STM32L552ZEY6QXXX [STMICROELECTRONICS]

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165 DMIPS, up to 512 KB Flash memory, 256 KB SRAM, SMPS;
STM32L552ZEY6QXXX
型号: STM32L552ZEY6QXXX
厂家: ST    ST
描述:

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165 DMIPS, up to 512 KB Flash memory, 256 KB SRAM, SMPS

静态存储器
文件: 总340页 (文件大小:6483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L552xx  
Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU,  
165 DMIPS, up to 512 KB Flash memory, 256 KB SRAM, SMPS  
Datasheet - production data  
Features  
Ultra-low-power with FlexPowerControl  
1.71 V to 3.6 V power supply  
UFQFPN48 (7 x 7 mm)  
LQFP48 (7 x 7 mm)  
LQFP64 (10 x 10 mm)  
(*)  
-40 °C to 85/125 °C temperature range  
Batch acquisition mode (BAM)  
LQFP100 (14 x14 mm)  
LQFP144 (20 x 20mm)  
FBGA  
187 nA in VBAT mode: supply for RTC and  
32x32-bit backup registers  
17 nA Shutdown mode (5 wakeup pins)  
108 nA Standby mode (5 wakeup pins)  
222 nA Standby mode with RTC  
3.16 μA Stop 2 with RTC  
WLCSP81 (4.36 x 4.07 mm)  
UFBGA132 (7 x 7 mm)  
(*): Silhouette shown above.  
Memories  
106 μA/MHz Run mode (LDO mode)  
Up to 512-Kbyte Flash, two banks read-while-  
62 μA/MHz Run mode @ 3 V  
write  
(SMPS step-down converter mode)  
256 Kbytes of SRAM including 64 Kbytes with  
5 µs wakeup from Stop mode  
hardware parity check  
Brownout reset (BOR) in all modes except  
External memory interface supporting SRAM,  
Shutdown  
PSRAM, NOR, NAND and FRAM memories  
OCTOSPI memory interface  
Core  
®
®
Arm 32-bit Cortex -M33 CPU with  
Security  
®
TrustZone and FPU  
®
®
Arm TrustZone and securable I/Os,  
memories and peripherals  
ART Accelerator  
Flexible life cycle scheme with RDP (readout  
8-Kbyte instruction cache allowing 0-wait-state  
execution from Flash memory and external  
memories; frequency up to 110 MHz, MPU,  
165 DMIPS and DSP instructions  
protection)  
Root of trust thanks to unique boot entry and  
hide protection area (HDP)  
SFI (secure firmware installation) thanks to  
Performance benckmark  
embedded RSS (root secure services)  
1.5 DMIPS/MHz (Drystone 2.1)  
Secure firmware upgrade support with TF-M  
HASH hardware accelerator  
®
®
442 CoreMark (4.02 CoreMark /MHz)  
Active tamper and protection against  
Energy benchmark  
temperature, voltage and frequency attacks  
®
370 ULPMark-CP score  
True random number generator NIST SP800-  
®
54 ULPMark-PP score  
90B compliant  
®
27400 SecureMark-TLS score  
96-bit unique ID  
October 2020  
DS12737 Rev 6  
1/340  
This is information on a product in full production.  
www.st.com  
 
STM32L552xx  
512-byte OTP (one-time programmable) for  
Up to 19 communication peripherals  
user data  
1x USB Type-C™/ USB power delivery  
controller  
General-purpose input/outputs  
1x USB 2.0 full-speed crystal less solution,  
Up to 114 fast I/Os with interrupt capability  
most 5 V-tolerant and up to 14 I/Os with  
independent supply down to 1.08 V  
LPM and BCD  
2x SAIs (serial audio interface)  
4x I2C FM+(1 Mbit/s), SMBus/PMBus™  
6x USARTs (ISO 7816, LIN, IrDA, modem)  
Power management  
Embedded regulator (LDO) with three  
configurable range output to supply the digital  
circuitry  
3x SPIs (7x SPIs with USART and OCTOSPI in  
SPI mode)  
1x FDCAN controller  
1x SDMMC interface  
Embedded SMPS step-down converter  
External SMPS support  
2 DMA controllers  
Clock management  
14 DMA channels  
4 to 48 MHz crystal oscillator  
Up to 22 capacitive sensing channels  
32 kHz crystal oscillator for RTC (LSE)  
Internal 16 MHz factory-trimmed RC (±1%)  
Internal low-power 32 kHz RC (±5%)  
Support touch key, linear and rotary touch  
sensors  
Internal multispeed 100 kHz to 48 MHz  
oscillator, auto-trimmed by LSE (better than  
±0.25% accuracy)  
Rich analog peripherals (independent  
supply)  
2x 12-bit ADC 5 Msps, up to 16-bit with  
Internal 48 MHz with clock recovery  
hardware oversampling, 200 µA/Msps  
3 PLLs for system clock, USB, audio, ADC  
2x 12-bit DAC outputs, low-power sample and  
hold  
Up to 16 timers and 2 watchdogs  
2x operational amplifiers with built-in PGA  
2x ultra-low-power comparators  
16x timers: 2 x 16-bit advanced motor-control,  
2 x 32-bit and 5 x 16-bit general purpose, 2x  
16-bit basic, 3x low-power 16-bit timers  
(available in Stop mode), 2x watchdogs, 2x  
SysTick timer  
4x digital filters for sigma delta modulator  
CRC calculation unit  
RTC with hardware calendar, alarms and  
Debug  
calibration  
Development support: serial wire debug  
(SWD), JTAG, Embedded Trace Macrocell™  
(ETM)  
Table 1. Device summary  
Reference  
Part numbers  
STM32L552CC, STM32L552CE, STM32L552ME, STM32L552QC, STM32L552QE,  
STM32L552RC, STM32L552RE, STM32L552VC, STM32L552VE, STM32L552ZC,  
STM32L552ZE  
STM32L552xx  
2/340  
DS12737 Rev 6  
 
STM32L552xx  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Arm® Cortex®-M33 core with TrustZone® and FPU . . . . . . . . . . . . . . . . . 20  
Art Accelerator – instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . 20  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.8.1  
TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.9  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
3.9.5  
3.9.6  
3.9.7  
3.9.8  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.10 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.11 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.12 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.14 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.16 DMA request router (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 57  
DS12737 Rev 6  
3/340  
6
Contents  
STM32L552xx  
3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 57  
3.18 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 58  
3.19 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.20 Octo-SPI interface (OCTOSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.21 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
3.21.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
3.21.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3.21.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3.22 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
3.23 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
3.24 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.25 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
3.26 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 64  
3.27 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
3.28 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
3.29 HASH hardware accelerator (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
3.30 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
3.30.1 Advanced-control timer (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
3.30.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,  
TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3.30.3 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3.30.4 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 69  
3.30.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
3.30.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
3.30.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
3.31 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
3.32 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
3.33 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
3.34 Universal synchronous/asynchronous receiver transmitter (USART) . . . 74  
3.35 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 75  
3.36 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
3.37 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
3.38 Secure digital input/output and MultiMediaCards Interface (SDMMC) . . . 76  
3.39 Controller area network (FDCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
3.40 Universal serial bus (USB FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4/340  
DS12737 Rev 6  
STM32L552xx  
Contents  
3.41 USB Type-C™ / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 77  
3.42 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
3.42.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 78  
3.42.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4
5
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SMPS step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . 148  
Embedded reset and power control block characteristics . . . . . . . . . . 148  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Wakeup time from low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
5.3.8  
5.3.9  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
5.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
5.3.11 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
5.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
5.3.13 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
5.3.14 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
5.3.15 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
5.3.16 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
5.3.17 Extended interrupt and event controller input (EXTI) characteristics . . 237  
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
DS12737 Rev 6  
5/340  
6
Contents  
STM32L552xx  
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 239  
5.3.20 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 252  
5.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 257  
5.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
5.3.23 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 261  
5.3.24 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
5.3.25  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
BAT  
5.3.26 Temperature and VDD thresholds monitoring . . . . . . . . . . . . . . . . . . . 266  
5.3.27 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
5.3.28 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268  
5.3.29 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 270  
5.3.30 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
5.3.31 OCTOSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
5.3.32 SD/SDIO/MMC card host interfaces (SDMMC) . . . . . . . . . . . . . . . . . . 304  
5.3.33 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
UFBGA132 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330  
6.8.1  
6.8.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 331  
7
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335  
6/340  
DS12737 Rev 6  
STM32L552xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32L552xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Boot modes when TrustZone is disabled (TZEN=0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Boot modes when TrustZone is enabled (TZEN=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Boot space versus RDP protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Example of memory map security attribution vs SAU configuration regions . . . . . . . . . . . 27  
Securable peripherals by TZSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
TrustZone-aware peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SMPS external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
STM32L552xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Functionalities depending on the working mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
STM32L552xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
SAI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
STM32L552xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Alternate function AF0 to AF7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Alternate function AF8 to AF15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SMPS modes summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SMPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 148  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . 153  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . 154  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Current consumption in Run mode, code with data processing  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
running from Flash in single bank, ICACHE ON in 2-way and power  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Current consumption in Run mode, code with data processing  
running from Flash in single bank, ICACHE ON in 1-way and power  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Current consumption in Run mode, code with data processing  
running from Flash in single bank, ICACHE disabled and power  
Table 37.  
Table 38.  
Table 39.  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Current consumption in Run and Low-power run modes, code with data processing  
DS12737 Rev 6  
7/340  
11  
List of tables  
STM32L552xx  
running from Flash in dual bank, ICACHE ON in 2-way . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in dual bank, ICACHE ON in 1-way . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in dual bank, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Current consumption in Run mode, code with data processing  
Table 40.  
Table 41.  
Table 42.  
running from Flash in dual bank, ICACHE ON in 2-way and power  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Current consumption in Run mode, code with data processing  
running from Flash in dual bank, ICACHE ON in 1-way and power  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Current consumption in Run mode, code with data processing  
Table 43.  
Table 44.  
running from Flash in dual bank, ICACHE disabled and power  
supplied by internal SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Current consumption in Run and Low-power run modes,  
code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Current consumption in Run mode, code with data processing running  
from SRAM1 and power supplied by internal SMPS step down converter. . . . . . . . . . . . 166  
Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Current consumption in Run mode, code with data processing  
running from SRAM2 and power supplied by internal SMPS step down converter . . . . . 168  
Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE ON (2-way). . . . . . . . . . . . . . . . . . . . . 169  
Typical current consumption in Run mode with SMPS,  
with different codes running from Flash, ICACHE ON (2-way). . . . . . . . . . . . . . . . . . . . . 170  
Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE ON (1-way). . . . . . . . . . . . . . . . . . . . . 171  
Typical current consumption in Run mode with SMPS,  
with different codes running from Flash, ICACHE ON (1-way). . . . . . . . . . . . . . . . . . . . . 172  
Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 173  
Typical current consumption in Run mode with internal SMPS,  
with different codes running from Flash, ICACHE disabled . . . . . . . . . . . . . . . . . . . . . . . 174  
Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Typical current consumption in Run mode with internal SMPS,  
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Typical current consumption in Run and Low-power run modes,  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Typical current consumption in Run mode with internal SMPS,  
with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Current consumption in Sleep and Low-power sleep mode, Flash ON . . . . . . . . . . . . . . 179  
Current consumption in Low-power sleep mode, Flash in power-down . . . . . . . . . . . . . . 180  
Current consumption in Sleep mode,  
Table 59.  
Table 60.  
Table 61.  
Flash ON and power supplied by internal SMPS step down converter . . . . . . . . . . . . . . 181  
Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE ON in 2-way and power supplied by external SMPS . . . . . . . . . 182  
Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE ON in 1-way and power supplied by external SMPS . . . . . . . . . 183  
Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE disabled and power supplied by external SMPS . . . . . . . . . . . . 184  
Table 62.  
Table 63.  
Table 64.  
8/340  
DS12737 Rev 6  
STM32L552xx  
List of tables  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE on in 2-way and power supplied by external SMPS . . . . . . . . . . . 185  
Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE on in 1-way and power supplied by external SMPS . . . . . . . . . . . 186  
Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE disabled and power supplied by external SMPS. . . . . . . . . . . . . . 187  
Current consumption in Run mode, code with data processing running from SRAM1,  
and power supplied by external SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Current consumption in Run mode, code with data processing running from SRAM2,  
and power supplied by external SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Current consumption in Sleep mode, Flash ON and power supplied by external SMPS . 190  
Current consumption in Run mode, code with data processing running from Flash,  
ICACHE on (2-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 191  
Current consumption in Run mode, code with data processing running from Flash,  
ICACHE on (1-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 192  
Current consumption in Run mode, code with data processing running from Flash,  
ICACHE disabled and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . 193  
Current consumption in Run mode, code with data processing running from SRAM1,  
and power supplied by external SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Current consumption in Run mode, code with data processing running from SRAM2,  
and power supplied by external SMPS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Wakeup time using USART/LPUART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Table 97.  
Table 98.  
Table 99.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
LSE  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Table 100. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Table 101. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Table 102. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Table 103. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
Table 104. I/O AC characteristics (All I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
Table 105. FT_c I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Table 106. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
DS12737 Rev 6  
9/340  
11  
List of tables  
STM32L552xx  
Table 107. EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Table 108. Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
Table 109. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Table 110. Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Table 111. ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Table 112. ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
Table 113. ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
Table 114. ADC accuracy - limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Table 115. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
Table 116. DAC accuracy ranges 0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Table 117. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
Table 118. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Table 119. OPAMP characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
Table 120. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
Table 121. V  
Table 122. V  
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
BAT  
BAT  
Table 123. Temp and VDD monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Table 124. DFSDM measured timing 1.71 to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
Table 125. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
Table 126. IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
Table 127. WWDG min/max timeout value at 110 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
Table 128. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  
Table 129. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
Table 130. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
Table 131. USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Table 132. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 281  
Table 133. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 281  
Table 134. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 282  
Table 135. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 283  
Table 136. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
Table 137. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 284  
Table 138. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 286  
Table 139. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 286  
Table 140. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Table 141. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
Table 142. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 292  
Table 143. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
Table 144. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
Table 145. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
Table 146. OCTOSPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
Table 147. OCTOSPI characteristics in DTR mode (no DQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
Table 148. OCTOSPI characteristics in DTR mode (with DQS)/Octal and HyperBus . . . . . . . . . . . . 300  
Table 149. Dynamics characteristics: delay block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
Table 150. Dynamics characteristics: SD / eMMC characteristics,  
VDD=2.7V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
Table 151. Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 V. . . . . . . . . . . . . . 305  
Table 152. UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
Table 153. LQFP48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Table 154. UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Table 155. LQFP64 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
Table 156. WLCSP81 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Table 157. WLCSP81 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
10/340  
DS12737 Rev 6  
STM32L552xx  
List of tables  
Table 158. LQPF100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
Table 159. UFBGA132 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
Table 160. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 324  
Table 161. LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
Table 162. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330  
Table 163. STM32L552xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334  
Table 164. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335  
DS12737 Rev 6  
11/340  
11  
List of figures  
STM32L552xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32L552xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
STM32L552xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L552xxxxP power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
STM32L552xxxxQ power supply overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SMPS step down converter power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
STM32L552xx clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 10. STM32L552xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 11. STM32L552xxxxP LQFP48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 12. STM32L552xx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 13. STM32L552xxxxP UFQFPN48 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 14. STM32L552xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 15. STM32L552xxxxQ LQFP64 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . . 81  
Figure 16. STM32L552xxxxP LQFP64 external SMPS pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 17. STM32L552xxxxQ WLCSP81 SMPS step down converter ballout . . . . . . . . . . . . . . . . . . 82  
Figure 18. STM32L552xxxxP WLCSP81 external SMPS ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 19. STM32L552xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Figure 20. STM32L552xxxxQ LQFP100 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 84  
Figure 21. STM32L552xx UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 22. STM32L552xxxxQ UFBGA132 SMPS step down converter ballout. . . . . . . . . . . . . . . . . . 85  
Figure 23. STM32L552xx LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Figure 24. STM32L552xxxxQ LQFP144 SMPS step down converter pinout. . . . . . . . . . . . . . . . . . . . 87  
Figure 25. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 26. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 27. STM32L552xx and STM32L562xx power supply overview . . . . . . . . . . . . . . . . . . . . . . . 139  
Figure 28. STM32L552xxxP and STM32L562xxxP power supply overview . . . . . . . . . . . . . . . . . . . 140  
Figure 29. STM32L552xxxQ and STM32L562xxxQ power supply overview. . . . . . . . . . . . . . . . . . . 141  
Figure 30. Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Figure 31. External components for SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 32. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 33. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
Figure 34. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
Figure 35. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
Figure 36. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Figure 37. HSI16 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Figure 38. Typical current consumption versus MSI frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Figure 39. HSI48 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Figure 40. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
(1)  
Figure 41. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
Figure 42. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
Figure 43. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
Figure 44. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
Figure 45. 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
Figure 46. VREFBUF in case VRS = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258  
Figure 47. VREFBUF in case VRS = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  
Figure 48. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
12/340  
DS12737 Rev 6  
STM32L552xx  
List of figures  
Figure 49. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
Figure 50. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
Figure 51. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
Figure 52. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Figure 53. USART master mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
Figure 54. USART slave mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 280  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 282  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 283  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 285  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
Figure 60. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 291  
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Figure 63. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
Figure 64. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
Figure 65. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 296  
Figure 66. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 296  
Figure 67. OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Figure 68. OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Figure 69. OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
Figure 70. OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Figure 71. OCTOSPI HyperBus read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Figure 72. OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
Figure 73. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306  
Figure 74. SD default mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306  
Figure 75. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306  
Figure 76. LQFP48 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308  
Figure 77. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309  
Figure 78. Example of LQFP48 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 310  
Figure 79. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Figure 80. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
Figure 81. Example of UFQFPN48 package marking (package top view). . . . . . . . . . . . . . . . . . . . . 313  
Figure 82. LQFP64 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314  
Figure 83. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
Figure 84. Example of LQFP64 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 316  
Figure 85. WLCSP81 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Figure 86. WLCSP 81 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318  
Figure 87. Example of WLCSP81 package marking (package top view). . . . . . . . . . . . . . . . . . . . . . 319  
Figure 88. LQFP100 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
Figure 89. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
Figure 90. Example of LQFP100 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 322  
Figure 91. UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
Figure 92. UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
Figure 93. Example of UFBGA132 package marking (package top view) . . . . . . . . . . . . . . . . . . . . 325  
Figure 94. LQFP144 outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326  
Figure 95. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
Figure 96. Example of LQFP144 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 329  
DS12737 Rev 6  
13/340  
13  
Introduction  
STM32L552xx  
1
Introduction  
This document provides the ordering information and mechanical device characteristics of  
the STM32L552xx microcontrollers.  
This document should be read in conjunction with the STM32L552xx and STM32L562xx  
reference manual (RM0438).  
®(a)  
®
®
For information on the Arm  
Cortex -M33 core, refer to the Cortex -M33 Technical  
Reference Manual, available from the www.arm.com website.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
14/340  
DS12737 Rev 6  
 
STM32L552xx  
Description  
2
Description  
The STM32L552xx devices are an ultra-low-power microcontrollers family (STM32L5  
®
®
Series) based on the high-performance Arm Cortex -M33 32-bit RISC core. They operate  
at a frequency of up to 110 MHz.  
®
The Cortex -M33 core features a single-precision floating-point unit (FPU), which supports  
®
all the Arm single-precision data-processing instructions and all the data types. The  
®
Cortex -M33 core also implements a full set of DSP (digital signal processing) instructions  
and a memory protection unit (MPU) which enhances the application’s security.  
These devices embed high-speed memories (512 Kbytes of Flash memory and 256 Kbytes  
of SRAM), a flexible external memory controller (FSMC) for static memories (for devices  
with packages of 100 pins and more), an Octo-SPI Flash memories interface (available on  
all packages) and an extensive range of enhanced I/Os and peripherals connected to two  
APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.  
The STM32L5 Series devices offer security foundation compliant with the trusted based  
security architecture (TBSA) requirements from Arm. They embed the necessary security  
features to implement a secure boot, secure data storage, secure firmware installation and  
secure firmware upgrade. Flexible life cycle is managed thanks to multiple levels of readout  
protection. Firmware hardware isolation is supported thanks to securable peripherals,  
memories and I/Os, and also to the possibility to configure the peripherals and memories as  
“privilege”.  
The STM32L552xx devices embed several protection mechanisms for embedded Flash  
memory and SRAM: readout protection, write protection, secure and hidden protection  
areas.  
The STM32L552xx devices embed peripherals reinforcing security:  
- One HASH hardware accelerator  
- One true random number generator  
The STM32L5 Series devices offer active tamper detection and protection against transient  
and environmental perturbation attacks thanks to several internal monitoring which generate  
secret data erase in case of attack. This helps to fit the PCI requirements for point of sales  
applications. These devices offer two fast 12-bit ADC (5 Msps), two comparators, two  
operational amplifiers, two DAC channels, an internal voltage reference buffer, a low-power  
RTC, two general-purpose 32-bit timer, two 16-bit PWM timers dedicated to motor control,  
seven general-purpose 16-bit timers, and two 16-bit low-power timers. The devices support  
four digital filters for external sigma delta modulators (DFSDM). In addition, up to 22  
capacitive sensing channels are available.  
STM32L5 Series also feature standard and advanced communication interfaces such as:  
- Four I2Cs  
- Three SPIs  
- Three USARTs, two UARTs and one low-power UART  
- Two SAIs  
- One SDMMC  
- One FDCAN  
DS12737 Rev 6  
15/340  
78  
 
Description  
STM32L552xx  
- USB device FS  
- USB Type-C / USB power delivery controller  
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C  
junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of  
power-saving modes allows the design of low-power applications.  
Some independent power supplies are supported like an analog independent supply input  
for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to  
14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows the  
backup of the RTC and the backup of the registers.  
The STM32L552xx devices offer seven packages from 48-pin to 144-pin.  
Table 2. STM32L552xx features and peripheral counts  
Peripherals  
Flash memory (Kbyte)  
512/256  
256 (192+64)  
128  
System (Kbyte)  
Backup (byte)  
SRAM  
External memory controller for static  
memories (FSMC)  
No  
Yes  
OCTOSPI  
1
Advanced control  
2 (16-bit)  
5 (16-bit)  
2 (32-bit)  
General purpose  
Basic  
2 (16-bit)  
3 (16-bit)  
1
Timers  
Low power  
SysTick timer  
Watchdog timers  
(independent,  
window)  
2
16/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Description  
Table 2. STM32L552xx features and peripheral counts (continued)  
Peripherals  
SPI  
3
4
I2C  
USART(1)/UART  
UART  
3/2 (2)  
2
1
Communication  
interfaces  
LPUART  
SAI  
2
1
FDCAN  
USB FS  
SDMMC  
Yes  
No  
Yes/No/Yes  
Yes  
Digital filters for sigma-  
delta modulators  
Yes (4 filters)  
Number of channels  
Real time clock (RTC)  
Tamper pins  
8
Yes  
3
4/4/3  
3
5/4  
5
8/7  
True random number generator  
HASH (SHA-256)  
Yes  
Yes  
GPIOs  
38/36  
52/50/47  
4/3/3  
0
54/51  
83/79  
5/4  
0
115 /111  
5/4  
108/105  
5
Wakeup pins  
3
0
3
6
13/10  
Nb of I/Os down to 1.08 V  
14/13  
Capacitive sensing  
Number of channels  
5
10/10/9  
10  
19/18  
22  
22/21  
16/14  
12-bit ADC  
2
ADC  
Number of  
9
16/16/15  
16/15  
16/14  
16  
channels  
12-bit DAC  
1
2
DAC  
Number of  
channels  
Internal voltage  
reference buffer  
Yes  
Analog comparator  
Operational amplifiers  
Max. CPU frequency  
2
2
110 MHz  
DS12737 Rev 6  
17/340  
78  
Description  
STM32L552xx  
Table 2. STM32L552xx features and peripheral counts (continued)  
Peripherals  
Operating voltage  
1.71 to 3.6 V  
Ambient operating temperature: -40 to 85 °C / -40 to 125 °C  
Junction temperature: -40 to 105 °C / -40 to 130 °C  
Operating temperature  
LQFP48,  
UFQFPN48  
Package  
LQFP64  
WLCSP81 LQFP100(2) UFBGA132 LQFP144  
1. USART3 is not available on STM32L552CExxP devices.  
2. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory  
using the NE1 Chip Select.  
18/340  
DS12737 Rev 6  
STM32L552xx  
Description  
Figure 1. STM32L552xx block diagram  
CLK, NE[4:1], NL, NBL[1:0],  
A[25:0], D[15:0], NOE, NWE,  
NWAIT, NCE, INT as AF  
Flexible static memory controller (FSMC):  
SRAM, PSRAM, NOR Flash,FRAM, NAND Flash  
NJTRST, JTDI,  
JTCK/SWCLK  
JTDO/SWD, JTDO  
JTAG & SW  
MPU  
NVIC  
IO[7:0],  
CLK, NCLK, NCS. DQS  
ETM  
Octo SPI1 memory interface  
TRACECLK  
TRACED[3:0]  
Arm Cortex-M33  
110 MHz  
TrustZone  
FPU  
RNG  
C-BUS  
Flash  
up to  
512KB  
HASH  
S-BUS  
@ VDDUSB  
SRAM 192 KB  
SRAM 64 KB  
DP  
USB FS  
DM  
D[7:0], D[3:1]dir  
CMD, CMDdir,CK, CKin  
D0dir, D2dir  
SDMMC1  
Power management  
VDD  
AHB2 110 MHz  
Voltage Regulator  
LDO and SMPS  
3.3 to 1.2 V  
DMA2  
VDD = 1.71 to 3.6 V  
VSS  
DMA1  
@ VDD  
@ VDD  
Supply  
supervision  
reset  
Int  
MSI  
DMAMUX1  
VDDIO, VDDUSB  
VDDA, VSSA  
VDD, VSS, NRST  
RC HSI  
RC LSI  
BOR  
8 groups of sensing channels as AF  
Touch sensing controller  
PVD, PVM  
@VDD  
PLL 1&2&3  
GTZC  
OSC_IN  
OSC_OUT  
XTAL OSC  
4- 16MHz  
GPIO PORT A  
GPIO PORT B  
GPIO PORT C  
GPIO PORT D  
GPIO PORT E  
GPIO PORT F  
GPIO PORT G  
GPIO PORT H  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
PE[15:0]  
PF[15:0]  
PG[15:0]  
PH[1:0]  
IWDG  
Standby  
interface  
@VBAT  
Reset & clock  
control  
OSC32_IN  
XTAL 32 kHz  
RTC  
AWU  
Backup register  
OSC32_OUT  
RTC_TS  
RTC_TAMP[8:1]  
RTC_OUT  
VBAT = 1.55 to 3.6 V  
4 channels, ETR as AF  
TIM2  
32b  
114 AF  
EXT. IT WKUP  
TIM3  
4 channels, ETR as AF  
4 channels, ETR as AF  
4 channels, ETR as AF  
16b  
CRC  
TIM4  
@ VDD  
16b  
Temperature sensor  
TIM5  
32b  
@ VDDA  
16xIN  
smcard  
irDA  
ADC1  
ADC2  
USART2  
RX, TX, CK, CTS, RTS as AF  
RX, TX, CK, CTS, RTS as AF  
ITF  
smcard  
irDA  
USART3  
UART4  
RX, TX, CTS, RTS as AF  
RX, TX, CTS, RTS as AF  
AHB/APB1  
AHB/APB2  
3 compl. channels (TIM1_CH[1:3]N),  
4 channels (TIM1_CH[1:4]),  
ETR, BKIN, BKIN2 as AF  
UART5  
SPI2  
16b  
TIM1 / PWM  
TIM8 / PWM  
MOSI, MISO, SCK, NSS as AF  
3 compl. Channels (TIM1_CH[1:3]N),  
4 channels (TIM1_CH[1:4]),  
ETR, BKIN, BKIN2 as AF  
16b  
SPI3  
MOSI, MISO, SCK, NSS as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
SCL, SDA, SMBA as AF  
I2C1/SMBUS  
I2C2/SMBUS  
I2C3/SMBUS  
I2C4/SMBUS  
2 channels,  
16b  
16b  
16b  
TIM15  
TIM16  
1 compl. channel, BKIN as AF  
WWDG  
1 channel,  
1 compl. channel, BKIN as AF  
CRS  
1 channel,  
1 compl. channel, BKIN as AF  
TIM17  
RX, TX, CK,CTS,  
RTS as AF  
MOSI, MISO,  
SCK, NSS as AF  
smcard  
irDA  
USART1  
SPI1  
FDCAN1  
TX, RX as AF  
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK  
MCLK_B, SD_B, FS_B, SCK_B as AF  
MCLK_A, SD_A, FS_A, SCK_A, EXTCLK  
MCLK_B, SD_B, FS_B, SCK_B as AF  
TIM6  
TIM7  
16b  
16b  
SAI1  
SAI2  
@VDDA  
OUT, INN, INP  
OUT, INN, INP  
OpAmp1  
OpAmp2  
SDCKIN[7:0], SDDATIN[7:0],  
SDCKOUT,SDTRIG as AF  
DFSDM  
SYSCFG  
@ VDDUSB  
DP  
DM  
UCPD1  
@ VDDA  
VREF Buffer  
VREF+  
LPUART1  
@ VDDA  
@ VDDA  
LPTIM1  
LPTIM2  
LPTIM3  
IN1, IN2, OUT, ETR as AF  
RX, TX, CTS, RTS as AF  
CH1  
CH2  
INP, INN, OUT  
INP, INN, OUT  
COMP1  
COMP2  
DAC1  
IN1, OUT, ETR as AF  
IN1, OUT, ETR as AF  
OUT1  
OUT2  
32-bits AHB bus  
32-bits APB bus  
VBAT power domain  
VDDIO2 power domain  
VDDA power domain  
VDDUSB power domain  
VDD power domain  
MSv49361V6  
1. AF: alternate function on I/O pins.  
DS12737 Rev 6  
19/340  
78  
 
 
Functional overview  
STM32L552xx  
3
Functional overview  
3.1  
Arm® Cortex®-M33 core with TrustZone® and FPU  
®
The Cortex -M33 with TrustZone and FPU is a highly energy efficient processor designed  
for microcontrollers and deeply embedded applications, especially those requiring efficient  
security.  
®
The Cortex -M33 processor delivers a high computational performance with low-power  
consumption and an advanced response to interrupts. it features:  
®
®
Arm TrustZone technology, using the Armv8-M main extension supporting secure  
and non-secure states  
Memory protection units (MPUs), 8 regions for secure and 8 regions for non secure  
Configurable secure attribute unit (SAU) supporting up to 8 memory regions  
Floating-point arithmetic functionality with support for single precision arithmetic  
The processor supports a set of DSP instructions that allows an efficient signal processing  
and a complex algorithm execution.  
®
The Cortex -M33 processor supports the following bus interfaces:  
System AHB bus:  
The System AHB (S-AHB) bus interface is used for any instruction fetch and data  
access to the memory-mapped SRAM, peripheral, external RAM and external device,  
or Vendor_SYS regions of the Armv8-M memory map.  
Code AHB bus  
The Code AHB (C-AHB) bus interface is used for any instruction fetch and data access  
to the code region of the Armv8-M memory map.  
Figure 1 shows the general block diagram of the STM32L552xx family devices.  
3.2  
Art Accelerator – instruction cache (ICACHE)  
®
The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex -M33  
processor to improve performance when fetching instruction (or data) from both internal and  
external memories.  
20/340  
DS12737 Rev 6  
 
 
 
 
 
STM32L552xx  
Functional overview  
ICACHE offers the following features:  
Multi-bus interface:  
®
slave port receiving the memory requests from the Cortex -M33 C-AHB code  
execution port  
master1 port performing refill requests to internal memories (FLASH and SRAMs)  
master2 port performing refill requests to external memories (external  
FLASH/RAMs through Octo-SPI/FMC interfaces)  
a second slave port dedicated to ICACHE registers access.  
Close to zero wait states instructions/data access performance:  
0 wait-state on cache hit  
hit-under-miss capability, allowing to serve new processor requests while a line  
refill (due to a previous cache miss) is still ongoing  
critical-word-first refill policy, minimizing processor stalls on cache miss  
hit ratio improved by 2-ways set-associative architecture and pLRU-t replacement  
policy (pseudo-least-recently-used, based on binary tree), algorithm with best  
complexity/performance balance  
dual master ports allowing to decouple internal and external memory traffics, on  
Fast and Slow buses, respectively; also minimizing impact on interrupt latency  
optimal cache line refill thanks to AHB burst transactions (of the cache line size).  
performance monitoring by means of a hit counter and a miss counter.  
Extension of cacheable region beyond Code memory space, by means of address  
remapping logic that allows to define up to 4 cacheable external regions  
Power consumption reduced intrinsically (most accesses to cache memory rather to  
bigger main memories); even improved by configuring ICACHE as direct mapped  
(rather than the default 2-ways set-associative mode)  
®
TrustZone security support  
Maintenance operation for software management of cache coherency  
Error management: detection of unexpected cacheable write access, with optional  
interrupt raising.  
3.3  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU accesses to the memory  
and to prevent one task to accidentally corrupt the memory or the resources used by any  
other active task. This memory area is organized into up to 8 regions for secure and 8  
regions for non secure state.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
DS12737 Rev 6  
21/340  
78  
 
 
Functional overview  
STM32L552xx  
3.4  
Embedded Flash memory  
The devices feature 512 Kbytes of embedded Flash memory which is available for storing  
programs and data.  
The Flash interface features:  
Single or dual bank operating modes  
Read-while-write (RWW) in dual bank mode  
This feature allows a read operation to be performed from one bank while an erase or  
program operation is performed to the other bank. The dual bank boot is also supported.  
Each bank contains 128 pages of 2 or 4 Kbytes (depending on the read access width). The  
Flash memory also embeds 512 bytes OTP (one-time programmable) for user data.  
Flexible protections can be configured thanks to the option bytes:  
Readout protection (RDP) to protect the whole memory. Four levels of protection are  
available:  
– Level 0: no readout protection  
– Level 0.5: available only when TrustZone is enabled  
All read/write operations (if no write protection is set) from/to the non-secure Flash  
memory are possible. The Debug access to secure area is prohibited. Debug access  
to non-secure area remains possible.  
– Level 1: memory readout protection; the Flash memory cannot be read from or written  
to if either the debug features are connected or the boot in RAM or bootloader are  
selected. If TrustZone is enabled, the non-secure debug is possible and the boot in  
SRAM is not possible.  
®
– Level 2: chip readout protection; the debug features (Cortex -M33 JTAG and serial  
wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This  
selection is irreversible.  
Write protection (WRP): the protected area is protected against erasing and  
programming:  
In single bank mode, four areas can be selected with 4-Kbyte granularity.  
In dual bank mode, two areas per bank can be selected with 2-Kbyte granularity.  
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:  
Single error detection and correction  
Double error detection  
The address of the ECC fail can be read in the ECC register.  
TrustZone security  
When the TrustZone security is enabled, the whole Flash is secure after reset and the  
following protections are available:  
Non-volatile watermark-based secure Flash area: the secure area can be accessed  
only in secure mode.  
In single bank mode, four areas can be selected with a page granularity.  
In dual bank mode, one area per bank can be selected with a page granularity.  
Secure hidden protection area: it is part of the Flash secure area and it can be  
protected to deny an access to this area by any data read, write and instruction fetch.  
22/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
For example, a software code in the secure Flash memory hidden protection area can  
be executed only once and deny any further access to this area until next system reset.  
Volatile block-based secure Flash area. In a block-based secure area, each page can  
be programmed on-the-fly as secure or non-secure.  
3.5  
Embedded SRAM  
The devices feature 256 Kbytes of embedded SRAM. This SRAM is split into three blocks:  
192 Kbytes mapped at address 0x2000 0000 (SRAM1).  
64 Kbytes located at address 0x0A03 0000 with hardware parity check (SRAM2).  
This memory is also mapped at address 0x2003 0000 offering a contiguous address  
space with the SRAM1.  
This block is accessed through the C-bus for maximum performance. Either 64 Kbytes  
or upper 4 Kbytes of SRAM2 can be retained in Standby mode.  
The SRAM2 can be write-protected with 1 Kbyte granularity.  
The memory can be accessed in read/write at CPU clock speed with 0 wait states.  
TrustZone security  
When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM can  
be programmed as non-secure by block based using the MPCBB (memory protection  
controller block based) in GTZC controller. The granularity of SRAM secure block based is a  
page of 256 bytes.  
3.6  
Boot modes  
At startup, a BOOT0 pin, nBOOT0 and NSBOOTADDx[24:0] / SECBOOTADD0[24:0] option  
bytes are used to select the boot memory address which includes:  
Boot from any address in user Flash  
Boot from system memory bootloader  
Boot from any address in embedded SRAM  
Boot from Root Security service (RSS)  
The BOOT0 value may come from the PH3-BOOT0 pin or from an option bit depending on  
the value of a user option bit to free the GPIO pad if needed.  
The boot loader is located in the system memory. It is used to reprogram the Flash memory  
by using USART, I2C, SPI, FDCAN or USB FS in device mode through the DFU (device  
firmware upgrade).  
The bootloader is available on all devices. Refer to the application note STM32  
microcontroller system memory boot mode (AN2606) for more details.  
The root secure services (RSS) are embedded in a Flash memory area named secure  
information block, programmed during ST production.  
The RSS enables for example the secure firmware installation (SFI) thanks to the RSS  
extension firmware (RSSe SFI).  
This feature allows the customers to protect the confidentiality of the firmware to be  
provisioned into the STM32 device when the production is subcontracted to a third party.  
DS12737 Rev 6  
23/340  
78  
 
 
 
Functional overview  
STM32L552xx  
The RSS is available on all devices, after enabling the TrustZone through the TZEN option  
bit.  
Refer to the application note Overview secure firmware install (SFI) (AN4992) for more  
details.  
Refer to Table 3 and Table 4 for boot modes when TrustZone is disabled and enabled  
respectively.  
Table 3. Boot modes when TrustZone is disabled (TZEN=0)  
nSWBOOT0  
nBOOT0  
BOOT0  
pin PH3  
Boot address option-  
bytes selection  
ST programmed  
default value  
Boot area  
FLASH_  
OPTR[27]  
FLASH_  
OPTR[26]  
Boot address defined by  
-
-
0
1
-
1
1
0
0
NSBOOTADD0[24:0] user option bytes  
NSBOOTADD0[24:0]  
Flash: 0x0800 0000  
Boot address defined by  
NSBOOTADD1[24:0] user option bytes  
NSBOOTADD1[24:0]  
System bootloader:  
0x0BF9 0000  
Boot address defined by  
NSBOOTADD0[24:0] user option bytes  
NSBOOTADD0[24:0]  
1
0
Flash: 0x0800 0000  
Boot address defined by  
NSBOOTADD1[24:0] user option bytes  
NSBOOTADD1[24:0]  
System bootloader:  
0x0BF9 0000  
-
When TrustZone is enabled by setting the TZEN option bit, the boot space must be in  
secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure  
memory address.  
A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing  
to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot  
options are ignored.  
24/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
Table 4. Boot modes when TrustZone is enabled (TZEN=1)  
nSWBOOT0  
nBOOT0 BOOT0  
Boot address  
option-bytes  
selection  
ST  
BOOT_  
LOCK  
RSS  
command  
FLASH_  
pin  
Boot area  
programmed  
default value  
FLASH_  
OPTR[26]  
OPTR[27]  
PH3  
Secure boot address  
defined by user option  
bytes  
SECBOOTAD  
D0[24:0]  
Flash:  
0x0C00 0000  
-
-
0
1
-
1
1
0
0
0
0
SECBOOTADD0[24:0]  
RSS: 0x0FF8 0000  
Secure boot address  
RSS:  
0x0FF8 0000  
N/A  
0
SECBOOTAD defined by user option Flash:  
1
D0[24:0]  
bytes  
0x0C00 0000  
SECBOOTADD0[24:0]  
RSS: RSS:  
0x0FF8 0000  
RSS:  
0x0FF8 0000  
0
-
-
-
0
-
0
N/A  
N/A  
RSS: RSS:  
0x0FF8 0000  
RSS:  
0x0FF8 0000  
0  
Secure boot address  
SECBOOTAD defined by user option Flash:  
1
-
-
-
-
D0[24:0]  
bytes  
0x0C00 0000  
SECBOOTADD0[24:0]  
The boot address option bytes enables the possibility to program any boot memory address.  
However, the allowed address space depends on Flash read protection RDP level.  
If the programmed boot memory address is out of the allowed memory mapped area when  
RDP level is 0.5 or more, the default boot fetch address is forced to:  
0x0800 0000 (when TZEN = 0)  
RSS (when TZEN = 1)  
Refer to Table 5.  
Table 5. Boot space versus RDP protection  
TZEN = 1 TZEN = 0  
Any boot address Any boot address  
RDP  
0
DS12737 Rev 6  
25/340  
78  
 
 
 
Functional overview  
RDP  
STM32L552xx  
Table 5. Boot space versus RDP protection (continued)  
TZEN = 1 TZEN = 0  
0.5  
1
N/A  
Any boot address  
If boot is configured for NSBOOTADD0 and  
NSBOOTADD0 in the range 0x0800 0000 -  
0x0807 FFFF: boot at the address stored in  
NSBOOTADD0  
Boot address only in:  
– RSS  
– or secure Flash: 0x0C00 0000 -  
0x0C07 FFFF  
If boot is configured for NSBOOTADD1 and  
NSBOOTADD1 in the range 0x0800 0000 -  
0x0807 FFFF: boot at the address stored in  
NSBOOTADD1  
2
Otherwise boot address forced to RSS  
Otherwise boot address is forced at  
0x0800 0000  
3.7  
Global TrustZone controller (GTZC)  
The GTZC includes three different sub-blocks:  
®
TZSC: TrustZone security controller  
This sub-block defines the secure/privilege state of slave/master peripherals. It also  
controls the non-secure area size for the watermark memory peripheral controller  
(MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about  
the secure status of each securable peripheral, by sharing with RCC and I/O logic.  
1. MPCBB: block-based memory protection controller  
This sub-block controls secure states of all blocks (256-byte pages) of the associated  
SRAM.  
2. TZIC: TrustZone illegal access controller  
This sub-block gathers all illegal access events in the system and generates a secure  
interrupt towards NVIC.  
These sub-blocks are used to configure TrustZone and privileged attributes within the full  
system.  
The GTZC main features are:  
3 independent 32-bit AHB interface for TZSC, MPCBB and TZIC  
MPCBB and TZIC accessible only with secure transactions  
Secure and non-secure access supported for priv/non-priv part of TZSC  
Register set to define security settings:  
Secure blocks for internal SRAM  
Non-secure regions for external memories  
Secure/privilege access mode for securable and TZ-aware peripherals  
Secure/privilege access mode for securable legacy masters.  
26/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
3.8  
TrustZone security architecture  
®
®
The security architecture is based on Arm TrustZone with the Armv8-M Main Extension.  
The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register.  
When the TrustZone is enabled, the SAU (security attribution unit) and IDAU  
(implementation defined attribution unit) defines the access permissions based on secure  
and non-secure state.  
SAU: Up to 8 SAU configurable regions are available for security attribution.  
IDAU: It provides a first memory partition as non-secure or non-secure callable  
attributes. It is then combined with the results from the SAU security attribution and the  
higher security state is selected.  
Based on IDAU security attribution, the Flash, system SRAMs and peripherals memory  
space is aliased twice for secure and non-secure state. However, the external memories  
space is not aliased.  
Table 6 shows an example of typical SAU regions configuration based on IDAU regions.  
The user can split and choose the secure, non-secure or NSC regions for external  
memories as needed.  
(1) (2)  
Table 6. Example of memory map security attribution vs SAU configuration regions  
SAU security  
attribution typical  
configuration  
Region  
description  
IDAU security  
attribution  
Final security  
attribution  
Address range  
0x0000_0000  
0x07FF_FFFF  
Code - external  
memories  
Secure or non-  
secure or NSC  
Secure or non-  
secure or NSC  
Non-secure  
Non-secure  
NSC  
0x0800_0000  
0x0BFF_FFFF  
Non-secure  
Non-secure  
Code - Flash and  
SRAM  
0x0C00_0000  
0x0FFF_FFFF  
Secure or NSC  
Secure or NSC  
0x1000_0000  
0x17FF_FFFF  
Code - external  
memories  
Non-secure  
0x1800_0000  
0x1FFF_FFFF  
Non-secure  
0x2000_0000  
0x2FFF_FFFF  
Non-secure  
NSC  
SRAM  
0x3000_0000  
0x3FFF_FFFF  
Secure or NSC  
Non-secure  
Secure or NSC  
Non-secure  
0x4000_0000  
0x4FFF_FFFF  
Non-secure  
NSC  
Peripherals  
0x5000_0000  
0x5FFF_FFFF  
Secure or NSC  
Secure or NSC  
0x6000_0000  
0xDFFF_FFFF  
Secure or non-  
secure or NSC  
Secure or non-  
secure or NSC  
External memories  
Non-secure  
1. NSC = non-secure callable.  
DS12737 Rev 6  
27/340  
78  
 
 
 
Functional overview  
STM32L552xx  
2. Different colors highlights the different configurations  
Pink: Non-secure  
Green: NSC (non-secure callable)  
Lighter green: Secure or non-secure or NSC  
3.8.1  
TrustZone peripheral classification  
When the TrustZone security is active, a peripheral can be either Securable or TrustZone-  
aware type as follows:  
Securable: a peripheral is protected by an AHB/APB firewall gate that is controlled from  
TZSC controller to define security properties.  
TrustZone-aware: a peripheral connected directly to AHB or APB bus and is  
implementing a specific TrustZone behavior such as a subset of registers being secure.  
The tables below summarize the list of Securable and TrustZone aware peripherals within  
the system.  
Table 7. Securable peripherals by TZSC  
Bus  
Peripheral  
OCTOSPI1 registers  
FMC registers  
SDMMC1  
RNG  
AHB3  
AHB 2  
AHB1  
ADC  
ICACHE registers  
TSC  
CRC  
DFSDM1  
SAI2  
SAI1  
TIM17  
TIM16  
TIM15  
APB2  
USART1  
TIM8  
SPI1  
TIM1  
COMP  
VREFBUF  
28/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Functional overview  
Table 7. Securable peripherals by TZSC (continued)  
Peripheral  
Bus  
UCPD1  
USB FS  
FDCAN1  
LPTIM3  
LPTIM2  
I2C4  
LPUART1  
LPTIM1  
OPAMP  
DAC1  
CRS  
I2C3  
I2C2  
I2C1  
APB1  
UART5  
UART4  
USART3  
USART2  
SPI3  
SPI2  
IWDG  
WWDG  
TIM7  
TIM6  
TIM5  
TIM4  
TIM3  
TIM2  
DS12737 Rev 6  
29/340  
78  
Functional overview  
STM32L552xx  
Table 8. TrustZone-aware peripherals  
Peripheral  
Bus  
GPIOH  
GPIOG  
GPIOF  
GPIOE  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
MPCBB2  
MPCBB1  
MPCWM2  
MPCWM1  
TZIC  
AHB2  
TZSC  
AHB1  
EXTI  
Flash memory  
RCC  
DMAMUX1  
DMA2  
DMA1  
APB2  
APB1  
SYSCFG  
PWR  
RTC  
30/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
Default TrustZone security state  
The default system security state is:  
CPU:  
®
Cortex -M33 is in secure state after reset. The boot address must be in secure  
address.  
Memory map:  
SAU: is fully secure after reset. Consequently, all memory map is fully secure. Up  
to 8 SAU configurable regions are available for security attribution.  
Flash:  
Flash security area is defined by watermark user options.  
Flash block based area is non-secure after reset.  
SRAMs:  
All SRAMs are secure after reset. MPCBB (memory protection block based  
controller) is secure.  
External memories:  
FSMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection  
watermark based controller) are secure  
Peripherals  
Securable peripherals are non-secure after reset.  
TrustZone-aware peripherals (except the GPIO) are non-secure after reset. Their  
secure configuration registers are secure.  
Note:  
Refer to Table 7 and Table 8 for a list of Securable and TrustZone-aware peripherals.  
All GPIO are secure after reset.  
Interrupts:  
NVIC: All interrupts are secure after reset. NVIC is banked for secure and non-  
secure state.  
TZIC: All illegal access interrupts are disabled after reset.  
DS12737 Rev 6  
31/340  
78  
Functional overview  
STM32L552xx  
3.9  
Power supply management  
The power controller (PWR) main features are:  
Power supplies and supply domains  
Core domains (VCORE)  
VDD domain  
Backup domain (VBAT)  
Analog domain (VDDA)  
VDDIO2 domain  
VDDUSB for USB transceiver  
System supply voltage regulation  
SMPS step down converter  
Voltage regulator (LDO)  
Power supply supervision  
POR/PDR monitor  
BOR monitor  
PVD monitor  
PVM monitor (VDDA, VDDUSB, VDDIO2)  
Temperature thresholds monitor  
Upper VDD voltage threshold monitor  
Power management  
Operating modes  
Voltage scaling control  
Low-power modes  
VBAT battery charging  
TrustZone security  
3.9.1  
Power supply schemes  
The devices require a 1.71 V to 3.6 V V operating voltage supply. Several independent  
DD  
supplies can be provided for specific peripherals:  
V
V
= 1.71 V to 3.6 V  
DD  
is the external power supply for the I/Os, the internal regulator and the system  
DD  
analog such as reset, power management and internal clocks. It is provided externally  
through the VDD pins.  
V
V
= 1.62 V (ADCs/COMPs) / 1.8 V (DACs/OPAMPs) to 2.4 V (VREFBUF) to 3.6 V  
is the external analog power supply for A/D converters, D/A converters, voltage  
DDA  
DDA  
reference buffer, operational amplifiers and comparators. The V  
voltage level is  
DDA  
independent from the V voltage and should preferably be connected to V when  
DD  
DD  
these peripherals are not used.  
32/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
VDDSMPS = 1.71 V to 3.6 V  
VDDSMPS is the external power supply for the SMPS step down converter. It is  
provided externally through VDDSMPS supply pin, and shall be connected to the same  
supply as VDD.  
VLXSMPS is the switched SMPS step down converter output.  
V15SMPS are the power supply for the system regulator. It is provided externally  
through the SMPS step down converter VLXSMPS output.  
Note:  
The SMPS power supply pins are available only on a specific package with SMPS step  
down converter option.  
VDD12 = 1.05 to 1.32 V  
VDD12 is the external power supply bypassing the internal regulator when connected  
to an external SMPS. It is provided externally through VDD12 pins and only available  
on packages with the external SMPS supply option. VDD12 does not require any  
external decoupling capacitance and cannot support any external load.  
VDDUSB = 3.0 V to 3.6 V  
VDDUSB is the external independent power supply for USB transceivers. The  
VDDUSB voltage level is independent from the VDD voltage and should preferably be  
connected to VDD when the USB is not used.  
VDDIO2 = 1.08 V to 3.6 V  
VDDIO2 is the external power supply for 14 I/Os (port G[15:2]). The VDDIO2 voltage  
level is independent from the VDD voltage and should preferably be connected to VDD  
when PG[15:2] are not used.  
V
= 1.55 V to 3.6 V  
BAT  
V
is the power supply for RTC, external clock 32 kHz oscillator and backup registers  
BAT  
(through power switch) when V is not present.  
DD  
VREF-, VREF+  
V
is the input reference voltage for ADCs and DACs. It is also the output of the  
REF+  
internal voltage reference buffer when enabled.  
When V  
When V  
< 2 V V  
must be equal to V  
.
DDA  
DDA  
DDA  
REF+  
REF+  
2 V V  
must be between 2 V and V  
.
DDA  
V
can be grounded when ADC and DAC are not active.  
REF+  
The internal voltage reference buffer supports two output voltages, which are  
configured with VRS bit in the VREFBUF_CSR register:  
V
V
around 2.048 V. This requires V  
equal to or higher than 2.4 V.  
REF+  
REF+  
DDA  
around 2.5 V. This requires V  
equal to or higher than 2.8 V.  
DDA  
VREF- and VREF+ pins are not available on all packages. When not available, they are  
bonded to VSSA and VDDA, respectively.  
When the VREF+ is double-bonded with VDDA in a package, the internal voltage  
reference buffer is not available and must be kept disabled (refer to datasheet for  
packages pinout description).  
V
must always be equal to V  
.
REF-  
SSA  
An embedded linear voltage-regulator is used to supply the internal digital power V  
.
CORE  
V
is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash is  
CORE  
supplied by V  
and V  
.
CORE  
DD  
DS12737 Rev 6  
33/340  
78  
Functional overview  
STM32L552xx  
Figure 2. STM32L552xx power supply overview  
VDDA domain  
2 x A/D converters  
VDDA  
2 x comparators  
2 x D/A converters  
2 x operational amplifiers  
VSSA  
Voltage reference buffer  
VDDUSB  
USB transceivers  
VSS  
VDDIO2 domain  
VDDIO2  
VDDIO2  
I/O ring  
V
SS  
PG[15:2]  
VDD domain  
VDDIO1  
I/O ring  
VCORE domain  
Reset block  
Temp. sensor  
Core  
3 x PLL, HSI, MSI  
SRAM1  
SRAM2  
Standby circuitry  
(Wakeup logic,  
IWDG)  
VSS  
VDD  
Digital  
peripherals  
VCORE  
Voltage regulator  
Flash memory  
Low voltage detector  
Backup domain  
LSE crystal 32 K osc  
BKP registers  
RCC BDCR register  
RTC  
VBAT  
MSv49301V1  
34/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
Figure 3. STM32L552xxxxP power supply overview  
VDDA domain  
2 x A/D converters  
VDDA  
VSSA  
2 x comparators  
2 x D/A converters  
2 x operational amplifiers  
Voltage reference buffer  
VDDUSB  
VSS  
USB transceivers  
VDDIO2 domain  
VDDIO2  
VDDIO2  
VSS  
I/O ring  
PG[15:2]  
VDD domain  
VDDIO1  
I/O ring  
VCORE domain  
Reset block  
Temp. sensor  
3 x PLL, HSI, MSI  
Core  
SRAM1  
SRAM2  
Standby circuitry  
(Wakeup logic,  
IWDG)  
VSS  
VDD  
Digital  
VCORE  
peripherals  
Voltage regulator  
2x VDD12  
Flash memory  
Low voltage detector  
Backup domain  
LSE crystal 32 K osc  
BKP registers  
RCC BDCR register  
RTC  
VBAT  
MSv49336V1  
DS12737 Rev 6  
35/340  
78  
 
 
Functional overview  
STM32L552xx  
Figure 4. STM32L552xxxxQ power supply overview  
VDDA domain  
2 x A/D converters  
VDDA  
2 x comparators  
2 x D/A converters  
2 x operational amplifiers  
VSSA  
Voltage reference buffer  
VDDUSB  
USB transceivers  
VSS  
VDDIO2 domain  
VDDIO2  
VDDIO2  
VSS  
I/O ring  
VDD domain  
VDDIO1  
I/O ring  
Reset block  
Temp. sensor  
3 x PLL, HSI, MSI  
VCORE domain  
Standby circuitry  
(Wakeup logic,  
IWDG)  
VSS  
Core  
VDD  
SRAM1  
SRAM2  
Voltage regulator  
MR  
2 x V15SMPS  
VCORE  
VLXSMPS  
Digital  
peripherals  
VDDSMPS  
SMPS  
LPR  
VSSSMPS  
Flash memory  
Low voltage detector  
Backup domain  
LSE crystal 32 K osc  
BKP registers  
RCC BDCR register  
RTC  
VBAT  
MSv49332V1  
During power-up and power-down phases, the following power sequence requirements  
must be respected:  
When V is below 1 V, other power supplies (V  
below VDD +300 mV.  
, V  
and V  
) must remain  
DDUSB  
DD  
DDA DDIO2  
When V is above 1 V, all power supplies are independent.  
DD  
During the power-down phase, V can temporarily become lower than other supplies  
DD  
only if the energy provided to the MCU remains below 1 mJ; this allows external  
decoupling capacitors to be discharged with different time constants during the power-  
down transient phase.  
36/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
Figure 5. Power-up/down sequence  
V
3.6  
(1)  
VDDX  
VDD  
VBOR0  
1
0.3  
Power-on  
Invalid supply area  
Operating mode  
Power-down  
VDDX independent from VDD  
time  
VDDX < VDD + 300 mV  
MSv47490V1  
1. VDDX refers to any power supply among VDDA, VDDIO2 and VDDUSB.  
3.9.2  
Power supply supervisor  
The devices have an integrated ultra-low-power Brownout reset (BOR) active in all modes  
(except for Shutdown mode). The BOR ensures proper operation of the devices after power-  
on and during power down. The devices remain in reset mode when the monitored supply  
voltage V is below a specified threshold, without the need for an external reset circuit.  
DD  
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected  
through option bytes.The devices feature an embedded programmable voltage detector  
(PVD) that monitors the V power supply and compares it to the VPVD threshold.  
DD  
An interrupt can be generated when V drops below the VPVD threshold and/or when V  
DD  
DD  
is higher than the VPVD threshold. The interrupt service routine can then generate a  
warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
In addition, the devices embed a peripheral voltage monitor which compares the  
independent supply voltages V  
, V  
, V  
with a fixed threshold in order to ensure  
DDA DDUSB DDIO2  
that the peripheral is in its functional supply range.  
3.9.3  
Voltage regulator  
Two embedded linear voltage regulators supply most of the digital circuitries: the main  
regulator (MR) and the low-power regulator (LPR).  
The MR is used in the Run and Sleep modes and in the Stop 0 mode.  
The LPR is used in Low-power run, Low-power sleep, Stop 1 and Stop 2 modes. It is  
also used to supply the 64 Kbytes or only 4 Kbytes of SRAM2 in standby with SRAM2  
retention.  
Both regulators are in power-down while they are in standby and Shutdown modes: the  
regulator output is in high impedance, and the kernel circuitry is powered down thus  
inducing zero consumption.  
DS12737 Rev 6  
37/340  
78  
 
 
 
Functional overview  
STM32L552xx  
The ultra-low-power STM32L552xx devices support dynamic voltage scaling to optimize its  
power consumption in Run mode. The voltage from the main regulator that supplies the  
logic (VCORE) can be adjusted according to the system’s maximum operating frequency.  
The main regulator operates in the following ranges:  
Range 0 with the CPU running at up to 110 MHz.  
Range 1 with the CPU running at up to 80 MHz.  
Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also  
limited to 26 MHz.  
The VCORE can be supplied by the low-power regulator, the main regulator being switched  
off. The system is then in Low-power run mode.  
Low-power run mode with the CPU running at up to 2 MHz. Peripherals with  
independent clock can be clocked by the HSI16.  
3.9.4  
SMPS step down converter  
The built-in SMPS step down converter is a highly power-efficient DC/DC non-linear  
switching regulator that improves low-power performance when the VDD voltage is high  
enough. This SMPS step down converter automatically enters in bypass mode when the  
VDD voltage falls below 2 V in Range 0 and Range 1.  
Note:  
There is no automatic SMPS bypass in Range 2.  
The SMPS step down converter can be configured in:  
High-power mode (HPM): achieving a high efficiency at high current load. It is the  
default selected mode after POR reset.  
Low power mode achieving very high efficiency at low load  
Bypass mode  
The SMPS step down converter can be switched in bypass mode at any time by the  
application software.  
Note:  
The SMPS step down converter is available only on specific package.  
SMPS step down converter power supply scheme  
The SMPS step down converter requires an external coil with typical value of 4.7 μH to be  
connected between the VLXSMPS and the V15SMPS pins and a 4.7μF capacitor to be  
connected between the V15SMPS to VSSSMPS pins. It can be switched OFF by selecting  
the Bypass mode by software. Thus, only main regulator is used by the application.  
38/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
Figure 6. SMPS step down converter power supply scheme  
VDDSMPS  
VLXSMPS  
VDD  
SMPS  
Step Down  
Converter  
V15SMPS  
V15SMPS  
VCORE  
Main  
regulator  
VDD  
VSS  
VSSSMPS  
MSv49346V1  
If the selected package is with the SMPS step down converter option but it is never used by  
the application, it is recommend to set the SMPS power supply pins as follows:  
V
V
and V  
connected to VSS  
DDSMPS  
15SMPS  
LXSMPS  
connected to VDD  
Table 9. SMPS external components  
Description  
Component  
Value  
C
L
SMPS output capacitor(1)  
SMPS inductance(2)  
4.7 µF  
4.7 µH  
1. For example GRM155R60J475ME87J and GRM21BR71E475KA73L.  
2. For example TDK MLP2016H4R7MT.  
SMPS step down converter fast startup  
After POR reset, the SMPS step down converter starts in High-power mode and in Low  
startup mode. The low-startup feature is selected to limit the inrush current after power-on  
reset.  
However, it is possible to configure a faster startup on the fly and it is applied for next startup  
either after a system reset or wakeup from low-power mode except Shutdown and VBAT  
modes. The fast startup is selected by setting the SMPSFSTEN bit in the PWR_CR4  
register.  
DS12737 Rev 6  
39/340  
78  
 
 
3.9.5  
Low-power modes  
The ultra-low-power STM32L552xx devices support seven low-power modes to achieve the best compromise between low-power  
consumption, short startup time, available peripherals and available wake-up sources. Table 11 shows the related STM32L552xx  
modes overview.  
Table 10. STM32L552xx modes overview  
Regulator and SMPS  
Mode  
CPU  
Yes  
Yes  
No  
Flash  
ON(3)  
ON(3)  
ON(3)  
ON(3)  
SRAM  
Clocks  
DMA and Peripherals(2)  
Wakeup source  
N/A  
mode(1)  
Ranges 0/1  
All  
SMPS HP mode  
Run  
LPRun  
Sleep  
ON  
Any  
Range 2  
All except USB_FS, RNG  
All except USB_FS, RNG  
All  
SMPS LP or HP mode  
Any  
LPR  
ON  
N/A  
except PLL  
Ranges 0/1  
SMPS HP mode  
ON(4)  
ON(4)  
Any  
Any interrupt or event  
Any interrupt or event  
Range 2  
All except USB_FS, RNG  
All except USB_FS, RNG  
SMPS LP or HP mode  
Any  
LPSleep  
LPR  
No  
except PLL  
BOR, PVD, PVM  
RTC, IWDG  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
COMPx (x=1,2)  
DAC1  
OPAMPx (x=1,2)  
USARTx (x=1...5)(6)  
LPUART1(6)  
I2Cx (x=1...4)(7)  
LPTIMx (x=1,2)  
***  
COMPx (x=1..2)  
USARTx (x=1...5)(6)  
LPUART1(6)  
I2Cx (x=1...4)(7)  
LPTIMx (x=1,2)  
USB_FS(8)  
LSE  
LSI  
Stop 0(5)  
Ranges 0/1/2  
No  
Off  
ON  
All other peripherals are frozen  
 
 
 
Table 10. STM32L552xx modes overview (continued)  
Regulator and SMPS  
mode(1)  
Mode  
CPU  
Flash  
SRAM  
Clocks  
DMA and Peripherals(2)  
Wakeup source  
BOR, PVD, PVM  
RTC, IWDG  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
COMPx (x=1,2)  
DAC1  
OPAMPx (x=1,2)  
USARTx (x=1...5)(6)  
LPUART1(6)  
I2Cx (x=1...4)(7)  
LPTIMx (x=1,2)  
***  
COMPx (x=1..2)  
USARTx (x=1...5)(6)  
LPUART1(6)  
I2Cx (x=1...4)(7)  
LPTIMx (x=1,2)  
USB_FS(8)  
LSE  
LSI  
Stop 1  
LPR  
No  
Off  
ON  
All other peripherals are frozen  
BOR, PVD, PVM  
RTC, IWDG  
Reset pin, all I/Os  
BOR, PVD, PVM  
RTC, IWDG  
COMPx (x=1..2)  
I2C3(7)  
LPUART1(6)  
LSE  
LSI  
Stop 2  
LPR  
No  
Off  
ON  
COMPx (x=1..2)  
I2C3(7)  
LPUART1(6)  
LPTIMx (x= 1,3)  
***  
LPTIMx (x= 1,3)  
All other peripherals are frozen  
Table 10. STM32L552xx modes overview (continued)  
Regulator and SMPS  
mode(1)  
Mode  
CPU  
Flash  
SRAM  
Clocks  
DMA and Peripherals(2)  
Wakeup source  
LPR  
SRAM2 ON  
BOR, RTC, IWDG  
***  
Reset pin  
5 I/Os (WKUPx)(9)  
All other peripherals are powered  
off  
LSE  
LSI  
Powered  
Off  
Standby  
Off  
Powered  
Off  
OFF  
***  
BOR, RTC, IWDG  
I/O configuration can be floating,  
pull-up or pull-down  
RTC  
***  
Reset pin  
5 I/Os (WKUPx)(9)  
RTC  
All other peripherals are powered  
off  
Powered  
Off  
Powered  
Off  
Shutdown  
OFF  
Off  
LSE  
***  
I/O configuration can be floating,  
pull-up or pull-down(10)  
1. LPR means Main regulator is OFF and Low-power regulator is ON.  
2. All peripherals can be active or clock gated to save power consumption.  
3. The Flash memory can be put in power-down and its clock can be gated off when executing from SRAM.  
4. The SRAM1 and SRAM2 clocks can be gated on or off independently.  
5. SMPS mode can be used in Stop 0 mode, but no significant power gain can be expected.  
6. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.  
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
8. USB_FS wakeup by resume from suspend and attach detection protocol event.  
9. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.  
10. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.  
STM32L552xx  
Functional overview  
By default, the microcontroller is in Run mode after a system or a power reset. It is up to the  
user to select one of the low-power modes described below:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Low-power run mode  
This mode is achieved with VCORE supplied by the low-power regulator to minimize  
the regulator's operating current. The code can be executed from SRAM or from Flash,  
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can  
be clocked by HSI16.  
Low-power sleep mode  
This mode is entered from the Low-power run mode. Only the CPU clock is stopped.  
When wakeup is triggered by an event or an interrupt, the system reverts to the Low-  
power run mode.  
Stop 0, Stop 1 and Stop 2 modes  
Stop mode achieves the lowest power consumption while retaining the content of  
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI  
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still  
running.  
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).  
Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode  
to detect their wake-up condition.  
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,  
most of the VCORE domain is put in a lower leakage mode.  
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller  
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator  
remains ON, allowing a very fast wakeup time but with much higher consumption.  
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI  
up to 48 MHz or HSI16, depending on software configuration.  
Standby mode  
The Standby mode is used to achieve the lowest power consumption with BOR. The  
internal regulator is switched off so that the VCORE domain is powered off. The PLL,  
the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.  
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).  
The Brownout reset (BOR) always remains active in Standby mode.  
The state of each I/O during Standby mode can be selected by software: I/O with  
internal pull-up, internal pull-down or floating.  
After entering Standby mode, SRAM1 and register contents are lost except for registers  
in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 4 Kbytes can  
be retained in Standby mode, supplied by the low-power regulator (standby with RAM2  
retention mode).  
DS12737 Rev 6  
43/340  
78  
Functional overview  
STM32L552xx  
The BORL (brown out detector low) can be configured in ultra-low-power mode to  
further reduce power consumption during standby mode.  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,  
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,  
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).  
The system clock after wakeup is MSI up to 8 MHz.  
Shutdown mode  
The Shutdown mode allows to achieve the lowest power consumption. The internal  
regulator is switched off so that the VCORE domain is powered off. The PLL, the  
HSI16, the MSI, the LSI and the HSE oscillators are also switched off.  
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).  
The BOR is not available in Shutdown mode. No power voltage monitoring is possible  
in this mode, therefore the switch to Backup domain is not supported.  
SRAM1, SRAM2 and register contents are lost except for registers in the Backup  
domain.  
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin  
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic  
wakeup, timestamp, tamper).  
The system clock after wakeup is MSI at 4 MHz.  
44/340  
DS12737 Rev 6  
STM32L552xx  
Functional overview  
(1)  
Table 11. Functionalities depending on the working mode  
Stop 0/1 Stop 2 Standby Shutdown  
Low-  
Low-  
Peripheral  
Run  
Sleep power power  
VBAT  
-
-
-
-
run  
sleep  
CPU  
Y
-
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Flash memory  
(512 Kbyte)  
O(2)  
O(2)  
O(2)  
O(2)  
SRAM1  
(192 Kbytes)  
Y
Y(3)  
Y
Y(3)  
Y
-
Y
-
-
-
-
-
-
SRAM2 (64 Kbytes)  
FSMC  
Y
O
O
Y
Y(3)  
O
Y
O
O
Y
Y(3)  
O
Y
-
-
-
-
-
Y
-
-
-
-
-
O(4)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OCTOSPI  
O
O
-
-
-
-
Backup registers  
Y
Y
Y
Y
Y
Y
Y
Brownout reset  
(BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
-
-
Programmable  
voltage detector  
(PVD)  
O
O
O
O
O
O
O
O
Peripheral voltage  
monitor (PVMx;  
x=1,2,3,4)  
O
O
O
O
O
O
O
O
-
-
-
-
-
DMA  
O
O
O
O
O
O
O
O
O
O
-
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
High speed internal  
(HSI16)  
(5)  
(5)  
-
Oscillator HSI48  
-
-
High speed external  
(HSE)  
O
O
-
Low speed internal  
(LSI)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
O
O
-
-
-
O
O
-
-
-
-
O
-
-
-
-
-
-
-
O
-
Low speed external  
(LSE)  
Multi speed internal  
(MSI)  
-
-
-
Clock security  
system (CSS)  
-
-
-
-
-
-
-
-
Clock security  
system on LSE  
O
O
O
O
O
O
-
-
DS12737 Rev 6  
45/340  
78  
 
 
Functional overview  
STM32L552xx  
(1)  
Table 11. Functionalities depending on the working mode (continued)  
Stop 0/1 Stop 2 Standby Shutdown  
Low-  
Low-  
Peripheral  
Run  
Sleep power power  
VBAT  
-
-
-
-
run  
sleep  
VDD voltage  
monitoring,  
temperature  
monitoring  
O
O
O
O
O
O
O
O
O
O
-
-
-
RTC / TAMP  
O
8
O
8
O
8
O
8
O
8
-
O
O
O
O
8
-
O
O
-
O
8
-
O
O
-
O
8
-
O
O
-
O
3
-
Number of RTC  
Tamper pins  
USB, UCPD  
O(8)  
O
O(8)  
O
-
-
USARTx  
(x=1,2,3,4,5)  
O
O
O(6) O(6)  
-
-
-
-
-
-
-
Low-power UART  
(LPUART)  
O
O
O
O
O(6) O(6) O(6) O(6)  
O(7) O(7)  
O(7) O(7) O(7) O(7)  
-
-
-
-
-
I2Cx (x=1,2,4)  
I2C3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPIx (x=1,2,3)  
FDCAN1  
-
-
-
-
-
-
-
-
SDMMC1  
-
-
-
-
SAIx (x=1,2)  
DFSDM1  
-
-
-
-
-
-
-
-
ADCx (x=1,2)  
DAC1  
-
-
-
-
O
O
O
O
-
-
-
-
VREFBUF  
-
-
-
OPAMPx (x=1,2)  
COMPx (x=1,2)  
Temperature sensor  
Timers (TIMx)  
-
-
-
O
-
O
-
O
-
-
-
-
-
Low-power timer 1,  
3 (LPTIM1 and  
LPTIM3)  
O
O
O
O
O
O
O
O
-
-
-
-
-
Low-power timer 2  
(LPTIM2)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
Independent  
watchdog (IWDG)  
O
O
O
O
46/340  
DS12737 Rev 6  
STM32L552xx  
Functional overview  
(1)  
Table 11. Functionalities depending on the working mode (continued)  
Stop 0/1 Stop 2 Standby Shutdown  
Low-  
Low-  
Peripheral  
Run  
Sleep power power  
VBAT  
-
-
-
-
run  
sleep  
Window watchdog  
(WWDG)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SysTick timer  
Touch sensing  
controller (TSC)  
Random number  
generator (RNG)  
O(8)  
O
O(8)  
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CRC calculation  
unit  
O
O
-
-
5
5
(9)  
(11)  
GPIOs  
O
O
O
O
O
O
O
O
pins  
pins  
-
(10)  
(10)  
1. Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available.  
Gray cells highlight the wakeup capability in each mode.  
2. The Flash can be configured in Power-down mode. By default, it is not in Power-down mode.  
3. The SRAM clock can be gated on or off.  
4. 4 Kbytes or full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register.  
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by  
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not  
need it anymore.  
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or  
received frame event.  
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
8. Voltage scaling ranges 0 and 1 only.  
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.  
10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5.  
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when  
exiting the Shutdown mode.  
3.9.6  
3.9.7  
Reset mode  
In order to improve the consumption under reset, the I/Os state under and after reset is  
“analog state” (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
VBAT operation  
The VBAT pin allows the device VBAT domain to be powered from an external battery, an  
external supercapacitor, or from V when there is no external battery and when an external  
DD  
DS12737 Rev 6  
47/340  
78  
 
 
 
 
Functional overview  
STM32L552xx  
supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup  
registers. Three anti-tamper detection pins are available in VBAT mode.  
The VBAT operation is automatically activated when V is not present. An internal VBAT  
DD  
battery charging circuit is embedded and can be activated when V is present.  
DD  
Note:  
When the microcontroller is supplied from VBAT, neither external interrupts nor RTC  
alarm/events exit the microcontroller from the VBAT operation.  
3.9.8  
PWR TrustZone security  
When the TrustZone security is activated by the TZEN option bit, the PWR is switched in  
TrustZone security mode.  
The PWR TrustZone security allows to secure the following configuration:  
Low-power mode  
Wake-up (WKUP) pins  
Voltage detection and monitoring  
VBAT mode  
Other PWR configuration bits are secure when:  
The system clock selection is secure in RCC, the voltage scaling (VOS) configuration is  
secure  
A GPIO is configured as secure, it's corresponding bit for Pull-up/Pull-down in standby  
mode is secure  
The RTC is secure, the backup domain write protection bit in PWR is secure.  
3.10  
Peripheral interconnect matrix  
Several peripherals have direct connections between them, which allow autonomous  
communication between them and support the saving of CPU resources (thus power supply  
consumption). In addition, these hardware connections allow fast and predictable latency.  
Depending on the peripherals, these interconnections can operate in Run, Sleep, Low-  
power run and Sleep, Stop 0, Stop 1 and Stop 2 modes. See Table 12 for more details.  
Table 12. STM32L552xx peripherals interconnect matrix  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIMx  
Timers synchronization or chaining  
Conversion triggers  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
ADC  
DAC1  
TIMx  
DFSDM1  
DMA  
Memory to memory transfer trigger  
Comparator output blanking  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
COMPx  
48/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Functional overview  
Table 12. STM32L552xx peripherals interconnect matrix (continued)  
Interconnect  
destination  
Interconnect source  
Interconnect action  
TIM1, 8  
TIM2, 3  
Timer input channel, trigger, break from  
analog signals comparison  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
COMPx  
Low-power timer triggered by analog  
signals comparison  
Y
LPTIMERx  
Y
(1)  
ADCx  
RTC  
TIM1, 8  
TIM16  
Timer triggered by analog watchdog  
Timer input channel from RTC events  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
Low-power timer triggered by RTC alarms  
or tampers  
Y
LPTIMERx  
Y
Y
Y
Y
Y
(1)  
TIM2  
All clocks sources (internal  
and external)  
Clock source used as input channel for  
RC measurement and trimming  
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
TIM15, 16, 17  
USB  
TIM2  
Timer triggered by USB SOF  
CSS  
CPU (hard fault)  
RAM (parity error)  
Flash memory (ECC error)  
COMPx  
TIM1,8  
Timer break  
Y
Y
Y
Y
-
-
TIM15,16,17  
PVD  
DFSDM1 (analog  
watchdog, short circuit  
detection)  
TIMx  
External trigger  
External trigger  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
Y
LPTIMERx  
Y
(1)  
GPIO  
ADC  
DAC1  
Conversion external trigger  
Y
Y
Y
Y
-
-
DFSDM1  
1. LPTIM1 and LPTIM3 only.  
DS12737 Rev 6  
49/340  
78  
 
Functional overview  
STM32L552xx  
3.11  
Reset and clock controller (RCC)  
The clock controller (see Figure 7) distributes the clocks coming from the different  
oscillators to the core and to the peripherals. It also manages the clock gating for low-power  
modes and ensures the clock robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption,  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Clock security system: clock sources can be changed safely on the fly in Run mode  
through a configuration register.  
Clock management: to reduce the power consumption, the clock controller can stop  
the clock to the core, individual peripherals or memory.  
System clock source: four different clock sources can be used to drive the master  
clock SYSCLK:  
4 to 48 MHz high-speed external crystal or ceramic resonator (HSE), that can  
supply a PLL. The HSE can also be configured in bypass mode for an external  
clock.  
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate  
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is  
available in the system (LSE), the MSI frequency can be automatically trimmed by  
hardware to reach better than ±0.25% accuracy. In this mode the MSI can feed the  
USB device, saving the need of an external high-speed crystal (HSE). The MSI  
can supply a PLL.  
System PLL which can be fed by HSE, HSI16 or MSI, with a maximum frequency  
at 110 MHz.  
RC48 with clock recovery system (HSI48): internal 48 MHz clock source (HSI48)can  
be used to drive the USB, the SDMMC or the RNG peripherals. This clock can be  
output on the MCO.  
UCPD kernel clock: it is derived from HSI16 clock. The HSI16 RC oscillator must be  
enabled prior to the UCPD kernel clock use.  
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive  
the real-time clock:  
32.768 kHz low-speed external crystal (LSE), supporting four drive capability  
modes. The LSE can also be configured in bypass mode for an external clock.  
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock accuracy is ±5% accuracy. The LSI clock can be divided by 128 to  
output a 250 Hz as source clock.  
Peripheral clock sources: several peripherals (USB, SDMMC, RNG, SAI, USARTs,  
I2Cs, LPTimers, ADC) have their own independent clock whatever the system clock.  
Three PLLs, each having three independent outputs allowing the highest flexibility, can  
generate independent clocks for the ADC, the USB/SDMMC/RNG and the two SAIs.  
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz  
clock (MSI). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If a HSE clock  
failure occurs, the master clock is automatically switched to HSI16 and a software  
50/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
interrupt is generated if enabled. LSE failure can also be detected and generated an  
interrupt.  
Clock-out capability:  
MCO (microcontroller clock output): it outputs one of the internal clocks for  
external use by the application  
LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes  
(except VBAT).  
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and  
the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB  
domains is 110 MHz.  
DS12737 Rev 6  
51/340  
78  
Functional overview  
STM32L552xx  
Figure 7. STM32L552xx clock tree  
to IWDG  
to RTC  
LSI RC 32 kHz  
LSCO  
OSC32_OUT  
LSE OSC  
32.768 kHz  
OSC32_IN  
/32  
to PWR  
to AHB bus, core, memory and DMA  
FCLK Cortex free running clock  
to Cortex system timer  
LSE  
LSI  
MSI  
HSI16  
HSE  
SYSCLK  
PLLCLK  
HSI48  
MCO  
/ 1→16  
HCLK  
AHB PRESC  
/ 1,2,..512  
/ 8  
Clock  
source  
control  
PCLK1  
to APB1 peripherals  
APB1 PRESC  
/ 1,2,4,8,16  
OSC_OUT  
OSC_IN  
HSE OSC  
4-48 MHz  
HSE  
x1 or x2  
to TIMx  
x=2..7  
MSI  
Clock  
detector  
SYSCLK  
HSI16  
LSE  
HSI16  
to USARTx  
X=2..5  
to LPUART1  
SYSCLK  
HSI RC  
16 MHz  
HSI16  
MSI RC  
to I2Cx  
SYSCLK  
100 kHz – 48 MHz  
RC 48 MHz  
x=1,2,3,4  
LSI  
LSE  
to LPTIMx  
x=1,2  
HSI16  
MSI  
MSI  
HSI16  
HSE  
PLL  
/ M  
OCTOSPI clock  
CRS clock  
PLLSAI3CLK  
/ P  
/ Q  
/ R  
PLL48M1CLK  
PLLCLK  
PCLK2  
APB2 PRESC  
/ 1,2,4,8,16  
to APB2 peripherals  
HSI16  
MSI  
x1 or x2  
HSI16  
HSE  
/ M  
to TIMx  
PLLSAI1  
x=1,8,15,16,17  
PLLSAI1CLK  
/ P  
/ Q  
/ R  
PLL48M2CLK  
PLLADC1CLK  
LSE  
HSI16  
to  
SYSCLK  
USART1  
SDMMC clock  
48  
MHz  
MSI  
HSI16  
48 MHz clock to USB, RNG  
SYSCLK  
to ADC  
HSI16  
FDCAN  
To UCPD1  
MSI  
HSI16  
HSE  
HSE  
MSI  
HSI16  
/ M  
PLLSAI2  
PLLSAI2CLK  
/ P  
/ Q  
/ R  
DFSDM  
audio clock  
to SAI1  
HSI16  
SAI1_EXTCLK  
SAI2_EXTCLK  
to SAI2  
MSv49302V2  
52/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
TrustZone security  
When the TrustZone security is activated by the TZEN option bit, the RCC is switched in  
TrustZone security mode.  
The RCC TrustZone security allows to secure some RCC system configuration and  
peripheral configuration clock from being read or modified by non-secure accesses:  
RCC system security:  
HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48 configuration and status  
bits  
Main PLL, PLLSAI1, PLLSAI2, AHB prescaler configuration and status bits  
System clock SYSCLK and HSI48 source clock selection and status bits  
MCO clock output configuration and STOPWUCK bit  
Reset flag RMVF configuration bit  
RCC peripheral security:  
When a peripheral is secure, the related peripheral clock, reset, clock source  
selection and clock enable during low power modes control bits are secure.  
A peripheral is in secure state when:  
For securable peripherals, when it's corresponding SEC security bit is set in the  
TZSC (TrustZone security controller)  
For TrustZone-aware peripherals, a security feature of this peripheral is enabled  
through its dedicated bits.  
3.12  
3.13  
Clock recovery system (CRS)  
The devices embed a special block which allows automatic trimming of the internal 48 MHz  
oscillator to guarantee its optimal accuracy over the whole device operational range. This  
automatic trimming is based on the external synchronization signal, which could be either  
derived from USB SOF signalization, from LSE oscillator, from an external signal on  
CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also  
possible to combine automatic trimming with manual trimming action.  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions.  
After reset, all GPIOs are in Analog mode to reduce power consumption.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
GPIO TrustZone security  
Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O  
pin is configured as secure, its corresponding configuration bits for alternate function, mode  
selection, I/O data are secure against a non-secure access. The associated registers bit  
access is restricted to a secure software only. After reset, all GPIO ports are secure.  
DS12737 Rev 6  
53/340  
78  
 
 
Functional overview  
STM32L552xx  
3.14  
Multi-AHB bus matrix  
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, SDMMC1) and  
the slaves (Flash memory, RAM, FMC, OCTOSPI, AHB and APB peripherals). It also  
ensures a seamless and efficient operation even when several high-speed peripherals work  
simultaneously.  
Figure 8. Multi-AHB bus matrix  
CORTEX®-M33  
with TrustZone and FPU  
Legend  
DMA1 DMA2 SDMMC1  
Master Interface  
Bus multiplexer  
Slave Interface  
MPCBBx: Memory protection controller block based  
MPCWMx: Memory protection controller Watermark  
8 KB I-Cache  
FLASH  
512 KB  
MPCBB1  
MPCBB2  
SRAM1  
SRAM2  
AHB1  
peripherals  
AHB2  
peripherals  
MPCWM1  
OctoSPI1  
FSMC  
MPCWM2  
MPCWM3  
BusMatrix-S  
MSv61198V1  
54/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
3.15  
Direct memory access controller (DMA)  
The device embeds 2 DMAs. Refer to Table 13: DMA1 and DMA2 implementation for the  
features implementation.  
Direct memory access (DMA) is used in order to provide a high-speed data transfer  
between peripherals and memory as well as from memory to memory. Data can be quickly  
moved by DMA without any CPU actions. This keeps the CPU resources free for other  
operations.  
The two DMA controllers have 16 channels in total, each one dedicated to manage memory  
access requests from one or more peripherals. Each controller has an arbiter for handling  
the priority between DMA requests.  
The DMA supports 8 channels for each DMA1 and DMA2, independently configurable:  
Each channel is associated either with a DMA request signal coming from a peripheral,  
or with a software trigger in memory-to-memory transfers. This configuration is done by  
software.  
Priority between the requests is programmable by software (4 levels per channel: very  
high, high, medium, low) or by hardware in case of equality (such as request 1 has  
priority over request 2).  
Transfer size of source and destination are independent (byte, half-word, word),  
emulating packing and unpacking. Source and destination addresses must be aligned  
on the data size.  
Support of transfers from/to peripherals to/from memory with circular buffer  
management.  
18  
Programmable number of data to be transferred: 0 to 2 - 1.  
Generation of an interrupt request per channel. Each interrupt request is caused from  
any of the three DMA events: transfer complete, half transfer, or transfer error.  
TrustZone support:  
Support for AHB secure and non-secure DMA transfers, independently at a first  
channel level, and independently at a source and destination sub-level  
TrustZone-aware AHB slave port, protecting any secure resource (register,  
register field) from a non-secure software access  
Privileged / unprivileged support:  
Support for AHB privileged and unprivileged DMA transfers, independently at a  
channel level  
Privileged-aware AHB slave port.  
Table 13. DMA1 and DMA2 implementation  
Feature  
DMA1  
DMA2  
Number of DMA channels  
TrustZone  
8
8
1 (supported)  
1 (supported)  
DS12737 Rev 6  
55/340  
78  
 
 
Functional overview  
STM32L552xx  
3.16  
DMA request router (DMAMUX)  
When a peripheral indicates a request for DMA transfer by setting its DMA request line, the  
DMA request is pending until it is served and the corresponding DMA request line is reset.  
The DMA request router allows to route the DMA control lines between the peripherals and  
the DMA controllers of the product.  
An embedded multi-channel DMA request generator can be considered as one of such  
peripherals. The routing function is ensured by a multi-channel DMA request line  
multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or  
synchronously with events on synchronization inputs.  
DMAMUX main features  
16-channel programmable DMA request line multiplexer output  
4-channel DMA request generator  
23 trigger inputs to DMA request generator  
23 synchronization inputs  
Per DMA request generator channel:  
DMA request trigger input selector  
DMA request counter  
Event overrun flag for selected DMA request trigger input  
Per DMA request line multiplexer channel output:  
90 input DMA request lines from peripherals  
One DMA request line output  
Synchronization input selector  
DMA request counter  
Event overrun flag for selected synchronization input  
One event output, for DMA request chaining  
TrustZone support:  
Support for AHB secure and non-secure DMA transfers, independently at a  
channel level.  
TrustZone-aware AHB slave port, protecting any secure resource (register,  
register field) from a non-secure software access, with configurable interrupt  
event.  
Two secure and non-secure interrupt requests, resulting from any of the  
respectively secure and non-secure channels. Each channel event being caused  
from any of the two DMAMUX input events: trigger or synchronization overrun,  
associated with a respectively secure and non-secure channels.  
Privileged / Unprivileged support:  
Support for AHB privileged and unprivileged DMA transfers, independently, at a  
channel level.  
Privileged-aware AHB slave port.  
56/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
3.17  
Interrupts and events  
3.17.1  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller which is able to manage 8 priority  
levels, and to handle up to 109 maskable interrupt channels plus the 16 interrupt lines of the  
®
Cortex -M33.  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
TrustZone support. The NVIC registers are banked across secure and non-secure  
states  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.17.2  
Extended interrupt/event controller (EXTI)  
The Extended interrupts and event controller (EXTI) manages the individual CPU and  
system wakeup through configurable and direct event inputs. It provides wakeup requests to  
the power control, and generates an interrupt request to the CPU NVIC and events to the  
CPU event input. For the CPU an additional Event Generation block (EVG) is needed to  
generate the CPU event signal.  
The EXTI wakeup requests allow the system to be woken up from Stop modes.  
The interrupt request and event request generation can also be used in RUN modes. The  
EXTI also includes the EXTI mux IOport selection.  
The EXTI main features are the following:  
The EXTI main features are the following:  
43 input events supported  
All event inputs allow to wake up the system.  
Events which do not have an associated wakeup flag in the peripheral, have a flag in  
the EXTI and generate an interrupt to the CPU from the EXTI.  
DS12737 Rev 6  
57/340  
78  
 
 
 
 
Functional overview  
STM32L552xx  
The asynchronous event inputs are classified in 2 groups:  
Configurable events (signals from I/Os or peripherals able to generate a pulse)  
Configurable events have the following features:  
Selectable active trigger edge  
Interrupt pending status register bit independent for the rising and falling edge.  
Individual interrupt and event generation mask, used for conditioning the CPU  
wakeup, interrupt and event generation.  
SW trigger possibility  
Direct events (interrupt and wakeup sources from peripherals having an associated  
flag which requiring to be cleared in the peripheral)  
Direct events have the following features:  
Fixed rising edge active trigger  
No interrupt pending status register bit in the EXTI. (The interrupt pending status  
flag is provided by the peripheral generating the event.)  
Individual interrupt and event generation mask, used for conditioning the CPU  
wakeup and event generation.  
No SW trigger possibility  
TrustZone secure events  
The access to control and configuration bits of secure input events can be made  
secure.  
EXTI IO port selection  
3.18  
Cyclic redundancy check calculation unit (CRC)  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a  
configurable generator with polynomial value and size.  
Among other applications, the CRC-based techniques are used to verify data transmission  
or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify  
the Flash memory integrity.  
The CRC calculation unit helps to compute a signature of the software during runtime, which  
can be ulteriorly compared with a reference signature generated at link-time and which can  
be stored at a given memory location.  
3.19  
Flexible static memory controller (FSMC)  
The flexible static memory controller (FSMC) includes two memory controllers:  
The NOR/PSRAM memory controller  
The NAND/memory controller  
This memory controller is also named flexible memory controller (FMC).  
58/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
The main features of the FSMC controller are the following:  
Interface with static-memory mapped devices including:  
Static random access memory (SRAM)  
NOR Flash memory/OneNAND Flash memory  
PSRAM (four memory banks)  
NAND Flash memory with ECC hardware to check up to 8 Kbytes of data  
Ferroelectric RAM (FRAM)  
8-,16- bit data bus width  
Independent chip select control for each memory bank  
Independent configuration for each memory bank  
Write FIFO  
LCD parallel interface  
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It  
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to  
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost  
effective graphic applications using LCD modules with embedded controllers or high-  
performance solutions using external controllers with dedicated acceleration.  
TrustZone security  
When the TrustZone security is enabled, the whole FSMC banks are secure after reset.  
Non-secure area can be configured using the TZSC MPCWMx controller.  
The FSMC NOR/PSRAM bank:  
Up to two non-secure area can be configured thought the TZSC MPCWM2  
controller with a granularity of 64 Kbytes.  
The FSMC NAND bank:  
Can be either configured as fully secure or fully non-secure using the TZSC  
MPCWM3 controller.  
The FSMC registers can be configured as secure through the TZSC controller.  
3.20  
Octo-SPI interface (OCTOSPI)  
The OCTOSPI is a specialized communication interface targetting single, dual, quad or octal  
SPI memories. It can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the OCTOSPI registers  
Status polling mode: the external memory status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external memory is memory mapped and is seen by the  
system as if it were an internal memory supporting read and write operation  
The OCTOSPI supports two frame formats:  
Classical frame format with command, address, alternate byte, dummy cycles and data  
phase over 1, 2, 4 or 8 data pins  
TM  
HyperBus frame format  
The OCTOSPI offers the following features:  
DS12737 Rev 6  
59/340  
78  
 
Functional overview  
STM32L552xx  
Three functional modes: indirect, status-polling, and memory-mapped  
Read and write support in memory-mapped mode  
Supports for single, dual, quad and octal communication  
Dual-quad mode, where 8 bits can be sent/received simultaneously by accessing two  
quad memories in parallel.  
SDR and DTR support  
Data strobe support  
Fully programmable opcode for both indirect and memory mapped mode  
Fully programmable frame format for both indirect and memory mapped mode  
Each of the five following phases can be configured independently (enable, length,  
single/dual/quad communication)  
Instruction phase  
Address phase  
Alternate bytes phase  
Dummy cycles phase  
Data phase  
TM  
HyperBus support  
Integrated FIFO for reception and transmission  
8, 16, and 32-bit data accesses are allowed  
DMA channel for indirect mode operations  
Timeout management  
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and  
access error  
TrustZone security  
When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.  
Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a  
granularity of 64 Kbytes.  
The OCTOSPI registers can be configured as secure through the TZSC controller.  
60/340  
DS12737 Rev 6  
STM32L552xx  
Functional overview  
3.21  
Analog-to-digital converter (ADC)  
The device embeds two successive approximation analog-to-digital converters with the  
following features:  
12-bit native resolution, with built-in calibration  
5.33 Msps maximum conversion rate with full resolution  
Down to 18.75 ns sampling time  
Increased conversion rate for lower resolution (up to 8.88 Msps for 6-bit  
resolution)  
Up to 16 external channels  
5 internal channels: internal reference voltage, temperature sensor, VBAT/3 and DAC1  
outputs  
One external reference pin is available on some package, allowing the input voltage  
range to be independent from the power supply  
Single-ended and differential mode inputs  
Low-power design  
Capable of low-current operation at low conversion rate (consumption decreases  
linearly with speed)  
Dual clock domain architecture: ADC speed independent from CPU frequency  
Highly versatile digital interface  
Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups  
of analog signals conversions can be programmed to differentiate background and  
high-priority real-time conversions  
Each ADC support multiple trigger inputs for synchronization with on-chip timers  
and external signals  
Results stored into a data register or in RAM with DMA controller support  
Data pre-processing: left/right alignment and per channel offset compensation  
Built-in oversampling unit for enhanced SNR  
Channel-wise programmable sampling time  
Analog watchdog for automatic voltage monitoring, generating interrupts and  
trigger for selected timers  
Hardware assistant to prepare the context of the injected channels to allow fast  
context switching  
3.21.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADC1_IN17 input channels which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor varies  
from chip to chip due to process variation, the uncalibrated internal temperature sensor is  
suitable for applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
DS12737 Rev 6  
61/340  
78  
 
 
 
Functional overview  
STM32L552xx  
Table 14. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
TS_CAL1  
TS_CAL2  
0x0BFA 05A8 - 0x0BFA 05A9  
0x0BFA 05CA- 0x0BFA 05CB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
TS ADC raw data acquired at a  
temperature of 130 °C (± 5 °C),  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.21.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for  
the ADC and the comparators. The VREFINT is internally connected to the ADC1_IN0 input  
channel. The precise voltage of VREFINT is individually measured for each part by ST  
during production test and stored in the system memory area. It is accessible in read-only  
mode.  
Table 15. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT  
temperature of 30 °C (± 5 °C),  
0x0BFA 05AA - 0x0BFA 05AB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.21.3  
VBAT battery voltage monitoring  
This embedded hardware enables the application to measure the V  
battery voltage using  
BAT  
the internal ADC channel ADC1_IN18. As the V  
voltage may be higher than the VDDA,  
BAT  
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge  
divider by 3. As a consequence, the converted digital value is one third of the V voltage.  
BAT  
62/340  
DS12737 Rev 6  
 
 
 
 
 
STM32L552xx  
Functional overview  
3.22  
Digital to analog converter (DAC)  
Two 12-bit buffered DAC channels can be used to convert digital signals into analog voltage  
signal outputs. The chosen design structure is composed of integrated resistor strings and  
an amplifier in inverting configuration.  
This digital interface supports the following features:  
Up to two DAC output channels  
8-bit or 12-bit output mode  
Buffer offset calibration (factory and user trimming)  
Left or right data alignment in 12-bit mode  
Synchronized update capability  
Noise-wave generation  
Triangular-wave generation  
Dual DAC channel independent or simultaneous conversions  
DMA capability for each channel  
External triggers for conversion  
Sample and hold low-power mode, with internal or external capacitor  
The DAC channels are triggered through the timer update outputs that are also connected  
to different DMA channels.  
3.23  
Voltage reference buffer (VREFBUF)  
The devices embed a voltage reference buffer which can be used as voltage reference for  
ADC, DACs and also as voltage reference for external components through the VREF+ pin.  
The internal voltage reference buffer supports two voltages:  
2.048 V  
2.5 V  
An external voltage reference can be provided through the VREF+ pin when the internal  
voltage reference buffer is off.  
The VREF+ pin is double-bonded with VDDA on some packages. In these packages the  
internal voltage reference buffer is not available.  
Figure 9. Voltage reference buffer  
VREFBUF  
VDDA DAC, ADC  
Bandgap  
+
-
VREF+  
Low frequency  
cut-off capacitor  
100 nF  
MSv40197V1  
DS12737 Rev 6  
63/340  
78  
 
 
 
Functional overview  
STM32L552xx  
3.24  
Comparators (COMP)  
The devices embed two rail-to-rail comparators with programmable reference voltage  
(internal or external), hysteresis and speed (low speed for low-power) and with selectable  
output polarity.  
The reference voltage can be one of the following:  
External I/O  
DAC output channels  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers  
and can also be combined into a window comparator.  
3.25  
Operational amplifier (OPAMP)  
The devices embed two operational amplifiers with external or internal follower routing and  
PGA capability.  
The operational amplifier features:  
Low input bias current  
Low offset voltage  
Low-power mode  
Rail-to-rail input  
3.26  
Digital filter for sigma-delta modulators (DFSDM)  
The devices embed one DFSDM with four digital filters modules and eight external input  
serial channels (transceivers) or alternately eight internal parallel inputs support.  
The DFSDM peripheral is dedicated to interface the external Σ∆ modulators to the  
microcontroller and then to perform digital filtering of the received data streams (which  
represent analog value on Σ∆ modulators inputs).  
The DFSDM can also interface the PDM (pulse density modulation) microphones and  
perform PDM to PCM conversion and filtering in hardware. The DFSDM features optional  
parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into  
DFSDM).  
The DFSDM transceivers support several serial interface formats (to support various Σ∆  
modulators) and the DFSDM digital filter modules perform digital processing according to  
the user’s selected filter parameters with up to 24-bit final ADC resolution.  
64/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Functional overview  
The DFSDM peripheral supports:  
Up to 4 multiplexed input digital serial channels:  
Configurable SPI interface to connect various Σꢀ modulators  
Configurable Manchester coded 1 wire interface support  
Clock output for Σꢀ modulator(s)  
Alternative inputs from up to 4 internal digital parallel channels:  
Inputs with up to 16 bit resolution  
Internal sources: ADCs data or memory (CPU/DMA write) data streams  
Adjustable digital signal processing:  
Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024)  
Integrator: oversampling ratio (1..256)  
Up to 24-bit output data resolution:  
Right bit-shifter on final data (0..31 bits)  
Signed output data format  
Automatic data offset correction (offset stored in register by user)  
Continuous or single conversion  
Start-of-conversion synchronization with:  
Software trigger  
Internal timers  
External events  
Start-of-conversion synchronously with first DFSDM filter (DFSDM_FLT0)  
Analog watchdog feature:  
Low value and high value data threshold registers  
Own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)  
Input from output data register or from one or more input digital serial channels  
Continuous monitoring independently from standard conversion  
Short-circuit detector to detect saturated analog input values (bottom and top ranges):  
Up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on input data stream  
Mnitoring continuously each channel (4 serial channel transceiver outputs)  
Break generation on analog watchdog event or short-circuit detector event  
Extremes detector:  
Store minimum and maximum values of output data values  
Refreshed by software  
DMA may be used to read the conversion data  
Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock  
absence  
“Regular” or “injected” conversions:  
“Regular” conversions can be requested at any time or even in continuous mode  
without having any impact on the timing of “injected” conversions.  
DS12737 Rev 6  
65/340  
78  
Functional overview  
STM32L552xx  
3.27  
Touch sensing controller (TSC)  
The touch sensing controller provides a simple solution to add capacitive sensing  
functionality to any application. A capacitive sensing technology is able to detect finger  
presence near an electrode that is protected from direct touch by a dielectric (glass, plastic  
or other). The capacitive variation introduced by the finger (or any conductive object) is  
measured using a proven implementation based on a surface charge transfer acquisition  
principle.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library which is free to use and allows touch sensing functionality to be implemented reliably  
in the end application.  
The main features of the touch sensing controller are the following:  
Proven and robust surface charge transfer acquisition principle  
Supports up to 22 capacitive sensing channels  
Up to 3 capacitive sensing channels can be acquired in parallel offering a very good  
response time  
Spread spectrum feature to improve system robustness in noisy environments  
Full hardware management of the charge transfer acquisition sequence  
Programmable charge transfer frequency  
Programmable sampling capacitor I/O pin  
Programmable channel I/O pin  
Programmable max count value to avoid long acquisition when a channel is faulty  
Dedicated end of acquisition and max count error flags with interrupt capability  
One sampling capacitor for up to 3 capacitive sensing channels to reduce the system  
components  
Compatible with proximity, touchkey, linear and rotary touch sensor implementation  
Designed to operate with STMTouch touch sensing firmware library  
Note:  
The number of capacitive sensing channels is dependent on the size of the packages and  
subject to I/O availability.  
66/340  
DS12737 Rev 6  
 
STM32L552xx  
Functional overview  
3.28  
True random number generator (RNG)  
The RNG is a true random number generator that provides full entropy outputs to the  
application as 32-bit samples. It is composed of a live entropy source (analog) and an  
internal conditioning component.  
The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a  
non-deterministic random bit generator (NDRBG).  
The true random number generator:  
delivers 32-bit true random numbers, produced by an analog entropy source  
conditioned by a NIST SP800-90B approved conditioning stage,  
can be used as entropy source to construct a non-deterministic random bit generator  
(NDRBG),  
produces four 32-bit random samples every 412 AHB clock cycles if fAHB < 77 MHz  
(256 RNG clock cycles otherwise),  
embeds start-up and NIST SP800-90B approved continuous health tests (repetition  
count and adaptive proportion tests), associated with specific error management,  
can be disabled to reduce power consumption, or enabled with an automatic low-power  
mode (default configuration),  
has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses  
only (else an AHB bus error is generated, and the write accesses are ignored).  
3.29  
HASH hardware accelerator (HASH)  
The hash processor is a fully compliant implementation of the secure hash algorithm (SHA-  
1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the  
HMAC (keyed-hash message authentication code) algorithm suitable for a variety of  
applications.  
It computes a message digest (160 bits for the SHA-1 algorithm, 256 bits for the SHA-256  
algorithm and 224 bits for the SHA-224 algorithm,128 bits for the MD5 algorithm) for  
messages of up to (264 - 1) bits, while the HMAC algorithms provide a way of authenticating  
messages by means of hash functions. The HMAC algorithms consist in calling the SHA-1,  
SHA-224, SHA-256 or MD5 hash function twice.  
3.30  
Timers and watchdogs  
The devices include two advanced control timers, up to nine general-purpose timers, two  
basic timers, two low-power timers, two watchdog timers and a SysTick timer.  
Table 16 compares the features of the advanced control, general-purpose and basic timers.  
DS12737 Rev 6  
67/340  
78  
 
 
 
 
Functional overview  
STM32L552xx  
Table 16. Timer feature comparison  
DMA  
request  
generation channels  
Capture/  
compare  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer type  
Timer  
Any integer  
between 1  
and 65536  
Advanced  
control  
Up, down,  
Up/down  
TIM1, TIM8  
TIM2, TIM5  
TIM3, TIM4  
TIM15  
16-bit  
32-bit  
16-bit  
16-bit  
16-bit  
16-bit  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
4
4
4
2
1
0
3
No  
No  
1
Any integer  
between 1  
and 65536  
General-  
purpose  
Up, down,  
Up/down  
Any integer  
between 1  
and 65536  
General-  
purpose  
Up, down,  
Up/down  
Any integer  
between 1  
and 65536  
General-  
purpose  
Up  
Up  
Up  
Any integer  
between 1  
and 65536  
General-  
purpose  
TIM16, TIM17  
TIM6, TIM7  
1
Any integer  
between 1  
and 65536  
Basic  
No  
3.30.1  
Advanced-control timer (TIM1, TIM8)  
The advanced-control timers can each be seen as a three-phase PWM multiplexed on six  
channels. They have complementary PWM outputs with programmable inserted dead-  
times. They can also be seen as complete general-purpose timers.  
The four independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability (0-  
100%)  
One-pulse mode output  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled in order to turn off any power switches driven by these outputs.  
Many features are shared with the general-purpose TIMx timers (described in  
Section 3.30.2) using the same architecture, so the advanced-control timers can work  
together with the TIMx timers via the Timer Link feature for synchronization or event  
chaining.  
68/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
3.30.2  
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16,  
TIM17)  
There are up to seven synchronizable general-purpose timers embedded in the  
STM32L552xx devices (see Table 16 for differences).  
Each general-purpose timer can be used to generate PWM outputs, or act as a simple time  
base.  
TIM2, TIM3, TIM4 and TIM5  
They are full-featured general-purpose timers:  
TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler  
TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler.  
These timers feature four independent channels for input capture/output compare,  
PWM or one-pulse mode output. They can work together, or with the other general-  
purpose timers via the Timer Link feature for synchronization or event chaining.  
The counters can be frozen in debug mode.  
All have independent DMA request generation and support quadrature encoders.  
TIM15, 16 and 17  
They are general-purpose timers with mid-range features:  
They have 16-bit auto-reload upcounters and 16-bit prescalers.  
TIM15 has two channels and one complementary channel  
TIM16 and TIM17 have one channel and one complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse mode  
output.  
The timers can work together via the Timer Link feature for synchronization or event  
chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.30.3  
3.30.4  
Basic timers (TIM6 and TIM7)  
The basic timers are mainly used for DAC trigger generation. They can also be used as  
generic 16-bit timebases.  
Low-power timers (LPTIM1, LPTIM2 and LPTIM3)  
The devices embed two low-power timers. These timers have an independent clock and are  
running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to  
wakeup the system from Stop mode.  
LPTIM1 and LPTIM3 are active in Stop 0, Stop 1 and Stop 2 modes.  
LPTIM2 is active in Stop 0 and Stop 1 mode.  
DS12737 Rev 6  
69/340  
78  
 
 
 
Functional overview  
STM32L552xx  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous/ one shot mode  
Selectable software/hardware input trigger  
Selectable clock source  
Internal clock sources: LSE, LSI, HSI16 or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by pulse counter application).  
Programmable digital glitch filter  
Encoder mode (LPTIM1 only).  
3.30.5  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently  
from the main clock, it can operate in Stop and Standby modes. It can be used either as a  
watchdog to reset the device when a problem occurs, or as a free running timer for  
application timeout management. It is hardware or software configurable through the option  
bytes. The counter can be frozen in debug mode.  
3.30.6  
3.30.7  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
®
The Cortex -M33 with TrustZone embeds two SysTick timers.  
When TrustZone is activated, two SysTick timer are available:  
SysTick, Secure instance.  
SysTick, Non-secure instance.  
When TrustZone is disabled, only one SysTick timer is available.  
This timer (secure or non-secure) is dedicated to real-time operating systems, but could  
also be used as a standard down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
70/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Functional overview  
3.31  
Real-time clock (RTC)  
The RTC supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
V
mode.  
BAT  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
TrustZone support:  
RTC fully securable  
Alarm A, alarm B, wakeup Timer and timestamp individual secure or non-secure  
configuration  
The RTC is supplied through a switch that takes power either from the V supply when  
DD  
present or from the V  
pin.  
BAT  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)  
The high-speed external clock (HSE), divided by a prescaler in the RCC.  
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the  
LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in  
all low-power modes except Shutdown mode.  
All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup  
the device from the low-power modes.  
3.32  
Tamper and backup registers (TAMP)  
32 32-bit backup registers are retained in all low-power modes and also in VBAT mode.  
They can be used to store sensitive data as their content is protected by an tamper  
detection circuit. 8 tamper pins and 7 internal tampers are available for anti-tamper  
detection.  
The external tamper pins can be configured for edge detection, or level detection with or  
without filtering, or active tamper which increases the security level by auto checking that  
the tamper pins are not externally opened or shorted.  
DS12737 Rev 6  
71/340  
78  
 
 
Functional overview  
STM32L552xx  
TAMP main features:  
32 backup registers:  
The backup registers (TAMP_BKPxR) are implemented in the RTC domain that  
remains powered-on by VBAT when the VDD power is switched off  
8 external tamper detection events  
Each external event can be configured to be active or passive  
External passive tampers with configurable filter and internal pull-up  
5 internal tamper events  
Any tamper detection can generate a RTC timestamp event  
Any tamper detection can erase the backup registers  
TrustZone support:  
Tamper secure or non-secure configuration.  
Backup registers configuration in 3 configurable-size areas:  
1 read/write secure area  
1 write secure/read non-secure area  
1 read/write non-secure area  
Monotonic counter.  
72/340  
DS12737 Rev 6  
STM32L552xx  
Functional overview  
3.33  
Inter-integrated circuit interface (I2C)  
The device embeds four I2C. Refer to Table 17: I2C implementation for the features  
implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System management bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (packet error checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power system management protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming. Refer to  
Figure 7: STM32L552xx clock tree  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 17. I2C implementation  
I2C features(1)  
I2C1  
I2C2  
I2C3  
I2C4  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
Independent clock  
Wakeup from Stop 0, Stop 1 mode on address match  
Wakeup from Stop 2 mode on address match  
1. X: supported  
DS12737 Rev 6  
73/340  
78  
 
 
Functional overview  
STM32L552xx  
3.34  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The devices have three embedded universal synchronous receiver transmitters (USART1,  
USART2 and USART3) and two universal asynchronous receiver transmitters (UART4,  
UART5).  
These interfaces provide asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and  
have LIN master/slave capability. They provide hardware management of the CTS and RTS  
signals, and RS485 driver enable. They are able to communicate at speeds of up to  
10 Mbit/s.  
The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant)  
and an SPI-like communication capability.  
All USART have a clock domain independent from the CPU clock, allowing the USARTx  
(x=1,2,3,4,5) to wake up the MCU from Stop mode using baudrates up to 200 Kbaud. The  
wake up events from Stop mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
All USART interfaces can be served by the DMA controller.  
Table 18. USART/UART/LPUART features  
USART modes/features(1)  
USART1 USART2 USART3 UART4 UART5 LPUART1  
Hardware flow control for modem  
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode  
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
-
X
X
X
X
-
X
X
X
-
X
X
X
-
X
X
X
Smartcard mode  
X
-
-
-
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
X
X
X
X
X
-
X
X
X
X
X
-
X
-
X
X
-
Dual clock domain  
X
X
X
X
-
Wakeup from Stop 0 / Stop 1 modes  
Wakeup from Stop 2 mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver enable  
X
-
X
X
X
X
X
X
X
X
X
X
X (4 modes)  
X
-
-
X
X
X
X
X
LPUART/USART data length  
1. X = supported.  
7, 8 and 9 bits  
74/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
3.35  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The devices embed one low-power UART. The LPUART supports asynchronous serial  
communication with minimum power consumption. It supports half-duplex single-wire  
communication and modem operations (CTS/RTS). It allows multiprocessor  
communication.  
The LPUART has a clock domain independent from the CPU clock, and can wakeup the  
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop  
mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600  
baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while  
having an extremely low energy consumption. Higher speed clock can be used to reach  
higher baudrates.  
The LPUART interface can be served by the DMA controller.  
3.36  
3.37  
Serial peripheral interface (SPI)  
Three SPI interfaces allow communication up to slave modes, in half-duplex, full-duplex and  
simplex modes. The 3-bit prescaler gives eight master mode frequencies and the frame size  
is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode  
and hardware CRC calculation.  
All SPI interfaces can be served by the DMA controller.  
Serial audio interfaces (SAI)  
The devices embed two SAI. Refer to Table 19: SAI implementation for the features  
implementation. The SAI bus interface handles communications between the  
microcontroller and the serial audio protocol.  
The SAI peripheral supports:  
Two independent audio sub-blocks which can be transmitters or receivers with their  
respective FIFO.  
8-word integrated FIFOs for each audio sub-block.  
Synchronous or asynchronous mode between the audio sub-blocks.  
Master or slave configuration independent for both audio sub-blocks.  
Clock generator for each audio block to target independent audio frequency sampling  
when both audio sub-blocks are configured in master mode.  
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit.  
Peripheral with large configurability and flexibility allowing to target as example the  
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
out.  
DS12737 Rev 6  
75/340  
78  
 
 
 
Functional overview  
STM32L552xx  
Up to 16 slots available with configurable size and with the possibility to select which  
ones are active in the audio frame.  
Number of bits by frame may be configurable.  
Frame synchronization active level configurable (offset, bit length, level).  
First active bit position in the slot is configurable.  
LSB first or MSB first for data transfer.  
Mute mode.  
Stereo/Mono audio frame capability.  
Communication clock strobing edge configurable (SCK).  
Error flags with associated interrupts if enabled respectively.  
Overrun and underrun detection.  
Anticipated frame synchronization signal detection in slave mode.  
Late frame synchronization signal detection in slave mode.  
Codec not ready for the AC’97 mode in reception.  
Interruption sources when enabled:  
Errors.  
FIFO requests.  
DMA interface with two dedicated channels to handle access to the dedicated  
integrated FIFO of each SAI audio sub-block.  
Table 19. SAI implementation  
SAI features(1)  
SAI1  
SAI2  
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97  
X
X
Mute mode  
X
X
Stereo/Mono audio frame capability.  
X
X
16 slots  
X
X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit  
X
X
FIFO size  
SPDIF  
X (8 Word)  
X (8 Word)  
X
X
X
-
PDM  
1. X: supported  
3.38  
Secure digital input/output and MultiMediaCards Interface  
(SDMMC)  
The SD/SDIO, MultiMediaCard (MMC) host interface (SDMMC) provides an interface  
between the AHB bus and SD memory cards, SDIO cards and MMC devices.  
76/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Functional overview  
The SDMMC features include the following:  
Full compliance with MultiMediaCard System Specification Version 4.51. Card support  
for three different databus modes: 1-bit (default), 4-bit and 8-bit  
Full compatibility with previous versions of MultiMediaCards (backward compatibility)  
Full compliance with SD Memory Card Specifications Version 4.1. (SDR104  
SDMMC_CK speed limited to maximum allowed IO speed, SPI mode and UHS-II mode  
not supported)  
Full compliance with SDIO Card Specification Version 4.0: card support for two different  
databus modes: 1-bit (default) and 4-bit. (SDR104 SDMMC_CK speed limited to  
maximum allowed IO speed, SPI mode and UHS-II mode not supported)  
Data transfer up to 104 Mbyte/s for the 8-bit mode (depending maximum allowed IO  
speed)  
Data and command output enable signals to control external bidirectional drivers.  
3.39  
3.40  
Controller area network (FDCAN)  
The controller area network (CAN) subsystem consists of one CAN modules and message  
RAM memory.  
The CAN module (FDCAN) is compliant with ISO 11898-1 (CAN protocol specification  
version 2.0 part A, B) and CAN FD protocol specification version 1.0.  
A 1 Kbyte message RAM memory implements filters, receive FIFOs, receive buffers,  
transmit event FIFOs, transmit buffers.  
Universal serial bus (USB FS)  
The devices embed a full-speed USB device peripheral compliant with the USB  
specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP  
pull-up and battery charging detection according to Battery Charging Specification Revision  
1.2.  
The USB interface implements a full-speed (12 Mbit/s) function interface with added support  
for USB 2.0 link power management. It has software-configurable endpoint setting with  
packet memory up-to 1 Kbyte and suspend/resume support.  
This interface requires a precise 48 MHz clock which can be generated from the internal  
main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz  
oscillator (HSI48) in automatic trimming mode. The synchronization for this oscillator can be  
taken from the USB data stream itself (SOF signalization) which allows crystal less  
operation.  
3.41  
USB Type-C™ / USB Power Delivery controller (UCPD)  
The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB  
Power Delivery Rev. 3.0 specifications.  
DS12737 Rev 6  
77/340  
78  
 
 
 
Functional overview  
STM32L552xx  
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery  
requirements, featuring:  
USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors  
“Dead battery” support  
USB Power Delivery message transmission and reception  
FRS (fast role swap) support  
The digital controller handles notably:  
USB Type-C level detection with debounce, generating interrupts  
FRS detection, generating an interrupt  
Byte-level interface for USB Power Delivery payload, generating interrupts (DMA  
compatible)  
USB Power Delivery timing dividers (including a clock pre-scaler)  
CRC generation/checking  
4b5b encode/decode  
Ordered sets (with a programmable ordered set mask at receive)  
Frequency recovery in receiver during preamble  
The interface offers low-power operation compatible with Stop mode, maintaining the  
capacity to detect incoming USB Power Delivery messages and FRS signaling.  
3.42  
Development support  
3.42.1  
Serial wire JTAG debug port (SWJ-DP)  
®
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using two pins only instead of five required by the JTAG (JTAG pins  
could be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared  
with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to  
switch between JTAG-DP and SW-DP.  
3.42.2  
Embedded Trace Macrocell™  
®
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the devices  
through a small number of ETM pins to an external hardware trace port analyzer (TPA)  
device. Real-time instruction and data flow activity be recorded and then formatted for  
display on the host computer that runs the debugger software. TPA hardware is  
commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
78/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Pinouts and pin description  
4
Pinouts and pin description  
Figure 10. STM32L552xx LQFP48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
2
PC14_OSC32_IN  
PC15_OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
3
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
LQFP48  
7
VSSA/VREF-  
VDDA/VREF+  
PA0  
8
PA8  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA1  
PA2  
MSv49322V1  
1. The above figure shows the package top view.  
Figure 11. STM32L552xxxxP LQFP48 external SMPS pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
2
PC14-OSC_IN  
PC15-OSC_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
3
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
LQFP48  
7
VSSA/VREF-  
VDDA/VREF+  
PA0  
8
PA8  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA1  
PA2  
MSv49311V1  
1. The above figure shows the package top view.  
DS12737 Rev 6  
79/340  
137  
 
 
 
 
Pinouts and pin description  
STM32L552xx  
Figure 12. STM32L552xx UFQFPN48 pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
2
PC14-OSC32_IN  
3
PA13  
PA12  
PA11  
PA10  
PA9  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
4
5
6
UFQFPN48  
7
VSSA/VREF-  
VDDA/VREF+  
PA0  
8
PA8  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA1  
PA2  
MSv49321V2  
1. The above figure shows the package top view.  
Figure 13. STM32L552xxxxP UFQFPN48 external SMPS pinout  
VBAT  
PC13  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
2
PC14-OSC_IN  
PC15-OSC_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
3
PA13  
PA12  
PA11  
PA10  
PA9  
4
5
6
UFQFPN48  
7
VSSA/VREF-  
VDDA/VREF+  
PA0  
8
PA8  
9
PB15  
PB14  
PB13  
PB12  
10  
11  
12  
PA1  
PA2  
MSv49310V2  
1. The above figure shows the package top view.  
80/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Pinouts and pin description  
Figure 14. STM32L552xx LQFP64 pinout  
VBAT  
PC13  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDUSB  
VSS  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC0  
PC1  
PC2  
PC3  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PC6  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MSv49323V1  
1. The above figure shows the package top view.  
Figure 15. STM32L552xxxxQ LQFP64 SMPS step down converter pinout  
VBAT  
PC13  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDUSB  
VSS  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC0  
PC1  
PC2  
PC3  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PC6  
PB15  
PB14  
PB13  
VDD  
PA1  
PA2  
MSv49316V1  
1. The above figure shows the package top view.  
DS12737 Rev 6  
81/340  
137  
 
 
Pinouts and pin description  
STM32L552xx  
Figure 16. STM32L552xxxxP LQFP64 external SMPS pinout  
VBAT  
PC13  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDDUSB  
VSS  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC0  
PC1  
PC2  
PC3  
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
VSSA/VREF-  
VDDA/VREF+  
PA0  
PC6  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MSv49312V2  
1. The above figure shows the package top view.  
Figure 17. STM32L552xxxxQ WLCSP81 SMPS step down converter ballout  
1
2
PC10  
VSS  
3
4
5
6
7
8
9
A
B
C
D
E
F
VDD  
PD2  
PG13  
PG12  
PG10  
PG9  
VDDIO2  
VSS  
PB5  
PB4  
PB6  
PB7  
PB3  
PA1  
PA2  
PA5  
PB0  
PB9  
V15SMPS_2  
VSS  
VDD  
VBAT  
VDDUSB  
PA11  
PC12  
PC13  
PB8  
PC15-  
OSC32_OUT  
PC14-  
OSC32_IN  
PA12  
PA13  
PC7  
PC11  
PG15  
PG14  
PG11  
PA3  
PH1-  
OSC_OUT  
PA9  
PA14  
PH3-BOOT0  
PC0  
PH0-OSC_IN  
NRST  
PC6  
PA10  
PA15  
PA8  
VSS  
PC1  
PB15  
PB13  
PB12  
VSS  
PC8  
PC2  
VDD  
G
H
J
PB14  
PC9  
PC4  
PA6  
PC3  
VREF+  
PA0  
VSSA/VREF-  
VDDA  
VDD  
VLXSMPS  
VDDSMPS  
PB11  
PB10  
PB1  
PA4  
V15SMPS_1  
VSSSMPS  
PB2  
PA7  
VDD  
VSS  
MSv49317V1  
1. The above figure shows the package top view.  
82/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Pinouts and pin description  
Figure 18. STM32L552xxxxP WLCSP81 external SMPS ballout  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VDD  
PC10  
VSS  
PD2  
PG13  
PG12  
PG10  
PG9  
VDDIO2  
VSS  
PB5  
PB4  
PB6  
PB7  
PB3  
PA1  
PA2  
PA5  
PB0  
PB9  
VDD12_2  
VSS  
VDD  
VBAT  
VDDUSB  
PA11  
PC12  
PC11  
PA14  
PA10  
PC8  
PC13  
PB8  
PC15-  
OSC32_OUT  
PC14-  
OSC32_IN  
PA12  
PA13  
PC7  
PG15  
PG14  
PG11  
PA3  
PH1-  
OSC_OUT  
PA9  
PH3-BOOT0  
PC0  
PH0-OSC_IN  
NRST  
PC6  
PA15  
PA8  
VSS  
PC1  
PB15  
PB14  
VDD  
PB13  
PB12  
VSS  
PC2  
VDD  
G
H
J
PC9  
PC4  
PA6  
PC3  
VREF+  
PA0  
VSSA/VREF-  
VDDA  
PE15  
PB10  
PE14  
PE13  
PB1  
PA4  
VDD12_1  
PB11  
PB2  
PA7  
VDD  
VSS  
MSv49313V1  
1. The above figure shows the package top view.  
Figure 19. STM32L552xx LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
VDD  
VSS  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDDUSB  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC6  
LQFP100  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PA0  
PA1  
PD8  
PB15  
PB14  
PB13  
PB12  
PA2  
MSv49324V1  
1. The above figure shows the package top view.  
DS12737 Rev 6  
83/340  
137  
 
 
Pinouts and pin description  
STM32L552xx  
Figure 20. STM32L552xxxxQ LQFP100 SMPS step down converter pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD  
VSS  
VDDUSB  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
VBAT  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC6  
LQFP100  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA/VREF-  
VREF+  
VDDA  
PD8  
PA0  
PA1  
PA2  
PA3  
PB15  
PB14  
PB13  
VDD  
MSv49318V1  
1. The above figure shows the package top view.  
84/340  
DS12737 Rev 6  
 
STM32L552xx  
Pinouts and pin description  
Figure 21. STM32L552xx UFBGA132 ballout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VDDUSB  
PA12  
PA11  
PA8  
A
B
C
D
E
F
PE5  
VBAT  
PE3  
PE4  
PE6  
PF0  
PF1  
PF5  
NRST  
PC0  
PA0  
PA2  
PA6  
PE1  
PE2  
PC13  
PF3  
PF4  
PC2  
PC1  
PB9  
PG15  
PE0  
VDD  
VSS  
PC3  
PA1  
VSS  
VDD  
PB2  
PB1  
PB0  
PB6  
PG12  
PB4  
PB3  
PB5  
PD6  
PG9  
PG10  
PD7  
PD5  
PD2  
PD1  
PD0  
VDD  
VSS  
PG6  
PG4  
VSS  
VDD  
PB10  
PB11  
PG14  
PC11  
PC12  
PA13  
PA9  
PA15  
PC10  
PA14  
PA10  
PC9  
PH3-BOOT0  
PB8  
PD4  
PC14-  
OSC32_IN  
PD3  
PC15-  
OSC32_OUT  
PB7  
VDDIO2  
PF2  
PC7  
PC8  
PH0-OSC_IN  
VSS  
VDD  
VDD  
VSS  
PG7  
PG2  
PD14  
PD9  
PC6  
PG8  
PH1-  
OSC_OUT  
G
H
J
PG3  
PG5  
OPAMP1_VI  
NM  
VSSA/VREF-  
VREF+  
VDDA  
PD13  
PD11  
PB14  
PB12  
PG11  
PD15  
PD12  
PB15  
PD8  
PC5  
PA7  
PA4  
PC4  
PF14  
PF11  
PF12  
PF13  
PE8  
PG1  
PF15  
PG0  
PE10  
PE7  
PE12  
PE14  
PE15  
PE13  
K
L
PB13  
VSS  
PG13  
PA3  
PE11  
PE9  
OPAMP2_VI  
NM  
M
PA5  
PD10  
MSv49325V1  
1. The above figure shows the package top view.  
Figure 22. STM32L552xxxxQ UFBGA132 SMPS step down converter ballout  
1
2
3
4
5
6
7
8
9
10  
PC11  
PC12  
PA13  
11  
12  
VDDUSB  
PA12  
PA11  
PA8  
A
B
C
D
E
F
PE5  
VBAT  
PE3  
PE4  
PE6  
PF0  
PF1  
PF5  
NRST  
PC0  
PA0  
PA2  
PA6  
PE1  
PE2  
PC13  
PF3  
PF4  
PC2  
PC1  
PB9  
PB6  
PG12  
PB4  
PB3  
PB5  
PD6  
PG9  
PG10  
PD7  
PD5  
PD2  
PA15  
V15SMPS_2 PH3-BOOT0  
PD4  
PD1  
PC10  
PA14  
PC14-  
OSC32_IN  
PE0  
VDD  
VSS  
PC3  
PA1  
VSS  
VDD  
PB2  
PB1  
PB0  
PB8  
PB7  
PD3  
PD0  
PC15-  
OSC32_OUT  
VDDIO2  
VDD  
PA9  
PA10  
PF2  
VSS  
PC7  
PC9  
PC8  
PH0-OSC_IN  
VSS  
VDD  
VDD  
VSS  
PG6  
PG7  
PC6  
PG8  
PH1-  
OSC_OUT  
G
H
J
PG4  
PG2  
PG3  
PG5  
OPAMP1_VI  
NM  
VSSA/VREF-  
VREF+  
VDDA  
VSS  
PD14  
PD9  
PD13  
PD11  
PB14  
PB12  
V15SMPS_1  
PD15  
PD12  
PB15  
PD8  
PC5  
PA7  
PA4  
PC4  
PF14  
PF11  
PF12  
PF13  
PE8  
PG1  
PF15  
PG0  
PE10  
PE7  
PE12  
PE14  
PE15  
PE13  
VDD  
K
L
PB10  
PB11  
VDDSMPS  
PB13  
VSSSMPS  
VLXSMPS  
PA3  
PE11  
PE9  
OPAMP2_VI  
NM  
M
PA5  
PD10  
MSv49319V1  
1. The above figure shows the package top view.  
DS12737 Rev 6  
85/340  
137  
 
 
Pinouts and pin description  
STM32L552xx  
Figure 23. STM32L552xx LQFP144 pinout  
PE2  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
VSS  
PE3  
2
PE4  
PE5  
PE6  
VBAT  
3
4
5
6
7
8
9
10  
11  
12  
VDDUSB  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PF0  
PF1  
PF2  
98  
97  
PF3  
PF4  
PF5  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
PC6  
VDDIO2  
VSS  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
LQFP144  
PF10  
PG2  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PD15  
PD14  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PA0  
PD8  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
MSv49326V1  
1. The above figure shows the package top view.  
86/340  
DS12737 Rev 6  
 
STM32L552xx  
Pinouts and pin description  
Figure 24. STM32L552xxxxQ LQFP144 SMPS step down converter pinout  
PE2  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
VSS  
PE3  
2
PE4  
PE5  
PE6  
VBAT  
3
4
5
6
7
8
9
10  
11  
12  
VDDUSB  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PC13  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PF0  
PF1  
PF2  
98  
97  
PF3  
PF4  
PF5  
VSS  
VDD  
PF6  
PF7  
PF8  
PF9  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
PC6  
VDDIO2  
VSS  
PG8  
PG7  
PG6  
PG5  
PG4  
PG3  
LQFP144  
PF10  
PG2  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
PC0  
PD15  
PD14  
VDD  
VSS  
PD13  
PD12  
PD11  
PD10  
PD9  
PC1  
PC2  
PC3  
VSSA/VREF-  
VREF+  
VDDA  
PA0  
PD8  
PB15  
PB14  
PB13  
VDD  
PA1  
PA2  
PA3  
MSv49320V1  
1. The above figure shows the package top view.  
DS12737 Rev 6  
87/340  
137  
 
Table 20. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Pin name  
Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
TT  
B
Input / output pin  
5 V tolerant I/O  
3.6 V tolerant I/O  
Dedicated BOOT0 pin  
RST  
Bidirectional reset pin with embedded weak pull-up resistor  
Option for TT or FT I/Os  
_f (1)  
_u (2)  
_a (3)(4)  
_s (5)  
_c  
I/O, Fm+ capable  
I/O structure  
I/O, with USB function supplied by VDDUSB  
I/O, with Analog switch function supplied by VDDA  
I/O supplied only by VDDIO2  
I/O, USB Type-C PD capable  
_d  
I/O, USB Type-C PD dead battery function  
Notes  
Alternate  
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
1. The related I/O structures in Table 21 are: FT_f, FT_fa.  
2. The related I/O structures in Table 21 are: FT_u.  
3. The related I/O structures in Table 21 are: FT_a, FT_fa, TT_a.  
4. The analog switch for the TSC function is supplied by VDD  
.
5. The related I/O structures in Table 21 are: FT_s, FT_fs.  
 
 
Table 21. STM32L552xx pin definitions  
STM32L552xx  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
Additional  
functions  
Alternate functions  
TRACECK, TIM3_ETR,  
SAI1_CK1,  
TSC_G7_IO1,  
FMC_A23,  
SAI1_MCLK_A,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
2
3
B3  
A2  
B2  
1
2
3
-
-
-
-
-
-
-
-
-
1
2
3
B3  
A2  
B2  
1
2
3
PE2  
PE3  
PE4  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
TRACED0, TIM3_CH1,  
OCTOSPI1_DQS,  
TSC_G7_IO2,  
FMC_A19,  
SAI1_SD_B,  
EVENTOUT  
TRACED1, TIM3_CH2,  
SAI1_D2,  
DFSDM1_DATIN3,  
TSC_G7_IO3,  
FMC_A20, SAI1_FS_A,  
EVENTOUT  
TRACED2, TIM3_CH3,  
SAI1_CK2,  
DFSDM1_CKIN3,  
TSC_G7_IO4,  
FMC_A21,  
-
-
-
-
-
-
4
A1  
4
-
-
-
4
A1  
4
PE5  
I/O FT  
-
-
SAI1_SCK_A,  
EVENTOUT  
 
 
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TRACED3, TIM3_CH4,  
SAI1_D1, FMC_A22,  
SAI1_SD_A,  
WKUP3,  
TAMP_IN3/TAMP_  
OUT6  
-
-
-
-
-
-
5
6
C2  
B1  
5
6
-
-
-
5
6
C2  
B1  
5
6
PE6  
I/O FT  
-
-
EVENTOUT  
1
1
1
B9  
1
B9  
1
1
1
VBAT  
S
-
-
-
WKUP2,  
RTC_TS/RTC_  
OUT1,  
(1)  
(2)  
2
2
2
B7  
2
B7  
7
C3  
7
2
2
2
7
C3  
7
PC13 I/O FT  
EVENTOUT  
TAMP_IN1/TAMP_  
OUT2  
PC14-  
OSC3  
I/O FT  
2_IN  
(1)  
(2)  
3
4
3
4
3
4
C9  
C8  
3
4
C9  
C8  
8
9
C1  
D1  
8
9
3
4
3
4
3
4
8
9
C1  
D1  
8
9
EVENTOUT  
EVENTOUT  
OSC32_IN  
(PC14)  
PC15-  
(1)  
(2)  
OSC3  
I/O FT  
2_OUT  
OSC32_OUT  
(PC15)  
FT  
_f  
I2C2_SDA, FMC_A0,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D2 10  
E2 11  
-
-
-
-
-
-
-
-
D2 10  
E2 11  
PF0  
PF1  
I/O  
I/O  
-
-
-
-
FT  
_f  
I2C2_SCL, FMC_A1,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
I2C2_SMBA, FMC_A2,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E1 12  
D3 13  
E3 14  
F2 15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
E1 12  
D3 13  
E3 14  
F2 15  
PF2  
PF3  
PF4  
PF5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
-
-
-
-
LPTIM3_IN1, FMC_A3,  
EVENTOUT  
LPTIM3_ETR,  
FMC_A4, EVENTOUT  
LPTIM3_OUT,  
FMC_A5, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
10 F6 16  
11 F7 17  
-
-
-
-
-
-
10 F6 16  
11 F7 17  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
TIM5_ETR, TIM5_CH1,  
OCTOSPI1_IO3,  
SAI1_SD_B,  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18  
19  
20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
18  
19  
20  
PF6  
PF7  
PF8  
I/O FT  
I/O FT  
I/O FT  
-
-
-
-
EVENTOUT  
TIM5_CH2,  
OCTOSPI1_IO2,  
SAI1_MCLK_B,  
EVENTOUT  
TAMP_IN6/TAMP_  
OUT3  
TIM5_CH3,  
OCTOSPI1_IO0,  
SAI1_SCK_B,  
EVENTOUT  
TAMP_IN7/TAMP_  
OUT8  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM5_CH4,  
OCTOSPI1_IO1,  
SAI1_FS_B,  
TIM15_CH1,  
EVENTOUT  
TAMP_IN8/TAMP_  
OUT7  
-
-
-
-
-
-
-
-
-
-
-
21  
22  
-
-
-
-
-
-
-
21  
PF9  
I/O FT  
-
OCTOSPI1_CLK,  
DFSDM1_CKOUT,  
SAI1_D3, TIM15_CH2,  
EVENTOUT  
-
-
-
-
-
-
-
-
22 PF10 I/O FT  
-
-
-
PH0-  
OSC_I  
5
5
5
D9  
5
D9 12 F1 23  
5
5
5
12 F1 23  
I/O FT  
EVENTOUT  
OSC_IN  
N
(PH0)  
PH1-  
OSC_  
OUT  
6
7
6
7
6
7
D8  
E9  
6
7
D8 13 G1 24  
E9 14 G2 25  
6
7
6
7
6
7
13 G1 24  
I/O FT  
RS  
-
-
EVENTOUT  
-
OSC_OUT  
-
(PH1)  
14 G2 25 NRST I-O  
T
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_IN1,  
OCTOSPI1_IO7,  
I2C3_SCL,  
FT  
_fa  
LPUART1_RX,  
SDMMC1_D5,  
SAI2_FS_A,  
-
-
8
E7  
8
E7 15 H2 26  
-
-
8
15 H2 26  
PC0  
I/O  
-
ADC12_IN1  
LPTIM2_IN1,  
EVENTOUT  
TRACED0,  
LPTIM1_OUT,  
SPI2_MOSI,  
I2C3_SDA,  
LPUART1_TX,  
OCTOSPI1_IO4,  
SAI1_SD_A,  
EVENTOUT  
FT  
_fa  
-
-
-
-
9
F8  
9
F8 16 G3 27  
-
-
-
-
9
16 G3 27  
PC1  
PC2  
I/O  
I/O  
-
-
ADC12_IN2  
ADC12_IN3  
LPTIM1_IN2,  
SPI2_MISO,  
DFSDM1_CKOUT,  
OCTOSPI1_IO5,  
EVENTOUT  
FT  
_a  
10 F7 10 F7 17 F3 28  
10 17 F3 28  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_ETR,  
LPTIM3_OUT,  
SAI1_D1, SPI2_MOSI,  
OCTOSPI1_IO6,  
SAI1_SD_A,  
FT  
_a  
-
-
11 G7 11 G7 18 F4 29  
-
-
11  
18 F4 29  
PC3  
I/O  
-
ADC12_IN4  
LPTIM2_ETR,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19  
20  
-
-
30 VSSA  
31 VREF-  
S
S
-
-
-
-
-
-
-
-
VSSA/  
VREF-  
8
8
12 G9 12 G9 19 H1 30  
8
8
12  
-
H1  
-
S
-
-
-
-
VREF  
+
-
-
-
-
-
-
G8  
H9  
-
-
G8 20 J1 31  
H9 21 K1 32  
-
-
-
-
-
-
21 J1 32  
S
S
-
-
-
-
-
-
VREFBUF_OUT  
-
22 K1 33 VDDA  
VDDA/  
9
9
13  
-
13  
-
-
-
-
9
9
13  
-
-
-
VREF  
+
S
-
-
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM2_CH1, TIM5_CH1,  
TIM8_ETR,  
USART2_CTS/USART  
2_NSS, UART4_TX,  
SAI1_EXTCLK,  
TIM2_ETR,  
OPAMP1_VINP,  
ADC12_IN5,  
WKUP1,  
TAMP_IN2/TAMP_  
OUT1  
FT  
_a  
10  
10 14 H8 14 H8 22 J2 33 10 10 14 23 J2 34  
PA0  
I/O  
-
-
EVENTOUT  
OPAM  
P1_VI  
NM  
-
-
-
-
-
-
-
H3  
-
-
-
-
-
H3  
-
I
TT  
-
-
TIM2_CH2, TIM5_CH2,  
I2C1_SMBA,  
SPI1_SCK,  
OPAMP1_VINM,  
ADC12_IN6,  
TAMP_IN5/TAMP_  
OUT4  
FT  
_a  
USART2_RTS/USART  
2_DE, UART4_RX,  
OCTOSPI1_DQS,  
TIM15_CH1N,  
11  
11  
15 F6 15 F6 23 G4 34  
11  
11  
15 24 G4 35  
PA1  
I/O  
-
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM2_CH3, TIM5_CH3,  
USART2_TX,  
LPUART1_TX,  
OCTOSPI1_NCS,  
UCPD1_FRSTX1,  
SAI2_EXTCLK,  
TIM15_CH1,  
ADC12_IN7,  
WKUP4/LSCO,  
COMP1_INP  
FT  
_a  
12  
12 16 G6 16 G6 24 K2 35 12 12 16 25 K2 36  
PA2  
PA3  
I/O  
-
EVENTOUT  
TIM2_CH4, TIM5_CH4,  
SAI1_CK1,  
USART2_RX,  
TT  
_a  
LPUART1_RX,  
OCTOSPI1_CLK,  
SAI1_MCLK_A,  
TIM15_CH2,  
OPAMP1_VOUT,  
ADC12_IN8  
13  
13 17 F5 17 F5 25 L1 36 13 13 17 26 L1 37  
I/O  
-
EVENTOUT  
-
-
-
-
18 H2 18 H2 26 G7 37  
19 19 27 G6 38  
-
-
-
-
18 27 G7 38  
19 28 G6 39  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
-
-
OCTOSPI1_NCS,  
SPI1_NSS, SPI3_NSS,  
USART2_CK,  
TT  
_a  
ADC12_IN9,  
DAC1_OUT1  
14  
14 20 H7 20 H7 28 L3 39 14 14 20 29 L3 40  
PA4  
I/O  
-
SAI1_FS_B,  
LPTIM2_OUT,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM2_CH1, TIM2_ETR,  
TIM8_CH1N,  
TT  
_a  
ADC12_IN10,  
DAC1_OUT2  
15  
15 21 H6 21 H6 29 M1 40 15 15 21 30 M1 41  
PA5  
PA6  
I/O  
-
SPI1_SCK,  
LPTIM2_ETR,  
EVENTOUT  
TIM1_BKIN,  
TIM3_CH1,  
TIM8_BKIN,  
SPI1_MISO,  
FT  
_a  
USART3_CTS/USART  
3_NSS,  
OPAMP2_VINP,  
ADC12_IN11  
16  
16 22 G5 22 G5 30 L2 41 16 16 22 31 L2 42  
I/O  
-
-
LPUART1_CTS,  
OCTOSPI1_IO3,  
TIM16_CH1,  
EVENTOUT  
OPAM  
P2_VI  
NM  
-
-
-
-
-
-
-
M2  
-
-
-
-
-
M2  
-
I
TT  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_CH1N,  
TIM3_CH2,  
TIM8_CH1N,  
I2C3_SCL,  
SPI1_MOSI,  
OCTOSPI1_IO2,  
TIM17_CH1,  
EVENTOUT  
FT  
_fa  
OPAMP2_VINM,  
ADC12_IN12  
17  
17 23 J7 23 J7 31 K3 42 17 17 23 32 K3 43  
PA7  
I/O  
-
USART3_TX,  
OCTOSPI1_IO7,  
EVENTOUT  
FT  
_a  
COMP1_INM,  
ADC12_IN13  
-
-
-
-
24 G4  
-
-
G4  
-
-
-
M3  
J3  
-
-
-
-
-
-
24 33 M3 44  
PC4  
PC5  
I/O  
I/O  
-
-
ADC12_IN14,  
WKUP5,  
TAMP_IN4/TAMP_  
OUT5,  
SAI1_D3,  
USART3_RX,  
EVENTOUT  
FT  
_a  
-
-
25 34 J3 45  
COMP1_INP  
TIM1_CH2N,  
TIM3_CH3,  
TIM8_CH2N,  
SPI1_NSS,  
TT  
_a  
OPAMP2_VOUT,  
ADC12_IN15  
18  
18 25 J6 24 J6 32 M4 43 18 18 26 35 M4 46  
PB0  
I/O  
-
USART3_CK,  
OCTOSPI1_IO1,  
COMP1_OUT,  
SAI1_EXTCLK,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_CH3N,  
TIM3_CH4,  
TIM8_CH3N,  
DFSDM1_DATIN0,  
USART3_RTS/USART  
3_DE,  
LPUART1_RTS/LPUA  
RT1_DE,  
FT  
_a  
COMP1_INM,  
ADC12_IN16  
19  
19 26 H5 25 H5 33 L4 44 19 19 27 36 L4 47  
PB1  
I/O  
-
OCTOSPI1_IO0,  
LPTIM2_IN1,  
EVENTOUT  
LPTIM1_OUT,  
I2C3_SMBA,  
FT  
_a  
DFSDM1_CKIN0,  
OCTOSPI1_DQS,  
UCPD1_FRSTX1,  
EVENTOUT  
RTC_OUT2,  
COMP1_INP  
20  
-
20 27 J5 26 J5 34 K4 45 20 20 28 37 K4 48  
PB2  
I/O  
-
-
OCTOSPI1_NCLK,  
EVENTOUT  
-
-
-
-
-
-
K5 46  
L5 47  
-
-
-
-
K5 49  
PF11 I/O FT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L5 50 PF12 I/O FT  
-
-
-
FMC_A6, EVENTOUT  
-
-
-
J9  
J8  
J9  
J8  
-
-
48  
49  
-
-
51  
52  
VSS  
VDD  
S
S
-
-
-
-
I2C4_SMBA, FMC_A7,  
EVENTOUT  
-
-
-
-
-
-
-
M5 50  
-
-
-
-
M5 53 PF13 I/O FT  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
I2C4_SCL,  
TSC_G8_IO1,  
FMC_A8, EVENTOUT  
FT  
_f  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J5 51  
L6 52  
-
-
-
-
-
-
-
-
J5 54 PF14 I/O  
L6 55 PF15 I/O  
-
-
-
-
I2C4_SDA,  
TSC_G8_IO2,  
FMC_A9, EVENTOUT  
FT  
_f  
TSC_G8_IO3,  
FMC_A10, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M6 53  
K6 54  
-
-
-
-
-
-
-
-
M6 56  
K6 57  
PG0 I/O FT  
PG1 I/O FT  
-
-
-
-
TSC_G8_IO4,  
FMC_A11, EVENTOUT  
TIM1_ETR,  
DFSDM1_DATIN2,  
FMC_D4, SAI1_SD_B,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
35 K7 55  
-
-
-
-
-
-
38 K7 58  
PE7  
PE8  
I/O FT  
I/O FT  
-
-
-
-
TIM1_CH1N,  
DFSDM1_CKIN2,  
FMC_D5,  
36 J6 56  
39 J6 59  
SAI1_SCK_B,  
EVENTOUT  
TIM1_CH1,  
DFSDM1_CKOUT,  
OCTOSPI1_NCLK,  
FMC_D6, SAI1_FS_B,  
EVENTOUT  
-
-
-
-
-
-
37 M7 57  
-
-
-
40 M7 60  
PE9  
I/O FT  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
-
-
-
-
-
-
-
58  
-
-
-
-
-
-
-
-
L10 61  
J4 62  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
H1  
H1  
J4 59  
TIM1_CH2N,  
TSC_G5_IO1,  
OCTOSPI1_CLK,  
FMC_D7,  
-
-
-
-
-
-
38 J7 60  
-
-
-
41 J7 63 PE10 I/O FT  
-
-
SAI1_MCLK_B,  
EVENTOUT  
TIM1_CH2,  
TSC_G5_IO2,  
OCTOSPI1_NCS,  
FMC_D8, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
39 L7 61  
40 J8 62  
41 M8 63  
-
-
-
-
-
-
-
-
-
42 L7 64 PE11 I/O FT  
43 J8 65 PE12 I/O FT  
44 M8 66 PE13 I/O FT  
-
-
-
-
-
-
TIM1_CH3N,  
SPI1_NSS,  
TSC_G5_IO3,  
OCTOSPI1_IO0,  
FMC_D9, EVENTOUT  
TIM1_CH3, SPI1_SCK,  
TSC_G5_IO4,  
J4  
OCTOSPI1_IO1,  
FMC_D10, EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_CH4,  
TIM1_BKIN2,  
-
-
-
-
-
-
H4  
H3  
-
-
-
-
42 K8 64  
-
-
-
-
-
-
45 K8 67 PE14 I/O FT  
-
-
SPI1_MISO,  
OCTOSPI1_IO2,  
FMC_D11, EVENTOUT  
-
-
TIM1_BKIN,  
SPI1_MOSI,  
OCTOSPI1_IO3,  
FMC_D12, EVENTOUT  
43 L8 65  
46 L8 68 PE15 I/O FT  
TIM2_CH3,  
LPTIM3_OUT,  
I2C4_SCL, I2C2_SCL,  
SPI2_SCK,  
USART3_TX,  
LPUART1_RX,  
TSC_SYNC,  
FT  
_f  
21  
21 28 J3 27 J4 44 K9 66 21 21 29 47 K9 69 PB10 I/O  
-
-
OCTOSPI1_CLK,  
COMP1_OUT,  
SAI1_SCK_A,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM2_CH4, I2C4_SDA,  
I2C2_SDA,  
USART3_RX,  
FT  
_f  
-
-
29 J2  
-
H4 45 L9 67 22 22 30 48 L9 70 PB11 I/O  
-
LPUART1_TX,  
OCTOSPI1_NCS,  
COMP2_OUT,  
EVENTOUT  
-
VDDS  
MPS  
-
-
-
-
-
-
-
-
-
-
-
-
28 J3 46 M9 68  
M1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
VLXS  
MPS  
29 H3 47  
69  
0
VSSS  
MPS  
30 J2 48 L10 70  
VDD12  
_1  
22  
23  
22 30 J1  
-
-
-
-
-
S
S
-
-
-
-
-
-
-
-
23 31 B2 31 B2 49 E9 71 23 23 31 49 E9 71  
32 J1 50 M11 72  
24 32 A1 33 A1 51 D4 73 24 24 32 50 D4 72  
VSS  
V15S  
MPS_  
1
-
-
-
-
-
-
-
-
-
-
S
S
-
-
-
-
-
-
-
-
24  
VDD  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_BKIN,  
I2C2_SMBA,  
SPI2_NSS,  
DFSDM1_DATIN1,  
USART3_CK,  
LPUART1_RTS/LPUA  
RT1_DE,  
25  
25 33 G2  
-
G2  
-
L11  
-
25 25 33 51 L11 73 PB12 I/O FT  
-
-
TSC_G1_IO1,  
OCTOSPI1_NCLK,  
SAI2_FS_A,  
TIM15_BKIN,  
EVENTOUT  
TIM1_CH1N,  
LPTIM3_IN1,  
I2C2_SCL, SPI2_SCK,  
DFSDM1_CKIN1,  
USART3_CTS/USART  
3_NSS,  
FT  
_f  
26  
26 34 F2 34 F2 52 K10 74 26 26 34 52 K10 74 PB13 I/O  
-
-
LPUART1_CTS,  
TSC_G1_IO2,  
UCPD1_FRSTX2,  
SAI2_SCK_A,  
TIM15_CH1N,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_CH2N,  
LPTIM3_ETR,  
TIM8_CH2N,  
I2C2_SDA,  
SPI2_MISO,  
FT  
_fd  
27  
27 35 G1 35 G1 53 K11 75 27 27 35 53 K11 75 PB14 I/O  
-
DFSDM1_DATIN2,  
USART3_RTS/USART  
3_DE, TSC_G1_IO3,  
SAI2_MCLK_A,  
TIM15_CH1,  
UCPD1_DB2  
EVENTOUT  
RTC_REFIN,  
TIM1_CH3N,  
TIM8_CH3N,  
SPI2_MOSI,  
DFSDM1_CKIN2,  
SAI2_SD_A,  
TIM15_CH2,  
EVENTOUT  
FT  
_c  
28  
28 36 F1 36 F1 54 K12 76 28 28 36 54 K12 76 PB15 I/O  
-
UCPD1_CC2  
USART3_TX,  
FMC_D13, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
55 L12 77  
56 J10 78  
-
-
-
-
-
-
55 L12 77  
56 J10 78  
PD8  
PD9  
I/O FT  
I/O FT  
-
-
-
-
USART3_RX,  
FMC_D14,  
SAI2_MCLK_A,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
USART3_CK,  
TSC_G6_IO1,  
FMC_D15,  
SAI2_SCK_A,  
EVENTOUT  
M1  
2
M1  
2
-
-
-
-
-
-
-
-
-
-
-
-
57  
79  
-
-
-
-
-
-
57  
79 PD10 I/O FT  
-
-
-
-
I2C4_SMBA,  
USART3_CTS/USART  
3_NSS, TSC_G6_IO2,  
FMC_A16,  
58 J11 80  
58 J11 80 PD11 I/O FT  
SAI2_SD_A,  
LPTIM2_ETR,  
EVENTOUT  
TIM4_CH1, I2C4_SCL,  
USART3_RTS/USART  
3_DE, TSC_G6_IO3,  
FMC_A17, SAI2_FS_A,  
LPTIM2_IN1,  
FT  
-
-
-
-
-
-
59 J12 81  
-
-
-
59 J12 81 PD12 I/O  
_f  
-
-
EVENTOUT  
TIM4_CH2, I2C4_SDA,  
TSC_G6_IO4,  
FMC_A18,  
FT  
-
-
-
-
-
-
-
-
-
-
-
-
60 H11 82  
-
-
-
-
-
-
60 H11 82 PD13 I/O  
_f  
-
-
-
-
LPTIM2_OUT,  
EVENTOUT  
-
-
83  
-
-
83  
VSS  
S
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
84  
-
-
-
-
-
-
-
-
84  
VDD  
S
-
-
-
-
-
-
TIM4_CH3, FMC_D0,  
EVENTOUT  
61 H10 85  
62 H12 86  
61 H10 85 PD14 I/O FT  
62 H12 86 PD15 I/O FT  
FT  
TIM4_CH4, FMC_D1,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_SCK, FMC_A12,  
SAI2_SCK_B,  
-
-
-
G10 87  
G11 88  
G9 89  
-
-
-
G10 87  
G11 88  
G9 89  
PG2 I/O  
PG3 I/O  
PG4 I/O  
_s  
EVENTOUT  
SPI1_MISO,FMC_A13,  
SAI2_FS_B,  
FT  
_s  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
SPI1_MOSI,FMC_A14,  
SAI2_MCLK_B,  
EVENTOUT  
FT  
_s  
SPI1_NSS,  
LPUART1_CTS,  
FMC_A15,  
SAI2_SD_B,  
EVENTOUT  
FT  
_s  
-
-
-
-
-
-
-
G12 90  
-
-
-
-
G12 90  
PG5 I/O  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
OCTOSPI1_DQS,  
I2C3_SMBA,  
FT  
_s  
LPUART1_RTS/LPUA  
RT1_DE,  
-
-
-
-
-
-
-
F9 91  
-
-
-
-
F9 91  
PG6 I/O  
-
-
UCPD1_FRSTX1,  
EVENTOUT  
SAI1_CK1, I2C3_SCL,  
DFSDM1_CKOUT,  
LPUART1_TX,  
UCPD1_FRSTX2,  
FMC_INT,  
FT  
_fs  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F10 92  
F12 93  
-
-
-
-
-
-
-
-
F10 92  
F12 93  
PG7 I/O  
-
-
-
-
SAI1_MCLK_A,  
EVENTOUT  
I2C3_SDA,  
LPUART1_RX,  
EVENTOUT  
FT  
_fs  
PG8 I/O  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
94  
95  
-
-
-
-
-
-
-
-
-
-
94  
95  
VSS  
S
S
-
-
-
-
-
-
-
-
VDDIO  
2
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM3_CH1, TIM8_CH1,  
DFSDM1_CKIN3,  
SDMMC1_D0DIR,  
TSC_G4_IO1,  
-
-
37 E1 37 E1 63 F11 96  
-
-
37 63 F11 96  
PC6  
I/O FT  
-
-
SDMMC1_D6,  
SAI2_MCLK_A,  
EVENTOUT  
TIM3_CH2, TIM8_CH2,  
DFSDM1_DATIN3,  
SDMMC1_D123DIR,  
TSC_G4_IO2,  
-
-
-
-
38 E2 38 E2 64 E10 97  
-
-
-
-
38 64 E10 97  
PC7  
PC8  
I/O FT  
-
-
-
-
SDMMC1_D7,  
SAI2_MCLK_B,  
EVENTOUT  
TIM3_CH3, TIM8_CH3,  
TSC_G4_IO3,  
39 F3 39 F3 65 E12 98  
39 65 E12 98  
I/O FT  
SDMMC1_D0,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TRACED0,  
TIM8_BKIN2,  
TIM3_CH4, TIM8_CH4,  
TSC_G4_IO4,  
USB_NOE,  
FT  
_f  
-
-
40 G3 40 G3 66 E11 99  
-
-
40 66 E11 99  
PC9  
I/O  
-
-
SDMMC1_D1,  
SAI2_EXTCLK,  
EVENTOUT  
MCO, TIM1_CH1,  
SAI1_CK2,  
FT  
_f  
USART1_CK,  
SAI1_SCK_A,  
LPTIM2_OUT,  
EVENTOUT  
29  
30  
31  
29 41 F4 41 F4 67 D12 100 29 29 41 67 D12 100 PA8  
I/O  
I/O  
-
-
-
-
-
-
TIM1_CH2, SPI2_SCK,  
USART1_TX,  
FT  
_fu  
30 42 D1 42 D1 68 D10 101 30 30 42 68 D10 101 PA9  
SAI1_FS_A,  
TIM15_BKIN,  
EVENTOUT  
TIM1_CH3, SAI1_D1,  
USART1_RX,  
CRS_SYNC,  
FT  
_fu  
31 43 E3 43 E3 69 D11 102 31 31 43 69 D11 102 PA10 I/O  
SAI1_SD_A,  
TIM17_BKIN,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TIM1_CH4,  
TIM1_BKIN2,  
FT  
_u  
SPI1_MISO,  
32  
32 44 C1 44 C1 70 C12 103 32 32 44 70 C12 103 PA11 I/O  
-
-
USART1_CTS/USART  
1_NSS, FDCAN1_RX,  
USB_DM, EVENTOUT  
TIM1_ETR,  
SPI1_MOSI,  
FT  
_u  
33  
34  
33 45 C2 45 C2 71 B12 104 33 33 45 71 B12 104 PA12 I/O  
-
USART1_RTS/USART  
1_DE, FDCAN1_TX,  
USB_DP, EVENTOUT  
-
-
PA13  
JTMS/SWDIO,  
IR_OUT, USB_NOE,  
SAI1_SD_B,  
(JTMS/  
SWDI  
O)  
(3)  
34 46 D2 46 D2 72 C10 105 34 34 46 72 C10 105  
I/O FT  
EVENTOUT  
-
-
-
-
47  
-
47  
-
-
-
-
-
-
-
-
47  
-
-
-
VSS  
S
S
-
-
-
-
-
-
-
-
VDDU  
SB  
48 B1 48 B1 73 A12 106  
48 73 A12 106  
35  
36  
35  
36  
-
-
B5  
A9  
-
-
B5 74 H4 107 35 35  
A9 75 D9 108 36 36  
-
-
74 H4 107 VSS  
75 D9 108 VDD  
S
S
-
-
-
-
-
-
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
JTCK/SWCLK,  
LPTIM1_OUT,  
I2C1_SMBA,  
I2C4_SMBA,  
SAI1_FS_B,  
EVENTOUT  
PA14  
(JTCK/  
SWCL  
K)  
(3)  
37  
38  
37 49 D3 49 D3 76 C11 109 37 37 49 76 C11 109  
I/O FT  
-
JTDI, TIM2_CH1,  
TIM2_ETR,  
USART2_RX,  
SPI1_NSS, SPI3_NSS,  
USART3_RTS/USART  
3_DE,  
PA15  
(JTDI)  
FT  
I/O  
(3)  
38 50 E4 50 E4 77 A11 110 38 38 50 77 A11 110  
UCPD1_CC1  
_c  
UART4_RTS/UART4_  
DE, SAI2_FS_B,  
EVENTOUT  
TRACED1,  
LPTIM3_ETR,  
SPI3_SCK,  
USART3_TX,  
UART4_TX,  
TSC_G3_IO2,  
SDMMC1_D2,  
SAI2_SCK_B,  
EVENTOUT  
-
-
51 A2 51 A2 78 B11 111  
-
-
51 78 B11 111 PC10 I/O FT  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM3_IN1,  
OCTOSPI1_NCS,  
SPI3_MISO,  
USART3_RX,  
UART4_RX,  
-
-
52 C3 52 C3 79 A10 112  
-
-
52 79 A10 112 PC11 I/O FT  
-
-
TSC_G3_IO3,  
UCPD1_FRSTX2,  
SDMMC1_D3,  
SAI2_MCLK_B,  
EVENTOUT  
TRACED3,  
SPI3_MOSI,  
USART3_CK,  
UART5_TX,  
TSC_G3_IO4,  
SDMMC1_CK,  
SAI2_SD_B,  
EVENTOUT  
-
-
53 B3 53 B3 80 B10 113  
-
-
53 80 B10 113 PC12 I/O FT  
-
-
SPI2_NSS,  
FDCAN1_RX,  
FMC_D2, EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
81 C9 114  
82 B9 115  
-
-
-
-
-
-
81 C9 114 PD0  
82 B9 115 PD1  
I/O FT  
I/O FT  
-
-
-
-
SPI2_SCK,  
FDCAN1_TX,  
FMC_D3, EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
TRACED2, TIM3_ETR,  
USART3_RTS/USART  
3_DE, UART5_RX,  
TSC_SYNC,  
-
-
-
-
-
-
A3 54 A3 83 A9 116  
-
-
-
-
54 83 A9 116 PD2  
I/O FT  
-
-
-
-
SDMMC1_CMD,  
EVENTOUT  
SPI2_SCK,  
SPI2_MISO,  
DFSDM1_DATIN0,  
USART2_CTS/USART  
2_NSS, FMC_CLK,  
EVENTOUT  
-
-
-
84 C8 117  
-
84 C8 117 PD3  
I/O FT  
SPI2_MOSI,  
DFSDM1_CKIN0,  
USART2_RTS/USART  
2_DE, OCTOSPI1_IO4,  
FMC_NOE,  
-
-
-
-
-
-
-
-
-
-
-
-
85 B8 118  
-
-
-
-
-
-
85 B8 118 PD4  
I/O FT  
-
-
-
-
EVENTOUT  
USART2_TX,  
OCTOSPI1_IO5,  
FMC_NWE,  
86 A8 119  
86 A8 119 PD5  
I/O FT  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
120  
121  
-
-
-
-
-
-
-
-
-
-
120 VSS  
121 VDD  
S
S
-
-
-
-
-
-
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
SAI1_D1, SPI3_MOSI,  
DFSDM1_DATIN1,  
USART2_RX,  
-
-
-
-
-
-
87 A7 122  
-
-
-
87 A7 122 PD6  
I/O FT  
-
OCTOSPI1_IO6,  
FMC_NWAIT,  
-
SAI1_SD_A,  
EVENTOUT  
DFSDM1_CKIN1,  
USART2_CK,  
-
-
-
-
-
-
-
-
-
-
88 D7 123  
-
-
-
-
-
-
88 D7 123 PD7  
I/O FT  
-
-
OCTOSPI1_IO7,  
FMC_NCE/FMC_NE1,  
EVENTOUT  
-
-
SPI3_SCK,  
USART1_TX,  
FMC_NCE/FMC_NE2,  
SAI2_SCK_A,  
FT  
_s  
D4  
D4  
-
-
B7 124  
-
-
B7 124 PG9 I/O  
TIM15_CH1N,  
EVENTOUT  
LPTIM1_IN1,  
SPI3_MISO,  
USART1_RX,  
FMC_NE3,  
SAI2_FS_A,  
TIM15_CH1,  
EVENTOUT  
FT  
_s  
-
-
-
C4  
-
C4  
C7 125  
-
-
-
C7 125 PG10 I/O  
-
-
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_IN2,  
OCTOSPI1_IO5,  
SPI3_MOSI,  
FT  
_s  
USART1_CTS/USART  
1_NSS,  
-
-
-
E5  
-
E5  
-
-
-
-
-
-
-
M11 126 PG11 I/O  
-
-
SAI2_MCLK_A,  
TIM15_CH2,  
EVENTOUT  
LPTIM1_ETR,  
SPI3_NSS,  
FT  
_s  
USART1_RTS/USART  
1_DE, FMC_NE4,  
SAI2_SD_A,  
-
-
-
-
-
-
B4  
A4  
-
-
B4  
A4  
-
-
A6 126  
-
-
-
-
-
-
-
-
A6 127 PG12 I/O  
-
-
-
-
EVENTOUT  
I2C1_SDA,  
USART1_CK,  
FMC_A24, EVENTOUT  
M1  
FT  
_fs  
-
-
127  
128  
128 PG13 I/O  
0
FT  
_fs  
I2C1_SCL, FMC_A25,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
D5  
B8  
A5  
-
-
-
D5  
B8  
A5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M9 129 PG14 I/O  
-
-
-
-
-
-
H9 129  
D8 130  
H9 130 VSS  
S
S
-
-
-
-
VDDIO  
D8 131  
2
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_OUT,  
I2C1_SMBA,  
EVENTOUT  
FT  
_s  
-
-
-
C5  
-
C5  
-
-
131  
-
-
-
-
B4 132 PG15 I/O  
-
-
-
JTDO/TRACESWO,  
TIM2_CH2, SPI1_SCK,  
SPI3_SCK,  
USART1_RTS/USART  
1_DE, CRS_SYNC,  
SAI1_SCK_B,  
PB3  
(JTDO/  
FT  
_a  
39  
39 54 E6 55 E6 89 C6 132 39 39 55 89 C6 133 TRAC I/O  
COMP2_INM  
ESWO  
)
EVENTOUT  
NJTRST, TIM3_CH1,  
I2C3_SDA,  
SPI1_MISO,  
SPI3_MISO,  
PB4  
USART1_CTS/USART  
1_NSS,  
UART5_RTS/UART5_  
DE, TSC_G2_IO1,  
SAI1_MCLK_B,  
TIM17_BKIN,  
FT  
_fa  
(3)  
40  
40 55 B6 56 B6 90 B6 133 40 40 56 90 B6 134 (NJTR I/O  
ST)  
COMP2_INP  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_IN1,  
TIM3_CH2,  
OCTOSPI1_NCLK,  
I2C1_SMBA,  
SPI1_MOSI,  
SPI3_MOSI,  
FT  
_d  
41  
41 56 A6 57 A6 91 D6 134 41 41 57 91 D6 135 PB5  
I/O  
-
USART1_CK,  
UART5_CTS/UART5_  
NSS, TSC_G2_IO2,  
COMP2_OUT,  
SAI1_SD_B,  
UCPD1_DB1  
TIM16_BKIN,  
EVENTOUT  
LPTIM1_ETR,  
TIM4_CH1,  
TIM8_BKIN2,  
I2C1_SCL, I2C4_SCL,  
USART1_TX,  
TSC_G2_IO3,  
SAI1_FS_B,  
FT  
_fa  
42  
42 57 C6 58 C6 92 A5 135 42 42 58 92 A5 136 PB6  
I/O  
-
COMP2_INP  
TIM16_CH1N,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
LPTIM1_IN2,  
TIM4_CH2,  
TIM8_BKIN,  
I2C1_SDA, I2C4_SDA,  
USART1_RX,  
UART4_CTS,  
TSC_G2_IO4,  
FMC_NL,  
FT  
_fa  
COMP2_INM,  
PVD_IN  
43  
43 58 D6 59 D6 93 D5 136 43 43 59 93 D5 137 PB7  
I/O  
-
TIM17_CH1N,  
EVENTOUT  
PH3-  
44  
45  
44 59 D7 60 D7 94 B5 137 44 44 60 94 B5 138 BOOT I/O FT  
0
-
-
EVENTOUT  
-
-
TIM4_CH3, SAI1_CK1,  
I2C1_SCL,  
DFSDM1_CKOUT,  
SDMMC1_CKIN,  
FDCAN1_RX,  
FT  
45 60 C7 61 C7 95 C5 138 45 45 61 95 C5 139 PB8  
I/O  
_f  
SDMMC1_D4,  
SAI1_MCLK_A,  
TIM16_CH1,  
EVENTOUT  
Table 21. STM32L552xx pin definitions (continued)  
Pin Number  
STM32L552xxxxP  
STM32L552xxxxQ  
STM32L552xx  
Additional  
functions  
Alternate functions  
IR_OUT, TIM4_CH4,  
SAI1_D2, I2C1_SDA,  
SPI2_NSS,  
SDMMC1_CDIR,  
FDCAN1_TX,  
SDMMC1_D5,  
SAI1_FS_A,  
TIM17_CH1,  
EVENTOUT  
FT  
_f  
-
-
61 A7  
-
-
A7 96 A4 139 46 46 62 96 A4 140 PB9  
I/O  
-
-
TIM4_ETR,  
FMC_NBL0,  
TIM16_CH1,  
EVENTOUT  
-
-
-
-
-
-
-
-
-
97 C4 140  
-
-
-
97 C4 141 PE0  
I/O FT  
I/O FT  
-
-
-
-
FMC_NBL1,  
TIM17_CH1,  
EVENTOUT  
-
-
-
-
-
-
A3 141  
-
-
-
-
-
-
98 A3 142 PE1  
VDD12  
46  
47  
46 62 A8  
-
-
-
-
-
S
S
-
-
-
-
-
-
-
-
_2  
47 63 E8 62 E8 98 E4 142 47 47 63 99 E4 143 VSS  
V15S  
-
-
-
-
63 A8 99 B4 143  
-
-
-
-
-
-
MPS_  
2
S
S
-
-
-
-
-
-
-
-
48  
48 64 F9 64 F9 100 J9 144 48 48 64 100 J9 144 VDD  
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output  
mode is limited:  
- The speed should not exceed 2 MHz with a maximum load of 30 pF  
- These GPIOs must not be used as current sources (for example to drive a LED).  
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the  
system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0438 reference manual.  
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are  
activated.  
(1)  
Table 22. Alternate function AF0 to AF7  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
USART2_CTS_  
NSS  
PA0  
-
-
TIM2_CH1  
TIM2_CH2  
TIM5_CH1  
TIM5_CH2  
TIM8_ETR  
-
-
-
-
-
USART2_RTS_  
DE  
PA1  
I2C1_SMBA  
SPI1_SCK  
PA2  
PA3  
PA4  
PA5  
-
-
-
-
TIM2_CH3  
TIM2_CH4  
-
TIM5_CH3  
TIM5_CH4  
-
-
-
-
-
-
-
-
USART2_TX  
USART2_RX  
USART2_CK  
-
SAI1_CK1  
-
-
OCTOSPI1_NCS  
TIM8_CH1N  
SPI1_NSS  
SPI1_SCK  
SPI3_NSS  
-
TIM2_CH1  
TIM2_ETR  
USART3_CTS_  
NSS  
PA6  
-
TIM1_BKIN  
TIM3_CH1  
TIM8_BKIN  
-
SPI1_MISO  
-
PA7  
PA8  
-
TIM1_CH1N  
TIM1_CH1  
TIM1_CH2  
TIM1_CH3  
TIM3_CH2  
TIM8_CH1N  
SAI1_CK2  
SPI2_SCK  
SAI1_D1  
I2C3_SCL  
SPI1_MOSI  
-
-
-
-
-
Port  
A
MCO  
-
-
-
-
-
-
-
-
-
USART1_CK  
USART1_TX  
USART1_RX  
PA9  
-
-
PA10  
USART1_CTS_  
NSS  
PA11  
PA12  
-
-
TIM1_CH4  
TIM1_BKIN2  
-
-
-
-
-
SPI1_MISO  
SPI1_MOSI  
-
-
USART1_RTS_  
DE  
TIM1_ETR  
IR_OUT  
PA13 JTMS/SWDIO  
-
-
-
-
-
-
-
-
-
-
PA14 JTCK/SWCLK LPTIM1_OUT  
PA15 JTDI TIM2_CH1  
I2C1_SMBA  
I2C4_SMBA  
USART3_RTS_  
DE  
TIM2_ETR  
USART2_RX  
-
SPI1_NSS  
SPI3_NSS  
 
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PB0  
-
-
TIM1_CH2N  
TIM1_CH3N  
TIM3_CH3  
TIM3_CH4  
TIM8_CH2N  
TIM8_CH3N  
-
-
SPI1_NSS  
-
-
USART3_CK  
DFSDM1_DATI USART3_RTS_  
PB1  
PB2  
PB3  
PB4  
N0  
DE  
DFSDM1_CKI  
N0  
-
LPTIM1_OUT  
-
-
-
-
I2C3_SMBA  
-
-
-
JTDO/TRACE  
SWO  
USART1_RTS_  
DE  
TIM2_CH2  
-
-
SPI1_SCK  
SPI1_MISO  
SPI3_SCK  
USART1_CTS_  
NSS  
NJTRST  
TIM3_CH1  
I2C3_SDA  
SPI3_MISO  
PB5  
PB6  
PB7  
-
-
-
LPTIM1_IN1  
LPTIM1_ETR  
LPTIM1_IN2  
TIM3_CH2  
TIM4_CH1  
TIM4_CH2  
OCTOSPI1_NCLK  
TIM8_BKIN2  
I2C1_SMBA  
I2C1_SCL  
I2C1_SDA  
SPI1_MOSI  
I2C4_SCL  
I2C4_SDA  
SPI3_MOSI  
USART1_CK  
USART1_TX  
USART1_RX  
-
-
TIM8_BKIN  
Port  
B
DFSDM1_CKOU  
T
PB8  
-
-
TIM4_CH3  
SAI1_CK1  
I2C1_SCL  
-
-
PB9  
PB10  
PB11  
-
-
-
IR_OUT  
TIM2_CH3  
TIM2_CH4  
TIM4_CH4  
SAI1_D2  
I2C4_SCL  
I2C4_SDA  
I2C1_SDA  
I2C2_SCL  
I2C2_SDA  
SPI2_NSS  
SPI2_SCK  
-
-
-
-
-
LPTIM3_OUT  
-
USART3_TX  
USART3_RX  
DFSDM1_DATI  
N1  
PB12  
PB13  
PB14  
-
-
-
TIM1_BKIN  
TIM1_CH1N  
TIM1_CH2N  
-
TIM1_BKIN  
-
I2C2_SMBA  
I2C2_SCL  
I2C2_SDA  
-
SPI2_NSS  
SPI2_SCK  
SPI2_MISO  
SPI2_MOSI  
USART3_CK  
DFSDM1_CKI USART3_CTS_  
N1 NSS  
LPTIM3_IN1  
LPTIM3_ETR  
-
DFSDM1_DATI USART3_RTS_  
TIM8_CH2N  
TIM8_CH3N  
N2  
DE  
DFSDM1_CKI  
N2  
PB15 RTC_REFIN TIM1_CH3N  
-
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PC0  
-
LPTIM1_IN1  
LPTIM1_OUT  
-
-
OCTOSPI1_IO7  
SPI2_MOSI  
I2C3_SCL  
I2C3_SDA  
-
-
-
-
-
-
PC1  
PC2  
TRACED0  
DFSDM1_CKO  
UT  
-
LPTIM1_IN2  
-
-
-
SPI2_MISO  
-
PC3  
PC4  
PC5  
-
-
-
LPTIM1_ETR LPTIM3_OUT  
SAI1_D1  
-
-
-
-
SPI2_MOSI  
-
-
-
-
-
-
-
-
-
-
USART3_TX  
USART3_RX  
SAI1_D3  
DFSDM1_CKI  
N3  
PC6  
PC7  
-
-
-
-
TIM3_CH1  
TIM3_CH2  
TIM8_CH1  
TIM8_CH2  
-
-
-
-
-
-
Port  
C
DFSDM1_DATI  
N3  
PC8  
PC9  
-
-
TIM3_CH3  
TIM8_CH3  
-
-
-
-
-
-
-
-
-
-
-
TRACED0  
TIM8_BKIN2  
TIM3_CH4  
TIM8_CH4  
-
-
-
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
TRACED1  
-
-
-
-
-
-
LPTIM3_ETR  
-
-
-
-
-
-
-
SPI3_SCK  
USART3_TX  
-
LPTIM3_IN1  
OCTOSPI1_NCS  
SPI3_MISO  
USART3_RX  
TRACED3  
-
-
-
-
-
-
-
-
SPI3_MOSI  
USART3_CK  
-
-
-
-
-
-
-
-
-
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PD0  
-
-
-
-
-
-
-
-
-
-
SPI2_NSS  
SPI2_SCK  
-
-
-
-
PD1  
PD2  
USART3_RTS_  
DE  
TRACED2  
-
-
-
TIM3_ETR  
-
-
-
-
-
-
DFSDM1_DATI USART2_CTS_  
N0 NSS  
PD3  
SPI2_SCK  
SPI2_MISO  
DFSDM1_CKI USART2_RTS_  
PD4  
PD5  
PD6  
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_MOSI  
-
N0  
DE  
-
-
USART2_TX  
DFSDM1_DATI  
N1  
SAI1_D1  
SPI3_MOSI  
USART2_RX  
USART2_CK  
Port  
D
DFSDM1_CKI  
N1  
PD7  
-
-
-
-
-
-
PD8  
PD9  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USART3_TX  
USART3_RX  
USART3_CK  
PD10  
USART3_CTS_  
NSS  
PD11  
PD12  
-
-
-
-
-
-
-
I2C4_SMBA  
I2C4_SCL  
-
-
-
-
USART3_RTS_  
DE  
TIM4_CH1  
PD13  
PD14  
PD15  
-
-
-
-
-
-
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
-
-
-
I2C4_SDA  
-
-
-
-
-
-
-
-
-
-
-
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PE0  
-
-
-
-
-
TIM4_ETR  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE1  
PE2  
PE3  
-
TRACECK  
TRACED0  
TIM3_ETR  
TIM3_CH1  
SAI1_CK1  
OCTOSPI1_DQS  
DFSDM1_DATI  
N3  
PE4  
TRACED1  
-
TIM3_CH2  
SAI1_D2  
-
-
-
DFSDM1_CKI  
N3  
PE5  
PE6  
PE7  
TRACED2  
TRACED3  
-
-
TIM3_CH3  
TIM3_CH4  
-
SAI1_CK2  
SAI1_D1  
-
-
-
-
-
-
-
-
-
-
-
-
DFSDM1_DATI  
N2  
TIM1_ETR  
Port  
E
DFSDM1_CKI  
N2  
PE8  
PE9  
-
-
TIM1_CH1N  
TIM1_CH1  
-
-
-
-
-
-
-
-
-
-
DFSDM1_CKO  
UT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
-
-
-
-
-
-
TIM1_CH2N  
TIM1_CH2  
TIM1_CH3N  
TIM1_CH3  
TIM1_CH4  
TIM1_BKIN  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
-
-
TIM1_BKIN2  
-
TIM1_BKIN2  
TIM1_BKIN  
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C2_SDA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF1  
PF2  
PF3  
PF4  
PF5  
PF6  
PF7  
PF8  
PF9  
-
-
I2C2_SCL  
-
-
I2C2_SMBA  
-
LPTIM3_IN1  
LPTIM3_ETR  
LPTIM3_OUT  
TIM5_CH1  
TIM5_CH2  
TIM5_CH3  
TIM5_CH4  
-
-
-
-
-
-
-
-
-
TIM5_ETR  
-
-
-
Port  
F
DFSDM1_CKO  
UT  
PF10  
-
-
-
OCTOSPI1_CLK  
-
-
-
PF11  
PF12  
PF13  
PF14  
PF15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
OCTOSPI1_NCLK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C4_SMBA  
I2C4_SCL  
I2C4_SDA  
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
PG0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PG1  
PG2  
PG3  
PG4  
PG5  
PG6  
-
-
-
-
-
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
SPI1_NSS  
-
-
-
-
-
-
-
OCTOSPI1_DQS  
I2C3_SMBA  
DFSDM1_CKO  
UT  
PG7  
-
-
-
SAI1_CK1  
I2C3_SCL  
-
-
PG8  
PG9  
-
-
-
-
-
-
-
-
I2C3_SDA  
-
-
-
-
-
Port  
G
SPI3_SCK  
USART1_TX  
PG1  
0
-
-
-
-
-
-
LPTIM1_IN1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI3_MISO  
USART1_RX  
USART1_CTS_  
NSS  
PG11  
LPTIM1_IN2  
OCTOSPI1_IO5  
-
SPI3_MOSI  
PG1  
2
USART1_RTS_  
DE  
LPTIM1_ETR  
-
-
-
-
-
SPI3_NSS  
PG1  
3
-
I2C1_SDA  
I2C1_SCL  
I2C1_SMBA  
-
-
-
USART1_CK  
PG1  
4
-
-
-
PG1  
5
LPTIM1_OUT  
(1)  
Table 22. Alternate function AF0 to AF7 (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
SPI2/SAI1/I2C4/  
USART2/TIM1/8/  
OCTOSPI1  
SPI1/2/3/I2C4/  
DFSDM1/  
OCTOSPI1  
Port  
TIM1/2/5/8/L  
PTIM1  
TIM1/2/3/4/5/  
LPTIM3  
SPI3/I2C3/DFS  
DM1/COMP1/  
SYS_AF  
I2C1/2/3/4  
USART1/2/3  
Port PH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H
PH1  
-
PH3  
-
-
-
-
-
-
-
-
-
1. Refer to Table 23 for AF8 to AF15.  
(1)  
Table 23. Alternate function AF8 to AF15  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PA0  
UART4_TX  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_EXTCLK  
TIM2_ETR  
TIM15_CH1N  
TIM15_CH1  
TIM15_CH2  
LPTIM2_OUT  
LPTIM2_ETR  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PA1  
PA2  
PA3  
PA4  
PA5  
UART4_RX  
OCTOSPI1_DQS  
-
LPUART1_TX  
OCTOSPI1_NCS UCPD1_FRSTX1  
SAI2_EXTCLK  
SAI1_MCLK_A  
SAI1_FS_B  
-
LPUART1_RX  
OCTOSPI1_CLK  
-
-
-
-
-
-
-
LPUART1_CTS  
_NSS  
PA6  
-
OCTOSPI1_IO3  
-
TIM1_BKIN  
TIM8_BKIN  
TIM16_CH1  
EVENTOUT  
PA7  
PA8  
-
-
-
-
-
-
-
-
OCTOSPI1_IO2  
-
-
-
-
-
-
-
-
-
TIM17_CH1  
LPTIM2_OUT  
TIM15_BKIN  
TIM17_BKIN  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
Port  
A
-
SAI1_SCK_A  
SAI1_FS_A  
SAI1_SD_A  
PA9  
-
PA10  
CRS_SYNC  
FDCAN1_  
RX  
PA11  
PA12  
-
-
USB_DM  
USB_DP  
-
-
TIM1_BKIN2  
-
-
-
-
-
EVENTOUT  
EVENTOUT  
FDCAN1_  
TX  
PA13  
PA14  
-
-
-
-
USB_NOE  
-
-
-
-
-
SAI1_SD_B  
SAI1_FS_B  
-
-
EVENTOUT  
EVENTOUT  
UART4_RTS_D  
E
PA15  
-
-
-
-
SAI2_FS_B  
-
EVENTOUT  
 
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PB0  
-
-
OCTOSPI1_IO1  
OCTOSPI1_IO0  
-
-
COMP1_OUT  
-
SAI1_EXTCLK  
-
-
EVENTOUT  
EVENTOUT  
LPUART1_RTS_  
DE  
PB1  
-
LPTIM2_IN1  
PB2  
PB3  
-
-
-
-
OCTOSPI1_DQS UCPD1_FRSTX1  
-
-
-
-
-
EVENTOUT  
EVENTOUT  
CRS_SYNC  
-
-
-
SAI1_SCK_B  
UART5_RTS_D TSC_G2_  
IO1  
PB4  
PB5  
PB6  
PB7  
-
SAI1_MCLK_B  
SAI1_SD_B  
SAI1_FS_B  
TIM8_BKIN  
TIM17_BKIN  
TIM16_BKIN  
TIM16_CH1N  
TIM17_CH1N  
TIM16_CH1  
TIM17_CH1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
E
UART5_CTS_N TSC_G2_  
-
-
-
-
-
-
-
-
-
-
COMP2_OUT  
TIM8_BKIN2  
FMC_NL  
SS  
IO2  
TSC_G2_  
IO3  
-
UART4_CTS_N TSC_G2_  
SS  
IO4  
Port  
B
FDCAN1_  
RX  
PB8 SDMMC1_CKIN  
PB9 SDMMC1_CDIR  
SDMMC1_D4  
SDMMC1_D5  
SAI1_MCLK_A  
SAI1_FS_A  
FDCAN1_  
TX  
TSC_SY  
NC  
PB10  
PB11  
PB12  
LPUART1_RX  
LPUART1_TX  
OCTOSPI1_CLK  
OCTOSPI1_NCS  
OCTOSPI1_NCLK  
-
-
-
COMP1_OUT  
SAI1_SCK_A  
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
COMP2_OUT  
-
-
-
LPUART1_RTS_ TSC_G1_  
DE IO1  
SAI2_FS_A  
TIM15_BKIN  
LPUART1_CTS TSC_G1_  
PB13  
-
UCPD1_FRSTX2  
-
SAI2_SCK_A  
TIM15_CH1N  
EVENTOUT  
_NSS  
IO2  
TSC_G1_  
IO3  
PB14  
PB15  
-
-
-
-
-
-
-
-
SAI2_MCLK_A  
SAI2_SD_A  
TIM15_CH1  
TIM15_CH2  
EVENTOUT  
EVENTOUT  
-
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PC0  
LPUART1_RX  
LPUART1_TX  
-
-
-
-
-
SDMMC1_D5  
-
SAI2_FS_A  
SAI1_SD_A  
LPTIM2_IN1  
-
EVENTOUT  
EVENTOUT  
PC1  
PC2  
OCTOSPI1_IO4  
TSC_G3_  
IO1  
-
-
OCTOSPI1_IO5  
OCTOSPI1_IO6  
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
TSC_G1_  
IO4  
PC3  
SAI1_SD_A  
LPTIM2_ETR  
PC4  
PC5  
-
-
-
-
OCTOSPI1_IO7  
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
SDMMC1_D0DI TSC_G4_  
IO1  
PC6  
PC7  
-
-
SDMMC1_D6  
SDMMC1_D7  
SDMMC1_D0  
SDMMC1_D1  
SDMMC1_D2  
SDMMC1_D3  
SDMMC1_CK  
SAI2_MCLK_A  
SAI2_MCLK_B  
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
R
SDMMC1_D123 TSC_G4_  
-
-
-
DIR  
IO2  
Port  
C
TSC_G4_  
IO3  
PC8  
-
-
-
-
TSC_G4_  
IO4  
PC9  
-
USB_NOE  
-
SAI2_EXTCLK  
SAI2_SCK_B  
SAI2_MCLK_B  
SAI2_SD_B  
TIM8_BKIN2  
TSC_G3_  
IO2  
PC10  
PC11  
PC12  
UART4_TX  
UART4_RX  
UART5_TX  
-
-
-
-
-
-
-
TSC_G3_  
IO3  
UCPD1_FRSTX2  
-
TSC_G3_  
IO4  
PC13  
PC14  
PC15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
FDCAN1_  
RX  
PD0  
-
-
-
-
-
-
-
FMC_D2  
FMC_D3  
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
FDCAN1_  
TX  
PD1  
PD2  
-
TSC_SY  
NC  
UART5_RX  
SDMMC1_CMD  
PD3  
PD4  
PD5  
PD6  
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_CLK  
FMC_NOE  
FMC_NWE  
FMC_NWAIT  
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
OCTOSPI1_IO4  
OCTOSPI1_IO5  
OCTOSPI1_IO6  
-
-
SAI1_SD_A  
FMC_NCE/FMC_  
NE1  
PD7  
-
-
OCTOSPI1_IO7  
-
-
-
EVENTOUT  
Port  
D
PD8  
PD9  
-
-
-
-
-
-
-
-
FMC_D13  
FMC_D14  
-
-
-
EVENTOUT  
EVENTOUT  
SAI2_MCLK_A  
TSC_G6_  
IO1  
PD10  
PD11  
PD12  
PD13  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_D15  
FMC_A16  
FMC_A17  
FMC_A18  
SAI2_SCK_A  
SAI2_SD_A  
SAI2_FS_A  
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_G6_  
IO2  
LPTIM2_ETR  
LPTIM2_IN1  
LPTIM2_OUT  
TSC_G6_  
IO3  
TSC_G6_  
IO4  
PD14  
PD15  
-
-
-
-
-
-
-
-
FMC_D0  
FMC_D1  
-
-
-
-
EVENTOUT  
EVENTOUT  
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PE0  
-
-
-
-
-
-
-
-
FMC_NBL0  
FMC_NBL1  
-
-
TIM16_CH1  
TIM17_CH1  
EVENTOUT  
EVENTOUT  
PE1  
PE2  
TSC_G7_  
IO1  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A23  
FMC_A19  
FMC_A20  
FMC_A21  
SAI1_MCLK_A  
SAI1_SD_B  
SAI1_FS_A  
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_G7_  
IO2  
PE3  
PE4  
PE5  
TSC_G7_  
IO3  
TSC_G7_  
IO4  
SAI1_SCK_A  
PE6  
PE7  
PE8  
PE9  
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A22  
FMC_D4  
FMC_D5  
FMC_D6  
SAI1_SD_A  
SAI1_SD_B  
SAI1_SCK_B  
SAI1_FS_B  
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
-
Port  
E
-
OCTOSPI1_NCLK  
TSC_G5_  
IO1  
PE10  
PE11  
PE12  
PE13  
-
-
-
-
OCTOSPI1_CLK  
OCTOSPI1_NCS  
OCTOSPI1_IO0  
OCTOSPI1_IO1  
-
-
-
-
FMC_D7  
FMC_D8  
FMC_D9  
FMC_D10  
SAI1_MCLK_B  
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
TSC_G5_  
IO2  
-
-
-
TSC_G5_  
IO3  
TSC_G5_  
IO4  
PE14  
PE15  
-
-
-
-
OCTOSPI1_IO2  
OCTOSPI1_IO3  
-
-
FMC_D11  
FMC_D12  
-
-
-
-
EVENTOUT  
EVENTOUT  
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A0  
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
PF1  
PF2  
-
FMC_A1  
-
-
-
FMC_A2  
-
-
PF3  
-
FMC_A3  
-
-
PF4  
-
FMC_A4  
-
-
PF5  
-
FMC_A5  
-
-
PF6  
OCTOSPI1_IO3  
-
SAI1_SD_B  
-
PF7  
OCTOSPI1_IO2  
-
SAI1_MCLK_B  
-
Port  
F
PF8  
OCTOSPI1_IO0  
-
SAI1_SCK_B  
-
PF9  
OCTOSPI1_IO1  
-
SAI1_FS_B  
TIM15_CH1  
PF10  
PF11  
PF12  
PF13  
-
-
-
-
-
SAI1_D3  
TIM15_CH2  
-
-
-
-
-
-
-
FMC_A6  
FMC_A7  
TSC_G8_  
IO1  
PF14  
PF15  
-
-
-
-
-
-
FMC_A8  
FMC_A9  
-
-
-
-
EVENTOUT  
EVENTOUT  
TSC_G8_  
IO2  
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
TSC_G8_  
IO3  
PG0  
-
-
-
-
-
FMC_A10  
FMC_A11  
-
-
-
-
EVENTOUT  
EVENTOUT  
TSC_G8_  
IO4  
PG1  
-
PG2  
PG3  
PG4  
-
-
-
-
-
-
-
-
-
-
-
-
FMC_A12  
FMC_A13  
FMC_A14  
SAI2_SCK_B  
SAI2_FS_B  
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
SAI2_MCLK_B  
LPUART1_CTS  
_NSS  
PG5  
PG6  
-
-
-
-
-
FMC_A15  
-
SAI2_SD_B  
-
-
-
EVENTOUT  
EVENTOUT  
LPUART1_RTS_  
DE  
UCPD1_FRSTX1  
Port  
G
PG7  
PG8  
LPUART1_TX  
LPUART1_RX  
-
-
-
-
UCPD1_FRSTX2  
-
FMC_INT  
-
SAI1_MCLK_A  
-
-
-
EVENTOUT  
EVENTOUT  
FMC_NCE/FMC_  
NE2  
PG9  
-
-
-
-
SAI2_SCK_A  
TIM15_CH1N  
EVENTOUT  
PG10  
PG11  
PG12  
PG13  
PG14  
PG15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
FMC_NE3  
-
SAI2_FS_A  
TIM15_CH1  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
SAI2_MCLK_A  
TIM15_CH2  
FMC_NE4  
FMC_A24  
FMC_A25  
-
SAI2_SD_A  
-
-
-
-
-
-
-
(1)  
Table 23. Alternate function AF8 to AF15 (continued)  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
Port  
UART4/5/LPUA FDCAN1/  
SDMMC1/COMP1  
/2/TIM1/8/FMC  
TIM2/8/15/16/17/  
LPTIM2  
USB/OCTOSPI1  
UCPD1  
SAI1/2/TIM8  
EVENTOUT  
RT1/SDMMC1  
TSC  
PH0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
EVENTOUT  
EVENTOUT  
EVENTOUT  
Port  
H
PH1  
PH3  
1. Refer to Table 22 for AF0 to AF7.  
Electrical characteristics  
STM32L552xx  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ±2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 25.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 26.  
Figure 25. Pin loading conditions  
Figure 26. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19210V1  
MS19211V1  
138/340  
DS12737 Rev 6  
 
 
 
 
 
 
 
 
 
STM32L552xx  
Electrical characteristics  
5.1.6  
Power supply scheme  
Figure 27. STM32L552xx and STM32L562xx power supply overview  
VBAT  
Backup circuitry  
(LSE, RTC,  
Backup registers)  
1.55 – 3.6 V  
Power switch  
VDD  
VCORE  
n x VDD  
Regulator  
VDDIO1  
OUT  
Kernel logic  
(CPU, Digital  
& Memories)  
IO  
logic  
n x 100 nF  
+1 x 4.7 μF  
GPIOs  
IN  
n x VSS  
VDDIO2  
m x VDDIO2  
VDDIO2  
OUT  
m x100 nF  
+4.7 μF  
IO  
logic  
GPIOs  
IN  
m x VSS  
VDDA  
VDDA  
VREF  
ADCs/  
DACs/  
10 nF  
VREF+  
VREF-  
OPAMPs/  
COMPs/  
VREFBUF  
+1 μF  
100 nF +1 μF  
VSSA  
MSv62917V1  
DS12737 Rev 6  
139/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Figure 28. STM32L552xxxP and STM32L562xxxP power supply overview  
VBAT  
Backup circuitry  
(LSE, RTC,  
Backup registers)  
1.55 – 3.6 V  
Power switch  
2 x VDD12  
1.05 – 1.32 V  
VDD  
VCORE  
n x VDD  
Regulator  
VDDIO1  
OUT  
Kernel logic  
(CPU, Digital  
& Memories)  
IO  
logic  
n x 100 nF  
+1 x 4.7 μF  
GPIOs  
IN  
n x VSS  
VDDIO2  
m x VDDIO2  
VDDIO2  
OUT  
m x100 nF  
+4.7 μF  
IO  
logic  
GPIOs  
IN  
m x VSS  
VDDA  
VDDA  
VREF  
ADCs/  
DACs/  
10 nF  
VREF+  
VREF-  
OPAMPs/  
COMPs/  
VREFBUF  
+1 μF  
100 nF +1 μF  
VSSA  
MSv62918V1  
Note:  
If the selected package has the external SMPS option but no external SMPS is used by the  
application (the embedded LDO is used instead), the VDD12 pins are kept unconnected.  
140/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
Figure 29. STM32L552xxxQ and STM32L562xxxQ power supply overview  
VBAT  
Backup circuitry  
(LSE, RTC,  
Backup registers)  
1.55 – 3.6 V  
VDD  
Power switch  
VDDSMPS  
VLXSMPS  
SMPS  
2 x V15SMPS  
VSSSMPS  
VDD  
VCORE  
n x VDD  
GPIOs  
Regulator  
VDDIO1  
OUT  
Kernel logic  
(CPU, Digital  
& Memories)  
IO  
logic  
n x 100 nF  
+1 x 4.7 μF  
IN  
n x VSS  
VDDIO2  
m x VDDIO2  
VDDIO2  
OUT  
m x100 nF  
+4.7 μF  
IO  
logic  
GPIOs  
IN  
m x VSS  
VDDA  
VDDA  
VREF  
ADCs/  
DACs/  
10 nF  
VREF+  
VREF-  
OPAMPs/  
COMPs/  
VREFBUF  
+1 μF  
100 nF +1 μF  
VSSA  
MSv62919V1  
1. Refer to Figure 3 for SMPS step down converter power supply scheme.  
Note:  
If the selected package has the SMPS step down converter option but the application does  
not ever use the SMPS, it is recommended to set the SMPS power supply pins as follows:  
VDDSMPS and VLXSMPS connected to VSS  
V15SMPSconnected to VDD.  
Caution:  
Each power supply pair (V /V , V  
/V  
etc.) must be decoupled with filtering ceramic  
DD SS DDA SSA  
capacitors as shown above. These capacitors must be placed as close as possible to, or  
below, the appropriate pins on the underside of the PCB to ensure the good functionality of  
the device.  
DS12737 Rev 6  
141/340  
307  
 
Electrical characteristics  
STM32L552xx  
5.1.7  
Current consumption measurement  
The I  
parameters given in Table 33 to Table 96 represent the total MCU consumption  
DD_ALL  
including the current supplying V , V  
, V  
, V  
, V  
and V  
if the  
DD  
DDIO2  
DDA  
DDUSB  
BAT  
DDSMPS  
device embeds the SMPS.  
Figure 30. Current consumption measurement  
IDD_VBAT  
VBAT  
IDD  
VDD  
VDDA  
VDDUSB  
VDDSMPS  
VDDIO2  
MSv62920V1  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 24: Voltage characteristics,  
Table 25: Current characteristics and Table 26: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Device mission profile (application conditions)  
is compliant with JEDEC JESD47 qualification standard, extended mission profiles are  
available on demand.  
(1)  
Table 24. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage (including VDD  
,
VDDX - VSS  
V
DDA, VDDIO2, VDDUSB, VBAT, VDDSMPS  
,
-0.3  
4.0  
VREF+  
)
-0.3  
-0.3  
Allranges  
0/1/2  
V
DD12 - VSS External SMPS supply voltage  
1.4  
V
min (VDD, VDDA  
,
Input voltage on FT_xxx pins except FT_c  
pins  
VDDIO2, VDDUSB,  
VSS-0.3  
VDDSMPS  
)
+ 4.0(3)(4)  
(2)  
VIN  
Input voltage on FT_c pins  
VSS-0.3  
VSS-0.3  
5.5  
Input voltage on any other pins  
4.0  
142/340  
DS12737 Rev 6  
 
 
 
 
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 24. Voltage characteristics (continued)  
Symbol  
Ratings  
Min  
Max  
Unit  
VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA  
Variations between different VDDX power  
-
0.4  
V
|VDDx  
|
-
-
50  
50  
pins of the same domain  
mV  
Variations between all the different ground  
pins(5)  
|VSSx-VSS  
|
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be  
connected to the external power supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 25: Current characteristics for the maximum  
allowed injected current values.  
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin  
definition table.  
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 25. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1) (2)  
Total current out of sum of all VSS ground lines (sink)(1) (2)  
160  
160  
100  
100  
20  
IVDD(PIN) Maximum current into each VDD power pin (source)(1)  
IVSS(PIN)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin except FT_f  
Output current sunk by any FT_f pin  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(3)  
Total output current sourced by sum of all I/Os and control pins(3)  
20  
100  
100  
IIO(PIN)  
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5 -5/+0(5)  
(4)  
IINJ(PIN)  
Injected current on PA4, PA5  
-5/0  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(6)  
+/-25  
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be  
connected to the external power supplies, in the permitted range.  
2. Valid also for VDD12 on SMPS package.  
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output  
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count  
QFP packages.  
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages  
lower than the specified maximum value.  
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 24:  
Voltage characteristics for the minimum allowed input voltage values.  
6. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of  
the negative injected currents (instantaneous values).  
DS12737 Rev 6  
143/340  
307  
 
 
 
 
Electrical characteristics  
Symbol  
STM32L552xx  
Unit  
Table 26. Thermal characteristics  
Ratings  
Value  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
-65 to +150  
150  
°C  
°C  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 27. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Internal AHB clock  
frequency  
fHCLK  
-
0
0
0
110  
110  
110  
3.6  
Internal APB1 clock  
frequency  
fPCLK1  
fPCLK2  
VDD  
-
-
-
MHz  
Internal APB2 clock  
frequency  
1.71  
Standard operating voltage  
V
V
(1)  
Supply voltage for the  
VDDSMPS internal SMPS step-down  
converter  
1.71  
VDDSMPS = VDD  
3.6  
(1)  
Up to 110 MHz  
Up to 80 MHz  
1.14  
1.08  
1.32  
1.32  
VDD12  
Standard operating voltage  
V
V
1.05  
Up to 26 MHz  
1.32  
(2)  
At least one I/O in  
PG[15:2] used  
1.08  
3.6  
3.6  
PG[15:2] I/Os supply  
voltage  
VDDIO2  
PG[15:2] not used  
ADC or COMP used  
DAC or OPAMP used  
VREFBUF used  
0
1.62  
1.8  
2.4  
VDDA  
Analog supply voltage  
3.6  
V
ADC, DAC, OPAMP,  
COMP, VREFBUF not  
used  
0
144/340  
DS12737 Rev 6  
 
 
 
 
 
 
STM32L552xx  
Electrical characteristics  
Table 27. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VBAT  
Backup operating voltage  
-
1.55  
3.6  
V
USB used  
3.0  
0
3.6  
3.6  
VDDUSB USB supply voltage  
V
USB not used  
TT_xx I/O  
FT_c I/O  
-0.3  
-0.3  
VDDIOx+0.3  
5
MIN(MIN(VDD  
,
VIN  
I/O input voltage  
V
VDDA, VDDIO2  
,
All I/O except FT_c and  
TT_xx  
-0.3  
VDDUSB  
+3.6 V,  
)
5.5 V)(3)(4)  
LQFP48  
See Section 6.8:  
Thermal  
characteristics for  
UFQFPN48  
LQFP64  
application appropriate  
thermal resistance and  
package. Power  
dissipation is then  
calculated according  
ambient temperature  
(TA) and maximum  
junction temperature  
(TJ) and selected  
WLCSP81  
LQFP100  
UFBGA132  
Power dissipation at  
PD  
mW  
TA = 85 °C for suffix 6(5)  
LQFP144  
thermal resistance.  
LQFP48  
See Section 6.8:  
Thermal  
characteristics for  
application appropriate  
thermal resistance and  
package. Power  
dissipation is then  
calculated according  
ambient temperature  
(TA) and maximum  
junction temperature  
(TJ) and selected  
thermal resistance.  
UFQFPN48  
LQFP64  
WLCSP81  
LQFP100  
UFBGA132  
Power dissipation at  
PD  
mW  
TA = 125 °C for suffix 3(5)  
LQFP144  
DS12737 Rev 6  
145/340  
307  
Electrical characteristics  
Symbol  
STM32L552xx  
Table 27. General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
Maximum power  
dissipation  
–40  
–40  
–40  
85  
Ambient temperature for  
the suffix 6 version  
Low-power dissipation(6)  
105  
125  
TA  
TJ  
°C  
Maximum power  
dissipation  
Ambient temperature for  
the suffix 3 version  
Low-power dissipation(6)  
–40  
–40  
–40  
130  
105  
130  
Suffix 6 version  
Junction temperature range  
°C  
Suffix 3 version  
1. When RESET is released functionality is guaranteed down to VBOR0 Min.  
2. For Flash erase and program operation, VDD12 min must be 1.08 V.  
3. This formula has to be applied only on the power supplies related to the IO structure described by the pin  
definition table. Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA, VDDIO2  
DDUSB)+3.6 V and 5.5V.  
,
V
4. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB) +0.3 V, the internal Pull-up and  
Pull-Down resistors must be disabled.  
5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.7: Thermal  
characteristics).  
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see  
Section 7.7: Thermal characteristics).  
5.3.2  
SMPS step-down converter  
The device embeds an SMPS step down converter which requires the external components  
shown in below figure.  
Figure 31. External components for SMPS step down converter  
VDD  
VCORE  
VDDSMPS  
VLXSMPS  
SMPS  
Regulator  
L = 4.7 μH typ  
C = 4.7 μF typ  
2 x V15SMPS  
VSSSMPS  
MSv62972V2  
The following table summarizes the SMPS behavior depending on the main regulator range,  
VDD and consumption.  
146/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
Table 28. SMPS modes summary  
SMPS mode  
Ranges Max AHB clock VCORE  
VDD 2.05 V  
VDD > 2.05 V  
HP mode  
Automatic Bypass mode  
V15SMPS = VDD  
Range 0  
Range 1  
Range 2  
110 MHz  
80 MHz  
26 MHz  
1.28 V  
1.2 V  
1.0 V  
Max current consumption = 120 mA  
V15SMPS = 1.6 V  
HP mode  
Automatic Bypass mode  
Max current consumption = 80 mA  
V15SMPS = 1.5 V  
V15SMPS = VDD  
LP mode or HP mode  
Software Bypass mode(1)  
V15SMPS = VDD  
Max current consumption = 30 mA  
V15SMPS = 1.3 V  
1. There is no automatic SMPS bypass in Range 2. The user application should use PVD0 to monitor VDD supply and request  
the SMPS Bypass mode.  
(1)  
Table 29. SMPS characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDSMPS SMPS power supply  
V15SMPS SMPS output voltage  
1.71(2)  
1.55  
3.6  
V
Range 0  
Range 1  
Range 2  
1.6  
1.5  
1.3  
1.65  
1.55  
1.35  
1.45  
V
1.25  
Fast startup disabled  
SMPSFSTEN = 0  
-
-
600  
120  
-
-
SMPS output slew  
SR  
µs/V  
rate  
Fast startup enabled  
SMPSFSTEN = 1  
1. Guaranteed by design.  
2. When VDDSMPS is less than 2.05V, the SMPS bypass mode is forced by hardware in Range 0 and  
Range 1. In Range 2, there is no automatic switch into SMPS bypass mode. It should be requested by  
software. Refer to Table 28: SMPS modes summary.  
DS12737 Rev 6  
147/340  
307  
 
 
 
 
Electrical characteristics  
STM32L552xx  
5.3.3  
Operating conditions at power-up / power-down  
The parameters given in Table 30 are derived from tests performed under the ambient  
temperature condition summarized in Table 27.  
(1)  
Table 30. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
0
10  
0
tVDD  
-
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
VDDUSB rise time rate  
VDDUSB fall time rate  
VDDIO2 rise time rate  
tVDDA  
tVDDUSB  
tVDDIO2  
-
-
-
10  
0
µs/V  
10  
0
VDDIO2 fall time rate  
10  
1. At power-up, the VDD12 voltage should not be forced externally.  
5.3.4  
Embedded reset and power control block characteristics  
The parameters given in Table 31 are derived from tests performed under the ambient  
temperature conditions summarized in Table 27: General operating conditions.  
Table 31. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Reset temporization after  
BOR0 is detected  
(2)  
tRSTTEMPO  
VDD rising  
-
250  
400  
μs  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
1.62  
1.6  
1.66  
1.64  
2.1  
1.7  
(2)  
VBOR0  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
V
V
V
V
V
V
V
1.69  
2.14  
2.04  
2.35  
2.24  
2.66  
2.57  
2.95  
2.86  
2.19  
2.1  
2.06  
1.96  
2.26  
2.16  
2.56  
2.47  
2.85  
2.76  
2.1  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
2
2.31  
2.20  
2.61  
2.52  
2.90  
2.81  
2.15  
2.05  
2.31  
2.20  
Programmable voltage  
detector threshold 0  
2
2.26  
2.15  
2.36  
2.25  
PVD threshold 1  
148/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
Table 31. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.41  
2.31  
2.56  
2.47  
2.69  
2.59  
2.85  
2.75  
2.92  
2.84  
2.46  
2.36  
2.61  
2.52  
2.74  
2.64  
2.91  
2.81  
2.98  
2.90  
2.51  
2.41  
2.66  
2.57  
2.79  
2.69  
2.96  
2.86  
3.04  
2.96  
VPVD2  
PVD threshold 2  
V
VPVD3  
VPVD4  
VPVD5  
VPVD6  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
V
V
V
V
Hysteresis in  
continuous  
mode  
-
20  
-
Vhyst_BORH0 Hysteresis voltage of BORH0  
Hysteresis voltage of BORH  
mV  
Hysteresis in  
other mode  
-
-
-
30  
100  
1.1  
-
-
Vhyst_BOR_PVD  
-
-
mV  
µA  
(except BORH0) and PVD  
IDD  
BOR(3) (except BOR0) and  
1.6  
(BOR_PVD)(2) PVD consumption from VDD  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
-
1.61  
1.6  
1.78  
1.77  
-
1.65  
1.64  
1.82  
1.81  
10  
1.69  
1.68  
1.86  
1.85  
-
VDDA peripheral voltage  
monitoring  
VPVM3  
V
V
VDDA peripheral voltage  
monitoring  
VPVM4  
Vhyst_PVM3  
Vhyst_PVM4  
IDD  
PVM3 hysteresis  
PVM4 hysteresis  
mV  
mV  
-
-
10  
-
PVM1 and PVM2  
consumption from VDD  
(PVM1/PVM2)  
-
-
-
-
0.2  
2
-
-
µA  
µA  
(2)  
IDD  
PVM3 and PVM4  
consumption from VDD  
(PVM3/PVM4)  
(2)  
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power  
sleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply  
current characteristics tables.  
DS12737 Rev 6  
149/340  
307  
 
Electrical characteristics  
STM32L552xx  
5.3.5  
Embedded voltage reference  
The parameters given in Table 32 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 27: General operating  
conditions.  
Table 32. Embedded internal voltage reference  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference  
voltage  
VREFINT  
–40 °C < TA < +130 °C 1.182 1.212 1.232  
V
ADC sampling time  
when reading the  
internal reference  
voltage  
(1)  
tS_vrefint  
-
-
-
4(2)  
-
8
-
µs  
µs  
Start time of reference  
voltage buffer when  
ADC is enable  
tstart_vrefint  
-
-
-
12(2)  
20(2)  
7.5(2)  
VREFINT buffer  
consumption from VDD  
DD(VREFINTBUF) when converted by  
12.5  
µA  
mV  
I
ADC  
Internal reference  
voltage spread over  
VREFINT  
VDD = 3 V  
5
the temperature range  
Average temperature  
coefficient  
TCoeff  
ACoeff  
–40°C < TA < +130°C  
1000 hours, T = 25°C  
3.0 V < VDD < 3.6 V  
-
-
-
30  
50(2) ppm/°C  
Long term stability  
300 1000(2)  
ppm  
Average voltage  
coefficient  
VDDCoeff  
250 1200(2) ppm/V  
VREFINT_DIV1  
VREFINT_DIV2  
VREFINT_DIV3  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
VREFINT  
-
1. The shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
150/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
Figure 32. V  
versus temperature  
REFINT  
V
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
°C  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120  
Min  
Max  
MSv40169V2  
DS12737 Rev 6  
151/340  
307  
 
Electrical characteristics  
STM32L552xx  
5.3.6  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code  
The current consumption is measured as described in Section 5.1.7: Current consumption  
measurement.  
Typical and maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the f  
frequency (refer to the table “Number of wait states according  
HCLK  
to CPU clock (HCLK) frequency” available in the RM0438 reference manual).  
When the peripherals are enabled f = f  
PCLK  
HCLK  
The voltage scaling range is adjusted to f  
frequency as follows:  
HCLK  
Voltage Range 0 for 80 MHz < f  
Voltage Range 1 for 26 MHz < f  
<= 110 MHz  
<= 80 MHz  
HCLK  
HCLK  
Voltage Range 2 for f  
<= 26 MHz  
HCLK  
The parameters given in Table 33 to Table 81 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 27: General  
operating conditions.  
152/340  
DS12737 Rev 6  
 
Table 33. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE ON in 2-way  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
105°  
C
-
fHCLK  
25°C  
55°C 85°C  
125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
3.20  
2.05  
3.54  
2.38  
1.45  
0.99  
4.47 5.80 8.10  
3.31 4.62 6.92  
2.38 3.68 5.97  
1.91 3.22 5.50  
4.38 6.84 12.12 18.82 29.63  
3.24 5.69 10.95 17.63 28.39  
2.33 4.77 10.02 16.68 27.42  
1.14  
Range 2  
0.675  
1.87 4.30  
1.64 4.07  
1.59 4.01  
1.43 3.85  
9.55  
9.31  
9.26  
9.09  
16.20 26.92  
15.96 26.68  
15.90 26.62  
15.73 26.56  
0.441 0.758 1.67 2.97 5.25  
0.326 0.639 1.54 2.86 5.14  
fHCLK = fHSE  
up to 48 MHz  
included,  
100 KHz 0.223 0.533 1.45 2.74 5.03  
Supply  
current in  
Run mode  
IDD  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
Range 0 110 MHz  
80 MHz  
16.7  
11.4  
10.3  
9.20  
6.97  
4.73  
3.62  
2.51  
424  
17.3  
11.9  
10.8  
9.68  
7.44  
5.18  
4.06  
2.93  
779  
18.7 20.5 23.7 19.07 21.53 31.38 41.23 56.59 mA  
13.2 14.8 17.7 13.33 16.89 24.17 33.07 46.91  
12.0 13.7 16.6 12.22 15.76 23.03 31.92 45.75  
10.9 12.6 15.4 11.10 14.64 21.89 30.78 44.60  
(Run)  
72 MHz  
64 MHz  
Range 1 48 MHz  
32 MHz  
8.64 10.3 13.1  
6.36 7.97 10.8  
8.85 12.38 19.62 28.48 42.29  
6.61 10.12 17.32 26.15 39.93  
5.49 8.99 16.17 24.99 38.82  
4.37 7.85 15.02 23.83 37.64  
24 MHz  
5.22 6.82  
4.08 5.67  
9.6  
8.4  
16 MHz  
2 MHz  
1816 3274 5719 2026 5001 12861 20164 31407  
1686 3124 5588 1905 4941 11969 18559 31355  
1594 3047 5499 1832 4762 11881 18519 31266  
1559 3012 5469 1799 4573 11877 18469 31247  
Supply  
current in  
Low-power  
run mode  
1 MHz  
296  
648  
IDD  
fHCLK = fMSI  
all peripherals disabled  
µA  
(LPRun)  
400 KHz  
100 KHz  
192  
561  
163  
528  
 
 
Table 34. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE ON in 1-way  
Conditions  
TYP  
MAX  
Parame  
ter  
Voltag  
e
Symbol  
Unit  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C  
105°C  
125°C  
scaling  
26 MHz  
16 MHz  
8 MHz  
3.10  
2.00  
1.11  
0.65  
0.43  
0.32  
0.22  
3.44  
2.32  
1.42  
0.98  
0.74  
0.62  
0.52  
4.37  
3.23  
2.33  
1.87  
1.65  
1.53  
1.43  
5.69  
4.55  
3.64  
3.19  
2.97  
2.85  
2.75  
8.01  
6.86  
5.93  
5.48  
5.24  
5.10  
5.01  
4.28  
3.18  
2.30  
1.86  
1.64  
1.58  
1.43  
6.74  
5.63  
4.73  
4.29  
4.06  
4.01  
3.85  
12.02  
10.89  
9.99  
9.53  
9.31  
9.25  
9.09  
18.70  
17.55  
16.64  
16.18  
15.95  
15.89  
15.73  
29.46  
28.30  
27.37  
26.89  
26.66  
26.61  
26.44  
Range  
2
4 MHz  
2 MHz  
fHCLK =  
fHSE up to  
48 MHz  
1 MHz  
100 KHz  
Supply included,  
current bypass  
in Run mode PLL  
mode ON above  
48 MHz all  
IDD  
Range  
0
110 MHz 16.1  
16.7  
18.2  
20.0  
23.2  
18.54  
22.63  
30.86  
40.70  
56.07  
mA  
(Run)  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
2 MHz  
11.0  
10.0  
8.90  
6.75  
4.59  
3.51  
2.43  
416  
11.5  
10.5  
9.38  
7.21  
5.03  
3.94  
2.85  
770  
12.8  
11.7  
10.6  
8.41  
6.22  
5.10  
3.99  
1781  
1659  
1583  
14.5  
13.4  
12.3  
10.0  
7.82  
6.72  
5.59  
17.3  
16.2  
15.1  
12.8  
10.6  
9.5  
12.97  
11.89  
10.81  
8.63  
6.46  
5.38  
4.3  
16.53  
15.44  
14.35  
12.16  
9.97  
23.82  
22.72  
21.62  
19.41  
17.18  
16.07  
15.0  
32.71  
31.60  
30.48  
28.26  
26.00  
24.88  
23.7  
46.57  
45.46  
44.30  
42.09  
39.87  
38.73  
37.6  
peripherals  
disabled  
Range  
1
8.88  
8.4  
7.8  
Supply  
current  
in Low-  
power  
run  
3249 5708  
3127 5575  
3043 5502  
2014  
1899  
1827  
4968  
4930  
4765  
12892  
11960  
11905  
19856  
18568  
18328  
31311  
31264  
31256  
fHCLK = fMSI  
all peripherals  
disabled  
1 MHz  
291  
633  
IDD  
µA  
400 KHz  
194  
557  
(LPRun)  
100 KHz  
147  
519  
1542  
3020 5462  
1795  
4584  
11898  
18312  
31238  
mode  
 
Table 35. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE disabled  
Conditions  
TYP  
MAX  
Parame  
ter  
Symbol  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
25°C  
55°C  
85°C  
105°C  
125°C  
26 MHz  
16 MHz  
8 MHz  
4.08  
2.65  
1.43  
0.82  
0.51  
0.36  
4.43  
2.98  
1.76  
1.14  
0.82  
0.68  
0.53  
19.4  
14.6  
13.3  
12.30  
9.37  
6.58  
5.11  
3.70  
866  
5.36  
3.91  
2.67  
2.05  
1.75  
1.59  
1.45  
20.9  
15.9  
14.5  
13.5  
10.63  
7.80  
6.29  
4.86  
1890  
1715  
1603  
6.72  
5.22  
3.99  
3.36  
3.05  
2.89  
2.76  
22.8  
17.6  
16.2  
15.2  
12.3  
9.44  
7.92  
6.47  
3353  
3168  
3062  
9.02  
7.55  
6.26  
5.65  
5.31  
5.16  
5.00  
25.9  
20.5  
19.1  
18.1  
15.1  
12.2  
10.7  
9.2  
5.38  
3.93  
7.84  
6.38  
13.14  
11.67  
10.38  
9.73  
19.81  
18.32  
17.02  
16.36  
16.04  
15.96  
15.73  
42.05  
35.88  
34.50  
33.60  
30.62  
27.78  
26.20  
24.74  
20681  
18581  
18580  
30.60  
29.09  
27.77  
27.11  
26.78  
26.70  
26.47  
57.42  
49.75  
48.37  
47.45  
44.47  
41.68  
40.09  
38.61  
31502  
31161  
31131  
2.67  
5.11  
fHCLK =  
fHSE up  
to  
48 MHz  
included,  
Range 2 4 MHz  
2 MHz  
2.04  
4.48  
1.73  
4.16  
9.41  
1 MHz  
1.65  
4.08  
9.33  
100 KHz 0.22  
1.43  
3.86  
9.11  
Supply bypass  
current mode  
in Run PLL ON  
IDD  
Range 0 110 MHz 18.8  
19.97  
16.16  
14.80  
13.90  
10.97  
8.22  
24.02  
19.71  
18.34  
17.45  
14.51  
11.74  
10.20  
8.77  
32.25  
27.01  
25.64  
24.74  
21.78  
18.98  
17.42  
15.97  
12721  
12001  
11924  
mA  
(Run)  
mode  
above  
48 MHz  
all  
peripher  
als  
80 MHz  
72 MHz  
14.1  
12.8  
64 MHz 11.79  
Range 1 48 MHz  
8.87  
6.12  
4.66  
3.26  
511  
disabled  
32 MHz  
24 MHz  
16 MHz  
2 MHz  
6.70  
5.28  
Supply  
current  
in Low-  
power  
run  
5834  
5642  
5505  
2122  
1949  
1852  
5256  
5022  
4828  
fHCLK = fMSI  
all peripherals  
disabled  
1 MHz  
344  
203  
692  
IDD  
µA  
(LPRun)  
400 KHz  
591  
100 KHz  
159  
531  
1553  
3018  
5468  
1802  
4590  
11905  
18301  
30947  
mode  
 
Table 36. Current consumption in Run mode, code with data processing  
running from Flash in single bank, ICACHE ON in 2-way and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
85°C  
Symbol Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
1.87  
1.23  
0.72  
0.46  
0.33  
0.27  
1.95  
1.33  
0.83  
0.58  
0.46  
0.39  
0.34  
2.41  
1.78  
1.28  
1.03  
0.91  
0.84  
0.78  
3.09  
2.45  
1.95  
1.69  
1.55  
1.49  
1.44  
5.03  
4.33  
3.79  
3.52  
3.38  
3.311  
3.25  
1.92  
1.31  
0.81  
0.56  
0.44  
0.41  
0.32  
2.72  
2.09  
1.59  
1.33  
1.21  
1.17  
1.08  
4.63  
3.99  
3.47  
3.22  
3.09  
3.05  
2.96  
7.11  
6.46  
5.93  
5.67  
5.54  
5.51  
5.42  
11.08  
10.42  
9.88  
9.62  
9.48  
9.45  
9.35  
fHCLK =  
fHSE up to  
48 MHz  
included,  
bypass  
mode PLL  
ON above  
48 MHz all  
peripherals  
disabled  
Range 2  
SMPS  
LP  
mode  
Supply  
IDD  
current in  
(Run)  
Run mode  
100 KHz 0.21  
Range 0  
SMPS  
HP  
110 MHz 11.21  
11.76  
12.72  
13.98  
17.58  
11.49  
13.03  
16.3  
20.32  
26.73 mA  
mode  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
24 MHz  
16 MHz  
7.00  
6.34  
5.68  
4.36  
3.03  
2.36  
1.69  
7.28  
6.61  
5.94  
4.61  
3.25  
2.57  
1.90  
8.37  
7.57  
6.73  
5.28  
3.91  
3.21  
2.53  
9.41  
8.67  
7.96  
6.49  
4.86  
4.13  
3.43  
11.92  
11.20  
10.44  
8.97  
7.52  
6.87  
6.19  
4.82  
3.43  
2.73  
2.03  
8.94  
8.25  
7.55  
6.15  
4.73  
4.01  
3.3  
11.84  
11.19  
10.53  
9.18  
7.7  
15.22  
14.55  
13.92  
12.6  
20.62  
19.93  
19.26  
17.89  
16.52  
15.82  
15.14  
fHCLK =  
fHSE up to  
48MHz  
included,  
bypass  
mode PLL  
ON above  
48 MHz all  
peripherals  
disabled  
Range 1  
Supply  
IDD  
SMPS  
HP  
mode  
current in  
(Run)  
Run mode  
7.48  
11.29  
10.63  
9.95  
6.73  
6.98  
6.24  
5.97  
 
 
Table 37. Current consumption in Run mode, code with data processing  
running from Flash in single bank, ICACHE ON in 1-way and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 1.82  
16 MHz 1.20  
1.90  
1.30  
0.82  
0.58  
0.45  
0.39  
0.33  
2.36  
1.75  
1.27  
1.02  
0.90  
0.84  
0.78  
3.03  
2.41  
1.93  
1.68  
1.55  
1.49  
1.43  
4.96  
4.31  
3.75  
3.51  
3.37  
3.30  
3.24  
1.88  
1.28  
0.8  
2.67  
2.06  
1.57  
1.32  
1.2  
4.58  
3.96  
3.46  
3.21  
3.08  
3.05  
2.96  
7.06 11.03  
6.43 10.39  
fHCLK = fHSE up  
to 48MHz  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.70  
0.45  
0.33  
0.26  
5.92  
5.67  
5.54  
5.51  
5.42  
9.87  
9.61  
9.48  
9.45  
9.35  
Range 2  
0.56  
0.44  
0.4  
SMPS  
LP mode  
included,  
IDD  
Supply current in  
Run mode  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
(Run)  
1.17  
1.08  
100 KHz 0.21  
0.32  
Range 0  
110 MHz 10.80 11.38 12.35 13.61 17.20 11.18 12.71 15.98 19.99 26.39 mA  
SMPS  
HP mode  
80 MHz 6.79  
72 MHz 6.15  
64 MHz 5.51  
48 MHz 4.23  
32 MHz 2.94  
24 MHz 2.29  
16 MHz 1.65  
7.06 8.152 9.17 11.65 7.32  
8.74 11.64 15.01 20.4  
8.06 11.01 14.37 19.73  
7.38 10.36 13.75 19.09  
fHCLK = fHSE up  
to 48 MHz  
6.42  
5.77  
4.48  
3.17  
2.51  
1.85  
7.38  
6.62  
5.15  
3.82  
3.15  
2.49  
8.46 10.92 6.68  
7.77 10.22 6.02  
6.34 8.814 4.69  
4.76 7.341 3.34  
included,  
Range 1  
IDD  
Supply current in  
Run mode  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
6.02  
4.64  
3.95  
3.25  
9.05 12.48 17.76  
7.62 11.21 16.43  
6.91 10.56 15.76  
SMPS  
HP mode  
(Run)  
4.06  
3.39  
6.62  
5.89  
2.66  
1.99  
6.2  
9.91 15.09  
 
 
Table 38. Current consumption in Run mode, code with data processing  
running from Flash in single bank, ICACHE disabled and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 2.38  
16 MHz 1.57  
2.44  
1.66  
0.99  
0.67  
0.50  
0.41  
0.34  
2.91  
2.11  
1.45  
1.11  
0.94  
0.86  
0.78  
3.60  
2.79  
2.11  
1.77  
1.60  
1.52  
1.43  
5.55  
4.68  
3.97  
3.59  
3.42  
3.33  
3.24  
2.43  
1.64  
0.98  
0.65  
0.48  
0.44  
0.32  
3.23  
2.43  
1.76  
1.41  
1.24  
1.2  
5.15  
4.34  
3.65  
3.3  
7.63 11.61  
6.8 10.77  
6.11 10.06  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.89  
0.54  
0.37  
0.29  
Range 2  
5.76  
5.59  
5.54  
5.42  
9.7  
SMPS  
LP mode  
3.13  
3.09  
2.97  
9.52  
9.48  
9.36  
fHCLK = fHSE up  
to 48 MHz  
100 KHz 0.21  
1.08  
included,  
Range 0  
IDD  
Supply current in  
Run mode  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
110 MHz 12.87 13.29 14.25 15.62 18.91 13.02 14.59 17.89 21.92 28.32 mA  
SMPS  
HP mode  
(Run)  
80 MHz 8.69  
72 MHz 7.88  
64 MHz 7.28  
48 MHz 5.56  
32 MHz 3.87  
24 MHz 2.99  
16 MHz 2.15  
9.01 10.21 11.24 13.82 9.35 10.76 13.6 17.02 22.47  
8.23  
7.56  
5.81  
4.11  
3.21  
2.36  
9.30 10.34 12.83 8.53  
9.98 12.77 16.15 21.57  
9.27 12.16 15.54 20.94  
7.44 10.46 13.82 19.16  
8.67  
6.66  
4.79  
3.87  
3.00  
9.70 12.17 7.86  
Range 1  
7.79 10.30  
6.1  
SMPS  
HP mode  
5.87  
4.84  
3.92  
8.40  
7.41  
6.45  
4.33  
3.41  
2.52  
5.65  
4.7  
8.63 12.16 17.41  
7.67 11.28 16.5  
6.73 10.42 15.62  
3.79  
 
 
Table 39. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in dual bank, ICACHE ON in 2-way  
Conditions  
TYP  
MAX  
Symbol Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C  
105°C  
125°C  
26 MHz  
16 MHz  
8 MHz  
3.19  
2.05  
1.13  
0.67  
0.43  
0.32  
3.53  
2.38  
1.45  
0.99  
0.75  
0.63  
0.53  
4.57  
3.41  
2.47  
1.98  
1.76  
1.63  
1.53  
6.08  
4.90  
3.95  
3.48  
3.24  
3.13  
3.00  
8.87  
7.67  
6.71  
6.22  
5.97  
5.85  
5.75  
4.38  
3.24  
2.33  
1.87  
1.64  
1.59  
1.43  
6.84  
5.69  
4.77  
4.30  
4.07  
4.02  
3.85  
12.13  
10.96  
10.03  
9.56  
18.79  
17.60  
16.64  
16.16  
15.92  
15.86  
15.70  
41.18  
33.02  
31.87  
30.72  
28.43  
26.10  
24.94  
23.77  
20319  
18764  
18426  
18139  
29.69  
28.45  
27.47  
26.97  
26.73  
26.66  
26.48  
56.65  
46.97  
45.80  
44.63  
42.33  
39.96  
38.85  
37.67  
31556  
31438  
31274  
30765  
Range 2 4 MHz  
2 MHz  
9.32  
fHCLK =  
fHSE up to  
48MHz  
included,  
bypass  
mode PLL  
ON above  
48 MHz all  
peripherals  
disabled  
1 MHz  
9.26  
100 KHz 0.22  
9.10  
Supply  
IDD  
current in  
Range 0 110 MHz 16.66 17.28 18.84 20.97 24.75 19.07 23.15  
80 MHz 11.39 11.91 13.30 15.22 18.68 13.33 16.88  
72 MHz 10.28 10.79 12.16 14.08 17.52 12.22 15.76  
31.38  
24.17  
23.03  
21.89  
19.62  
17.32  
16.17  
15.02  
12805  
11887  
11810  
11807  
mA  
(Run)  
Run mode  
64 MHz  
Range 1 48 MHz  
32 MHz  
9.18  
6.95  
4.72  
3.61  
2.50  
9.68  
7.43  
5.17  
4.05  
2.92  
11.02 12.93 16.35 11.10 14.64  
8.76  
6.48  
5.35  
4.20  
10.63 14.02  
8.85  
6.61  
5.49  
4.37  
2025  
1907  
1835  
1797  
12.38  
10.12  
8.98  
8.33  
7.20  
6.04  
3558  
3435  
3359  
3306  
11.68  
10.50  
9.33  
24 MHz  
16 MHz  
7.85  
2 MHz 402.64 785.95 1919  
1 MHz 274.43 651.32 1775  
400 KHz 184.36 568.08 1697  
100 KHz 164.07 526.82 1660  
6501  
6367  
6278  
6238  
4984  
4958  
4759  
4578  
Supply  
fHCLK = fMSI  
all peripherals disabled  
IDD  
current in  
µA  
(LPRun) Low-power  
run mode  
 
Table 40. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in dual bank, ICACHE ON in 1-way  
Conditions  
TYP  
MAX  
Symbol Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C  
85°C  
105°C 125°C  
25°C  
55°C  
85°C  
105°C  
125°C  
26 MHz 3.10  
16 MHz 1.99  
3.44  
2.32  
1.42  
0.97  
0.76  
0.63  
0.53  
4.45  
3.33  
2.43  
1.96  
1.75  
1.63  
1.52  
5.99  
4.84  
8.76  
7.60  
4.28  
3.18  
2.30  
1.86  
1.64  
1.58  
1.43  
18.54  
12.97  
11.89  
10.81  
8.63  
6.46  
5.38  
4.30  
6.74  
5.63  
12.01  
10.88  
9.97  
18.65  
17.51  
16.59  
16.13  
15.90  
15.85  
15.69  
40.64  
32.65  
31.54  
30.43  
28.20  
25.95  
24.82  
23.69  
29.47  
28.31  
27.37  
26.90  
26.67  
26.61  
26.45  
56.06  
46.57  
45.44  
44.31  
42.08  
39.86  
38.72  
37.57  
8 MHz  
1.10  
0.65  
0.43  
0.31  
3.93  
6.67  
4.73  
Range 2 4 MHz  
2 MHz  
3.47  
6.19  
4.29  
9.52  
mA  
3.24  
5.97  
4.06  
9.29  
fHCLK =  
fHSE up to  
48MHz  
1 MHz  
3.14  
5.84  
4.01  
9.24  
100 KHz 0.21  
3.01  
5.75  
3.85  
9.08  
included,  
bypass  
mode PLL  
ON above  
48 MHz all  
peripherals  
disabled  
Supply  
IDD  
current in  
Range 0 110 MHz 16.14 16.75 18.31  
80 MHz 11.03 11.54 12.91  
20.43  
14.83  
13.73  
12.62  
10.41  
8.19  
24.12  
18.22  
17.10  
16.00  
13.77  
11.47  
10.36  
9.21  
22.62  
16.52  
15.44  
14.35  
12.16  
9.97  
30.83  
23.79  
22.69  
21.59  
19.38  
17.16  
16.04  
14.93  
(Run)  
Run mode  
72 MHz 9.96 10.46 11.81  
64 MHz 8.89  
Range 1 48 MHz 6.74  
32 MHz 4.58  
9.39  
7.21  
5.04  
3.94  
2.85  
10.72  
8.52  
6.31  
5.22  
4.10  
mA  
24 MHz 3.50  
7.07  
8.87  
16 MHz 2.42  
5.93  
7.78  
395.2 772.8  
2 MHz  
1 MHz  
1907  
1775  
1698  
1666  
3571  
3418  
3343  
3299  
6492  
6339  
6271  
6245  
2013  
1907  
1823  
1799  
4976  
4922  
4765  
4595  
12833  
11903  
11840  
11826  
20077  
18462  
18375  
18345  
31507  
31382  
31356  
30923  
8
3
289.9 641.7  
Supply  
current in  
8
3
IDD  
fHCLK = fMSI  
all peripherals disabled  
µA  
Low-power  
(LPRun)  
186.6 557.5  
400 KHz  
100 KHz  
run mode  
8
3
165.5 523.3  
4
3
 
Table 41. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash in dual bank, ICACHE disabled  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C  
105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
4.17  
2.73  
1.47  
4.52  
3.07  
1.80  
5.55  
4.09  
2.81  
2.16  
1.84  
1.68  
1.53  
7.10  
5.63  
4.32  
3.66  
3.33  
3.18  
3.03  
9.86  
8.40  
7.05  
6.39  
6.05  
5.89  
5.74  
5.38  
3.93  
2.67  
2.04  
1.73  
1.65  
1.43  
7.84  
6.38  
13.11  
11.64  
10.35  
9.70  
19.77  
18.28  
16.98  
16.33  
16.00  
15.92  
15.70  
42.00  
35.83  
34.46  
33.55  
30.58  
27.74  
26.16  
24.70  
30.58  
29.07  
27.75  
27.08  
26.76  
26.67  
26.44  
57.39  
49.73  
48.34  
47.42  
44.45  
41.65  
40.06  
38.58  
5.11  
Range 2 4 MHz  
2 MHz  
0.84 1.166  
4.47  
0.52  
0.36  
0.84  
0.68  
0.53  
4.16  
9.38  
fHCLK =  
fHSE up to  
48MHz  
1 MHz  
4.08  
9.30  
100 KHz 0.22  
3.86  
9.08  
included,  
bypass  
mode PLL  
ON above  
48 MHz all  
peripherals  
disabled  
Supply  
current in Run  
mode  
IDD  
Range 0 110 MHz 17.20 17.81 19.35 21.47 25.17 19.96  
80 MHz 13.93 14.47 15.86 17.80 21.23 16.17  
72 MHz 12.60 13.12 14.51 16.45 19.86 14.80  
64 MHz 11.82 12.34 13.73 15.65 19.05 13.90  
24.02  
19.70  
18.34  
17.45  
14.51  
11.74  
10.20  
8.77  
32.20  
26.96  
25.59  
24.69  
21.73  
18.93  
17.37  
15.92  
mA  
(Run)  
Range 1 48 MHz 8.922 9.42  
10.78 12.69 16.08 10.97  
32 MHz  
24 MHz  
16 MHz  
6.24  
4.75  
3.38  
6.72  
5.21  
3.83  
8.03  
6.50  
5.09  
9.92  
8.35  
6.93  
13.28  
11.67  
10.22  
8.22  
6.70  
5.28  
483.6 889.5  
2 MHz  
1 MHz  
2022  
1836  
1722  
1666  
3671  
3468  
3355  
3315  
6622  
6424  
6314  
6247  
2109  
1954  
1849  
1809  
5283  
5032  
4802  
4600  
12566 20777 31527  
11918 18517 31263  
11889 18449 31148  
11847 18240 30791  
4
6
332.2 705.1  
Supply  
current in  
(LPRun) Low-power  
run mode  
4
9
fHCLK = fMSI  
all peripherals disabled  
IDD  
µA  
206.5 588.2  
400 KHz  
100 KHz  
9
5
156.4 527.8  
1
0
 
Table 42. Current consumption in Run mode, code with data processing  
running from Flash in dual bank, ICACHE ON in 2-way and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 1.85  
16 MHz 1.21  
1.94  
1.33  
0.83  
0.58  
0.46  
0.39  
0.33  
2.41  
1.79  
1.29  
1.03  
0.90  
0.84  
0.79  
3.14  
2.48  
1.98  
1.77  
1.60  
1.54  
1.51  
4.40  
3.76  
3.25  
3.00  
2.88  
2.79  
2.74  
1.93  
1.31  
0.81  
0.56  
0.44  
0.41  
0.32  
2.73  
2.09  
1.59  
1.33  
1.21  
1.17  
1.08  
4.65  
3.99  
3.47  
3.22  
3.09  
3.05  
2.96  
7.13 11.13  
6.46 10.43  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.70  
0.45  
0.32  
0.26  
5.94  
5.68  
5.54  
5.51  
5.42  
9.89  
9.62  
9.49  
9.46  
9.36  
Range 2  
SMPS  
LP mode  
fHCLK = fHSE up  
to 48 MHz  
100 KHz 0.20  
Range 0  
included,  
IDD  
Supply current in  
Run mode  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
SMPS  
HP  
mode  
110 MHz 11.05 11.73 12.72 14.01 16.84 11.49 13.03 16.31 20.32 26.75 mA  
(Run)  
80 MHz 6.96  
72 MHz 6.30  
64 MHz 5.65  
48 MHz 4.33  
32 MHz 3.00  
24 MHz 2.33  
16 MHz 1.67  
7.27  
6.61  
5.94  
4.60  
3.25  
2.57  
1.89  
8.38  
7.62  
6.80  
5.29  
3.92  
3.22  
2.53  
9.46 11.35 7.53  
8.69 10.58 6.87  
8.94 11.84 15.22 20.64  
8.26 11.2 14.56 19.94  
7.55 10.53 13.92 19.27  
Range 1  
8.00  
6.51  
4.92  
4.15  
3.47  
9.88  
8.40  
6.92  
6.15  
5.33  
6.19  
4.83  
3.43  
2.73  
2.03  
SMPS  
HP  
mode  
6.15  
4.73  
4.01  
3.3  
9.18  
7.7  
12.6  
17.9  
11.29 16.53  
6.98 10.63 15.83  
6.24 9.95 15.15  
 
 
Table 43. Current consumption in Run mode, code with data processing  
running from Flash in dual bank, ICACHE ON in 1-way and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 1.80  
16 MHz 1.18  
1.89  
1.30  
0.82  
0.58  
0.46  
0.39  
0.33  
2.37  
1.76  
1.27  
1.02  
0.90  
0.84  
0.78  
3.07  
2.46  
1.98  
1.72  
1.59  
1.53  
1.48  
4.35  
3.72  
3.23  
2.98  
2.86  
2.79  
2.73  
1.88  
1.28  
0.8  
2.67  
2.06  
1.57  
1.32  
1.2  
4.58  
3.96  
3.46  
3.21  
3.08  
3.05  
2.96  
7.06 11.04  
6.43 10.39  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.69  
0.44  
0.32  
0.26  
5.92  
5.67  
5.54  
5.51  
5.42  
9.87  
9.61  
9.48  
9.45  
9.36  
Range 2  
0.56  
0.44  
0.4  
SMPS  
LP mode  
1.17  
1.08  
fHCLK = fHSE up  
to 48 MHz  
100 KHz 0.20  
0.32  
included,  
Range 0  
IDD  
Supply current  
in Run mode  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
110 MHz 10.51 11.37 12.33 13.63 16.26 11.18 12.72 15.98  
20  
26.4 mA  
SMPS  
HP mode  
(Run)  
80 MHz 6.75  
72 MHz 6.12  
64 MHz 5.48  
48 MHz 4.20  
32 MHz 2.92  
24 MHz 2.27  
16 MHz 1.63  
7.06  
6.41  
5.77  
4.48  
3.16  
2.51  
1.85  
8.15  
7.39  
6.65  
5.15  
3.82  
3.15  
2.49  
9.21 11.07 7.33  
8.50 10.37 6.68  
8.74 11.64 15.01 20.41  
8.06 11.01 14.37 19.75  
7.38 10.37 13.75 19.1  
7.82  
6.38  
4.79  
4.12  
3.44  
9.68  
8.25  
6.81  
6.06  
5.26  
6.02  
4.69  
3.34  
2.66  
1.99  
Range 1  
6.02  
4.64  
3.95  
3.25  
9.06 12.48 17.77  
7.62 11.21 16.44  
6.91 10.56 15.76  
SMPS  
HP mode  
6.2  
9.91  
15.1  
 
 
Table 44. Current consumption in Run mode, code with data processing  
running from Flash in dual bank, ICACHE disabled and power  
supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 2.40  
16 MHz 1.61  
2.49  
1.71  
1.02  
0.67  
0.51  
2.97  
2.17  
1.47  
1.12  
0.95  
0.87  
0.79  
3.67  
2.87  
2.18  
1.82  
1.64  
1.55  
1.48  
4.94  
4.16  
3.44  
3.07  
2.89  
2.81  
2.74  
2.47  
1.68  
1
3.28  
2.48  
1.78  
1.43  
1.25  
1.21  
1.08  
5.2  
7.68 11.67  
6.86 10.83  
6.14 10.09  
4.39  
3.67  
3.31  
3.14  
3.09  
2.97  
Range 2  
8 MHz  
4 MHz  
2 MHz  
0.90  
0.55  
0.37  
SMPS  
LP  
mode  
0.66  
0.49  
0.44  
0.32  
5.77  
5.59  
5.55  
5.42  
9.72  
9.54  
9.49  
9.36  
1 MHz 0.286 0.42  
100 KHz 0.20 0.34  
fHCLK = fHSE up  
to 48 MHz  
Range 0  
included,  
IDD  
Supply current in bypass mode  
SMPS  
HP  
mode  
110 MHz 11.59 12.15 13.24 14.24 16.59 11.99 13.58 16.92 20.93 27.3 mA  
Run mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
(Run)  
80 MHz 8.53  
72 MHz 7.74  
64 MHz 7.26  
48 MHz 5.54  
32 MHz 3.92  
24 MHz 3.03  
16 MHz 2.20  
8.95 10.06 11.12 13.07 9.31  
10.7 13.49 16.89 22.35  
9.9 12.69 16.07 21.5  
9.38 12.21 15.58 21  
7.51 10.51 13.86 19.2  
8.07  
7.57  
5.82  
4.18  
3.27  
2.43  
9.20 10.26 12.17 8.47  
Range 1  
8.71  
6.66  
4.85  
3.92  
3.07  
9.75 11.64 7.95  
SMPS  
HP  
mode  
7.87  
5.98  
4.91  
4.03  
9.74  
7.91  
6.93  
5.95  
6.15  
4.42  
3.48  
2.59  
5.74  
4.78  
3.87  
8.74 12.24 17.5  
7.75 11.33 16.55  
6.81 10.49 15.69  
 
 
Table 45. Current consumption in Run and Low-power run modes,  
code with data processing running from SRAM1  
Conditions  
TYP  
MAX  
Symbol Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C  
105°C 125°C 25°C 55°C  
85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
3.25  
2.08  
1.15  
0.68  
0.44  
0.32  
0.22  
3.59  
2.41  
1.47  
1.00  
0.76  
0.64  
0.53  
17.57  
12.13  
10.99  
9.85  
7.56  
5.27  
4.11  
4.62  
3.43  
2.47  
1.99  
1.75  
1.64  
1.52  
19.10  
13.48  
12.33  
11.18  
8.87  
6.55  
5.37  
4.22  
1911  
6.12  
4.93  
8.92  
7.69  
6.73  
6.23  
5.97  
5.86  
5.76  
4.44  
3.27  
2.35  
1.88  
1.65  
1.59  
1.42  
6.89  
5.72  
4.78  
4.31  
4.07  
4.01  
3.84  
12.15  
10.96  
10.01  
9.53  
18.80  
17.61  
16.64  
16.16  
15.92  
15.86  
15.68  
41.44  
33.21  
32.04  
30.87  
28.54  
26.18  
24.99  
23.81  
29.60  
28.38  
27.40  
26.91  
26.67  
26.61  
26.43  
3.97  
Range 2 4 MHz  
2 MHz  
3.51  
3.25  
9.30  
fHCLK = fHSE  
up to 48MHz  
included,  
1 MHz  
3.14  
9.24  
100 KHz  
3.03  
9.06  
Supply  
IDD  
bypass  
current in  
(Run)  
mode PLL Range 0 110 MHz 16.99  
21.22  
15.38  
14.22  
13.07  
10.74  
8.40  
24.94 19.40 23.45 31.63  
18.76 13.57 17.11 24.35  
17.62 12.42 15.96 23.19  
16.43 11.28 14.81 22.04  
56.82 mA  
47.09  
Run mode ON above 48  
80 MHz 11.63  
72 MHz 10.50  
MHz all  
peripherals  
disabled  
45.92  
64 MHz  
9.37  
7.10  
44.74  
Range 1 48 MHz  
14.10  
11.70  
10.54  
9.34  
8.99  
6.70  
5.55  
4.41  
2010  
1896  
1818  
1423  
12.51 19.71  
10.20 17.38  
42.40  
32 MHz 4.826  
40.08  
24 MHz  
16 MHz  
3.68  
2.54  
7.23  
9.05  
7.89  
16.21  
15.04  
38.88  
2.97  
6.05  
37.68  
2 MHz 385.23 772.80  
3545  
3405  
3337  
3286  
6506  
6382  
6298  
6267  
4724 12895 21185 30901  
4686 12648 20905 30715  
4633 10788 18052 30448  
Supply  
fHCLK = fMSI  
all peripherals disabled  
FLASH in power-down  
1 MHz 271.61 633.31 1776  
400 KHz 198.95 554.43 1694  
100 KHz 142.82 517.78 1638  
IDD  
current in  
Low-power  
run mode  
µA  
(LPRun)  
3848  
9073  
15687 26433  
 
Table 46. Current consumption in Run mode, code with data processing running  
from SRAM1 and power supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 1.88  
16 MHz 1.24  
1.99  
1.35  
0.85  
0.59  
0.46  
0.40  
0.34  
2.46  
1.81  
1.29  
1.04  
0.91  
0.84  
0.78  
3.15  
2.51  
1.99  
1.73  
1.60  
1.53  
1.48  
4.42  
3.76  
3.24  
2.97  
2.85  
2.77  
2.71  
1.96  
1.33  
0.82  
0.57  
0.44  
0.41  
0.32  
2.76  
2.11  
1.6  
4.67  
4.01  
3.48  
3.22  
3.09  
3.06  
2.96  
7.14 11.12  
6.48 10.44  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.72  
0.46  
0.32  
0.26  
5.94  
5.68  
5.54  
5.51  
5.41  
9.89  
9.62  
9.48  
9.45  
9.34  
Range 2  
1.34  
1.21  
1.18  
1.08  
SMPS  
LP mode  
fHCLK = fHSE up  
to 48 MHz  
100 KHz 0.20  
included,  
Range 0  
IDD  
Supply current bypass mode  
in Run mode PLL ON above  
48 MHz all  
110 MHz 11.28 12.01 12.99 14.29 17.00 12.06 14.37 19.01 24.79 33.4 mA  
SMPS  
HP mode  
(Run)  
peripherals  
disabled  
80 MHz 7.10  
72 MHz 6.44  
64 MHz 5.76  
48 MHz 4.42  
32 MHz 3.06  
24 MHz 2.38  
16 MHz 1.70  
7.42  
6.74  
6.05  
4.69  
3.31  
2.61  
1.92  
8.55  
7.80  
6.89  
5.37  
3.96  
3.26  
2.55  
9.55 11.47 8.33 10.16 13.97 18.72 26.04  
8.84 10.70 7.52  
9.42 13.31 18.02 25.3  
8.74 12.64 17.33 24.58  
7.29 11.35 15.96 23.16  
8.10  
6.60  
4.93  
4.20  
3.51  
9.95  
8.46  
6.93  
6.16  
5.32  
6.8  
Range 1  
5.34  
3.86  
3.15  
2.45  
SMPS  
HP mode  
5.79  
5.05  
4.31  
9.98 14.58 21.7  
9.26 13.88 20.98  
8.52 13.19 20.25  
 
 
Table 47. Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM2  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C 105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
3.20  
2.05  
1.13  
0.67  
0.43  
0.32  
3.53  
2.38  
1.45  
0.99  
0.76  
0.63  
0.53  
4.55  
3.40  
2.46  
1.99  
1.75  
1.63  
1.53  
6.08  
4.90  
3.97  
3.47  
3.24  
3.13  
3.01  
8.86  
7.67  
6.71  
6.21  
5.97  
5.86  
5.74  
4.33  
3.19  
2.28  
1.82  
1.59  
1.53  
1.37  
6.79  
5.63  
4.71  
4.25  
4.01  
3.96  
3.79  
12.05  
18.6  
29.56  
10.88 17.41 28.32  
9.94  
9.47  
9.24  
9.18  
9
16.46 27.34  
15.98 26.84  
15.74 26.59  
15.68 26.52  
Range 2 4 MHz  
2 MHz  
fHCLK =  
fHSE up to  
48 MHz  
included,  
bypass  
1 MHz  
100 KHz 0.22  
15.5  
26.33  
IDD  
Supply current  
Range 0 110 MHz 16.71 17.32 18.86 20.97 24.66 19.04 23.09 31.27 40.87 56.41 mA  
80 MHz 11.43 11.94 13.30 15.21 18.64 13.29 16.83 24.07 32.71 46.77  
in Run mode mode PLL  
ON above  
(Run)  
48 MHz all  
peripherals  
72 MHz 10.32 10.82 12.16 14.07 17.48 12.17 15.71 22.94 31.55  
45.6  
disabled  
64 MHz 9.219  
9.70  
7.44  
5.19  
4.06  
2.93  
11.03 12.94 16.31 11.05 14.58 21.79 30.39 44.44  
Range 1 48 MHz  
6.98  
8.77  
6.48  
5.33  
4.19  
10.63 13.98  
8.79  
6.54  
5.42  
4.29  
1946  
1829  
1757  
1373  
12.31  
10.04  
8.9  
19.5  
17.2  
28.16 42.12  
25.84 39.83  
32 MHz 4.746  
8.33  
7.17  
6.02  
3546  
3445  
3339  
3299  
11.65  
10.49  
9.29  
24 MHz  
16 MHz  
3.62  
2.50  
16.05 24.67 38.64  
14.9 23.51 37.45  
7.76  
2 MHz 386.41 774.71 1901  
1 MHz 276.23 635.13 1767  
400 KHz 196.75 552.97 1679  
100 KHz 146.57 513.87 1644  
6475  
6360  
6278  
6249  
2886  
2796  
2749  
2313  
7270 11761 20360  
6688 12192 20188  
6961 11520 19976  
5697 10033 17534  
fHCLK = fMSI  
in Low-power all peripherals disabled  
Supply current  
IDD(LPRu  
n)  
µA  
run mode  
FLASH in power-down  
 
 
Table 48. Current consumption in Run mode, code with data processing  
running from SRAM2 and power supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
26 MHz 1.86  
16 MHz 1.22  
1.96  
1.33  
0.83  
2.43  
1.79  
1.28  
1.03  
0.90  
0.84  
0.78  
3.12  
2.50  
1.99  
1.74  
1.60  
1.54  
1.49  
4.43  
3.75  
3.24  
2.99  
2.86  
2.79  
2.73  
2.22  
1.61  
1.11  
0.86  
0.74  
0.71  
0.62  
3.49  
2.87  
2.37  
2.12  
1.99  
1.96  
1.87  
6.48 10.14 15.89  
5.83  
5.32  
5.07  
4.94  
4.9  
9.48 15.21  
8.95 14.64  
8.69 14.36  
8.56 14.22  
8.52 14.18  
8.43 14.07  
8 MHz  
0.71  
Range 2  
4 MHz 0.456 0.58  
SMPS LP  
mode  
2 MHz  
1 MHz  
0.32  
0.26  
0.46  
0.40  
0.34  
fHCLK = fHSE up  
to 48 MHz  
100 KHz 0.20  
4.81  
included,  
Range 0  
IDD  
Supply current bypass mode  
in Run mode PLL ON above  
48 MHz all  
110 MHz 11.04 11.78 12.75 14.05 16.87 12.16 14.52 19.77 25.94 35.47 mA  
SMPS HP  
mode  
(Run)  
peripherals  
disabled  
80 MHz 7.00  
72 MHz 6.34  
64 MHz 5.68  
48 MHz 4.35  
32 MHz 3.02  
24 MHz 2.35  
16 MHz 1.68  
7.29  
6.62  
5.95  
4.61  
3.26  
2.58  
1.90  
8.40  
7.64  
6.82  
5.30  
3.91  
3.22  
2.53  
9.44 11.33 8.23 10.44 14.63 19.73 27.8  
8.72 10.59 7.49  
9.79 13.98 19.05 27.08  
8.97 13.41 18.39 26.39  
7.53 12.27 17.03 24.99  
6.11 10.94 15.72 23.52  
8.00  
6.51  
4.89  
4.18  
3.49  
9.86  
8.38  
6.89  
6.11  
5.31  
6.8  
Range 1  
5.39  
3.98  
3.28  
2.58  
SMPS HP  
mode  
5.4  
10.17 15.11 22.8  
9.42 14.54 22.09  
4.68  
 
 
Table 49. Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE ON (2-way)  
TYP  
TYP  
TYP  
TYP  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Conditions  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
3.20  
3.43  
3.66  
3.06  
2.77  
11.4  
12.2  
13.1  
10.8  
9.9  
3.19  
3.43  
3.64  
3.05  
2.77  
11.4  
12.2  
13.0  
10.8  
9.9  
123  
132  
141  
118  
106  
143  
153  
163  
135  
123  
152  
163  
174  
143  
131  
212  
224  
239  
214  
175  
123  
132  
140  
117  
106  
142  
153  
163  
135  
123  
152  
163  
173  
143  
131  
201  
207  
216  
192  
185  
Range2  
fHCLK=26MHz  
mA  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to  
48 MHZincluded,  
bypass mode  
PLL ON above  
48 MHz all  
Supply current in  
Run mode  
Range 1  
fHCLK=80 MHz  
IDD (Run)  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
peripherals  
disabled  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
16.7  
18.0  
19.1  
15.8  
14.5  
424  
16.7  
18.0  
19.0  
15.8  
14.5  
403  
Range 0  
fHCLK= 110 MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
447  
415  
IDD  
Supply current in fHCLK = fMSI = 2 MHz all peripherals  
Low-power run disabled  
477  
432  
(LPRun)  
427  
383  
While  
350  
369  
 
Table 50. Typical current consumption in Run mode with SMPS,  
with different codes running from Flash, ICACHE ON (2-way)  
TYP  
TYP  
TYP  
TYP  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Conditions  
Unit  
-
Unit  
-
Symbol  
Parameter  
-
Voltage scaling  
Code  
25°C  
25°C  
25°C  
25°C  
Reduced  
code  
1.88  
1.85  
72  
71  
Coremark  
Dhrystone2.1  
Fibonacci  
While  
2.00  
2.13  
1.79  
1.65  
1.98  
2.09  
1.77  
1.64  
77  
82  
69  
64  
76  
81  
68  
63  
Range2, SMPS  
LP  
fHCLK=26 MHz  
mA  
mA  
mA  
µA/MHz  
µA/MHz  
µA/MHz  
Reduced  
code  
7.0  
7.0  
88  
87  
fHCLK=fHSE up to  
48 MHZ included,  
bypass mode PLL ON  
above 48 MHz all  
Coremark  
Dhrystone2.1  
Fibonacci  
While  
7.5  
8.0  
6.7  
6.1  
7.5  
7.9  
6.6  
6.1  
94  
100  
83  
93  
99  
83  
76  
Range 1, SMPS  
HP  
fHCLK=80 MHz  
IDD  
(Run)  
Supply current in  
Run mode  
peripherals disabled  
77  
Reduced  
code  
11.2  
11.1  
102  
101  
Range 0, SMPS  
HP  
Coremark  
Dhrystone2.1  
Fibonacci  
While  
12.2  
13.0  
10.6  
9.3  
12.1  
12.9  
10.6  
9.3  
111  
118  
97  
110  
117  
96  
fHCLK= 110 MHz  
85  
84  
 
 
Table 51. Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE ON (1-way)  
TYP  
TYP  
TYP  
TYP  
Dual  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Conditions  
Single Bank  
Mode  
Bank  
Mode  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
3.10  
3.26  
3.48  
2.95  
2.73  
11.0  
11.6  
12.4  
10.4  
9.7  
3.10  
3.26  
3.47  
2.95  
2.72  
11.0  
11.6  
12.4  
10.4  
9.7  
119  
125  
134  
114  
105  
138  
145  
155  
130  
121  
147  
154  
165  
138  
129  
208  
213  
226  
196  
178  
119  
125  
133  
113  
105  
138  
145  
155  
130  
121  
147  
154  
164  
138  
129  
198  
194  
203  
188  
186  
Range2  
fHCLK=26 MHz  
mA  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to  
48 MHZ included,  
bypass mode PLL  
IDD  
(Run)  
Supply current in  
Run mode  
Range 1  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
ON above 48 MHz fHCLK=80 MHz  
all peripherals  
disabled  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
16.1  
17.0  
18.2  
15.2  
14.2  
416  
16.1  
17.0  
18.1  
15.2  
14.2  
395  
Range 0  
fHCLK= 110  
MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
425  
389  
IDD  
Supply current in  
Low-power run  
fHCLK = fMSI = 2 MHz all peripherals  
disabled  
451  
405  
(LPRu  
n)  
392  
375  
While  
355  
372  
 
Table 52. Typical current consumption in Run mode with SMPS,  
with different codes running from Flash, ICACHE ON (1-way)  
TYP  
TYP  
TYP  
TYP  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Conditions  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
1.82  
1.91  
2.03  
1.74  
1.63  
6.8  
1.80  
1.89  
2.00  
1.72  
1.61  
6.8  
70  
73  
78  
67  
63  
85  
89  
95  
80  
75  
98  
105  
112  
91  
83  
69  
73  
77  
66  
62  
84  
88  
94  
80  
75  
96  
104  
111  
91  
83  
Range2,  
SMPS LP  
fHCLK=26  
MHz  
mA  
mA  
mA  
µA/MHz  
µA/MHz  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to  
48 MHZ included,  
bypass mode PLL ON  
above 48 MHz all  
7.1  
7.1  
Range 1,  
SMPS HP  
fHCLK=80  
MHz  
IDD  
(Run)  
Supply current in Run  
mode  
7.6  
7.6  
6.4  
6.4  
peripherals disabled  
While  
6.0  
6.0  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
10.8  
11.5  
12.4  
10.0  
9.2  
10.5  
11.4  
12.2  
10.0  
9.1  
Range 0,  
SMPS HP  
fHCLK=  
110 MHz  
While  
 
 
Table 53. Typical current consumption in Run and Low-power run modes,  
with different codes running from Flash, ICACHE disabled  
TYP  
TYP  
TYP  
TYP  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Single  
Bank  
Mode  
Dual  
Bank  
Mode  
Conditions  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
4.08  
4.42  
4.56  
3.62  
3.04  
14.1  
13.6  
12.5  
12.1  
10.9  
18.8  
17.5  
17.7  
16.6  
15.9  
511  
4.17  
4.22  
4.41  
3.55  
3.14  
13.9  
12.2  
12.5  
11.3  
11.3  
17.2  
15.2  
15.5  
15.1  
16.5  
484  
157  
170  
175  
139  
117  
176  
171  
156  
151  
136  
171  
159  
161  
151  
145  
255  
289  
299  
235  
208  
160  
162  
170  
137  
121  
174  
152  
156  
142  
141  
156  
138  
141  
138  
150  
242  
275  
275  
231  
199  
Range2  
fHCLK=26 MHz  
mA  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to  
48 MHZ included,  
bypass mode PLL ON  
above 48 MHz all  
IDD  
(Run)  
Supply current in  
Run mode  
Range 1 fHCLK=80  
MHz  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
peripherals disabled  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
Range 0  
fHCLK= 110 MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
577  
550  
IDD(LPR Supply current in  
un) Low-power run  
fHCLK = fMSI = 2MHz all peripherals  
disabled  
599  
551  
470  
462  
While  
416  
398  
 
Table 54. Typical current consumption in Run mode with internal SMPS,  
with different codes running from Flash, ICACHE disabled  
TYP  
TYP  
TYP  
Single Dual  
Bank Bank  
Mode Mode  
TYP  
Single  
Bank  
Mode Mode  
Dual  
Bank  
Conditions  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
2.38  
2.59  
2.67  
2.13  
1.80  
8.7  
2.41  
2.44  
2.55  
2.07  
1.86  
8.5  
92  
100  
103  
82  
93  
94  
Range2, SMPS  
LP  
fHCLK=26 MHz  
mA  
98  
µA/MHz  
79  
While  
69  
72  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
109  
106  
107  
93  
107  
93  
fHCLK=fHSE up to 48  
8.4  
7.5  
MHZ included, bypass Range 1, SMPS  
IDD  
(Run)  
Supply current in Run  
mode  
mode PLL ON above  
48 MHz all peripherals  
disabled  
HP fHCLK=80  
8.6  
7.7  
mA  
mA  
96  
µA/MHz  
µA/MHz  
MHz  
7.5  
7.0  
87  
While  
6.8  
7.0  
84  
87  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
12.9  
11.9  
12.0  
11.3  
10.7  
11.6  
10.1  
10.4  
10.1  
11.1  
117  
109  
109  
102  
97  
105  
92  
Range 0, SMPS  
HP  
94  
fHCLK= 110 MHz  
92  
While  
101  
 
 
Table 55. Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1  
Conditions  
Voltage scaling  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
Code  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
3.26  
3.41  
3.35  
3.50  
3.82  
11.6  
12.22  
11.9  
12.5  
13.93  
17.0  
17.88  
17.4  
18.3  
20.4  
385  
125  
131  
129  
134  
147  
145  
153  
149  
157  
174  
154  
163  
159  
166  
186  
193  
211  
192  
204  
221  
Range2  
fHCLK=26MHz  
mA  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to 48 MHZ  
Supply current in  
Run mode  
included, bypass mode PLL Range 1 fHCLK=80  
IDD (Run)  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
ON above 48 MHz all  
peripherals disabled  
MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
Range 0  
fHCLK= 110 MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
421  
Supply current in  
Low-power run  
IDD(LPRun)  
fHCLK = fMSI = 2MHz all peripherals disabled  
384  
409  
While  
442  
 
 
Table 56. Typical current consumption in Run mode with internal SMPS,  
with different codes running from SRAM1  
Conditions  
Voltage scaling  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
Code  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
1.89  
1.9  
73  
73  
Range2, LP  
fHCLK=26MHz  
1.94  
2.01  
2.22  
7.1  
mA  
75  
µA/MHz  
77  
While  
85  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
89  
7.25  
7.3  
91  
fHCLK=fHSE up to 48 MHZ  
Supply current in Run included, bypass mode PLL  
Range 1, HP  
fHCLK=80 MHz  
IDD (Run)  
mA  
mA  
91  
µA/MHz  
µA/MHz  
mode  
ON above 48 MHz all  
peripherals disabled  
7.6  
95  
While  
8.51  
11.3  
11.32  
11.7  
12.3  
13.9  
106  
103  
103  
107  
112  
126  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
Range 0, HP  
fHCLK= 110 MHz  
While  
 
 
Table 57. Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM2  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
3.20  
3.33  
3.20  
3.34  
3.66  
11.4  
11.92  
11.4  
12.0  
13.24  
16.7  
17.44  
16.6  
17.5  
19.5  
386  
123  
128  
123  
129  
141  
143  
149  
142  
149  
165  
152  
159  
151  
159  
177  
193  
207  
187  
196  
218  
Range2  
fHCLK=26MHz  
mA  
µA/MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
fHCLK=fHSE up to 48 MHZ  
Supply current in Run included, bypass mode PLL  
Range 1  
fHCLK=80 MHz  
IDD (Run)  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
mode  
ON above 48 MHz all  
peripherals disabled  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
Range 0  
fHCLK= 110 MHz  
While  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
414  
IDD  
Supply current in Low-  
power run  
fHCLK = fMSI = 2MHz all peripherals disabled  
373  
(LPRun)  
393  
While  
436  
 
 
Table 58. Typical current consumption in Run mode with internal SMPS,  
with different codes running from SRAM2  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25°C  
25°C  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
1.90  
2.08  
1.90  
1.98  
2.14  
7.0  
73  
80  
Range2, LP  
fHCLK=26MHz  
mA  
73  
µA/MHz  
76  
While  
82  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
88  
7.0  
88  
fHCLK=fHSE up to 48 MHZ  
included, bypass mode  
PLL ON above 48 MHz all  
peripherals disabled  
Supply current in Run  
mode  
Range 1,HP  
fHCLK=80 MHz  
IDD (Run)  
7.0  
mA  
mA  
87  
µA/MHz  
µA/MHz  
7.3  
92  
While  
8.05  
11.0  
11.1  
11.2  
11.8  
13.1  
101  
100  
101  
102  
108  
119  
Reduced code  
Coremark  
Dhrystone2.1  
Fibonacci  
Range 0, HP  
fHCLK= 110 MHz  
While  
 
 
Table 59. Current consumption in Sleep and Low-power sleep mode, Flash ON  
Conditions  
TYP  
MAX  
85°C  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C 25°C 55°C  
105°C 125°C  
26 MHz  
16 MHz  
8 MHz  
1.04  
0.72  
0.46  
0.33  
0.27  
0.24  
1.37  
1.04  
0.79  
0.65  
0.58  
0.55  
0.52  
5.23  
3.74  
3.44  
3.14  
2.53  
1.91  
1.60  
1.29  
2.36  
2.04  
1.78  
1.65  
1.58  
1.55  
1.52  
6.62  
5.01  
4.71  
4.41  
3.79  
3.17  
2.84  
2.53  
3.88  
3.55  
3.29  
3.14  
3.07  
3.03  
3.01  
8.65  
6.88  
6.56  
6.26  
5.62  
4.98  
4.67  
4.34  
3383  
3343  
3313  
3308  
6.62  
6.30  
6.01  
5.85  
5.78  
5.73  
5.72  
12.21  
10.19  
9.86  
9.56  
8.92  
8.27  
7.93  
7.60  
6283  
6248  
6222  
6219  
2.25  
1.93  
1.67  
1.54  
1.48  
1.46  
1.42  
4.69  
4.36  
4.10  
3.97  
3.90  
3.88  
3.84  
9.93  
9.60  
9.33  
9.19  
9.12  
9.11  
9.06  
16.57  
16.23  
15.95  
15.80  
15.73  
15.72  
15.67  
28.98  
24.74  
24.42  
24.10  
23.45  
22.78  
22.44  
22.10  
27.36  
27.00  
26.70  
26.55  
26.48  
26.46  
26.41  
44.29  
38.70  
38.36  
38.03  
37.38  
36.67  
36.32  
35.96  
Range 2 4 MHz  
2 MHz  
fHCLK = fHSE  
up to 48MHz  
included,  
bypassmode  
PLL ON  
above 48  
MHz all  
peripherals  
disabled  
1 MHz  
100 KHz 0.211  
Supply  
current in  
Sleep mode  
IDD  
Range 0 110 MHz 4.73  
7.00 11.02 19.15  
mA  
(Sleep)  
80 MHz  
72 MHz  
3.31  
3.01  
2.71  
2.10  
1.49  
1.18  
0.88  
5.20  
4.90  
4.60  
3.98  
3.37  
3.06  
2.75  
8.71  
8.40  
8.10  
7.47  
6.84  
6.52  
6.21  
15.92  
15.61  
15.29  
14.66  
14.00  
13.68  
13.35  
64 MHz  
Range 1 48 MHz  
32 MHz  
24 MHz  
16 MHz  
2 MHz 205.22 584.41 1712  
1 MHz 192.80 547.20 1678  
400 KHz 143.73 520.85 1655  
100 KHz 137.82 519.15 1650  
1843 4745 12643 19003 31504  
1815 4665 12037 18615 31391  
1793 4567 11872 18346 30902  
1786 4554 11814 18206 30849  
Supply  
fHCLK = fMSI  
all peripherals disabled  
IDD(LPSl  
eep)  
current in  
Low-power  
sleep mode  
µA  
 
Table 60. Current consumption in Low-power sleep mode, Flash in power-down  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
85°C  
105°C  
125°C  
2 MHz  
1 MHz  
197.64 567.40  
165.99 540.66  
1699  
1672  
1640  
1629  
3374  
3313  
3312  
3288  
6136  
6109  
6084  
6062  
1839  
1805  
1785  
1423  
4641  
4599  
4578  
3848  
12810  
12189  
10816  
9087  
20855  
20334  
17908  
15694  
31559  
31071  
30945  
26452  
Supply  
current in  
Low-power  
sleep  
fHCLK = fMSI  
all peripherals  
disabled  
IDD  
µA  
(LPSleep)  
400 KHz 145.78 510.80  
100 KHz 143.34 506.41  
mode  
 
Table 61. Current consumption in Sleep mode,  
Flash ON and power supplied by internal SMPS step down converter  
Conditions  
TYP  
MAX  
Symbol Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C 105°C 125°C  
26 MHz 0.69  
16 MHz 0.50  
0.82  
0.64  
0.48  
0.40  
0.37  
0.35  
0.33  
1.27  
1.09  
0.93  
0.85  
0.82  
0.79  
0.78  
1.99  
1.80  
1.65  
1.55  
1.52  
1.50  
1.48  
3.22  
3.05  
2.88  
2.81  
2.77  
2.73  
2.73  
0.8  
1.57  
1.39  
1.23  
1.16  
1.12  
1.11  
1.08  
3.47  
3.27  
3.11  
3.03  
2.99  
2.98  
2.95  
5.93  
5.73  
5.57  
5.48  
5.44  
5.43  
5.4  
9.88  
9.67  
9.5  
0.62  
0.47  
0.39  
0.35  
0.34  
0.32  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.35  
0.27  
0.23  
0.21  
Range 2  
9.42  
9.37  
9.36  
9.33  
SMPS LP  
mode  
fHCLK = fHSE up  
to 48MHz  
100 KHz 0.20  
included,  
Range 0  
Supply  
IDD  
bypass mode  
PLL ON above  
48 MHz all  
peripherals  
disabled  
current in  
110 MHz 3.22  
3.49  
4.24  
5.40  
7.70  
3.81  
5.39  
9.01  
12.92 19.03 mA  
SMPS HP  
mode  
(Sleep)  
Sleep mode  
80 MHz 2.22  
72 MHz 2.04  
64 MHz 1.85  
48 MHz 1.48  
32 MHz 1.10  
24 MHz 0.91  
16 MHz 0.72  
2.44  
2.26  
2.07  
1.70  
1.32  
1.12  
0.93  
3.09  
2.90  
2.71  
2.34  
1.94  
1.74  
1.55  
4.06  
3.89  
3.70  
3.31  
2.91  
2.71  
2.52  
5.98  
5.78  
5.53  
5.11  
4.62  
4.40  
4.18  
2.6  
3.9  
3.7  
6.89  
6.68  
6.48  
6.07  
5.64  
5.42  
5.2  
10.56 15.77  
10.37 15.58  
10.19 15.38  
2.41  
2.22  
1.83  
1.44  
1.24  
1.04  
3.51  
3.1  
Range 1  
9.81  
9.39  
9.18  
8.97  
15  
SMPS HP  
mode  
2.69  
2.48  
2.28  
14.58  
14.38  
14.17  
 
 
Table 62. Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE ON in 2-way and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C  
105°C  
125°C  
VDD12=1.2V 110 MHz  
80 MHz  
6.69  
4.1  
6.93  
4.77  
4.33  
3.88  
2.98  
2.08  
1.91  
1.29  
0.76  
0.49  
0.36  
0.29  
0.23  
7.5  
8.23  
5.94  
5.49  
5.04  
4.12  
3.2  
9.5  
5.28  
4.83  
4.38  
3.47  
2.55  
2.31  
1.69  
1.15  
0.88  
0.75  
0.69  
0.63  
7.1  
72 MHz  
3.7  
6.65  
6.18  
5.27  
4.32  
3.89  
3.26  
2.7  
64 MHz  
3.31  
2.51  
1.7  
48 MHz  
32 MHz  
fHCLK = fHSE up to 48 MHz  
Supply current in Run included, bypass mode PLL ON  
IDD(Run)  
26 KHz  
VDD12=1.1V  
1.76  
1.14  
0.62  
0.35  
0.22  
0.16  
0.1  
2.9  
mA  
mode  
above 48 MHz all peripherals  
disabled  
16 MHz  
2.25  
1.72  
1.45  
1.32  
1.25  
1.19  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
100 KHz  
2.44  
2.29  
2.23  
2.16  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 63. Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE ON in 1-way and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz 6.47  
6.71  
4.15  
3.76  
3.37  
2.59  
1.81  
7.28  
4.6  
8.03  
5.2  
9.28  
6.23  
5.82  
5.43  
4.62  
3.81  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
3.97  
3.58  
3.2  
4.21  
3.82  
3.02  
2.24  
4.81  
4.41  
3.61  
2.81  
2.43  
1.65  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz 1.337 1.484 1.885 2.455 3.455  
16 MHz 0.863 1.001 1.393 1.963 2.959  
mA  
VDD12=1.1V  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.479 0.613 1.005  
1.57  
2.558  
0.285 0.423 0.807 1.376 2.364  
0.185 0.324 0.712 1.281  
0.138 0.272 0.66 1.229  
2.26  
2.2  
100 KHz 0.095 0.229 0.617 1.186 2.161  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 64. Current consumption in Run mode, code with data processing running from Flash  
in single bank, ICACHE disabled and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz 7.55  
7.8  
5.26  
4.77  
4.42  
3.37  
2.37  
1.911  
8.37  
5.72  
5.22  
4.87  
3.82  
2.8  
9.13  
6.34  
5.83  
5.48  
4.42  
3.39  
10.39  
7.36  
6.87  
6.5  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
26 KHz  
5.07  
4.58  
4.24  
3.19  
2.2  
5.43  
4.4  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
1.76  
2.312 2.899  
3.891  
3.257  
2.7  
mA  
VDD12=1.1V  
16 MHz 1.143  
1.285 1.687 2.252  
0.759 1.152 1.721  
0.492 0.884 1.449  
0.358 0.755 1.316  
0.293 0.686 1.247  
0.233 0.625 1.191  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.617  
0.354  
0.22  
2.437  
2.291  
2.226  
2.157  
0.155  
100 KHz 0.099  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 65. Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE on in 2-way and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz 6.69  
6.93  
4.28  
3.88  
3.48  
2.67  
1.86  
7.56  
4.78  
4.37  
3.97  
3.15  
2.33  
8.41  
5.47  
5.06  
4.65  
3.82  
2.99  
9.93  
6.72  
6.3  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
4.09  
3.7  
3.3  
2.5  
1.7  
5.88  
5.04  
4.2  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz 1.147 1.269 1.643 2.189 3.189  
16 MHz 0.737 0.856 1.226 1.765 2.761  
mA  
VDD12=1.1V  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.406 0.521 0.888 1.424 2.412  
0.241 0.356 0.715 1.255  
0.158 0.273 0.633 1.168  
2.24  
2.15  
0.115  
0.23  
0.586 1.129 2.103  
100 KHz 0.079 0.191 0.554 1.078 2.067  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 66. Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE on in 1-way and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz 6.47  
6.72  
4.15  
3.76  
3.38  
2.59  
1.81  
7.34  
4.64  
4.25  
3.86  
3.06  
2.27  
8.02  
5.33  
4.94  
4.54  
3.74  
2.95  
9.68  
6.55  
6.15  
5.75  
4.95  
4.13  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
3.97  
3.58  
3.2  
2.42  
1.65  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz 1.114 1.237 1.603 2.157 3.153  
16 MHz 0.719 0.834 1.201 1.74 2.732  
mA  
VDD12=1.1V  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.399 0.514 0.877 1.416 2.401  
0.237 0.352 0.708 1.251 2.229  
0.155 0.273 0.629 1.165  
0.115 0.23 0.586 1.129 2.103  
0.55 1.086 2.067  
2.15  
100 KHz 0.079 0.194  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 67. Current consumption in Run mode, code with data processing running from Flash  
in dual bank, ICACHE disabled and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz  
80 MHz  
6.9  
7.15  
5.21  
4.72  
4.44  
3.39  
2.42  
7.76  
5.7  
8.61  
6.4  
10.1  
7.63  
7.14  
6.85  
5.78  
4.77  
5.01  
4.53  
4.25  
3.21  
2.25  
72 MHz  
5.22  
4.94  
3.88  
2.89  
5.91  
5.63  
4.57  
3.57  
64 MHz  
48 MHz  
32 MHz  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz 1.499 1.625 1.999 2.552 3.544  
16 MHz 0.985 1.107 1.474 2.024 3.02  
1.557 2.538  
mA  
VDD12=1.1V  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.532 0.647  
1.01  
0.302 0.421 0.776 1.316 2.301  
0.187 0.302 0.665 1.197 2.178  
0.133 0.248 0.604 1.147 2.117  
100 KHz 0.079 0.194 0.554 1.089 2.063  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 68. Current consumption in Run mode, code with data processing running from SRAM1,  
and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz 6.81  
7.05  
4.36  
3.95  
3.54  
2.72  
1.89  
7.66  
4.85  
4.43  
4.02  
3.19  
2.35  
8.51  
5.53  
5.12  
4.7  
10  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
4.18  
3.78  
3.37  
2.55  
1.74  
6.75  
6.34  
5.91  
5.07  
4.21  
3.21  
3.86  
3.02  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz 1.172 1.294 1.661 2.204  
16 MHz 0.751 0.87  
mA  
VDD12=1.1V  
1.233 1.776 2.764  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.413 0.532 0.892 1.427 2.419  
0.244 0.359 0.719 1.262 2.243  
0.158 0.273 0.633 1.168  
0.119 0.23 0.593 1.129  
0.55  
2.15  
2.11  
100 KHz 0.079 0.194  
1.093 2.071  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 69. Current consumption in Run mode, code with data processing running from SRAM2,  
and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.2V 110 MHz  
80 MHz  
6.7  
6.95  
4.29  
3.89  
3.49  
2.68  
1.87  
7.56  
4.78  
4.37  
3.97  
3.16  
2.33  
8.41  
5.47  
5.06  
4.65  
3.82  
3
9.89  
6.7  
4.11  
3.71  
3.31  
2.51  
1.71  
1.15  
72 MHz  
6.28  
5.87  
5.03  
4.19  
3.185  
2.757  
2.412  
2.236  
2.15  
2.11  
64 MHz  
48 MHz  
32 MHz  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in Run  
mode  
IDD(Run)  
26 KHz  
1.273 1.639 2.186  
0.856 1.222 1.761  
0.525 0.888 1.427  
0.356 0.715 1.251  
0.273 0.629 1.168  
mA  
VDD12=1.1V  
16 MHz 0.741  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.41  
0.241  
0.158  
0.115  
0.23  
0.59  
0.55  
1.129  
1.086  
100 KHz 0.079  
0.194  
2.067  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 70. Current consumption in Sleep mode, Flash ON and power supplied by external SMPS  
Conditions(1)  
TYP  
Symbol  
Parameter  
Unit  
-
VDD12  
fHCLK  
25°C  
55°C  
85°C 105°C 125°C  
VDD12=1.20V 110 MHz 1.90  
2.10  
1.35  
1.24  
1.13  
0.91  
0.69  
2.66  
1.80  
1.70  
1.59  
1.36  
1.14  
3.47  
2.47  
2.36  
2.25  
2.02  
1.79  
4.90  
3.67  
3.54  
3.44  
3.21  
2.97  
80 MHz  
72 MHz  
64 MHz  
48 MHz  
32 MHz  
1.19  
1.08  
0.98  
0.76  
0.54  
fHCLK = fHSE up to 48 MHz  
included, bypass mode PLL ON  
above 48 MHz all peripherals  
disabled  
Supply current in  
Sleep mode  
IDD(Sleep)  
26 MHz 0.453 0.591 1.022 1.678 2.860  
16 MHz 0.315 0.453 0.880 1.531 2.718  
mA  
VDD12=1.10V  
8 MHZ  
4 MHz  
2MHz  
1 MHz  
0.203 0.341 0.768 1.424 2.593  
0.147 0.285 0.712 1.355 2.528  
0.116  
0.255 0.682 1.329 2.498  
0.104 0.242 0.669 1.307 2.476  
100 Khz 0.091 0.229 0.656 1.298 2.472  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency  
= 85%.  
 
 
Table 71. Current consumption in Run mode, code with data processing running from Flash,  
ICACHE on (2-way) and power supplied by external SMPS  
TYP  
single  
bank  
TYP  
single  
bank  
TYP  
single  
bank  
TYP  
single  
bank  
Conditions(1)  
VDD12  
Symbol Parameter  
Unit  
Unit  
mode  
mode  
mode  
mode  
-
fHCLK  
code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
1.2  
1.29  
1.37  
1.15  
1.04  
1.45  
1.56  
1.66  
1.39  
1.26  
4.1  
1.2  
46.15  
49.62  
52.69  
44.23  
40  
46.15  
49.62  
52.69  
43.85  
40  
1.29  
1.37  
1.14  
1.04  
1.45  
1.56  
1.65  
1.38  
1.26  
4.09  
4.4  
VDD12=1.00V fHCLK=26MHz Dhrystone2.1  
mA  
µA/MHz  
Fibonacci  
While(1)  
Reduced code  
55.77  
60  
55.77  
60  
Coremark  
fHCLK=26MHz Dhrystone2.1  
Fibonacci  
mA  
mA  
mA  
63.85  
53.46  
48.46  
51.25  
55  
63.46  
53.08  
48.46  
51.13  
55  
µA/MHz  
µA/MHz  
µA/MHz  
fHCLK = fHSE up to  
48MHz included, bypass  
mode PLL ON above 48  
MHz all peripherals  
disabled  
While(1)  
Supply  
current in  
Run mode  
IDD(Run)  
VDD12=1.10V  
Reduced code  
Coremark  
4.4  
fHCLK=80MHz Dhrystone2.1  
4.7  
4.68  
3.88  
3.55  
6.69  
7.2  
58.75  
48.5  
58.5  
Fibonacci  
3.88  
3.55  
6.69  
7.2  
48.5  
While(1)  
44.38  
60.82  
65.45  
69.64  
57.45  
52.73  
44.38  
60.82  
65.45  
69.27  
57.45  
52.73  
Reduced code  
Coremark  
VDD12=1.20V fHCLK=110MHz Dhrystone2.1  
7.66  
6.32  
5.8  
7.62  
6.32  
5.8  
Fibonacci  
While(1)  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =  
85%.  
 
 
Table 72. Current consumption in Run mode, code with data processing running from Flash,  
ICACHE on (1-way) and power supplied by external SMPS  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
Conditions(1)  
VDD12  
Symbol Parameter  
Unit  
mA  
mA  
mA  
mA  
Unit  
-
fHCLK  
code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
1.16  
1.22  
1.31  
1.11  
1.02  
1.41  
1.48  
1.58  
1.34  
1.24  
3.97  
4.16  
4.47  
3.73  
3.49  
6.47  
6.81  
7.28  
6.09  
5.71  
1.16  
1.22  
1.3  
44.62  
46.92  
50.38  
42.69  
39.23  
54.23  
56.92  
60.77  
51.54  
47.69  
49.63  
52  
44.62  
46.92  
50  
VDD12=1.00V fHCLK=26MHz Dhrystone2.1  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
Fibonacci  
While(1)  
1.11  
1.02  
1.41  
1.48  
1.58  
1.34  
1.24  
3.97  
4.16  
4.45  
3.73  
3.49  
6.47  
6.81  
7.25  
6.09  
5.7  
42.69  
39.23  
54.23  
56.92  
60.77  
51.54  
47.69  
49.63  
52  
Reduced code  
Coremark  
fHCLK=26MHz Dhrystone2.1  
Fibonacci  
fHCLK = fHSE up to  
48MHz included, bypass  
mode PLL ON above 48  
MHz all peripherals  
disabled  
While(1)  
Supply  
IDD(Run)  
current in  
VDD12=1.10V  
Reduced code  
Run mode  
Coremark  
fHCLK=80MHz Dhrystone2.1  
55.88  
46.63  
43.63  
58.82  
61.91  
66.18  
55.36  
51.91  
55.63  
46.63  
43.63  
58.82  
61.91  
65.91  
55.36  
51.82  
Fibonacci  
While(1)  
Reduced code  
Coremark  
VDD12=1.20V fHCLK=110MHz Dhrystone2.1  
Fibonacci  
While(1)  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =  
85%.  
 
 
Table 73. Current consumption in Run mode, code with data processing running from Flash,  
ICACHE disabled and power supplied by external SMPS  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
TYP  
Single  
Bank  
mode  
Conditions(1)  
VDD12  
Symbol Parameter  
Unit  
mA  
mA  
mA  
mA  
Unit  
-
fHCLK  
code  
25°C  
25°C  
25°C  
25°C  
Reduced code  
Coremark  
1.53  
1.66  
1.71  
1.36  
1.14  
1.85  
2.01  
2.07  
1.64  
1.38  
5.07  
4.91  
4.49  
4.34  
3.9  
1.56  
1.58  
1.65  
1.33  
1.18  
1.89  
1.92  
2
58.85  
63.85  
65.77  
52.31  
43.85  
71.15  
77.31  
79.62  
63.08  
53.08  
63.38  
61.38  
56.13  
54.25  
48.75  
68.64  
63.91  
64.36  
60.36  
58.09  
60  
60.77  
63.46  
51.15  
45.38  
72.69  
73.85  
76.92  
61.92  
55  
VDD12=1.00V fHCLK=26MHz Dhrystone2.1  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
Fibonacci  
While(1)  
Reduced code  
Coremark  
fHCLK=26MHz Dhrystone2.1  
Fibonacci  
1.61  
1.43  
5.01  
4.37  
4.49  
4.07  
4.04  
6.9  
fHCLK = fHSE up to  
48MHz included, bypass  
mode PLL ON above 48  
MHz all peripherals  
disabled  
While(1)  
Supply  
IDD(Run)  
current in  
VDD12=1.10V  
Reduced code  
62.63  
54.63  
56.13  
50.88  
50.5  
Run mode  
Coremark  
fHCLK=80MHz Dhrystone2.1  
Fibonacci  
While(1)  
Reduced code  
7.55  
7.03  
7.08  
6.64  
6.39  
62.73  
55.36  
56.36  
55.18  
60.27  
Coremark  
6.09  
6.2  
VDD12=1.20V fHCLK=110MHz Dhrystone2.1  
Fibonacci  
While(1)  
6.07  
6.63  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =  
85%.  
 
 
Table 74. Current consumption in Run mode, code with data processing running from SRAM1,  
and power supplied by external SMPS  
Conditions(1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
VDD12  
fHCLK  
code  
25°C  
25°C  
Reduced code  
Coremark  
1.22  
0.57  
1.26  
1.31  
1.43  
1.48  
0.69  
1.52  
1.59  
1.73  
4.18  
1.84  
4.29  
4.5  
46.92  
21.92  
48.46  
50.38  
55  
VDD12=1.00V fHCLK=26MHz  
Dhrystone2.1  
Fibonacci  
mA  
µA/MHz  
While(1)  
Reduced code  
Coremark  
56.92  
26.54  
58.46  
61.15  
66.54  
52.25  
23  
fHCLK=26MHz  
Dhrystone2.1  
Fibonacci  
mA  
mA  
mA  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
fHCLK = fHSE up to 48MHz included,  
IDD(Run) Supply current in Run mode bypass mode PLL ON above 48 MHz VDD12=1.10V  
all peripherals disabled  
Reduced code  
Coremark  
fHCLK=80MHz  
Dhrystone2.1  
Fibonacci  
53.63  
56.25  
62.63  
61.91  
27  
While(1)  
5.01  
6.81  
2.97  
7
Reduced code  
Coremark  
VDD12=1.20V fHCLK=110MHz Dhrystone2.1  
63.64  
66.73  
74.45  
Fibonacci  
While(1)  
7.34  
8.19  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =  
85%.  
 
 
Table 75. Current consumption in Run mode, code with data processing running from SRAM2,  
and power supplied by external SMPS  
Conditions (1)  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
-
VDD12  
fHCLK  
code  
25°C  
25°C  
Reduced  
code  
1.20  
46.15  
Coremark  
Dhrystone2.1  
Fibonacci  
0.57  
1.20  
1.25  
1.37  
21.92  
46.15  
48.08  
52.69  
VDD12=1.00V fHCLK=26MHz  
mA  
µA/MHz  
While(1)  
Reduced  
code  
1.45  
55.77  
Coremark  
Dhrystone2.1  
Fibonacci  
0.69  
1.45  
1.52  
1.66  
26.54  
55.77  
58.46  
63.85  
fHCLK=26MHz  
mA  
mA  
mA  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
fHCLK = fHSE up to 48MHz included,  
IDD(Run) Supply current in Run mode bypass mode PLL ON above 48 MHz all VDD12=1.10V  
peripherals disabled  
Reduced  
code  
4.11  
51.38  
Coremark  
Dhrystone2.1  
Fibonacci  
1.84  
4.09  
4.30  
4.76  
23.00  
51.13  
53.75  
59.50  
fHCLK=80MHz  
While(1)  
Reduced  
code  
6.70  
60.91  
Coremark  
Dhrystone2.1  
Fibonacci  
2.97  
6.67  
7.01  
7.80  
27.00  
60.64  
63.73  
70.91  
VDD12=1.20V fHCLK=110MHz  
While(1)  
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =  
85%.  
 
 
Table 76. Current consumption in Stop 2 mode  
TYP  
Conditions  
-
MAX  
Symbol  
Parameter  
Unit  
VDD  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C 105°C 125°C  
1.8 V  
2.4 V  
3 V  
3.07  
3.09  
3.13  
3.2  
16.61 68.35 158.43 332.53 19.03 67.19 202.18 407.53 797.08  
16.86 69.13 160.32 335.88 19.08 67.43 201.94 409.7 802.29  
Supply current  
in Stop 2 mode,  
IDD  
-
(Stop 2)  
17.24  
17.42 71.15 164.99 349.3 19.39 68.67 205.04 415.22 816.69  
17.32 68.52 159.57 333.56 19.7 67.81 202.19 408.09 797.2  
69.5 161.75 341.1 19.18 67.79 203.72 412.34 812.99  
RTC disabled  
3.6 V  
1.8 V  
2.4 V  
3 V  
3.66  
3.88  
4.2  
17.74 69.73 160.86 338.16 20.07 68.34 202.52 410.27 802.48  
17.94 70.57 163.39 342.82 20.37 68.62 205.35 413.58 813.45  
18.71 72.31 166.43 348.19 20.79 69.72 205.83 416.46 818.3  
RTC clocked by LSI  
3.6 V  
1.8 V  
2.4 V  
3 V  
4.42  
3.5  
17.14 69.36 159.76 332.52  
17.68 70.03 161.58 336.53  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSI  
with LPCAL = 1,  
ULPEN = 1  
3.62  
3.82  
4.06  
3.44  
3.58  
3.79  
4.59  
3.18  
3.27  
3.41  
4.16  
µA  
18.2  
18.8  
71  
163.7 343.17  
IDD  
Supply current  
in Stop 2 mode,  
RTC enabled  
3.6 V  
1.8 V  
2.4 V  
3 V  
72.72 168.58 351.22  
(Stop 2  
with RTC)  
17.15 68.39 159.57 333.37  
17.35 69.8 161.86 336.47  
RTC clocked by LSE  
bypassed at 32768 Hz  
with LPCAL = 0,  
17.77 70.33 163.41 342.2  
18.34 72.03 166.18 350.97  
ULPEN = 0  
3.6 V  
1.8 V  
2.4 V  
3 V  
16.98  
69.4 160.31 335.07  
RTC clocked by LSE  
bypassed at 32768 Hz  
with LPCAL = 1,  
17.29 69.65 161.79 339.1  
17.91 71.21 163.77 343.27  
ULPEN = 1  
3.6 V  
18.5  
72.62 167.08 350.59  
 
 
Table 76. Current consumption in Stop 2 mode (continued)  
Conditions  
TYP  
MAX  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C 105°C 125°C 25°C  
55°C  
85°C 105°C 125°C  
1.8 V  
2.4 V  
3 V  
3.48  
3.58  
3.71  
3.91  
3.16  
3.21  
3.27  
3.42  
16.53  
66.1  
151.2 295.85  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSE  
quartz in low drive  
mode  
16.86 66.79 153.07 299.45  
17.18 67.57 155.09 302.75  
17.74 68.97 158.26 309.93  
16.68 66.32 151.87 296.04  
16.99 66.91 153.42 299.34  
17.39 68.27 155.45 304.73  
17.93 69.41 158.77 310.4  
IDD  
Supply current  
in Stop 2 mode,  
RTC enabled  
(continued)  
3.6 V  
1.8 V  
2.4 V  
3 V  
(Stop 2  
with RTC)  
(continued)  
µA  
RTC clocked by LSE  
quartz in low drive  
mode with LPCAL = 1,  
ULPEN = 1  
3.6 V  
Wakeup clock is  
MSI = 48 MHz,  
voltage Range 1  
3 V  
3 V  
3 V  
1.96  
1.09  
1.72  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IDD  
Supply current  
during wakeup  
from Stop 2  
mode  
Wakeup clock is  
MSI = 4 MHz, voltage  
Range 2  
(wakeup  
from  
Stop 2)  
mA  
Wakeup clock is  
HSI = 16 MHz,  
voltage Range 1  
Table 77. Current consumption in Stop 1 mode  
TYP  
Conditions  
-
MAX  
85°C  
Symbol Parameter  
Unit  
VDD  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C  
125°C  
Supply  
current in  
Stop 1  
mode,  
1.8 V  
2.4 V  
3 V  
91.47  
91.94  
92.51  
372.36  
375.16  
375.46  
1243  
1251  
1249  
2527  
2531  
2549  
4611  
4652  
4675  
1196  
1199  
1204  
3403  
3418  
3427  
8100  
8133  
8174  
13853  
13906  
13988  
22830  
22920  
23189  
IDD  
-
(Stop 1)  
RTC  
3.6 V  
93.26  
380.59  
1270  
2567  
4721  
1215  
3433  
8158  
14083  
23335  
disabled  
1.8 V  
2.4 V  
3 V  
92.46  
92.48  
93.34  
93.38  
92.35  
92.31  
93.59  
93.19  
373.25  
372.19  
374.54  
378.64  
371.81  
374.21  
375.92  
377.07  
1248  
1250  
1253  
1267  
1248  
1245  
1256  
1262  
1214  
1224  
1228  
1239  
2518  
2528  
2541  
2559  
2518  
2521  
2534  
2551  
2442  
2447  
2466  
2480  
4617  
4643  
4683  
4712  
4605  
4640  
4673  
4713  
-
1196  
3405  
8103  
13874  
22793  
1201  
3433  
8135  
13924  
22927  
RTC clocked  
by LSI  
1206  
3424  
8185  
13994  
23140  
3.6 V  
1.8 V  
2.4 V  
3 V  
1213  
3434  
8176  
14091  
23336  
µA  
Supply  
current in  
Stop 1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked  
by LSE  
bypassed at  
32768 Hz  
IDD  
(Stop 1  
with RTC)  
mode,  
RTC  
3.6 V  
enabled  
1.8 V 100.67 381.08  
2.4 V 101.20 380.64  
RTC clocked  
by LSE quartz  
in low drive  
mode  
-
3 V  
102.04 378.49  
-
3.6 V 103.34 387.73  
-
 
 
Table 77. Current consumption in Stop 1 mode (continued)  
TYP  
Conditions  
-
MAX  
85°C  
Symbol Parameter  
Unit  
VDD  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C  
125°C  
Wakeup clock  
is MSI = 48  
MHz, voltage  
Range 1  
3 V  
2.02  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Supply  
current  
during  
wakeup  
from Stop  
1 mode  
IDD  
Wakeup clock  
is MSI = 4  
MHz, voltage  
Range 2  
(wakeup  
from Stop  
1)  
3 V  
3 V  
0.58  
1.27  
-
-
-
-
-
-
-
-
-
-
-
-
mA  
Wakeup clock  
is HSI = 16  
MHz, voltage  
Range 1  
Table 78. Current consumption in Stop 0 mode  
TYP  
Conditions  
MAX  
Symbol Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C  
105°C  
125°C  
25°C  
55°C  
85°C  
105°C  
125°C  
Supply  
current in  
Stop 0  
mode,  
-
-
-
1.8 V  
2.4 V  
3 V  
192.69  
194.69  
196.09  
494.92  
495.31  
495.47  
1425  
1430  
1431  
2797  
2804  
2812  
5106  
5108  
5124  
1395  
1396  
1397  
3797  
3798  
3799  
8974  
8953  
8996  
15426  
15440  
15465  
25827  
25851  
25967  
IDD  
µA  
(Stop 0)  
RTC  
disabled  
-
3.6 V  
197.54  
497.36  
1434  
2814  
5155  
1399  
3802  
8967  
15488  
26025  
 
Table 79. Current consumption in Standby mode  
Conditions  
TYP  
MAX  
85°C  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C 105°C 125°C  
25°C  
55°C  
105°C  
125°C  
1.8 V  
2.4 V  
3 V  
108  
119  
134  
183  
347  
405  
483  
596  
382  
2374  
2795  
3215  
7132 19259  
8332 22151  
9665 26746  
237  
361  
411  
558  
572  
708  
609  
999  
2269  
2497  
2716  
3214  
2578  
2832  
2913  
3466  
6948  
7770  
8919  
9577  
7079  
7868  
8597  
10069  
12467  
14021  
15987  
17816  
12599  
14061  
16110  
18212  
31340  
40505  
45394  
50551  
31388  
39741  
44085  
48579  
No  
476  
independent  
watchdog  
591  
Supply current in  
Standby mode  
(backup registers  
retained),  
3.6 V  
1.8 V  
2.4 V  
3 V  
827  
4232 12128 31763  
IDD  
(Standby)  
nA  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC disabled  
With  
independent  
watchdog  
3.6 V  
 
 
Table 79. Current consumption in Standby mode (continued)  
Conditions  
TYP  
MAX  
85°C  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C 105°C 125°C  
25°C  
55°C  
105°C  
125°C  
1.8 V  
2.4 V  
3 V  
717  
887  
971  
1266  
1584  
2059  
779  
2924  
3589  
7693 19714  
9054 22856  
930  
2760  
7456  
12882  
31665  
RTC clocked  
by LSI, no  
independent  
watchdog  
1224  
3096  
8393  
14557  
40166  
1113  
1394  
457  
4206 10666 27521  
5515 13394 32693  
1303  
3509  
9212  
16779  
44936  
3.6 V  
1828  
3889  
10504  
18898  
48363  
RTC clocked 1.8 V  
3075  
4082  
8179 20106  
9786 23298  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
by LSI, no  
independent  
watchdog  
with  
2.4 V  
582  
1080  
1425  
3 V  
740  
5195 11380 28044  
LPCAL = 1,  
ULPEN = 1  
3.6 V  
955  
1905  
6884 14210 33407  
-
-
-
-
-
1.8 V  
2.4 V  
3 V  
766  
948  
-
-
-
-
-
-
-
-
-
-
847  
2549  
7430  
12888  
31689  
Supply current in  
Standby mode  
RTC clocked  
by LSI, with  
independent  
watchdog  
IDD  
-
-
1267  
3171  
8250  
14679  
40296  
(backup registers  
retained),  
nA  
(Standby  
with RTC)  
1196  
1492  
435  
-
-
1561  
3610  
9492  
16773  
44760  
RTC enabled  
3.6 V  
1.8 V  
2.4 V  
3 V  
-
711  
954  
1247  
1686  
-
-
1896  
4136  
10423  
19143  
48559  
2650  
3254  
7592 19645  
8972 22787  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked  
by LSE  
bypassed at  
32768 Hz  
569  
768  
3963 10303 27154  
5174 13141 32293  
3.6 V  
1024  
166  
RTC clocked 1.8 V  
-
-
-
-
-
-
-
-
-
by LSE  
bypassed at  
32768 Hz  
with  
2.4 V  
236  
-
3 V  
356  
-
LPCAL = 1,  
ULPEN = 1  
3.6 V  
575  
-
-
-
-
-
-
-
-
-
Table 79. Current consumption in Standby mode (continued)  
Conditions  
TYP  
MAX  
85°C  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C 105°C 125°C  
25°C  
55°C  
105°C  
125°C  
1.8 V  
2.4 V  
3 V  
491  
574  
696  
870  
222  
250  
297  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked  
by LSE  
quartz in low  
drive mode  
Supply current in  
Standby mode  
IDD  
3.6 V  
(backup registers  
retained),  
(Standby  
with RTC)  
(continued)  
RTC clocked 1.8 V  
by LSE  
quartz in low  
drive mode  
with  
2.4 V  
RTC enabled  
(continued)  
3 V  
LPCAL = 1,  
ULPEN = 1  
3.6 V  
403  
-
-
-
-
-
-
-
-
-
nA  
1.8 V  
2.4 V  
3 V  
668  
704  
739  
840  
164  
201  
231  
3089 13834 34240 75362  
3193 14412 35468 78515  
3283 14722 36843 82664  
3571 15867 38708 88150  
1834  
1859  
1907  
1973  
518  
8192  
8376  
8514  
8919  
2685  
2758  
3243  
28470  
28905  
29857  
30509  
8359  
36317 135595  
36890 140894  
37533 144576  
38460 149487  
Supply current to  
be added in  
Standby mode  
when Full SRAM2  
(64KB) is retained  
IDD  
-
-
(SRAM2)  
3.6 V  
1.8 V  
2.4 V  
3 V  
Supply current to  
be added in  
Standby mode  
when partial  
658  
764  
871  
3378  
9485 23856  
8164  
8842  
9601  
39054  
47739  
51857  
3853 10707 26844  
4319 12043 31160  
585  
9134  
IDD  
(SRAM)  
606  
9975  
SRAM2 (4 KB) is  
retained  
3.6 V  
326  
1128  
5250 14470 36553  
723  
3570  
10872  
10707  
55419  
Supply current  
during wakeup  
from Standby  
mode  
IDD (wakeup  
from  
Standby)  
Wakeup  
clock is  
MSI = 4 MHz  
3 V  
1.11  
-
-
-
-
-
-
-
-
-
mA  
Table 80. Current consumption in Shutdown mode  
TYP  
Conditions  
MAX  
85°C  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C  
125°C  
Supply  
current in  
Shutdown  
mode  
1.8 V  
2.4 V  
3 V  
17.0  
18.0  
44.0  
198  
269  
361  
1533  
1803  
2314  
5195  
6166  
7212  
15336  
17522  
21381  
99  
590  
679  
800  
3169  
3610  
4108  
9252  
10477  
11860  
26038  
29468  
32843  
115  
141  
IDD  
-
(backup  
(Shutdown)  
registers  
retained)  
RTC disabled  
3.6 V 127.0  
587  
3159  
9534  
26115  
196  
990  
4877  
13734  
37480  
RTC clocked 1.8 V  
307  
485  
689  
525  
746  
1905  
2363  
2905  
5592  
6676  
7919  
15801  
18041  
22214  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
by LSE  
bypassed at  
2.4 V  
32768 Hz  
with  
LPCAL = 0  
3 V  
1015  
3.6 V  
974  
1435  
4082  
10392 26856  
-
-
-
-
-
RTC clocked 1.8 V  
116  
221  
339  
325  
491  
656  
1711  
2100  
2636  
5423  
6395  
7450  
15551  
17909  
21753  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
by LSE  
bypassed at  
nA  
2.4 V  
Supply  
current in  
Shutdown  
mode  
32768 Hz  
with  
LPCAL = 1  
3 V  
IDD  
3.6 V  
535  
996  
3645  
9998  
26420  
-
-
-
-
-
(Shutdown  
with RTC)  
(backup  
RTC clocked 1.8 V  
405  
486  
604  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
registers  
retained)  
RTC enabled  
by LSE  
quartz in low  
2.4 V  
drive mode  
with  
LPCAL = 0  
3 V  
3.6 V  
768  
-
-
-
-
-
-
-
-
-
RTC clocked 1.8 V  
207  
232  
272  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
by LSE  
quartz in low  
2.4 V  
drive mode  
with  
LPCAL = 1  
3 V  
3.6 V  
345  
-
-
-
-
-
-
-
-
-
 
 
Table 80. Current consumption in Shutdown mode (continued)  
Conditions  
TYP  
MAX  
85°C  
Symbol  
Parameter  
Unit  
-
VDD  
25°C  
55°C  
85°C  
105°C 125°C  
25°C  
55°C  
105°C  
125°C  
Supply  
IDD  
currentduring Wakeupclock  
(wakeup  
from  
Shutdown)  
wakeup from  
Shutdown  
mode  
is  
3 V  
0.53  
-
-
-
-
-
-
-
-
-
mA  
MSI = 4 MHz  
Table 81. Current consumption in VBAT mode  
TYP  
Conditions  
-
MAX  
Symbol Parameter  
Unit  
VBAT 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C  
1.8 V  
2.4 V  
3 V  
3.4  
3.9  
45  
55  
73  
136  
369  
528  
727  
996  
381  
406  
441  
518  
-
307  
358  
447  
786  
654  
843  
1119  
1680  
692  
738  
841  
1163  
-
966  
1097  
1350  
2303  
1303  
1595  
2045  
3247  
1369  
1499  
1761  
2707  
-
2699  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2995  
RTC disabled  
5.9  
3699  
3.6 V  
1.8 V  
2.4 V  
3 V  
13.4  
330  
446  
632  
867  
130  
183  
288  
392  
387  
461  
568  
700  
187  
202  
229  
275  
6528  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC enabled and  
clocked by LSE  
bypassed at  
32768 Hz with  
LPCAL = 0  
3.6 V  
1.8 V  
2.4 V  
3 V  
RTC enabled and  
clocked by LSE  
bypassed at  
32768 Hz with  
LPCAL=1  
Backup  
IDD  
(VBAT)  
domain  
supply  
current  
nA  
3.6 V  
1.8 V  
2.4 V  
3 V  
RTC enabled and  
clocked by LSE  
quartz with  
-
-
-
-
-
-
LPCAL = 0  
3.6 V  
1.8 V  
2.4 V  
3 V  
-
-
-
-
-
-
RTC enabled and  
clocked by LSE  
quartz with  
-
-
-
-
-
-
LPCAL = 1  
3.6 V  
-
-
-
 
 
Electrical characteristics  
STM32L552xx  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 102: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see ), the  
I/Os used by an application also contribute to the current consumption. When an I/O pin  
switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to  
charge/discharge the capacitive load (internal or external) connected to the pin:  
ISW = VDDIOx × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
SW  
V
is the I/O supply voltage  
DDIOx  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+ C  
S
INT  
EXT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
206/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 82. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 24:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 82. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 82. Peripheral current consumption  
Low-power  
Peripheral  
Range 0  
Range 1  
Range 2  
run and  
sleep  
Unit  
Bus matrix  
5.85  
3.67  
3.71  
7.11  
5.32  
2.03  
1.05  
1.77  
0.38  
0.38  
0.40  
0.25  
0.31  
0.30  
0.19  
0.21  
0.32  
0.29  
3.32  
5.92  
0.15  
5.47  
3.38  
3.43  
6.64  
4.95  
1.90  
0.99  
1.67  
0.36  
0.38  
0.41  
0.23  
0.27  
0.26  
0.17  
0.18  
0.26  
0.27  
3.08  
5.49  
0.14  
4.09  
2.54  
2.56  
4.96  
3.69  
1.43  
0.76  
1.24  
0.27  
0.27  
0.30  
0.17  
0.21  
0.21  
0.16  
0.14  
0.22  
0.21  
2.34  
4.16  
0.08  
5.36  
3.16  
3.20  
6.16  
4.59  
1.75  
0.95  
1.49  
0.35  
1.00  
0.32  
0.22  
0.37  
0.26  
0.21  
0.19  
0.31  
0.25  
2.90  
5.11  
0.14  
DMA1  
DMA2  
DMAMUX1  
FLASH  
SRAM1  
CRC  
TSC  
GTZC  
ICACHE  
GPIOA  
AHB  
µA/MHz  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
GPIOG  
GPIOH  
SRAM2  
ADC AHB clock domain  
ADC independent clock domain  
DS12737 Rev 6  
207/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Table 82. Peripheral current consumption (continued)  
Low-power  
Peripheral  
Range 0  
Range 1  
Range 2  
run and  
sleep  
Unit  
HASH  
3.91  
2.44  
4.55  
20.52  
4.92  
11.17  
10.77  
0.12  
47.58  
0.41  
6.65  
5.46  
5.38  
6.92  
1.12  
1.24  
3.50  
0.58  
2.52  
2.39  
3.40  
6.41  
2.96  
6.96  
2.81  
5.59  
2.75  
3.64  
2.27  
6.12  
19.07  
6.63  
10.39  
10.00  
0.11  
47.47  
0.43  
6.19  
5.08  
5.02  
6.47  
1.04  
1.16  
3.32  
0.52  
2.34  
2.22  
3.14  
5.99  
2.73  
6.49  
2.60  
5.26  
2.58  
2.74  
NA  
3.44  
NA  
RNG AHB clock domain  
RNG independent clock domain  
SDMMC1 AHB clock domain  
SDMMC1 independent clock domain  
FMC  
µA/MHz  
NA  
NA  
NA  
NA  
NA  
NA  
AHB  
7.82  
7.61  
0.04  
55.06  
0.36  
4.67  
3.82  
3.78  
4.86  
0.79  
0.86  
2.50  
0.40  
1.78  
1.69  
2.39  
4.50  
2.12  
4.86  
1.99  
3.95  
1.99  
9.90  
9.57  
1.00  
350.76  
0.61  
5.81  
4.75  
4.73  
6.08  
0.98  
0.98  
3.08  
0.48  
2.25  
2.16  
3.03  
5.53  
2.57  
6.09  
2.48  
4.85  
2.45  
(Cont)  
µA/MHz  
OSPI1 AHB clock domain  
OPSPI1 independent clock domain  
ALL AHB peripherals  
AHB to APB1 bridge  
TIM2  
TIM3  
TIM4  
TIM5  
TIM6  
TIM7  
RTCAPB  
WWDG  
APB1  
µA/MHz  
SPI2  
SPI3  
USART2 APB clock domain  
USART2 independent clock domain  
USART3 APB clock domain  
USART3 independent clock domain  
UART4 APB clock domain  
UART4 independent clock domain  
UART5 APB clock domain  
208/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
Table 82. Peripheral current consumption (continued)  
Low-power  
run and  
sleep  
Peripheral  
Range 0  
Range 1  
Range 2  
Unit  
UART5 independent clock domain  
I2C1 APB clock domain  
I2C1 independent clock domain  
I2C2 APB clock domain  
I2C2 independent clock domain  
I2C3 APB clock domain  
I2C3 independent clock domain  
CRS  
5.59  
1.42  
3.47  
1.32  
3.33  
1.14  
2.75  
0.35  
1.54  
2.89  
0.34  
1.10  
3.37  
1.66  
3.43  
1.40  
3.31  
1.36  
3.80  
1.02  
3.16  
7.99  
0.16  
3.51  
4.53  
2.67  
6.64  
0.75  
9.40  
2.69  
8.94  
3.16  
5.19  
1.34  
3.22  
1.24  
3.11  
1.05  
2.58  
0.30  
1.44  
2.69  
0.36  
1.01  
3.18  
1.54  
3.24  
1.28  
3.11  
1.26  
3.58  
0.93  
2.98  
7.41  
0.22  
3.25  
6.08  
2.46  
6.16  
0.71  
8.74  
2.51  
8.34  
2.92  
3.90  
1.00  
2.46  
0.93  
2.37  
0.81  
1.97  
0.22  
1.03  
2.03  
0.23  
0.78  
2.39  
1.19  
2.44  
0.97  
2.34  
0.96  
2.66  
0.74  
2.21  
5.56  
3.20  
NA  
4.79  
1.22  
3.12  
1.10  
3.06  
0.90  
2.61  
0.50  
1.22  
2.43  
1.00  
0.87  
3.07  
1.61  
2.99  
1.24  
2.90  
1.15  
3.35  
0.94  
2.80  
6.70  
4.05  
NA  
PWR  
DAC1  
OPAMP  
LPTIM1 APB clock domain  
LPTIM1 independent clock domain  
LPUART1 APB clock domain  
LPUART1 independent clock domain  
I2C4 APB clock domain  
I2C4 independent clock domain  
LPTIM2 APB clock domain  
LPTIM2 independent clock domain  
LPTIM3 APB clock domain  
LPTIM3 independent clock domain  
FDCAN APB clock domain  
FDCAN independent clock domain  
USBFS APB clock domain  
USBFS independent clock domain  
UCPD1  
APB1  
(Cont)  
µA/MHz  
NA  
NA  
1.84  
4.68  
0.54  
6.57  
1.90  
6.29  
2.23  
NA(1)  
8.43  
0.67  
8.33  
2.43  
8.06  
3.09  
AHB to APB2 bridge  
SYSCFG  
TIM1  
APB2  
µA/MHz  
SPI1  
TIM8  
USART1 APB clock domain  
DS12737 Rev 6  
209/340  
307  
Electrical characteristics  
STM32L552xx  
Table 82. Peripheral current consumption (continued)  
Low-power  
Peripheral  
Range 0  
Range 1  
Range 2  
run and  
sleep  
Unit  
USART1 independent clock domain  
7.01  
4.93  
3.27  
3.76  
3.04  
2.20  
3.32  
2.14  
8.18  
275.73  
6.54  
4.60  
3.05  
3.49  
2.84  
2.92  
3.07  
2.94  
7.61  
256.25  
4.91  
3.45  
2.29  
2.62  
2.12  
2.85  
2.30  
3
6.01  
4.45  
2.83  
3.40  
0.50  
2.5  
TIM15  
TIM16  
TIM17  
APB2  
(Cont)  
SAI1 APB clock domain  
SAI1 independent clock domain  
SAI2 APB clock domain  
SAI2 independent clock domain  
DFSDM1  
µA/MHz  
2.99  
3
5.73  
188.42  
7.42  
233  
ALL  
-
1. The UCPD1 is always clocked by the HSI16.  
210/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
5.3.7  
Wakeup time from low-power modes and voltage scaling  
transition times  
The wakeup times given in Table 83 are the latency between the event and the execution of  
the first user instruction.  
The device goes in low-power mode after the WFE (wait for event) instruction.  
(1)  
Table 83. Low-power mode wakeup timings  
-
Parameter  
Conditions  
Typ  
Max  
Unit  
Wakeup time  
from Sleep  
mode to Run  
mode  
-
14  
17  
Number of  
CPU cycles  
Wakeup time  
from Low-  
power sleep  
mode to Low-  
power  
Sleep  
Sleep Power Down  
(SLEEP_PD=1  
14  
17  
in FLASH_ACR) and with clock  
MSI = 2 MHz  
run mode  
MSI48  
Range 1  
5.83  
5.23  
18.48  
17.56  
23.36  
1.79  
2.79  
2.43  
2.80  
9.66  
9.74  
9.22  
21.84  
20.98  
25.48  
5.58  
6.68  
5.69  
6.18  
11.04  
81.2  
17.8  
6.26  
5.46  
HSI16  
Flash  
MSI24  
18.96  
17.94  
24.59  
2.16  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
HSI16  
MSI4  
Stop 0  
MSI48  
HSI16  
MSI24  
HSI16  
MSI4  
3.01  
SRAM1  
2.82  
3.03  
10.88  
10.22  
9.67  
MSI48  
HSI16  
MSI24  
HSI16  
MSI4  
µs  
Flash  
22.63  
21.81  
26.34  
5.95  
MSI48  
HSI16  
MSI24  
HSI16  
MSI4  
Stop 1  
7.06  
SRAM1  
6.24  
6.88  
11.99  
82.5  
Flash  
Low Power  
Run (LPR=1)  
MSI2  
SRAM1  
19  
DS12737 Rev 6  
211/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
Unit  
(1)  
Table 83. Low-power mode wakeup timings (continued)  
-
Parameter  
Conditions  
Typ  
Max  
MSI48  
11.20  
10.35  
23.76  
22.24  
27.81  
6.19  
11.64  
10.77  
24.15  
22.62  
28.46  
6.61  
Range 1  
Range 2  
Range 1  
Range 2  
Range 2  
HSI16  
MSI24  
HSI16  
MSI4  
Flash  
Stop 2  
MSI48  
HSI16  
MSI24  
HSI16  
MSI4  
7.33  
7.75  
SRAM1  
Flash  
6.31  
6.64  
µs  
6.89  
7.22  
11.69  
52.5  
12.36  
55.73  
55.78  
55.74  
55.73  
292.42  
MSI8  
MSI4  
52.58  
52.5  
Standby  
MSI8  
Flash with  
SRAM2  
Range 2  
Range 2  
MSI4  
52.60  
276.48  
Shutdown  
Flash  
MSI4  
1. Guaranteed by characterization results.  
(1)  
Table 84. Regulator modes transition times  
Symbol  
Parameter  
Conditions  
Typ Max Unit  
Wakeup time from Low- power run  
mode to Run mode(2)  
tWULPRUN  
Code run with MSI 2 MHz  
Code run with MSI 24 MHz  
5
7
μs  
Regulator transition time from  
Range 2 to Range 1 or  
Range 1 to Range 2(3)  
tVOST  
20  
40  
1. Guaranteed by characterization results.  
2. Time until REGLPF flag is cleared in PWR_SR2.  
3. Time until VOSF flag is cleared in PWR_SR2.  
(1)  
Table 85. Wakeup time using USART/LPUART  
Parameter Conditions  
Symbol  
Typ Max Unit  
Wakeup time needed to calculate Stop mode 0  
the maximum USART/LPUART  
baudrate allowing to wakeup up  
-
1.7  
tWUUSART  
μs  
from stop mode when  
USART/LPUART clock source is  
HSI  
tWULPUART  
Stop mode 1/2  
-
8.5  
1. Guaranteed by design.  
212/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
5.3.8  
External clock source characteristics  
High-speed external user clock generated from an external source  
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 5.3.15. However,  
the recommended clock input waveform is shown in Figure 33: High-speed external clock  
source AC timing diagram.  
(1)  
Table 86. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Voltage scaling  
Range 0 and 1  
-
8
48  
User external clock  
source frequency  
fHSE_ext  
MHz  
Voltage scaling  
Range 2  
-
8
-
26  
OSC_IN input pin high  
level voltage  
VHSEH  
VHSEL  
-
-
0.7 VDDIOx  
VDDIOx  
V
OSC_IN input pin low  
level voltage  
VSS  
7
-
0.3 VDDIOx  
Voltage scaling  
Range 0 and 1  
-
-
-
tw(HSEH)  
tw(HSEL)  
OSC_IN high or low time  
ns  
Voltage scaling  
Range 2  
18  
-
1. Guaranteed by design.  
Figure 33. High-speed external clock source AC timing diagram  
t
w(HSEH)  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
t
r(HSE)  
f(HSE)  
w(HSEL)  
T
HSE  
MS19214V2  
DS12737 Rev 6  
213/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
Low-speed external user clock generated from an external source  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics in Section 5.3.15. However,  
the recommended clock input waveform is shown in Figure 34.  
(1)  
Table 87. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
-
-
32.768  
1000  
kHz  
OSC32_IN input pin high  
level voltage  
VLSEH  
VLSEL  
tw(LSEH)  
-
-
-
0.7 VDDIOx  
VSS  
-
-
-
VDDIOx  
0.3 VDDIOx  
-
V
OSC32_IN input pin low level  
voltage  
OSC32_IN high or low time  
250  
ns  
tw(LSEL)  
1. Guaranteed by design.  
Figure 34. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
214/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on design  
simulation results obtained with typical external components specified in Table 88. In the  
application, the resonator and the load capacitors have to be placed as close as possible to  
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer  
to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 88. HSE oscillator characteristics  
Symbol  
fOSC_IN Oscillator frequency  
RF Feedback resistor  
Parameter  
Conditions(2)  
Min  
Typ  
Max  
Unit  
-
4
-
8
200  
-
48  
-
MHz  
-
kΩ  
During startup(3)  
-
5.5  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@8 MHz  
-
-
-
-
-
0.44  
0.45  
0.68  
0.94  
1.77  
-
-
-
-
-
VDD = 3 V,  
Rm = 45 ,  
CL = 10 pF@8 MHz  
VDD = 3 V,  
IDD(HSE) HSE current consumption  
mA  
Rm = 30 ,  
CL = 5 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 10 pF@48 MHz  
VDD = 3 V,  
Rm = 30 ,  
CL = 20 pF@48 MHz  
Maximum critical crystal  
transconductance  
Gm  
Startup  
-
-
-
1.5  
-
mA/V  
ms  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
2
1. Guaranteed by design.  
2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 35). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C .  
C
L1  
L2  
DS12737 Rev 6  
215/340  
307  
 
Electrical characteristics  
STM32L552xx  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 35. Typical application with an 8 MHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC_IN  
fHSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
RF  
(1)  
OSC_OUT  
REXT  
CL2  
MS19876V1  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. All the information given in this paragraph are based on design simulation results  
obtained with typical external components specified in Table 89. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
216/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 89. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions(2)  
Min  
Typ  
Max Unit  
LSEDRV[1:0] = 00  
Low drive capability  
-
250  
-
LSEDRV[1:0] = 01  
Medium low drive capability  
-
-
-
-
-
-
315  
-
IDD(LSE) LSE current consumption  
nA  
LSEDRV[1:0] = 10  
Medium high drive capability  
500  
-
LSEDRV[1:0] = 11  
High drive capability  
630  
-
LSEDRV[1:0] = 00  
Low drive capability  
-
-
-
0.5  
LSEDRV[1:0] = 01  
Medium low drive capability  
0.75  
µA/V  
1.7  
Maximum critical crystal  
gm  
Gmcritmax  
LSEDRV[1:0] = 10  
Medium high drive capability  
LSEDRV[1:0] = 11  
High drive capability  
-
-
-
2.7  
(3)  
tSU(LSE)  
Startup time  
VDD is stabilized  
2
-
s
1. Guaranteed by design.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly  
with the crystal manufacturer  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for ST microcontrollers” available from the ST website www.st.com.  
Figure 36. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden  
to add one.  
DS12737 Rev 6  
217/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
5.3.9  
Internal clock source characteristics  
The parameters given in Table 90 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 27: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 90. HSI16 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI16  
HSI16 Frequency  
VDD=3.0 V, TA=30 °C  
15.88  
-
16.08 MHz  
Trimming code is not a  
multiple of 64  
0.2  
-4  
0.3  
-6  
0.4  
%
TRIM  
HSI16 user trimming step  
Trimming code is a  
multiple of 64  
-8  
DuCy(HSI16)(2) Duty Cycle  
-
45  
-1  
-2  
-
-
-
55  
1
%
%
TA= 0 to 85 °C  
TA= -40 to 125 °C  
HSI16 oscillator frequency  
drift over temperature  
Temp(HSI16)  
1.5  
%
%
HSI16 oscillator frequency  
drift over VDD  
VDD(HSI16)  
VDD=1.62 V to 3.6 V  
-0.1  
-
0.05  
1.2  
5
HSI16 oscillator start-up  
time  
tsu(HSI16)(2)  
tstab(HSI16)(2)  
IDD(HSI16)(2)  
-
-
-
-
-
-
0.8  
3
μs  
μs  
μA  
HSI16 oscillator  
stabilization time  
HSI16 oscillator power  
consumption  
155  
190  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
218/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
Figure 37. HSI16 frequency versus temperature  
MHz  
16.4  
+2 %  
+1.5 %  
+1 %  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
-1 %  
-1.5 %  
-2 %  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
Mean  
min  
max  
MSv39299V2  
DS12737 Rev 6  
219/340  
307  
 
Electrical characteristics  
STM32L552xx  
Multi-speed internal (MSI) RC oscillator  
Table 91. MSI oscillator characteristics(1)  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
TA= -0 to 85 °C  
98.7  
100  
200  
101.3  
197.4  
202.6  
kHz  
405.2  
394.8  
400  
7896  
800  
810.4  
1.013  
2.026  
4.052  
0.987  
1
1.974  
2
MSI mode  
3.948  
4
7.896  
8
8.104  
MHz  
16.21  
15.79  
16  
23.69  
24  
24.31  
32.42  
48.62  
-
31.58  
32  
MSI frequency  
after factory  
calibration, done  
at VDD=3 V and  
TA=30 °C  
47.38  
48  
fMSI  
-
98.304  
196.608  
393.216  
786.432  
1.016  
1.999  
3.998  
7.995  
15.991  
23.986  
32.014  
48.005  
-
-
-
kHz  
-
-
-
-
-
-
-
-
PLL mode  
XTAL=  
32.768 kHz  
-
-
-
-
MHz  
-
-
-
-
-
-
-
-
MSI oscillator  
frequency drift  
over  
-3.5  
3
TEMP(MSI)(2)  
MSI mode  
%
6
TA= -40 to 125 °C  
-8  
-
temperature  
220/340  
DS12737 Rev 6  
 
STM32L552xx  
Symbol  
Electrical characteristics  
Table 91. MSI oscillator characteristics(1) (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
V
DD=1.62 V  
-1.2  
-
to 3.6 V  
Range 0 to 3  
0.5  
VDD=2.4 V  
to 3.6 V  
-0.5  
-2.5  
-0.8  
-5  
-
-
-
-
MSI oscillator  
frequency drift  
VDD=1.62 V  
to 3.6 V  
VDD(MSI)(2) over VDD  
MSI mode Range 4 to 7  
0.7  
1
%
VDD=2.4 V  
(reference is  
3 V)  
to 3.6 V  
VDD=1.62 V  
to 3.6 V  
Range 8 to 11  
VDD=2.4 V  
to 3.6 V  
-1.6  
-
-
Frequency  
variation in  
sampling  
mode(3)  
TA= -40 to 85 °C  
1
2
4
FSAMPLING  
MSI mode  
%
(MSI)(2)(4)  
TA= -40 to 125 °C  
-
-
2
RMS cycle-to-  
cycle jitter  
CC jitter(MSI)(4)  
PLL mode Range 11  
-
60  
-
ps  
ps  
P jitter(MSI)(4) RMS Period jitter PLL mode Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
10  
5
-
20  
10  
8
Range 0  
Range 1  
Range 2  
4
MSI oscillator  
start-up time  
t
SU(MSI)(4)  
us  
Range 3  
3
7
Range 4 to 7  
Range 8 to 11  
3
6
2.5  
6
10 % of final  
frequency  
-
-
-
-
-
-
0.25  
0.5  
-
0.5  
MSI oscillator  
stabilization time Range 11  
PLL mode 5 % of final  
tSTAB(MSI)(4)  
1.25 ms  
2.5  
frequency  
1 % of final  
frequency  
DS12737 Rev 6  
221/340  
307  
Electrical characteristics  
STM32L552xx  
Max Unit  
Table 91. MSI oscillator characteristics(1) (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.6  
0.8  
1.2  
1.9  
4.7  
6.5  
11  
1
1.2  
1.7  
2.5  
6
MSI oscillator  
power  
consumption  
9
MSI and  
PLL mode  
IDD(MSI)(4)  
µA  
15  
18.5  
62  
25  
80  
85  
110  
130  
190  
110  
155  
1. Guaranteed by characterization results.  
2. This is a deviation for an individual part once the initial frequency has been measured.  
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.  
4. Guaranteed by design.  
Figure 38. Typical current consumption versus MSI frequency  
222/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 92. HSI48 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fHSI48  
TRIM  
HSI48 Frequency  
VDD=3.0V, TA=30°C  
-
-
-
48  
-
MHz  
%
HSI48 user trimming step  
0.11(2) 0.18(2)  
USER TRIM HSI48 user trimming  
COVERAGE coverage  
±32 steps  
-
±3(3)  
45(2)  
-
±3.5(3)  
-
%
%
DuCy(HSI48) Duty Cycle  
-
-
55(2)  
±3(3)  
VDD = 3.0 V to 3.6 V,  
Accuracy of the HSI48  
ACCHSI48_REL oscillator over temperature  
(factory calibrated)  
TA = –15 to 85 °C  
%
VDD = 1.65 V to 3.6 V,  
TA = –40 to 125 °C  
-
-
±4.5(3)  
VDD = 3 V to 3.6 V  
-
-
0.025(3) 0.05(3)  
HSI48 oscillator frequency  
DVDD(HSI48)  
%
0.05(3)  
0.1(3)  
drift with VDD  
VDD = 1.65 V to 3.6 V  
HSI48 oscillator start-up  
tsu(HSI48)  
time  
-
-
-
-
2.5(2)  
6(2)  
μs  
HSI48 oscillator power  
IDD(HSI48)  
340(2)  
380(2) μA  
consumption  
Next transition jitter  
NT jitter  
PT jitter  
Accumulated jitter on 28  
-
-
-
-
+/-0.15(2)  
-
-
ns  
ns  
cycles(4)  
Paired transition jitter  
Accumulated jitter on 56  
cycles(4)  
+/-0.25(2)  
1. VDD = 3 V, TA = –40 to 125°C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Jitter measurement are performed without clock source activated in parallel.  
DS12737 Rev 6  
223/340  
307  
 
 
 
 
Electrical characteristics  
STM32L552xx  
Figure 39. HSI48 frequency versus temperature  
%
6
4
2
0
-2  
-4  
-6  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
°C  
Avg  
min  
max  
MSv40989V1  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 93. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
DD = 3.0 V,  
31.04  
-
32.96  
34  
TA = 30 °C  
fLSI  
LSI Frequency  
kHz  
VDD = 1.62 to 3.6 V,  
TA = -40 to 125 °C  
29.5  
-
LSI oscillator start-up  
time  
tSU(LSI)(2)  
tSTAB(LSI)(2)  
IDD(LSI)(2)  
-
-
-
-
80  
130  
180  
180  
μs  
μs  
nA  
LSI oscillator stabilization  
time  
5% of final frequency  
-
125  
110  
LSI oscillator power  
consumption  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
224/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
5.3.10  
PLL characteristics  
The parameters given in Table 94 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 27: General operating conditions.  
DD  
(1)  
Table 94. PLL, PLLSAI1, PLLSAI2 characteristics  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLL input clock(2)  
-
-
2.66  
45  
-
16  
55  
MHz  
%
PLL input clock duty cycle  
-
Voltage scaling Range 1 2.0645  
-
80  
fPLL_P_OUT PLL multiplier output clock P Voltage scaling Range 0 2.0645  
Voltage scaling Range 2 2.0645  
-
110  
26  
-
Voltage scaling Range 1  
fPLL_Q_OUT PLL multiplier output clock Q Voltage scaling Range 0  
Voltage scaling Range 2  
8
8
8
8
8
8
64  
64  
-
-
-
80  
110  
26  
-
MHz  
Voltage scaling Range 1  
-
80  
fPLL_R_OUT PLL multiplier output clock R Voltage scaling Range 0  
Voltage scaling Range 2  
-
110  
26  
-
Voltage scaling Range 1  
fVCO_OUT PLL VCO output  
-
344  
128  
40  
Voltage scaling Range 2  
-
tLOCK  
Jitter  
PLL lock time  
-
15  
40  
30  
150  
200  
300  
520  
μs  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
-
System clock 80 MHz  
±ps  
-
-
VCO freq = 64 MHz  
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
200  
260  
380  
650  
-
PLL power consumption on  
VDD  
IDD(PLL)  
μA  
(1)  
-
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M  
factor is shared between the 3 PLLs.  
DS12737 Rev 6  
225/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
5.3.11  
Flash memory characteristics  
(1)  
Table 95. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
tprog  
64-bit programming time  
-
81.69  
2.61  
NA  
83.35  
2.67  
NA  
µs  
Normal programming  
Fast programming  
Normal programming  
Fast programming  
One row (64 double  
word) programming time  
tprog_row  
20.91  
NA  
21.34  
NA  
One page (4 Kbytes)  
programming time  
ms  
tprog_page  
tERASE  
tprog_bank  
tME  
Page (4 Kbytes) erase  
time  
-
22.02  
24.47  
Normal programming  
Fast programming  
2.68  
NA  
2.73  
NA  
One bank (1 Mbyte)  
programming time  
s
Mass erase time  
(one or two banks)  
-
22.13  
24.59 ms  
NA  
Write mode  
Erase mode  
Write mode  
Erase mode  
3.1  
3.1  
NA  
NA  
Average consumption  
from VDD  
NA  
mA  
NA  
IDD  
Maximum current (peak)  
NA  
1. Guaranteed by design.  
Table 96. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = –40 to +105 °C  
10  
30  
15  
7
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
tRET  
Data retention  
Years  
30  
15  
10  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
226/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
5.3.12  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 97. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 97. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 110 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
3B  
5A  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 110 MHz,  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
DS12737 Rev 6  
227/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 98. EMI characteristics  
Max vs  
Monitored frequency  
[fHSE/fHCLK  
]
Symbol Parameter  
Conditions  
Unit  
band  
8 MHz / 110 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI Level  
4
0
V
DD = 3.6 V,  
TA = 25°C,  
LQFP144 package  
compliant with IEC  
61967-2  
dBμV  
SEMI  
Peak level  
16  
11  
3.5  
-
5.3.13  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 99. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge  
voltage (human body model) ANSI/ESDA/JEDEC JS-001  
TA = +25 °C, conforming to  
VESD(HBM)  
2
2000  
TA = +25 °C,  
conforming to  
ANSI/ESDA/JEDEC  
JS-002  
LQFP144, LQFP100,  
WLCSP81  
V
Electrostatic discharge  
VESD(CDM) voltage (charge device  
model)  
C1  
250  
500  
Other packages  
C2a  
1. Guaranteed by characterization results.  
228/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
Static latch-up  
Two complementary static tests are required on three parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78E IC latch-up standard.  
Table 100. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78E  
Class II level A  
5.3.14  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V  
(for standard, 3.3 V-capable I/O pins) should be avoided during normal  
DDIOx  
product operation. However, in order to give an indication of the robustness of the  
microcontroller in cases when abnormal injection accidentally happens, susceptibility tests  
are performed on a sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA/+0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 101.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
Table 101. I/O current injection susceptibility  
Functional  
susceptibility  
Symbol  
Description  
Unit  
Negative Positive  
injection injection  
Injected current on all pins except TT_a, PB0, PB15,  
PE9, PG0  
-5  
NA  
(1)  
IINJ  
mA  
Injected current on pins PB0, PB15, PE9, PG0  
Injected current on TT_a pins  
0
NA  
0
-5  
1. Guaranteed by characterization.  
DS12737 Rev 6  
229/340  
307  
 
 
 
5.3.15  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 102 are derived from tests performed under the conditions summarized  
in Table 27: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant.  
Table 102. I/O static characteristics  
Sym  
bol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(2)  
1.62 V < VDDIOx < 3.6 V  
1.62 V < VDDIOx < 3.6 V  
1.08 V < VDDIOx < 1.62 V  
1.62 V < VDDIOx < 3.6 V  
1.62 V < VDDIOx < 3.6 V  
1.08 V < VDDIOx < 1.62 V  
1.62 V < VDDIOx < 3.6 V  
1.62 V < VDDIOx < 3.6 V  
1.08 V < VDDIOx < 1.62 V  
1.62 V < VDDIOx < 3.6 V  
1.08 V < VDDIOx < 1.62 V  
-
-
-
-
-
-
-
-
-
-
-
-
0.3×VDDIOx  
All IOs except FT_c  
-
0.39×VDDIOx-0.06(2)  
0.43×VDDIOx-0.1(2)  
-
I/O input low level  
voltage  
(1)  
VIL  
V
(2)  
-
0.3×VDDIOX  
(2)  
FT_c  
-
0.25×VDDIOX  
(2)  
-
0.2×VDDIOX  
(2)  
0.7×VDDIOx  
-
-
All IOs except FT_c  
FT_c  
0.49×VDDIOX+0.26(2)  
0.61×VDDIOX+0.05(2)  
I/O input high level  
voltage  
(1)  
VIH  
-
V
(2)  
0.7×VDDIOX  
5
5
(2)  
0.7×VDDIOX  
TT_xx, FT_xx and  
NRST  
1.62 V < VDDIOx < 3.6 V  
1.08 V < VDDIOx < 1.62 V  
-
-
200  
150  
-
-
(2)  
Vhys  
Input hysteresis  
mV  
FT_sx  
 
 
 
Table 102. I/O static characteristics (continued)  
Sym  
bol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
(4)(5)  
0 < VIN Max(VDDXXX  
)
-
-
-
-
±100  
650  
FT_xx(3)  
FT_u  
Max(VDDXXX) VIN Max(VDDXXX) + 1 V(4)(5)  
Max(VDDXXX) + 1 V < VIN 5.5 V(4)(5)  
-
-
200  
(4)(5)  
0 <VIN Max(VDDXXX  
)
-
-
±150  
2500(6)  
250(6)  
±150  
Max(VDDXXX) VIN Max(VDDXXX) +1 V(4)(5)  
-
-
Max(VDDXXX) +1 V < VIN 5.5 V(4)(5)(7)  
-
-
Input leakage  
current  
(5)  
Ilkg  
V
IN Max(VDDXXX  
)
-
-
nA  
TT_xx  
Max(VDDXXX) VIN < 3.6 V(5)  
-
-
2000(2)  
(8)  
OPAMPx_VINM(x=1,2)  
FT_c  
-
-
-
(3)  
0 <VIN Max(VDDXXX  
)
-
-
2000  
3000  
4500  
9000  
55  
Max(VDDXXX) < VIN 5 V(3)(5)(6)  
-
-
(5)  
0 <VIN Max(VDDXXX  
)
-
-
FT_d  
Max(VDDXXX) < VIN 5.5 V(3)(4)(5)  
-
-
RPU Weak pull-up equivalent resistor  
RPD Weak pull-down equivalent resistor  
CIO I/O pin capacitance  
VIN = VSS  
25  
25  
-
40  
40  
5
kΩ  
kΩ  
pF  
VIN = VDDIOx  
55  
-
-
1. Refer to Figure 40: I/O input characteristics.  
2. Guaranteed by design.  
3. All FT_xx IO except FT_u and FT_c.  
4. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: ITotal_Ileak_max = 10 μA + [number of IOs where VIN is  
applied on the pad] × Ilkg(Max).  
5. Max(VDDXXX) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.  
6. To sustain a voltage higher than MIN(VDD, VDDA, VDDIO2 and VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.  
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is  
minimal (~10% order).  
8. Refer to Ibias in Table 119: OPAMP characteristics for the values of the OPAMP dedicated input leakage current.  
 
Electrical characteristics  
STM32L552xx  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters. The  
coverage of these requirements is shown in Figure 40 for standard I/Os, and in Figure 40 for  
5 V tolerant I/Os.  
Figure 40. I/O input characteristics  
Vil – Vih all IO  
TTL requirement Vih min = 2V  
TTL requirement Vil max = 0.8V  
MSv62973V1  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ± 20 mA (with a relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum  
DDIOx,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 24: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 24: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 27: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT OR TT  
unless otherwise specified).  
232/340  
DS12737 Rev 6  
 
STM32L552xx  
Symbol  
Electrical characteristics  
(1)  
Table 103. Output voltage characteristics  
Parameter Conditions  
Output low level voltage for  
Min  
Max  
Unit  
CMOS port(2)  
VOL  
VOH  
-
0.4  
an I/O pin  
|IIO| = 2 mA for FT_c  
|IIO| = 8 mA for other I/Os  
VDDIOx 2.7 V  
Output high level voltage for  
an I/O pin  
VDDIOx-0.4  
-
0.4  
-
TTL port(2)  
|IIO| = 2 mA for FT_c  
|IIO|= 8 mA for other I/Os  
VDDIOx 2.7 V  
Output low level voltage for  
an I/O pin  
(3)  
VOL  
-
2.4  
-
Output high level voltage for  
an I/O pin  
(3)  
VOH  
Output low level voltage for  
an I/O pin  
(3)  
(3)  
VOL  
1.3  
-
All I/Os except FT_c  
|IIO| = 20 mA  
VDDIOx 2.7 V  
Output high level voltage for  
an I/O pin  
VOH  
V
DDIOx-1.3  
Output low level voltage for  
an I/O pin  
(3)  
VOL  
-
0.4  
-
V
|IIO| = 1 mA for FT_c  
|IIO| = 4 mA for other I/Os  
1.62 V VDDIOx 3.6 V  
Output high level voltage for  
an I/O pin  
(3)  
VOH  
VDDIOx-0.45  
Output low level voltage for  
an I/O pin  
0.35 ₓ  
VDDIOx  
(3)  
VOL  
-
|IIO| = 1 mA for FT_c  
|IIO| = 2 mA for other I/Os  
1.08 V VDDIOx < 1.62 V  
Output high level voltage for  
an I/O pin  
(3)  
VOH  
0.65VDDIOx  
-
|IIO| = 20 mA  
VDDIOx 2.7 V  
-
-
-
0.4  
0.4  
0.4  
Output low level voltage for  
an FT I/O pin in FM+ mode  
(FT I/O with "f" option)  
VOLFM+  
|IIO| = 10 mA  
1.62 V VDDIOx 3.6 V  
(3)  
|IIO| = 2 mA  
1.08 V VDDIOx < 1.62 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 24:  
Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings ΣIIO  
.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
3. Guaranteed by design.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 41 and  
Table 104, respectively.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 27: General  
operating conditions.  
DS12737 Rev 6  
233/340  
307  
 
 
 
 
Electrical characteristics  
STM32L552xx  
(1)(2)  
Table 104. I/O AC characteristics (All I/Os except FT_c)  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
1
0.1  
10  
1.5  
0.1  
25  
52  
140  
17  
37  
110  
25  
10  
1
Maximum  
frequency  
Fmax  
MHz  
00  
Output rise and  
fall time  
Tr/Tf  
ns  
MHz  
ns  
Maximum  
frequency  
Fmax  
50  
15  
1
01  
9
16  
40  
4.5  
9
Output rise and  
fall time  
Tr/Tf  
21  
234/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
(1)(2)  
Table 104. I/O AC characteristics (All I/Os except FT_c)  
(continued)  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.62 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=30 pF, 2.7 VVDDIOx3.6 V  
C=30 pF, 1.62 VVDDIOx2.7 V  
C=30 pF, 1.08 VVDDIOx1.62 V  
C=10 pF, 2.7 VVDDIOx3.6 V  
C=10 pF, 1.62 VVDDIOx2.7 V  
C=10 pF, 1.08 VVDDIOx1.62 V  
C=30 pF, 2.7 VVDDIOx3.6 V  
C=30 pF, 1.62 VVDDIOx2.7 V  
C=30 pF, 1.08 VVDDIOx1.62 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
25  
5
Maximum  
frequency  
Fmax  
MHz  
100  
37.5  
5
10  
5.8  
11  
28  
Output rise and  
fall time  
Tr/Tf  
ns  
2.5  
5
12  
110  
50  
10  
Maximum  
frequency  
Fmax  
Tr/Tf  
MHz  
180(3)  
11  
75  
10  
3.3  
6
Output rise and  
fall time  
ns  
16  
Maximum  
frequency  
Fmax  
Tf  
-
-
1
5
MHz  
ns  
Fm+  
C=50 pF, 1.6 VVDDIOx3.6 V  
Output fall  
time(4)  
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the  
SYSCFG_CFGR1 register. Refer to the RM0438 reference manual for a description of GPIO Port  
configuration register.  
2. Guaranteed by design.  
3. This value represents the I/O capability but the maximum system frequency is limited to 110 MHz.  
4. The fall time is defined between 70% and 30% of the output waveform accordingly to I2C specification.  
DS12737 Rev 6  
235/340  
307  
Electrical characteristics  
Speed Symbol  
STM32L552xx  
(1)(2)  
Table 105. FT_c I/O AC characteristics  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.6 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx3.6 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.6 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx3.6 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.6 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx3.6 V  
C=50 pF, 2.7 VVDDIOx3.6 V  
C=50 pF, 1.6 VVDDIOx2.7 V  
C=50 pF, 1.08 VVDDIOx3.6 V  
-
-
-
-
-
-
-
-
-
-
-
-
2
1
Maximum  
frequency  
Fmax  
MHz  
0.1  
170  
330  
3300  
10  
0
Output rise and  
fall time  
Tr/Tf  
ns  
MHz  
ns  
Maximum  
frequency  
Fmax  
5
0.7  
35  
1
Output rise and  
fall time  
Tr/Tf  
65  
400  
1. The I/O speed is configured using the OSPEEDRy[0] bit. Refer to the RM0438 reference manual for a  
description of GPIO Port configuration register.  
2. Guaranteed by design.  
(1)  
Figure 41. I/O AC characteristics definition  
10%  
90%  
50%  
50%  
10%  
90%  
t
t
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t (≤ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by the specified capacitance.  
MS32132V2  
1. Refer to Table 104: I/O AC characteristics (All I/Os except FT_c).  
5.3.16  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-  
up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 27: General operating conditions.  
236/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 106. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input low level  
voltage  
VIL(NRST)  
-
-
-
-
0.3VDDIOx  
V
NRST input high level  
voltage  
VIH(NRST)  
-
0.7VDDIOx  
-
-
NRST Schmitt trigger  
voltage hysteresis  
Vhys(NRST)  
RPU  
VF(NRST)  
VNF(NRST)  
-
-
25  
-
200  
40  
-
mV  
kΩ  
ns  
Weak pull-up equivalent  
resistor(2)  
VIN = VSS  
-
55  
70  
-
NRST input filtered  
pulse  
NRST input not filtered  
pulse  
1.71 V VDD  
3.6 V  
350  
-
ns  
1. Guaranteed by design.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is minimal (~10% order).  
Figure 42. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF  
MS19878V3  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 106: NRST pin characteristics. Otherwise the reset is not taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
5.3.17  
Extended interrupt and event controller input (EXTI) characteristics  
The pulse on the interrupt input must have a minimal length in order to guarantee that it is  
detected by the event controller.  
(1)  
Table 107. EXTI input characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pulse length to event  
controller  
PLEC  
-
20  
-
-
ns  
1. Guaranteed by design.  
DS12737 Rev 6  
237/340  
307  
 
 
 
 
Electrical characteristics  
STM32L552xx  
5.3.18  
Analog switches booster  
(1)  
Table 108. Analog switches booster characteristics  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
Max  
Unit  
VDD  
1.62  
-
-
-
3.6  
V
tSU(BOOST)  
Booster startup time  
240  
µs  
Booster consumption for  
-
-
-
-
-
-
250  
500  
900  
1.62 V VDD 2.0 V  
Booster consumption for  
IDD(BOOST)  
µA  
2.0 V VDD 2.7 V  
Booster consumption for  
2.7 V VDD 3.6 V  
1. Guaranteed by design.  
238/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
5.3.19  
Analog-to-digital converter characteristics  
Unless otherwise specified, the parameters given in Table 109 are preliminary values  
derived from tests performed under ambient temperature, f  
frequency and V  
supply  
PCLK  
DDA  
voltage conditions summarized in Table 27: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1) (2)  
Table 109. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage  
VDDA  
-
1.62  
2
-
3.6  
V
Positive  
reference  
voltage  
V
DDA 2 V  
-
VDDA  
V
V
VREF+  
VDDA < 2 V  
VDDA  
Negative  
reference  
voltage  
VREF-  
-
VSSA  
V
Range 0 and 1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
80  
ADC clock  
frequency  
fADC  
MHz  
Range 2  
26  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
5.33  
6.15  
7.27  
8.88  
4.21  
4.71  
5.33  
6.15  
Sampling rate  
for FAST  
channels  
fs  
Msps  
Sampling rate  
for SLOW  
channels  
fADC = 80 MHz  
Resolution = 12 bits  
-
-
-
-
-
5.33  
15  
MHz  
1/fADC  
V
External trigger  
frequency  
fTRIG  
Resolution = 12 bits  
-
Conversion  
voltage range(2)  
(3)  
VAIN  
0
VREF+  
External input  
impedance  
RAIN  
-
-
-
-
-
-
5
1
50  
-
kΩ  
Internal sample  
and hold  
capacitor  
CADC  
pF  
conversi  
on cycle  
tSTAB  
Power-up time  
Calibration time  
f
ADC = 80 MHz  
1.45  
116  
µs  
tCAL  
-
1/fADC  
DS12737 Rev 6  
239/340  
307  
 
 
Electrical characteristics  
Symbol  
STM32L552xx  
(1) (2)  
Table 109. ADC characteristics  
(continued)  
Parameter  
Conditions  
Min  
1.5  
Typ  
Max  
Unit  
Trigger  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
2
-
2.5  
2.0  
conversion  
latency Regular  
and injected  
channels  
-
-
-
2.25  
tLATR  
1/fADC  
without  
conversion  
abort  
CKMODE = 11  
-
-
2.125  
Trigger  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
2.5  
3
-
3.5  
3.0  
conversion  
latency Injected  
channels  
-
-
tLATRINJ  
1/fADC  
-
3.25  
aborting a  
regular  
conversion  
CKMODE = 11  
-
-
3.125  
fADC = 80 MHz  
-
0.03125  
2.5  
-
-
8.00625  
640.5  
µs  
ts  
Sampling time  
1/fADC  
ADC voltage  
regulator start-  
up time  
tADCVREG_STU  
-
-
-
-
20  
µs  
P
fADC = 80 MHz  
Resolution = 12 bits  
0.1875  
8.1625  
µs  
Total conversion  
time  
(including  
tCONV  
ts + 12.5 cycles for  
successive approximation  
= 15 to 653  
Resolution = 12 bits  
1/fADC  
sampling time)  
fs = 5 Msps  
fs = 1 Msps  
fs = 10 ksps  
fs = 5 Msps  
fs = 1 Msps  
-
-
-
-
-
730  
160  
16  
830  
220  
50  
ADC  
consumption  
from the VDDA  
supply  
IDDA(ADC)  
µA  
ADC  
consumption  
DDV_S(ADC) from the VREF+  
single ended  
130  
30  
160  
40  
I
µA  
µA  
fs = 10 ksps  
-
0.6  
2
mode  
fs = 5 Msps  
fs = 1 Msps  
fs = 10 ksps  
-
-
-
260  
60  
310  
70  
3
ADC  
consumption  
from the VREF+  
differential mode  
I
DDV_D(ADC)  
1.3  
1. Guaranteed by design  
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the  
SYSCFG_CFGR1 when VDDA < 2.4V). It is disable when VDDA 2.4 V.  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on  
the package.  
Refer to Section 4: Pinouts and pin description for further details.  
240/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
The maximum value of R  
can be found in Table 110: Maximum ADC RAIN.  
AIN  
(1)(2)  
AIN  
Table 110. Maximum ADC R  
RAIN max ()  
Fast channels(3) Slow channels(4)  
Sampling cycle  
@80 MHz  
Sampling time  
[ns] @80 MHz  
Resolution  
2.5  
6.5  
31.25  
81.25  
100  
330  
N/A  
100  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
680  
470  
1500  
2200  
4700  
12000  
39000  
120  
1200  
1800  
3900  
10000  
33000  
N/A  
12 bits  
6.5  
81.25  
390  
180  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
820  
560  
1500  
2200  
5600  
12000  
47000  
180  
1200  
1800  
4700  
10000  
39000  
N/A  
10 bits  
8 bits  
6 bits  
6.5  
81.25  
470  
270  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
31.25  
1000  
1800  
2700  
6800  
15000  
50000  
220  
680  
1500  
2200  
5600  
12000  
50000  
N/A  
6.5  
81.25  
560  
330  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
156.25  
306.25  
593.75  
1156.25  
3093.75  
8006.75  
1200  
2700  
3900  
8200  
18000  
50000  
1000  
2200  
3300  
6800  
15000  
50000  
DS12737 Rev 6  
241/340  
307  
 
Electrical characteristics  
STM32L552xx  
1. Guaranteed by design.  
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the  
SYSCFG_CFGR1 when VDDA < 2.4V). It is disable when VDDA 2.4 V.  
3. Fast channels are: PC0, PC1, PC2, PC3, PA0.  
4. Slow channels are: all ADC inputs except the fast channels.  
242/340  
DS12737 Rev 6  
STM32L552xx  
Sym-  
Electrical characteristics  
(1)(2)(3)  
Table 111. ADC accuracy - limited test conditions 1  
Conditions(4)  
Parameter  
Min Typ Max Unit  
bol  
Fast channel (max speed)  
Single  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
5
5
ended  
Total  
Slow channel (max speed)  
ET  
unadjusted  
error  
Fast channel (max speed)  
Differential  
3.5 4.5  
3.5 4.5  
Slow channel (max speed)  
Fast channel (max speed)  
Single  
1
1
2.5  
2.5  
ended  
Slow channel (max speed)  
Offset  
error  
EO  
EG  
ED  
EL  
Fast channel (max speed)  
Differential  
1.5 2.5  
1.5 2.5  
2.5 4.5  
2.5 4.5  
2.5 3.5  
2.5 3.5  
Slow channel (max speed)  
Fast channel (max speed)  
Single  
ended  
Slow channel (max speed)  
Gain error  
LSB  
Fast channel (max speed)  
Differential  
Slow channel (max speed)  
1
1
1
1
3.5  
3.5  
2
Fast channel (max speed)  
Single  
ended  
Differential  
linearity  
error  
Slow channel (max speed)  
ADC clock frequency ≤  
80 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Differential  
Sampling rate 5.33 Msps,  
VDDA = VREF+ = 3 V,  
2
1.5 2.5  
1.5 2.5  
Single  
ended  
TA = 25 °C  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
Integral  
linearity  
error  
1
1
2
2
-
-
-
-
-
-
-
-
-
-
-
-
Differential  
Fast channel (max speed) 10.4 10.5  
Slow channel (max speed) 10.4 10.5  
Fast channel (max speed) 10.8 10.9  
Slow channel (max speed) 10.8 10.9  
Fast channel (max speed) 64.4 65  
Slow channel (max speed) 64.4 65  
Fast channel (max speed) 66.8 67.4  
Slow channel (max speed) 66.8 67.4  
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Single  
ended  
Signal-to-  
noise and  
distortion  
SINAD  
ratio  
Differential  
dB  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 67  
Slow channel (max speed) 67  
66  
66  
68  
68  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Differential  
DS12737 Rev 6  
243/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)(3)  
Table 111. ADC accuracy - limited test conditions 1  
(continued)  
Min Typ Max Unit  
Sym-  
bol  
Parameter  
Conditions(4)  
ADC clock frequency ≤  
80 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-74 -73  
-74 -73  
-79 -76  
Single  
ended  
Sampling rate 5.33 Msps,  
Total  
THD harmonic  
distortion  
dB  
VDDA = VREF+ = 3 V,  
TA = 25 °C  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
Differential  
Slow channel (max speed)  
-
-79 -76  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
244/340  
DS12737 Rev 6  
STM32L552xx  
Sym-  
Electrical characteristics  
(1)(2)(3)  
Table 112. ADC accuracy - limited test conditions 2  
Conditions(4)  
Parameter  
Min Typ Max Unit  
bol  
Fast channel (max speed)  
Single  
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
6.5  
6.5  
ended  
Total  
Slow channel (max speed)  
ET  
unadjusted  
error  
Fast channel (max speed)  
Differential  
3.5 5.5  
3.5 5.5  
Slow channel (max speed)  
Fast channel (max speed)  
Single  
1
4.5  
5
ended  
Slow channel (max speed)  
1
Offset  
error  
EO  
EG  
ED  
EL  
Fast channel (max speed)  
Differential  
1.5  
1.5  
2.5  
2.5  
3
Slow channel (max speed)  
3
Fast channel (max speed)  
Single  
6
ended  
Slow channel (max speed)  
6
Gain error  
LSB  
Fast channel (max speed)  
Differential  
2.5 3.5  
2.5 3.5  
Slow channel (max speed)  
1
1
1
1
3.5  
3.5  
2
Fast channel (max speed)  
Single  
ended  
Differential  
linearity  
error  
-
Slow channel (max speed)  
ADC clock frequency ≤  
80 MHz,  
-
Fast channel (max speed)  
Differential  
-
2
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Sampling rate 5.33 Msps,  
2 V VDDA  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
-
-
-
-
2.5 4.5  
2.5 4.5  
Single  
ended  
Integral  
linearity  
error  
1
1
3
Differential  
2.5  
Fast channel (max speed) 10 10.5  
Slow channel (max speed) 10 10.5  
Fast channel (max speed) 10.7 10.9  
Slow channel (max speed) 10.7 10.9  
-
-
-
-
-
-
-
-
-
-
-
-
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Fast channel (max speed) 62  
Slow channel (max speed) 62  
65  
65  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Fast channel (max speed) 66 67.4  
Slow channel (max speed) 66 67.4  
Differential  
dB  
Fast channel (max speed) 64  
Slow channel (max speed) 64  
66  
66  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Fast channel (max speed) 66.5 68  
Slow channel (max speed) 66.5 68  
Differential  
DS12737 Rev 6  
245/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)(3)  
Table 112. ADC accuracy - limited test conditions 2  
(continued)  
Min Typ Max Unit  
Sym-  
bol  
Parameter  
Conditions(4)  
ADC clock frequency ≤  
80 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-74 -65  
-74 -67  
-79 -70  
Single  
ended  
Total  
Sampling rate 5.33 Msps,  
THD harmonic  
distortion  
dB  
2 V VDDA  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
Differential  
Slow channel (max speed)  
-
-79 -71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
246/340  
DS12737 Rev 6  
STM32L552xx  
Sym-  
Electrical characteristics  
(1)(2)(3)  
Table 113. ADC accuracy - limited test conditions 3  
Conditions(4)  
Parameter  
Min Typ Max Unit  
bol  
Fast channel (max speed)  
Single  
-
-
-
-
-
-
-
-
-
-
-
-
-
5.5 7.5  
4.5 6.5  
4.5 7.5  
4.5 5.5  
ended  
Total  
Slow channel (max speed)  
ET  
unadjusted  
error  
Fast channel (max speed)  
Differential  
Slow channel (max speed)  
Fast channel (max speed)  
Single  
2
2.5  
2
5
5
ended  
Slow channel (max speed)  
Offset  
error  
EO  
EG  
ED  
EL  
Fast channel (max speed)  
Differential  
3.5  
3
Slow channel (max speed)  
2.5  
4.5  
3.5  
3.5  
3.5  
1
Fast channel (max speed)  
Single  
7
ended  
Slow channel (max speed)  
6
Gain error  
LSB  
Fast channel (max speed)  
Differential  
4
Slow channel (max speed)  
5
3.5  
3.5  
2
Fast channel (max speed)  
Single  
ended  
Differential  
linearity  
error  
-
1
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ADC clock frequency ≤  
80 MHz,  
-
1
Sampling rate 5.33 Msps,  
Differential  
-
1
2
1.65 V VDDA = VREF+  
3.6 V,  
-
-
-
-
2.5 4.5  
2.5 4.5  
Single  
ended  
Voltage scaling Range 1  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
Integral  
linearity  
error  
2
2
2.5  
Differential  
2.5  
Fast channel (max speed) 10 10.4  
Slow channel (max speed) 10 10.4  
Fast channel (max speed) 10.6 10.7  
Slow channel (max speed) 10.6 10.7  
-
-
-
-
-
-
-
-
-
-
-
-
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Fast channel (max speed) 62  
Slow channel (max speed) 62  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 63  
Slow channel (max speed) 63  
Fast channel (max speed) 66  
Slow channel (max speed) 66  
64  
64  
66  
66  
65  
65  
67  
67  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
dB  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Differential  
DS12737 Rev 6  
247/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)(3)  
Table 113. ADC accuracy - limited test conditions 3  
(continued)  
Min Typ Max Unit  
Sym-  
bol  
Parameter  
Conditions(4)  
ADC clock frequency ≤  
80 MHz,  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-69 -67  
-71 -67  
-72 -71  
Single  
ended  
Sampling rate 5.33 Msps,  
Total  
1.65 V VDDA = VREF+  
THD harmonic  
distortion  
dB  
3.6 V,  
Differential  
Voltage scaling Range 1  
(ADC clock frequency ≤  
58 MHz for LQFP144)  
Slow channel (max speed)  
-
-72 -71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
248/340  
DS12737 Rev 6  
STM32L552xx  
Sym-  
Electrical characteristics  
(1)(2)(3)  
Table 114. ADC accuracy - limited test conditions 4  
Conditions(4)  
Parameter  
Min Typ Max Unit  
bol  
Fast channel (max speed)  
Single  
-
-
-
-
-
-
-
-
-
-
-
-
-
5
4
4
5.4  
5
ended  
Total  
Slow channel (max speed)  
ET  
unadjusted  
error  
Fast channel (max speed)  
Differential  
5
Slow channel (max speed)  
3.5 4.5  
Fast channel (max speed)  
Single  
2
2
4
4
ended  
Slow channel (max speed)  
Offset  
error  
EO  
EG  
ED  
EL  
Fast channel (max speed)  
Differential  
2
3.5  
3.5  
4.5  
4.5  
4
Slow channel (max speed)  
2
Fast channel (max speed)  
Single  
4
ended  
Slow channel (max speed)  
4
Gain error  
LSB  
Fast channel (max speed)  
Differential  
3
Slow channel (max speed)  
3
4
1
1.5  
1.5  
1.2  
1.2  
3
Fast channel (max speed)  
Single  
ended  
Differential  
linearity  
error  
-
1
Slow channel (max speed)  
-
1
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ADC clock frequency ≤  
26 MHz,  
Differential  
-
1
1.65 V VDDA = VREF+ ≤  
3.6 V,  
-
-
-
-
2.5  
2.5  
2
Single  
ended  
Integral  
linearity  
error  
Voltage scaling Range 2  
3
2.5  
2.5  
-
Differential  
2
Fast channel (max speed) 10.2 10.5  
Slow channel (max speed) 10.2 10.5  
Fast channel (max speed) 10.6 10.7  
Slow channel (max speed) 10.6 10.7  
Single  
ended  
Effective  
-
ENOB number of  
bits  
bits  
-
Differential  
-
Fast channel (max speed) 63  
Slow channel (max speed) 63  
Fast channel (max speed) 65  
Slow channel (max speed) 65  
Fast channel (max speed) 64  
Slow channel (max speed) 64  
Fast channel (max speed) 66  
Slow channel (max speed) 66  
65  
65  
66  
66  
65  
65  
67  
67  
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
SINAD  
-
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
SNR  
noise ratio  
-
Differential  
-
DS12737 Rev 6  
249/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)(3)  
Table 114. ADC accuracy - limited test conditions 4  
(continued)  
Min Typ Max Unit  
Sym-  
bol  
Parameter  
Conditions(4)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
-
-
-
-
-71 -69  
-71 -69  
-73 -72  
-73 -72  
ADC clock frequency ≤  
26 MHz,  
Single  
ended  
Total  
THD harmonic 1.65 V VDDA = VREF+ ≤  
dB  
distortion  
3.6 V,  
Differential  
Voltage scaling Range 2  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
250/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
Figure 43. ADC accuracy characteristics  
VSSA  
4095  
EG  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
4094  
4093  
ET = total unajusted error: maximum deviation  
between the actual and ideal transfer curves.  
EO = offset error: maximum deviation  
between the first actual transition and  
the first ideal one.  
(2)  
ET  
(3)  
7
6
(1)  
EG = gain error: deviation between the last  
ideal transition and the last actual one.  
ED = differential linearity error: maximum  
deviation between actual steps and the ideal ones.  
EL = integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line.  
5
EO  
EL  
4
3
2
1
ED  
1 LSB IDEAL  
0
4096  
VDDA  
4094 4095  
7
4093  
2
3
4
5
6
1
MS19880V2  
Figure 44. Typical connection diagram using the ADC  
VDDA  
VT  
Sample and hold ADC converter  
(1)  
RAIN  
RADC  
AINx  
12-bit  
converter  
(2)  
(3)  
Cparasitic  
CADC  
VT  
Ilkg  
VAIN  
MS33900V5  
1. Refer to Table 109: ADC characteristics for the values of RAIN and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (refer to Table 102: I/O static characteristics for the value of the pad capacitance). A high  
C
parasitic value downgrades the conversion accuracy. To remedy this, fADC should be reduced.  
3. Refer to Table 102: I/O static characteristics for the values of Ilkg  
.
General PCB design guidelines  
Power supply decoupling should be performed as shown in the corresponding power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
DS12737 Rev 6  
251/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
5.3.20  
Digital-to-Analog converter characteristics  
(1)  
Table 115. DAC characteristics  
Conditions  
Symbol  
Parameter  
Min  
1.71  
1.80  
1.71  
1.80  
Typ  
Max  
Unit  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
-
-
-
-
Analog supply voltage for  
DAC ON  
VDDA  
3.6  
Other modes  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
V
VREF+  
Positive reference voltage  
Negative reference voltage  
VDDA  
Other modes  
-
VREF-  
VSSA  
connected to VSSA  
DAC output  
5
25  
9.6  
-
-
-
-
RL  
Resistive load  
kΩ  
kΩ  
buffer ON  
connected to VDDA  
-
11.7  
-
RO  
Output Impedance  
DAC output buffer OFF  
13.8  
2
Output impedance sample VDD = 2.7 V  
and hold mode, output  
RBON  
kΩ  
kΩ  
VDD = 2.0 V  
-
-
-
-
-
-
3.5  
buffer ON  
Output impedance sample VDD = 2.7 V  
and hold mode, output  
16.5  
18.0  
RBOFF  
VDD = 2.0 V  
buffer OFF  
CL  
DAC output buffer ON  
Sample and hold mode  
-
-
-
50  
1
pF  
µF  
Capacitive load  
CSH  
0.1  
VREF+  
– 0.2  
DAC output buffer ON  
0.2  
-
Voltage on DAC_OUT  
output  
VDAC_OUT  
V
DAC output buffer OFF  
±0.5 LSB  
0
-
-
VREF+  
3
1.7  
Normal mode  
DAC output  
buffer ON  
CL 50 pF,  
RL 5 kΩ  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and the  
±1 LSB  
-
1.6  
2.9  
±2 LSB  
±4 LSB  
±8 LSB  
-
1.55  
1.48  
1.4  
2.85  
2.8  
tSETTLING highest input codes when  
DAC_OUT reaches final  
µs  
-
-
2.75  
value ±0.5LSB, ±1 LSB,  
±2 LSB, ±4 LSB, ±8 LSB)  
Normal mode DAC output buffer  
OFF, ±1LSB, CL = 10 pF  
-
-
-
-
2
2.5  
7.5  
5
Normal mode DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
Wakeup time from off state  
4.2  
2
(setting the ENx bit in the  
DAC Control register) until  
final value ±1 LSB  
(2)  
tWAKEUP  
µs  
Normal mode DAC output buffer  
OFF, CL 10 pF  
Normal mode DAC output buffer ON  
CL 50 pF, RL = 5 k, DC  
PSRR  
VDDA supply rejection ratio  
-80  
-28  
dB  
252/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Symbol  
Electrical characteristics  
(1)  
Table 115. DAC characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Minimal time between two  
consecutive writes into the  
DAC_DORx register to  
guarantee a correct  
DAC_OUT for a small  
variation of the input code  
(1 LSB)  
TW_to_W  
-
-
µs  
DAC_MCR:MODEx[2:0] =  
000 or 001  
DAC_MCR:MODEx[2:0] =  
010 or 011  
CL 50 pF, RL 5 kΩ  
CL 10 pF  
1
1.4  
-
DAC output buffer  
0.7  
3.5  
18  
ON, CSH = 100 nF  
DAC_OUT  
ms  
Sampling time in sample  
and hold mode (code  
transition between the  
lowest input code and the  
highest input code when  
DACOUT reaches final  
value ±1LSB)  
pin connected  
DAC output buffer  
OFF, CSH = 100 nF  
-
10.5  
tSAMP  
DAC_OUT  
pin not  
connected  
(internal  
connection  
only)  
DAC output buffer  
OFF  
-
2
3.5  
µs  
Sample and hold mode,  
DAC_OUT pin connected  
(3)  
Ileak  
Output leakage current  
-
-
-
nA  
Internal sample and hold  
capacitor  
CIint  
-
5.2  
7
8.8  
pF  
µs  
tTRIM  
Middle code offset trim time DAC output buffer ON  
50  
-
-
-
-
-
VREF+ = 3.6 V  
1500  
750  
Middle code offset for 1 trim  
code step  
Voffset  
µV  
µA  
VREF+ = 1.8 V  
-
No load, middle  
code (0x800)  
-
-
-
315  
450  
500  
670  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
DAC consumption from  
VDDA  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
I
DDA(DAC)  
-
0.2  
315 ₓ  
670 ₓ  
Sample and hold mode, CSH  
100 nF  
=
Ton/(Ton Ton/(Ton  
+Toff) +Toff)  
-
(4)  
(4)  
DS12737 Rev 6  
253/340  
307  
Electrical characteristics  
STM32L552xx  
(1)  
Table 115. DAC characteristics (continued)  
Parameter Conditions Min  
No load, middle  
Symbol  
Typ  
Max  
Unit  
-
-
-
185  
240  
code (0x800)  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
340  
400  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
155  
205  
DAC consumption from  
VREF+  
IDDV(DAC)  
µA  
185 ₓ  
Ton/(Ton Ton/(Ton  
400 ₓ  
Sample and hold mode, buffer ON,  
CSH = 100 nF, worst case  
-
-
+Toff)  
+Toff)  
(4)  
(4)  
155 ₓ  
205 ₓ  
Sample and hold mode, buffer OFF,  
CSH = 100 nF, worst case  
Ton/(Ton Ton/(Ton  
+Toff) +Toff)  
(4)  
(4)  
1. Guaranteed by design.  
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
3. Refer to Table 102: I/O static characteristics.  
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0351 reference manual for more details.  
Figure 45. 12-bit buffered / non-buffered DAC  
Buffered/non-buffered DAC  
Buffer(1)  
RLOAD  
12-bit  
DACx_OUT  
digital to  
analog  
converter  
CLOAD  
ai17157d  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external  
loads directly without the use of an external operational amplifier. The buffer can be bypassed by  
configuring the BOFFx bit in the DAC_CR register.  
254/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
.
(1)  
Table 116. DAC accuracy ranges 0/1  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
DAC output buffer ON  
DAC output buffer OFF  
10 bits  
-
-
-
±2  
±2  
Differential non  
linearity (2)  
DNL  
-
-
monotonicity  
guaranteed  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±4  
±4  
Integral non  
linearity(3)  
INL  
DAC output buffer OFF  
CL 50 pF, no RL  
VREF+ = 3.6 V  
±12  
±25  
±8  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
LSB  
Offset error at  
code 0x800(3)  
Offset  
VREF+ = 1.8 V  
DAC output buffer OFF  
CL 50 pF, no RL  
Offset error at  
code 0x001(4)  
DAC output buffer OFF  
CL 50 pF, no RL  
Offset1  
±5  
VREF+ = 3.6 V  
±5  
Offset Error at  
OffsetCal code 0x800  
after calibration  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
VREF+ = 1.8 V  
±7  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
±0.5  
±0.5  
±30  
±12  
Gain  
Gain error(5)  
%
DAC output buffer OFF  
CL 50 pF, no RL  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
Total  
TUE  
unadjusted  
error  
LSB  
LSB  
DAC output buffer OFF  
CL 50 pF, no RL  
Total  
unadjusted  
error after  
calibration  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
TUECal  
-
-
±23  
DAC output buffer ON  
CL 50 pF, RL 5 kΩ  
1 kHz, BW 500 kHz  
-
-
71.2  
71.6  
-
-
Signal-to-noise  
ratio  
SNR  
THD  
dB  
dB  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
BW 500 kHz  
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
-
-
-78  
-79  
-
-
Total harmonic  
distortion  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
DS12737 Rev 6  
255/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 116. DAC accuracy ranges 0/1 (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
-
70.4  
-
Signal-to-noise  
and distortion  
ratio  
SINAD  
dB  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
-
-
-
71  
-
-
-
DAC output buffer ON  
CL 50 pF, RL 5 k, 1 kHz  
11.4  
11.5  
Effective  
number of bits  
ENOB  
bits  
DAC output buffer OFF  
CL 50 pF, no RL, 1 kHz  
1. Guaranteed by design.  
2. Difference between two consecutive codes - 1 LSB.  
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.  
4. Difference between the value measured at Code (0x001) and the ideal value.  
5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when  
buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.  
256/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
5.3.21  
Voltage reference buffer characteristics  
(1)  
Table 117. VREFBUF characteristics  
Conditions Min  
2.4  
Symbol  
Parameter  
Typ  
Max  
Unit  
VRS = 0  
-
3.6  
3.6  
Normal mode  
VRS = 1  
VRS = 0  
2.8  
1.65  
-
Analog supply  
voltage  
VDDA  
-
2.4  
Degraded mode(2)  
VRS = 1  
1.65  
-
2.8  
V
VRS = 0  
VRS = 1  
VRS = 0  
VRS = 1  
2.044  
2.048  
2.052  
2.504  
VDDA  
VDDA  
Normal mode  
Iload=100 µA/T=30°C  
Voltage  
reference  
output  
2.496  
2.5  
VREFBUF_  
OUT  
VDDA-250 mV  
VDDA-250 mV  
-
-
Degraded mode(2)  
Normal mode  
Voltage  
reference  
output spread  
over the main  
supply range  
VRS=0  
VRS=1  
-
-
-
-
5
4
mV  
mV  
VREFOUT_  
VD D  
Trim step  
resolution  
TRIM  
CL  
-
-
-
-
±0.05  
1
±0.1  
1.5  
%
Load capacitor  
-
-
0.5  
µF  
Equivalent  
Serial Resistor  
of Cload  
esr  
-
-
-
-
-
-
2
4
Static load  
current  
Iload  
-
mA  
I
load = 500 µA  
-
-
-
2000  
500  
Iline_reg  
Line regulation 2.8 V VDDA 3.6 V  
ppm/V  
ppm/mA  
Iload = 4 mA  
100  
Load  
regulation  
Iload_reg  
500 μA Iload 4 mA Normal mode  
-
-
50  
-
500  
Tcoeff_  
-40 °C < TJ < +125 °C  
vrefint +  
50  
Temperature  
coefficient  
TCoeff  
ppm/ °C  
Tcoeff_  
0 °C < TJ < +50 °C  
-
-
+
vrefint  
50  
DC  
40  
25  
-
55  
40  
-
Power supply  
rejection  
PSRR  
tSTART  
dB  
µs  
100 kHz  
-
CL = 0.5 µF(3)  
CL = 1.1 µF(3)  
CL = 1.5 µF(3)  
300  
500  
650  
350  
650  
800  
Start-up time  
-
-
DS12737 Rev 6  
257/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 117. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Control of  
maximum DC  
current drive  
on VREFBUF_  
OUT during  
IINRUSH  
-
-
-
8
-
mA  
start-up phase  
(4)  
I
load = 0 µA  
-
-
-
16  
18  
35  
25  
30  
50  
VREFBUF  
consumption  
from VDDA  
I
DDA(VREF  
BUF)  
Iload = 500 µA  
Iload = 4 mA  
µA  
1. Guaranteed by design and characterization result, unless otherwise specified.  
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (VDDA - drop  
voltage).  
3. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.  
4. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in  
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.  
Figure 46. VREFBUF in case VRS = 0  
V
2.06  
2.055  
2.05  
2.045  
2.04  
2.035  
2.03  
2.025  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
Mean  
Min  
Max  
MSv62522V1  
258/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Figure 47. VREFBUF in case VRS = 1  
V
2.51  
2.505  
2.5  
2.495  
2.49  
2.485  
2.48  
2.475  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
Mean  
Min  
Max  
MSv62523V1  
DS12737 Rev 6  
259/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
5.3.22  
Comparator characteristics  
(1)  
Table 118. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
-
-
1.62  
-
3.6  
Comparator input voltage  
range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
VREFINT  
VSC  
-
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
200  
0.8  
100  
-
±10  
300  
1
mV  
nA  
µA  
µs  
Scaler static consumption  
from VDDA  
I
DDA(SCALER)  
tSTART_SCALER Scaler startup time  
200  
5
VDDA 2.7 V  
High-speed  
mode  
V
V
V
DDA < 2.7 V  
DDA 2.7 V  
DDA < 2.7 V  
-
7
Comparator startup time to  
reach propagation delay  
specification  
tSTART  
-
15  
25  
80  
80  
100  
0.9  
1
µs  
ns  
Medium mode  
-
Ultra-low-power mode  
-
VDDA 2.7 V  
VDDA < 2.7 V  
DDA 2.7 V  
VDDA < 2.7 V  
55  
65  
0.55  
0.65  
5
High-speed  
mode  
Propagation delay for  
200 mV step  
with 100 mV overdrive  
(3)  
tD  
V
Medium mode  
µs  
Ultra-low-power mode  
12  
Full common  
mode range  
Voffset  
Comparator offset error  
Comparator hysteresis  
-
-
±5  
±20  
mV  
No hysteresis  
-
-
-
-
0
8
-
-
-
-
Low hysteresis  
Medium hysteresis  
High hysteresis  
Vhys  
mV  
15  
27  
260/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Symbol  
Electrical characteristics  
(1)  
Table 118. COMP characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Static  
-
400  
600  
Ultra-low-  
power mode  
With 50 kHz  
±100 mV overdrive  
square signal  
nA  
-
-
-
-
-
1200  
5
-
Static  
7
Comparator consumption  
from VDDA  
With 50 kHz  
±100 mV overdrive  
square signal  
IDDA(COMP)  
Medium mode  
6
-
100  
-
µA  
nA  
Static  
70  
75  
High-speed  
mode  
With 50 kHz  
±100 mV overdrive  
square signal  
Comparator input bias  
current  
(4)  
-
-
-
-
I
bias  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 32: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
4. Mostly I/O leakage when used in analog mode. Refer to Ilkg parameter in Table 102: I/O static characteristics.  
5.3.23  
Operational amplifiers characteristics  
(1)  
Table 119. OPAMP characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply  
voltage  
VDDA  
CMIR  
-
1.8  
-
3.6  
V
Common mode  
input range  
-
0
-
VDDA  
V
25 °C, No Load on output.  
All voltage/Temp.  
Normal mode  
-
-
-
-
-
-
±1.5  
Input offset  
voltage  
VIOFFSET  
mV  
±3  
-
±5  
±10  
Input offset  
voltage drift  
VIOFFSET  
μV/°C  
Low-power mode  
-
Offset trim step  
TRIMOFFSETP at low common  
TRIMLPOFFSETP input voltage  
-
-
-
-
0.8  
1
1.1  
(0.1 VDDA  
)
mV  
Offset trim step  
TRIMOFFSETN at high common  
TRIMLPOFFSETN input voltage  
1.35  
(0.9 VDDA  
)
DS12737 Rev 6  
261/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 119. OPAMP characteristics (continued)  
Parameter Conditions Min  
Symbol  
Typ  
Max  
Unit  
Normal mode  
-
-
-
-
-
-
-
-
500  
100  
450  
50  
ILOAD  
Drive current  
VDDA 2 V  
VDDA 2 V  
Low-power mode  
Normal mode  
µA  
Drive current in  
PGA mode  
ILOAD_PGA  
Low-power mode  
Resistive load  
(connected to  
VSSA or to  
VDDA)  
Normal mode  
4
-
-
-
-
-
-
-
-
RLOAD  
V
DDA < 2 V  
Low-power mode  
Normal mode  
20  
4.5  
40  
kΩ  
Resistive load  
in PGA mode  
(connected to  
VSSA or to  
RLOAD_PGA  
VDDA < 2 V  
Low-power mode  
V
)
DDA  
CLOAD  
CMRR  
Capacitive load  
-
-
-
-
-
50  
-
pF  
dB  
Normal mode  
-85  
-90  
Common mode  
rejection ratio  
Low-power mode  
-
CLOAD 50 pf,  
RLOAD 4 kDC  
Normal mode  
70  
72  
85  
90  
-
-
Power supply  
rejection ratio  
PSRR  
GBW  
dB  
CLOAD 50 pf,  
RLOAD 20 kDC  
Low-power mode  
Normal mode  
550  
100  
250  
40  
-
1600 2200  
VDDA 2.4 V  
(OPA_RANGE = 1)  
Low-power mode  
Normal mode  
420  
700  
180  
700  
180  
300  
80  
600  
Gain Bandwidth  
Product  
kHz  
950  
VDDA < 2.4 V  
(OPA_RANGE = 0)  
Low-power mode  
Normal mode  
280  
-
-
-
-
-
-
VDDA 2.4 V  
Slew rate  
Low-power mode  
Normal mode  
-
(from 10 and  
90% of output  
voltage)  
SR(2)  
V/ms  
dB  
-
VDDA < 2.4 V  
Low-power mode  
Normal mode  
-
55  
45  
110  
110  
AO  
Open loop gain  
Low-power mode  
VDDA  
100  
-
-
Normal mode  
-
-
-
-
High saturation  
voltage  
Iload = max or Rload  
=
=
(2)  
VOHSAT  
min Input at VDDA  
.
VDDA  
50  
Low-power mode  
mV  
Normal mode  
-
-
-
-
-
100  
Low saturation  
voltage  
Iload = max or Rload  
min Input at 0.  
(2)  
VOLSAT  
Low-power mode  
Normal mode  
-
50  
-
74  
66  
φm  
Phase margin  
°
Low-power mode  
-
262/340  
DS12737 Rev 6  
STM32L552xx  
Electrical characteristics  
(1)  
Table 119. OPAMP characteristics (continued)  
Parameter Conditions Min  
Symbol  
Typ  
Max  
Unit  
Normal mode  
-
-
13  
20  
-
-
GM  
Gain margin  
dB  
Low-power mode  
CLOAD 50 pf,  
RLOAD 4 kΩ  
follower  
Normal mode  
-
5
10  
configuration  
Wake up time  
from OFF state.  
tWAKEUP  
µs  
CLOAD 50 pf,  
RLOAD 20 kΩ  
follower  
Low-power mode  
-
-
10  
-
30  
configuration  
General purpose input (all packages  
except UFBGA132)  
(3)  
TJ 75 °C  
-
-
-
-
-
-
-
-
-
-
1
3
8
15  
-
OPAMP input  
bias current  
Ibias  
nA  
TJ 85 °C  
-
Dedicated input  
(UFBGA132)  
TJ 105 °C  
-
TJ 125 °C  
-
2
4
-
Non inverting  
gain value  
PGA gain(2)  
-
-
8
-
16  
80/80  
-
PGA Gain = 2  
PGA Gain = 4  
-
120/  
40  
-
-
-
-
-
-
R2/R1 internal  
resistance  
Rnetwork  
k/kΩ  
140/  
20  
values in PGA  
PGA Gain = 8  
PGA Gain = 16  
mode(4)  
150/  
10  
Resistance  
variation (R1 or  
R2)  
Delta R  
-
-
-15  
-
15  
%
%
PGA gain error  
PGA gain error  
-1  
-
-
1
-
GBW/  
2
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
-
-
-
-
GBW/  
4
-
-
-
-
-
-
PGA bandwidth  
for different non  
inverting gain  
PGA BW  
MHz  
GBW/  
8
GBW/  
16  
DS12737 Rev 6  
263/340  
307  
Electrical characteristics  
STM32L552xx  
(1)  
Table 119. OPAMP characteristics (continued)  
Parameter Conditions Min  
at 1 kHz, Output  
Symbol  
Typ  
Max  
Unit  
Normal mode  
-
-
-
-
500  
-
loaded with 4 kΩ  
at 1 kHz, Output  
loaded with 20 kΩ  
Low-power mode  
Normal mode  
600  
180  
290  
-
-
-
Voltage noise  
density  
en  
nV/Hz  
at 10 kHz, Output  
loaded with 4 kΩ  
at 10 kHz, Output  
loaded with 20 kΩ  
Low-power mode  
OPAMP  
Normal mode  
-
-
120  
45  
260  
100  
no Load, quiescent  
mode  
IDDA(OPAMP)(2) consumption  
from VDDA  
µA  
Low-power mode  
1. Guaranteed by design, unless otherwise specified.  
2. Guaranteed by characterization results.  
3. Mostly I/O leakage, when used in analog mode. Refer to Ilkg parameter in Table 102: I/O static characteristics.  
4. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between  
OPAMP inverting input and ground. The PGA gain =1+R2/R1  
264/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
5.3.24  
Temperature sensor characteristics  
Table 120. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VTS linearity with temperature  
-
±1  
2.5  
±2  
2.7  
°C  
mV/°C  
V
Avg_Slope(2) Average slope  
2.3  
V30  
Voltage at 30°C (±5 °C)(3)  
0.742  
0.76  
0.785  
tSTART  
Sensor Buffer Start-up time in continuous  
-
-
8
70  
-
15  
120  
-
µs  
µs  
µs  
µA  
(TS_BUF)(1) mode(4)  
Start-up time when entering in continuous  
(1)  
tSTART  
mode(4)  
ADC sampling time when reading the  
temperature  
(1)  
tS_temp  
5
-
Temperature sensor consumption from VDD  
when selected by ADC  
,
IDD(TS)(1)  
4.7  
7
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to  
Table 14: Temperature sensor calibration values.  
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power  
sleep modes.  
5.3.25  
V
monitoring characteristics  
BAT  
(1)  
Table 121. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
39  
3
-
-
-
kΩ  
-
Ratio on VBAT measurement  
Error on Q  
Er(2)  
-10  
12  
10  
-
%
µs  
(2)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. 1.55 V < VBAT < 3.6 V  
2. Guaranteed by design.  
Table 122. V  
charging characteristics  
BAT  
Symbol  
Parameter Conditions  
Min  
Typ  
5
Max  
Unit  
Battery  
charging  
resistor  
VBRS = 0  
VBRS = 1  
-
-
-
-
RBC  
kΩ  
1.5  
DS12737 Rev 6  
265/340  
307  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32L552xx  
5.3.26  
Temperature and V thresholds monitoring  
DD  
Temperature and upper V voltage monitoring characteristics for tamper detection are  
DD  
detailed in the table below:  
Table 123. Temp and V monitoring characteristics  
DD  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High temperature  
threshold monitoring  
TEMPhigh  
-
115  
123(1)  
130  
°C  
Low temperature  
threshold monitoring  
TEMPlow  
VDDhigh  
-
-
-45  
3.6  
-36(1)  
-30  
3.7  
High VDD supply  
monitoring  
3.65(1)  
V
Minimum PWM ON  
time in case of  
TPWMon  
-
-
400(2)  
-
μs  
periodic monitoring  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
5.3.27  
DFSDM characteristics  
Unless otherwise specified, the parameters given in Table 124 for DFSDM are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
APB2  
DD  
conditions summarized in Table 27: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics (DFSDM1_CKINy, DFSDM1_DATINy, DFSDM1_CKOUT for  
DFSDM).  
266/340  
DS12737 Rev 6  
 
 
 
 
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 124. DFSDM measured timing 1.71 to 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DFSDM  
clock  
fDFSDMCLK  
1.71 < VDD < 3.6 V  
-
-
fSYSCLK  
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.71 < VDD < 3.6 V  
-
-
-
-
-
-
20  
20  
20  
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
2.7 < VDD < 3.6 V  
fCKIN  
(1/TCKIN  
Input clock  
frequency  
)
MHz  
SPI mode (SITP[1:0]=0,1),  
Internal clock mode  
(SPICKSEL[1:0]0),  
1.71 < VDD < 3.6 V  
SPI mode (SITP[1:0]=0,1),  
Internal clock mode  
(SPICKSEL[1:0]0),  
2.7 < VDD < 3.6 V  
-
-
-
-
20  
20  
55  
Output  
clock  
fCKOUT  
1.71 < VDD < 3.6 V  
1.71 < VDD < 3.6 V  
frequency  
Output  
clock  
frequency  
duty cycle  
DuCyCKOUT  
45  
50  
%
SPI mode (SITP[1:0]=0,1),  
External clock mode  
(SPICKSEL[1:0]=0),  
1.71 < VDD < 3.6 V  
Input clock  
high and  
low time  
twh(CKIN)  
twl(CKIN)  
TCKIN/2-0.5  
TCKIN/2  
-
-
-
SPI mode (SITP[1:0]=0,1),  
Data input External clock mode  
setup time (SPICKSEL[1:0]=0),  
1.71 < VDD < 3.6 V  
tsu  
3
-
-
ns  
SPI mode (SITP[1:0]=0,1),  
Data input External clock mode  
hold time (SPICKSEL[1:0]=0),  
1.71 < VDD < 3.6 V  
th  
2.5  
Manchester Manchester mode  
data period (SITP[1:0]=2,3),  
(recovered Internal clock mode  
(CKOUTDIV  
+1) *  
(2*CKOUTDI  
V) *  
TManchester  
-
clock  
period)  
(SPICKSEL[1:0]0),  
1.71 < VDD < 3.6 V  
TDFSDMCLK  
TDFSDMCLK  
1. Data based on characterization results, not tested in production.  
DS12737 Rev 6  
267/340  
307  
 
Electrical characteristics  
STM32L552xx  
Figure 16: DFSDM timing diagram  
WZO  
WZK  
WU  
WI  
63,&.6(/ꢅ ꢅꢆ  
6,73ꢅ ꢅꢆꢆ  
WVX WK  
WVX WK  
6,73ꢅ ꢅꢆꢄ  
63,&.6(/ꢅ ꢅꢀ  
63,&.6(/ꢅ ꢅꢂ  
63,&.6(/ꢅ ꢅꢄ  
6,73ꢅ ꢅꢆꢆ  
WU  
WI  
WZO  
WZK  
WVX WK  
WVX WK  
6,73ꢅ ꢅꢆꢄ  
6,73ꢅ ꢅꢂ  
6,73ꢅ ꢅꢀ  
5HFRYHUHGꢅFORFN  
5HFRYHUHGꢅGDWD  
06Yꢀꢁꢂꢁꢃ9ꢄ  
5.3.28  
Timer characteristics  
The parameters given in the following tables are guaranteed by design.  
Refer to Section 5.3.15: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
268/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 125. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
8.33  
0
-
tTIMxCLK  
ns  
tres(TIM)  
Timer resolution time  
fTIMxCLK = 110 MHz  
-
-
Timer external clock  
frequency on CH1 to  
CH4  
f
TIMxCLK/2  
MHz  
fEXT  
fTIMxCLK = 110 MHz  
0
-
55  
16  
MHz  
TIMx (except TIM2  
and TIM5)  
ResTIM  
Timer resolution  
bit  
TIM2 and TIM5  
-
32  
-
1
0.009  
-
65536  
595.78  
tTIMxCLK  
µs  
16-bit counter clock  
period  
tCOUNTER  
fTIMxCLK = 110 MHz  
-
Maximum possible  
tMAX_COUNT count with 32-bit  
counter  
65536 × 65536  
39.045  
tTIMxCLK  
fTIMxCLK = 110 MHz  
-
s
1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16 or 17.  
(1)  
Table 126. IWDG min/max timeout period at 32 kHz (LSI)  
Min timeout RL[11:0]=  
0x000  
Max timeout RL[11:0]=  
0xFFF  
Prescaler divider PR[2:0] bits  
Unit  
/4  
/8  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
4096  
8192  
16384  
32768  
1
/16  
/32  
/64  
/128  
/256  
2
3
4
ms  
2.0  
5
4.0  
6 or 7  
8.0  
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there  
is always a full RC period of uncertainty.  
Table 127. WWDG min/max timeout value at 110 MHz (PCLK)  
Prescaler  
WDGTB  
Min timeout value  
Max timeout value  
Unit  
1
2
4
8
0
1
2
3
0.037  
0.074  
0.149  
0.298  
2.368  
4.736  
9.536  
19.072  
ms  
DS12737 Rev 6  
269/340  
307  
 
 
 
Electrical characteristics  
STM32L552xx  
5.3.29  
Communication interfaces characteristics  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to RM0351 reference manual).  
The SDA and SCL I/O requirements are met with the following restrictions: the SDA and  
SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS  
connected between the I/O pin and V  
is disabled, but is still present. Only FT_f I/O pins  
DDIOx  
support Fm+ low level output current maximum requirement. Refer to Section 5.3.15: I/O  
port characteristics for the I2C I/Os characteristics.  
All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 128 below for the analog  
filter characteristics:  
(1)  
Table 128. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
260(3)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
270/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 129 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 27: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 129. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(2)  
Unit  
Master mode  
2.7<VDD<3.6  
55  
Voltage ranges 0/1  
Master mode  
1.71<VDD<3.6  
Voltage ranges 0/1  
44  
Master transmitter mode  
1.71<VDD<3.6  
55  
55  
36  
Voltage ranges 0/1  
Slave receiver mode 1.71<VDD<3.6  
Voltage ranges 0/1  
fSCK  
SPI clock frequency  
-
-
MHz  
1/tc(SCK)  
Slave mode transmitter/full duplex  
2.7<VDD<3.6  
Voltage ranges 0/1  
Slave mode transmitter/full duplex  
1.71<VDD<3.6  
23  
Voltage ranges 0/1  
Slave mode transmitter/full duplex  
1.71<VDD<3.6  
20  
12  
Voltage range 2  
Slave mode transmitter/full duplex  
1.08<VDD<1.32(3)  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
Slave mode, SPI presc = 2  
Slave mode, SPI presc = 2  
4×Tpclk  
2TTpclk  
-
-
-
-
-
tw(SCKH)  
tw(SCKL)  
SCK high and low  
time  
Master mode  
Tpclk-1 Tpclk Tpclk+1  
DS12737 Rev 6  
271/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 129. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(2)  
Unit  
tsu(MI)  
tsu(SI)  
th(MI)  
th(SI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
2
-
-
-
-
-
-
-
-
Data input setup  
time  
1.5  
7.5  
3
Data input hold time  
Data output access  
time  
ta(SO)  
Slave mode  
Slave mode  
9
9
-
-
-
34  
16  
Data output disable  
time  
tdis(SO)  
Slave mode 2.7<VDD<3.6V  
Voltage ranges 0/1  
9
13.75  
Slave mode 1.71<VDD<3.6V  
Voltage ranges 0/1  
-
-
9
21.5  
24.5  
ns  
tv(SO)  
Data output valid  
time  
Slave mode 1.71<VDD<3.6V  
Voltage range 2  
11.5  
Slave mode(3)  
-
-
28.5  
40.5  
1.08<VDD<1.32V  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
0
-
1
-
Slave mode  
7.5  
1.71<VDD<3.6V  
Data output hold  
time  
Slave mode(3)  
21  
0
-
-
-
-
1.08<VDD<1.32V  
Master mode  
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low  
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50%.  
3. SPI mapped on GPIOG port which is supplied by VDDIO2 specified down to 1.08 V. SPI is tested in this voltage.  
272/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
Figure 48. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
tc(SCK)  
th(NSS)  
tsu(NSS)  
tw(SCKH)  
tr(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
th(SO)  
tf(SCK)  
Last bit OUT  
tdis(SO)  
MISO output  
MOSI input  
First bit OUT  
th(SI)  
Next bits OUT  
tsu(SI)  
First bit IN  
Next bits IN  
Last bit IN  
MSv41658V1  
Figure 49. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tc(SCK)  
tsu(NSS)  
tw(SCKH)  
tf(SCK)  
th(NSS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
ta(SO)  
tw(SCKL)  
tv(SO)  
First bit OUT  
tsu(SI) th(SI)  
First bit IN  
th(SO)  
Next bits OUT  
tr(SCK)  
tdis(SO)  
MISO output  
MOSI input  
Last bit OUT  
Next bits IN  
Last bit IN  
MSv41659V1  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DS12737 Rev 6  
273/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Figure 50. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD  
.
SAI characteristics  
Unless otherwise specified, the parameters given in Table 130 for SAI are derived from  
tests performed under the ambient temperature, f frequency and V supply voltage  
PCLKx  
DD  
conditions summarized inTable 27: General operating conditions, with the following configu-  
ration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics (CK,SD,FS).  
274/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 130. SAI characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max  
Unit  
fMCK  
SAI Main clock output  
-
-
50  
Master Transmitter  
2.7<=VDD<=3.6  
-
23.5  
Voltage ranges 0/1  
Master Transmitter  
1.71<=VDD<=3.6  
Voltage ranges 0/1  
-
-
-
16  
16  
26  
Master Receiver  
Voltage ranges 0/1  
MHz  
fCK  
SAI clock frequency(2)  
Slave Transmitter  
2.7<=VDD<=3.6  
Voltage ranges 0/1  
Slave Transmitter  
1.71<=VDD<=3.6  
Voltage ranges 0/1  
-
20  
Slave Receiver  
-
-
50  
13  
Voltage ranges 0/1  
Voltage range 2  
DS12737 Rev 6  
275/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 130. SAI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode  
-
21  
25  
2.7<=VDD<=3.6  
tv(FS)  
FS valid time  
Master mode  
-
1.71<=VDD<=3.6  
th(FS)  
tsu(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
10  
1.5  
2.5  
1
-
-
-
-
-
-
-
th(FS)  
Slave mode  
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
1.5  
5
ns  
0
Slave transmitter (after enable edge)  
2.7<=VDD<=3.6  
-
19  
tv(SD_B_ST)  
th(SD_B_ST)  
tv(SD_A_MT)  
th(SD_A_MT)  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave transmitter (after enable edge)  
1.71<=VDD<=3.6  
-
10  
-
25  
-
Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
2.7<=VDD<=3.6  
17  
Master transmitter (after enable edge)  
1.71<=VDD<=3.6  
-
25  
-
Master transmitter (after enable edge)  
9
1. Guaranteed by characterization results.  
2. 2.APB clock frequency must be at least twice SAI clock frequency.  
Figure 51. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
h(FS)  
SAI_FS_X  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
276/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
Figure 52. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
CAN (controller area network) interface  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics (FDCAN_TX and FDCAN_RX).  
USART characteristics  
Unless otherwise specified, the parameters given in Table 131 for USART are derived from  
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage  
conditions summarized in Table 27: General operating conditions, with the following  
configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C=30pF  
Measurement points are done at CMOS levels: 0.5VDD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, CK, TX, RX for USART).  
(1)  
Table 131. USART characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
-
-
13  
1.71<VDD<3.6  
Slave receiver mode  
1.71<VDD<3.6  
-
-
-
-
-
-
36  
19  
26  
fSCK  
SPI clock frequency  
MHz  
Slave mode transmitter  
2.7<VDD<3.6  
Slave mode transmitter  
1.71<VDD<3.6  
DS12737 Rev 6  
277/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 131. USART characteristics (continued)  
Symbol  
Parameter  
Conditions  
Slave mode  
Slave mode  
Min  
Typ  
Max  
Unit  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
Tker +4  
1
-
-
-
-
-
tw(SCKH)  
tw(SCKL)  
SCK high and low time Master mode  
1/fsck/2-1  
1/fsck/2  
1/fsck/2+1  
tsu(MI)  
tsu(SI)  
th(MI)  
th(SI)  
Master mode  
Data input setup time  
22.5  
-
-
-
-
-
-
-
-
Slave mode  
1
0
3
Master mode  
Data input hold time  
Slave mode  
Slave mode  
-
14.5  
19  
2.7<VDD<3.6V  
ns  
tv(SO)  
Data output valid time  
Data output hold time  
Slave mode  
-
-
14.5  
26  
3
-
1.71<VDD<3.6V  
tv(MO)  
th(SO)  
th(MO)  
Master mode  
1.5  
Slave mode  
12  
1
-
-
1.71<VDD<3.6V  
Master mode  
-
1. Guaranteed by characterization results, not tested in production.  
Figure 53. USART master mode timing diagram  
tc(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
tsu(RX)  
MSB  
RX  
TX  
LSB  
th(RX)  
MSB  
LSB  
tv(TX)  
th(TX)  
MSv64015V1  
278/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
Figure 54. USART slave mode timing diagram  
NSS input  
MISO  
MSB OUT  
BIT6 OUT  
BIT1 IN  
LSB OUT  
OUTPUT  
(SI)  
MOSI  
INPUT  
LSB IN  
MSB IN  
(SI)  
5.3.30  
FSMC characteristics  
Unless otherwise specified, the parameters given in Table 132 to Table 145 for the FMC  
interface are derived from tests performed under the ambient temperature, f frequency  
HCLK  
and V supply voltage conditions summarized in Table 27: General operating conditions,  
DD  
with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output  
characteristics.  
Asynchronous waveforms and timings  
Figure 55 through Figure 58 represent asynchronous waveforms and Table 132 through  
Table 139 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
AddressSetupTime (ADDSET) = 0x1  
AddressHoldTime (ADDHLD) = 0x1  
DataHoldTime = 0x1  
ByteLaneSetup (NBLSET) = 0x1  
DataSetupTime (DATAST) = 0x1 (except for asynchronous NWAIT mode,  
DataSetupTime = 0x5)  
DataHoldTime (DATAHLD) = 0x1 (1THCLK for read operations and 2THCLK for write  
operations)  
BusTurnAroundDuration = 0x0  
Capacitive load CL = 30 pF  
In all timing tables, the THCLK is the HCLK clock period.  
DS12737 Rev 6  
279/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms  
t
w(NE)  
FMC_NE  
t
t
t
h(NE_NOE)  
w(NOE)  
v(NOE_NE)  
FMC_NOE  
FMC_NWE  
tv(A_NE)  
t
h(A_NOE)  
FMC_A[25:0]  
Address  
tv(BL_NE)  
t
h(BL_NOE)  
FMC_NBL[1:0]  
t
h(Data_NE)  
t
t
su(Data_NOE)  
h(Data_NOE)  
t
su(Data_NE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32753V1  
280/340  
DS12737 Rev 6  
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 132. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
3THCLK– 0.5  
3 THCLK+1  
FMC_NEx low to  
FMC_NOE low  
tv(NOE_NE)  
tw(NOE)  
0
1
FMC_NOE low time  
2THCLK -0.5  
2THCLK + 1  
FMC_NOE high to  
FMC_NE high hold  
time  
th(NE_NOE)  
THCLK  
-
FMC_NEx low to  
FMC_A valid  
tv(A_NE)  
th(A_NOE)  
-
1
-
Address hold time after  
FMC_NOE high  
2THCLK-1  
ns  
Data to FMC_NEx high  
setup time  
tsu(Data_NE)  
tsu(Data_NOE)  
th(Data_NOE)  
th(Data_NE)  
THCLK +14  
-
Data to FMC_NOEx  
high setup time  
14  
0
-
Data hold time after  
FMC_NOE high  
-
Data hold time after  
FMC_NEx high  
0
-
FMC_NEx low to  
FMC_NADV low  
tv(NADV_NE)  
tw(NADV)  
-
-
0
FMC_NADV low time  
THCLK+1.5  
1. Guaranteed by characterization results, not tested in production.  
Table 133. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT  
(1)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tw(NOE)  
tw(NWAIT)  
FMC_NE low time  
FMC_NWE low time  
FMC_NWAIT low time  
8THCLK-0.5  
8THCLK+1  
7THCLK -0.5 7THCLK +0.5  
THCLK  
-
ns  
5THCLK  
+12.5  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
-
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
4THCLK+12  
-
1. Guaranteed by characterization results, not tested in production.  
DS12737 Rev 6  
281/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms  
t
w(NE)  
FMC_NEx  
FMC_NOE  
FMC_NWE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
t
th(A_NWE)  
v(A_NE)  
FMC_A[25:0]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_NBL[1:0]  
NBL  
t
t
v(Data_NE)  
h(Data_NWE)  
Data  
FMC_D[15:0]  
t
v(NADV_NE)  
t
w(NADV)  
(1)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32754V1  
(1)  
Table 134. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
tv(NWE_NE)  
tw(NWE)  
FMC_NE low time  
FMC_NEx low to FMC_NWE low  
FMC_NWE low time  
4THCLK-0.5 4THCLK+1  
Ns  
THCLK-0.5  
THCLK-0.5  
THCLK +1  
THCLK+1  
FMC_NWE high to FMC_NE high hold  
time  
th(NE_NWE)  
2THCLK-0.5  
-
tv(A_NE)  
th(A_NWE)  
tv(BL_NE)  
FMC_NEx low to FMC_A valid  
Address hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
-
0
2THCLK-1  
-
-
-
THCLK  
th(BL_NWE)  
tv(Data_NE)  
th(Data_NWE)  
tv(NADV_NE)  
tw(NADV)  
FMC_BL hold time after FMC_NWE high 2THCLK-0.5  
-
FMC_NEx low to Data valid  
Data hold time after FMC_NWE high  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
-
THCLK+3  
2THCLK+1  
-
-
-
1
THCLK+ 1.5  
1. Guaranteed by characterization results, not tested in production.  
282/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Table 135. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT  
(1)  
timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
9THCLK-0.5  
6THCLK-0.5  
9THCLK+1.5  
6THCLK+1  
tw(NWE)  
FMC_NWE low time  
tsu(NWAIT_  
NE)  
ns  
FMC_NWAIT valid before FMC_NEx high  
7THCLK+13  
-
-
th(NE_NWA  
IT)  
FMC_NEx hold time after FMC_NWAIT invalid 5THCLK+13  
1. Guaranteed by characterization results, not tested in production.  
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms  
t
w(NE)  
FMC_ NE  
FMC_NOE  
t
t
h(NE_NOE)  
v(NOE_NE)  
t
w(NOE)  
t
FMC_NWE  
t
h(A_NOE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
NBL  
t
t
v(BL_NE)  
h(BL_NOE)  
FMC_ NBL[1:0]  
t
h(Data_NE)  
t
su(Data_NE)  
t
t
t
h(Data_NOE)  
v(A_NE)  
Address  
su(Data_NOE)  
Data  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32755V1  
DS12737 Rev 6  
283/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 136. Asynchronous multiplexed PSRAM/NOR read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
4THCLK  
+1  
tw(NE)  
FMC_NE low time  
4THCLK-0.5  
2THCLK  
+1  
tv(NOE_NE)  
tw(NOE)  
FMC_NEx low to FMC_NOE low  
FMC_NOE low time  
2THCLK -0.5  
THCLK-0.5  
THCLK-1  
THCLK+  
0.5  
FMC_NOE high to FMC_NE high  
hold time  
th(NE_NOE)  
tv(A_NE)  
-
FMC_NEx low to FMC_A valid  
-
3
tv(NADV_NE) FMC_NEx low to FMC_NADV low  
0.5  
1.5  
THCLK+  
1.5  
tw(NADV)  
th(AD_NADV)  
th(A_NOE)  
FMC_NADV low time  
THCLK  
Ns  
FMC_AD(address) valid hold time  
after FMC_NADV high)  
THCLK-3  
-
Address hold time after  
FMC_NOE high  
Address holded until next  
read operation  
-
-
-
tsu(Data_NE) Data to FMC_NEx high setup time  
THCLK+14  
14  
Data to FMC_NOE high setup  
tsu(Data_NOE)  
time  
Data hold time after FMC_NEx  
th(Data_NE)  
high  
0
0
-
-
Data hold time after FMC_NOE  
th(Data_NOE)  
high  
1. Guaranteed by characterization results, not tested in production.  
(1)  
Table 137. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
FMC_NOE low time  
8THCLK-0.5 9THCLK+1  
5THCLK -0.5 6THCLK +1  
tw(NOE)  
Ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high  
5THCLK+12  
4THCLK+11  
-
-
FMC_NEx hold time after FMC_NWAIT  
th(NE_NWAIT)  
invalid  
1. Guaranteed by characterization results, not tested in production.  
284/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms  
t
w(NE)  
FMC_ NEx  
FMC_NOE  
t
t
w(NWE)  
t
h(NE_NWE)  
v(NWE_NE)  
FMC_NWE  
t
t
h(A_NWE)  
v(A_NE)  
FMC_ A[25:16]  
Address  
t
t
v(BL_NE)  
h(BL_NWE)  
FMC_ NBL[1:0]  
NBL  
v(Data_NADV)  
Data  
t
t
h(Data_NWE)  
t
v(A_NE)  
Address  
FMC_ AD[15:0]  
t
t
h(AD_NADV)  
v(NADV_NE)  
t
w(NADV)  
FMC_NADV  
FMC_NWAIT  
th(NE_NWAIT)  
tsu(NWAIT_NE)  
MS32756V1  
DS12737 Rev 6  
285/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)  
Table 138. Asynchronous multiplexed PSRAM/NOR write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
5THCLK-0.5 5THCLK+1  
THCLK– 0.5 THCLK+ 1  
tv(NWE_NE)  
FMC_NEx low to FMC_NWE low  
2THCLK+0.  
tw(NWE)  
FMC_NWE low time  
2THCLK-0.5  
5
th(NE_NWE)  
tv(A_NE)  
FMC_NWE high to FMC_NE high hold time  
FMC_NEx low to FMC_A valid  
FMC_NEx low to FMC_NADV low  
FMC_NADV low time  
2THCLK-0.5  
-
-
3
1
tv(NADV_NE)  
tw(NADV)  
0
THCLK+0.5 THCLK+1.5  
ns  
FMC_AD(adress) valid hold time after  
FMC_NADV high)  
th(AD_NADV)  
THCLK-3  
-
Address  
holded until  
next write  
operation  
th(A_NWE)  
Address hold time after FMC_NWE high  
-
th(BL_NWE)  
tv(BL_NE)  
FMC_BL hold time after FMC_NWE high  
FMC_NEx low to FMC_BL valid  
2THCLK-0.5  
-
THCLK  
THCLK+2  
-
-
tv(Data_NADV)  
th(Data_NWE)  
FMC_NADV high to Data valid  
-
Data hold time after FMC_NWE high  
2THCLK+0.5  
1. Guaranteed by characterization results, not tested in production.  
(1)  
Table 139. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings  
Symbol  
Parameter  
Min  
Max  
Unit  
tw(NE)  
FMC_NE low time  
10THCLK-0.5 10THCLK+1  
7THCLK-0.5 7THCLK+0.5  
tw(NWE)  
FMC_NWE low time  
ns  
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 7THCLK+11.5  
FMC_NEx hold time after FMC_NWAIT  
-
-
th(NE_NWAIT)  
5THCLK+12.5  
invalid  
1. Guaranteed by characterization results, not tested in production.  
Synchronous waveforms and timings  
Figure 59 through Figure 62 represent synchronous waveforms and Table 140  
through Table 143 provide the corresponding timings. The results shown in these  
tables are obtained with the following FMC configuration:  
BurstAccessMode = FMC_BurstAccessMode_Enable  
MemoryType = FMC_MemoryType_CRAM  
WriteBurst = FMC_WriteBurst_Enable  
CLKDivision = 1  
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM  
286/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
In all timing tables, the THCLK is the HCLK clock period.  
Maximum FMC_CLK =55MHz for CLKDIV=0x1 and 42MHz CLKDIV=0x0 for  
2.7V<VDD<3.6V  
Maximum FMC_CLK =55MHz for CLKDIV=0x1 and 26MHz CLKDIV=0x0 for  
1.71V<VDD<1.9V with CL=20pF  
Figure 59. Synchronous multiplexed NOR/PSRAM read timings  
BUSTURN = 0  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
Data latency = 0  
d(CLKL-NExL)  
t
td(CLKH-NExH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
d(CLKL-NADVH)  
FMC_NADV  
t
td(CLKH-AIV)  
d(CLKL-AV)  
FMC_A[25:16]  
t
td(CLKH-NOEH)  
d(CLKL-NOEL)  
FMC_NOE  
t
t
t
h(CLKH-ADV)  
d(CLKL-ADIV)  
t
t
t
su(ADV-CLKH)  
su(ADV-CLKH)  
d(CLKL-ADV)  
h(CLKH-ADV)  
FMC_AD[15:0]  
AD[15:0]  
t
D1  
D2  
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
MS32757V1  
DS12737 Rev 6  
287/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)  
Table 140. Synchronous multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
)
tw(CLK)  
FMC_CLK period  
R*THCLK-0.5(2)  
-
2.5  
-
td(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x=0..2)  
-
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
R*THCLK/2+1(2)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
2
-
2.5  
-
FMC_CLK low to FMC_Ax valid (x=16…25)  
5.5  
FMC_CLK high to FMC_Ax invalid  
(x=16…25)  
td(CLKH-AIV)  
R*THCLK/2 + 1(2)  
-
td(CLKL-NOEL)  
td(CLKH-NOEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_NOE low  
FMC_CLK high to FMC_NOE high  
FMC_CLK low to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
2
-
ns  
R*THCLK/2+1(2)  
-
3
-
0
FMC_A/D[15:0] valid data before FMC_CLK  
high  
tsu(ADV-CLKH)  
th(CLKH-ADV)  
2
4
-
-
FMC_A/D[15:0] valid data after FMC_CLK  
high  
tsu(NWAIT-  
CLKH)  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
1.5  
4
-
-
th(CLKH-NWAIT)  
1. Guaranteed by characterization results, not tested in production.  
2. Clock ratio R = (HCLK period /FMC_CLK period).  
288/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Figure 60. Synchronous multiplexed PSRAM write timings  
%867851ꢅ ꢅꢆ  
WZꢌ&/.ꢎ  
WZꢌ&/.ꢎ  
)0&B&/.  
'DWDꢅODWHQF\ꢅ ꢅꢆ  
WGꢌ&/./ꢏ1([/ꢎ  
WGꢌ&/.+ꢏ1([+ꢎ  
)0&B1([  
WGꢌ&/./ꢏ1$'9/ꢎ  
WGꢌ&/./ꢏ1$'9+ꢎ  
)0&B1$'9  
)0&B$>ꢂꢊꢇꢄꢋ@  
)0&B1:(  
WGꢌ&/.+ꢏ$,9ꢎ  
WGꢌ&/./ꢏ$9ꢎ  
WGꢌ&/.+ꢏ1:(+ꢎ  
WGꢌ&/./ꢏ1:(/ꢎ  
WGꢌ&/./ꢏ'DWDꢎ  
WGꢌ&/./ꢏ$',9ꢎ  
$'>ꢄꢊꢇꢆ@  
WGꢌ&/./ꢏ'DWDꢎ  
WGꢌ&/./ꢏ$'9ꢎ  
)0&B$'>ꢄꢊꢇꢆ@  
'ꢄ  
'ꢂ  
)0&B1:$,7ꢅ  
ꢌ:$,7&)*ꢅ ꢅꢆEꢈ  
ꢅ:$,732/ꢅꢍꢅꢆEꢎ  
WVXꢌ1:$,79ꢏ&/.+ꢎ  
WKꢌ&/.+ꢏ1:$,79ꢎ  
WGꢌ&/.+ꢏ1%/+ꢎ  
)0&B1%/  
06Yꢀꢉꢆꢆꢄ9ꢂ  
DS12737 Rev 6  
289/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)  
Table 141. Synchronous multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
R*THCLK-0.5(2)  
tw(CLK)  
FMC_CLK period, VDD range= 2.7 to 3.6 V  
FMC_CLK low to FMC_NEx low (x=0..2)  
-
2.5  
-
td(CLKL-NExL)  
-
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) R*THCLK/2+1(2)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
2
-
2.5  
-
FMC_CLK low to FMC_Ax valid (x=16…25)  
5.75  
FMC_CLK high to FMC_Ax invalid  
(x=16…25)  
td(CLKH-AIV)  
R*THCLK/2+1(2)  
-
td(CLKL-NWEL)  
td(CLKH-NWEH)  
td(CLKL-ADV)  
td(CLKL-ADIV)  
FMC_CLK low to FMC_NWE low  
FMC_CLK high to FMC_NWE high  
FMC_CLK low to to FMC_AD[15:0] valid  
FMC_CLK low to FMC_AD[15:0] invalid  
-
2
-
ns  
R*THCLK/2+1(2)  
-
3
-
0
FMC_A/D[15:0] valid data after FMC_CLK  
low  
td(CLKL-DATA)  
-
3.5  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
FMC_CLK low to FMC_NBL low  
FMC_CLK high to FMC_NBL high  
1
-
-
R*THCLK/2+1.5(2)  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1.5  
4
-
-
1. Guaranteed by characterization results, not tested in production.  
2. Clock ratio R = (HCLK period /FMC_CLK period).  
290/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings  
t
t
w(CLK)  
w(CLK)  
FMC_CLK  
t
t
d(CLKH-NExH)  
d(CLKL-NExL)  
Data latency = 0  
d(CLKL-NADVH)  
FMC_NEx  
t
t
d(CLKL-NADVL)  
FMC_NADV  
FMC_A[25:0]  
t
t
d(CLKH-AIV)  
d(CLKL-AV)  
t
t
d(CLKL-NOEL)  
d(CLKH-NOEH)  
FMC_NOE  
t
t
su(DV-CLKH)  
h(CLKH-DV)  
su(DV-CLKH)  
t
t
h(CLKH-DV)  
FMC_D[15:0]  
FMC_NWAIT  
D1  
D2  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
(WAITCFG = 1b,  
WAITPOL + 0b)  
t
t
h(CLKH-NWAITV)  
su(NWAITV-CLKH)  
FMC_NWAIT  
(WAITCFG = 0b,  
WAITPOL + 0b)  
t
t
su(NWAITV-CLKH)  
h(CLKH-NWAITV)  
MS32759V1  
DS12737 Rev 6  
291/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)  
Table 142. Synchronous non-multiplexed NOR/PSRAM read timings  
Symbol  
Parameter  
Min  
Max  
Unit  
R*THCLK-0.5(2)  
tw(CLK)  
FMC_CLK period  
-
td(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x=0..2)  
-
2.5  
-
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2)  
R*THCLK/2+1(2)  
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
2
-
2.5  
-
FMC_CLK low to FMC_Ax valid (x=0…25)  
5.5  
FMC_CLK high to FMC_Ax invalid  
(x=0…25)  
td(CLKH-AIV)  
R*THCLK/2+0.5(2)  
-
ns  
td(CLKL-NOEL)  
td(CLKH-NOEH)  
FMC_CLK low to FMC_NOE low  
FMC_CLK high to FMC_NOE high  
-
2
-
R*THCLK/2+1(2)  
FMC_D[15:0] valid data before FMC_CLK  
high  
tsu(DV-CLKH)  
th(CLKH-DV)  
2
4
-
-
FMC_D[15:0] valid data after FMC_CLK  
high  
tsu(NWAIT-  
CLKH)  
FMC_NWAIT valid before FMC_CLK high  
FMC_NWAIT valid after FMC_CLK high  
1.5  
4
-
-
th(CLKH-NWAIT)  
1. Guaranteed by characterization results, not tested in production.  
2. Clock ratio R = (HCLK period /FMC_CLK period).  
292/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
Figure 62. Synchronous non-multiplexed PSRAM write timings  
WZꢌ&/.ꢎ  
WZꢌ&/.ꢎ  
)0&B&/.  
WGꢌ&/./ꢏ1([/ꢎ  
)0&B1([  
WGꢌ&/.+ꢏ1([+ꢎ  
'DWDꢅODWHQF\ꢅ ꢅꢆ  
WGꢌ&/./ꢏ1$'9+ꢎ  
WGꢌ&/./ꢏ1$'9/ꢎ  
)0&B1$'9  
)0&B$>ꢂꢊꢇꢆ@  
)0&B1:(  
WGꢌ&/.+ꢏ$,9ꢎ  
WGꢌ&/./ꢏ$9ꢎ  
WGꢌ&/.+ꢏ1:(+ꢎ  
WGꢌ&/./ꢏ1:(/ꢎ  
WGꢌ&/./ꢏ'DWDꢎ  
'ꢂ  
WGꢌ&/./ꢏ'DWDꢎ  
)0&B'>ꢄꢊꢇꢆ@  
'ꢄ  
)0&B1:$,7  
ꢌ:$,7&)*ꢅ ꢅꢆEꢈꢅ:$,732/ꢅꢍꢅꢆEꢎ  
)0&B1%/  
WGꢌ&/.+ꢏ1%/+ꢎ  
WVXꢌ1:$,79ꢏ&/.+ꢎ  
WKꢌ&/.+ꢏ1:$,79ꢎ  
06Yꢀꢉꢆꢆꢂ9ꢂ  
DS12737 Rev 6  
293/340  
307  
 
Electrical characteristics  
STM32L552xx  
(1)(2)  
Table 143. Synchronous non-multiplexed PSRAM write timings  
Symbol  
Parameter  
Min  
Max  
Unit  
R*THCLK-0.5(2)  
-
tw(CLK)  
FMC_CLK period  
-
td(CLKL-NExL)  
FMC_CLK low to FMC_NEx low (x=0..2)  
2.5  
FMC_CLK high to FMC_NEx high (x=  
0…2)  
R*THCLK/2 +1(2)  
td(CLKH-NExH)  
-
td(CLKL-NADVL)  
td(CLKL-NADVH)  
td(CLKL-AV)  
FMC_CLK low to FMC_NADV low  
FMC_CLK low to FMC_NADV high  
-
2
-
2.5  
-
FMC_CLK low to FMC_Ax valid (x=0…25)  
5.5  
FMC_CLK high to FMC_Ax invalid  
(x=0…25)  
R*THCLK/2+0.5(2)  
td(CLKH-AIV)  
-
ns  
td(CLKL-NWEL)  
td(CLKH-NWEH)  
FMC_CLK low to FMC_NWE low  
FMC_CLK high to FMC_NWE high  
-
2
-
R*THCLK/2+1(2)  
FMC_D[15:0] valid data after FMC_CLK  
low  
td(CLKL-Data)  
-
3.5  
td(CLKL-NBLL)  
td(CLKH-NBLH)  
FMC_CLK low to FMC_NBL low  
FMC_CLK high to FMC_NBL high  
1
-
-
-
-
R*THCLK/2+1.5(2)  
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high  
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high  
1.5  
4
1. Guaranteed by characterization results, not tested in production.  
2. Clock ratio R = (HCLK period /FMC_CLK period).  
NAND controller waveforms and timings  
Figure 63 through Figure 66 represent synchronous waveforms, and Table 144 and  
Table 145 provide the corresponding timings. The results shown in these tables are  
obtained with the following FMC configuration:  
COM.FMC_SetupTime = 0x01  
COM.FMC_WaitSetupTime = 0x03  
COM.FMC_HoldSetupTime = 0x02  
COM.FMC_HiZSetupTime = 0x01  
ATT.FMC_SetupTime = 0x01  
ATT.FMC_WaitSetupTime = 0x03  
ATT.FMC_HoldSetupTime = 0x02  
ATT.FMC_HiZSetupTime = 0x01  
Bank = FMC_Bank_NAND  
MemoryDataWidth = FMC_MemoryDataWidth_16b  
ECC = FMC_ECC_Enable  
ECCPageSize = FMC_ECCPageSize_512Bytes  
TCLRSetupTime = 0  
TARSetupTime = 0  
294/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
In all timing tables, the THCLK is the HCLK clock period.  
Figure 63. NAND controller waveforms for read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
FMC_NWE  
th(NOE-ALE)  
td(NCE-NOE)  
FMC_NOE (NRE)  
FMC_D[15:0]  
tsu(D-NOE)  
th(NOE-D)  
MSv38003V1  
Figure 64. NAND controller waveforms for write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
th(NWE-ALE)  
td(NCE-NWE)  
FMC_NWE  
FMC_NOE (NRE)  
FMC_D[15:0]  
th(NWE-D)  
tv(NWE-D)  
MSv38004V1  
DS12737 Rev 6  
295/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
Figure 65. NAND controller waveforms for common memory read access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
th(NOE-ALE)  
td(NCE-NOE)  
FMC_NWE  
FMC_NOE  
tw(NOE)  
tsu(D-NOE)  
th(NOE-D)  
FMC_D[15:0]  
MSv38005V1  
Figure 66. NAND controller waveforms for common memory write access  
FMC_NCEx  
ALE (FMC_A17)  
CLE (FMC_A16)  
td(NCE-NWE)  
tw(NWE)  
th(NOE-ALE)  
FMC_NWE  
FMC_NOE  
td(D-NWE)  
tv(NWE-D)  
th(NWE-D)  
FMC_D[15:0]  
MSv38006V1  
(1)  
Table 144. Switching characteristics for NAND Flash read cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
Tw(N0E)  
FMC_NOE low width  
4THCLK - 0.5 4THCLK+0.5  
FMC_D[15-0] valid data before FMC_NOE  
high  
Tsu(D-NOE)  
14  
-
ns  
Th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high  
0
-
Td(ALE-NOE)  
Th(NOE-ALE)  
FMC_ALE valid before FMC_NOE low  
FMC_NWE high to FMC_ALE invalid  
-
3THCLK-1  
-
3THCLK-0.5  
1. Guaranteed by characterization results, not tested in production.  
296/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 145. Switching characteristics for NAND Flash write cycles  
Symbol  
Parameter  
Min  
Max  
Unit  
Tw(NWE)  
Tv(NWE-D)  
Th(NWE-D)  
FMC_NWE low width  
4THCLK - 0.5 4THCLK+0.5  
FMC_NWE low to FMC_D[15-0] valid  
FMC_NWE high to FMC_D[15-0] invalid  
0
-
-
2THCLK  
ns  
FMC_D[15-0] valid before FMC_NWE  
high  
Td(D-NWE)  
5THCLK - 1  
-
Td(ALE_NWE)  
Th(NWE-ALE)  
FMC_ALE valid before FMC_NWE low  
FMC_NWE high to FMC_ALE invalid  
-
3THCLK-1  
-
3THCLK-0.5  
1. Guaranteed by characterization results, not tested in production.  
DS12737 Rev 6  
297/340  
307  
 
Electrical characteristics  
STM32L552xx  
5.3.31  
OCTOSPI characteristics  
Unless otherwise specified, the parameters given in Table 146, Table 147 and Table 148 for  
OCTOSPI are derived from tests performed under the ambient temperature, f  
frequency  
AHB  
and V supply voltage conditions summarized in Table 27: General operating conditions,  
DD  
with the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
For DTR(with DQS)/HyperBus the delay resister is set to DLYCFGR[3:0]=4  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
The following table summarizes the parameters measured in SDR mode.  
(1)  
(2)  
Table 146. OCTOSPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71<VDD<3.6  
Voltage ranges 0/1  
20 pF  
-
-
54  
2.7<VDD<3.6  
Voltage ranges 0/1  
20pF  
-
-
-
-
-
-
90  
56  
26  
OCTOSPI clock  
frequency  
F(CLK)  
MHz  
1.71<VDD<3.6  
Voltage ranges 0/1  
15pF  
1.71<VDD<3.6  
Voltage range 2  
CL=20pF  
tw(CKH)  
tw(CKL)  
t(CK)/2 - 0.5  
t(CK)/2 -0.5  
-
-
t(CK)/2  
t(CK)/2  
PRESCALER[7:0] =  
n = 0,1,3,5  
OCTOSPI clock high  
and low time  
(n/2)×t(CK)/  
(n+1)- 0.5  
(n/2)×t(CK)  
/(n+1)  
tw(CKH)  
tw(CKL)  
-
-
OCTOSPI clock high  
and low time  
PRESCALER[7:0] =  
n = 2,4,6,8  
(n/2+1)×t(CK)/  
(n+1) -0.5  
(n/2+1)×  
t(CK)/(n+1)  
Odd division  
Voltage ranges 0/1  
Voltage range 2  
Voltage ranges 0/1  
Voltage range 2  
Voltage ranges 0/1  
Voltage range 2  
Voltage ranges 0/1  
Voltage range 2  
1.5  
2
-
-
-
ts(IN)  
th(IN)  
Data input setup time  
Data input hold time  
ns  
-
4
-
-
-
5.25  
-
-
0.5  
0.5  
-
2
1.5  
-
tv(OUT) Data output valid time  
th(OUT) Data output hold time  
-
-0.5  
-0.75  
-
-
1. Values in the table applies to octal and quad SPI mode.  
2. Guaranteed by characterization results.  
298/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
The following table summarizes the parameters measured in DTR mode (no DQS).  
(1)  
(2)  
Table 147. OCTOSPI characteristics in DTR mode (no DQS)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71<VDD<3.6  
Voltage ranges 0/1  
20 pF  
-
-
56  
2.7<VDD<3.6  
Voltage ranges 0/1  
20 pF  
-
-
-
60  
OCTOSPI clock  
frequency  
F(CLK)  
MHz  
1.71<VDD<3.6  
Voltage ranges 0/1  
15 pF  
-
-
60  
26  
1.71<VDD<3.6  
-
-
Voltage range 2  
t(CK)/2  
-0.5  
tw(CKH)  
t(CK)/2+0.5  
t(CK)/2+0.5  
PRESCALER[7:0] =  
n = 0,1,3,5  
OCTOSPI clock  
high and low time  
t(CK)/2  
-0.5  
tw(CKL)  
tw(CKH)  
tw(CKL)  
-
-
-
(n/2)×t(CK)/(n+1)-  
0.5  
(n/2)×t(CK)/(n+1)+  
0.5  
OCTOSPI clock  
high and low time  
PRESCALER[7:0] =  
n = 2,4,6,8  
(n/2+1)×t(CK)/  
(n+1) -0.5  
(n/2+1)×t(CK)/  
(n+1)+0.5  
Odd division  
Voltage ranges 0/1  
Voltage range 2  
Voltage ranges 0/1  
Voltage range 2  
2.5  
1.5  
3
-
-
Data input setup  
time  
tsr(IN), tsf(IN)  
thr(IN),thf(IN)  
-
-
-
-
-
Data input hold  
time  
4
-
ns  
DHQC=0  
Voltage  
-
5.5  
7.25  
Tpclk  
/4  
DHQC=1  
ranges  
Tpclk/4  
+2  
Pres=1,2  
0/1  
-
tvr(OUT),  
tvf(OUT)  
Data output valid  
time  
+0.5  
Voltage range 2  
DHQC=0  
-
8
-
10  
-
DHQC=0  
Voltage  
5
DHQC=1  
ranges  
Tpclk/4  
-0.25  
Pres=1,2  
0/1  
-
-
-
-
thr(OUT),  
thf(OUT)  
Data output hold  
time  
Voltage range 2  
DHQC=0  
8
1. Values in the table applies to octal and quad SPI mode.  
2. Guaranteed by characterization results.  
DS12737 Rev 6  
299/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
The following table summarizes the parameters measured in DTR mode (with DQS) /  
HyperBus.  
(1)  
Table 148. OCTOSPI characteristics in DTR mode (with DQS) /Octal and HyperBus  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.71<VDD<3.6  
Voltage ranges 0/1  
20 pF  
-
-
58(2)  
2.7<VDD<3.6  
Voltage ranges 0/1  
20 pF  
OCTOSPI  
clock  
frequency  
F(CLK)  
-
-
-
76(2)  
MHz  
1.71<VDD<3.6  
Voltage range 2  
20 pF  
-
-
26(2)  
t(CK)/2  
-1  
t(CK)/2  
+0.5  
OCTOSPI  
clock high and  
low time  
tw(CKH)  
-
-
t(CK)/2  
-0.5  
tw(CKL)  
tw(CKH)  
tw(CKL)  
tv(CK)  
-
-
-
-
-
t(CK)/2+0.5  
Even division  
(n/2)×t(CK)/(n+1)  
-0.5  
(n/2)×t(CK)/(n+1)  
+0.5  
OCTOSPI  
clock high and  
low time  
ns  
(n/2+1)×t(CK)/  
(n+1) - 0.5  
(n/2+1)*×(CK)/  
(n+1)+0.5  
Odd division  
Clock valid  
time  
-
-
-
t(CK) + 2  
-
t(CK)/2  
-0.5  
Clock hold  
time  
th(CK)  
CK,CK#  
crossing level  
on CK rising  
edge  
VODr(CK)(3)  
VODf(CK)(3)  
VDD=1v8  
VDD=1v8  
832  
840  
-
-
1050  
1071  
mV  
CK,CK#  
crossing level  
on CK falling  
edge  
300/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Electrical characteristics  
(1)  
Table 148. OCTOSPI characteristics in DTR mode (with DQS) /Octal and HyperBus (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Chip select  
high time  
tw(CS)  
-
3×t(CK)  
-
-
Data input  
valid time  
tv(DQ)  
tv(DS)  
th(DS)  
0
-
-
-
Data strobe  
input valid time  
Data strobe  
input hold time  
-
-
0
-
-
-
-
Data strobe  
output valid  
time  
tv(RWDS)  
3×t(CK)  
t(CK)/2  
-5.75(4)  
Voltage ranges 0/1  
Voltage range 2  
-0.75  
-2.25  
-
-
Data input  
setup time  
tsr(DQ),tsf(DQ)  
thr(DQ),thf(DQ)  
t(CK)/2  
-8(4)  
Voltage ranges 0/1  
Voltage range 2  
3.75  
4.75  
-
-
-
-
Data input hold  
time  
ns  
DHQC=  
0
-
5.75  
7.75  
Voltage  
DHQC=  
ranges 0/1  
Tpclk/4  
+0.75  
Tpclk/4  
+2.5  
1
tvr(OUT),  
tvf(OUT)  
Data output  
valid time  
-
Pres=1,  
2…  
Voltage range 2  
DHQC=0  
-
8
-
11  
-
DHQC=  
0
3.25  
Voltage  
DHQC=  
ranges 0/1  
Tpclk/4  
-0.25  
1
thr(OUT),  
thf(OUT)  
Data output  
hold time  
-
-
-
-
Pres=1,  
2…  
Voltage range 2  
DHQC=0  
6.5  
1. Guaranteed by characterization results.  
2. Maximum frequency values are given for a RWDS to DQ skew of maximum +/-1.0 ns.  
3. (PA3/PF11), (PF10/PB12), (PF10/PB5), (PE10/PF11), (PA3/PE9) and (PE10/PB5) clk/clk# pair usage is recommended in  
order to respect HyperMemory AC differential crossing voltage margins.  
4. Data input setup time maximum does not take into account the data level switching duration.  
DS12737 Rev 6  
301/340  
307  
 
Electrical characteristics  
STM32L552xx  
Figure 67. OCTOSPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
Figure 68. OCTOSPI timing diagram - DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
Figure 69. OCTOSPI HyperBus clock  
tr(CK)  
tf(CK#)  
tw(CKH)  
tw(CK#L)  
tw(CKL)  
tw(CK#H)  
t(CK)  
t(CK#)  
tf(CK)  
tr(CK#)  
CK#  
CK  
VOD(CK)  
MSv47732V1  
302/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
Figure 70. OCTOSPI HyperBus read  
tw(CS)  
CS#  
th(CK)  
tv(CK)  
tACC = Initial Access  
CK, CK#  
tv(RWDS)  
tv(DS)  
th(DS)  
RWDS  
tv(OUT)  
th(OUT)  
tv(DQ)  
ts(DQ)  
th(DQ)  
Latency Count  
Dn  
Dn  
B
Dn+1  
A
Dn+1  
47:40 39:32 31:24 23:16  
15:8  
7:0  
DQ[7:0]  
A
B
Command-Address  
Host drives DQ[7:0] and Memory drives RWDS  
Memory drives DQ[7:0] and RWDS  
MSv47733V1  
Figure 71. OCTOSPI HyperBus read with double latency  
CS#  
tRWR =Read Write Recovery  
Additional Latency  
tACC = Access  
CK, CK#  
RWDS  
tCKDS  
High = 2x Latency Count  
Low = 1x Latency Count  
RWDS and Data  
are edge aligned  
Dn  
A
Dn Dn+1 Dn+1  
47:40 39:32 31:24 23:16 15:8  
7:0  
DQ[7:0]  
B
A
B
Command-Address  
Memory drives DQ[7:0]  
and RWDS  
Host drives DQ[7:0] and Memory drives RWDS  
MSv49351V1  
Figure 72. OCTOSPI HyperBus write  
tw(CS)  
CS#  
Read Write Recovery  
tv(CK)  
Access Latency  
th(CK)  
CK, CK#  
RWDS  
th(OUT)  
tv(OUT)  
tv(RWDS)  
High = 2x Latency Count  
Low = 1x Latency Count  
Latency Count  
th(OUT)  
th(OUT)  
tv(OUT)  
tv(OUT)  
Dn  
A
Dn  
B
Dn+1  
A
Dn+1  
B
47:40 39:32 31:24 23:16  
15:8  
7:0  
DQ[7:0]  
Command-Address  
Host drives DQ[7:0] and RWDS  
Host drives DQ[7:0] and Memory drives RWDS  
MSv47734V1  
DS12737 Rev 6  
303/340  
307  
 
 
 
Electrical characteristics  
Delay block  
STM32L552xx  
Unless otherwise specified, the parameters given in Table 149 for delay block are derived  
from tests performed under the ambient temperature, fPCLKx frequency and VDD supply  
voltage conditions summarized in Table 27: General operating conditions with the  
configuration shown in the figure below.  
Table 149. Dynamics characteristics: delay block characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tinit  
t∆  
Initial delay  
Unit delay  
-
-
1175  
250  
1375  
500  
1450  
750  
ps  
5.3.32  
SD/SDIO/MMC card host interfaces (SDMMC)  
Unless otherwise specified, the parameters given in Table 150 and Table 151 for SDIO are  
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD  
supply voltage conditions summarized in Table 27: General operating conditions with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5V  
DD  
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output  
characteristics.  
Table 150. Dynamics characteristics: SD / eMMC characteristics,  
(1)  
VDD=2.7V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock frequency in data transfer  
mode  
fPP  
-
0
-
70  
MHz  
-
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
-
8/3  
tW(CKL)  
tW(CKH)  
fpp =52MHz  
fpp =52MHz  
8.5  
8.5  
9.5  
9.5  
-
-
ns  
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(2)/DDR(2) mode  
tISU  
tIHD  
Input setup time HS  
Input hold time HS  
-
-
2.5  
1
-
-
-
-
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR(2)/DDR(2) mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
-
-
5
-
6
-
4.5  
CMD, D inputs (referenced to CK) in SD default mode  
tISUD  
tIHD  
Input setup time SD  
Input hold time SD  
-
-
2.5  
1
-
-
-
-
304/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Electrical characteristics  
Table 150. Dynamics characteristics: SD / eMMC characteristics,  
(1)  
VDD=2.7V to 3.6 V (continued)  
Symbol  
Parameter Conditions Min  
Typ  
Max  
Unit  
CMD, D outputs (referenced to CK) in SD default mode  
tOVD  
tOHD  
Output valid default time SD  
Output hold default time SD  
-
-
-
1
-
2.5  
-
ns  
0.5  
1. Guaranteed by characterization results.  
2. For SD 1.8 V support, an external voltage converter is needed.  
(1)(2)  
Unit  
Table 151. Dynamics characteristics: eMMC characteristics VDD=1.71 V to 1.9 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Clock frequency in data transfer  
mode  
fPP  
-
0
-
52  
MHz  
-
-
SDIO_CK/fPCLK2 frequency ratio  
Clock low time  
-
-
-
8/3  
tW(CKL)  
tW(CKH)  
fpp =52 MHz  
fpp =52 MHz  
8.5  
8.5  
9.5  
9.5  
-
-
ns  
ns  
ns  
Clock high time  
CMD, D inputs (referenced to CK) in eMMC mode  
tISU  
tIH  
Input setup time HS  
Input hold time HS  
-
-
2.5  
2
-
-
-
-
CMD, D outputs (referenced to CK) in eMMC mode  
tOV  
tOH  
Output valid time HS  
Output hold time HS  
-
-
-
5.5  
-
6.5  
-
4
1. Guaranteed by characterization results.  
2. Cload=20 pF.  
DS12737 Rev 6  
305/340  
307  
 
 
Electrical characteristics  
STM32L552xx  
See the different SDMMC diagrams in Figure 73, Figure 74 and Figure 75 below.  
Figure 73. SDIO high-speed mode  
Figure 74. SD default mode  
CK  
t
t
OVD  
OHD  
D, CMD  
(output)  
ai14888  
Figure 75. DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
306/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Electrical characteristics  
5.3.33  
UCPD characteristics  
UCPD controller complies with USB Type-C Rev 1.2 and USB Power Delivery Rev 3.0  
specifications.  
Table 152. UCPD characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Sink mode only  
3.0  
3.3  
3.3  
3.6  
UCPD operating  
supply voltage  
VDD  
V
Sink and source mode  
3.135  
3.465  
DS12737 Rev 6  
307/340  
307  
 
 
Package information  
STM32L552xx  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
6.1  
LQFP48 package information  
LQFP48 is a 48-pin, 7 x 7 mm, low-profile quad flat package.  
Figure 76. LQFP48 outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
Table 153. LQFP48 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
-
-
-
1.600  
0.150  
1.450  
-
-
-
0.0630  
0.0059  
0.0571  
A1  
A2  
0.050  
1.350  
0.0020  
0.0531  
1.400  
0.0551  
308/340  
DS12737 Rev 6  
 
 
 
 
 
STM32L552xx  
Package information  
Table 153. LQFP48 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
b
c
0.170  
0.220  
-
0.270  
0.200  
9.200  
7.200  
-
0.0067  
0.0087  
-
0.0106  
0.0079  
0.3622  
0.2835  
-
0.090  
0.0035  
D
8.800  
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3465  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
6.800  
0.2677  
-
-
8.800  
9.200  
7.200  
-
0.3465  
0.3622  
0.2835  
-
E1  
E3  
e
6.800  
0.2677  
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0°  
-
-
0°  
-
7°  
7°  
ccc  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 77. LQFP48 recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911d  
1. Dimensions are expressed in millimeters.  
DS12737 Rev 6  
309/340  
333  
 
Package information  
STM32L552xx  
Device marking for LQFP48  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
Figure 78. Example of LQFP48 package marking (package top view)  
STM32L552  
Product identification(1)  
CET6P  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
R
MSv60472V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
310/340  
DS12737 Rev 6  
 
STM32L552xx  
Package information  
6.2  
UFQFPN48 package information  
UFQFPN48 is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.  
Figure 79. UFQFPN48 outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
Table 154. UFQFPN48 mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
E
D2  
E2  
DS12737 Rev 6  
311/340  
333  
 
 
 
Package information  
STM32L552xx  
Table 154. UFQFPN48 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
L
T
0.300  
0.400  
0.152  
0.250  
0.500  
-
0.500  
-
0.0118  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0197  
-
-
-
b
0.200  
0.300  
-
0.0079  
0.0118  
-
e
-
-
-
-
ddd  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 80. UFQFPN48 recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
Device marking for UFQFPN48 (7 x 7)  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
312/340  
DS12737 Rev 6  
 
STM32L552xx  
Package information  
Figure 81. Example of UFQFPN48 package marking (package top view)  
STM32L552  
CEU6P  
Product identification(1)  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
R
MSv60473V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12737 Rev 6  
313/340  
333  
 
Package information  
STM32L552xx  
6.3  
LQFP64 package information  
LQFP64 is a 64-pin, 10 x 10 mm, low-profile quad flat package.  
Figure 82. LQFP64 outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
D1  
D3  
L
L1  
33  
48  
32  
49  
64  
b
17  
16  
1
PIN 1  
IDENTIFICATION  
e
5W_ME_V3  
1. Drawing is not to scale.  
Table 155. LQFP64 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
-
-
0.0630  
0.050  
-
0.150  
0.0020  
-
0.0059  
1.350  
1.400  
0.220  
-
1.450  
0.0531  
0.0551  
0.0087  
-
0.0571  
0.170  
0.270  
0.0067  
0.0106  
c
0.090  
0.200  
0.0035  
0.0079  
D
-
-
-
-
-
12.000  
10.000  
7.500  
12.000  
10.000  
-
-
-
-
-
-
-
-
-
-
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
-
-
-
-
-
D1  
D3  
E
E1  
314/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Package information  
Table 155. LQFP64 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E3  
e
-
7.500  
0.500  
3.5°  
-
-
0.2953  
0.0197  
3.5°  
-
-
-
7°  
-
-
7°  
K
0°  
0°  
L
0.450  
0.600  
1.000  
-
0.750  
-
0.0177  
0.0236  
0.0394  
-
0.0295  
-
L1  
ccc  
-
-
-
-
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 83. LQFP64 recommended footprint  
48  
33  
0.3  
0.5  
49  
32  
12.7  
10.3  
10.3  
7.8  
17  
64  
1.2  
16  
1
12.7  
ai14909c  
1. Dimensions are expressed in millimeters.  
Device marking for LQFP64 (10 x 10)  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
DS12737 Rev 6  
315/340  
333  
 
Package information  
STM32L552xx  
Figure 84. Example of LQFP64 package marking (package top view)  
STM32L552  
RET6P  
Product identification(1)  
Date code  
Y WW  
Pin 1 identifier  
Revision code  
R
MSv60474V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
316/340  
DS12737 Rev 6  
 
STM32L552xx  
Package information  
6.4  
WLCSP81 package information  
WLCSP81 is a 81-ball, 4.36 x 4.07 mm, 0.4 mm pitch, wafer level chip scale package.  
Figure 85. WLCSP81 outline  
bbb Z  
A1  
A1 BALL LOCATION  
F
e1  
aaa  
(4x)  
G
DETAIL A  
E
e2  
e
e
A
A2  
D
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
A2  
A3  
BUMP  
b
eee  
Z
FRONT VIEW  
Z
b(81x)  
ccc Z XY  
ddd  
Z
SEATING PLANE  
DETAIL A  
ROTATED 90  
B01H_WLCSP81_ME_V1  
1. Drawing is not to scale.  
2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.  
3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.  
4. Bump position designation per JESD 95-1, SPP-010.  
Table 156. WLCSP81 mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A(2)  
A1  
A2  
A3(3)  
b
-
-
0.59  
-
-
-
0.023  
-
0.18  
0.38  
0.025  
0.25  
4.36  
4.07  
-
0.007  
0.015  
0.001  
0.010  
0.172  
0.160  
-
-
-
-
-
-
-
-
-
0.22  
4.33  
4.05  
0.28  
4.39  
4.09  
0.009  
0.170  
0.159  
0.011  
0.173  
0.161  
D
E
DS12737 Rev 6  
317/340  
333  
 
 
 
Package information  
STM32L552xx  
Table 156. WLCSP81 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
e
-
-
-
-
-
-
-
-
-
-
0.40  
3.20  
3.20  
0.580  
0.435  
0.10  
0.10  
0.10  
0.05  
0.05  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.016  
0.126  
0.126  
0.023  
0.017  
0.004  
0.004  
0.004  
0.002  
0.002  
-
-
-
-
-
-
-
-
-
-
e1  
e2  
F(4)  
G(4)  
aaa  
bbb  
ccc  
ddd  
eee  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal  
and tolerances values of A1 and A2.  
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process  
capability.  
4. Calculated dimensions are rounded to the 3rd decimal place.  
Figure 86. WLCSP 81 recommended footprint  
Dpad  
Dsm  
BGA_WLCSP_FT_V1  
1. Dimensions are expressed in millimeters.  
318/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Package information  
Table 157. WLCSP81 recommended PCB design rules  
Dimension Recommended values  
Pitch  
0.4 mm  
Dpad  
Dsm  
0,225 mm  
0.290 mm typ. (depends on soldermask registration tolerance)  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
Device marking for WLCSP81  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
Figure 87. Example of WLCSP81 package marking (package top view)  
Product identification(1)  
L552ME6P  
Date code  
Additional information  
Y WW R  
MSv60475V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12737 Rev 6  
319/340  
333  
 
 
Package information  
STM32L552xx  
6.5  
LQFP100 package information  
LQFP100 is a 100-pin, 14 x 14 mm low-profile quad flat package.  
Figure 88. LQFP100 outline  
SEATING PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
75  
C
D
D1  
D3  
L
L1  
51  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V5  
1. Drawing is not to scale.  
Table 158. LQPF100 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
-
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
16.000  
14.000  
12.000  
16.000  
0.6299  
0.5512  
0.4724  
0.6299  
D1  
D3  
E
15.800  
16.200  
0.6220  
0.6378  
320/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Package information  
Table 158. LQPF100 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E1  
E3  
e
13.800  
14.000  
12.000  
0.500  
0.600  
1.000  
3.5°  
14.200  
0.5433  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
0.5591  
-
-
-
-
-
-
-
-
L
0.450  
0.750  
-
0.0177  
0.0295  
-
L1  
k
-
0.0°  
-
-
0.0°  
-
7.0°  
0.080  
7.0°  
0.0031  
ccc  
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 89. LQFP100 recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906c  
1. Dimensions are expressed in millimeters.  
Device marking for LQFP100  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
DS12737 Rev 6  
321/340  
333  
 
Package information  
STM32L552xx  
Figure 90. Example of LQFP100 package marking (package top view)  
STM32L552  
VET6Q  
Product identification(1)  
R
Date code  
YWW  
Pin 1 identifier  
MSv60476V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
322/340  
DS12737 Rev 6  
 
STM32L552xx  
Package information  
6.6  
UFBGA132 package information  
UFBGA132 is a 132-pin, 7 x 7 mm, ultra thin fine pitch ball grid array package.  
Figure 91. UFBGA132 outline  
A1 ball identifier  
B
A
D
E1  
E
e
Z
A
Z
e
D1  
M
1
12  
Øb (132 balls)  
BOTTOM VIEW  
TOP VIEW  
M
Øeee C A B  
Ø fff  
M
C
A4  
ddd C  
A2  
A3  
A1  
A
b
SEATING  
PLANE  
UFBGA132_A0G8_ME_V2  
1. Drawing is not to scale.  
Table 159. UFBGA132 mechanical data  
millimeters  
inches(1)  
Typ  
Symbol  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
A3  
A4  
b
-
-
0.600  
-
-
0.0236  
-
-
0.110  
-
-
0.0043  
-
0.450  
0.130  
0.320  
0.290  
7.000  
5.500  
7.000  
5.500  
0.500  
-
-
0.0177  
0.0051  
0.0126  
0.0114  
0.2756  
0.2165  
0.2756  
0.2165  
0.0197  
-
-
-
-
-
-
-
-
-
0.240  
0.340  
0.0094  
0.0134  
D
6.850  
7.150  
0.2697  
0.2815  
D1  
E
-
-
-
-
6.850  
7.150  
0.2697  
0.2815  
E1  
e
-
-
-
-
-
-
-
-
DS12737 Rev 6  
323/340  
333  
 
 
 
Package information  
Symbol  
STM32L552xx  
Table 159. UFBGA132 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
Z
-
0.750  
0.080  
0.150  
0.050  
-
-
-
-
-
-
-
-
0.0295  
0.0031  
0.0059  
0.0020  
-
-
-
-
ddd  
eee  
fff  
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 92. UFBGA132 recommended footprint  
Dpad  
Dsm  
UFBGA132_A0G8_FP_V1  
Table 160. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5 mm  
0.280 mm  
0.370 mm typ. (depends on the soldermask reg-  
istration tolerance)  
Dsm  
Stencil opening  
Stencil thickness  
Pad trace width  
Ball diameter  
0.280 mm  
Between 0.100 mm and 0.125 mm  
0.100 mm  
0.280 mm  
324/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Package information  
Device marking for UFBGA132 (7 x 7)  
The following figure gives an example of topside marking orientation versus ball A1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
Figure 93. Example of UFBGA132 package marking (package top view)  
STM32L  
Product identification(1)  
552QEI6Q  
Date code  
Y WW  
Additional  
information  
R
MSv60480V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12737 Rev 6  
325/340  
333  
 
Package information  
STM32L552xx  
6.7  
LQFP144 package information  
LQFP144 is a 144-pin, 20 x 20 mm low-profile quad flat package.  
Figure 94. LQFP144 outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
108  
73  
109  
72  
37  
144  
1
36  
PIN 1  
IDENTIFICATION  
e
1A_ME_V4  
1. Drawing is not to scale.  
326/340  
DS12737 Rev 6  
 
 
STM32L552xx  
Symbol  
Package information  
Table 161. LQFP144 mechanical data  
millimeters  
inches(1)  
Typ  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
21.800  
19.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
22.200  
20.200  
-
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.8740  
0.7953  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.8583  
0.7795  
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
22.000  
20.000  
17.500  
22.000  
20.000  
17.500  
0.500  
0.600  
1.000  
3.5°  
0.8661  
0.7874  
0.6890  
0.8661  
0.7874  
0.6890  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
21.800  
19.800  
-
22.200  
20.200  
-
0.8583  
0.7795  
-
0.8740  
0.7953  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DS12737 Rev 6  
327/340  
333  
 
Package information  
STM32L552xx  
Figure 95. LQFP144 recommended footprint  
1.35  
108  
73  
109  
72  
0.35  
0.5  
19.9  
17.85  
22.6  
144  
37  
1
36  
19.9  
22.6  
ai14905e  
1. Dimensions are expressed in millimeters.  
Device marking for LQFP144  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which also depend on supply chain operations,  
are not indicated below.  
328/340  
DS12737 Rev 6  
 
STM32L552xx  
Package information  
Figure 96. Example of LQFP144 package marking (package top view)  
Product identification(1)  
STM32L552ZET6Q  
Additional  
information  
R
Date code  
Y WW  
Pin 1 identifier  
MSv60479V2  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS12737 Rev 6  
329/340  
333  
 
Package information  
STM32L552xx  
6.8  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ ((V  
– V ) × I ),  
I/O  
OL  
OL  
DDIOx OH OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 162. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP144 20 x 20 mm  
47.4  
49.3  
50.7  
52.3  
25.6  
39.6  
45  
Thermal resistance junction-ambient  
LQFP100 - 14 × 14 mm  
Thermal resistance junction-ambient  
LQFP64 10 x 10 mm  
Thermal resistance junction-ambient  
LQFP48 7 x 7 mm  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
UFQFPN48 7 x 7 mm  
Thermal resistance junction-ambient  
UFBGA132 7 x 7 mm  
Thermal resistance junction-ambient  
WLCSP81 4.36 x 4.07 mm  
330/340  
DS12737 Rev 6  
 
 
 
STM32L552xx  
Package information  
Table 162. Package thermal characteristics (continued)  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-case  
LQFP144 20 x 20 mm  
13.5  
Thermal resistance junction-case  
LQFP100 - 14 × 14 mm  
14  
Thermal resistance junction-case  
LQFP64 10 x 10 mm  
14.2  
14.4  
1.5  
Thermal resistance junction-case  
LQFP48 7 x 7 mm  
ΘJC  
°C/W  
Thermal resistance junction-case  
UFQFPN48 7 x 7 mm  
Thermal resistance junction-case  
UFBGA132 7 x 7 mm  
38.1  
1.5  
Thermal resistance junction-case  
WLCSP81 4.36 x 4.07 mm  
Thermal resistance junction-board  
LQFP144 20 x 20 mm  
43.3  
41.5  
39.5  
37.4  
13.5  
13.2  
27  
Thermal resistance junction-board  
LQFP100 - 14 × 14 mm  
Thermal resistance junction-board  
LQFP64 10 x 10 mm  
Thermal resistance junction-board  
LQFP48 7 x 7 mm  
ΘJB  
°C/W  
Thermal resistance junction-board  
UFQFPN48 7 x 7 mm  
Thermal resistance junction-board  
UFBGA132 7 x 7 mm  
Thermal resistance junction-board  
WLCSP81 4.36 x 4.07 mm  
6.8.1  
6.8.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 7: Ordering information.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
DS12737 Rev 6  
331/340  
333  
 
 
Package information  
STM32L552xx  
As applications do not commonly use the STM32L552xx at maximum dissipation, it is useful  
to calculate the exact power consumption and junction temperature to determine which  
temperature range is best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
50 mA × 3.5 V= 175 mW  
INTmax =  
20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax =  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
175 272 = 447 mW  
+
Dmax =  
Using the values obtained in T  
is calculated as follows:  
Jmax  
T
For LQFP100, 49.3°C/W  
= 82 °C + (49.3°C/W × 447 mW) = 82 °C + 22.04 °C = 104.04 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C) see Section 7:  
J
Ordering information.  
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 7: Ordering information).  
Note:  
With this given P  
we can find the TAmax allowed for a given device temperature range  
Dmax  
(order code suffix 6 or 7).  
Suffix 6: T  
Suffix 3: T  
= T  
= T  
- (49.3°C/W × 447 mW) = 105 - 22.03= 82.97 °C  
- (49.3°C/W × 447 mW) = 130 - 22.03 = 107.97 °C  
Amax  
Amax  
Jmax  
Jmax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
20 mA × 3.5 V= 70 mW  
INTmax =  
× 8 mA × 0.4 V = 64 mW  
IOmax = 20  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
70 64 = 134 mW  
Dmax =  
+
Thus: P  
= 134 mW  
Dmax  
332/340  
DS12737 Rev 6  
STM32L552xx  
Package information  
Using the values obtained in T  
is calculated as follows:  
Jmax  
T
For LQFP100, 49.3 °C/W  
= 100 °C + (49.3 °C/W × 134 mW) = 100 °C + 6.6 °C = 106.6 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 3 (see  
Section 7: Ordering information) unless we reduce the power dissipation in order to be able  
to use suffix 6 parts.  
DS12737 Rev 6  
333/340  
333  
Ordering information  
STM32L552xx  
7
Ordering information  
Table 163. STM32L552xx ordering information scheme  
STM32 552  
Example:  
L
V
E
T
6 Q TR  
Device family  
®
STM32 = Arm based 32-bit microcontroller  
Product type  
L = ultra-low-power  
Device subfamily  
552 = STM32L552xx  
Pin count  
C = 48 pins  
R = 64 pins  
M = 81 pins  
V = 100 pins  
Q = 132 balls  
Z = 144 pins  
Flash memory size  
E = 512 Kbytes of Flash memory  
C= 256 Kbytes of Flash memory  
Package  
T = LQFP  
I = UFBGA  
U = UFQFPN  
Y = WLCSP  
Temperature range  
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)  
3 = Industrial temperature range, -40 to 125 °C (130°C junction)  
Dedicated pinout  
Q = Dedicated pinout supporting SMPS step down converter  
P = Dedicated pinout supporting external SMPS  
Packing  
TR = tape and reel  
xxx = programmed parts  
1. All packages are ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony-oxide  
flame retardants).  
2. For a list of available options (speed, package, etc.) or for further information on any aspect of this device,  
please contact your nearest ST sales office.  
334/340  
DS12737 Rev 6  
 
 
 
 
STM32L552xx  
Revision history  
8
Revision history  
Table 164. Document revision history  
Date  
Revision  
Changes  
04-Oct-2019  
1
Internal release  
Updated Section : Features.  
Updated Section 3.3: Memory protection unit.  
Updated Section 3.4: Embedded Flash memory.  
Updated Table 5: Boot space versus RDP protection.  
Updated Section 3.9.4: SMPS step down converter.  
Updated Table 11: Functionalities depending on the  
working mode.  
Updated Figure 7: STM32L552xx clock tree.  
Updated Table 27: General operating conditions.  
Updated Table 36: Current consumption in Run mode,  
code with data processing running from Flash in single  
bank, ICACHE ON in 2-way and power supplied by  
internal SMPS step down converter.  
Updated Table 37: Current consumption in Run mode,  
code with data processing running from Flash in single  
bank, ICACHE ON in 1-way and power supplied by  
internal SMPS step down converter.  
Updated Table 38: Current consumption in Run mode,  
code with data processing running from Flash in single  
bank, ICACHE disabled and power supplied by internal  
SMPS step down converter.  
18-Dec-2019  
2
Updated Table 42: Current consumption in Run mode,  
code with data processing running from Flash in dual  
bank, ICACHE ON in 2-way and power supplied by  
internal SMPS step down converter.  
Updated Table 43: Current consumption in Run mode,  
code with data processing running from Flash in dual  
bank, ICACHE ON in 1-way and power supplied by  
internal SMPS step down converter.  
Updated Table 44: Current consumption in Run mode,  
code with data processing running from Flash in dual  
bank, ICACHE disabled and power supplied by internal  
SMPS step down converter.  
Updated Table 46: Current consumption in Run mode,  
code with data processing running from SRAM1 and  
power supplied by internal SMPS step down converter.  
Updated Table 47: Current consumption in Run and  
Low-power run modes, code with data processing  
running from SRAM2.  
DS12737 Rev 6  
335/340  
339  
 
 
Revision history  
STM32L552xx  
Table 164. Document revision history  
Date  
Revision  
Changes  
Updated Table 48: Current consumption in Run mode,  
code with data processing running from SRAM2 and  
power supplied by internal SMPS step down converter.  
Updated Table 61: Current consumption in Sleep mode,  
Flash ON and power supplied by internal SMPS step  
down converter.  
Updated Table 76: Current consumption in Stop 2 mode.  
Updated Table 77: Current consumption in Stop 1  
mode..  
Updated Table 79: Current consumption in Standby  
mode.  
Updated Table 80: Current consumption in Shutdown  
mode.  
2
18-Dec-2019  
(continued)  
Updated Table 81: Current consumption in VBAT mode.  
Updated Table 83: Low-power mode wakeup timings.  
Updated Table 102: I/O static characteristics.  
Updated Table 103: Output voltage characteristics.  
Updated Table 129: SPI characteristics.  
Updated Table 130: SAI characteristics.  
Updated Table 146: OCTOSPI characteristics in SDR  
mode.  
Updated Table 147: OCTOSPI characteristics in DTR  
mode (no DQS).  
Updated Table 148: OCTOSPI characteristics in DTR  
mode (with DQS)/Octal and HyperBus.  
Updated LQFP silhouette on cover page.  
Updated Table 2: STM32L552xx features and peripheral  
counts.  
Updated Figure 1: STM32L552xx block diagram.  
Updated Section 3.1: Arm® Cortex®-M33 core with  
TrustZone® and FPU  
Updated Section 3.2: Art Accelerator – instruction cache  
(ICACHE)  
Updated Section 3.6: Boot modes  
Updated Table 5: Boot space versus RDP protection.  
11-Feb-2020  
3
Updated Table 6: Example of memory map security  
attribution vs SAU configuration regions.  
Updated Table 7: Securable peripherals by TZSC.  
Updated Section 3.9.4: SMPS step down converter.  
Updated Table 10: STM32L552xx modes overview.  
Updated Table 11: Functionalities depending on the  
working mode.  
Updated Table 12: STM32L552xx peripherals  
interconnect matrix.  
Updated Section 3.17.1: Nested vectored interrupt  
controller (NVIC).  
336/340  
DS12737 Rev 6  
STM32L552xx  
Revision history  
Table 164. Document revision history  
Date  
Revision  
Changes  
Updated Section 3.21: Analog-to-digital converter  
(ADC).  
Removed information related to UFBGA132_ExtSMPS  
in Section 4: Pinouts and pin description.  
Updated Table 24: Voltage characteristics.  
Updated Table 33: Current consumption in Run and  
Low-power run modes, code with data processing  
running from Flash in single Bank, ICACHE ON in 2-  
way.  
Updated Table 55: Typical current consumption in Run  
and Low-power run modes, with different codes running  
from SRAM1.  
Updated Table 56: Typical current consumption in Run  
mode with internal SMPS, with different codes running  
from SRAM1.  
3
11-Feb-2020  
(continued)  
Updated Table 57: Typical current consumption in Run  
and Low-power run modes, with different codes running  
from SRAM2.  
Updated Table 58: Typical current consumption in Run  
mode with internal SMPS, with different codes running  
from SRAM2.  
Updated Table 79: Current consumption in Standby  
mode.  
Updated Table 99: ESD absolute maximum ratings.  
Updated Table 102: I/O static characteristics.  
Updated Table 117: VREFBUF characteristics.  
Updated Table 119: OPAMP characteristics.  
Updated Table 123: Temp and VDD monitoring  
characteristics.  
Updated:  
Figure 1: STM32L552xx block diagram.  
Figure 2: STM32L552xx power supply overview.  
Figure 3: STM32L552xxxxP power supply overview.  
Figure 12: STM32L552xx UFQFPN48 pinout.  
Figure 13: STM32L552xxxxP UFQFPN48 external  
SMPS pinout.  
14-May-2020  
4
Section 5.3.2: SMPS step-down converter.  
Table 20: Legend/abbreviations used in the pinout  
table.  
Updated title of Table 36, Table 37, Table 38, Table 42,  
Table 43, Table 44, Table 46, Table 48, Table 50,  
Table 52, Table 54, Table 56, Table 58, Table 61.  
DS12737 Rev 6  
337/340  
339  
Revision history  
STM32L552xx  
Table 164. Document revision history  
Date  
Revision  
Changes  
Added:  
Table 28: SMPS modes summary  
Table 29: SMPS characteristics  
Table 62: Current consumption in Run mode, code  
with data processing running from Flash in single  
bank, ICACHE ON in 2-way and power supplied by  
external SMPS.  
Table 63: Current consumption in Run mode, code  
with data processing running from Flash in single  
bank, ICACHE ON in 1-way and power supplied by  
external SMPS.  
Table 64: Current consumption in Run mode, code  
with data processing running from Flash in single  
bank, ICACHE disabled and power supplied by  
external SMPS.  
Table 65: Current consumption in Run mode, code  
with data processing running from Flash in dual bank,  
ICACHE on in 2-way and power supplied by external  
SMPS.  
Table 66: Current consumption in Run mode, code  
with data processing running from Flash in dual bank,  
ICACHE on in 1-way and power supplied by external  
SMPS.  
Table 67: Current consumption in Run mode, code  
with data processing running from Flash in dual bank,  
ICACHE disabled and power supplied by external  
SMPS.  
14-May-2020  
4 (continued)  
Table 68: Current consumption in Run mode, code  
with data processing running from SRAM1, and power  
supplied by external SMPS.  
Table 69: Current consumption in Run mode, code  
with data processing running from SRAM2, and power  
supplied by external SMPS.  
Table 70: Current consumption in Sleep mode, Flash  
ON and power supplied by external SMPS.  
Table 71: Current consumption in Run mode, code  
with data processing running from Flash, ICACHE on  
(2-way) and power supplied by external SMPS.  
Table 72: Current consumption in Run mode, code  
with data processing running from Flash, ICACHE on  
(1-way) and power supplied by external SMPS.  
Table 73: Current consumption in Run mode, code  
with data processing running from Flash, ICACHE  
disabled and power supplied by external SMPS.  
Table 74: Current consumption in Run mode, code  
with data processing running from SRAM1, and power  
supplied by external SMPS.  
Table 75: Current consumption in Run mode, code  
with data processing running from SRAM2, and power  
supplied by external SMPS.  
338/340  
DS12737 Rev 6  
STM32L552xx  
Revision history  
Table 164. Document revision history  
Date  
Revision  
Changes  
Updated Table 102: I/O static characteristics.  
Updated Table 146: OCTOSPI characteristics in SDR  
mode.  
Updated Table 147: OCTOSPI characteristics in DTR  
mode (no DQS).  
Updated Table 148: OCTOSPI characteristics in DTR  
mode (with DQS)/Octal and HyperBus.  
14-May-2020  
4 (continued)  
Updated Table 150: Dynamics characteristics: SD /  
eMMC characteristics, VDD=2.7V to 3.6 V.  
Updated Table 151: Dynamics characteristics: eMMC  
characteristics VDD=1.71 V to 1.9 V.  
Updated Section 6: Package information.  
Updated Table 163: STM32L552xx ordering information  
scheme.  
Updated:  
Table 10: STM32L552xx modes overview.  
Section 3.28: True random number generator (RNG).  
Table 77: Current consumption in Stop 1 mode.  
Table 80: Current consumption in Shutdown mode.  
Table 82: Peripheral current consumption.  
Table 83: Low-power mode wakeup timings.  
09-Sep-2020  
5
Updated:  
Table 10: STM32L552xx modes overview.  
Table 14: Temperature sensor calibration values  
Table 21: STM32L552xx pin definitions  
Table 77: Current consumption in Stop 1 mode  
Table 80: Current consumption in Shutdown mode.  
Table 83: Low-power mode wakeup timings  
Table 117: VREFBUF characteristics  
Table 121: VBAT monitoring characteristics  
Section 3.28: True random number generator (RNG)  
Added  
21-Oct-2020  
6
Figure 46: VREFBUF in case VRS = 0  
Figure 47: VREFBUF in case VRS = 1  
DS12737 Rev 6  
339/340  
339  
STM32L552xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
340/340  
DS12737 Rev 6  

相关型号:

STM32L562CE

Excellence in ultra-low power with more security

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI3PTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI3PXXX

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI3QTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI3QXXX

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI6PTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI6PXXX

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI6QTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CEI6QXXX

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CET3PTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CET3PXXX

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32L562CET3QTR

Ultra-low-power Arm® Cortex®-M33 32-bit MCUTrustZone®FPU, 165DMIPS, up to 512KB Flash, 256KB SRAM, SMPS, AESPKA

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR