapping  
STM32L412xx  
(1)  
Table 17. STM32L412xx memory map and peripheral register boundary addresses  
Bus  
Boundary address  
Size(bytes)  
Peripheral  
0x5006 0800 - 0x5006 0BFF  
0x5006 0400 - 0x5006 07FF  
0x5004 0400 - 5006 07FF  
0x5004 0000 - 0x5004 03FF  
0x5000 0000 - 0x5003 FFFF  
0x4800 2000 - 0x4FFF FFFF  
0x4800 1C00 - 0x4800 1FFF  
0x4800 1000 - 0x4800 1BFF  
0x4800 0C00 - 0x4800 0FFF  
0x4800 0800 - 0x4800 0BFF  
0x4800 0400 - 0x4800 07FF  
0x4800 0000 - 0x4800 03FF  
0x4002 4400 - 0x47FF FFFF  
0x4002 4000 - 0x4002 43FF  
0x4002 3400 - 0x4002 3FFF  
0x4002 3000 - 0x4002 33FF  
0x4002 2400 - 0x4002 2FFF  
0x4002 2000 - 0x4002 23FF  
0x4002 1400 - 0x4002 1FFF  
0x4002 1000 - 0x4002 13FF  
0x4002 0800 - 0x4002 0FFF  
0x4002 0400 - 0x4002 07FF  
0x4002 0000 - 0x4002 03FF  
1 KB  
1 KB  
RNG  
Reserved  
Reserved  
ADC  
128 KB  
1 KB  
16 KB  
~127 MB  
1 KB  
Reserved  
Reserved  
GPIOH  
AHB2  
3 KB  
Reserved  
GPIOD  
1 KB  
1 KB  
GPIOC  
1 KB  
GPIOB  
1 KB  
GPIOA  
-
~127 MB  
1 KB  
Reserved  
TSC  
1 KB  
Reserved  
CRC  
1 KB  
3 KB  
Reserved  
FLASH registers  
Reserved  
RCC  
1 KB  
AHB1  
3 KB  
1 KB  
2 KB  
Reserved  
DMA2  
1 KB  
1 KB  
DMA1  
70/192  
DS12469 Rev 8  
 
STM32L412xx  
Memory mapping  
(1)  
Table 17. STM32L412xx memory map and peripheral register boundary addresses  
(continued)  
Bus  
Boundary address  
Size(bytes)  
Peripheral  
Reserved  
0x4001 4800 - 0x4001 FFFF  
0x4001 4400 - 0x4001 47FF  
0x4001 4000 - 0x4001 43FF  
0x4001 3C00 - 0x4001 3FFF  
0x4001 3800 - 0x4001 3BFF  
0x4001 3400 - 0x4001 37FF  
0x4001 3000 - 0x4001 33FF  
0x4001 2C00 - 0x4001 2FFF  
0x4001 2000 - 0x4001 2BFF  
0x4001 1C00 - 0x4001 1FFF  
0x4001 0800- 0x4001 1BFF  
0x4001 0400 - 0x4001 07FF  
0x4001 0200 - 0x4001 03FF  
0x4001 0030 - 0x4001 01FF  
0x4001 0000 - 0x4001 002F  
0x4000 9800 - 0x4000 FFFF  
0x4000 9400 - 0x4000 97FF  
0x4000 8400 - 0x4000 93FF  
0x4000 8000 - 0x4000 83FF  
0x4000 7C00 - 0x4000 7FFF  
0x4000 7800 - 0x4000 7BFF  
0x4000 7400 - 0x4000 77FF  
0x4000 7000 - 0x4000 73FF  
0x4000 6C00 - 0x4000 6FFF  
0x4000 6800 - 0x4000 6BFF  
0x4000 6400 - 0x4000 67FF  
0x4000 6000 - 0x4000 63FF  
0x4000 5C00- 0x4000 5FFF  
0x4000 5800 - 0x4000 5BFF  
0x4000 5400 - 0x4000 57FF  
0x4000 4C00 - 0x4000 53FF  
0x4000 4800 - 0x4000 4BFF  
0x4000 4400 - 0x4000 47FF  
0x4000 4000 - 0x4000 43FF  
46 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
3 KB  
1 KB  
5 KB  
1 KB  
1 KB  
1 KB  
1 KB  
26 KB  
1 KB  
4 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
2 KB  
1 KB  
1 KB  
1 KB  
TIM16  
TIM15  
Reserved  
USART1  
Reserved  
SPI1  
APB2  
TIM1  
Reserved  
FIREWALL  
Reserved  
EXTI  
COMP  
Reserved  
SYSCFG  
Reserved  
LPTIM2  
Reserved  
LPUART1  
LPTIM1  
OPAMP  
Reserved  
PWR  
USB SRAM  
USB FS  
Reserved  
CRS  
APB1  
I2C3  
I2C2  
I2C1  
Reserved  
USART3  
USART2  
Reserved  
DS12469 Rev 8  
71/192  
72  
Memory mapping  
STM32L412xx  
(1)  
Table 17. STM32L412xx memory map and peripheral register boundary addresses  
(continued)  
Bus  
Boundary address  
Size(bytes)  
Peripheral  
0x4000 3C00 - 0x4000 3FFF  
0x4000 3800 - 0x4000 3BFF  
0x4000 3400 - 0x4000 37FF  
0x4000 3000 - 0x4000 33FF  
0x4000 2C00 - 0x4000 2FFF  
0x4000 2800 - 0x4000 2BFF  
0x4000 1400 - 0x4000 27FF  
0x4000 1000 - 0x4000 13FF  
0x4000 0400- 0x4000 0FFF  
0x4000 0000 - 0x4000 03FF  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
1 KB  
5 KB  
1 KB  
3 KB  
1 KB  
SPI3  
SPI2  
Reserved  
IWDG  
WWDG  
RTC  
APB1  
Reserved  
TIM6  
Reserved  
TIM2  
1. The gray color is used for reserved boundary addresses.  
72/192  
DS12469 Rev 8  
STM32L412xx  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 16.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 17.  
Figure 16. Pin loading conditions  
Figure 17. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19210V1  
MS19211V1  
DS12469 Rev 8  
73/192  
164  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32L412xx  
6.1.6  
Power supply scheme  
Figure 18. Power supply scheme  
VBAT  
Backup circuitry  
(LSE, RTC,  
Backup registers)  
1.55 – 3.6 V  
Power switch  
VDD  
VCORE  
n x VDD  
Regulator  
VDDIO1  
OUT  
Kernel logic  
(CPU, Digital  
& Memories)  
IO  
logic  
n x 100 nF  
+1 x 4.7 μF  
GPIOs  
n x VSS  
VDDA  
IN  
VDDA  
VREF  
ADCs/  
OPAMPs/  
COMPs/  
10 nF  
VREF+  
VREF-  
+1 μF  
100 nF +1 μF  
VSSA  
MS49692V1  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
74/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
6.1.7  
Current consumption measurement  
Figure 19. Current consumption measurement scheme with and without external  
SMPS power supply  
IDD_USB  
VDDUSB  
IDD_USB  
VDDUSB  
IDD_VBAT  
VBAT  
IDD_VBAT  
VBAT  
IDD  
VDD12  
SMPS  
IDD  
VDD  
VDD  
IDDA  
IDDA  
VDDA  
VDDA  
MSv45729V1  
The I  
parameters given in Table 25 to Table 47 represent the total MCU consumption  
DD_ALL  
including the current supplying V , V  
, V  
and V  
.
DD  
DDA  
DDUSB  
BAT  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics,  
Table 19: Current characteristics and Table 20: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Device mission profile (application conditions)  
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are  
available on demand.  
(1)  
Table 18. Voltage characteristics  
Symbol  
VDDX - VSS  
VDD12 - VSS  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including  
VDD, VDDA, VDDUSB, VBAT  
-0.3  
4.0  
V
V
)
External SMPS supply voltage  
Input voltage on FT_xxx pins  
-0.3  
1.32  
min (VDD, VDDA, VDDUSB  
+ 4.0(3)(4)  
)
V
V
SS-0.3  
SS-0.3  
(2)  
V
VIN  
Input voltage on TT_xx pins  
4.0  
4.0  
Input voltage on any other pins  
VSS-0.3  
DS12469 Rev 8  
75/192  
164  
 
 
 
 
Electrical characteristics  
Symbol  
STM32L412xx  
(1)  
Table 18. Voltage characteristics (continued)  
Ratings  
Min  
Max  
Unit  
Variations between different VDDX power  
pins of the same domain  
|VDDx  
|
-
50  
mV  
Variations between all the different ground  
pins(5)  
|VSSx-VSS  
|
-
50  
mV  
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected  
current values.  
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.  
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 19. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)(2)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin except FT_f  
Output current sunk by any FT_f pin  
140  
140  
100  
100  
20  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
20  
Total output current sunk by sum of all I/Os and control pins(3)  
Total output current sourced by sum of all I/Os and control pins(3)  
100  
100  
IIO(PIN)  
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4,  
PA5  
-5/+0(5)  
(4)  
IINJ(PIN)  
Injected current on PA4, PA5  
-5/0  
25  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(6)  
1. All main power (VDD, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power  
supplies, in the permitted range.  
2. Valid also for VDD12 on SMPS packages.  
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.  
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage  
characteristics for the maximum allowed input voltage values.  
6. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative  
injected currents (instantaneous values).  
76/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Symbol  
Electrical characteristics  
Table 20. Thermal characteristics  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
–65 to +150  
150  
°C  
°C  
DS12469 Rev 8  
77/192  
164  
 
Electrical characteristics  
STM32L412xx  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 21. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK Internal AHB clock frequency  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
-
-
0
0
0
80  
80  
80  
MHz  
1.71  
VDD  
Standard operating voltage  
-
3.6  
V
V
(1)  
ADC or COMP used  
1.62  
1.8  
0
VDDA Analog supply voltage  
OPAMP used  
ADC, OPAMP, COMP not used  
Full frequency range  
Up to 26 MHz  
-
3.6  
1.08  
1.00  
1.55  
3.0  
0
VDD12 Standard operating voltage  
VBAT Backup operating voltage  
VDDUSB USB supply voltage  
1.32  
V
V
V
3.6  
3.6  
USB used  
USB not used  
TT_xx I/O  
3.6  
-0.3  
V
DDIOx+0.3  
Min(Min(VDD, VDDA  
VDDUSB)+3.6 V,  
5.5 V)(2)(3)  
,
VIN  
I/O input voltage  
V
All I/O except TT_xx  
-0.3  
LQFP64  
-
-
-
-
303  
317  
294  
667  
235  
294  
541  
76  
UFBGA64  
LQFP48  
Power dissipation at  
TA = 85 °C for suffix 6  
or  
PD  
UFQFPN48  
WLCSP36  
LQFP32  
mW  
TA = 105 °C for suffix 7(4)  
UFQFPN32  
LQFP64  
-
-
-
-
-
-
-
UFBGA64  
LQFP48  
79  
75  
Power dissipation at  
PD  
UFQFPN48  
WLCSP36  
LQFP32  
167  
59  
mW  
TA = 125 °C for suffix 3(4)  
75  
UFQFPN32  
135  
78/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Symbol  
Electrical characteristics  
Table 21. General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
Maximum power dissipation  
Low-power dissipation(5)  
Maximum power dissipation  
Low-power dissipation(5)  
Suffix 6 version  
–40  
–40  
–40  
–40  
–40  
–40  
85  
Ambient temperature for the  
suffix 6 version  
105  
125  
130  
105  
130  
TA  
TJ  
°C  
Ambient temperature for the  
suffix 3 version  
Junction temperature range  
°C  
Suffix 3 version  
1. When RESET is released functionality is guaranteed down to VBOR0 Min.  
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.  
Maximum I/O input voltage is the smallest value between Min(VDD, VDDA, VDDUSB)+3.6 V and 5.5V.  
3. For operation with voltage higher than Min (VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must  
be disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.8: Thermal characteristics).  
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.8:  
Thermal characteristics).  
6.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 22 are derived from tests performed under the ambient  
temperature condition summarized in Table 21.  
Table 22. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
-
0
10  
100  
0
µs/V  
tVDD  
ULPEN = 0  
ULPEN = 1  
VDD fall time rate  
ms/V  
VDDA rise time rate  
tVDDA  
-
-
VDDA fall time rate  
10  
0
µs/V  
VDDUSB rise time rate  
VDDUSB fall time rate  
tVDDUSB  
10  
6.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 23 are derived from tests performed under the ambient  
temperature conditions summarized in Table 21: General operating conditions.  
Table 23. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Reset temporization after  
BOR0 is detected  
(2)  
tRSTTEMPO  
VDD rising  
-
250  
400  
μs  
Rising edge  
Falling edge  
1.62  
1.6  
1.66  
1.64  
1.7  
(2)  
VBOR0  
Brown-out reset threshold 0  
V
1.69  
DS12469 Rev 8  
79/192  
164  
 
 
 
 
 
 
Electrical characteristics  
STM32L412xx  
Table 23. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.06  
1.96  
2.26  
2.16  
2.56  
2.47  
2.85  
2.76  
2.1  
2.1  
2.14  
2.04  
2.35  
2.24  
2.66  
2.57  
2.95  
2.86  
2.19  
2.1  
VBOR1  
Brown-out reset threshold 1  
V
2
2.31  
2.20  
2.61  
2.52  
2.90  
2.81  
2.15  
2.05  
2.31  
2.20  
2.46  
2.36  
2.61  
2.52  
2.74  
2.64  
2.91  
2.81  
2.98  
2.90  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
V
V
V
V
V
V
V
V
V
V
Programmable voltage  
detector threshold 0  
2
2.26  
2.15  
2.41  
2.31  
2.56  
2.47  
2.69  
2.59  
2.85  
2.75  
2.92  
2.84  
2.36  
2.25  
2.51  
2.41  
2.66  
2.57  
2.79  
2.69  
2.96  
2.86  
3.04  
2.96  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
Hysteresis in  
continuous  
mode  
-
20  
-
Vhyst_BORH0 Hysteresis voltage of BORH0  
mV  
Hysteresis in  
other mode  
-
-
-
30  
100  
1.1  
-
-
Hysteresis voltage of BORH  
Vhyst_BOR_PVD  
-
-
mV  
µA  
(except BORH0) and PVD  
BOR(3) (except BOR0) and  
1.6  
PVD consumption from VDD  
IDD  
BOR(3) (except BOR0) and  
PVD average consumption  
from VDD with ENULP = 1  
(BOR_PVD)(2)  
-
-
-
55  
1000  
1.26  
nA  
VDDUSB peripheral voltage  
monitoring  
VPVM1  
1.18  
1.22  
V
V
Rising edge  
Falling edge  
1.61  
1.6  
1.65  
1.64  
1.69  
1.68  
VDDA peripheral voltage  
monitoring  
VPVM3  
80/192  
DS12469 Rev 8  
STM32L412xx  
Electrical characteristics  
Table 23. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Rising edge  
1.78  
1.82  
1.81  
10  
1.86  
VDDA peripheral voltage  
monitoring  
VPVM4  
V
Falling edge  
1.77  
1.85  
Vhyst_PVM3  
Vhyst_PVM4  
PVM3 hysteresis  
PVM4 hysteresis  
-
-
-
-
-
-
mV  
mV  
10  
I
DD (PVM1)  
PVM1 consumption from VDD  
-
-
-
-
0.2  
2
-
-
µA  
µA  
(2)  
IDD  
PVM3 and PVM4  
consumption from VDD  
(PVM3/PVM4)  
(2)  
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power  
sleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply  
current characteristics tables.  
DS12469 Rev 8  
81/192  
164  
Electrical characteristics  
STM32L412xx  
6.3.4  
Embedded voltage reference  
The parameters given in Table 24 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions.  
Table 24. Embedded internal voltage reference  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TA < +130 °C  
1.182 1.212 1.232  
V
ADC sampling time when  
reading the internal reference  
voltage  
(1)  
tS_vrefint  
-
-
-
4(2)  
-
8
-
µs  
µs  
µA  
Start time of reference voltage  
buffer when ADC is enable  
tstart_vrefint  
-
-
12(2)  
20(2)  
VREFINT buffer consumption  
from VDD when converted by  
ADC  
12.5  
I
DD(VREFINTBUF)  
Internal reference voltage  
spread over the temperature  
range  
VREFINT  
VDD = 3 V  
-
5
7.5(2)  
50(2)  
mV  
TCoeff  
ACoeff  
Temperature coefficient  
Long term stability  
Voltage coefficient  
–40°C < TA < +130°C  
1000 hours, T = 25°C  
3.0 V < VDD < 3.6 V  
-
-
30  
ppm/°C  
ppm  
300 1000(2)  
VDDCoeff  
-
250 1200(2) ppm/V  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
-
VREFINT  
1. The shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
82/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
Figure 20. V  
versus temperature  
REFINT  
V
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
°C  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120  
Min  
Max  
MSv40169V1  
DS12469 Rev 8  
83/192  
164  
 
Electrical characteristics  
STM32L412xx  
6.3.5  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 19: Current consumption  
measurement scheme with and without external SMPS power supply.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the f  
frequency (refer to the table “Number of wait states according  
HCLK  
to CPU clock (HCLK) frequency” available in the RM0394 reference manual).  
When the peripherals are enabled f = f  
PCLK  
HCLK  
The parameters given in Table 25 to Table 48 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 21: General  
operating conditions.  
84/192  
DS12469 Rev 8  
 
Table 25. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
26 MHz 2.05  
16 MHz 1.30  
2.10  
1.35  
2.10  
1.40  
2.20  
1.45  
2.35  
1.60  
1.00  
2.20  
1.40  
0.76  
0.45  
0.30  
0.20  
0.15  
7.75  
7.00  
6.25  
4.70  
3.20  
2.40  
1.70  
235  
2.25  
1.45  
0.78  
0.50  
0.30  
0.25  
0.20  
7.80  
7.00  
6.30  
4.75  
3.25  
2.40  
1.75  
230  
2.30  
1.50  
0.84  
0.55  
0.40  
0.30  
0.25  
7.80  
7.10  
6.35  
4.80  
3.30  
2.50  
1.80  
315  
2.40  
1.60  
0.96  
0.70  
0.50  
0.44  
0.40  
7.90  
7.20  
6.40  
4.90  
3.40  
2.60  
1.90  
455  
2.60  
1.80  
1.25  
0.90  
0.80  
0.70  
0.60  
8.10  
7.40  
6.65  
5.10  
3.60  
2.90  
2.20  
725  
8 MHz 0.715 0.730 0.780 0.855  
Range 2 4 MHz 0.415 0.430 0.475 0.555 0.710  
2 MHz 0.265 0.28 0.325 0.400 0.555  
1 MHz 0.190 0.205 0.250 0.325 0.480  
100 kHz 0.120 0.135 0.180 0.255 0.410  
fHCLK = fHSE up to  
48MHz included,  
bypass mode  
PLL ON above  
48 MHz all  
Supply  
current in  
Run mode  
IDD_ALL  
(Run)  
mA  
80 MHz 7.30  
72 MHz 6.60  
7.35  
6.65  
5.90  
4.40  
3.00  
2.30  
1.60  
205  
7.40  
6.70  
6.00  
4.50  
3.05  
2.35  
1.65  
255  
7.55  
6.80  
6.10  
4.60  
3.15  
2.45  
1.75  
335  
7.70  
7.00  
6.30  
4.80  
3.35  
2.65  
1.90  
505  
peripherals disable  
64 MHz 5.90  
Range 1 48 MHz 4.40  
32 MHz 3.00  
24 MHz 2.30  
16 MHz 1.55  
2 MHz  
1 MHz  
190  
110  
Supply  
120  
165  
250  
415  
135  
145  
230  
370  
645  
IDD_ALL  
(LPRun)  
current in  
Low-power all peripherals disable  
run mode  
fHCLK = fMSI  
µA  
400 kHz 55.0  
100 kHz 26.0  
65.5  
40.0  
115  
195  
360  
75.0  
45.0  
90.5  
65.5  
180  
325  
590  
87.5  
170  
335  
160  
290  
550  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 26. Current consumption in Run modes, code with data processing running from Flash,  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
(V  
= 1.10 V)  
DD12  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
2.62  
2.37  
2.12  
1.58  
1.08  
0.83  
0.56  
0.26  
0.15  
9.53  
0.07  
2.64  
2.39  
2.12  
1.58  
1.08  
0.83  
0.58  
0.26  
0.15  
0.10  
0.07  
0.01  
2.66  
2.41  
2.16  
1.62  
1.10  
0.84  
0.59  
0.28  
0.17  
0.12  
0.09  
0.03  
2.71  
2.44  
2.19  
1.65  
1.13  
0.88  
0.63  
0.31  
0.20  
0.14  
0.12  
0.06  
2.77  
2.52  
2.26  
1.73  
1.20  
0.95  
0.68  
0.36  
0.26  
0.20  
0.17  
0.12  
fHCLK = fHSE up to 48MHz included, bypass mode  
PLL ON above  
48 MHz all peripherals disable  
Supply current in Run  
mode  
IDD_ALL(Run)  
mA  
4 MHz  
2 MHz  
1 MHz  
100 kHz 0.01  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,  
VDD12 = 1.10 V  
 
Table 27. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART disable  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
26 MHz 2.40  
16 MHz 1.70  
2.45  
1.75  
2.50  
1.80  
2.55  
1.85  
1.10  
2.75  
2.05  
1.25  
2.60  
1.85  
1.05  
0.61  
0.40  
0.25  
0.14  
8.20  
7.40  
7.40  
6.30  
4.50  
3.40  
2.50  
325  
2.65  
1.90  
1.10  
0.63  
0.40  
0.30  
0.20  
8.30  
7.45  
7.45  
6.35  
4.55  
3.40  
2.50  
360  
2.70  
1.95  
1.15  
0.70  
0.50  
0.34  
0.25  
8.40  
7.50  
7.50  
6.50  
4.70  
3.50  
2.60  
425  
2.80  
2.05  
1.25  
0.80  
0.60  
0.50  
0.40  
8.50  
7.60  
7.60  
6.65  
4.80  
3.60  
2.70  
565  
3.00  
2.30  
1.50  
1.10  
0.80  
0.70  
0.60  
8.80  
7.80  
7.80  
6.90  
5.10  
3.90  
3.00  
840  
8 MHz 0.970 0.985 1.05  
Range 2  
4 MHz 0.570 0.585 0.630 0.710 0.865  
2 MHz 0.340 0.355 0.400 0.475 0.635  
fHCLK = fHSE up to  
48MHz included,  
bypass mode  
PLL ON above  
48 MHz all  
1 MHz 0.230 0.240 0.285 0.365  
0.52  
Supply  
current in  
Run mode  
100 kHz 0.125 0.140 0.185 0.260 0.415  
IDD_ALL  
(Run)  
mA  
80 MHz 7.65  
72 MHz 6.95  
64 MHz 6.90  
48 MHz 5.85  
32 MHz 4.20  
24 MHz 3.15  
16 MHz 2.25  
7.70  
6.95  
6.95  
5.90  
4.20  
3.20  
2.30  
290  
7.85  
7.05  
7.05  
6.00  
4.30  
3.25  
2.35  
340  
8.00  
7.15  
7.20  
6.15  
4.45  
3.35  
2.50  
425  
8.20  
7.35  
7.40  
6.35  
4.65  
3.55  
2.65  
590  
peripherals disable  
Range 1  
2 MHz  
1 MHz  
275  
155  
Supply  
165  
83.0  
45.5  
210  
130  
92.0  
295  
215  
175  
460  
280  
340  
185  
90.5  
48.0  
195  
108  
69  
275  
195  
155  
420  
340  
300  
690  
600  
570  
IDD_ALL  
(LPRun)  
current in fHCLK = fMSI  
Low-power all peripherals disable  
run  
µA  
400 kHz 69.0  
100 kHz 32.0  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 28. Current consumption in Run modes, code with data processing running from Flash,  
ART disable and power supplied by external SMPS (V  
= 1.10 V)  
DD12  
Conditions(1)  
TYP  
25 °C 55 °C 85 °C 105 °C 125 °C  
Uni  
t
Symbol  
Parameter  
-
fHCLK  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
2.75  
2.50  
2.48  
2.10  
1.51  
1.13  
0.81  
0.35  
0.20  
12.22  
0.08  
2.77  
2.50  
2.50  
2.12  
1.51  
1.15  
0.83  
0.35  
0.21  
0.13  
0.09  
0.02  
2.82  
2.53  
2.53  
2.16  
1.55  
1.17  
0.84  
0.38  
0.23  
0.14  
0.10  
0.03  
2.88  
2.57  
2.59  
2.21  
1.60  
1.20  
0.90  
0.40  
0.26  
0.17  
0.13  
0.06  
2.95  
2.64  
2.66  
2.28  
1.67  
1.28  
0.95  
0.45  
0.31  
0.23  
0.19  
0.12  
Supply current in Run  
mode  
fHCLK = fHSE up to 48MHz included, bypass mode  
PLL ON above 48 MHz all peripherals disable  
IDD_ALL(Run)  
mA  
4 MHz  
2 MHz  
1 MHz  
100 kHz 0.01  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,  
DD12 = 1.10 V  
V
 
Table 29. Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
105  
°C  
125  
°C  
105  
°C  
125  
°C  
-
fHCLK  
25 °C 55 °C 85 °C  
25 °C 55 °C 85 °C  
26 MHz 2.00  
16 MHz 1.30  
2.05  
1.30  
2.10  
1.35  
2.15  
1.45  
2.35  
1.60  
2.20  
1.40  
0.75  
2.20  
1.45  
0.77  
0.46  
0.30  
0.22  
0.15  
7.65  
6.95  
6.20  
4.65  
3.15  
2.40  
1.70  
225  
2.25  
1.45  
0.83  
0.52  
0.37  
0.29  
0.23  
7.75  
7.00  
6.25  
4.70  
3.20  
2.50  
1.75  
300  
2.35  
1.55  
0.94  
0.64  
0.49  
0.42  
0.35  
7.75  
7.05  
6.30  
4.80  
3.30  
2.60  
1.85  
450  
2.55  
1.80  
1.20  
0.90  
0.75  
0.67  
0.61  
8.00  
7.25  
6.50  
5.00  
3.55  
2.85  
2.10  
720  
8 MHz 0.705 0.720 0.765 0.845 1.00  
Range 2  
4 MHz 0.410 0.425 0.470 0.550 0.700 0.44  
2 MHz 0.265 0.275 0.320 0.395 0.555 0.28  
1 MHz 0.190 0.200 0.245 0.325 0.475 0.21  
100 kHz 0.120 0.135 0.180 0.255 0.410 0.14  
fHCLK = fHSE up to  
48MHz included,  
bypass mode  
PLL ON above  
48 MHz all  
Supply  
current in  
Run mode  
IDD_ALL  
(Run)  
mA  
80 MHz 7.15  
72 MHz 6.45  
64 MHz 5.75  
48 MHz 4.20  
32 MHz 2.95  
24 MHz 2.25  
16 MHz 1.55  
7.20  
6.50  
5.80  
4.35  
2.95  
2.25  
1.55  
190  
7.25  
6.55  
5.85  
4.40  
3.00  
2.30  
1.60  
240  
7.45  
6.75  
6.05  
4.50  
3.10  
2.40  
1.70  
320  
7.55  
6.85  
6.15  
7.70  
3.30  
2.60  
1.85  
485  
7.65  
6.90  
6.15  
4.65  
3.15  
2.40  
1.65  
215  
peripherals disable  
Range 1  
2 MHz  
1 MHz  
180  
Supply  
fHCLK = fMSI  
all peripherals disable  
FLASH in power-down  
90.5  
110  
56.0  
32.0  
155  
105  
78.5  
235  
185  
160  
400  
350  
325  
120  
60.0  
33.5  
135  
76.5  
53.5  
220  
165  
140  
360  
315  
285  
640  
565  
555  
IDD_ALL  
(LPRun)  
current in  
low-power  
run mode  
µA  
400 kHz 40.5  
100 kHz 17.5  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 30. Current consumption in Run, code with data processing running from  
SRAM1 and power supplied by external SMPS (V  
= 1.10 V)  
DD12  
Conditions(1)  
TYP  
25 °C 55 °C 85 °C 105 °C 125 °C  
Symbol  
Parameter  
Unit  
-
fHCLK  
80 MHz 2.57  
72 MHz 2.32  
64 MHz 2.07  
48 MHz 1.55  
32 MHz 1.06  
24 MHz 0.81  
16 MHz 0.56  
2.59  
2.34  
2.08  
1.56  
1.06  
0.81  
0.56  
0.26  
0.15  
0.10  
0.07  
0.01  
2.61  
2.35  
2.10  
1.58  
1.08  
0.83  
0.58  
0.28  
0.17  
0.12  
0.09  
0.03  
2.68  
2.43  
2.17  
1.62  
1.11  
0.86  
0.61  
0.30  
0.20  
0.15  
0.14  
0.06  
2.71  
2.46  
2.21  
1.69  
1.19  
0.93  
0.67  
0.36  
0.25  
0.20  
0.17  
0.12  
f
HCLK = fHSE up to 48MHz included, bypass mode  
IDD_ALL(Run) Supply current in Run mode PLL ON above  
48 MHz all peripherals disable  
mA  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.25  
0.15  
9.53  
0.07  
100 kHz 0.01  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,  
DD12 = 1.10 V  
V
 
STM32L412xx  
Electrical characteristics  
Table 31. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF)  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
2.05  
2.30  
2.35  
2.25  
1.95  
7.30  
8.15  
8.35  
8.10  
7.20  
190  
79  
88  
Dhrystone 2.1  
Fibonacci  
mA  
90  
µA/MHz  
fHCLK = fHSE up  
to 48 MHz  
87  
Supply  
included, bypass  
While(1)  
75  
IDD_ALL  
(Run)  
current in mode PLL ON  
Run mode above 48 MHz  
all peripherals  
Reduced code(1)  
91  
Coremark  
102  
104  
101  
90  
disable  
Dhrystone 2.1  
Fibonacci  
mA  
µA/MHz  
µA/MHz  
While(1)  
Reduced code(1)  
95  
Coremark  
205  
103  
110  
103  
113  
Supply  
current in  
IDD_ALL  
(LPRun)  
fHCLK = fMSI = 2 MHz  
Low-power all peripherals disable  
run  
Dhrystone 2.1  
Fibonacci  
220  
µA  
205  
While(1)  
225  
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
Table 32. Typical current consumption in Run, with different codes running from Flash,  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
(V  
= 1.10 V)  
DD12  
Conditions(1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(2) 0.88  
34  
38  
39  
37  
32  
39  
44  
45  
44  
39  
Coremark  
Dhrystone 2.1  
Fibonacci  
While(1)  
0.99  
1.01  
0.97  
0.84  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode PLL  
Supply  
IDD_ALL  
(Run)  
current in ON above  
Run mode 48 MHz  
mA  
µA/MHz  
Reduced code(2) 3.15  
all peripherals  
disable  
Coremark  
Dhrystone 2.1  
Fibonacci  
While(1)  
3.52  
3.60  
3.49  
3.11  
DS12469 Rev 8  
91/192  
164  
 
 
 
Electrical characteristics  
STM32L412xx  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:  
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
Table 33. Typical current consumption in Run, with different codes running from Flash,  
ART enable (Cache ON Prefetch OFF) and power supplied by external SMPS  
(V  
= 1.00 V)  
DD12  
Conditions(1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode PLL  
Reduced code(2) 0.73  
28  
32  
32  
31  
Coremark  
0.82  
0.84  
0.80  
Supply  
IDD_ALL  
(Run)  
Dhrystone 2.1  
Fibonacci  
current in ON above  
Run mode 48 MHz  
mA  
µA/MHz  
all peripherals  
disable  
While(1)  
0.70  
27  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters:  
SMPS input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
92/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
Table 34. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART disable  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
2.40  
2.15  
2.20  
2.05  
1.90  
7.65  
6.95  
7.00  
6.60  
6.85  
275  
92  
83  
mA  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
85  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
79  
Supply  
While(1)  
Reduced code(1)  
73  
IDD_ALL  
(Run)  
current in PLL ON above  
Run mode 48 MHz  
all peripherals  
96  
Coremark  
87  
disable  
mA  
µA  
µA/MHz  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
88  
83  
While(1)  
Reduced code(1)  
86  
138  
150  
158  
153  
193  
Supply  
Coremark  
300  
IDD_ALL  
(LPRun)  
current in fHCLK = fMSI = 2 MHz  
Low-power all peripherals disable  
run  
Dhrystone 2.1  
Fibonacci  
315  
305  
While(1)  
385  
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
Table 35. Typical current consumption in Run modes, with different codes running from  
Flash, ART disable and power supplied by external SMPS (V  
= 1.10 V)  
DD12  
Conditions(1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(2)  
Coremark  
1.04  
0.93  
0.95  
0.88  
0.82  
3.30  
3.00  
3.02  
2.85  
2.95  
40  
36  
37  
34  
32  
41  
37  
38  
36  
37  
Dhrystone 2.1  
Fibonacci  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
Supply  
current in  
While(1)  
Reduced code(2)  
IDD_ALL  
(Run)  
PLL ON above  
mA  
µA/MHz  
Run mode 48 MHz  
all peripherals  
disable  
Coremark  
Dhrystone 2.1  
Fibonacci  
While(1)  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS  
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
DS12469 Rev 8  
93/192  
164  
 
 
 
Electrical characteristics  
STM32L412xx  
Table 36. Typical current consumption in Run modes, with different codesrunning from  
Flash, ART disable and power supplied by external SMPS (V  
= 1.00 V)  
DD12  
Conditions(1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
PLL ON above  
48 MHz  
Reduced code(2)  
Coremark  
0.86  
0.77  
0.78  
0.73  
0.68  
33  
29  
30  
28  
26  
Supply  
current in  
Run mode  
IDD_ALL  
(Run)  
mA  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
all peripherals  
While(1)  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS  
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
Table 37. Typical current consumption in Run and Low-power run modes, with different codes  
running from SRAM1  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
2.00  
2.00  
2.05  
2.00  
1.85  
7.15  
7.00  
7.15  
7.10  
6.60  
180  
77  
77  
79  
77  
71  
89  
88  
89  
89  
83  
90  
90  
93  
85  
85  
mA  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
Supply  
While(1)  
Reduced code(1)  
IDD_ALL  
(Run)  
current in PLL ON above  
Run mode 48 MHz all  
peripherals  
Coremark  
disable  
mA  
µA  
µA/MHz  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
While(1)  
Reduced code(1)  
Supply  
Coremark  
180  
IDD_ALL  
(LPRun)  
current in fHCLK = fMSI = 2 MHz  
Low-power all peripherals disable  
run  
Dhrystone 2.1  
Fibonacci  
185  
170  
While(1)  
170  
1. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
94/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
Table 38. Typical current consumption in Run, with different codes running from  
SRAM1 and power supplied by external SMPS (V  
Conditions(1)  
= 1.10 V)  
DD12  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(2)  
Coremark  
0.86  
0.86  
0.88  
0.86  
0.80  
3.08  
3.02  
3.08  
3.06  
2.85  
33  
33  
34  
33  
31  
39  
38  
39  
38  
36  
Dhrystone 2.1  
Fibonacci  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
PLL ON above  
48 MHz all  
Supply  
current in  
Run mode  
While(1)  
Reduced code(2)  
IDD_ALL  
(Run)  
mA  
µA/MHz  
Coremark  
peripherals disable  
Dhrystone 2.1  
Fibonacci  
While(1)  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS  
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.10 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
Table 39. Typical current consumption in Run, with different codes running from  
SRAM1 and power supplied by external SMPS (V  
Conditions(1)  
= 1.00 V)  
DD12  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(2)  
Coremark  
0.71  
0.71  
0.73  
0.71  
0.66  
27  
27  
28  
27  
25  
fHCLK = fHSE up to  
48 MHz included,  
bypass mode  
PLL ON above  
48 MHz all  
Supply  
current in  
Run mode  
IDD_ALL  
(Run)  
mA  
µA/MHz  
Dhrystone 2.1  
Fibonacci  
peripherals disable  
While(1)  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS  
input = 3.3 V, SMPS efficiency = 85%, VDD12 = 1.00 V  
2. Reduced code used for characterization results provided in Table 25, Table 27, Table 29.  
DS12469 Rev 8  
95/192  
164  
 
 
Table 40. Current consumption in Sleep and Low-power sleep modes, Flash ON  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
26 MHz 0.535 0.550 0.600 0.680 0.835  
16 MHz 0.375 0.390 0.435 0.515 0.670  
8 MHz 0.245 0.260 0.305 0.385 0.540  
4 MHz 0.180 0.195 0.240 0.315 0.470  
2 MHz 0.150 0.160 0.205 0.285 0.435  
1 MHz 0.130 0.145 0.190 0.265 0.420  
100 kHz 0.115 0.130 0.175 0.250 0.405  
0.58  
0.41  
0.27  
0.20  
0.17  
0.15  
0.13  
1.80  
1.60  
1.45  
1.10  
0.78  
0.62  
0.47  
71.0  
0.60  
0.43  
0.29  
0.22  
0.18  
0.16  
0.15  
1.80  
1.65  
1.50  
1.15  
0.80  
0.64  
0.48  
91.5  
0.66  
0.50  
0.36  
0.29  
0.25  
0.24  
0.22  
1.85  
1.70  
1.55  
1.20  
0.87  
0.72  
0.56  
175  
0.79  
0.62  
0.49  
0.42  
0.38  
0.36  
0.35  
1.95  
1.80  
1.65  
1.35  
1.05  
0.86  
0.71  
315  
1.05  
0.88  
0.74  
0.67  
0.63  
0.62  
0.60  
2.25  
2.10  
1.95  
1.65  
1.35  
1.15  
1.00  
600  
Range 2  
f
HCLK = fHSE up  
to 48 MHz  
included, bypass  
Supply  
IDD_ALL  
(Sleep)  
current in mode  
mA  
sleep  
mode,  
pll ON above  
80 MHz 1.65  
72 MHz 1.50  
64 MHz 1.35  
48 MHz 1.00  
1.70  
1.55  
1.40  
1.05  
1.75  
1.60  
1.45  
1.10  
1.85  
1.70  
1.55  
1.2  
2.00  
1.85  
1.70  
1.35  
1.05  
48 MHz all  
peripherals  
disable  
Range 1  
32 MHz 0.725 0.740 0.795 0.885  
24 MHz 0.575 0.595 0.650 0.740 0.910  
16 MHz 0.425 0.440 0.495 0.585 0.760  
2 MHz  
1 MHz  
52.5  
37.0  
66.5  
51.5  
39.0  
33.5  
115  
97.5  
85.0  
80.5  
195  
180  
170  
165  
360  
345  
330  
325  
Supply  
current in  
low-power  
sleep  
55.0  
41.0  
36.0  
73.0  
63.0  
57.5  
165  
150  
145  
295  
280  
280  
575  
565  
560  
IDD_ALL  
(LPSleep)  
fHCLK = fMSI  
µA  
all peripherals disable  
400 kHz 25.5  
100 kHz 18.5  
mode  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 41. Current consumption in Sleep, Flash ON and power supplied by external SMPS  
(V = 1.10 V)  
DD12  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
8 MHz  
0.59  
0.54  
0.49  
0.36  
0.26  
0.21  
0.15  
0.09  
0.06  
5.39  
0.05  
0.01  
0.61  
0.56  
0.50  
0.38  
0.27  
0.21  
0.16  
0.09  
0.07  
0.06  
0.05  
0.01  
0.63  
0.58  
0.52  
0.40  
0.29  
0.23  
0.18  
0.11  
0.09  
0.07  
0.07  
0.03  
0.67  
0.61  
0.56  
0.43  
0.32  
0.27  
0.21  
0.14  
0.11  
0.10  
0.10  
0.06  
0.72  
0.67  
0.61  
0.49  
0.38  
0.33  
0.27  
0.19  
0.17  
0.15  
0.15  
0.12  
fHCLK = fHSE up to 48 MHz included, bypass  
mode  
pll ON above  
I
DD_ALL(Sleep) Supply current in sleep mode,  
mA  
48 MHz all peripherals disable  
4 MHz  
2 MHz  
1 MHz  
100 kHz  
1. All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%,  
VDD12 = 1.10 V  
Table 42. Current consumption in Low-power sleep modes, Flash in power-down  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
2 MHz  
1 MHz  
50  
35  
20  
15  
60  
45  
32  
25  
105  
89.0  
76.5  
71.5  
185  
170  
155  
150  
350  
335  
320  
315  
63  
46  
32  
25  
83  
65  
51  
46  
170  
150  
135  
135  
300  
285  
270  
270  
585  
570  
560  
555  
Supply current  
in low-power  
sleep mode  
IDD_ALL  
(LPSleep)  
fHCLK = fMSI  
all peripherals disable  
µA  
400 kHz  
100 kHz  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
 
Table 43. Current consumption in Stop 2 mode  
Conditions TYP  
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
1.8 V 0.77  
2.4 V 0.78  
2.35  
2.35  
2.40  
2.55  
2.35  
2.35  
2.65  
2.90  
2.70  
2.90  
3.10  
3.35  
2.65  
2.90  
3.15  
3.55  
2.45  
2.60  
2.75  
3.05  
8.60  
8.75  
9.00  
9.40  
9.35  
9.65  
10.0  
10.5  
9.00  
9.30  
9.65  
10.0  
9.55  
10.0  
10.5  
11.5  
9.35  
9.70  
10.0  
11.0  
20.5  
21.0  
21.5  
22.5  
21.0  
22.0  
22.5  
24.0  
21.0  
21.5  
22.5  
23.5  
21.5  
22.0  
23.0  
24.5  
21.5  
22.0  
23.0  
24.0  
46.0  
47.0  
49.0  
51.5  
46.5  
48.0  
50.0  
52.5  
46.0  
47.5  
49.5  
52.0  
46.5  
48.5  
50.5  
53.0  
46.5  
48.0  
50.0  
52.5  
2.0  
5.6  
21.5  
51.0  
115  
2.1  
5.8  
22.0  
52.5  
120  
-
3 V  
0.79  
2.1  
5.9  
22.5  
54.0  
125  
Supply current in  
Stop 2 mode,  
RTC disabled  
3.6 V 0.84  
1.8 V 0.72  
2.4 V 0.74  
2.3  
6.1  
23.0  
56.0  
130  
IDD_ALL  
(Stop 2)  
µA  
-
-
-
-
-
-
-
-
-
-
ENULP = 1  
3 V  
0.75  
-
-
-
-
-
3.6 V 0.79  
1.8 V 1.05  
2.4 V 1.10  
-
-
-
-
-
2.5  
6.2  
22.0  
51.5  
120  
2.8  
6.4  
22.5  
53.0  
120  
RTC clocked by LSI  
3 V  
1.20  
3.0  
6.8  
23.0  
54.5  
125  
3.6 V 1.30  
1.8 V 1.00  
2.4 V 1.05  
3.3  
7.2  
24.5  
57.0  
130  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IDD_ALL  
Supply current in RTC clocked by LSI  
(Stop 2 with Stop 2 mode,  
RTC) RTC enabled  
ENULP = 1  
LPCAL = 1  
µA  
3 V  
1.10  
3.6 V 1.20  
1.8 V 0.86  
2.4 V 0.88  
RTC clocked by LSI  
ENULP = 1  
LPCAL = 1  
3 V  
0.93  
LSIPREDIV = 1  
3.6 V 0.98  
 
 
Table 43. Current consumption in Stop 2 mode (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 1.35  
2.4 V 1.60  
2.85  
3.15  
3.85  
6.60  
2.80  
3.10  
3.90  
6.75  
2.65  
2.75  
2.90  
3.10  
2.55  
2.75  
3.00  
3.25  
9.15  
9.60  
11.0  
15.0  
9.70  
10.5  
11.5  
16.0  
8.85  
9.10  
9.45  
9.95  
9.50  
9.90  
10.5  
11.0  
21.0  
22.0  
24.0  
29.5  
21.5  
22.5  
25.0  
30.5  
20.5  
21.0  
22.0  
23.0  
21.0  
22.0  
23.0  
25.0  
46.0  
48.0  
51.5  
58.5  
46.5  
48.5  
52.5  
59.5  
47.5  
49.0  
51.0  
53.0  
48.0  
49.5  
52.0  
54.5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSE  
bypassed at 32768 Hz  
3 V  
2.00  
3.6 V 3.90  
1.8 V 1.20  
2.4 V 1.35  
RTC clocked by LSE  
bypassed at 32768 Hz,  
ENULP = 1,  
3 V  
1.80  
LPCAL = 1  
IDD_ALL  
Supply current in  
3.6 V 3.65  
1.8 V 1.20  
2.4 V 1.25  
(Stop 2 with Stop 2 mode,  
µA  
RTC)  
RTC enabled  
RTC clocked by LSE  
quartz in low drive  
mode  
3 V  
1.35  
3.6 V 1.50  
1.8 V 1.00  
2.4 V 1.10  
RTC clocked by LSE  
quartz(2) in low drive  
mode, ENULP = 1,  
LPCAL = 1  
3 V  
1.15  
3.6 V 1.25  
Wakeup clock is  
MSI = 48 MHz,  
voltage Range 1.  
3 V  
3 V  
3 V  
185  
155  
152  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
See (3)  
.
Wakeup clock is  
MSI = 4 MHz,  
voltage Range 2.  
Supply current  
during wakeup  
from Stop 2  
mode  
IDD_ALL  
(wakeup from  
Stop2)  
mA  
See (3)  
.
Wakeup clock is  
HSI16 = 16 MHz,  
voltage Range 1.  
See (3)  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.  
Table 44. Current consumption in Stop 1 mode  
Conditions TYP  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
-
VDD  
1.8 V  
2.4 V  
3 V  
3.95  
3.95  
4.00  
4.10  
4.40  
4.60  
4.75  
5.05  
4.50  
4.70  
5.35  
7.20  
4.25  
4.35  
4.40  
4.50  
13.0  
13.0  
13.5  
13.5  
13.5  
14.0  
14.0  
14.5  
13.5  
14.0  
14.5  
17.5  
13.5  
13.5  
13.5  
14.0  
47.5  
48.0  
48.0  
48.5  
48.0  
48.5  
48.5  
49.5  
48.5  
49.0  
50.0  
54.5  
47.5  
48.0  
48.0  
49.0  
110  
110  
110  
110  
110  
110  
110  
115  
110  
110  
115  
120  
110  
110  
110  
125  
230  
230  
235  
240  
230  
235  
235  
240  
230  
230  
240  
245  
-
7.40  
7.50  
7.30  
7.85  
8.05  
8.10  
8.20  
8.55  
11.5  
29.0  
36.0  
26.0  
-
24.5  
24.5  
24.5  
25.0  
24.5  
25.0  
25.5  
27.0  
26.5  
31.5  
31.5  
28.0  
-
87.0  
86.0  
87.0  
90.0  
86.5  
90.0  
89.0  
89.5  
86.0  
90.0  
87.5  
88.0  
-
190  
190  
195  
195  
190  
195  
195  
195  
190  
190  
195  
195  
-
395  
395  
400  
405  
395  
395  
400  
405  
395  
395  
400  
405  
-
µA  
Supplycurrent  
in Stop 1  
mode,  
RTC disabled  
IDD_ALL  
(Stop 1)  
-
3.6 V  
1.8 V  
2.4 V  
3 V  
RTC clocked by LSI  
3.6 V  
1.8 V  
2.4 V  
3 V  
Supplycurrent  
in stop 1  
mode,  
IDD_ALL  
(Stop 1 with  
RTC)  
RTC clocked by LSE  
bypassed at 32768 Hz  
µA  
RTC enabled  
3.6 V  
1.8 V  
2.4 V  
3 V  
RTC clocked by LSE quartz(2)  
in low drive mode  
-
-
-
-
-
-
-
-
-
-
-
-
3.6 V  
-
-
-
-
-
-
Wakeup clock MSI = 48 MHz,  
voltage Range 1.  
3 V  
3 V  
1.15  
1.25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
See (3)  
.
Wakeup clock MSI = 4 MHz,  
voltage Range 2.  
Supplycurrent  
during  
wakeup from  
Stop 1  
IDD_ALL  
(wakeup  
from Stop1)  
mA  
See (3)  
.
Wakeup clock  
HSI16 = 16 MHz,  
voltage Range 1.  
3 V  
1.20  
-
-
-
-
-
-
-
-
-
See (3)  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.  
 
Table 45. Current consumption in Stop 0  
TYP  
Conditions  
VDD  
MAX(1)  
Symbol  
Parameter  
Unit  
25 °C 55 °C 85 °C  
105 °C 125 °C 25 °C  
55 °C  
85 °C 105 °C 125 °C  
1.8 V  
2.4 V  
3 V  
110  
110  
115  
115  
125  
125  
125  
130  
165  
170  
170  
175  
240  
240  
245  
250  
380  
385  
385  
390  
130  
130  
130  
135  
145  
145  
145  
150  
215  
215  
220  
220  
340  
340  
345  
345  
585  
585  
590  
595  
Supply current  
in Stop 0 mode,  
RTC disabled  
IDD_ALL  
(Stop 0)  
µA  
3.6 V  
1. Guaranteed by characterization results, unless otherwise specified.  
 
Table 46. Current consumption in Standby mode  
Conditions TYP  
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
1.8 V  
2.4 V 105  
3 V 120  
3.6 V 150  
95  
255  
290  
354  
410  
225  
315  
430  
570  
450  
530  
635  
775  
415  
540  
710  
915  
1150  
1300  
1550  
1850  
1400  
1800  
2400  
3050  
1300  
1500  
1800  
2200  
1450  
1950  
2550  
3300  
3200  
3600  
8350  
9500  
115  
405  
2750  
3250  
3750  
7150 19500  
8350 23000  
9600 26000  
175  
540  
No independent watchdog  
4350 11500  
5050 13000  
215  
650  
280  
835  
4450 11500 29500  
1.8 V  
2.4 V  
3 V  
32  
46  
66  
3850  
9000  
115  
405  
2750  
3250  
3750  
7250 19500  
8350 23000  
9600 26000  
4500 10500  
5450 12500  
6350 14500  
175  
540  
No independent watchdog  
ENULP = 1  
Supply current  
in Standby  
215  
650  
3.6 V 115  
1.8 V 295  
2.4 V 350  
280  
835  
4450 11500 29500  
IDD_ALL  
(Standby) registers  
retained),  
mode (backup  
nA  
3250  
3750  
8250  
9450  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
With independent  
watchdog  
RTC disabled  
3 V  
415  
4450 11500  
5350 13500  
3.6 V 505  
1.8 V 230  
2.4 V 290  
3900  
8850  
With independent  
watchdog  
ENULP = 1  
4600 10550  
5500 12500  
6600 14500  
3 V  
365  
3.6 V 460  
 
 
Table 46. Current consumption in Standby mode (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 480  
2.4 V 615  
635  
800  
995  
1500  
1800  
2150  
3450  
4050  
8400  
9700  
560  
770  
975  
900  
3180  
3850  
7500 19500  
880 23000  
1200  
RTC clocked by LSI, no  
independent watchdog  
3 V  
775  
4850 11500  
1450  
4450 10500 26000  
5300 12000 29500  
3.6 V 970 1250 2650  
5850 14000 1250  
1850  
1.8 V 330  
2.4 V 435  
515  
690  
915  
1600  
2100  
2750  
4000  
9000  
560  
900  
3180  
3850  
7500 19500  
8800 23000  
RTC clocked by LSI, no  
independent watchdog  
ENULP = 1  
4750 10500  
5750 12500  
770  
1200  
Supply current  
in Standby  
mode (backup  
registers  
retained),  
RTC enabled  
3 V  
565  
975  
1450  
4450 10500 26000  
5300 12000 29500  
IDD_ALL  
(Standby  
with RTC)  
3.6 V 725 1200 3600  
6900  
3500  
4100  
1500  
8450  
9850  
1250  
1850  
nA  
1.8 V 530  
2.4 V 675  
680  
855  
1550  
1850  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSI, with  
independent watchdog  
3 V 850 1050 2250  
3.6 V 1050 1350 2750  
4900 11500  
4900 11500  
1.8 V 370  
2.4 V 495  
560  
755  
985  
1600  
2150  
2850  
4050  
9050  
RTC clocked by LSI, with  
independent watchdog  
ENULP = 1  
4800 10500  
5800 12500  
6950 15000  
3 V  
645  
3.6 V 825 1300 3700  
Table 46. Current consumption in Standby mode (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 480  
2.4 V 615  
640  
800  
995  
1500  
1800  
2150  
3450  
4000  
8100  
9300  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSE  
bypassed at 32768 Hz  
3 V  
775  
4800 11000  
5800 13000  
3.6 V 960 1250 2650  
1.8 V 330  
2.4 V 435  
510  
695  
910  
1600  
2100  
2750  
4000  
8800  
RTC clocked by LSE  
bypassed at 32768 Hz  
ENULP = 1  
4750 10000  
5700 12000  
6900 14500  
Supply current  
in Standby  
mode (backup  
registers  
retained),  
RTC enabled  
(cont.)  
3 V  
565  
IDD_ALL  
(Standby  
with RTC)  
(cont.)  
3.6 V 730 1200 3600  
nA  
1.8 V 415  
2.4 V 485  
575  
670  
800  
985  
450  
565  
705  
915  
230  
230  
235  
240  
1450  
1650  
1950  
2400  
1600  
2050  
2650  
3400  
750  
3400  
3900  
4600  
-
-
-
RTC clocked by LSE  
quartz (2) in low drive mode  
3 V  
550  
-
3.6 V 690  
1.8 V 245  
2.4 V 290  
-
4000  
4650  
5500  
-
-
-
RTC clocked by LSE  
quartz (2) in low drive mode  
ENULP = 1  
3 V  
355  
-
LPCAL = 1  
3.6 V 450  
1.8 V 100  
2.4 V 100  
-
Supply current  
to be added in  
Standby mode  
when SRAM2  
is retained  
1600  
1650  
1700  
1700  
3500  
3500  
3500  
3500  
750  
IDD_ALL  
-
nA  
(SRAM2)(3)  
3 V  
100  
750  
3.6 V 100  
750  
IDD_ALL  
(wakeup  
from  
Supply current  
during wakeup  
from Standby  
mode  
Wakeup clock is  
MSI = 4 MHz.  
3 V  
1.25  
-
-
-
-
-
-
-
-
-
mA  
See (4)  
.
Standby)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IDD_ALL(Standby  
+ RTC) + IDD_ALL(SRAM2).  
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.  
 
Table 47. Current consumption in Shutdown mode  
Conditions TYP  
VDD 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
Supply current  
in Shutdown  
mode  
(backup  
registers  
1.8 V  
2.4 V  
3 V  
16  
22  
31  
100  
120  
155  
600  
705  
870  
1850  
2150  
2650  
5450  
6250  
7700  
56  
65  
97  
310  
365  
600  
1200  
1350  
1700  
3350  
9550  
3800 11000  
4750 12500  
IDD_ALL  
(Shutdown)  
-
nA  
retained) RTC  
disabled  
3.6 V  
52  
220  
1150  
3350  
9350  
95  
440  
1850  
5050 14500  
1.8 V 210  
2.4 V 315  
300  
445  
820  
2050  
2650  
5750  
6950  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1100  
RTC clocked by LSE  
bypassed at 32768 Hz  
3 V  
625  
1000 2200 44000 10000  
1650 3500 5600 14500  
3.6 V 820  
1.8 V 210  
2.4 V 315  
300  
445  
820  
2050  
2650  
5750  
6950  
RTC clocked by LSE  
bypassed at 32768 Hz  
ENULP = 1  
1100  
Supply current  
in Shutdown  
mode  
(backup  
registers  
3 V  
625  
1000 2200 44000 10000  
1650 3500 5600 14500  
IDD_ALL  
(Shutdown  
with RTC)  
3.6 V 820  
1.8 V 325  
2.4 V 400  
nA  
425  
515  
630  
795  
325  
380  
455  
575  
930  
1100  
1350  
1750  
830  
2200  
2550  
3100  
-
-
-
-
-
-
-
-
-
RTC clocked by LSE  
quartz (2) in low drive  
mode  
retained) RTC  
enabled  
3 V  
475  
3.6 V 595  
1.8 V 230  
2.4 V 270  
2050  
2400  
1950  
-
RTC clocked by LSE  
quartz (2) in low drive  
mode ENULP = 1  
975  
3 V  
320  
1200  
1500  
3.6 V 400  
Supply current  
during wakeup  
from Shutdown  
mode  
Wakeup clock is  
MSI = 4 MHz.  
IDD_ALL  
(wakeup from  
Shutdown)  
3 V  
0.78  
-
-
-
-
-
-
-
-
-
mA  
See (3)  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
 
 
3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 50: Low-power mode wakeup timings.  
Table 48. Current consumption in VBAT mode  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VBAT  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V  
2.4 V  
3 V  
2
3
12  
14  
66  
73  
195  
215  
540  
600  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC disabled  
5
16  
92  
265  
730  
3.6 V  
1.8 V  
2.4 V  
3 V  
6
30  
161  
460  
575  
595  
820  
460  
1250  
1750  
1950  
2550  
2950  
IDD_VBAT  
(VBAT)  
Backup domain  
supply current  
nA  
300  
380  
445  
495  
455  
515  
550  
630  
990  
RTC enabled and  
clocked by LSE  
quartz(2)  
1050  
1200  
1500  
3.6 V  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
 
 
Electrical characteristics  
STM32L412xx  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 69: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 49: Peripheral current consumption), the I/Os used by an application also contribute  
to the current consumption. When an I/O pin switches, it uses the current from the I/O  
supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load  
(internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+ C  
S
INT  
EXT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
108/192  
DS12469 Rev 8  
STM32L412xx  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 49. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 18:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 49. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 49. Peripheral current consumption  
Low-power run  
Peripheral  
Range 1  
Range 2  
Unit  
and sleep  
Bus Matrix(1)  
ADC clock domain  
CRC  
3.0  
2.2  
0.5  
1.3  
1.3  
5.9  
1.6  
1.5  
1.7  
0.6  
6.9  
2.2  
0.5  
0.7  
0.9  
1.5  
21.9  
0.8  
1.7  
0.3  
2.9  
1.8  
0.3  
1.2  
1.2  
4.9  
1.5  
1.4  
1.6  
0.5  
7.0  
NA  
NA  
0.6  
0.7  
1.3  
19.2  
0.6  
1.1  
0.3  
2.8  
1.8  
0.2  
1.1  
1.1  
5.6  
1.3  
1.3  
1.5  
0.6  
5.6  
NA  
NA  
0.7  
0.8  
1.3  
20.5  
0.8  
2.1  
0.5  
DMA1  
DMA2  
FLASH  
GPIOA(2)  
GPIOB(2)  
)
AHB  
GPIOC(2)  
GPIOH(2)  
QSPI  
µA/MHz  
RNG independent clock domain  
RNG clock domain  
SRAM1  
SRAM2  
TSC  
All AHB Peripherals  
AHB to APB1 bridge(3)  
RTCA  
CRS  
APB1  
USB FS independent clock  
domain  
2.8  
2.2  
NA  
NA  
NA  
NA  
USB FS clock domain  
DS12469 Rev 8  
109/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
Table 49. Peripheral current consumption (continued)  
Low-power run  
Peripheral  
Range 1  
Range 2  
Unit  
and sleep  
I2C1 independent clock domain  
I2C1 clock domain  
3.4  
1.0  
3.4  
1.0  
2.8  
0.9  
2.8  
0.9  
2.8  
0.9  
2.3  
0.4  
3.3  
0.9  
3.3  
0.9  
2.4  
0.7  
I2C2 independent clock domain  
I2C2 clock domain  
I2C3 independent clock domain  
I2C3 clock domain  
LPUART1 independent clock  
domain  
1.8  
0.6  
2.8  
0.8  
2.9  
1.6  
0.6  
2.3  
0.4  
2.6  
1.7  
1.7  
2.7  
0.7  
3.8  
LPUART1 clock domain  
LPTIM1 independent clock  
domain  
LPTIM1 clock domain  
LPTIM2 independent clock  
domain  
LPTIM2 clock domain  
0.8  
0.4  
0.4  
1.7  
1.7  
6.2  
1.0  
0.7  
0.2  
0.1  
1.5  
1.4  
5.0  
0.6  
0.8  
0.4  
0.4  
1.5  
1.5  
5.8  
0.9  
APB1  
µA/MHz  
OPAMP  
PWR  
SPI2  
SPI3  
TIM2  
TIM6  
USART2 independent clock  
domain  
4.0  
1.3  
4.2  
3.5  
0.8  
3.4  
3.7  
1.1  
4.1  
USART2 clock domain  
USART3 independent clock  
domain  
USART3 clock domain  
WWDG  
1.5  
0.5  
1.1  
0.5  
1.3  
0.5  
All APB1 on  
41.4  
28.5  
38.9  
110/192  
DS12469 Rev 8  
STM32L412xx  
Electrical characteristics  
Table 49. Peripheral current consumption (continued)  
Low-power run  
and sleep  
Peripheral  
Range 1  
Range 2  
Unit  
AHB to APB2(4)  
FW  
1.0  
0.2  
1.7  
0.6  
8.1  
3.7  
2.6  
0.9  
0.2  
1.6  
0.5  
6.4  
3.0  
2.1  
0.9  
0.2  
1.7  
0.6  
7.6  
3.4  
2.5  
SPI1  
SYSCFG/COMP  
TIM1  
APB2  
µA/MHz  
TIM15  
TIM16  
USART1 independent clock  
domain  
4.1  
4.1  
4.4  
USART1 clock domain  
All APB2 on  
ALL  
1.5  
1.2  
1.6  
19.2  
82.5  
16.1  
63.8  
17.8  
77.2  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two versus this table values when  
the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current  
consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog  
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).  
3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.  
4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.  
The consumption for the peripherals when using SMPS can be found using STM32CubeMX  
PCC tool.  
6.3.6  
Wakeup time from low-power modes and voltage scaling  
transition times  
The wakeup times given in Table 50 are the latency between the event and the execution of  
the first user instruction.  
The device goes in low-power mode after the WFE (Wait For Event) instruction.  
(1)  
Table 50. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Max Unit  
Wakeup time from Sleep  
mode to Run mode  
tWUSLEEP  
-
6
6
6
Nb of  
CPU  
cycles  
Wakeup time from Low-  
tWULPSLEEP power sleep mode to Low- during low-power sleep mode (SLEEP_PD=1 in  
power run mode FLASH_ACR) and with clock MSI = 2 MHz  
Wakeup in Flash with Flash in power-down  
8.3  
DS12469 Rev 8  
111/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
(1)  
Table 50. Low-power mode wakeup timings (continued)  
Symbol  
Parameter  
Conditions  
Typ Max Unit  
Wakeup clock MSI = 48 MHz  
3.8  
5.7  
6.9  
6.2  
6.8  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Wakeup clock HSI16 = 16 MHz 4.1  
Wakeup clock MSI = 24 MHz 4.07  
Wakeup clock HSI16 = 16 MHz 4.1  
Wake up time from Stop 0  
mode to Run mode in  
Flash  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
8.45 11.8  
tWUSTOP0  
µs  
1.5  
2.9  
Wakeup clock HSI16 = 16 MHz 2.4  
Wakeup clock MSI = 24 MHz 2.4  
Wakeup clock HSI16 = 16 MHz 2.4  
2.76  
3.48  
2.76  
Wake up time from Stop 0  
mode to Run mode in  
SRAM1  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
8.16 10.94  
6.34 7.86  
Wakeup clock HSI16 = 16 MHz 6.84 8.23  
Wakeup clock MSI = 24 MHz 6.74 8.1  
Wakeup clock HSI16 = 16 MHz 6.89 8.21  
Wake up time from Stop 1  
mode to Run in Flash  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
10.47 12.1  
4.7  
5.97  
6.92  
6.51  
6.92  
Wakeup clock HSI16 = 16 MHz 5.9  
Wakeup clock MSI = 24 MHz 5.4  
Wakeup clock HSI16 = 16 MHz 5.9  
Wake up time from Stop 1  
mode to Run mode in  
SRAM1  
tWUSTOP1  
µs  
Wakeup clock MSI = 4 MHz  
11.1 12.2  
Wake up time from Stop 1  
mode to Low-power run  
mode in Flash  
16.4 17.73  
Regulator in  
low-power  
mode (LPR=1  
in PWR_CR1)  
Wakeup clock MSI = 2 MHz  
Wake up time from Stop 1  
mode to Low-power run  
mode in SRAM1  
17.3 18.82  
112/192  
DS12469 Rev 8  
STM32L412xx  
Symbol  
Electrical characteristics  
(1)  
Table 50. Low-power mode wakeup timings (continued)  
Parameter  
Conditions  
Typ Max Unit  
Wakeup clock MSI = 48 MHz  
8.02 9.24  
Range 1  
Range 2  
Range 1  
Range 2  
Wakeup clock HSI16 = 16 MHz 7.66 8.95  
Wakeup clock MSI = 24 MHz 8.5 9.54  
Wakeup clock HSI16 = 16 MHz 7.75 8.95  
Wake up time from Stop 2  
mode to Run mode in  
Flash  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
12.06 13.16  
5.45 6.79  
tWUSTOP2  
µs  
Wakeup clock HSI16 = 16 MHz 6.9  
Wakeup clock MSI = 24 MHz 6.3  
Wakeup clock HSI16 = 16 MHz 6.9  
7.98  
7.36  
7.9  
Wake up time from Stop 2  
mode to Run mode in  
SRAM1  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 8 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 8 MHz  
Wakeup clock MSI = 4 MHz  
13.1 13.31  
12.2 18.35  
19.14 25.8  
12.1 18.3  
19.2 25.87  
Wakeup time from Standby  
mode to Run mode  
tWUSTBY  
Range 1  
Range 1  
µs  
µs  
tWUSTBY  
Wakeup time from Standby  
with SRAM2 to Run mode  
SRAM2  
Wakeup time from  
tWUSHDN Shutdown mode to Run  
mode  
Range 1  
Wakeup clock MSI = 4 MHz  
261.5 315.7  
µs  
1. Guaranteed by characterization results.  
(1)  
Table 51. Regulator modes transition times  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Wakeup time from Low-power run mode to  
Run mode(2)  
tWULPRUN  
Code run with MSI 2 MHz  
5
7
µs  
Regulator transition time from Range 2 to  
Range 1 or Range 1 to Range 2(3)  
tVOST  
Code run with MSI 24 MHz  
20  
40  
1. Guaranteed by characterization results.  
2. Time until REGLPF flag is cleared in PWR_SR2.  
3. Time until VOSF flag is cleared in PWR_SR2.  
(1)  
Table 52. Wakeup time using USART/LPUART  
Symbol  
Parameter  
Conditions  
Stop 0 mode  
Typ  
Max  
Unit  
Wakeup time needed to calculate the  
maximum USART/LPUART baudrate  
allowing to wakeup up from stop mode  
when USART/LPUART clock source is  
HSI  
-
1.7  
tWUUSART  
µs  
Stop 1 mode and Stop 2  
mode  
tWULPUART  
-
8.5  
1. Guaranteed by design.  
DS12469 Rev 8  
113/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
6.3.7  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 21: High-speed external clock  
source AC timing diagram.  
(1)  
Table 53. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Voltage scaling  
Range 1  
-
8
48  
fHSE_ext User external clock source frequency  
MHz  
Voltage scaling  
Range 2  
-
8
26  
VHSEH OSC_IN input pin high level voltage  
VHSEL OSC_IN input pin low level voltage  
-
-
0.7 VDDIOx  
VSS  
-
-
VDDIOx  
V
0.3 VDDIOx  
Voltage scaling  
Range 1  
7
-
-
-
-
tw(HSEH)  
OSC_IN high or low time  
tw(HSEL)  
ns  
Voltage scaling  
Range 2  
18  
1. Guaranteed by design.  
Figure 21. High-speed external clock source AC timing diagram  
t
w(HSEH)  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
t
r(HSE)  
f(HSE)  
w(HSEL)  
T
HSE  
MS19214V2  
114/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Electrical characteristics  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,  
the recommended clock input waveform is shown in Figure 22.  
(1)  
Table 54. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSE_ext User external clock source frequency  
VLSEH OSC32_IN input pin high level voltage  
VLSEL OSC32_IN input pin low level voltage  
-
-
-
-
32.768  
1000  
VDDIOx  
kHz  
0.7 VDDIOx  
VSS  
-
-
V
0.3 VDDIOx  
tw(LSEH)  
OSC32_IN high or low time  
tw(LSEL)  
-
250  
-
-
ns  
1. Guaranteed by design.  
Figure 22. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
DS12469 Rev 8  
115/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 55. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 55. HSE oscillator characteristics  
Symbol  
fOSC_IN Oscillator frequency  
RF Feedback resistor  
Parameter  
Conditions(2)  
Min  
Typ  
Max  
Unit  
-
4
-
8
200  
-
48  
-
MHz  
-
kΩ  
During startup(3)  
-
5.5  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.44  
0.45  
0.68  
0.94  
1.77  
-
-
-
-
-
VDD = 3 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 3 V,  
IDD(HSE) HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 20 pF@48 MHz  
Maximum critical crystal  
transconductance  
Gm  
Startup  
-
-
-
1.5  
-
mA/V  
ms  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 23). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
116/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 23. Typical application with an 8 MHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 56. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 56. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(2)  
Min  
Typ  
Max Unit  
LSEDRV[1:0] = 00  
Low drive capability  
-
250  
-
LSEDRV[1:0] = 01  
Medium low drive capability  
-
-
-
-
-
-
315  
-
IDD(LSE) LSE current consumption  
nA  
LSEDRV[1:0] = 10  
Medium high drive capability  
500  
-
LSEDRV[1:0] = 11  
High drive capability  
630  
-
LSEDRV[1:0] = 00  
Low drive capability  
-
-
-
0.5  
LSEDRV[1:0] = 01  
Medium low drive capability  
0.75  
µA/V  
1.7  
Maximum critical crystal  
Gmcritmax  
gm  
LSEDRV[1:0] = 10  
Medium high drive capability  
LSEDRV[1:0] = 11  
High drive capability  
-
-
-
2.7  
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
DS12469 Rev 8  
2
-
s
117/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for  
ST microcontrollers”.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 24. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
118/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
6.3.8  
Internal clock source characteristics  
The parameters given in Table 57 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 21: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 57. HSI16 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI16  
HSI16 Frequency  
VDD=3.0 V, TA=30 °C  
15.88  
-
16.08  
MHz  
Trimming code is not a  
multiple of 64  
0.2  
-4  
0.3  
-6  
0.4  
-8  
TRIM  
HSI16 user trimming step  
%
Trimming code is a  
multiple of 64  
DuCy(HSI16)(2) Duty Cycle  
-
45  
-1  
-2  
-
-
-
55  
1
%
%
TA= 0 to 85 °C  
TA= -40 to 125 °C  
HSI16 oscillator frequency  
drift over temperature  
Temp(HSI16)  
1.5  
%
%
HSI16 oscillator frequency  
drift over VDD  
VDD(HSI16)  
tsu(HSI16)(2)  
tstab(HSI16)(2)  
IDD(HSI16)(2)  
VDD=1.62 V to 3.6 V  
-0.1  
-
0.05  
1.2  
5
HSI16 oscillator start-up  
time  
-
-
-
-
-
-
0.8  
3
μs  
μs  
μA  
HSI16 oscillator  
stabilization time  
HSI16 oscillator power  
consumption  
155  
190  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS12469 Rev 8  
119/192  
164  
 
 
 
Electrical characteristics  
STM32L412xx  
Figure 25. HSI16 frequency versus temperature  
MHz  
16.4  
+2%  
+1.5%  
+1%  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
-1%  
-1.5%  
-2%  
15.6  
-40  
-20  
0
20  
40  
mean  
60  
80  
100  
120 °C  
min  
max  
MSv39299V1  
120/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
Multi-speed internal (MSI) RC oscillator  
Table 58. MSI oscillator characteristics(1)  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
TA= -0 to 85 °C  
98.7  
100  
200  
101.3  
197.4  
202.6  
kHz  
405.2  
394.8  
400  
789.6  
800  
810.4  
1.013  
2.026  
4.052  
0.987  
1
1.974  
2
MSI mode  
3.948  
4
7.896  
8
8.104  
MHz  
16.21  
15.79  
16  
23.69  
24  
24.31  
32.42  
48.62  
-
31.58  
32  
MSI frequency  
after factory  
calibration, done  
at VDD=3 V and  
TA=30 °C  
47.38  
48  
fMSI  
-
98.304  
196.608  
393.216  
786.432  
1.016  
1.999  
3.998  
7.995  
15.991  
23.986  
32.014  
48.005  
-
-
-
kHz  
-
-
-
-
-
-
-
-
PLL mode  
XTAL=  
32.768 kHz  
-
-
-
-
MHz  
-
-
-
-
-
-
-
-
MSI oscillator  
-3.5  
3
TEMP(MSI)(2) frequency drift  
MSI mode  
%
6
TA= -40 to 125 °C  
-8  
-
over temperature  
DS12469 Rev 8  
121/192  
164  
 
Electrical characteristics  
STM32L412xx  
Table 58. MSI oscillator characteristics(1) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD=1.62 V  
to 3.6 V  
-1.2  
-0.5  
-2.5  
-0.8  
-5  
-
Range 0 to 3  
0.5  
VDD=2.4 V  
to 3.6 V  
-
-
-
-
-
VDD=1.62 V  
to 3.6 V  
MSI oscillator  
frequency drift  
over VDD  
VDD(MSI)(2)  
MSI mode Range 4 to 7  
0.7  
1
%
VDD=2.4 V  
(reference is 3 V)  
to 3.6 V  
VDD=1.62 V  
to 3.6 V  
Range 8 to 11  
VDD=2.4 V  
to 3.6 V  
-1.6  
Frequency  
TA= -40 to 85 °C  
TA= -40 to 125 °C  
-
-
1
2
2
4
FSAMPLING  
variation in  
MSI mode  
%
(MSI)(2)(6)  
sampling mode(3)  
for next  
transition  
-
-
-
-
-
-
-
-
-
-
-
-
3.458  
P_USB  
Period jitter for  
USB clock(4)  
PLL mode  
Range 11  
ns  
Jitter(MSI)(6)  
for paired  
transition  
3.916  
for next  
transition  
-
2
1
-
MT_USB  
Medium term jitter PLL mode  
ns  
Jitter(MSI)(6)  
for USB clock(5)  
Range 11  
for paired  
transition  
-
RMS cycle-to-  
cycle jitter  
CC jitter(MSI)(6)  
PLL mode Range 11  
60  
ps  
ps  
P jitter(MSI)(6) RMS Period jitter PLL mode Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
10  
5
-
20  
10  
8
Range 0  
Range 1  
Range 2  
4
MSI oscillator  
start-up time  
t
SU(MSI)(6)  
us  
Range 3  
3
7
Range 4 to 7  
Range 8 to 11  
3
6
2.5  
6
10 % of final  
frequency  
-
-
-
-
-
-
0.25  
0.5  
-
0.5  
MSI oscillator  
stabilization time Range 11  
PLL mode 5 % of final  
tSTAB(MSI)(6)  
1.25 ms  
2.5  
frequency  
1 % of final  
frequency  
122/192  
DS12469 Rev 8  
STM32L412xx  
Symbol  
Electrical characteristics  
Table 58. MSI oscillator characteristics(1) (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.6  
0.8  
1.2  
1.9  
4.7  
6.5  
11  
1
1.2  
1.7  
2.5  
6
MSI oscillator  
power  
consumption  
9
MSI and  
PLL mode  
IDD(MSI)(6)  
µA  
15  
18.5  
62  
25  
80  
85  
110  
130  
190  
110  
155  
1. Guaranteed by characterization results.  
2. This is a deviation for an individual part once the initial frequency has been measured.  
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.  
4. Average period of MSI @48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter  
of MSI @48 MHz clock.  
5. Only accumulated jitter of MSI @48 MHz is extracted over 28 cycles.  
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI @48 MHz, for 1000 captures over 28  
cycles.  
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI @48 MHz, for 1000 captures over  
56 cycles.  
6. Guaranteed by design.  
DS12469 Rev 8  
123/192  
164  
 
Electrical characteristics  
STM32L412xx  
Figure 26. Typical current consumption versus MSI frequency  
High-speed internal 48 MHz (HSI48) RC oscillator  
Table 59. HSI48 oscillator characteristics  
(1)  
Symbol  
Parameter  
HSI48 Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
VDD=3.0V, TA=30°C  
-
-
-
48  
-
MHz  
%
HSI48 user trimming step  
0.11(2)  
0.18(2)  
USER TRIM  
COVERAGE  
HSI48 user trimming coverage  
±32 steps  
-
±3(3)  
45(2)  
-
±3.5(3)  
-
%
%
DuCy(HSI48) Duty Cycle  
-
-
55(2)  
±3(3)  
VDD = 3.0 V to 3.6 V,  
TA = –15 to 85 °C  
Accuracy of the HSI48 oscillator  
ACCHSI48_REL over temperature (factory  
calibrated)  
%
VDD = 1.65 V to 3.6 V,  
TA = –40 to 125 °C  
-
-
±4.5(3)  
VDD = 3 V to 3.6 V  
-
-
-
0.025(3)  
0.05(3)  
2.5(2)  
0.05(3)  
0.1(3)  
6(2)  
HSI48 oscillator frequency drift  
DVDD(HSI48)  
with VDD  
%
VDD = 1.65 V to 3.6 V  
-
tsu(HSI48)  
IDD(HSI48)  
HSI48 oscillator start-up time  
μs  
HSI48 oscillator power  
consumption  
-
-
340(2)  
380(2)  
μA  
124/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
(1)  
Table 59. HSI48 oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Next transition jitter  
NT jitter  
-
-
+/-0.15(2)  
-
ns  
Accumulated jitter on 28 cycles(4)  
Paired transition jitter  
PT jitter  
-
-
+/-0.25(2)  
-
ns  
Accumulated jitter on 56 cycles(4)  
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Jitter measurement are performed without clock source activated in parallel.  
Figure 27. HSI48 frequency versus temperature  
%
6
4
2
0
-2  
-4  
-6  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
°C  
Avg  
min  
max  
MSv40989V1  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 60. LSI oscillator characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
VDD = 3.0 V, TA = 30 °C  
31.04  
29.5  
-
-
32.96  
kHz  
34  
fLSI  
LSI Frequency  
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C  
LSI oscillator start-  
up time  
tSU(LSI)(2)  
-
-
-
-
80  
130  
180  
180  
μs  
μs  
nA  
LSI oscillator  
stabilization time  
tSTAB(LSI)(2)  
5% of final frequency  
-
125  
110  
LSI oscillator power  
consumption  
I
DD(LSI)(2)  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS12469 Rev 8  
125/192  
164  
 
 
 
 
Electrical characteristics  
STM32L412xx  
6.3.9  
PLL characteristics  
The parameters given in Table 61 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 21: General operating conditions.  
DD  
(1)  
Table 61. PLL characteristics  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLL input clock(2)  
-
-
4
-
-
16  
55  
80  
26  
80  
26  
80  
26  
344  
128  
40  
-
MHz  
%
PLL input clock duty cycle  
45  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
-
3.0968  
-
fPLL_P_OUT PLL multiplier output clock P  
fPLL_Q_OUT PLL multiplier output clock Q  
fPLL_R_OUT PLL multiplier output clock R  
fVCO_OUT PLL VCO output  
MHz  
MHz  
MHz  
3.0968  
-
12  
12  
12  
12  
96  
96  
-
-
-
-
-
-
MHz  
μs  
-
tLOCK  
Jitter  
PLL lock time  
15  
40  
30  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
System clock 80 MHz  
±ps  
-
-
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
200 260  
300 380  
520 650  
PLL power consumption on  
VDD  
I
DD(PLL)  
-
μA  
(1)  
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between the 2 PLLs.  
126/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Electrical characteristics  
6.3.10  
Flash memory characteristics  
(1)  
Table 62. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
tprog  
64-bit programming time  
-
81.69  
2.61  
90.76  
2.90  
2.12  
µs  
normal programming  
fast programming  
normal programming  
fast programming  
-
one row (32 double  
word) programming time  
tprog_row  
1.91  
20.91  
15.29  
22.02  
5.35  
23.24 ms  
16.98  
one page (2 Kbyte)  
programming time  
tprog_page  
tERASE  
Page (2 KB) erase time  
24.47  
normal programming  
fast programming  
5.95  
s
4.35  
one bank (512 Kbyte)  
programming time  
tprog_bank  
3.91  
Mass erase time  
(one or two banks)  
tME  
-
22.13  
24.59 ms  
-
Write mode  
Erase mode  
Write mode  
Erase mode  
3.4  
Average consumption  
from VDD  
3.4  
-
IDD  
mA  
-
7 (for 2 μs)  
7 (for 41 μs)  
Maximum current (peak)  
-
1. Guaranteed by design.  
Table 63. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = –40 to +105 °C  
10  
30  
15  
7
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
tRET  
Data retention  
Years  
30  
15  
10  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
DS12469 Rev 8  
127/192  
164  
 
 
 
Electrical characteristics  
STM32L412xx  
6.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 64. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 64. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 80 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
5A  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 80 MHz,  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
128/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 65. EMI characteristics  
Max vs.  
[fHSE/fHCLK  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
8 MHz/ 80 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
3
3
VDD = 3.6 V, TA = 25 °C,  
LQFP64 package  
compliant with IEC  
61967-2  
dBµV  
-
SEMI  
Peak level  
4
8
2.5  
6.3.12  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 66. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Package Class  
Unit  
value(1)  
TA = +25 °C, conforming  
to ANSI/ESDA/JEDEC  
JS-001  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
All  
2
2000  
V
TA = +25 °C,  
conforming to  
ANSI/ESDA/JEDEC-002  
BGA64  
C2a  
C1  
500  
250  
Electrostatic discharge voltage  
(charge device model)  
VESD  
All others  
1. Guaranteed by characterization results.  
DS12469 Rev 8  
129/192  
164  
 
 
 
 
Electrical characteristics  
Static latch-up  
STM32L412xx  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 67. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II  
6.3.13  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 68.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
(1)  
Table 68. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on all pins except PA4, PA5  
Injected current on PA4, PA5 pins  
-5  
-5  
N/A(2)  
0
IINJ  
mA  
1. Guaranteed by characterization results.  
2. Injection is not possible.  
130/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Electrical characteristics  
6.3.14  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 69 are derived from tests  
performed under the conditions summarized in Table 21: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 69. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O input low level  
voltage  
(2)  
1.62 V<VDDIOx<3.6 V  
-
-
0.3xVDDIOx  
I/O input low level  
voltage  
(1)  
VIL  
1.62 V<VDDIOx<3.6 V  
1.08 V<VDDIOx<1.62 V  
1.62 V<VDDIOx<3.6 V  
1.62 V<VDDIOx<3.6 V  
-
-
-
-
-
-
0.39xVDDIOx-0.06 (3)  
V
I/O input low level  
voltage  
-
0.43xVDDIOx-0.1 (3)  
I/O input high level  
voltage  
(2)  
0.7xVDDIOx  
-
-
-
I/O input high level  
voltage  
(1)  
VIH  
0.49xVDDIOX+0.26 (3)  
V
I/O input high level  
voltage  
1.08 V<VDDIOx<1.62 V 0.61xVDDIOX+0.05 (3)  
TT_xx, FT_xxx and  
NRST I/O input  
hysteresis  
(3)  
Vhys  
1.62 V<VDDIOx<3.6 V  
-
200  
-
mV  
VIN  
Max(VDDXXX  
-
-
-
-
-
-
-
-
-
-
±100  
650  
(6)(7)  
)
FT_xx input leakage Max(VDDXXX) VIN  
current(3)(5)  
Max(VDDXXX)+1 V(6)(7)  
Max(VDDXXX)+1 V <  
200  
VIN 5.5 V(6)(7)  
VIN  
Max(VDDXXX  
±150  
2500(3)  
(6)(7)  
(4)  
)
Ilkg  
nA  
Max(VDDXXX) VIN  
FT_u and PC3 I/O  
Max(VDDXXX)+1 V(6)(7)  
Max(VDDXXX)+1 V <  
-
-
-
-
-
-
250  
±150  
VIN 5.5 V(6)(7)  
(6)  
VIN Max(VDDXXX)  
TT_xx input leakage  
current  
Max(VDDXXX) VIN  
<
2000(3)  
3.6 V(6)  
Weak pull-up  
RPU  
VIN = VSS  
25  
40  
55  
kΩ  
equivalent resistor (8)  
Weak pull-down  
RPD  
CIO  
VIN = VDDIOx  
25  
-
40  
5
55  
-
kΩ  
equivalent resistor(8)  
I/O pin capacitance  
-
pF  
DS12469 Rev 8  
131/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
1. Refer to Figure 28: I/O input characteristics.  
2. Tested in production.  
3. Guaranteed by design.  
4. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula:  
ITotal_Ileak_max = 10 µA + [number of IOs where VIN is applied on the pad] Ilkg(Max).  
5. All FT_xx GPIOs except FT_u and PC3 I/O.  
6. Max(VDDXXX) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.  
7. To sustain a voltage higher than Min(VDD, VDDA, VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be  
disabled.  
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
PMOS/NMOS contribution to the series resistance is minimal (~10% order).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 28 for standard I/Os, and in Figure 28 for  
5 V tolerant I/Os.  
Figure 28. I/O input characteristics  
TTL requirement Vih min = 2V  
TTL requirement Vil max = 0.8V  
MSv37613V1  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ± 20 mA (with a relaxed V /V ).  
OL OH  
132/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum  
DDIOx,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 18: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 18: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT  
unless otherwise specified).  
(1)  
Table 70. Output voltage characteristics  
Symbol  
VOL  
Parameter  
Conditions  
Min  
Max  
0.4  
-
Unit  
Output low level voltage for an I/O pin CMOS port(2)  
|IIO| = 8 mA  
Output high level voltage for an I/O pin  
-
VOH  
VDDIOx-0.4  
VDDIOx 2.7 V  
(3)  
VOL  
Output low level voltage for an I/O pin TTL port(2)  
|IIO| = 8 mA  
-
0.4  
-
(3)  
VOH  
Output high level voltage for an I/O pin  
2.4  
VDDIOx 2.7 V  
(3)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
|IIO| = 20 mA  
VDDIOx 2.7 V  
(3)  
VOH  
VDDIOx-1.3  
-
(3)  
VOL  
-
0.45  
|IIO| = 4 mA  
VDDIOx 1.62 V  
V
(3)  
VOH  
VDDIOx-0.45  
-
-
(3)  
VOL  
0.35VDDIOx  
|IIO| = 2 mA  
1.62 V VDDIOx 1.08 V  
(3)  
VOH  
0.65VDDIOx  
-
|IIO| = 20 mA  
-
-
-
0.4  
0.4  
0.4  
VDDIOx 2.7 V  
Output low level voltage for an FT I/O  
pin in FM+ mode (FT I/O with "f"  
option)  
VOLFM+  
|IIO| = 10 mA  
VDDIOx 1.62 V  
(3)  
|IIO| = 2 mA  
1.62 V VDDIOx 1.08 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 29 and  
Table 71, respectively.  
DS12469 Rev 8  
133/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 21: General  
operating conditions.  
(1)(2)  
Table 71. I/O AC characteristics  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
1
0.1  
10  
1.5  
0.1  
25  
52  
140  
17  
37  
110  
25  
10  
1
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
MHz  
00  
ns  
MHz  
ns  
50  
15  
1
01  
9
16  
40  
4.5  
9
21  
134/192  
DS12469 Rev 8  
 
STM32L412xx  
Speed Symbol  
Electrical characteristics  
(1)(2)  
Table 71. I/O AC characteristics  
(continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=30 pF, 2.7 VVDDIOx3.6 V  
C=30 pF, 1.62 VVDDIOx2.7 V  
C=30 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=30 pF, 2.7 VVDDIOx3.6 V  
C=30 pF, 1.62 VVDDIOx2.7 V  
C=30 pF, 1.08 VVDDIOx1.62 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
25  
5
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
MHz  
100(3)  
37.5  
5
10  
5.8  
11  
28  
ns  
2.5  
5
12  
120(3)  
50  
10  
MHz  
180(3)  
11  
75  
10  
3.3  
6
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
ns  
16  
1
MHz  
ns  
Fm+  
C=50 pF, 1.6 VVDDIOx3.6 V  
Tf  
Output fall time(4)  
5
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register.  
Refer to the RM0394 reference manual for a description of GPIO Port configuration register.  
2. Guaranteed by design.  
3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.  
4. The fall time is defined between 70% and 30% of the output waveform accordingly to I2C specification.  
DS12469 Rev 8  
135/192  
164  
 
Electrical characteristics  
STM32L412xx  
(1)  
Figure 29. I/O AC characteristics definition  
10%  
90%  
50%  
50%  
10%  
90%  
t
t
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t (≤ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by the specified capacitance.  
MS32132V2  
1. Refer to Table 71: I/O AC characteristics.  
6.3.15  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 21: General operating conditions.  
(1)  
Table 72. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input low level  
voltage  
VIL(NRST)  
VIH(NRST)  
Vhys(NRST)  
RPU  
-
-
-
0.3VDDIOx  
V
NRST input high level  
voltage  
-
0.7VDDIOx  
-
200  
40  
-
-
-
NRST Schmitt trigger  
voltage hysteresis  
-
-
25  
-
mV  
kΩ  
ns  
Weak pull-up  
VIN = VSS  
55  
70  
-
equivalent resistor(2)  
NRST input filtered  
pulse  
VF(NRST)  
VNF(NRST)  
-
NRST input not filtered  
pulse  
1.71 V VDD 3.6 V  
350  
-
ns  
1. Guaranteed by design.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10% order).  
136/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Electrical characteristics  
Figure 30. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF  
MS19878V3  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 72: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
6.3.16  
Extended interrupt and event controller input (EXTI) characteristics  
The pulse on the interrupt input must have a minimal length in order to guarantee that it is  
detected by the event controller.  
(1)  
Table 73. EXTI Input Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pulse length to event  
controller  
PLEC  
-
20  
-
-
ns  
1. Guaranteed by design.  
6.3.17  
Analog switches booster  
(1)  
Table 74. Analog switches booster characteristics  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
Max  
Unit  
VDD  
1.62  
-
-
-
3.6  
V
tSU(BOOST)  
Booster startup time  
240  
µs  
Booster consumption for  
-
-
-
-
-
-
250  
500  
900  
1.62 V VDD 2.0 V  
Booster consumption for  
IDD(BOOST)  
µA  
2.0 V VDD 2.7 V  
Booster consumption for  
2.7 V VDD 3.6 V  
1. Guaranteed by design.  
DS12469 Rev 8  
137/192  
164  
 
 
 
 
 
Electrical characteristics  
STM32L412xx  
6.3.18  
Analog-to-Digital converter characteristics  
Unless otherwise specified, the parameters given in Table 75 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 21: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1) (2)  
Table 75. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
Unit  
VDDA  
Analog supply voltage  
-
1.62  
2
-
-
V
V
V
V
DDA 2 V  
VDDA  
VREF+  
Positive reference voltage  
VDDA < 2 V  
VDDA  
Negative reference  
voltage  
VREF-  
-
VSSA  
V
Range 1  
Range 2  
0.14  
-
-
-
-
-
-
-
-
-
-
80  
fADC  
ADC clock frequency  
MHz  
0.14  
26  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
-
-
-
-
-
-
-
-
5.33  
6.15  
7.27  
8.88  
4.21  
4.71  
5.33  
6.15  
Sampling rate for FAST  
channels  
fs  
Msps  
Sampling rate for SLOW  
channels  
fADC = 80 MHz  
Resolution = 12 bits  
-
-
-
5.33  
MHz  
fTRIG  
External trigger frequency  
Input common mode  
Resolution = 12 bits  
Differential mode  
-
15  
1/fADC  
(VREF+  
REF-)/2  
- 0.18  
+
(VREF++  
REF-)/2  
(VREF+  
VREF-)/2  
+
V
V
V
V
CMIN  
+ 0.18  
VREF+  
50  
Conversion voltage  
range(2)  
(3)  
VAIN  
-
-
-
0
-
-
-
V
RAIN  
External input impedance  
kΩ  
pF  
Internal sample and hold  
capacitor  
CADC  
-
5
-
conversion  
cycle  
tSTAB  
Power-up time  
Calibration time  
-
1
f
ADC = 80 MHz  
-
1.45  
116  
µs  
tCAL  
1/fADC  
138/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
(1) (2)  
Table 75. ADC characteristics  
Parameter Conditions  
CKMODE = 00  
(continued)  
Min  
Symbol  
Typ  
Max  
Unit  
1.5  
2
-
2.5  
2.0  
Trigger conversion  
latency Regular and  
injected channels without  
conversion abort  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
-
tLATR  
1/fADC  
-
-
2.25  
-
-
2.125  
3.5  
2.5  
3
-
Trigger conversion  
latency Injected channels  
aborting a regular  
conversion  
-
3.0  
tLATRINJ  
1/fADC  
-
-
-
3.25  
-
3.125  
8.00625  
640.5  
f
ADC = 80 MHz  
-
0.03125  
2.5  
-
µs  
ts  
Sampling time  
-
1/fADC  
ADC voltage regulator  
start-up time  
-
-
-
-
20  
tADCVREG_STUP  
µs  
f
ADC = 80 MHz  
Resolution = 12 bits  
0.1875  
8.1625  
µs  
Total conversion time  
(including sampling time)  
tCONV  
ts + 12.5 cycles for  
successive approximation  
= 15 to 653  
Resolution = 12 bits  
1/fADC  
fs = 5 Msps  
fs = 1 Msps  
fs = 10 ksps  
fs = 5 Msps  
fs = 1 Msps  
fs = 10 ksps  
fs = 5 Msps  
fs = 1 Msps  
fs = 10 ksps  
-
-
-
-
-
-
-
-
-
730  
160  
16  
830  
220  
50  
ADC consumption from  
the VDDA supply  
IDDA(ADC)  
µA  
130  
30  
160  
40  
ADC consumption from  
IDDV_S(ADC) the VREF+ single ended  
mode  
µA  
µA  
0.6  
260  
60  
2
310  
70  
ADC consumption from  
IDDV_D(ADC) the VREF+ differential  
mode  
1.3  
3
1. Guaranteed by design  
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA < 2.4V). It is disable when VDDA 2.4 V.  
V
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 4: Pinouts and pin description for further details.  
The maximum value of R  
can be found in Table 76: Maximum ADC RAIN.  
AIN  
DS12469 Rev 8  
139/192  
164  
Electrical characteristics  
Resolution  
STM32L412xx  
(1)(2)  
Table 76. Maximum ADC R  
AIN  
RAIN max ()  
Sampling cycle  
Sampling time [ns]  
@80 MHz  
@80 MHz  
Fast channels(3)  
Slow channels(4)  
2.5  
6.5  
31.25  
81.25  
100  
330  
N/A  
100  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
680  
470  
1500  
2200  
4700  
12000  
39000  
120  
1200  
1800  
3900  
10000  
33000  
N/A  
12 bits  
10 bits  
8 bits  
6.5  
81.25  
390  
180  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
820  
560  
1500  
2200  
5600  
12000  
47000  
180  
1200  
1800  
4700  
10000  
39000  
N/A  
6.5  
81.25  
470  
270  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
1000  
1800  
2700  
6800  
15000  
50000  
220  
680  
1500  
2200  
5600  
12000  
50000  
N/A  
6.5  
81.25  
560  
330  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
1200  
2700  
3900  
8200  
18000  
50000  
1000  
2200  
3300  
6800  
15000  
50000  
6 bits  
1. Guaranteed by design.  
140/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4V). It is disable when VDDA 2.4 V.  
3. Fast channels are: PC0, PC1, PC2, PC3, PA0, PA1.  
4. Slow channels are: all ADC inputs except the fast channels.  
DS12469 Rev 8  
141/192  
164  
Electrical characteristics  
STM32L412xx  
(1)(2)(3)  
Table 77. ADC accuracy - limited test conditions 1  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
5
5
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
3.5 4.5  
3.5 4.5  
Differential  
1
1
2.5  
2.5  
Single  
ended  
Offset  
error  
1.5 2.5  
1.5 2.5  
2.5 4.5  
2.5 4.5  
2.5 3.5  
2.5 3.5  
Differential  
Single  
ended  
Gain error  
LSB  
Differential  
1
1
1
1
1.5  
1.5  
1.2  
1.2  
Single  
ended  
Differential  
linearity  
error  
ADC clock frequency ≤  
80 MHz,  
Differential  
Sampling rate 5.33 Msps,  
VDDA = VREF+ = 3 V,  
TA = 25 °C  
1.5 2.5  
1.5 2.5  
Single  
ended  
Integral  
linearity  
error  
1
1
2
2
-
-
-
-
-
-
-
-
-
-
-
-
Differential  
Fast channel (max speed) 10.4 10.5  
Slow channel (max speed) 10.4 10.5  
Fast channel (max speed) 10.8 10.9  
Slow channel (max speed) 10.8 10.9  
Fast channel (max speed) 64.4 65  
Slow channel (max speed) 64.4 65  
Fast channel (max speed) 66.8 67.4  
Slow channel (max speed) 66.8 67.4  
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
dB  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 67  
Slow channel (max speed) 67  
66  
66  
68  
68  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Differential  
142/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
(1)(2)(3)  
Table 77. ADC accuracy - limited test conditions 1  
(continued)  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-74 -73  
-74 -73  
-79 -76  
-79 -76  
ADC clock frequency ≤  
80 MHz,  
Single  
ended  
Total  
THD harmonic  
distortion  
Sampling rate 5.33 Msps,  
VDDA = VREF+ = 3 V,  
TA = 25 °C  
dB  
Differential  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS12469 Rev 8  
143/192  
164  
Electrical characteristics  
STM32L412xx  
(1)(2)(3)  
Table 78. ADC accuracy - limited test conditions 2  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
6.5  
6.5  
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
3.5 5.5  
3.5 5.5  
Differential  
1
4.5  
5
Single  
ended  
1
Offset  
error  
1.5  
1.5  
2.5  
2.5  
3
Differential  
3
6
Single  
ended  
6
Gain error  
LSB  
2.5 3.5  
2.5 3.5  
Differential  
1
1
1
1
1.5  
1.5  
1.2  
1.2  
Single  
ended  
Differential  
linearity  
error  
ADC clock frequency ≤  
80 MHz,  
Differential  
Sampling rate 5.33 Msps,  
2 V VDDA  
1.5 3.5  
1.5 3.5  
Single  
ended  
Integral  
linearity  
error  
1
1
3
Differential  
2.5  
Fast channel (max speed) 10 10.5  
Slow channel (max speed) 10 10.5  
Fast channel (max speed) 10.7 10.9  
Slow channel (max speed) 10.7 10.9  
-
-
-
-
-
-
-
-
-
-
-
-
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Fast channel (max speed) 62  
Slow channel (max speed) 62  
65  
65  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Fast channel (max speed) 66 67.4  
Slow channel (max speed) 66 67.4  
Differential  
dB  
Fast channel (max speed) 64  
Slow channel (max speed) 64  
66  
66  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Fast channel (max speed) 66.5 68  
Slow channel (max speed) 66.5 68  
Differential  
144/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
(1)(2)(3)  
Table 78. ADC accuracy - limited test conditions 2  
(continued)  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-74 -65  
-74 -67  
-79 -70  
-79 -71  
Single  
ended  
ADC clock frequency ≤  
80 MHz,  
Total  
THD harmonic  
distortion  
dB  
Sampling rate 5.33 Msps,  
2 V VDDA  
Differential  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS12469 Rev 8  
145/192  
164  
Electrical characteristics  
STM32L412xx  
(1)(2)(3)  
Table 79. ADC accuracy - limited test conditions 3  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.5 7.5  
4.5 6.5  
4.5 7.5  
4.5 5.5  
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
Differential  
2
5
5
Single  
ended  
2.5  
2
Offset  
error  
3.5  
3
Differential  
2.5  
4.5  
3.5  
3.5  
3.5  
7
Single  
ended  
6
Gain error  
LSB  
4
Differential  
5
1.2 1.5  
1.2 1.5  
Single  
ended  
Differential  
linearity  
error  
ADC clock frequency ≤  
80 MHz,  
1
1
3
1.2  
1.2  
3.5  
Differential  
Sampling rate 5.33 Msps,  
1.65 V VDDA = VREF+  
3.6 V,  
Single  
ended  
Integral  
linearity  
error  
2.5 3.5  
Voltage scaling Range 1  
2
2
2.5  
Differential  
2.5  
Fast channel (max speed) 10 10.4  
Slow channel (max speed) 10 10.4  
Fast channel (max speed) 10.6 10.7  
Slow channel (max speed) 10.6 10.7  
-
-
-
-
-
-
-
-
-
-
-
-
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Fast channel (max speed) 62  
Slow channel (max speed) 62  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 63  
Slow channel (max speed) 63  
Fast channel (max speed) 66  
Slow channel (max speed) 66  
64  
64  
66  
66  
65  
65  
67  
67  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
dB  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Differential  
146/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
(1)(2)(3)  
Table 79. ADC accuracy - limited test conditions 3  
(continued)  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
ADC clock frequency ≤  
80 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-69 -67  
-71 -67  
-72 -71  
Single  
ended  
Total  
THD harmonic  
distortion  
Sampling rate 5.33 Msps,  
dB  
1.65 V VDDA = VREF+  
Differential  
3.6 V,  
Slow channel (max speed)  
-
-72 -71  
Voltage scaling Range 1  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS12469 Rev 8  
147/192  
164  
Electrical characteristics  
STM32L412xx  
(1)(2)(3)  
Table 80. ADC accuracy - limited test conditions 4  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
4
4
5.4  
5
Single  
ended  
Total  
unadjusted  
error  
ET  
EO  
EG  
ED  
EL  
5
Differential  
3.5 4.5  
2
2
4
4
Single  
ended  
Offset  
error  
2
3.5  
3.5  
4.5  
4.5  
4
Differential  
2
4
Single  
ended  
4
Gain error  
LSB  
3
Differential  
3
4
1
1.5  
1.5  
1.2  
1.2  
3
Single  
ended  
Differential  
linearity  
error  
1
1
ADC clock frequency ≤  
26 MHz,  
Differential  
1
1.65 V VDDA = VREF+ ≤  
3.6 V,  
2.5  
2.5  
2
Single  
ended  
Integral  
linearity  
error  
Voltage scaling Range 2  
3
2.5  
2.5  
-
Differential  
2
Fast channel (max speed) 10.2 10.5  
Slow channel (max speed) 10.2 10.5  
Fast channel (max speed) 10.6 10.7  
Slow channel (max speed) 10.6 10.7  
Single  
ended  
Effective  
ENOB number of  
bits  
-
bits  
-
Differential  
-
Fast channel (max speed) 63  
Slow channel (max speed) 63  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 64  
Slow channel (max speed) 64  
Fast channel (max speed) 66  
Slow channel (max speed) 66  
65  
65  
66  
66  
65  
65  
67  
67  
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
SINAD  
-
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
SNR  
noise ratio  
-
Differential  
-
148/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
(1)(2)(3)  
Table 80. ADC accuracy - limited test conditions 4  
(continued)  
Sym-  
bol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-71 -69  
-71 -69  
-73 -72  
-73 -72  
ADC clock frequency ≤  
26 MHz,  
Single  
ended  
Total  
THD harmonic 1.65 V VDDA = VREF+ ≤  
dB  
distortion  
3.6 V,  
Differential  
Voltage scaling Range 2  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
Figure 31. ADC accuracy characteristics  
VSSA  
4095  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
4094  
4093  
ET = total unajusted error: maximum deviation  
between the actual and ideal transfer curves.  
EO = offset error: maximum deviation  
between the first actual transition and  
the first ideal one.  
EG = gain error: deviation between the last  
ideal transition and the last actual one.  
ED = differential linearity error: maximum  
deviation between actual steps and the ideal ones.  
EL = integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line.  
(2)  
ET  
(3)  
7
(1)  
6
5
4
3
2
1
EO  
EL  
ED  
1 LSB IDEAL  
0
4096  
VDDA  
4094 4095  
7
4093  
2
3
4
5
6
1
MS19880V2  
DS12469 Rev 8  
149/192  
164  
 
Electrical characteristics  
STM32L412xx  
Figure 32. Typical connection diagram using the ADC  
VDDA  
VT  
Sample and hold ADC converter  
(1)  
RAIN  
RADC  
AINx  
12-bit  
converter  
(2)  
(3)  
Cparasitic  
CADC  
VT  
Ilkg  
VAIN  
MS33900V5  
1. Refer to Table 75: ADC characteristics for the values of RAIN and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (refer to Table 69: I/O static characteristics for the value of the pad capacitance). A high  
C
parasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.  
3. Refer to Table 69: I/O static characteristics for the values of Ilkg.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 18: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
150/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
6.3.19  
Comparator characteristics  
(1)  
Table 81. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
-
-
1.62  
-
3.6  
Comparator input voltage  
range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
VREFINT  
VSC  
-
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
200  
0.8  
100  
-
±10  
300  
1
mV  
nA  
µA  
µs  
Scaler static consumption  
from VDDA  
I
DDA(SCALER)  
tSTART_SCALER Scaler startup time  
200  
5
VDDA 2.7 V  
High-speed  
mode  
V
V
V
DDA < 2.7 V  
DDA 2.7 V  
DDA < 2.7 V  
-
7
Comparator startup time to  
reach propagation delay  
specification  
tSTART  
-
15  
25  
40  
80  
100  
0.9  
7
µs  
Medium mode  
-
Ultra-low-power mode  
-
VDDA 2.7 V  
VDDA < 2.7 V  
55  
65  
0.55  
4
High-speed  
mode  
ns  
Propagation delay with  
100 mV overdrive  
(3)  
tD  
Medium mode  
µs  
Ultra-low-power mode  
Full common  
mode range  
Voffset  
Comparator offset error  
Comparator hysteresis  
-
-
±5  
±20  
mV  
No hysteresis  
-
-
-
-
0
8
-
-
-
-
Low hysteresis  
Medium hysteresis  
High hysteresis  
Vhys  
mV  
15  
27  
DS12469 Rev 8  
151/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
(1)  
Table 81. COMP characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Static  
-
400  
600  
Ultra-low-  
power mode  
With 50 kHz  
±100 mV overdrive  
square signal  
nA  
-
-
-
-
-
1200  
5
-
Static  
7
Comparator consumption  
With 50 kHz  
±100 mV overdrive  
square signal  
IDDA(COMP)  
Medium mode  
from VDDA  
6
-
100  
-
µA  
nA  
Static  
70  
75  
High-speed  
mode  
With 50 kHz  
±100 mV overdrive  
square signal  
Comparator input bias  
current  
(4)  
-
-
-
-
I
bias  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 24: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
4. Mostly I/O leakage when used in analog mode. Refer to Ilkg parameter in Table 69: I/O static characteristics.  
6.3.20  
Operational amplifiers characteristics  
(1)  
Table 82. OPAMP characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage(2)  
VDDA  
CMIR  
-
1.8  
-
3.6  
V
Common mode  
input range  
-
0
-
VDDA  
V
25 °C, No Load on output.  
All voltage/Temp.  
Normal mode  
-
-
-
-
-
-
±1.5  
Input offset  
voltage  
VIOFFSET  
mV  
±3  
-
±5  
±10  
Input offset  
voltage drift  
VIOFFSET  
μV/°C  
Low-power mode  
-
Offset trim step  
TRIMOFFSETP at low common  
TRIMLPOFFSETP input voltage  
-
-
-
-
0.8  
1
1.1  
(0.1 VDDA  
)
mV  
Offset trim step  
TRIMOFFSETN at high common  
TRIMLPOFFSETN input voltage  
1.35  
(0.9 VDDA  
)
152/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Electrical characteristics  
(1)  
Table 82. OPAMP characteristics (continued)  
Parameter Conditions Min  
Symbol  
Typ  
Max  
Unit  
Normal mode  
-
-
-
-
-
-
-
-
500  
100  
450  
50  
ILOAD  
Drive current  
VDDA 2 V  
VDDA 2 V  
Low-power mode  
Normal mode  
µA  
Drive current in  
PGA mode  
ILOAD_PGA  
Low-power mode  
Resistive load  
(connected to  
VSSA or to  
VDDA)  
Normal mode  
4
-
-
-
-
-
-
-
-
RLOAD  
V
DDA < 2 V  
Low-power mode  
Normal mode  
20  
4.5  
40  
kΩ  
Resistive load  
in PGA mode  
(connected to  
VSSA or to  
RLOAD_PGA  
VDDA < 2 V  
Low-power mode  
V
)
DDA  
CLOAD  
CMRR  
Capacitive load  
-
-
-
-
-
50  
-
pF  
dB  
Normal mode  
-85  
-90  
Common mode  
rejection ratio  
Low-power mode  
-
CLOAD 50 pf,  
RLOAD 4 kDC  
Normal mode  
70  
72  
85  
90  
-
-
Power supply  
rejection ratio  
PSRR  
GBW  
dB  
CLOAD 50 pf,  
RLOAD 20 kDC  
Low-power mode  
Normal mode  
550  
100  
250  
40  
-
1600 2200  
VDDA 2.4 V  
(OPA_RANGE = 1)  
Low-power mode  
Normal mode  
420  
700  
180  
700  
180  
300  
80  
600  
Gain Bandwidth  
Product  
kHz  
950  
VDDA < 2.4 V  
(OPA_RANGE = 0)  
Low-power mode  
Normal mode  
280  
-
-
-
-
-
-
VDDA 2.4 V  
Slew rate  
Low-power mode  
Normal mode  
-
(from 10 and  
90% of output  
voltage)  
SR(3)  
V/ms  
dB  
-
VDDA < 2.4 V  
Low-power mode  
Normal mode  
-
55  
45  
110  
110  
AO  
Open loop gain  
Low-power mode  
VDDA  
100  
-
-
Normal mode  
-
-
-
-
High saturation  
voltage  
Iload = max or Rload  
=
=
(3)  
VOHSAT  
min Input at VDDA  
.
VDDA  
50  
Low-power mode  
mV  
Normal mode  
-
-
-
-
-
100  
Low saturation  
voltage  
Iload = max or Rload  
min Input at 0.  
(3)  
VOLSAT  
Low-power mode  
Normal mode  
-
50  
-
74  
66  
φm  
Phase margin  
°
Low-power mode  
-
DS12469 Rev 8  
153/192  
164  
Electrical characteristics  
STM32L412xx  
(1)  
Table 82. OPAMP characteristics (continued)  
Parameter Conditions Min  
Symbol  
Typ  
Max  
Unit  
Normal mode  
-
-
13  
20  
-
-
GM  
Gain margin  
dB  
Low-power mode  
CLOAD 50 pf,  
RLOAD 4 kΩ  
follower  
Normal mode  
-
5
10  
30  
configuration  
Wake up time  
from OFF state.  
tWAKEUP  
µs  
CLOAD 50 pf,  
RLOAD 20 kΩ  
follower  
Low-power mode  
-
-
10  
-
configuration  
OPAMP input  
bias current  
(4)  
Ibias  
General purpose input  
-
nA  
-
-
-
-
-
-
2
4
-
-
-
-
-
Non inverting  
gain value  
PGA gain(3)  
-
8
16  
PGA Gain = 2  
PGA Gain = 4  
80/80  
120/  
40  
-
-
-
-
-
-
R2/R1 internal  
resistance  
Rnetwork  
k/kΩ  
140/  
20  
values in PGA  
PGA Gain = 8  
PGA Gain = 16  
mode(5)  
150/  
10  
Resistance  
variation (R1 or  
R2)  
Delta R  
-
-15  
-
-
15  
%
%
PGA gain error  
PGA gain error  
-
-1  
-
1
-
GBW/  
2
Gain = 2  
-
-
-
-
GBW/  
4
Gain = 4  
Gain = 8  
Gain = 16  
-
-
-
-
-
-
PGA bandwidth  
for different non  
inverting gain  
PGA BW  
MHz  
GBW/  
8
GBW/  
16  
154/192  
DS12469 Rev 8  
STM32L412xx  
Symbol  
Electrical characteristics  
(1)  
Table 82. OPAMP characteristics (continued)  
Parameter Conditions Min  
at 1 kHz, Output  
Typ  
Max  
Unit  
Normal mode  
-
-
-
-
500  
-
loaded with 4 kΩ  
at 1 kHz, Output  
loaded with 20 kΩ  
Low-power mode  
Normal mode  
600  
180  
290  
-
-
-
Voltage noise  
density  
en  
nV/Hz  
at 10 kHz, Output  
loaded with 4 kΩ  
at 10 kHz, Output  
loaded with 20 kΩ  
Low-power mode  
OPAMP  
Normal mode  
-
-
120  
45  
260  
100  
no Load, quiescent  
mode  
IDDA(OPAMP)(3) consumption  
from VDDA  
µA  
Low-power mode  
1. Guaranteed by design, unless otherwise specified.  
2. The temperature range is limited to 0 °C-125 °C when VDDA is below 2 V  
3. Guaranteed by characterization results.  
4. Mostly I/O leakage, when used in analog mode. Refer to Ilkg parameter in Table 69: I/O static characteristics.  
5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between  
OPAMP inverting input and ground. The PGA gain =1+R2/R1  
6.3.21  
Temperature sensor characteristics  
Table 83. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VTS linearity with temperature  
-
±1  
2.5  
±2  
2.7  
°C  
mV/°C  
V
Avg_Slope(2) Average slope  
2.3  
V30  
Voltage at 30°C (±5 °C)(3)  
0.742  
0.76  
0.785  
tSTART  
Sensor Buffer Start-up time in continuous mode(4)  
-
8
15  
µs  
(TS_BUF)(1)  
Start-up time when entering in continuous mode(4)  
ADC sampling time when reading the temperature  
-
70  
-
120  
-
µs  
µs  
(1)  
tSTART  
(1)  
tS_temp  
5
Temperature sensor consumption from VDD, when  
selected by ADC  
I
DD(TS)(1)  
-
4.7  
7
µA  
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 8:  
Temperature sensor calibration values.  
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.  
DS12469 Rev 8  
155/192  
164  
 
 
 
 
 
Electrical characteristics  
STM32L412xx  
6.3.22  
V
monitoring characteristics  
BAT  
Table 84. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
39  
3
-
-
-
kΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
-10  
12  
10  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. Guaranteed by design.  
Table 85. V  
charging characteristics  
BAT  
Symbol  
Parameter Conditions  
Min  
Typ  
5
Max  
Unit  
Battery  
charging  
resistor  
VBRS = 0  
VBRS = 1  
-
-
-
-
RBC  
kΩ  
1.5  
6.3.23  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 86. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
12.5  
0
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 80 MHz  
-
-
fTIMxCLK/2  
40  
MHz  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 80 MHz  
0
TIMx (except  
TIM2)  
-
16  
ResTIM  
Timer resolution  
bit  
TIM2  
-
-
32  
1
65536  
819.2  
tTIMxCLK  
µs  
16-bit counter clock  
period  
tCOUNTER  
fTIMxCLK = 80 MHz 0.0125  
-
-
-
65536 × 65536 tTIMxCLK  
53.68  
Maximum possible count  
with 32-bit counter  
tMAX_COUNT  
fTIMxCLK = 80 MHz  
s
1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.  
156/192  
DS12469 Rev 8  
 
 
 
 
 
STM32L412xx  
Electrical characteristics  
(1)  
Table 87. IWDG min/max timeout period at 32 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
4096  
8192  
16384  
32768  
1
/16  
/32  
/64  
/128  
/256  
2
3
4
ms  
2.0  
5
4.0  
6 or 7  
8.0  
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there  
is always a full RC period of uncertainty.  
Table 88. WWDG min/max timeout value at 80 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.0512  
0.1024  
0.2048  
0.4096  
3.2768  
6.5536  
ms  
13.1072  
26.2144  
6.3.24  
Communication interfaces characteristics  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to RM0394 reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FT_f I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O  
port characteristics for the I2C I/Os characteristics.  
All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog  
filter characteristics:  
DS12469 Rev 8  
157/192  
164  
 
 
 
Electrical characteristics  
STM32L412xx  
(1)  
Table 89. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
260(3)  
Unit  
Maximum pulse width of spikes  
that are suppressed by the analog  
filter  
tAF  
50(2)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
158/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 90 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 21: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 90. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode receiver/full duplex  
2.7 < VDD < 3.6 V  
40  
Voltage Range 1  
Master mode receiver/full duplex  
1.71 < VDD < 3.6 V  
Voltage Range 1  
16  
40  
Master mode transmitter  
1.71 < VDD < 3.6 V  
Voltage Range 1  
fSCK  
1/tc(SCK)  
SPI clock frequency  
Slave mode receiver  
1.71 < VDD < 3.6 V  
Voltage Range 1  
-
-
MHz  
40  
Slave mode transmitter/full duplex  
2.7 < VDD < 3.6 V  
Voltage Range 1  
37(2)  
20(2)  
Slave mode transmitter/full duplex  
1.71 < VDD < 3.6 V  
Voltage Range 1  
Voltage Range 2  
13  
-
tsu(NSS) NSS setup time  
th(NSS) NSS hold time  
tw(SCKH)  
Slave mode, SPI prescaler = 2  
Slave mode, SPI prescaler = 2  
4TPCLK  
2TPCLK  
-
-
ns  
ns  
-
SCK high and low time Master mode  
TPCLK-2  
TPCLK  
TPCLK+2 ns  
tw(SCKL)  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
4
1.5  
6.5  
1.5  
9
-
-
-
-
-
-
-
Data input setup time  
Data input hold time  
ns  
-
-
ns  
th(SI)  
-
ta(SO) Data output access time Slave mode  
tdis(SO) Data output disable time Slave mode  
36  
16  
ns  
ns  
9
DS12469 Rev 8  
159/192  
164  
 
Electrical characteristics  
STM32L412xx  
(1)  
Table 90. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Slave mode 2.7 < VDD < 3.6 V  
Voltage Range 1  
-
12.5  
13.5  
Slave mode 1.71 < VDD < 3.6 V  
Voltage Range 1  
tv(SO)  
-
-
12.5  
12.5  
24  
33  
Data output valid time  
ns  
Slave mode 1.71 < VDD < 3.6 V  
Voltage Range 2  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
Slave mode  
Master mode  
-
4.5  
6
-
7
0
-
-
Data output hold time  
ns  
-
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50 %.  
Figure 33. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
160/192  
DS12469 Rev 8  
 
STM32L412xx  
Electrical characteristics  
Figure 34. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Figure 35. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DS12469 Rev 8  
161/192  
164  
 
 
Electrical characteristics  
STM32L412xx  
Quad SPI characteristics  
Unless otherwise specified, the parameters given in Table 91 and Table 92 for Quad SPI  
are derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 21: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 15 or 20 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 91. Quad SPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 < VDD< 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
40  
1.71 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
-
-
-
-
-
-
48  
60  
26  
FCK  
Quad SPI clock frequency  
MHz  
1/t(CK)  
2.7 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.71 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
tw(CKH)  
tw(CKL)  
t
(CK)/2-2  
-
-
t(CK)/2  
Quad SPI clock high and  
low time  
fAHBCLK= 48 MHz, presc=0  
t(CK)/2  
t(CK)/2+2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
2
3.5  
5
-
-
-
ts(IN)  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
-
-
-
th(IN)  
ns  
6.5  
-
-
-
1
3
-
5
5
-
tv(OUT)  
-
0
th(OUT)  
0
-
-
1. Guaranteed by characterization results.  
162/192  
DS12469 Rev 8  
 
STM32L412xx  
Symbol  
Electrical characteristics  
(1)  
Table 92. QUADSPI characteristics in DDR mode  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
-
-
-
40  
2 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
-
48  
48  
26  
FCK  
Quad SPI clock  
frequency  
MHz  
1/t(CK)  
1.71 < VDD < 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.71 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
tw(CKH)  
tw(CKL)  
t
(CK)/2-2  
t(CK)/2  
1
-
-
t(CK)/2  
Quad SPI clock high  
and low time  
fAHBCLK = 48 MHz, presc=0  
t(CK)/2+2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Data input setup time  
on rising edge  
tsr(IN)  
-
-
-
-
-
-
-
-
3.5  
1
Data input setup time  
on falling edge  
tsf(IN)  
1.5  
6
Data input hold time  
on rising edge  
thr(IN)  
6.5  
5.5  
5.5  
Data input hold time  
on falling edge  
thf(IN)  
ns  
5
9.5  
5
5.5  
14  
Data output valid time  
on rising edge  
tvr(OUT)  
tvf(OUT)  
thr(OUT)  
thf(OUT)  
-
-
8.5  
19  
Data output valid time  
on falling edge  
15  
-
3.5  
8
Data output hold time  
on rising edge  
-
-
-
3.5  
13  
-
Data output hold time  
on falling edge  
-
1. Guaranteed by characterization results.  
DS12469 Rev 8  
163/192  
164  
 
Electrical characteristics  
STM32L412xx  
Figure 36. Quad SPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
Figure 37. Quad SPI timing diagram - DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
USB characteristics  
The USB interface is fully compliant with the USB specification version 2.0 and is USB-IF  
certified (for Full-speed device operation).  
(1)  
Table 93. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDUSB  
USB transceiver operating voltage  
3.0(2)  
-15  
-
-
3.6  
85  
V
Tcrystal_less USB crystal less operation temperature  
-
-
°C  
μs  
(3)  
tSTARTUP  
RPUI  
USB transceiver startup time  
1.0  
Embedded USB_DP pull-up value during idle  
900  
1250  
1600  
Embedded USB_DP pull-up value during  
reception  
RPUR  
1400  
28  
2300  
36  
3200  
44  
Driving high  
Output driver impedance(4)  
and low  
(3)  
ZDRV  
1. TA = -40 to 125 °C unless otherwise specified.  
2. The STM32L412xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics  
which are degraded in the 2.7-to-3.0 V voltage range.  
3. Guaranteed by design.  
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
164/192  
DS12469 Rev 8  
 
 
 
 
STM32L412xx  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
DS12469 Rev 8  
165/192  
189  
 
Package information  
STM32L412xx  
7.1  
LQFP64 package information  
This LQFP is a 64-pin, 10 x 10 mm low-profile quad flat package.  
Figure 38. LQFP64 - Outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
e
IDENTIFICATION  
5W_ME_V3  
1. Drawing is not to scale.  
Table 94. LQFP64 - Mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
166/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Package information  
Table 94. LQFP64 - Mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Figure 39. LQFP64 - Recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figures give examples of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
DS12469 Rev 8  
167/192  
189  
 
Package information  
STM32L412xx  
Figure 40. LQFP64 marking (package top view)  
Revision code  
Product identification(1)  
A
STM32L412  
RBT6  
Date code  
YWW  
Pin 1 identifier  
MS49693V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
Figure 41. LQFP64 (external SMPS device) marking (package top view)  
Revision code  
Product identification(1)  
A
STM32L412  
RBT6P  
Date code  
YWW  
Pin 1 identifier  
MS49694V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
168/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
7.2  
UFBGA64 package information  
This UFBGA is a 64 balls, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array  
package.  
Figure 42. UFBGA64 - Outline  
Z Seating plane  
ddd Z  
A4  
A3 A2  
A1  
A
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
e
F
A
H
F
D1  
D
e
Y
8
1
Øb (64 balls)  
Øeee M Z Y X  
Øfff M Z  
BOTTOM VIEW  
TOP VIEW  
A019_ME_V1  
1. Drawing is not to scale.  
Table 95. UFBGA64 - Mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
0.460  
0.050  
0.400  
0.080  
0.270  
0.170  
4.850  
3.450  
4.850  
3.450  
-
0.530  
0.080  
0.450  
0.130  
0.320  
0.280  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.600  
0.110  
0.500  
0.180  
0.370  
0.330  
5.150  
3.550  
5.150  
3.550  
-
0.0181  
0.0020  
0.0157  
0.0031  
0.0106  
0.0067  
0.1909  
0.1358  
0.1909  
0.1358  
-
0.0209  
0.0031  
0.0177  
0.0051  
0.0126  
0.0110  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0236  
0.0043  
0.0197  
0.0071  
0.0146  
0.0130  
0.2028  
0.1398  
0.2028  
0.1398  
-
D
D1  
E
E1  
e
F
0.700  
0.800  
0.0276  
0.0315  
DS12469 Rev 8  
169/192  
189  
 
 
 
Package information  
Symbol  
STM32L412xx  
Table 95. UFBGA64 - Mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
ddd  
eee  
fff  
-
-
-
-
-
-
0.080  
0.150  
0.050  
-
-
-
-
-
-
0.0031  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 43. UFBGA64 - Recommended footprint  
Dpad  
Dsm  
BGA_WLCSP_FT_V1  
Table 96. UFBGA64 - Recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5  
0.280 mm  
0.370 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
Device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
170/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
Figure 44. UFBGA64 marking (package top view)  
Product identification(1)  
L412RBI6  
Date code  
Y WW  
A
Pin 1 identifier  
MS49695V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
Figure 45. UFBGA64 marking (package top view)  
Product identification(1)  
L412RB6P  
Date code  
Y WW  
A
Pin 1 identifier  
MS53657V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12469 Rev 8  
171/192  
189  
 
 
Package information  
STM32L412xx  
7.3  
LQFP48 package information  
This LQFP is a 48 pins, 7 x 7 mm low-profile quad flat package  
Figure 46. LQFP48 - Outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
172/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
inches(1)  
Table 97. LQFP48 - Mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DS12469 Rev 8  
173/192  
189  
 
Package information  
STM32L412xx  
Figure 47. LQFP48 - Recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 48. LQFP48 marking (package top view)  
STM32L412  
Product identification(1)  
CBT6  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
A
MS49696V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
174/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
7.4  
UFQFPN48 package information  
This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.  
Figure 49. UFQFPN48 - Outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
DS12469 Rev 8  
175/192  
189  
 
 
Package information  
STM32L412xx  
Table 98. UFQFPN48 - Mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 50. UFQFPN48 - Recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
176/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 51. UFQFPN48 marking (package top view)  
STM32L412  
Product identification(1)  
CBU6  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
A
MS49697V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12469 Rev 8  
177/192  
189  
 
Package information  
STM32L412xx  
7.5  
WLCSP36 package information  
This WLCSP is a 36 balls, 2.58 x 3.07 mm, 0.4 mm pitch, wafer level chip scale package.  
Figure 52. WLCSP36 - Outline  
bbb  
Z
A1 ball location  
F
A1  
e1  
G
A6  
B6  
C6  
D6  
E6  
F6  
A5  
B5  
C5  
D5  
E5  
F5  
A4  
B4  
C4  
D4  
E4  
F4  
A3  
A2  
B2  
C2  
D2  
E2  
F2  
A1  
B1  
C1  
D1  
E1  
F1  
B3  
C3  
D3  
E3  
F3  
DETAIL A  
e2  
E
e
e
A
D
A2  
aaa  
(4X)  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
A3  
BUMP  
FRONT VIEW  
eee Z  
Z
b(36x)  
ccc  
Y
Z X  
Z
ddd  
DETAIL A  
ROTATED 90  
SEATING PLANE  
B03P_WLCSP36_DIE464_ME_V1  
1. Drawing is not to scale.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
4. Bump position designation per JESD 95-1, SPP-010.  
178/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
inches(1)  
Table 99. WLCSP36 - Mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A(2)  
A1  
A2  
A3(3)  
b
-
-
0.59  
-
-
0.023  
-
0.18  
0.38  
0.025  
0.25  
2.58  
3.07  
0.40  
2.00  
2.00  
0.290  
0.535  
0.10  
0.10  
0.10  
0.05  
0.05  
-
-
0.007  
0.015  
0.001  
0.010  
0.102  
0.121  
0.016  
0.079  
0.079  
0.0114  
0.0211  
0.004  
0.004  
0.004  
0.002  
0.002  
-
-
-
-
-
-
-
-
-
0.22  
0.28  
0.009  
0.011  
D
2.55  
2.61  
0.100  
0.103  
E
3.04  
3.10  
0.120  
0.122  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F(4)  
G(4)  
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal  
and tolerances values of A1 and A2.  
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process  
capability.  
4. Calculated dimensions are rounded to the 3rd decimal place  
Figure 53. WLCSP36 - Recommended footprint  
Dpad  
Dsm  
B03P_WLCSP36_DIE464_FP_V1  
1. Dimensions are expressed in millimeters.  
DS12469 Rev 8  
179/192  
189  
 
 
 
Package information  
STM32L412xx  
Table 100. WLCSP36 - Recommended PCB design rules  
Dimension Recommended values  
Pitch  
Dpad  
Dsm  
0.4 mm  
0,225 mm  
0.290 mm typ. (depends on soldermask registration tolerance)  
Stencil opening  
0.250 mm  
0.100 mm  
Stencil thickness  
Device marking  
The following figure gives an example of topside marking orientation versus ball 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 54. WLCSP36 marking (package top view)  
Ball A1 identifier  
Product identification(1)  
L412B6  
A
Revision code  
Date code  
Y WW  
MS51421V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
180/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
7.6  
UFQFPN32 package information  
This UFQFPN is a 32 pins, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat package.  
Figure 55. UFQFPN32 - Outline  
D
A
ddd C  
A1  
A3  
e
C
SEATINGPLANE  
D1  
b
e
b
E2  
E1  
E
1
L
32  
D2  
L
PIN 1 Identifier  
A0B8_ME_V3  
1. Drawing is not to scale.  
2. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this backside pad to PCB ground.  
DS12469 Rev 8  
181/192  
189  
 
 
Package information  
STM32L412xx  
Table 101. UFQFPN32 - Mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A3  
b
0.500  
-
0.550  
-
0.600  
0.050  
-
0.0197  
-
0.0217  
-
0.0236  
0.0020  
-
-
0.152  
0.230  
5.000  
3.500  
3.500  
5.000  
3.500  
3.500  
0.500  
0.400  
-
-
0.0060  
0.0091  
0.1969  
0.1378  
0.1378  
0.1969  
0.1378  
0.1378  
0.0197  
0.0157  
-
0.180  
4.900  
3.400  
3.400  
4.900  
3.400  
3.400  
-
0.280  
5.100  
3.600  
3.600  
5.100  
3.600  
3.600  
-
0.0071  
0.1929  
0.1339  
0.1339  
0.1929  
0.1339  
0.1339  
-
0.0110  
0.2008  
0.1417  
0.1417  
0.2008  
0.1417  
0.1417  
-
D
D1  
D2  
E
E1  
E2  
e
L
0.300  
-
0.500  
0.080  
0.0118  
-
0.0197  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 56. UFQFPN32 - Recommended footprint  
5.30  
3.80  
0.60  
25  
32  
1
24  
3.45  
3.80  
5.30  
3.45  
0.50  
8
17  
0.30  
16  
9
0.75  
3.80  
A0B8_FP_V2  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
182/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 57. UFQFPN32 marking (package top view)  
Product identification(1)  
L412KB6  
Revision code  
Date code  
Y WW A  
Pin 1 identifier  
MS49698V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12469 Rev 8  
183/192  
189  
 
Package information  
STM32L412xx  
7.7  
LQFP32 package information  
This LQFP is a 32 pins, 7 x 7 mm low-profile quad flat package.  
Figure 58. LQFP32 - Outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
K
D
D1  
D3  
L
L1  
24  
17  
16  
25  
32  
9
PIN 1  
IDENTIFICATION  
1
8
e
5V_ME_V2  
1. Drawing is not to scale.  
184/192  
DS12469 Rev 8  
 
 
STM32L412xx  
Package information  
inches(1)  
Table 102. LQFP32 - Mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.370  
-
0.0551  
0.0146  
-
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 59. LQFP32 - Recommended footprint  
0.80  
1.20  
24  
17  
25  
16  
0.50  
0.30  
7.30  
6.10  
9.70  
7.30  
32  
9
8
1
1.20  
6.10  
9.70  
5V_FP_V2  
1. Dimensions are expressed in millimeters.  
DS12469 Rev 8  
185/192  
189  
 
 
Package information  
STM32L412xx  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 60. LQFP32 marking (package top view)  
670ꢄꢂ/  
3URGXFWꢄLGHQWLILFDWLRQꢅꢃꢆ  
ꢀꢁꢂ.%7ꢃ  
'DWHꢄFRGH  
< ::  
3LQꢄꢃꢄLGHQWLILHU  
5HYLVLRQꢄFRGH  
$
06ꢀꢁꢂꢁꢁ9ꢃ  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
186/192  
DS12469 Rev 8  
 
STM32L412xx  
Package information  
7.8  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of all I  
and V  
, expressed in Watts. This is the  
DDXXX  
INT  
DDXXX  
maximum chip internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
I/O  
OL  
OL  
DDIOx OH OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 103. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP64 - 10 × 10 mm / 0.5 mm pitch  
66  
63  
30  
68  
85  
68  
37  
Thermal resistance junction-ambient  
UFBGA64 - 5 × 5 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFQFPN48 - 7 × 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 × 7 mm / 0.5 mm pitch  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
WLCSP36 - 2.58 x 3.07 mm / 0.4 mm pitch  
Thermal resistance junction-ambient  
LQFP32 - 7 x 7 / 0.8 mm pitch  
Thermal resistance junction-ambient  
UFQFPN32- 5 × 5 mm / 0.5 mm pitch  
7.8.1  
7.8.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8: Ordering information.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
DS12469 Rev 8  
187/192  
189  
 
 
 
 
 
Package information  
STM32L412xx  
As applications do not commonly use the STM32L412xx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range is best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 72 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V = 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Using the values obtained in Table 103 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 66 °C/W  
= 72 °C + (66 °C/W × 447 mW) = 72 °C + 29.502 °C = 101.502 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C) see Section 8:  
J
Ordering information.  
In this case, parts must be ordered at least with the temperature range suffix 6 (see Part  
numbering).  
Note:  
With this given P  
user can find the T  
allowed for a given device temperature range  
Dmax  
Amax  
(order code suffix 6 or 37).  
Suffix 6: T  
Suffix 3: T  
= T  
= T  
- (66°C/W × 447 mW) = 105-29.502 = 75.498 °C  
- (46°C/W × 447 mW) = 130-29.502 = 100.498 °C  
Amax  
Amax  
Jmax  
Jmax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V = 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
188/192  
DS12469 Rev 8  
STM32L412xx  
Package information  
Using the values obtained in Table 103 T  
is calculated as follows:  
Jmax  
T
For LQFP64, 66 °C/W  
= 100 °C + (66 °C/W × 134 mW) = 100 °C + 8.844 °C = 108.844 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 3 (see  
Section 8: Ordering information) unless we reduce the power dissipation in order to be able  
to use suffix 6 parts.  
DS12469 Rev 8  
189/192  
189  
Ordering information  
STM32L412xx  
8
Ordering information  
Table 104. STM32L412xx ordering information scheme  
STM32 412  
Example:  
Device family  
L
R
B
T
6
P TR  
®
STM32 = Arm based 32-bit microcontroller  
Product type  
L = ultra-low-power  
Device subfamily  
412 = STM32L412xx  
Pin count  
K = 32 pins  
T = 36 pins  
C = 48 pins  
R = 64 pins  
Flash memory size  
B = 128 KB of Flash memory  
8 = 64 KB of Flash memory  
Package  
T = LQFP ECOPACK2  
U = QFN ECOPACK2  
I = UFBGA ECOPACK2  
Y = CSP ECOPACK2  
Temperature range  
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)  
3 = Industrial temperature range, -40 to 125 °C (130 °C junction)  
Option  
Blank = Standard production with integrated LDO  
P = Dedicated pinout supporting external SMPS  
Packing  
TR = tape and reel  
xxx = programmed parts  
For a list of available options (such as speed, package) or for further information on any  
aspect of this device contact the nearest ST sales office.  
190/192  
DS12469 Rev 8  
 
 
 
STM32L412xx  
Revision history  
9
Revision history  
Table 105. Document revision history  
Date  
Revision  
Changes  
02-Oct-2018  
1
Initial release.  
Updated:  
Features  
Table 25: Current consumption in Run and Low-power  
run modes, code with data processing running from  
Flash, ART enable (Cache ON Prefetch OFF),  
Table 27: Current consumption in Run and Low-power  
run modes, code with data processing running from  
Flash, ART disable, Table 29: Current consumption in  
Run and Low-power run modes, code with data  
processing running from SRAM1, Table 40: Current  
consumption in Sleep and Low-power sleep modes,  
Flash ON, Table 42: Current consumption in Low-  
power sleep modes, Flash in power-down, Table 43:  
Current consumption in Stop 2 mode, Table 48:  
Current consumption in VBAT mode, Table 49:  
Peripheral current consumption  
18-Oct-2018  
2
Updated Table 46: Current consumption in Standby  
mode, Table 22: Operating conditions at power-up /  
power-down, Table 23: Embedded reset and power  
control block characteristics, Table 65: EMI  
characteristics.  
03-Dec-2018  
3
Removed Figure 5: STM32L412Vx, external SMPS  
device, LQFP100 pinout  
18-Dec-2018  
11-Feb-2019  
4
5
Updated Table 99: WLCSP36 - Mechanical data.  
Added Figure 12: STM32L412Tx, external SMPS,  
WLCSP36 ballout(1)  
.
Updated Table 14: STM32L412xx pin definitions.  
03-Jun-2019  
26-Sep-2019  
6
7
Updated Table 16: Alternate function AF8 to AF15  
Updated Table 2: STM32L412xx family device features  
and peripheral counts  
Updated Table 16: Alternate function AF8 to AF15  
Added UFBGA64 SMPS in Table 14: STM32L412xx pin  
definitions, Figure 8: STM32L412Rx UFBGA64, external  
SMPS, ballout(1)  
03-Nov-2020  
8
DS12469 Rev 8  
191/192  
191  
 
 
STM32L412xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
192/192  
DS12469 Rev 8  

相关型号:

STM32L412RBY6TR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412RBY6XXX

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8

带FPU的超低功耗80 Mhz Arm Cortex-M4 MCU,具有64-KB Flash存储器和USB

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I3PTR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I3PXXX

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I3TR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I3XXX

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I6PTR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I6PXXX

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I6TR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8I6XXX

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L412T8T3PTR

Ultra-low-power Arm® Cortex®-M4 32-bit MCUFPU, 100DMIPS, up to 128KB Flash, 40KB SRAM, analog, ext. SMPS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR