STM32WB35CC [STMICROELECTRONICS]

Ultra-low-power dual core Arm Cortex-M4 MCU 64 MHz, Cortex-M0+ 32 MHz with 256 Kbytes of Flash memory, Bluetooth LE 5.3, 802.15.4, Zigbee, Thread, Matter, USB, AES-256;
STM32WB35CC
型号: STM32WB35CC
厂家: ST    ST
描述:

Ultra-low-power dual core Arm Cortex-M4 MCU 64 MHz, Cortex-M0+ 32 MHz with 256 Kbytes of Flash memory, Bluetooth LE 5.3, 802.15.4, Zigbee, Thread, Matter, USB, AES-256

文件: 总165页 (文件大小:2509K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32WB55xx  
Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4  
with FPU, Bluetooth® Low Energy and 802.15.4 radio solution  
Datasheet - preliminary data  
Features  
.
Includes ST state-of-the-art patented  
technology  
Radio  
UFQFPN48  
7 mm x 7 mm  
solder pad  
WLCSP100  
0.4 mm pitch  
VFQFPN68  
8 mm x 8 mm  
solder pad  
– 2.4 GHz  
®
– RF transceiver supporting Bluetooth  
specification v5.0 and  
IEEE 802.15.4-2011 PHY and MAC  
– High efficiency embedded SMPS  
step-down converter with intelligent bypass  
mode  
®
– RX Sensitivity: -96 dBm (Bluetooth Low  
Energy at 1 Mbps), -100 dBm (802.15.4)  
– Ultra-safe, low-power BOR (brownout  
reset) with five selectable thresholds  
– Programmable output power up to +6 dBm  
with 1 dB steps  
– Ultra-low-power POR/PDR  
– Integrated balun to reduce BOM  
– Support for 2 Mbps  
– Programmable voltage detector (PVD)  
®
®
– V  
mode with RTC and backup registers  
– Dedicated Arm 32-bit Cortex M0 + CPU  
for real-time Radio layer  
BAT  
Clock sources  
– Accurate RSSI to enable power control  
– 32 MHz crystal oscillator with integrated  
trimming capacitors (Radio and CPU clock)  
– Suitable for systems requiring compliance  
with radio frequency regulations ETSI EN  
300 328, EN 300 440, FCC CFR47 Part 15  
and ARIB STD-T66  
– 32 kHz crystal oscillator for RTC (LSE)  
– Internal low-power 32 kHz (±5%) RC (LSI1)  
– Internal low-power 32 kHz (stability ±500  
ppm) RC (LSI2)  
– Support for external PA  
Ultra-low-power platform  
– Internal multispeed 100 kHz to 48 MHz  
oscillator, auto-trimmed by LSE (better than  
±0.25% accuracy)  
– 1.71 V to 3.6 V power supply  
– – 40 °C to 85 / 105 °C temperature ranges  
– 13 nA shutdown mode  
– High Speed internal 16 MHz factory  
trimmed RC (±1%)  
– 600 nA Standby mode + RTC + 32 KB RAM  
– 2.1 µA Stop mode + RTC + 256 KB RAM  
– 2x PLL for system clock, USB, SAI and  
ADC  
– Active-mode MCU + RF (SMPS On)  
< 53 µA / MHz  
Memories  
– Up to 1 MB Flash memory with sector  
protection (PCROP) against R/W  
– RX: 3.8 mA  
– TX at 0 dBm: 5.5 mA  
®
operations, enabling authentic Bluetooth  
Low Energy and 802.15.4 SW stack  
®
®
Core: Arm 32-bit Cortex -M4 CPU with FPU,  
Adaptive real-time accelerator (ART  
– Up to 256 KB SRAM, including 64 KB with  
hardware parity check  
Accelerator™) allowing 0-wait-state execution  
from Flash memory, frequency up to 64 MHz,  
MPU, 80 DMIPS and DSP instructions  
– 20x32-bit Backup register  
– Boot loader supporting, USART, SPI, I2C  
and USB interfaces  
Supply and Reset management  
October 2018  
DS11929 Rev 3  
1/165  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
 
STM32WB55xx  
®
– OTA (Over the Air) Bluetooth Low Energy  
– 1x independent watchdog  
– 1x window watchdog  
and 802.15.4 update  
– Quad SPI memory interface with XIP  
Security & ID  
Rich Analog peripherals (down to 1.62 V)  
– Secure Firmware Installation (SFI) for  
®
– 12-bit ADC 4.26Msps, up to 16-bit with  
hardware oversampling, 200 µA/Msps  
Bluetooth Low Energy and 802.15.4 SW  
stack  
– 2x ultra-low-power comparator  
– 3x Hardware Encryption AES maximum  
®
256-bit for the application, the Bluetooth  
Low Energy and IEEE802.15.4  
– Accurate 2.5 V or 2.048 V reference  
voltage buffered output  
– Customer key storage / key manager  
services  
System peripherals  
– Inter Processor Communication Controller  
®
– HW Public Key Authority (PKA)  
(IPCC) for communication with Bluetooth  
– Cryptographic algorithms: RSA, Diffie-  
Helman, ECC over GF(p)  
Low Energy and 802.15.4  
– HW semaphores for resources sharing  
between CPUs  
– True random number generator (RNG)  
– Sector protection against R/W operation  
(PCROP)  
– 2x DMA controllers (7x channels each)  
supporting ADC, SPI, I2C, USART, QSPI,  
SAI, AES, Timers  
– CRC calculation unit  
– 1x USART (ISO 7816, IrDA, SPI Master,  
Modbus and Smartcard mode)  
– 96-bit unique ID  
– 64-bit unique ID. Possibility to derive  
®
– 1x LPUART (Low Power)  
– 2x SPI 32 Mbit/s  
802.15.5 64-bit and Bluetooth Low Energy  
48-bit EUI  
– 2x I2C (SMBus/PMBus)  
– 1x SAI (dual channel high quality audio)  
Up to 72 fast I/Os, 70 of them 5 V-tolerant  
Development support  
– 1x USB 2.0 FS device, crystal-less, BCD  
and LPM  
– Serial wire debug (SWD), JTAG for the  
Application processor  
Touch Sensing controller, up to 28  
channels  
– Application cross trigger with input and  
output  
– LCD 8x40 with step-up converter  
– 1x 16-bit, four channels advanced timer  
– 2x 16-bits, two channels timer  
– 1x 32-bits, four channels timer  
– 2x 16-bits ultra-low-power timer  
– 1x independent Systick  
– Embedded Trace Macrocell™ for  
application  
®
All packages are ECOPACK2 compliant  
Table 1. Device summary  
Reference  
Part numbers  
STM32WB55CC, STM32WB55RC, STM32WB55VC  
STM32WB55CE, STM32WB55RE, STM32WB55VE  
STM32WB55CG, STM32WB55RG, STM32WB55VG  
STM32WB55xx  
2/165  
DS11929 Rev 3  
 
STM32WB55xx  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1  
3.2  
3.3  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 17  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.4  
3.5  
3.6  
Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
802.15.4 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.7  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
Power supply distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.8  
3.9  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.11 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.12 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
DS11929 Rev 3  
3/165  
6
Contents  
STM32WB55xx  
3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 41  
3.13.2 Extended Interrupts and Events Controller (EXTI) . . . . . . . . . . . . . . . . . 42  
3.14 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.15 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.16 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.17 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.18 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.19 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.20.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.20.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 46  
3.20.3 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.20.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.20.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.21 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 48  
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.23 Universal synchronous/asynchronous receiver transmitter (USART) . . . 50  
3.24 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 50  
3.25 Serial peripheral interface (SPI1, SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.26 Serial audio interfaces (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.27 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.28 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.28.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.28.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.1.1  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4/165  
DS11929 Rev 3  
STM32WB55xx  
Contents  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
RF 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 83  
Embedded reset and power control block characteristics . . . . . . . . . . . 83  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Wakeup time from Low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
6.3.10 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.3.11 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
6.3.12 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
6.3.13 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
6.3.15 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
6.3.19 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
6.3.20 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 127  
6.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . . 137  
6.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
6.3.24  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
BAT  
6.3.25 SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . 141  
6.3.26 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
6.3.28 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 143  
DS11929 Rev 3  
5/165  
6
Contents  
STM32WB55xx  
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
7.1  
7.2  
7.3  
7.4  
WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
VFQFPN68 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
7.4.1  
7.4.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 158  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
6/165  
DS11929 Rev 3  
STM32WB55xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32WB55xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . 13  
Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 18  
RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power supply typical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Features over all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
STM32WB55xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32WB55xx CPU1 peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
STM32WB55xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
RF transmitter BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
RF receiver BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RF transmitter 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RF receiver 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
RF 802.15.4 power consumption for VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . . . . . . . . 87  
Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V. . . . . . . . . . . . . 89  
Typical current consumption in Run and Low-power run modes,  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . . 91  
Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . . 91  
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
DS11929 Rev 3  
7/165  
9
List of tables  
STM32WB55xx  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ADC accuracy - Limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ADC accuracy - Limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
ADC accuracy - Limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
ADC accuracy - Limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
BAT  
BAT  
SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
8/165  
DS11929 Rev 3  
STM32WB55xx  
List of tables  
Table 96.  
UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
STM32WB55xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Table 97.  
Table 98.  
Table 99.  
DS11929 Rev 3  
9/165  
9
List of figures  
STM32WB55xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32WB55xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
STM32WB55xx RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32WB55xx external components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
(1)(2)  
STM32WB55xxCx UFQFPN48 pinout  
STM32WB55xxRx VFQFPN68 pinout  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
(1)(2)  
(1)  
Figure 10. STM32WB55xxVx WLCSP100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Figure 15. Typical link quality indicator code vs. Rx level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 16. Typical energy detection (T = 27°C, VDD = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 17. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 18. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 19. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 20. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Figure 21. HSI48 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Figure 22. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 23. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Figure 24. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 25. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 26. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Figure 27. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 28. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Figure 29. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 30. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Figure 31. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 32. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 33. VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Figure 34. VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Figure 35. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Figure 36. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Figure 37. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
10/165  
DS11929 Rev 3  
STM32WB55xx  
Introduction  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
®
(a)  
the STM32WB55xx microcontrollers, based on Arm cores  
.
This document should be read in conjunction with the STM32WB55xx reference manual  
(RM0434).  
®
®
®
For information on the Arm Cortex -M4 and Cortex -M0+ cores, refer, respectively, to the  
®
®
Cortex -M4 Technical Reference Manual and to the Cortex -M0+ Technical Reference  
Manual, both available on the www.arm.com website.  
For information on 802.15.4 refer to the IEEE website (www.ieee.org).  
®
For information on Bluetooth refer to www.bluetooth.com.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS11929 Rev 3  
11/165  
69  
 
 
Description  
STM32WB55xx  
2
Description  
The STM32WB55xx multiprotocol wireless and ultra-low-power devices embed a powerful  
®
and ultra-low-power radio compliant with the Bluetooth Low Energy SIG specification v5.0  
®
®
and with IEEE 802.15.4-2011. They contain a dedicated Arm Cortex -M0+ for performing  
all the real-time low layer operation.  
The STM32WB55xx devices are designed to be extremely low-power and are based on the  
®
®
high-performance Arm Cortex -M4 32-bit RISC core operating at a frequency of up to  
®
64 MHz. The Cortex -M4 core features a Floating point unit (FPU) single precision that  
supports all Arm single-precision data-processing instructions and data types. It also  
®
implements a full set of DSP instructions and a memory protection unit (MPU) that  
enhances application security.  
Enhanced inter-processor communication is provided by the IPCC with six bidirectional  
channels. The HSEM provides hardware semaphores used to share common resources  
between the two processors.  
The STM32WB55xx devices embed high-speed memories (Flash memory up to 1 Mbyte,  
up to 256 Kbyte of SRAM), a Quad-SPI Flash memory interface (available on all packages)  
and an extensive range of enhanced I/Os and peripherals.  
Direct data transfer between memory and peripherals and from memory to memory is  
supported by fourteen DMA channels with a full flexible channel mapping by the DMAMUX  
peripheral.  
The STM32WB55xx devices embed several mechanisms for embedded Flash memory and  
SRAM: readout protection, write protection and proprietary code readout protection.  
®
Portions of the memory can be secured for Cortex -M0+ exclusive access.  
The two AES encryption engines, PKA and RNG enable lower layer MAC and upper layer  
cryptography. A customer key storage feature may be used to keep the keys hidden.  
The devices offer one fast 16-bit ADC and two ultra-low-power comparators associated with  
a high accuracy reference voltage generator  
The STM32WB55xx devices embed a low-power RTC, one advanced 16-bit timer, one  
general-purpose 32-bit timer, two general-purpose 16-bit timers, and two 16-bit low-power  
timers.  
In addition, up to 28 capacitive sensing channels are available. The devices also embed an  
integrated LCD driver up to 8x40 or 4x44, with internal step-up converter.  
They also feature standard and advanced communication interfaces:  
one USART (ISO 7816, IrDA, Modbus and Smartcard mode)  
one Low Power UART (LPUART)  
two I2C (SMBus/PMBus)  
two SPI (up to 32 MHz)  
one Serial Audio Interface with two channels and three PDMs (SAI)  
one USB 2.0 FS device with embedded crystal-less oscillator, supporting BCD and  
LPM  
one Quad-SPI with Execute in Place (XIP) capability  
12/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Description  
The STM32WB55xx operate in the -40 to +105 °C (+125 °C junction) temperature range  
from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes enables  
the design of low-power applications.  
The STM32WB55xx integrate a high efficiency SMPS step-down converter with automatic  
bypass mode capability when the V falls below V  
(x=1, 2, 3, 4) voltage level (default  
DD  
BORx  
is 2.0 V). It includes independent power supplies for analog input for ADC and comparators,  
as well as a 3.3 V dedicated supply input for USB.  
A V  
dedicated supply allows the devices to back up the LSE 32.768KHz oscillator, the  
BAT  
RTC and the backup registers, thus enabling the STM32WB55xx to supply these functions  
even if the main V is not present through a CR2032-like battery, a Supercap or a small  
DD  
rechargeable battery.  
The STM32WB55xx family offers three packages, from 48 to 100 pins.  
Table 2. STM32WB55xx family device features and peripheral counts  
Feature  
STM32WB55Cx  
STM32WB55Rx  
STM32WB55Vx  
Flash memory density  
SRAM density  
BLE  
256 KB 512 KB 1 MB 256 KB 512 KB 1 MB 256 KB 512 KB 1 MB  
128 KB 256 KB 256 KB 128 KB 256 KB 256 KB 128 KB 256 KB 256 KB  
V5.0 (2 Mbps)  
802.15.4  
Yes  
1 (16 bits)  
Advanced  
General purpose  
2 (16 bits) + 1 (32 bits)  
2 (16 bits)  
Timers  
Low power  
SysTick  
SPI  
1
1
2
I2C  
2
USART(1)  
LPUART  
SAI  
1
Comm  
interface  
1
2 channels  
USB FS  
QSPI  
Yes  
1
RTC  
1
Tamper pin  
Wakeup pin  
1
3
5
2
Yes, 4x13  
30  
LCD, COMxSEG  
GPIOs  
Yes, 7x23 or 4x26  
Yes, 8x40 or 4x44  
49  
72  
Capacitive sensing  
1x4  
3x4  
7x4  
16-bit ADC  
13 channels  
19 channels  
Number of channels  
(incl. 3 internal)  
(incl. 3 internal)  
Internal Vref  
No  
Yes  
Analog comparator  
2
DS11929 Rev 3  
13/165  
69  
 
 
Description  
STM32WB55xx  
Table 2. STM32WB55xx family device features and peripheral counts (continued)  
Feature  
STM32WB55Cx  
STM32WB55Rx  
STM32WB55Vx  
Max CPU frequency  
Operating temperature  
Operating voltage  
64 MHz  
Ambient operating temperature:-40 to +105 °C  
Junction temperature: -40 to 125 °C  
1.71 to 3.6 V  
UFQFPN48  
7 mm x 7 mm  
0.5 mm pitch, solder pad  
VFQFPN68  
8 mm x 8 mm  
0.4 mm pitch, solder pad  
WLCSP100  
0.4 mm pitch  
Package  
1. USART peripheral can be used as SPI.  
14/165  
DS11929 Rev 3  
STM32WB55xx  
Description  
Figure 1. STM32WB55xx block diagram  
$3%ꢅDV\QFKURQRXV  
5&&ꢆ  
19,&  
%/(ꢅ,3  
ꢋꢂꢆꢐꢁꢄꢐꢀ  
/6,ꢆ  
ꢊꢆꢅN+]  
%/(ꢅꢏꢅꢋꢂꢆꢐꢁꢄꢐꢀ  
+6(ꢆ  
ꢊꢆꢅ0+]  
&RUWH[ꢉ0ꢂꢑ  
ꢅ5)ꢅ,3  
:.83ꢅ  
%/(  
ꢊꢆꢅN%ꢅ65$0ꢆDꢅ  
%DFNXSꢅ0HPRU\  
/6(  
57&ꢆ  
,ꢉ:'*  
7$03  
ꢊꢆꢅN+]  
ꢊꢆꢅN%ꢅ65$0ꢆEꢅ  
0HPRU\  
/6,ꢁ  
ꢊꢆꢅN+]  
3.$ꢅꢑꢅ5$0  
+6(0  
51*  
(70  
19,&  
3//ꢁ  
+6,ꢅꢁꢌ  
ꢁꢍꢅ0+]  
,3&&  
&RUWH[ꢉ0ꢀꢅ  
ꢒ'63ꢓ  
3//ꢆ  
06,ꢅXSꢅWR  
ꢀꢋꢅ0+]  
5&&ꢅꢑꢅ&66  
3:5  
)38  
038  
3RZHUꢅ6XSSO\ꢅ325ꢏ  
3'5ꢏ%25ꢏ39'ꢏ$9'  
463,ꢅꢉꢅ;,3  
(;7,  
&56  
5&ꢀꢋ  
'0$ꢁꢅꢃꢅFKDQQHOV  
'0$ꢆꢅꢃꢅFKDQQHOV  
'0$08;  
$(6ꢆ  
86%ꢅ)6ꢅꢑꢅ5$0  
::'*  
ꢁꢈꢆꢅ.%ꢅ65$0ꢁ  
0HPRU\  
'%*  
7HPSꢅꢒR&ꢓꢅVHQVRU  
*3,2ꢅ3RUWV  
$ꢇꢅ%ꢇꢅ&ꢇꢅ'ꢇꢅ(ꢇꢅ+  
63,ꢁ  
63,ꢆ  
$'&ꢁꢅꢁꢍꢉELWꢅ8/3  
ꢀꢐꢆꢍꢅ0VSVꢅꢏꢅꢁꢈꢅFK  
&5&  
76&  
/&'  
,ꢆ&ꢁ  
$(6ꢁ  
/37,0ꢁ  
/37,0ꢆ  
6$,ꢁ  
,ꢆ&ꢊ  
$3%  
7,0ꢁ  
/38$57ꢁ  
7,0ꢆ  
86$57ꢁ  
6<6&)*ꢏ&203ꢏ95()  
7,0ꢁꢍꢇꢅ7,0ꢁꢃ  
06ꢀꢁꢀꢂꢃ9ꢄ  
DS11929 Rev 3  
15/165  
69  
 
 
Functional overview  
STM32WB55xx  
3
Functional overview  
3.1  
Architecture  
The STM32WB55xx multiprotocol wireless devices embed a BLE and an 802.15.4  
RF subsystem that interfaces with a generic microcontroller subsystem using an Arm  
Cortex -M4 CPU (called CPU1) on which the host application resides.  
®
®
The RF subsystem is composed of a RF Analog Front end, BLE and 802.15.4 digital MAC  
®
®
blocks as well as of a dedicated Arm Cortex -M0+ microcontroller (called CPU2) plus  
some proprietary peripherals. The RF subsystem performs all of the BLE and 802.15.4 low  
layer stack, reducing the interaction with the CPU1 to high level exchanges.  
Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU  
(CPU1):  
Flash memories  
SRAM1, SRAM2a and SRAM2b (SRAM2a can be retained in Standby mode)  
Security peripherals (RNG, AES1, PKA)  
Clock RCC  
Power control (PWR)  
The communication and the sharing of peripherals between the RF subsystem and the  
®
Cortex -M4 CPU is performed through a dedicated Inter Processor Communication  
Controller (IPCC) and semaphore mechanism (HSEM).  
3.2  
Arm® Cortex®-M4 core with FPU  
®
®
The Arm Cortex -M4 with FPU processor is a processor for embedded systems. It has  
been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced response to interrupts.  
®
®
The Arm Cortex -M4 with FPU 32-bit RISC processor features exceptional  
®
code-efficiency, delivering the high-performance expected from an Arm core in the  
memory size usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions which allow efficient signal processing and  
complex algorithm execution.  
Its single precision FPU speeds up software development by using metalanguage  
development tools, while avoiding saturation.  
®
®
With its embedded Arm core, the STM32WB55xx family is compatible with all Arm tools  
and software.  
Figure 1 shows the general block diagram of the STM32WB55xx family devices.  
16/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Functional overview  
3.3  
Memories  
3.3.1  
Adaptive real-time memory accelerator (ART Accelerator™)  
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-  
®
®
standard Arm Cortex -M4 processors. It balances the inherent performance advantage of  
®
®
the Arm Cortex -M4 over Flash memory technologies, that normally require the processor  
to wait for the Flash memory at higher frequencies.  
To release the processor near 80 DMIPS performance at 64 MHz, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 64 MHz.  
3.3.2  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to 8 protected areas that can in turn be divided  
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4  
gigabytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code has to be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.3.3  
Embedded Flash memory  
STM32WB55xx devices feature up to 1 Mbyte of embedded Flash memory available for  
storing programs and data, as well as some customer keys.  
Flexible protections can be configured thanks to option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels are available:  
Level 0: no readout protection  
Level 1: memory readout protection: the Flash memory cannot be read from or  
written to if either debug features are connected, boot in SRAM or bootloader is  
selected  
®
®
Level 2: chip readout protection: debug features (Cortex -M4 and Cortex -M0+  
JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG  
fuse). This selection is irreversible.  
DS11929 Rev 3  
17/165  
69  
 
 
 
 
 
 
Functional overview  
STM32WB55xx  
Table 3. Access status vs. readout protection level and execution modes  
Debug, boot from SRAM or boot  
from system memory (loader)  
User execution  
Write  
Protection  
level  
Area  
Read  
Erase  
Read  
Write  
Erase  
1
2
1
2
1
2
1
2
1
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
N/A  
Yes  
N/A  
Yes  
N/A  
No  
No  
N/A  
No  
No  
N/A  
No  
Main  
memory  
No  
System  
memory  
No  
No  
N/A  
Yes  
N/A  
No  
N/A  
Yes  
Yes  
No(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Option  
bytes  
No(1)  
N/A(2)  
N/A  
N/A  
N/A(2)  
N/A  
No(2)  
N/A  
Backup  
registers  
N/A  
No  
N/A  
No  
Yes(2)  
SRAM2a  
SRAM2b  
Yes  
N/A  
N/A  
1. The option byte can be modified by the RF subsystem.  
2. Erased when RDP changes from Level 1 to Level 0.  
Write protection (WRP): the protected area is protected against erasing and  
programming. Two areas can be selected, with 4 Kbyte granularity.  
Proprietary code readout protection (PCROP): two parts of the Flash memory can be  
protected against read and write from third parties. The protected area is execute-only:  
it can only be reached by the STM32 CPU, as an instruction code, while all other  
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.  
Two areas can be selected, with 2 KByte granularity. An additional option bit  
(PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP  
protection is changed from Level 1 to Level 0.  
A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be  
accessed by the host CPU1.  
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:  
single error detection and correction  
double error detection  
the address of the ECC fail can be read in the ECC register  
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis.  
A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.  
18/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
3.3.4  
Embedded SRAM  
STM32WB55xx devices feature up to 256 KB of embedded SRAM, split in three blocks:  
SRAM1: 192 KB mapped at address 0x2000 0000  
SRAM2a: 32 KB located at address 0x2003 0000 (contiguous to SRAM1) also mirrored  
at 0x1000 0000, with hardware parity check (this SRAM can be retained in Standby  
mode)  
SRAM2b: 32 KB located at address 0x2003 8000 (contiguous with SRAM2a) and  
mirrored at 0x1000 8000 with hardware parity check  
SRAM2a and SRAM2b can be write-protected, with 1 KB granularity, A section of the  
SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the  
host CPU1.  
The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock  
speeds.  
3.4  
Security and safety  
The STM32WB55xx contains many security blocks both for the BLE or IEEE 802.14.5 and  
the Host application.  
It includes:  
Customer storage of the BLE and 802.14.5 Keys  
Secure Flash memory partition for RF subsystem only access  
Secure SRAM partition, that can be accessed only by the RF subsystem  
True Random Number Generator (RNG)  
Advance Encryption Standard hadware accelerators (AES-128bit and AES-256bit,  
supporting chaining modes ECB, CBC, CTR, GCM, GMAC, CCM)  
Private Key Acceleration (PKA) including:  
Modular arithmetic including exponentiation with maximum modulo size of 3136  
bits  
Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA  
verification with maximum modulo size of 521 bits  
Cyclic redundancy check calculation unit (CRC)  
A specific mechanism is in place to ensure that all the code executed by the RF subsystem  
CPU2 can be secure, whatever the Host application. For the AES1 a customer key can be  
managed by the CPU2 and used by the CPU1 to encrypt/decrypt data.  
3.5  
Boot modes and FW update  
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
DS11929 Rev 3  
19/165  
69  
 
 
 
 
Functional overview  
STM32WB55xx  
The STM32WB55xx always boot on CPU1 core. The embedded bootloader code makes it  
possible to boot from various peripherals:  
USB  
UART  
I2C  
SPI  
Secure Firmware update (especially BLE and 802.15.4) from system boot and over the air is  
provided.  
3.6  
RF subsystem  
®
The STM32WB55xx embed an ultra-low power multi-standard radio Bluetooth Low Energy  
®
(BLE) and 802.15.4 network processor, compliant with Bluetooth specification v5.0 and  
®
IEEE 802.15.4-2011. The BLE features 1 Mbps and 2 Mbps transfer rates, supports  
®
multiple roles simultaneously acting at the same time as Bluetooth Low Energy sensor and  
hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol, thus  
ensuring a secure connection.  
®
®
The Bluetooth Low Energy stack and 802.15.4 Low Level layer run on an embedded Arm  
®
Cortex -M0+ core (CPU2). The stack is stored on the embedded Flash memory, which is  
also shared with the Arm Cortex -M4 (CPU1) application, making it possible in-field stack  
update.  
®
®
3.6.1  
RF front-end block diagram  
The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF  
architecture in Rx mode.  
Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna  
(single ended connection, impedance close to 50 ). The natural bandpass behavior of the  
internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band  
interferer rejection.  
In Transmit mode, the maximum output power is user selectable through the programmable  
LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean  
power ramp-up.  
In receive mode the circuit can be used in standard high performance or in reduced power  
consumption (user programmable). The Automatic Gain Control (AGC) is able to reduce the  
chain gain at both RF and IF locations, for optimized interferers rejection. Thanks to the use  
of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent  
linearity can be achieved.  
The bill of material is reduced thanks to the high degree of integration. The radio frequency  
source is synthesized form an external 32 MHz crystal that does not need any external  
trimming capacitor network thanks to a dual network of user programmable integrated  
capacitors.  
20/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Functional overview  
Figure 2. STM32WB55xx RF front-end block diagram  
7LPHUꢅDQGꢅ3RZHUꢅ  
FRQWURO  
$*&  
(;7B  
3$B7;  
5)ꢅFRQWURO  
*
*
,QWHUUXSW  
%/(ꢅ  
%3ꢅ  
/1$  
PRGXODWRU  
:DNHXS  
ILOWHU  
%/(ꢅ  
FRQWUROOHU  
$+%  
%/(ꢅ  
GHPRGXODWRU  
$3%  
$3%  
5)ꢁ  
ꢋꢂꢆꢐꢁꢄꢐꢀꢅ  
PRGXODWRU  
ꢋꢂꢆꢐꢁꢄꢐꢀꢅ  
0$&  
,QWHUUXSW  
:DNHXS  
ꢋꢂꢆꢐꢁꢄꢐꢀꢅ  
GHPRGXODWRU  
3//  
6HHꢅ  
QRWHV  
$GMXVW  
$GMXVW  
+6(  
7ULPPHGꢅ  
ELDV  
0D[ꢅ3$ꢅ  
OHYHO  
6036  
/'2  
/'2  
/'2  
9''6036 9666036 9/;6036  
26&B287  
9)%6036  
9''5)  
26&B,1  
ꢊꢆꢅ0+]  
1RWHVꢔꢅ  
ꢉꢅ8)4)31ꢀꢋꢅDQGꢅ9)4)31ꢍꢋꢔꢅ966ꢅWKURXJKꢅH[SRVHGꢅSDGꢇꢅDQGꢅ9665)ꢅSLQꢅPXVWꢅEHꢅFRQQHFWHGꢅWRꢅJURXQGꢅSODQH  
ꢉꢅ:/&63ꢁꢂꢂꢔꢅ9665)ꢅSLQVꢅPXVWꢅEHꢅFRQQHFWHGꢅWRꢅJURXQGꢅSODQH  
06ꢀꢄꢀꢃꢃ9ꢄ  
3.6.2  
BLE general description  
®
The BLE block is a master/slave processor, compliant with Bluetooth specification 5.0  
standard (2 Mbps).  
®
It integrates a 2.4 GHz RF transceiver and a powerful Cortex -M0+ core, on which a  
®
complete power-optimized stack for Bluetooth Low Energy protocol runs, providing  
master / slave role support  
GAP: central, peripheral, observer or broadcaster roles  
ATT/GATT: client and server  
SM: privacy, authentication and authorization  
L2CAP  
Link Layer: AES-128 encryption and decryption  
DS11929 Rev 3  
21/165  
69  
 
 
 
 
Functional overview  
STM32WB55xx  
®
In addition, according to Bluetooth specification v5.0, the BLE block provides:  
Multiple roles simultaneously support  
Master/slave and multiple roles simultaneously  
LE Data Packet Length Extension (making it possible to reach 800 kbps at application  
level)  
LE Privacy 1.2  
LE Secure Connections  
Flexible Internet Connectivity Options  
High data rate (2 Mbps)  
The device allows the applications to meet the tight peak current requirements imposed by  
the use of standard coin cell batteries. When the high efficiency embedded SMPS step-  
down converter is used, the RF front end consumption (I  
output power (+6 dBm).  
) is only 8.1 mA at the highest  
tmax  
The power efficiency of the subsystem is optimized: while running with the radio and the  
®
applicative cores simultaneously using the SMPS, the Cortex -M4 core consumption  
reaches 53 µA / MHz in active mode.  
Ultra-low-power sleep modes and very short transition time between operating modes result  
in very low average current consumption during real operating conditions, resulting in longer  
battery life.  
The BLE block integrates a full bandpass balun, thus reducing the need for external  
components.  
®
The link between the Cortex -M4 application processor (CPU1) running the application, and  
®
the BLE stack running on the dedicated Cortex -M0+ (CPU2) is performed through a  
normalized API, using a dedicated Inter Processor Communication Controller.  
22/165  
DS11929 Rev 3  
STM32WB55xx  
Functional overview  
3.6.3  
802.15.4 general description  
The STM32WB55xx embed a dedicated 802.15.4 Hardware MAC  
Support for 802.15.4 release 2011  
Advanced MAC frame filtering; hardwired firewall: Programmable filters based on  
source/destination addresses, frame version, security enabled, frame type  
256-byte RX FIFO; Up to 8 frames capacity, additional frame information (timing, mean  
RSSI,LQI)  
128-byte TX FIFO with retention  
Content not lost, retransmissions possible under CPU2 control  
Automatic frame Acknowledgment, with programmable delay  
Advanced channel access features  
Full CSMA-CA support  
Superframe timer  
Beaconing support (require LSE),  
Flexible TX control with programmable delay  
Configuration registers with retention available down to Standby mode for  
software/auto-restore  
Autonomous Sniffer, Wakeup based on timer or CPU2 request  
Automatic frame transmission/reception/sleep periods, Interrupt to the CPU2 on  
particular events  
3.6.4  
RF pin description  
The RF block contains dedicated pins, listed in Table 4.  
:
Table 4. RF pin list  
Name  
Type  
Description  
RF1  
RF Input/output, must be connected to the antenna through a low pass matching network  
OSC_OUT  
OSC_IN  
I/O  
32 MHz main oscillator, also used as HSE source  
EXT_PA_TX  
External PA transmit control  
VDDRF  
VDD Dedicated supply, must be connected to VDD  
VSS To be connected to GND  
VSSRF(1)  
1. On packages with exposed pad, this pad must be connected to GND plane for correct RF operation.  
3.6.5  
Typical RF application schematic  
The schematic in Figure 3 and the external components listed in Table 4 are purely  
indicative. For more details refer to the “Reference design” provided in separate documents.  
DS11929 Rev 3  
23/165  
69  
 
 
 
 
Functional overview  
STM32WB55xx  
Figure 3. STM32WB55xx external components for the RF part  
26&B,1  
26&B287  
9''5)  
;ꢁ  
ꢊꢆꢅ0+]  
9''  
&ꢁ  
$QWHQQD  
&Iꢆ  
9665)  
670ꢊꢆ:%ꢄꢄ[[  
ꢒLQFOXGLQJꢅH[SRVHGꢅSDGꢓ  
/Iꢁ  
&Iꢁ  
5)ꢁ  
$QWHQQDꢅILOWHU  
06ꢀꢁꢀꢂꢋ9ꢊ  
Table 5. Typical external components  
Description  
Component  
Value  
C1  
X1  
Decoupling capacitance for RF  
32 MHz crystal(1)  
100 nf // 100 pF  
32 MHz  
Antenna filter  
Antenna  
Antenna filter and matching network  
2.4 GHz band antenna  
Refer to AN5165  
-
1. e.g. NDK refernce: NX2016SA 32 MHz EXS00A-CS06654.  
3.7  
Power supply management  
3.7.1  
Power supply distribution  
The device integrate an SMPS step-down converter to improve low power performance  
when the V voltage is high enough. This converter has an intelligent mode that  
DD  
automatically enters in bypass mode when the V voltage falls below a specific BORx  
DD  
(x = 1, 2, 3 or 4) voltage.  
By default, at Reset the SMPS is in bypass mode.  
The device can be operated without the SMPS by just wiring its output to V . This is the  
DD  
case for applications where the voltage is low, or where the power consumption is not  
critical.  
24/165  
DS11929 Rev 3  
 
 
 
 
 
 
STM32WB55xx  
Functional overview  
Figure 4. Power distribution  
9''  
9''  
9''6036  
9''6036  
9/;6036  
9)%6036  
6036  
6036  
ꢒQRWꢅXVHGꢓ  
6036ꢅPRGHꢅRU  
%<3$66ꢅPRGH  
9/;6036  
/ꢁ  
/35  
/35  
9)%6036  
&ꢆ  
5)5  
05  
5)5  
05  
6036ꢅFRQILJXUDWLRQ  
/'2ꢅFRQILJXUDWLRQ  
06ꢀꢁꢀꢂꢈ9ꢀ  
Table 6. Power supply typical components  
Description  
Component  
Value  
C2  
SMPS output capacitor(1)  
4.7 µF  
2.2 µH  
10 µH  
For 8 MHz(2)  
For 4 MHz(3)  
L1  
SMPS inductance  
1. e.g. GRM155R60J475KE19.  
2. e.g. Wurtz 74479774222.  
3. e.g. Murata LQM21FN100M70L.  
The SMPS can also be switched On or set in bypass mode at any time by the application  
software, for example when very accurate ADC measurement are needed.  
3.7.2  
Power supply schemes  
The STM32WB55xx devices have different voltage supplies (see Figure 6) and can operate  
within the following voltage ranges:  
V
= 1.71 V to 3.6 V: external power supply for I/Os (V  
), the internal regulator and  
DD  
DDIO  
system functions such as RF, SMPS, reset, power management and internal clocks. It  
is provided externally through VDD pins. V  
connected to VDD pins.  
and V  
must be always  
DDRF  
DDSMPS  
V
= 1.62 V (ADC/COMPs) to 3.6 V: external analog power supply for ADC,  
DDA  
comparators and voltage reference buffer. The V  
voltage level can be independent  
DDA  
from the V voltage. When not used V  
should be connected to V  
.
DD  
DDA  
DD  
V
= 3.0 V to 3.6 V: external independent power supply for USB transceivers.  
DDUSB  
When not used V  
should be connected to V  
.
DDUSB  
DD  
V
= 2.5 V to 3.6 V: the LCD controller can be powered either externally through the  
LCD  
VLCD pin, or internally from an internal voltage generated by the embedded step-up  
converter. This converter can generate a V  
2.0 V.  
voltage up to 3.6 V if V is higher than  
LCD  
DD  
DS11929 Rev 3  
25/165  
69  
 
 
 
 
 
 
Functional overview  
STM32WB55xx  
During power up/ down, the following power sequence requirements must be respected:  
When V is below 1 V, other power supplies (V  
, V  
, V  
), must remain  
LCD  
DD  
DDA  
DDUSB  
below V + 300 mV  
DD  
When V is above 1 V, all power supplies are independent.  
DD  
Figure 5. Power-up/down sequence  
9
ꢊꢐꢍ  
ꢒꢁꢓ  
9'';  
9''  
9%25ꢂ  
ꢂꢐꢊ  
3RZHUꢉRQ  
,QYDOLGꢅVXSSO\ꢅDUHD  
1. VDDX refers to any power supply among VDDA, VDDUSB, VLCD  
2SHUDWLQJꢅPRGH  
3RZHUꢉGRZQ  
WLPH  
9'';ꢅꢕꢅ9''ꢅꢑꢅꢊꢂꢂꢅP9  
9'';ꢅLQGHSHQGHQWꢅIURPꢅ9''  
06Yꢀꢃꢀꢈꢂ9ꢁ  
.
During the power down phase, V can temporarily become lower than other supplies only  
DD  
if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling  
capacitors to be discharged with different time constants during the power down transient  
phase.  
Note:  
V
, V  
and V must be wired together, so they follow the same voltage  
DDSMPS  
DD  
DDRF  
sequence.  
26/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
Figure 6. Power supply overview  
,QWHUUXSWLEOHꢅGRPDLQꢅꢒ9''ꢁꢆ,  
2QꢅGRPDLQꢅꢒ9''ꢁꢆ2  
ꢒ&38ꢁꢇꢅ&38ꢆꢇꢅ  
SHULSKHUDOVꢇꢅ  
6\V&RQILJꢇꢅ$,(&ꢇꢅ  
5&&ꢇꢅ3ZU&WUOꢇꢅ  
/37,0ꢇꢅ/386$57  
,2  
ORJLF  
65$0ꢁꢇꢅ  
,2V  
65$0ꢆEꢓ  
3RZHUꢅ  
VZLWFK  
3RZHUꢅ  
VZLWFK  
966  
966  
966  
9)%6036  
9/;6036  
9''6036  
9666036  
05  
6036  
/35  
5)5  
9''5)  
5)ꢅGRPDLQ  
%DFNXSꢅGRPDLQ  
5DGLR  
9%.3ꢁꢆ  
65$0ꢆD  
3RZHUꢅVZLWFK  
9665)  
966  
966  
ꢒLQFOXGLQJꢅH[SRVHGꢅSDGꢓ  
:DNHXSꢅGRPDLQꢅꢒ9'',2  
+6,ꢇꢅ+6(ꢁꢇꢅ  
ꢆ[3//ꢇꢅ/6,ꢁꢇꢅ  
/6,ꢆꢇꢅ,:'*ꢇꢅ  
5)SF  
9''  
3RZHUꢅVZLWFK  
96:  
9%$7  
966  
6ZLWFKꢅGRPDLQꢅꢒ96:  
/6(ꢇꢅ57&ꢇꢅꢅ  
EDFNXSꢅ  
UHJLVWHUV  
9%$7ꢅꢅ  
,2V  
,2  
ORJLF  
966  
966  
9/&'  
9''$  
/&'  
$QDORJꢅGRPDLQ  
5()B%8)  
$'&  
95()ꢑ  
 
 
95()ꢑ  
95()ꢉ  
966$  
9''86%  
86%ꢅ  
7UDQVFHLYHU  
986%ꢅꢅ  
,2V  
966  
86%ꢅ'RPDLQꢅꢒ986%  
966  
06ꢀꢁꢀꢁꢂ9ꢄ  
DS11929 Rev 3  
27/165  
69  
 
 
Functional overview  
STM32WB55xx  
3.7.3  
Linear voltage regulator  
Three embedded linear voltage regulators supply most of the digital and RF circuitries, the  
main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).  
The MR is used in the Run and Sleep modes and in the Stop 0 mode.  
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is  
also used to supply the SRAM2a in Standby with retention.  
The RFR is used to supply the RF analog part, its activity is automatically managed by  
the RF subsystem.  
All the three regulators are in power-down in Standby and Shutdown modes: the regulator  
output is in high impedance, and the kernel circuitry is powered down thus inducing zero  
consumption.  
The ultralow-power STM32WB55xx supports dynamic voltage scaling to optimize its power  
consumption in run mode. The voltage from the Main Regulator that supplies the logic  
(VCORE) can be adjusted according to the system’s maximum operating frequency.  
There are two voltage and frequency ranges:  
Range 1 with the CPU running up to 64 MHz.  
Range 2 with a maximum CPU frequency of 16 MHz (note that HSE can be active in  
this mode). All peripheral clocks are also limited to 16 MHz.  
The VCORE can also be supplied by the low-power regulator, the main regulator being  
switched off. The system is then in Low-power run mode. In this case the CPU is running at  
up to 2 MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode  
the RF subsystem is not available).  
3.7.4  
Power supply supervisor  
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes  
except Shutdown and ensuring proper operation after power-on and during power down.  
The device remains in reset mode when the monitored supply voltage V is below a  
DD  
specified threshold, without the need for an external reset circuit.  
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected  
through option bytes.The device features an embedded programmable voltage detector  
(PVD) that monitors the V power supply and compares it with the V  
threshold. An  
DD  
PVD  
interrupt can be generated when V drops below the V  
threshold and/or when V is  
DD  
PVD  
DD  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
In addition, the devices embeds a Peripheral Voltage Monitor that compares the  
independent supply voltage V  
functional supply range.  
with a fixed threshold to ensure that the peripheral is in its  
DDA  
Any BOR level can also be used to automatically switch the SMPS step-down converter in  
bypass mode when the V voltage drops below a given voltage level. The mode of  
DD  
operation is selectable by register bit, the BOR level is selectable by option byte.  
3.7.5  
Low-power modes  
The ultra-low-power STM32WB55xx supports eight low-power modes to achieve the best  
compromise between low-power consumption, short startup time, available peripherals and  
available wakeup sources.  
28/165  
DS11929 Rev 3  
 
 
 
 
 
STM32WB55xx  
Functional overview  
By default, the microcontroller is in Run mode, range 1, after a system or a power on Reset.  
It is up to the user to select one of the low-power modes described below:  
Sleep  
In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem,  
continue to operate and can wake up the CPU when an interrupt/event occurs.  
Low-power run  
This mode is achieved with VCORE supplied by the low-power regulator to minimize  
the regulator's operating current. The code can be executed from SRAM or from Flash,  
and the CPU1 frequency is limited to 2 MHz. The peripherals with independent clock  
can be clocked by HSI16. The RF subsystem is not available in this mode and must be  
OFF.  
Low-power sleep  
This mode is entered from the low-power run mode. Only the CPU1 clock is stopped.  
When wakeup is triggered by an event or an interrupt, the system reverts to the  
low-power run mode. The RF subsystem is not available in this mode and must be  
OFF.  
Stop 0, Stop 1 and Stop 2  
Stop mode achieves the lowest power consumption while retaining the content of all  
the SRAM and registers. The LSE (or LSI) is still running.  
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).  
Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode  
to detect their wakeup condition.  
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,  
most of the VCORE domain is put in a lower leakage mode.  
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller  
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator  
remains ON, allowing a very fast wakeup time but with much higher consumption.  
In these modes the RF subsystem can wait for incoming events in all Stop modes 0, 1,  
and 2.  
The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI  
up to 48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem or the  
SMPS is used the exits must be set to HSI16 only. If used, the SMPS is restarted  
automatically.  
Standby  
The Standby mode is used to achieve the lowest power consumption with BOR. The  
internal regulator is switched off so that the VCORE domain is powered off.  
The RTC can remain active (Standby mode with RTC).  
The brown-out reset (BOR) always remains active in Standby mode.  
The state of each I/O during standby mode can be selected by software: I/O with  
internal pull-up, internal pull-down or floating.  
After entering Standby mode, SRAM1, SRAM2b and register contents are lost except  
for registers in the Backup domain and Standby circuitry. Optionally, SRAM2a can be  
retained in Standby mode, supplied by the low-power Regulator (Standby with 32 KB  
SRAM2a retention mode).  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,  
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,  
DS11929 Rev 3  
29/165  
69  
Functional overview  
STM32WB55xx  
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or  
from the RF system wakeup).  
The system clock after wakeup is 16 MHz, derived from the HSI16. If used, the SMPS  
is restarted automatically.  
In this mode the RF can be used.  
Shutdown  
The Shutdown mode allows to achieve the ultimate lowest power consumption. The  
internal regulator is switched off so that the VCORE domain is powered off.  
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).  
The BOR is not available in Shutdown mode. No power voltage monitoring is possible  
in this mode, therefore the switch to Backup domain is not supported.  
SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the  
Backup domain.  
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin  
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic  
wakeup, timestamp, tamper).  
The system clock after wakeup is 4 MHz, derived from the MSI.  
In this mode the RF is no longer operational.  
When the RF subsystem is active, it will change the power state according to its needs  
(Run, Stop, Standby). This operation is transparent for the CPU1 host application and  
managed by a dedicated HW state machine. At any given time the effective power state  
reached is the higher one needed by both the CPU1 and RF sub-system.  
Table 7 summarizes the peripheral features over all available modes. Wakeup capability is  
detailed in gray cells.  
-
(1)  
Table 7. Features over all modes  
Stop0/Stop1  
Stop 2  
Standby Shutdown  
Peripheral  
-
-
-
-
CPU1  
CPU2  
Y
Y
-
-
Y
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Radio System  
(BLE, 802.15.4)  
Y
Y(2)  
Y
-
-
Y
Y
Y
Y
Y(3) Y(3)  
Flash memory (up to 1 MB)  
SRAM1 (up to 192 KB)  
SRAM2a (32 KB)  
SRAM2b (32 KB)  
Quad-SPI  
Y (4)  
Y
Y
Y(6)  
Y(6)  
Y(6)  
O
O(5) O(5)  
R
R
R
R
-
-
-
-
-
-
-
R
R
R
R
-
-
-
-
-
-
-
R
-
-
-
-
-
-
R
-
-
-
-
-
-
-
R
-
Y
Y
Y
O
Y
Y(6)  
Y(6)  
Y(6)  
O
-
R(7)  
-
Y
-
-
Y
-
-
O
-
-
-
Backup Registers  
Y
Y
Y
R
R
R
R
R
30/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
Standby Shutdown  
(1)  
Table 7. Features over all modes (continued)  
Stop0/Stop1 Stop 2  
Peripheral  
-
-
-
-
Brown-out reset (BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
-
-
Programmable Voltage  
Detector (PVD)  
O
O
O
O
O
O
O
O
Peripheral Voltage Monitor  
PVMx (x=1, 2)  
O
O
O
O
O
O
O
O
-
-
-
-
-
SMPS  
O
O
O
O
O
O
O
O
O(8)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DMAx (x = 1, 2)  
High Speed Internal  
(HSI16)  
O
O
O
O
O
O
O
-
O
-
O(9)  
-
-
-
O(9)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Oscillator HSI48  
-
-
-
-
High Speed External  
(HSE)(10)  
O
O
Low Speed Internal  
(LSI1 or LSI2)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
O
O
-
-
-
-
O
O
-
-
-
-
-
O
-
-
-
-
-
O
-
Low Speed External (LSE)  
Multi-Speed Internal  
(MSI)(11)  
48  
24  
48  
PLLx VCO maximum  
frequency  
344 128  
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Clock Security System  
(CSS)  
O
O
O
O(12)  
O
O(12)  
Clock Security System on  
LSE  
O
O
3
O
O
3
O
O
3
O
O
3
O
O
3
O
O
O
O
O
3
O
O
O
O
O
3
O
O
O
-
-
-
RTC / Auto wakeup  
O
3
O
O
O
3
Number of RTC Tamper  
pins  
LCD  
O
O
O
O
O
-
O
-
O
-
O
O
O
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USB FS  
USART1  
O
-
O
O
O
O
O(13) O(13)  
-
-
Low-power UART  
(LPUART1)  
O
O
O
O(13) O(13) O(13) O(13)  
O(14) O(14)  
O(14) O(14) O(14) O(14)  
-
-
-
-
-
I2C1  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3  
SPIx (x=1, 2)  
-
-
-
-
DS11929 Rev 3  
31/165  
69  
Functional overview  
STM32WB55xx  
(1)  
Table 7. Features over all modes (continued)  
Stop0/Stop1 Stop 2  
Standby Shutdown  
Peripheral  
-
-
-
-
SAI1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC1  
VREFBUF  
COMPx (x=1, 2)  
Temperature sensor  
O
O
-
-
-
-
O
-
O
-
O
-
Timers TIMx  
(x=1, 2, 16, 17)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Low-power Timer 1  
(LPTIM1)  
O
O
O
O
O
O
O
-
O
-
Low-power Timer 2  
(LPTIM2)  
-
-
Independent watchdog  
(IWDG)  
O
O
O
O
Window watchdog  
(WWDG)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SysTick timer  
Touch sensing controller  
(TSC)  
True random number  
generator (RNG)  
O
-
O
-
-
-
-
-
-
-
-
-
-
-
AES2 hardware accelerator  
CRC calculation unit  
IPCC  
O
O
O
O
O
O
-
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
HSEM  
-
-
5
pins  
5
pins  
(15)  
(16)  
GPIOs  
O
O
O
O
O
O
O
O
-
1. Legend: Y = Yes (Enabled), O = Optional (Disabled by default, can be enabled by software), R = Data retained,  
- = Not available.  
2. Bluetooth® Low Energy not possible in this mode.  
3. Standby with SRAM2a Retention mode only.  
4. Flash memory programming only possible in Range 1 voltage, not in Range 2 and not in Low Power mode.  
5. The Flash memory can be configured in Power-down mode. By default, it is not in Power-down mode.  
6. The SRAM clock can be gated on or off.  
7. SRAM2a content is preserved when the bit RRS is set in PWR_CR3 register.  
8. Stop 0 only. SMPS is automatically switched to Bypass or Open mode during Low power operation.  
32/165  
DS11929 Rev 3  
 
STM32WB55xx  
Functional overview  
9. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by  
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not  
need it anymore.  
10. The HSE can be used by the RF subsystem according with the need to perform RF operation (Tx or Rx).  
11. MSI maximum frequency.  
12. In case RF will be used and HSE will fail.  
13. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or  
received frame event.  
14. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
15. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.  
16. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when  
exiting the Shutdown mode.  
DS11929 Rev 3  
33/165  
69  
Table 8. STM32WB55xx modes overview  
Mode  
Regulator CPU1  
Flash  
SRAM  
Clocks  
DMA and Peripherals  
Wakeup source  
Consumption(1) Wakeup time(2)  
Range 1  
Yes  
Range2  
All  
107 µA/MHz  
N/A  
100 µA/MHz  
Run  
ON(3)(4)  
ON  
Any  
Any  
N/A  
All except RNG and USB-FS(5)  
LPRun  
Sleep  
LPR  
Yes  
No  
No  
ON(3)  
ON(3)  
ON(3)  
ON  
except All except RF, RNG and USB-FS  
PLL  
N/A  
103 µA/MHz  
15.33 µs  
9 cycles  
9 cycles  
Range 1  
Range 2  
All  
41 µA/MHz  
46 µA/MHz  
Any interrupt  
or event  
ON(6)  
ON(6)  
Any  
All except RNG and USB-FS(5)  
Any  
Any interrupt  
or event  
LPSleep  
LPR  
All except RF, RNG and USB-FS  
except  
PLL  
45 µA/MHz  
Reset pin, all I/Os,  
RF, BOR, PVD, PVM  
RF(5), BOR, PVD, PVM  
RTC, LCD, IWDG  
Range 1  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1  
COMPx (x=1, 2)  
LSE,  
USART1(9)  
LSI,  
Stop 0  
No  
OFF  
ON  
100 µA  
1.7 µs  
HSE(7)  
,
LPUART1(9)  
I2Cx (x=1, 3)(10)  
LPUART1  
HSI16(8)  
Range 2  
I2Cx (x=1, 3)  
LPTIMx (x=1, 2)  
USB  
LPTIMx (x=1, 2), SMPS  
All other peripherals are frozen.  
Reset pin, all I/Os  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1(13)  
LPUART1(13)  
I2Cx (x=1, 3)(14)  
LSE,  
LSI,  
9.2 µA w/o RTC  
9.6 µA w RTC  
Stop 1  
LPR  
No  
OFF  
ON  
4.7 µs  
HSE(7)  
,
HSI16(8)  
LPUART1  
I2Cx (x=1, 3)  
LPTIMx (x=1, 2)  
USB  
LPTIMx (x=1, 2)  
All other peripherals are frozen.  
 
 
Table 8. STM32WB55xx modes overview (continued)  
Mode  
Regulator CPU1  
Flash  
SRAM  
Clocks  
DMA and Peripherals  
Wakeup source  
Consumption(1) Wakeup time(2)  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1(13)  
Reset pin, all I/Os  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
LPUART1  
1.85 µA w/o RTC  
5.55 µs  
LSE,  
LSI  
Stop 2  
LPR  
No  
OFF  
ON  
LPUART1(13)  
2.1 µA w RTC  
I2C3(10)  
I2C3  
LPTIM1  
LPTIM1  
All other peripherals are frozen.  
RF, BOR, RTC, IWDG  
0.32 µA w/o RTC  
0.6 µA w RTC  
SRAM2a  
ON(11)  
LPR  
OFF  
RF, Reset pin  
5 I/Os (WKUPx)(12)  
BOR, RTC, IWDG  
All other peripherals are  
powered off.  
LSE,  
LSI  
Standby  
No  
No  
OFF  
OFF  
TBD  
TBD µA w/o RTC  
I/O configuration can be floating,  
pull-up or pull-down  
OFF  
TBD µA w RTC  
RTC  
All other peripherals are  
powered off.  
5 I/Os (WKUPx)(12)  
RTC  
,
0.028 µA w/o RTC  
TBD  
Shutdown  
OFF  
OFF  
LSE  
0.315 µA w/ RTC  
I/O configuration can be floating,  
pull-up or pull-down(13)  
1. Typical current at VDD = 1.8 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.  
2. Add TBD μs when using SMPS, except Sleep, LPSleep and Stop 0 where the SMPS is not stopped.  
3. The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.  
4. Flash memory programming is only possible in Range 2 voltage.  
5. Bluetooth® Low Energy not possible in this mode.  
6. The SRAM1 and SRAM2 clocks can be gated off independently.  
7. HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.  
8. HSI16 (16 MHz) automatically used by some peripherals.  
9. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.  
10. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
11. SRAM1 and SRAM2b are OFF.  
12. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PC12, PA2, PC5.  
13. I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.  
 
Functional overview  
STM32WB55xx  
3.7.6  
Reset mode  
In order to improve the consumption under reset, the I/Os state under and after reset is  
“analog state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
3.8  
VBAT operation  
The VBAT pin allows to power the device VBAT domain (RTC, LSE and Backup registers)  
from an external battery, an external supercapacitor, or from V when no external battery  
DD  
nor an external supercapacitor are present. Three anti-tamper detection pins are available  
in VBAT mode.  
VBAT operation is automatically activated when V is not present.  
DD  
An internal VBAT battery charging circuit is embedded and can be activated when V is  
DD  
present.  
Note:  
When the microcontroller is supplied only from VBAT, external interrupts and RTC  
alarm/events do not exit it from VBAT operation.  
3.9  
Interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU1 resources and, consequently, reducing  
power supply consumption. In addition, these hardware connections allow fast and  
predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run  
and sleep, Stop 0, Stop 1 and Stop 2 modes.  
Table 9. STM32WB55xx CPU1 peripherals interconnect matrix  
Source  
Destination  
Action  
TIMx  
ADC1  
DMA  
Timers synchronization or chaining  
Conversion triggers  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
-
-
-
-
TIMx  
Memory to memory transfer trigger  
Comparator output blanking  
COMPx  
TIM1  
TIM2  
Timer input channel, trigger, break  
from analog signals comparison  
Y
Y
Y
Y
-
-
COMPx  
ADCx  
Low-power timer triggered by analog  
signals comparison  
LPTIMERx  
TIM1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y(1)  
-
Timer triggered by analog watchdog  
DS11929 Rev 3  
36/165  
 
 
 
 
STM32WB55xx  
Functional overview  
Table 9. STM32WB55xx CPU1 peripherals interconnect matrix (continued)  
Source  
Destination  
Action  
TIM16  
Timer input channel from RTC events  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
RTC  
Low-power timer triggered by RTC  
alarms or tampers  
LPTIMERx  
Y
Y(1)  
All clocks sources  
(internal and external)  
TIM2  
TIM16, 17  
Clock source used as input channel  
for RC measurement and trimming  
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
USB  
TIM2  
Timer triggered by USB SOF  
CSS  
CPU (hard fault)  
SRAM (parity error)  
Flash memory (ECC error)  
COMPx  
TIM1  
TIM16,17  
Timer break  
Y
Y
Y
Y
-
-
PVD  
TIMx  
External trigger  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
-
Y(1)  
-
GPIO  
LPTIMERx External trigger  
ADC1 Conversion external trigger  
1. LPTIM1 only.  
DS11929 Rev 3  
37/165  
69  
 
Functional overview  
STM32WB55xx  
3.10  
Clocks and startup  
The STM32WB55xx devices integrate many sources of clocks:  
LSE: 32.768KHz external oscillator, for accurate RTC and calibration with other  
embedded RC oscillators  
LSI1: 32 KHz on-chip low-consumption RC oscillator  
LSI2: almost 32 KHz on-chip high-stability RC oscillator, used by the RF subsystem  
HSE: high quality 32 MHz external oscillator with trimming, needed by the RF  
subsystem  
HSI16: 16 MHz high accuracy on-chip RC oscillator  
MSI: 100 KHz to 48 MHz multiple speed on-chip low power oscillator, can be trimmed  
using the LSE signal  
HSI48: 48 MHz on-chip RC oscillator, for USB crystal-less purpose  
The clock controller (see Figure 7) distributes the clocks coming from the different  
oscillators to the core and the peripherals including the RF subsystem. It also manages  
clock gating for low power modes and ensures clock robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption,  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock source: four different clock sources can be used to drive the master  
clock SYSCLK:  
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate  
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is  
available in the system (LSE), the MSI frequency can be automatically trimmed by  
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.  
System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency of  
64 MHz.  
Auxiliary clock source: two ultralow-power clock sources that can be used to drive  
the LCD controller and the real-time clock:  
32.768 kHz low-speed external crystal (LSE), supporting four drive capability  
modes. The LSE can also be configured in bypass mode for an external clock.  
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock accuracy is ±5%. The LSI source can be either the LSI1 or the LSI2  
on-chip oscillator.  
Peripheral clock sources: Several peripherals (RNG, SAI, USARTs, I2Cs, LPTimers,  
ADC) have their own independent clock whatever the system clock. Two PLLs, each  
38/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
having three independent outputs allowing the highest flexibility, can generate  
independent clocks for the ADC, the RNG and the SAI.  
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz  
clock (MSI). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If an HSE  
clock failure occurs, the master clock is automatically switched to HSI16 and a software  
interrupt is generated if enabled. LSE failure can also be detected and an interrupt  
generated.  
Clock-out capability:  
MCO: microcontroller clock output: it outputs one of the internal clocks for  
external use by the application. Low frequency clocks (LSIx, LSE) are available  
down to Stop 1 low power state.  
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes  
down to Standby.  
Several prescalers allow the user to configure the AHB frequencies, the high speed APB  
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 64 MHz.  
DS11929 Rev 3  
39/165  
69  
Functional overview  
STM32WB55xx  
Figure 7. Clock tree  
/6,ꢁꢅ5&&ꢅꢊꢆꢅN+]  
WRꢅ,:'*  
/6,  
/6,ꢆꢅ5&&ꢅꢊꢆꢅN+]  
/6&2  
/6,  
WRꢅ57&ꢅDQGꢅ/&'  
WRꢅ%/(ꢅZDNHXS  
/6(  
/6(ꢅ26&  
ꢊꢆꢐꢃꢍꢋꢅN+]  
26&ꢊꢆB287  
HQ  
HQ  
/6(  
/6,  
26&ꢊꢆB,1  
WRꢅꢋꢂꢆꢐꢁꢄꢐꢀꢅZDNHXS  
/6(ꢅ&66  
/6,ꢁ  
ꢏꢊꢆ  
&38ꢁ  
+35(  
ꢏꢁꢇꢆꢇꢐꢐꢐꢇꢄꢁꢆ  
WRꢅ&38ꢁꢇꢅ$+%ꢁꢇꢅ$+%ꢆꢇꢅ$+%ꢊꢇꢅDQGꢅ65$0ꢁ  
WRꢅ&38ꢁꢅ)&/.  
/6,ꢆ  
+&/.ꢁ  
ꢏꢊꢆ  
/6(  
WRꢅ&38ꢁꢅV\VWHPꢅWLPHU  
ꢏꢋ  
+6(  
0&2  
6<6&/.  
3//5&/.  
+6,ꢁꢍ  
06,  
ꢏꢁꢅꢉꢅꢁꢍ  
$3%ꢁ  
3&/.ꢁ  
[ꢁꢅRUꢅ  
WRꢅ$3%ꢁ  
335(ꢁ  
6<6ꢅFORFN  
ꢏꢁꢇꢆꢇꢀꢇꢋꢇꢁꢍ  
WRꢅ$3%ꢁꢅ7,0[  
VRXUFHꢅFRQWURO  
[ꢆ  
3//5&/.  
ꢏꢁꢇꢀ  
$3%ꢆ  
335(ꢆ  
ꢏꢁꢇꢆꢇꢀꢇꢋꢇꢁꢍ  
3&/.ꢆ  
WRꢅ$3%ꢆ  
5&ꢀꢋ  
+6,ꢁꢍ  
+6(  
+6(ꢅ26&  
ꢊꢆꢅ0+]  
WRꢅ$3%ꢆꢅ7,0[  
26&B287  
26&B,1  
[ꢁꢅRUꢅ  
[ꢆ  
6<6&/.  
+6(35(ꢏꢁꢇꢆ  
&38ꢆ  
&ꢆ+35(  
ꢁꢇꢆꢇꢐꢐꢐꢇꢄꢁꢆ  
WRꢅ&38ꢆ  
06,  
+&/.ꢆ  
+6(ꢅ&66  
WRꢅ&38ꢆꢅ)&/.  
+6,ꢁꢍꢅ5&  
ꢁꢍꢅ0+]  
WRꢅ&38ꢆꢅV\VWHPꢅWLPHU  
ꢏꢋ  
06,ꢅ5&  
$+%ꢀ  
WRꢅ$+%ꢀꢇꢅ)ODVKꢅPHPRU\ꢇꢅ65$0ꢆ  
+&/.ꢀ  
+&/.ꢄ  
ꢁꢂꢂꢅN+]ꢅꢉꢅꢀꢋꢅ0+]  
6+'+35(  
ꢏꢁꢇꢆꢇꢐꢐꢐꢇꢄꢁꢆ  
+6,ꢀꢋꢅ5&  
ꢀꢋꢅ0+]  
WRꢅ$3%ꢊ  
WRꢅ$+%ꢄ  
06,  
+6,ꢁꢍ  
+6(  
+6,ꢁꢍ  
ꢏꢆ  
ꢏ0  
WRꢅ5)  
WRꢅ  
+6,ꢁꢍ  
3//  
06,  
6036  
3//3&/.  
6036',9  
[1  
ꢏ3  
ꢏ4  
ꢏ5  
ꢏꢆ  
06,  
+6,ꢀꢋ  
WRꢅ86%  
ꢏꢁꢇꢆꢇꢊꢇꢀꢇꢍꢇꢋꢇꢁꢆ  
+6(  
3//4&/.  
3//5&/.  
ꢏꢊ  
3&/.Q  
6<6&/.  
+6,ꢁꢍ  
WRꢅ51*  
6036ꢅFORFN  
VRXUFHꢅFRQWURO  
/6,  
/6(  
WRꢅ6$,ꢁ  
WRꢅ86$57ꢁ  
+6,ꢁꢍ  
3//6$,ꢁ  
WRꢅ/38$57ꢁ  
3//6$,ꢁ3&/.  
3//6$,ꢁ4&/.  
3//6$,ꢁ5&/.  
/6(  
[1  
ꢏ3  
ꢏ4  
ꢏ5  
6$,ꢁB(;7&/.  
3&/.Q  
+6,ꢁꢍ  
/6,  
3&/.Q  
6<6&/.  
+6,ꢁꢍ  
WRꢅ/37,0[  
WRꢅ$'&  
WRꢅ,ꢆ&[  
6<6&/.  
/6(  
06ꢀꢄꢀꢂꢆ9ꢄ  
3.11  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be  
achieved thanks to their mapping on the AHB2 bus.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
40/165  
DS11929 Rev 3  
 
 
 
STM32WB55xx  
Functional overview  
3.12  
Direct memory access controller (DMA)  
The device embeds two DMAs. Refer to Table 10: DMA implementation for the features  
implementation.  
Direct memory access (DMA) is used in order to provide high-speed data transfer between  
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA  
without any CPU actions. This keeps CPU resources free for other operations.  
The two DMA controllers have 14 channels in total, a full cross matrix allows any peripheral  
to be mapped on any of the available DMA channels. Each has an arbiter for handling the  
priority between DMA requests.  
The DMA supports:  
14 independently configurable channels (requests)  
A full cross matrix between peripherals and all 14 channels exist. There is also a HW  
trigger possibility through the DMAMUX  
Priorities between requests from channels of one DMA are software programmable (4  
levels consisting of very high, high, medium, low) or hardware in case of equality  
(request 1 has priority over request 2, etc.)  
Independent source and destination transfer size (byte, half word, word), emulating  
packing and unpacking. Source/destination addresses must be aligned on the data  
size.  
Support for circular buffer management  
3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)  
logically ORed together in a single interrupt request for each channel  
Memory-to-memory transfer  
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral  
transfers  
Access to Flash, SRAM, APB and AHB peripherals as source and destination  
Programmable number of data to be transferred: up to 65536.  
Table 10. DMA implementation  
DMA features  
DMA1  
7
DMA2  
7
Number of regular channels  
A DMAMUX block makes it possible to route any peripheral source to any DMA channel.  
3.13  
Interrupts and events  
3.13.1  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
and handle up to 63 maskable interrupt channels plus the 16 interrupt lines of the  
®
Cortex -M4 with FPU.  
DS11929 Rev 3  
41/165  
69  
 
 
 
 
Functional overview  
STM32WB55xx  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.13.2  
Extended Interrupts and Events Controller (EXTI)  
The Extended Interrupts and Events Controller (EXTI) manages wakeup through  
configurable and direct event inputs. It provides wake-up requests to the Power Control, and  
generates interrupt requests to the CPUx NVIC and events to the CPUx event input.  
Configurable events/interrupt come from peripherals able to generate a pulse and allow to  
select the Event/Interrupt trigger edge and/or a SW trigger  
Direct events/interrupt are coming from peripherals having their own clearing mechanism.  
3.14  
Analog to digital converter (ADC)  
The device embeds a successive approximation analog-to-digital converter with the  
following features:  
12-bit native resolution, with built-in calibration  
up to 16-bit resolution with 64 decimation ratio  
4.26 Msps maximum conversion rate with full resolution  
Down to 39 ns sampling time  
Increased conversion rate for lower resolution (up to 7.11 Msps for 6-bit  
resolution)  
Up to 16 external channels and three internal channels: internal reference voltages,  
temperature sensor  
Single-ended and differential mode inputs  
Low-power design  
Capable of low-current operation at low conversion rate (consumption decreases  
linearly with speed)  
Dual clock domain architecture: ADC speed independent from CPU frequency  
Highly versatile digital interface  
Single-shot or continuous/discontinuous sequencer-based scan mode: two groups  
of analog signals conversions can be programmed to differentiate background and  
high-priority real-time conversions  
The ADC supports multiple trigger inputs for synchronization with on-chip timers  
and external signals  
Results stored into three data register or in SRAM with DMA controller support  
42/165  
DS11929 Rev 3  
 
 
 
STM32WB55xx  
Functional overview  
Data pre-processing: left/right alignment and per channel offset compensation  
Built-in oversampling unit for enhanced SNR  
Channel-wise programmable sampling time  
Three analog watchdog for automatic voltage monitoring, generating interrupts  
and trigger for selected timers  
Hardware assistant to prepare the context of the injected channels to allow fast  
context switching  
3.14.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADC1_IN17 input channel, which is  
used to convert the sensor output voltage into a digital value.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 11. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
VDDA = VREF+ = 3.0 V (± 10 mV)  
TS_CAL1  
0x1FFF 75A8 - 0x1FFF 75A9  
3.14.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for  
the ADC and Comparators. VREFINT is internally connected to the ADC1_IN0 input  
channel. The precise voltage of VREFINT is individually measured for each part by ST  
during production test and stored in the system memory area. It is accessible in read-only  
mode.  
Table 12. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT  
temperature of 30 °C (± 5 °C),  
0x1FFF 75AA - 0x1FFF 75AB  
VDDA = VREF+ = 3.6 V (± 10 mV)  
3.15  
Voltage reference buffer (VREFBUF)  
The STM32WB55xx devices embed an voltage reference buffer which can be used as  
voltage reference for ADC and also as voltage reference for external components through  
the VREF+ pin. The internal voltage reference buffer supports two voltages:  
2.048 V  
2.5 V.  
An external voltage reference can be provided through the VREF+ pin when the internal  
voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on UFQFPN48  
DS11929 Rev 3  
43/165  
69  
 
 
 
 
 
 
 
Functional overview  
STM32WB55xx  
package, hence the internal voltage reference buffer is not available on a dedicated pin, but  
user can still use the VDDA value.  
3.16  
Comparators (COMP)  
The STM32WB55xx devices embed two rail-to-rail comparators with programmable  
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and  
with selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers  
and can be also combined into a window comparator.  
3.17  
Touch sensing controller (TSC)  
The touch sensing controller provides a simple solution for adding capacitive sensing  
functionality to any application. Capacitive sensing technology is able to detect finger  
presence near an electrode which is protected from direct touch by a dielectric such as  
glass or plastic. The capacitive variation introduced by the finger (or any conductive object)  
is measured using a proven implementation based on a surface charge transfer acquisition  
principle.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library (free to use) and enables reliable touch sensing functionality in the end application.  
The main features of the touch sensing controller are the following:  
Proven and robust surface charge transfer acquisition principle  
Supports up to 28 capacitive sensing channels  
Up to three capacitive sensing channels can be acquired in parallel offering a very  
good response time  
Spread spectrum feature to improve system robustness in noisy environments  
Full hardware management of the charge transfer acquisition sequence  
Programmable charge transfer frequency  
Programmable sampling capacitor I/O pin  
Programmable channel I/O pin  
Programmable max count value to avoid long acquisition when a channel is faulty  
Dedicated end of acquisition and max count error flags with interrupt capability  
One sampling capacitor for up to three capacitive sensing channels to reduce the  
system components  
Compatible with proximity, touchkey, linear and rotary touch sensor implementation  
Designed to operate with STMTouch touch sensing firmware library  
Note:  
The number of capacitive sensing channels is dependent on the size of the packages and  
subject to I/O availability.  
44/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
3.18  
Liquid crystal display controller (LCD)  
All device embed an LCD controller with the following characteristics:  
Highly flexible frame rate control.  
Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.  
Supports Static, 1/2, 1/3 and 1/4 bias.  
Double buffered memory allows data in LCD_RAM registers to be updated at any time  
by the application firmware without affecting the integrity of the data displayed.  
LCD data RAM of up to 16 x 32-bit registers which contain pixel information  
(active/inactive)  
Software selectable LCD output voltage (contrast) from VLCD  
No need for external analog components:  
to VLCD  
.
max  
min  
A step-up converter is embedded to generate an internal VLCD voltage higher  
than V (up to 3.6 V if V > 2.0 V)  
DD  
DD  
Software selection between external and internal VLCD voltage source. In case of  
an external source, the internal boost circuit is disabled to reduce power  
consumption  
A resistive network is embedded to generate intermediate VLCD voltages  
The structure of the resistive network is configurable by software to adapt the  
power consumption to match the capacitive charge required by the LCD panel  
Integrated voltage output buffers for higher LCD driving capability.  
The contrast can be adjusted using two different methods:  
When using the internal step-up converter, the software can adjust VLCD between  
VLCD and VLCD  
min  
max  
Programmable dead time (up to eight phase periods) between frames.  
Full support of low-power modes: the LCD controller can be displayed in Sleep,  
Low-power run, Low-power sleep and Stop modes, or can be fully disabled to reduce  
power consumption.  
Built in phase inversion for reduced power consumption and EMI (electromagnetic  
interference).  
Start of frame interrupt to synchronize the software when updating the LCD data RAM.  
Blink capability:  
1, 2, 3, 4, 8 or all pixels can be programmed to blink at a configurable frequency  
Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.  
Used LCD segment and common pins should be configured as GPIO alternate functions  
and unused segment and common pins can be used for general purpose I/O or for another  
peripheral alternate function.  
Note:  
When the LCD relies on the internal step-up converter, the VLCD pin should be connected  
to V with a capacitor. Its typical value is 1 μF.  
SS  
3.19  
True random number generator (RNG)  
All devices embed a true RNG that delivers 32-bit random numbers generated by an  
integrated analog circuit.  
DS11929 Rev 3  
45/165  
69  
 
 
 
Functional overview  
STM32WB55xx  
3.20  
Timers and watchdogs  
The STM32WB55xx includes one advanced 16-bit timer, one general-purpose 32-bit timer,  
two 16-bit basic timers, two low-power timers, two watchdog timers and a SysTick timer.  
Table 13 compares the features of the advanced control, general purpose and basic timers.  
Table 13. Timer features  
DMA  
request  
generation  
Capture/  
compare  
channels  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer  
Advanced  
control  
Up, down,  
Up/down  
TIM1  
TIM2  
16-bits  
32-bits  
16-bits  
16-bits  
16-bits  
4
4
2
2
1
3
No  
1
General  
purpose  
Up, down,  
Up/down  
Any integer  
between 1  
and 65536  
General  
purpose  
TIM16  
TIM17  
Up  
Up  
Up  
Yes  
General  
purpose  
1
LPTIM1  
LPTIM2  
Low power  
1
3.20.1  
Advanced-control timer (TIM1)  
The advanced-control timer can be seen as a three-phase PWM multiplexed on six  
channels. They have complementary PWM outputs with programmable inserted  
dead-times. They can also be seen as complete general-purpose timers. The four  
independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability (0-  
100%)  
One-pulse mode output  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switches driven by these outputs.  
Many features are shared with those of the general-purpose TIMx timers (described in  
Section 3.20.2) using the same architecture, so the advanced-control timers can work  
together with the TIMx timers via the Timer Link feature for synchronization or event  
chaining.  
3.20.2  
General-purpose timers (TIM2, TIM16, TIM17)  
There are up to three synchronizable general-purpose timers embedded in the  
STM32WB55xx (see Table 13 for differences). Each general-purpose timer can be used to  
generate PWM outputs, or act as a simple time base.  
TIM2  
Full-featured general-purpose timer  
46/165  
DS11929 Rev 3  
 
 
 
 
 
STM32WB55xx  
Functional overview  
Features four independent channels for input capture/output compare, PWM or  
one-pulse mode output. Can work together, or with the other general-purpose  
timers via the Timer Link feature for synchronization or event chaining.  
The counter can be frozen in debug mode.  
Independent DMA request generation, support of quadrature encoders.  
TIM16 and TIM17  
General-purpose timers with mid-range features:  
16-bit auto-reload upcounters and 16-bit prescalers.  
1 channel and 1 complementary channel  
All channels can be used for input capture/output compare, PWM or one-pulse  
mode output.  
The timers can work together via the Timer Link feature for synchronization or  
event chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode  
3.20.3  
Low-power timer (LPTIM1 and LPTIM2)  
The devices embed two low-power timers. These timers have an independent clock and are  
running in Stop mode if they are clocked by LSE, LSIx or by an external clock. They are able  
to wakeup the system from Stop mode.  
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.  
LPTIM2 is active in Stop 0 and Stop 1 mode.  
This low-power timer supports the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous/ one shot mode  
Selectable software/hardware input trigger  
Selectable clock source  
Internal clock sources: LSE, either LSI1 or LSI2, HSI16 or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by pulse counter application).  
Programmable digital glitch filter  
Encoder mode (LPTIM1 only)  
3.20.4  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently  
from the main clock, it can operate in Stop and Standby modes. It can be used either as a  
watchdog to reset the device when a problem occurs, or as a free running timer for  
application timeout management. It is hardware or software configurable through the option  
bytes. The counter can be frozen in debug mode.  
DS11929 Rev 3  
47/165  
69  
 
 
Functional overview  
STM32WB55xx  
3.20.5  
System window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.20.6  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
3.21  
Real-time clock (RTC) and backup registers  
The RTC is an independent BCD timer/counter. It supports the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month  
Two programmable alarms  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy  
Three anti-tamper detection pins with programmable filter  
Timestamp feature which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
VBAT mode  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 20 backup registers are supplied through a switch that takes power either  
from the V supply (when present) or from the VBAT pin.  
DD  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. They are not reset by a system or power reset, or when the  
DD  
device wakes up from Standby or Shutdown mode.  
The RTC clock sources can be:  
A 32.768 kHz external crystal (LSE)  
An external resonator or oscillator (LSE)  
One of the internal low power RC oscillators (LSI1 or LSI2, with typical frequency of  
32 kHz)  
The high-speed external clock (HSE) divided by 32  
48/165  
DS11929 Rev 3  
 
 
 
STM32WB55xx  
Functional overview  
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the  
LSE. When clocked by one of the LSIs, the RTC is not functional in VBAT mode, but is  
functional in all low-power modes except Shutdown mode.  
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt  
and wakeup the device from the low-power modes.  
3.22  
Inter-integrated circuit interface (I2C)  
The device embeds two I2Cs. Refer to Table 14 for the features implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (Packet Error Checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
TM  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming. Refer to  
Figure 7: Clock tree.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 14. I2C implementation  
I2C features(1)  
I2C1  
I2C3  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
X
X
X
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
DS11929 Rev 3  
49/165  
69  
 
 
Functional overview  
STM32WB55xx  
I2C3  
Table 14. I2C implementation (continued)  
I2C features(1)  
I2C1  
Independent clock  
X
X
-
X
X
X
Wakeup from Stop 0 / Stop 1 mode on address match  
Wakeup from Stop 2 mode on address match  
1. X: supported  
3.23  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The STM32WB55xx devices feature one universal synchronous receiver transmitter.  
This interface provides asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and has  
LIN Master/Slave capability. It provides hardware management of the CTS and RTS signals,  
and RS485 Driver Enable.  
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart  
Card mode (ISO 7816 compliant) and SPI-like communication capability.  
The USART supports synchronous operation (SPI mode), and can be used as an SPI  
master.  
The USART has a clock domain independent from the CPU clock, allowing the it to wake up  
the MCU from Stop mode using baudrates up to 200 Kbaud.The wake up events from Stop  
mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
The USART interface can be served by the DMA controller.  
3.24  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The device embeds two Low-Power UARTs, enabling asynchronous serial communication  
with minimum power consumption. The LPUARTs support half duplex single wire  
communication and modem operations (CTS/RTS), allowing multiprocessor  
communication.  
The two LPUARTs have a clock domain independent from the CPU clock, and can wakeup  
the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from  
Stop mode are programmable and can be:  
Start bit detection  
Any received data frame  
A specific programmed data frame  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600  
baud. Therefore, even in Stop mode, the LPUARTs can wait for an incoming frame while  
50/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Functional overview  
having an extremely low energy consumption. Higher speed clock can be used to reach  
higher baudrates.  
The LPUART interfaces can be served by the DMA controller.  
3.25  
3.26  
Serial peripheral interface (SPI1, SPI2)  
Two SPI interfaces allow communication up to 32 Mbit/s in master and up to 24 Mbit/s in  
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8  
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI  
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.  
All SPI interfaces can be served by the DMA controller.  
Serial audio interfaces (SAI1)  
The device embeds a dual channel SAI peripheral that supports full duplex audio operation.  
The SAI bus interface handles communications between the microcontroller and the serial  
audio protocol.  
The SAI peripheral supports:  
One independent audio sub-block that can be a transmitter or a receiver, with the  
respective FIFO  
8-word integrated FIFOs  
Synchronous or asynchronous mode  
Master or slave configuration  
Clock generator to target independent audio frequency sampling when audio sub-block  
is configured in master mode  
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit  
Peripheral with large configurability and flexibility allowing to target as example the  
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
out  
Up to 16 slots available with configurable size and with the possibility to select which  
ones are active in the audio frame  
Number of bits by frame may be configurable  
Frame synchronization active level configurable (offset, bit length, level)  
First active bit position in the slot is configurable  
LSB first or MSB first for data transfer  
Mute mode  
Stereo/Mono audio frame capability  
Communication clock strobing edge configurable (SCK)  
Error flags with associated interrupts if enabled respectively  
Overrun and underrun detection  
Anticipated frame synchronization signal detection in slave mode  
Late frame synchronization signal detection in slave mode  
Codec not ready for the AC’97 mode in reception  
DS11929 Rev 3  
51/165  
69  
 
 
Functional overview  
STM32WB55xx  
Interruption sources when enabled:  
Errors  
FIFO requests  
DMA interface with two dedicated channels to handle access to the dedicated  
integrated FIFO of the SAI audio sub-block.  
The PDM (Pulse Density Modulation) block allows the user to manage up to three digital  
microphone pairs (with two different clocks). This block performs Right and Left microphone  
de-interleaving and time alignment through programmable delay lines in order to properly  
feed the SAI.  
3.27  
Quad-SPI memory interface (QUADSPI)  
The Quad-SPI is a specialized communication interface targeting single, dual or quad SPI  
Flash memories. It can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the QUADSPI registers  
Status polling mode: the external memory status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external Flash memory is mapped and is seen by the  
system as if it were an internal memory. This mode can be used for the Execute In  
Place (XIP)  
The Quad-SPI interface supports:  
Three functional modes: indirect, status-polling, and memory-mapped  
SDR and DDR support  
Fully programmable opcode for both indirect and memory mapped mode  
Fully programmable frame format for both indirect and memory mapped mode  
Each of the five following phases can be configured independently (enable, length,  
single/dual/quad communication)  
Instruction phase  
Address phase  
Alternate bytes phase  
Dummy cycles phase  
Data phase  
Integrated FIFO for reception and transmission  
8, 16, and 32-bit data accesses are allowed  
DMA channel for indirect mode operations  
Programmable masking for external Flash memory flag management  
Timeout management  
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and  
access error  
52/165  
DS11929 Rev 3  
 
STM32WB55xx  
Functional overview  
3.28  
Development support  
3.28.1  
Serial wire JTAG debug port (SWJ-DP)  
®
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins  
can then be reused as GPIOs with alternate function): the JTAG TMS and TCK pins are  
shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is  
used to switch between JTAG-DP and SW-DP.  
3.28.2  
Embedded Trace Macrocell™  
®
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32WB55xx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
DS11929 Rev 3  
53/165  
69  
 
 
 
Pinouts and pin description  
STM32WB55xx  
4
Pinouts and pin description  
(1)(2)  
Figure 8. STM32WB55xxCx UFQFPN48 pinout  
9%$7  
ꢊꢍ  
ꢊꢄ  
ꢊꢀ  
ꢊꢊ  
ꢊꢆ  
ꢊꢁ  
ꢊꢂ  
ꢆꢈ  
ꢆꢋ  
ꢆꢃ  
ꢆꢍ  
ꢆꢄ  
3$ꢁꢂ  
9''  
3&ꢁꢀꢉ26&ꢊꢆB,1  
3&ꢁꢄꢉ26&ꢊꢆB287  
9''6036  
9/;6036  
9666036  
9)%6036  
3(ꢀ  
3+ꢊꢉ%227ꢂ  
3%ꢋ  
3%ꢈ  
8)4)31ꢀꢋ  
1567  
9''$  
3$ꢂ  
3%ꢁ  
3%ꢂ  
3$ꢁ  
ꢁꢂ  
ꢁꢁ  
ꢁꢆ  
$7ꢁ  
3$ꢆ  
$7ꢂ  
3$ꢊ  
26&B,1  
06ꢀꢆꢀꢂꢍ9ꢊ  
1. The above figure shows the package top view.  
2. The exposed pad must be connected to ground plane.  
(1)(2)  
Figure 9. STM32WB55xxRx VFQFPN68 pinout  
9%$7  
ꢄꢁ  
ꢄꢂ  
ꢀꢈ  
ꢀꢋ  
ꢀꢃ  
ꢀꢍ  
ꢀꢄ  
ꢀꢀ  
ꢀꢊ  
ꢀꢆ  
ꢀꢁ  
ꢀꢂ  
ꢊꢈ  
ꢊꢋ  
ꢊꢃ  
ꢊꢍ  
ꢊꢄ  
3$ꢁꢂ  
3&ꢍ  
3&ꢁꢊ  
3&ꢁꢀꢉ26&ꢊꢆB,1  
3%ꢁꢄ  
3%ꢁꢀ  
3%ꢁꢊ  
3%ꢁꢆ  
9''  
3&ꢁꢄꢉ26&ꢊꢆB287  
3+ꢊꢉ%227ꢂ  
3%ꢋ  
3%ꢈ  
1567  
3&ꢂ  
9''6036  
9/;6036  
9666036  
9)%6036  
3(ꢀ  
9)4)31ꢍꢋ  
3&ꢁ  
ꢁꢂ  
ꢁꢁ  
ꢁꢆ  
ꢁꢊ  
ꢁꢀ  
ꢁꢄ  
ꢁꢍ  
ꢁꢃ  
3&ꢆ  
3&ꢊ  
95()ꢑ  
9''$  
3$ꢂ  
3%ꢁ  
3%ꢂ  
$7ꢁ  
3$ꢁ  
$7ꢂ  
3$ꢆ  
26&B,1  
06ꢀꢄꢀꢁꢃ9ꢆ  
1. The above figure shows the package top view.  
2. The exposed pad must be connected to ground plane.  
54/165  
DS11929 Rev 3  
 
 
 
 
 
 
 
STM32WB55xx  
Pinouts and pin description  
(1)  
Figure 10. STM32WB55xxVx WLCSP100 ballout  
3$ꢀꢂ  
9''86%  
3'ꢀ  
3$ꢀꢃ  
3&ꢉ  
ꢀꢅ  
9''  
3(ꢀ  
3$ꢀꢀ  
3$ꢀꢁ  
3$ꢀꢄ  
3$ꢀꢅ  
3&ꢀꢁ  
3'ꢉ  
3&ꢀꢅ  
3&ꢀꢀ  
3'ꢇ  
3%ꢃ  
3(ꢁ  
3'ꢁ  
3'ꢃ  
3%ꢂ  
3%ꢆ  
3'ꢀꢃ  
3%ꢈ  
3$ꢅ  
3$ꢇ  
3$ꢈ  
3%ꢁ  
3'ꢆ  
3%ꢄ  
$
%
&
'
(
)
9''  
966  
3'ꢀꢁ  
3(ꢅ  
966  
3%ꢀꢄ  
3'ꢄ  
3'ꢅ  
3'ꢀꢄ  
9%$7  
3&ꢀꢂꢊ  
3&ꢀꢃꢊ  
9''6036  
9/;6036  
9666036  
3(ꢂ  
3&ꢇ  
3'ꢂ  
3'ꢈ  
3'ꢀꢂ  
3+ꢄꢊ%227ꢅ  
3&ꢅ  
26&ꢄꢁB287 26&ꢄꢁB,1  
3%ꢀꢂ  
3&ꢆ  
3'ꢀꢅ  
3&ꢈ  
3'ꢀꢀ  
3%ꢇ  
3+ꢀ  
1567  
3&ꢁ  
3+ꢅ  
3%ꢉ  
9)%6036  
3(ꢄ  
3%ꢀꢃ  
3%ꢀꢁ  
$7ꢅ  
3$ꢁ  
3&ꢂ  
3&ꢀꢄ  
3&ꢃ  
3$ꢀ  
3&ꢀ  
3&ꢄ  
*
+
-
3%ꢀ  
3%ꢅ  
$7ꢀ  
3$ꢆ  
95()ꢋ  
3$ꢄ  
9''$  
966  
966$  
9''  
3$ꢂ  
26&B,1  
9665)  
26&B287  
9665)  
9''5)  
9665)  
9665)  
5)ꢀ  
966  
9''  
3%ꢀꢀ  
3%ꢀꢅ  
3$ꢉ  
3$ꢃ  
.
5DGLR  
86%  
6036  
9''  
966  
06ꢀꢆꢀꢂꢃ9ꢊ  
1. The above figure shows the package top view.  
Table 15. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
TT  
RF  
RST  
Input / output pin  
5 V tolerant I/O  
3.6 V tolerant I/O  
RF I/O  
Bidirectional reset pin with weak pull-up resistor  
Option for TT or FT I/Os  
I/O, Fm+ capable  
I/O structure  
_f (1)  
_l (2)  
_u(3)  
_a(4)  
I/O, with LCD function supplied by VLCD  
I/O, with USB function supplied by VDDUSB  
I/O, with Analog switch function supplied by VDDA  
DS11929 Rev 3  
55/165  
69  
 
 
 
 
Pinouts and pin description  
STM32WB55xx  
Table 15. Legend/abbreviations used in the pinout table (continued)  
Abbreviation Definition  
Name  
Notes  
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.  
Functions selected through GPIOx_AFR registers  
Alternate  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.  
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.  
3. The related I/O structures in Table 16 are: FT_u, FT_lu.  
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.  
Table 16. STM32WB55xx pin and ball definitions  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TRACECK, SAI1_PDM_CK1,  
TSC_G7_IO1, LCD_SEG38,  
SAI1_MCLK_A,  
-
-
E6  
PE2  
I/O FT_l  
I/O FT_l  
-
-
CM4_EVENTOUT  
TSC_G6_IO4, LCD_SEG33,  
LPTIM2_OUT,  
CM4_EVENTOUT  
-
-
-
-
C9  
D8  
PD13  
PD14  
-
-
-
-
TIM1_CH1, LCD_SEG34,  
CM4_EVENTOUT  
I/O FT_l  
I/O FT_l  
TIM1_CH2, LCD_SEG35,  
CM4_EVENTOUT  
-
1
-
-
E7  
C10  
G5  
PD15  
VBAT  
PC13  
-
-
-
-
1
2
S
-
-
(1)  
(2)  
RTC_TAMP1/RTC_TS/  
RTC_OUT/WKUP2  
I/O  
FT  
CM4_EVENTOUT  
(1)  
(2)  
PC14-  
OSC32_IN  
2
3
3
4
D10  
D9  
I/O  
I/O  
FT  
FT  
CM4_EVENTOUT  
CM4_EVENTOUT  
OSC32_IN  
(1)  
(2)  
PC15-  
OSC32_OUT  
OSC32_OUT  
-
-
-
-
E10  
E9  
PH0  
PH1  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
CM4_EVENTOUT  
-
-
-
CM4_EVENTOUT  
4
5
E8  
PH3-BOOT0  
CM4_EVENTOUT, LSCO  
56/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Pin number  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_CH2N, SAI1_PDM_CK1,  
I2C1_SCL,  
5
6
6
7
F7  
PB8  
PB9  
I/O FT_fl  
I/O FT_fla  
-
-
QUADSPI_BK1_IO1,  
LCD_SEG16, SAI1_MCLK_A,  
TIM16_CH1, CM4_EVENTOUT  
-
TIM1_CH3N, SAI1_PDM_DI2,  
I2C1_SDA, SPI2_NSS,  
IR_OUT, TSC_G7_IO4,  
QUADSPI_BK1_IO0,  
LCD_COM3, SAI1_FS_A,  
TIM17_CH1, CM4_EVENTOUT  
F10  
-
-
7
-
8
9
F9  
F8  
NRST  
PC0  
I/O RST  
I/O FT_fla  
-
-
-
LPTIM1_IN1, I2C3_SCL,  
LPUART1_RX, LCD_SEG18,  
LPTIM2_IN1,  
ADC1_IN1  
CM4_EVENTOUT  
LPTIM1_OUT, SPI2_MOSI,  
I2C3_SDA, LPUART1_TX,  
LCD_SEG19,  
-
-
-
10 G8  
11 G9  
12 G10  
PC1  
PC2  
PC3  
I/O FT_fla  
I/O FT_la  
I/O FT_a  
-
-
ADC1_IN2  
ADC1_IN3  
ADC1_IN4  
CM4_EVENTOUT  
LPTIM1_IN2, SPI2_MISO,  
LCD_SEG20,  
CM4_EVENTOUT  
LPTIM1_ETR, SAI1_PDM_DI1,  
SPI2_MOSI, LCD_VLCD,  
SAI1_SD_A, LPTIM2_ETR,  
CM4_EVENTOUT  
-
-
-
-
-
H10  
VSSA  
VREF+  
VDDA  
VSS  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
13 H8  
14 H9  
-
VREFBUF_OUT  
(3)  
8
-
-
-
-
-
-
J9  
-
-
-
J10  
VDD  
TIM2_CH1, COMP1_OUT,  
SAI1_EXTCLK, TIM2_ETR,  
CM4_EVENTOUT  
COMP1_INM, ADC1_IN5,  
RTC_TAMP2/WKUP1  
9
15 G7  
PA0  
PA1  
I/O FT_a  
I/O FT_la  
-
-
TIM2_CH2, I2C1_SMBA,  
SPI1_SCK, LCD_SEG0,  
CM4_EVENTOUT  
10 16 G8  
COMP1_INP, ADC1_IN6  
DS11929 Rev 3  
57/165  
69  
Pinouts and pin description  
STM32WB55xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
LSCO, TIM2_CH3,  
LPUART1_TX,  
COMP2_INM, ADC1_IN7,  
WKUP4/LSCO  
11 17 F6  
PA2  
PA3  
I/O FT_la  
I/O FT_la  
-
-
QUADSPI_BK1_NCS,  
LCD_SEG1, COMP2_OUT,  
CM4_EVENTOUT  
TIM2_CH4, SAI1_PDM_CK1,  
LPUART1_RX,  
12 18 J8  
QUADSPI_CLK, LCD_SEG2,  
SAI1_MCLK_A,  
COMP2_INP, ADC1_IN8  
CM4_EVENTOUT  
SPI1_NSS, SAI1_FS_B,  
LPTIM2_OUT, LCD_SEG5,  
CM4_EVENTOUT  
COMP1_INM, COMP2_INM,  
ADC1_IN9  
13 19 K10  
14 20 K9  
PA4  
PA5  
I/O FT_a  
I/O FT_a  
-
-
TIM2_CH1, TIM2_ETR,  
SPI1_SCK, LPTIM2_ETR,  
SAI1_SD_B, CM4_EVENTOUT  
COMP1_INM, COMP2_INM,  
ADC1_IN10  
TIM1_BKIN, SPI1_MISO,  
LPUART1_CTS,  
15 21 H7  
PA6  
PA7  
I/O FT_la  
I/O FT_fla  
-
-
QUADSPI_BK1_IO3,  
LCD_SEG3, TIM16_CH1,  
CM4_EVENTOUT  
ADC1_IN11  
ADC1_IN12  
ADC1_IN15  
TIM1_CH1N, I2C3_SCL,  
SPI1_MOSI,  
QUADSPI_BK1_IO2,  
LCD_SEG4, COMP2_OUT,  
TIM17_CH1, CM4_EVENTOUT  
16 22 H6  
MCO, TIM1_CH1,  
SAI1_PDM_CK2,  
USART1_CK, LCD_COM0,  
SAI1_SCK_A, LPTIM2_OUT,  
CM4_EVENTOUT  
17 23 J7  
PA8  
PA9  
I/O FT_la  
I/O FT_fla  
-
-
TIM1_CH2, SAI1_PDM_DI2,  
I2C1_SCL, SPI2_SCK,  
USART1_TX, LCD_COM1,  
SAI1_FS_A, CM4_EVENTOUT  
18 24 K8  
COMP1_INM, ADC1_IN16  
COMP1_INM, ADC1_IN13  
LCD_SEG22,  
CM4_EVENTOUT  
-
-
25 G4  
26 H5  
PC4  
PC5  
I/O FT_la  
I/O FT_la  
-
-
SAI1_PDM_DI3, LCD_SEG23, COMP1_INP, ADC1_IN14,  
CM4_EVENTOUT  
WKUP5  
58/165  
DS11929 Rev 3  
STM32WB55xx  
Pin number  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
RTC_OUT, LPTIM1_OUT,  
I2C3_SMBA, SPI1_NSS,  
LCD_VLCD, SAI1_EXTCLK,  
CM4_EVENTOUT  
19 27 K7  
PB2  
I/O FT_a  
I/O FT_fl  
-
-
COMP1_INP  
TIM2_CH3, I2C3_SCL,  
SPI2_SCK, LPUART1_RX,  
TSC_SYNC, QUADSPI_CLK,  
LCD_SEG10, COMP1_OUT,  
SAI1_SCK_A,  
-
-
28 K6  
PB10  
-
-
CM4_EVENTOUT  
TIM2_CH4, I2C3_SDA,  
LPUART1_TX,  
QUADSPI_BK1_NCS,  
LCD_SEG11, COMP2_OUT,  
CM4_EVENTOUT  
29 J6  
PB11  
I/O FT_fl  
-
20 30 K5  
21 31 K4  
22 32 K3  
VDD  
RF1  
S
I/O  
S
-
RF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(4)  
VSSRF  
VSSRF  
VSSRF  
VDDRF  
VSSRF  
OSC_OUT  
OSC_IN  
AT0  
-
-
-
-
-
-
-
-
K2  
J4  
S
-
S
-
23 33 J3  
K1  
S
-
-
-
S
-
-
(5)  
24 34 J2  
25 35 J1  
26 36 H3  
27 37 H4  
O
I
RF  
RF  
RF  
RF  
(5)  
(6)  
(6)  
O
O
AT1  
COMP1_OUT,  
CM4_EVENTOUT, EXT_PA_TX  
(7)  
(7)  
28 38 H2  
29 39 H1  
PB0  
PB1  
I/O  
I/O  
TT  
TT  
-
-
LPUART1_RTS_DE,  
LPTIM2_IN1,  
CM4_EVENTOUT  
-
-
-
-
J5  
VSS  
PE3  
S
I/O  
I/O  
S
-
FT  
FT  
-
-
-
-
-
-
-
-
-
-
-
-
G2  
CM4_EVENTOUT  
30 40 G1  
31 41 F2  
32 42 F1  
PE4  
CM4_EVENTOUT  
VFBSMPS  
VSSSMPS  
-
-
S
-
DS11929 Rev 3  
59/165  
69  
Pinouts and pin description  
STM32WB55xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
33 43 E1  
34 44 D1  
35 45 B1  
VLXSMPS  
VDDSMPS  
VDD  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
TIM1_BKIN, I2C3_SMBA,  
SPI2_NSS, LPUART1_RTS,  
TSC_G1_IO1, LCD_SEG12,  
SAI1_FS_A, CM4_EVENTOUT  
-
-
46 G3  
47 C1  
48 E2  
PB12  
PB13  
I/O FT_l  
I/O FT_fl  
-
-
-
-
TIM1_CH1N, I2C3_SCL,  
SPI2_SCK, LPUART1_CTS,  
TSC_G1_IO2, LCD_SEG13,  
SAI1_SCK_A,  
CM4_EVENTOUT  
TIM1_CH2N, I2C3_SDA,  
SPI2_MISO, TSC_G1_IO3,  
LCD_SEG14, SAI1_MCLK_A,  
CM4_EVENTOUT  
-
-
PB14  
PB15  
I/O FT_fl  
I/O FT_l  
-
-
-
-
RTC_REFIN, TIM1_CH3N,  
SPI2_MOSI, TSC_G1_IO4,  
LCD_SEG15, SAI1_SD_A,  
CM4_EVENTOUT  
49 F3  
50 D2  
TSC_G4_IO1, LCD_SEG24,  
CM4_EVENTOUT  
-
-
-
PC6  
PC7  
PC8  
I/O FT_l  
I/O FT_l  
I/O FT_l  
-
-
-
-
-
-
TSC_G4_IO2, LCD_SEG25,  
CM4_EVENTOUT  
-
-
E3  
F4  
TSC_G4_IO3, LCD_SEG26,  
CM4_EVENTOUT  
TIM1_BKIN, TSC_G4_IO4,  
USB_NOE, LCD_SEG27,  
SAI1_SCK_B,  
-
-
-
-
B4  
B2  
PC9  
VSS  
I/O FT_l  
-
-
-
-
CM4_EVENTOUT  
S
-
-
TIM1_CH3, SAI1_PDM_DI1,  
I2C1_SDA, USART1_RX,  
USB_CRS_SYNC,  
LCD_COM2, SAI1_SD_A,  
TIM17_BKIN,  
36 51 B5  
PA10  
PA11  
I/O FT_fl  
I/O FT_u  
-
-
-
-
CM4_EVENTOUT  
TIM1_CH4, TIM1_BKIN2,  
SPI1_MISO, USART1_CTS,  
USB_DM, CM4_EVENTOUT  
37 52 A1  
60/165  
DS11929 Rev 3  
STM32WB55xx  
Pin number  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_ETR, SPI1_MOSI,  
LPUART1_RX,  
USART1_RTS_DE, USB_DP,  
CM4_EVENTOUT  
38 53 A2  
PA12  
I/O FT_u  
I/O FT_u  
-
-
JTMS-SWDIO, IR_OUT,  
USB_NOE, SAI1_SD_B,  
CM4_EVENTOUT  
PA13  
(JTMS_SWDIO)  
(8)  
39 54 A5  
40 55 B3  
41 56 A3  
-
-
-
VDDUSB  
S
-
-
-
JTCK-SWCLK, LPTIM1_OUT,  
I2C1_SMBA, LCD_SEG5,  
SAI1_FS_B, CM4_EVENTOUT  
PA14  
(JTCK_SWCLK)  
(8)  
I/O FT_l  
I/O FT_l  
JTDI, TIM2_CH1, TIM2_ETR,  
SPI1_NSS, TSC_G3_IO1,  
LCD_SEG17,  
PA15  
(JTDI)  
(8)  
42 57 A4  
-
CM4_EVENTOUT  
TRACED1, TSC_G3_IO2,  
LCD_COM4/LCD_SEG28/  
LCD_SEG40,  
-
-
-
58 A6  
59 B6  
60 C5  
PC10  
PC11  
PC12  
I/O FT_l  
I/O FT_l  
I/O FT_l  
-
-
-
-
CM4_EVENTOUT  
TSC_G3_IO3,  
LCD_COM5/LCD_SEG29/  
LCD_SEG41,  
-
CM4_EVENTOUT  
TRACED3, TSC_G3_IO4,  
LCD_COM6/LCD_SEG30/  
LCD_SEG42,  
RTC_TAMP3/WKUP3  
CM4_EVENTOUT  
-
-
61 C4  
62 C3  
PD0  
PD1  
I/O  
I/O  
FT  
FT  
-
-
SPI2_NSS, CM4_EVENTOUT  
SPI2_SCK, CM4_EVENTOUT  
-
-
TRACED2, TSC_SYNC,  
-
-
-
-
-
-
A7  
C2  
D3  
PD2  
PD3  
PD4  
I/O FT_l  
-
-
-
LCD_COM7/LCD_SEG31/LCD  
_SEG43, CM4_EVENTOUT  
-
-
-
SPI2_SCK, SPI2_MISO,  
QUADSPI_BK1_NCS,  
CM4_EVENTOUT  
I/O  
I/O  
FT  
FT  
SPI2_MOSI, TSC_G5_IO1,  
QUADSPI_BK1_IO0,  
CM4_EVENTOUT  
DS11929 Rev 3  
61/165  
69  
Pinouts and pin description  
STM32WB55xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TSC_G5_IO2,  
QUADSPI_BK1_IO1,  
SAI1_MCLK_B,  
CM4_EVENTOUT  
-
-
-
-
-
-
B7  
C6  
A8  
PD5  
PD6  
PD7  
I/O  
I/O  
FT  
FT  
-
-
-
-
-
-
SAI1_PDM_DI1, TSC_G5_IO3,  
QUADSPI_BK1_IO2,  
SAI1_SD_A, CM4_EVENTOUT  
TSC_G5_IO4,  
QUADSPI_BK1_IO3,  
LCD_SEG39,  
I/O FT_l  
CM4_EVENTOUT  
TIM1_BKIN2, LCD_SEG28,  
CM4_EVENTOUT  
-
-
-
-
D4  
D5  
PD8  
PD9  
I/O FT_l  
I/O FT_l  
-
-
-
-
TRACED0, LCD_SEG29,  
CM4_EVENTOUT  
TRIG_INOUT, TSC_G6_IO1,  
LCD_SEG30,  
CM4_EVENTOUT  
-
-
-
-
-
-
E4  
E5  
B8  
PD10  
PD11  
PD12  
I/O FT_l  
I/O FT_l  
I/O FT_l  
-
-
-
-
-
-
TSC_G6_IO2, LCD_SEG31,  
LPTIM2_ETR,  
CM4_EVENTOUT  
TSC_G6_IO3, LCD_SEG32,  
LPTIM2_IN1,  
CM4_EVENTOUT  
JTDO-TRACESWO,  
TIM2_CH2, SPI1_SCK,  
USART1_RTS_DE,  
LCD_SEG7, SAI1_SCK_B,  
CM4_EVENTOUT  
PB3  
(JTDO)  
(8)  
(8)  
43 63 A9  
I/O FT_la  
I/O FT_fla  
COMP2_INM  
COMP2_INP  
NJTRST, I2C3_SDA,  
SPI1_MISO, USART1_CTS,  
TSC_G2_IO1, LCD_SEG8,  
SAI1_MCLK_B, TIM17_BKIN,  
CM4_EVENTOUT  
PB4  
(NJTRST)  
44 64 C7  
LPTIM1_IN1, I2C1_SMBA,  
SPI1_MOSI, USART1_CK,  
LPUART1_TX, TSC_G2_IO2,  
LCD_SEG9, COMP2_OUT,  
SAI1_SD_B, TIM16_BKIN,  
CM4_EVENTOUT  
45 65 D6  
PB5  
I/O FT_l  
-
-
62/165  
DS11929 Rev 3  
STM32WB55xx  
Pin number  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
LPTIM1_ETR, I2C1_SCL,  
USART1_TX, TSC_G2_IO3,  
LCD_SEG6, SAI1_FS_B,  
TIM16_CH1N, MCO,  
46 66 F5  
PB6  
PB7  
I/O FT_fla  
I/O FT_fla  
-
-
COMP2_INP  
CM4_EVENTOUT  
LPTIM1_IN2, TIM1_BKIN,  
I2C1_SDA, USART1_RX,  
TSC_G2_IO4, LCD_SEG21,  
TIM17_CH1N,  
47 67 D7  
COMP2_INM, PVD_IN  
CM4_EVENTOUT  
-
-
B9  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
48 68 A10  
TIM1_ETR, TSC_G7_IO3,  
LCD_SEG36, TIM16_CH1,  
CM4_EVENTOUT  
-
-
-
-
C8  
PE0  
PE1  
I/O FT_l  
I/O FT_l  
-
-
-
-
TSC_G7_IO2, LCD_SEG37,  
TIM17_CH1, CM4_EVENTOUT  
B10  
1. PC13, PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA),  
the use of the PC13, PC14 and PC15 GPIOs in output mode is limited:  
- the speed should not exceed 2 MHz with a maximum load of 30 pF  
- these GPIOs must not be used as current sources (e.g. to drive an LED).  
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of  
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup  
domain and RTC register descriptions in the reference manual RM0351, available on www.st.com.  
3. On UFQFPN48 VDDA is connected to VREF+.  
4. RF pin, use the nominal PCB layout.  
5. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).  
6. Reserved for production, must be kept unconnected.  
7. High frequency (above 100 KHz) may impact the RF performances.  
8. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and  
PB4 pins and the internal pull-down on PA14 pin are activated.  
DS11929 Rev 3  
63/165  
69  
 
Table 17. Alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
RF  
USB/  
QUADSPI  
SYS_AF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2  
TIM2_  
CH1  
COMP1_  
OUT  
SAI1_  
EXTCLK  
TIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
TIM2_  
CH2  
I2C1_  
SMBA  
SPI1_  
SCK  
CM4_  
EVENTOUT  
-
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG5  
-
-
-
-
-
-
-
PA1  
TIM2_  
CH3  
LPUART1  
_TX  
QUADSPI_  
BK1_NCS  
COMP2_  
OUT  
CM4_  
EVENTOUT  
LSCO  
-
-
-
-
PA2  
TIM2_  
CH4  
SAI1_  
PDM_CK1  
LPUART1  
_RX  
QUADSPI_  
CLK  
SAI1  
_MCLK_A  
CM4_  
EVENTOUT  
-
-
-
-
PA3  
SPI1_  
NSS  
SAI1  
_FS_B  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
PA4  
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
SCK  
SAI1  
_SD_B  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
PA5  
-
TIM1_  
BKIN  
SPI1_  
MISO  
LPUART1  
_CTS  
QUADSPI_  
BK1_IO3  
TIM1_  
BKIN  
TIM16  
_CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
LCD_SEG3  
LCD_SEG4  
LCD_COM0  
LCD_COM1  
LCD_COM2  
-
-
-
PA6  
TIM1_  
CH1N  
I2C3_  
SCL  
SPI1_  
MOSI  
QUADSPI_  
BK1_IO2  
COMP2_  
OUT  
TIM17  
_CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
PA7  
A
TIM1_  
CH1  
SAI1_  
PDM_CK2  
USART1_  
CK  
SAI1  
_SCK_A  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
PA8  
MCO  
-
-
-
-
-
TIM1_  
CH2  
SAI1_  
PDM_DI2  
I2C1_  
SCL  
SPI2_  
SCK  
USART1_  
TX  
SAI1  
_FS_A  
CM4_  
EVENTOUT  
-
-
-
-
-
PA9  
TIM1_  
CH3  
SAI1_  
PDM_DI1  
I2C1_  
SDA  
USART1_  
RX  
USB_CRS  
_SYNC  
SAI1  
_SD_A  
TIM17  
_BKIN  
CM4_  
EVENTOUT  
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM1_  
CH4  
TIM1_  
BKIN2  
SPI1_  
MISO  
USART1_  
CTS  
TIM1_  
BKIN2  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
USB_DM  
-
-
-
-
-
-
-
TIM1_  
ETR  
SPI1_  
MOSI  
USART1_ LPUART1  
RTS_DE  
CM4_  
EVENTOUT  
-
-
-
USB_DP  
-
-
-
-
-
_RX  
JTMS-  
SWDIO  
SAI1  
_SD_B  
CM4_  
EVENTOUT  
-
-
-
-
IR_OUT  
USB_NOE  
-
JTCK-  
SWCLK  
LPTIM1_  
OUT  
I2C1_  
SMBA  
SAI1  
_FS_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
LCD_SEG5  
LCD_SEG17  
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
NSS  
TSC_G3  
_IO1  
CM4_  
EVENTOUT  
JTDI  
-
 
 
Table 17. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
RF  
USB/  
QUADSPI  
SYS_AF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2  
EXT  
_PA  
_TX  
COMP1_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB0  
LPUART1  
_RTS_DE  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB1  
PB2  
RTC_  
OUT  
LPTIM1_  
OUT  
I2C3_  
SMBA  
SPI1_  
NSS  
SAI1_  
EXTCLK  
CM4_  
EVENTOUT  
-
-
-
-
LCD_VLCD  
-
-
JTDO-  
TRACE  
SWO  
TIM2_  
CH2  
SPI1_  
SCK  
USART1_  
RTS_DE  
SAI1_  
SCK_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
LCD_SEG7  
-
-
PB3  
I2C3_  
SDA  
SPI1_  
MISO  
USART1_  
CTS  
TSC_G2  
_IO1  
SAI1_  
MCLK_B  
TIM17_  
BKIN  
CM4_  
EVENTOUT  
PB4  
NJTRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG8  
LCD_SEG9  
LCD_SEG6  
LCD_SEG21  
LCD_SEG16  
LCD_COM3  
LCD_SEG10  
LCD_SEG11  
LCD_SEG12  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
LPTIM1_  
IN1  
I2C1_  
SMBA  
SPI1_  
MOSI  
USART1_ LPUART1 TSC_G2  
COMP2_  
OUT  
SAI1_  
SD_B  
TIM16_  
BKIN  
CM4_  
EVENTOUT  
-
PB5  
CK  
_TX  
_IO2  
LPTIM1_  
ETR  
I2C1_  
SCL  
USART1_  
TX  
TSC_G2  
_IO3  
SAI1_  
FS_B  
TIM16_  
CH1N  
CM4_  
EVENTOUT  
MCO  
-
-
-
-
-
-
-
-
PB6  
LPTIM1_  
IN2  
TIM1_  
BKIN  
I2C1_  
SDA  
USART1_  
RX  
TSC_G2  
_IO4  
TIM17_  
CH1N  
CM4_  
EVENTOUT  
PB7  
-
-
-
-
-
-
-
-
-
-
B
TIM1_  
CH2N  
SAI1_  
PDM_CK1  
I2C1_  
SCL  
QUADSPI_  
BK1_IO1  
SAI1_  
MCLK_A  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
PB8  
TIM1_  
CH3N  
SAI1_  
PDM_DI2  
I2C1_  
SDA  
SPI2_  
NSS  
TSC_G7 QUADSPI_  
_IO4  
SAI1_  
FS_A  
TIM17_  
CH1  
CM4_  
EVENTOUT  
IR_OUT  
PB9  
BK1_IO0  
TIM2_  
CH3  
I2C3_  
SCL  
SPI2_SC  
K
LPUART1  
_RX  
TSC  
_SYNC  
QUADSPI_  
CLK  
COMP1_  
OUT  
SAI1_  
SCK_A  
CM4_  
EVENTOUT  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
-
-
-
-
-
-
-
-
TIM2_  
CH4  
I2C3_  
SDA  
LPUART1  
_TX  
QUADSPI_  
BK1_NCS  
COMP2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
TIM1_  
BKIN  
TIM1_  
BKIN  
I2C3_  
SMBA  
SPI2_  
NSS  
LPUART1 TSC_G1  
_RTS _IO1  
SAI1_  
FS_A  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
TIM1_  
CH1N  
I2C3_  
SCL  
SPI2_  
SCK  
LPUART1 TSC_G1  
SAI1_  
SCK_A  
CM4_  
EVENTOUT  
-
-
-
_CTS  
_IO2  
TIM1_  
CH2N  
I2C3_  
SDA  
SPI2_  
MISO  
TSC_G1  
_IO3  
SAI1_  
MCLK_A  
CM4_  
EVENTOUT  
-
RTC_  
REFIN  
TIM1_  
CH3N  
SPI2_  
MOSI  
TSC_G1  
_IO4  
SAI1_  
SD_A  
CM4_  
EVENTOUT  
-
-
Table 17. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
RF  
USB/  
QUADSPI  
SYS_AF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2  
LPTIM1_  
IN1  
I2C3  
_SCL  
LPUART1  
_RX  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG18  
LCD_SEG19  
LCD_SEG20  
LCD_VLCD  
LCD_SEG22  
LCD_SEG23  
LCD_SEG24  
LCD_SEG25  
LCD_SEG26  
-
-
-
-
-
-
-
-
-
-
-
-
-
PC0  
LPTIM1_  
OUT  
SPI2_  
MOSI  
I2C3  
_SDA  
LPUART1  
_TX  
CM4_  
EVENTOUT  
-
-
-
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
LPTIM1_  
IN2  
SPI2_  
MISO  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM1_  
ETR  
SAI1_  
PDM_DI1  
SPI2_  
MOSI  
SAI1  
_SD_A  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_  
PDM_DI3  
CM4_  
EVENTOUT  
TSC_G4  
_IO1  
CM4_  
EVENTOUT  
-
-
-
TSC_G4  
_IO2  
CM4_  
EVENTOUT  
TSC_G4  
_IO3  
CM4_  
EVENTOUT  
C
TIM1  
_BKIN  
TSC_G4  
_IO4  
SAI1  
_SCK_B  
CM4_  
EVENTOUT  
USB_NOE LCD_SEG27  
LCD_COM4  
TRACE  
D1  
TSC_G3  
_IO2  
CM4_  
EVENTOUT  
PC10  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG28  
LCD_SEG40  
-
-
-
-
-
-
-
-
-
LCD_COM5  
LCD_SEG29  
LCD_SEG41  
TSC_G3  
_IO3  
CM4_  
EVENTOUT  
-
LCD_COM6  
LCD_SEG30  
LCD_SEG42  
TRACE  
D3  
TSC_G3  
_IO4  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC13  
PC14  
PC15  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
Table 17. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
RF  
USB/  
QUADSPI  
SYS_AF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2  
SPI2_  
-
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD0  
NSS  
SPI2_  
-
CM4_  
EVENTOUT  
PD1  
PD2  
SCK  
LCD_COM7  
LCD_SEG31  
LCD_SEG43  
TRACE  
D2  
TSC_  
SYNC  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_  
MISO  
QUADSPI_  
BK1_NCS  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD3  
SPI2_  
MOSI  
TSC_  
G5_IO1  
QUADSPI_  
BK1_IO0  
CM4_  
EVENTOUT  
-
-
-
PD4  
TSC_  
G5_IO2  
QUADSPI_  
BK1_IO1  
SAI1_  
MCLK_B  
CM4_  
EVENTOUT  
PD5  
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_  
PDM_DI1  
TSC_  
G5_IO3  
QUADSPI_  
BK1_IO2  
SAI1_  
SD_A  
CM4_  
EVENTOUT  
-
PD6  
TSC_  
G5_IO4  
QUADSPI_  
BK1_IO3  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
LCD_SEG39  
LCD_SEG28  
LCD_SEG29  
LCD_SEG30  
LCD_SEG31  
LCD_SEG32  
LCD_SEG33  
LCD_SEG34  
LCD_SEG35  
-
-
-
-
-
-
-
-
-
PD7  
D
TIM1  
_BKIN2  
CM4_  
EVENTOUT  
PD8  
-
-
-
-
-
-
-
-
-
-
TRACE  
D0  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
PD9  
TRIG  
_INOUT  
TSC_  
G6_IO1  
CM4_  
EVENTOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
TSC_  
G6_IO2  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
TSC_  
G6_IO3  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
TSC_  
G6_IO4  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
TIM1_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
TIM1_  
CH2  
CM4_  
EVENTOUT  
Table 17. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5 AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
RF  
USB/  
QUADSPI  
SYS_AF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2  
TIM1_  
ETR  
TSC_  
G7_IO3  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG36  
-
-
-
-
-
-
-
-
-
-
PE0  
TSC_  
G7_IO2  
TIM17_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
LCD_SEG37  
PE1  
PE2  
PE3  
PE4  
PH0  
PH1  
PH3  
SAI1_  
PDM_CK1  
TSC_  
G7_IO1  
SAI1_  
MCLK_A  
CM4_  
EVENTOUT  
TRACECK  
LCD_SEG38  
-
-
-
-
-
-
E
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_  
EVENTOUT  
-
CM4_  
EVENTOUT  
-
-
CM4_  
EVENTOUT  
H
CM4_  
EVENTOUT  
LSCO  
STM32WB55xx  
Memory mapping  
5
Memory mapping  
The STM32WB55xx devices feature a single physical address space that can be accessed  
by the application processor and by the RF subsystem.  
A part of the Flash memory and of the SRAM2a and SRAM2b memories are made secure,  
exclusively accessible by the CPU2, protected against execution, read and write from CPU1  
and DMA.  
In case of shared resources the SW should implement arbitration mechanism to avoid  
access conflicts. This happens for peripherals Reset and Clock Controller (RCC), Power  
Controller (PWC), EXTI and Flash interface, and can be implemented using the built-in  
semaphore block (HSEM).  
By default the RF subsystem and CPU2 operate in secure mode. This implies that part of  
the Flash and of the SRAM2 memories can only be accessed by the RF subsystem and by  
the CPU2. In this case the Host processor (CPU1) has no access to these resources.  
The detailed memory map and the peripheral mapping of the STM32WB55xx devices can  
be found in the reference manual RM0434.  
DS11929 Rev 3  
69/165  
69  
 
 
Electrical characteristics  
STM32WB55xx  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
TBD indicates a value to be defined.  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 11.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 12.  
Figure 11. Pin loading conditions  
Figure 12. Pin input voltage  
0&8ꢅSLQ  
0&8ꢅSLQ  
&ꢅ ꢅꢄꢂꢅS)  
9,1  
06ꢁꢈꢆꢁꢂ9ꢁ  
06ꢁꢈꢆꢁꢁ9ꢁ  
70/165  
DS11929 Rev 3  
 
 
 
 
 
 
 
 
 
STM32WB55xx  
Electrical characteristics  
6.1.6  
Power supply scheme  
Figure 13. Power supply scheme  
9%$7  
%DFNXSꢅFLUFXLWU\  
ꢒ/6(ꢇꢅ57&ꢅDQG  
EDFNXSꢅUHJLVWHUVꢓ  
ꢁꢐꢄꢄꢅ9ꢅWRꢅꢅꢊꢐꢍꢅ9  
3RZHUꢅVZLWFK  
9''  
9&25(  
Qꢅ[ꢅ9''  
5HJXODWRU  
9'',2ꢁ  
287  
.HUQHOꢅORJLFꢅ  
,2  
ORJLF  
ꢒ&38ꢇꢅGLJLWDOꢅ  
*3,2V  
Qꢅ[ꢅꢁꢂꢂꢅQ)ꢅꢑꢅꢁꢅ[ꢅꢀꢐꢃꢅ—)  
,1  
DQGꢅPHPRULHV  
Qꢅ[ꢅ966  
9''$  
9''$  
95()  
$'&V  
95()ꢑ  
95()ꢉ  
23$03V  
&203V  
ꢁꢂꢅQ)ꢅꢑꢅꢁꢅ—)  
ꢁꢂꢂꢅQ) ꢁꢅ—)  
966$  
95()%8)  
9''  
9''6036  
9/;6036  
6036  
5HJXODWRU  
ꢀꢐꢃꢅ—)  
/ꢁꢒꢁꢓ  
9)%6036  
9666036  
ꢀꢐꢃꢅ—)  
([SRVHGꢅSDG  
7RꢅDOOꢅPRGXOHV  
06ꢀꢄꢀꢆꢊ9ꢊ  
1. The value of L1 depends upon the frequency, as indicated in Table 6.  
DS11929 Rev 3  
71/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
Caution:  
Each power supply pair (V / V , V  
/ V  
etc.) must be decoupled with filtering  
SSA  
DD  
SS  
DDA  
ceramic capacitors as shown in Figure 13. These capacitors must be placed as close as  
possible to (or below) the appropriate pins on the underside of the PCB to ensure the good  
functionality of the device.  
6.1.7  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
,
''6036  
9''6036  
,
''5)  
9''5)  
,
''86%  
9''86%  
,
''9%$7  
9%$7  
,
''  
9''  
,
''$  
9''$  
06ꢀꢄꢀꢁꢍ9ꢁ  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 18, Table 19 and Table 20  
may cause permanent damage to the device. These are stress ratings only and functional  
operation of the device at these conditions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
(1)  
Table 18. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDDX - VSS (including VDD, VDDA, VDDUSB, VLCD  
,
-0.3  
4.0  
V
DDRF, VDDSMPS, VBAT  
)
min (VDD, VDDA, VDDUSB, VLCD, VDDRF  
,
V
Input voltage on FT_xxx pins  
VDDSMPS) + 4.0(3)(4)  
(2)  
VSS-0.3  
VIN  
Input voltage on TT_xx pins  
Input voltage on any other pin  
4.0  
4.0  
72/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 18. Voltage characteristics (continued)  
Ratings  
Min  
Max  
Unit  
Variations between different VDDX  
power pins of the same domain  
|VDDx  
|
-
50  
50  
mV  
Variations between all the different  
ground pins(5)  
|VSSx-VSS  
|
-
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the  
external power supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 19 for the maximum allowed injected current values.  
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.  
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 19. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin except FT_f  
Output current sunk by any FT_f pin  
130  
130  
100  
100  
20  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT_xxx, TT_xx, RST and B pins, except PB0 and PB1  
Injected current on PB0 and PB1  
20  
100  
100  
-5 / +0(4)  
-5/0  
25  
IIO(PIN)  
(3)  
IINJ(PIN)  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(5)  
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external  
power supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count packages.  
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage  
characteristics for the maximum allowed input voltage values.  
5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative  
injected currents (instantaneous values).  
Table 20. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
130  
°C  
DS11929 Rev 3  
73/165  
152  
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
6.3  
Operating conditions  
6.3.1  
Summary of main performance  
Table 21. Main performance at V = 3.3 V  
DD  
Parameter  
Test conditions  
Typ  
Unit  
VBAT (VBAT = 1.8 V, VDD = 0 V)  
Shutdown (VDD = 1.8 V)  
0.002  
0.013  
Standby (VDD = 1.8 V,  
32 KB RAM retention)  
0.320  
Stop2  
Sleep (16 MHz)  
LP run (2 MHz)  
1.85  
740  
ICORE Core current consumption  
320  
Run (64 MHz)  
5000  
TBD  
TBD  
Radio RX  
µA  
Radio TX 0 dBm output power  
Advertising  
(Tx = 0 dBm; Period 1.28 s;  
31 Bytes, 3 channels)  
TBD  
TBD  
BLE  
Advertising  
Connected mode (Tx = 0 dBm, 6 Bytes;  
period 300 ms, 3 channels)  
Peripheral  
IPERI current  
consumption  
LP timers  
I2C3  
-
-
-
-
TBD  
TBD  
TBD  
0.450  
LPUART  
RTC  
6.3.2  
General operating conditions  
Table 22. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK Internal AHB clock frequency  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
0
0
64  
64  
64  
3.6  
-
MHz  
-
-
0
VDD  
Standard operating voltage  
1.71(1)  
1.62  
2.4  
ADC or COMP used  
VREFBUF used  
VDDA Analog supply voltage  
3.6  
3.6  
V
ADC, COMP, VREFBUF  
not used  
0
VBAT  
Backup operating voltage  
-
1.55  
74/165  
DS11929 Rev 3  
 
 
 
 
 
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
Table 22. General operating conditions (continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
VFBSMPS SMPS Feedback voltage  
VDDRF Minimum RF voltage  
-
-
1.4  
1.71  
3.0  
0
3.6  
3.6  
USB used  
3.6  
VDDUSB USB supply voltage  
USB not used  
TT_xx I/O  
3.6  
V
–0.3  
V
DD + 0.3  
min (min (VDD, VDDA  
,
VIN  
I/O input voltage  
All I/O except TT_xx  
–0.3  
VDDUSB, VLCD) + 3.6 V,  
5.5 V)(2)(3)  
UFQFPN48  
-
-
-
392  
425  
454  
85  
Power dissipation at  
TA = 85 °C for suffix 6  
or  
PD  
VFQFPN68  
mW  
TA = 105 °C for suffix 7(4)  
WLCSP100  
Maximum power dissipation  
Low-power dissipation(5)  
Maximum power dissipation  
Low-power dissipation(5)  
Suffix 6 version  
Ambient temperature for the  
suffix 6 version  
–40  
–40  
–40  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for the  
suffix 7 version  
°C  
Junction temperature range  
Suffix 7 version  
1. When RESET is released functionality is guaranteed down to VBOR0 Min.  
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.  
Maximum I/O input voltage is the smallest value between min (VDD, VDDA, VDDUSB, VLCD) + 3.6 V and 5.5V.  
3. For operation with voltage higher than min (VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors  
must be disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.4: Thermal  
characteristics).  
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.4:  
Thermal characteristics).  
6.3.3  
RF BLE characteristics  
RF characteristics are given at 1 Mbps, unless otherwise specified.  
Table 23. RF transmitter BLE characteristics  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
-
Max  
Unit  
Fop  
Frequency operating range  
-
-
-
-
-
2405  
2480  
MHz  
-
-
-
-
32  
250  
1
-
-
Fxtal  
Crystal frequency  
Delta frequency  
On Air data rate  
RF channel spacing  
F  
KHz  
Mbps  
MHz  
2
-
Rgfsk  
PLLres  
2
DS11929 Rev 3  
75/165  
152  
 
 
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 24. RF transmitter BLE characteristics (1 Mbps)  
Symbol  
Parameter  
Test conditions  
Min Typ Max Unit  
SMPS Bypass (or ON  
(VFBSMPS = 1.7 V) and  
VDD > 1.95 V)  
-
-
6.0  
3.7  
-
-
Maximum output power  
SMPS Bypass (or ON  
(VFBSMPS = 1.4 V) and  
VDD > 1.71 V), Code 29  
dBm  
Prf  
-
-
-
0
-20  
-
-
-
0 dBm output power  
-
Minimum output power  
Tx = 0 dBm - Typical  
-0.5  
0.4  
dB  
Pband  
Output power variation over the band  
-
-
-
-
670  
-58  
-61  
-
-
-
KHz  
BW20dB 20 dB signal bandwidth  
2 MHz  
Bluetooth® Low Energy:-20 dBm  
IBSE  
In band spurious emission  
dBm  
3 MHz Bluetooth® Low Energy: -30 dBm  
Bluetooth® Low Energy: ±50 kHz  
-
-
-12  
2
-
-
KHz  
fd  
Frequency drift  
Bluetooth® Low Energy:  
±20 KHz / 50 µs  
KHz/  
50 µs  
maxdr  
Maximum drift rate  
Bluetooth® Low Energy:  
±150 kHz  
-
-
8
-
-
fo  
Frequency offset  
Bluetooth® Low Energy:  
between 225 and 275 kHz  
246  
Frequency deviation average  
f1  
KHz  
f2  
Bluetooth® Low Energy:> 185 kHz  
Bluetooth® Low Energy:> 0.80  
-
-
203  
-
-
Frequency deviation  
99.9%  
Frequency deviation  
0.90  
-
fa  
f2 (average) / f1 (average)  
< 1 GHz  
1 GHz  
-
-
-
-
-61  
-46  
-
-
Out of band  
spurious emission  
OBSE(2)  
dBm  
1. :Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and  
impedance matching networks to interface with a 50 antenna.  
2. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440  
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
76/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 25. RF transmitter BLE characteristics (2 Mbps)  
Parameter  
Test conditions  
Min Typ Max Unit  
SMPS Bypass (or ON  
(VFBSMPS = 1.7 V) and  
VDD > 1.95 V)  
-
-
6.0  
3.7  
-
-
Maximum output power  
SMPS Bypass (or ON  
(VFBSMPS = 1.4 V) and  
VDD > 1.71 V), Code 29  
dBm  
Prf  
-
-
-
0
-20  
-
-
-
0 dBm output power  
-
Minimum output power  
Tx = 0 dBm - Typical  
-0.5  
0.4  
dB  
Pband  
Output power variation over the band  
-
-
-
-
670  
-62  
-63  
-64  
-
-
-
KHz  
BW20dB 20 dB signal bandwidth  
4 MHz  
5 MHz  
Bluetooth® Low Energy:-20 dBm  
Bluetooth® Low Energy: -20 dBm  
IBSE  
fd  
In band spurious emission  
dBm  
KHz  
6 MHz Bluetooth® Low Energy: -30 dBm  
Bluetooth® Low Energy: ±50 kHz  
-
-
-
-
-12  
2
-
-
-
-
Frequency drift  
Bluetooth® Low Energy:  
±20 KHz / 50 µs  
KHz/  
50 µs  
maxdr  
fo  
Maximum drift rate  
Frequency offset  
Bluetooth® Low Energy: ±150 kHz  
8
Bluetooth® Low Energy:  
between 450 and 550 kHz  
468  
Frequency deviation average  
f1  
KHz  
f2  
Bluetooth® Low Energy:> 370 kHz  
Bluetooth® Low Energy:> 0.80  
-
-
438  
-
-
Frequency deviation  
99.9%  
Frequency deviation  
0.97  
-
fa  
f2 (average) / f1 (average)  
< 1 GHz  
1 GHz  
-
-
-
-
-61  
-46  
-
-
Out of band  
spurious emission  
OBSE(2)  
dBm  
1. :Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and  
impedance matching networks to interface with a 50 antenna.  
2. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440  
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
DS11929 Rev 3  
77/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
Table 26. RF receiver BLE characteristics (1 Mbps)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
PER <30.8%  
Prx_max  
Maximum input signal  
6
Bluetooth® Low Energy: min -10 dBm  
High sensitivity mode (SMPS Bypass)  
High sensitivity mode (SMPS ON)  
-96  
-96  
PER <30.8%  
Bluetooth® Low Energy: max -70 dBm  
Psens(1)  
dBm  
RSSI maximum value  
RSSI minimum value  
RSSI accuracy  
-
-7  
-94  
2
Rssimaxrange  
Rssiminrange  
Rssiaccu  
-
-
Co-channel rejection  
Bluetooth® Low Energy: 21 dB  
8
C/Ico  
Adj 5 MHz  
-55  
-54  
-50  
-33  
-47  
-37  
-34  
0
Bluetooth® Low Energy: -27 dB  
Adj -5 MHz  
Bluetooth® Low Energy:-27 dB  
Adj = 4 MHz  
Bluetooth® Low Energy:-27 dB  
Adj = -4 MHz  
Bluetooth® Low Energy:-15 dB  
dB  
Adj = 3 MHz  
Adjacent channel interference  
C/I  
Bluetooth® Low Energy:-27 dB  
Adj = 2 MHz  
Bluetooth® Low Energy:-17 dB  
Adj = -2 MHz  
Bluetooth® Low Energy:-15 dB  
Adj = 1 MHz  
Bluetooth® Low Energy: 15 dB  
Adj = -1 MHz  
-1  
Bluetooth® Low Energy: 15 dB  
C/Image  
P_IMD  
Image rejection (Fimage = -3 MHz)  
Intermodulation  
Bluetooth® Low Energy: -9 dB  
-26  
-35  
|f2-f1| = 3 MHz  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 4 MHz  
-30  
-35  
dBm  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 5 MHz  
Bluetooth® Low Energy:-50 dBm  
78/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
Table 26. RF receiver BLE characteristics (1 Mbps) (continued)  
Parameter Test conditions  
Typ  
Unit  
30 to 2000 MHz  
-3  
Bluetooth® Low Energy: -30 dBm  
2003 to 2399 MHz  
-3  
-2  
5
Bluetooth® Low Energy: -35 dBm  
P_OBB  
Out of band blocking  
dBm  
2484 to 2997 MHz  
Bluetooth® Low Energy: -35 dBm  
3 to 12.75 GHz  
Bluetooth® Low Energy: -30 dBm  
1. With ideal TX.  
Table 27. RF receiver BLE characteristics (2 Mbps)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
PER <30.8%  
Prx_max  
Maximum input signal  
6
Bluetooth® Low Energy: min -10 dBm  
High sensitivity mode (SMPS Bypass)  
High sensitivity mode (SMPS ON)  
-92.5  
-92.5  
PER <30.8%  
Bluetooth® Low Energy: max -70 dBm  
Psens(1)  
dBm  
RSSI maximum value  
RSSI minimum value  
RSSI accuracy  
-
-7  
-94  
2
Rssimaxrange  
Rssiminrange  
Rssiaccu  
-
-
Co-channel rejection  
Bluetooth® Low Energy spec: 21 dB  
10  
C/Ico  
Adj 8MHz  
-54  
-51  
-49  
-46  
-40  
-2  
Bluetooth® Low Energy: -27 dB  
Adj -8 MHz  
Bluetooth® Low Energy:-27 dB  
Adj = 6 MHz  
Bluetooth® Low Energy:-27 dB  
dB  
Adj = -6 MHz  
Adjacent channel interference  
C/I  
Bluetooth® Low Energy:-15 dB  
Adj = 4 MHz  
Bluetooth® Low Energy:-17 dB  
Adj = 2 MHz  
Bluetooth® Low Energy:15 dB  
Adj = -2 MHz  
-4  
Bluetooth® Low Energy:15 dB  
C/Image  
Image rejection (Fimage = -4 MHz)  
Bluetooth® Low Energy: -9 dB  
-24  
DS11929 Rev 3  
79/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
Table 27. RF receiver BLE characteristics (2 Mbps) (continued)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
|f2-f1| = 6 MHz  
-27  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 8 MHz  
P_IMD  
Intermodulation  
-29  
-27  
-6  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 10 MHz  
Bluetooth® Low Energy:-50 dBm  
30 to 2000 MHz  
dBm  
Bluetooth® Low Energy: -30 dBm  
2003 to 2399 MHz  
-6  
Bluetooth® Low Energy: -35 dBm  
P_OBB  
Out of band blocking  
2484 to 2997 MHz  
-2  
Bluetooth® Low Energy: -35 dBm  
3 to 12.75 GHz  
4
Bluetooth® Low Energy: -30 dBm  
1. With ideal TX.  
Table 28. RF BLE power consumption for V = 3.3 V  
DD  
Symbol  
Parameter  
Typ Unit  
TX maximum output power consumption (SMPS Bypass)  
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V)  
TX 0 dBm output power consumption (SMPS Bypass)  
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V)  
Rx consumption (SMPS Bypass)  
13.1  
8.1  
Itxmax  
9.5  
mA  
5.5  
Itx0dbm  
7.0  
3.8  
Irxlo  
Rx consumption (SMPS On, VFBSMPS = 1.4 V)  
6.3.4  
RF 802.15.4 characteristics  
Table 29. RF transmitter 802.15.4 characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Fop  
Fxtal  
F  
Frequency operating range  
Crystal frequency  
-
-
-
-
-
2405  
-
32  
5
2480  
-
-
-
-
-
-
-
-
MHz  
Delta frequency  
Roqpsk On Air data rate  
250  
5
Kbps  
MHz  
PLLres RF channel spacing  
80/165  
DS11929 Rev 3  
 
 
 
 
 
STM32WB55xx  
Electrical characteristics  
Table 29. RF transmitter 802.15.4 characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
SMPS Bypass (or ON  
(VFBSMPS = 1.7 V) and  
VDD > 1.95 V)  
-
-
5.7  
3.7  
-
-
Maximum output power(1)  
SMPS Bypass (or ON  
(VFBSMPS = 1.4 V) and  
VDD > 1.71 V), Code 29  
Prf  
dBm  
0 dBm output power  
-
-
-
0
-20  
-
-
-
Minimum output power  
-
-0.5  
5
Pband Output power variation over the band Tx = 0 dBm - Typical  
0.4  
8
dB  
%
EVMrms EVM rms  
Txpd Transmit power density  
Pmax  
6
|f - fc| > 3.5 MHz  
-
-35  
-
dB  
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific  
external RF filter and impedance matching networks to interface with a 50 antenna.  
Table 30. RF receiver 802.15.4 characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Prx_max  
Maximum input signal  
6
-100  
-98  
35  
Sensitivity (SMPS Bypass)  
Sensitivity (SMPS On)  
PER < 1%  
dBm  
Rsens  
Adjacent channel rejection  
Alternate channel rejection  
-
-
C/adj  
C/alt  
dB  
46  
Figure 15. Typical link quality indicator code vs. Rx level  
DS11929 Rev 3  
81/165  
152  
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
Figure 16. Typical energy detection (T = 27°C, V = 3.3 V)  
DD  
Table 31. RF 802.15.4 power consumption for V = 3.3 V  
DD  
Symbol  
Parameter  
Typ  
Unit  
TX maximum output power consumption (SMPS Bypass)  
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V)  
TX 0 dBm output power consumption (SMPS Bypass)  
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V)  
Rx consumption (SMPS Bypass)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Itxmax  
Itx0dbm  
Irxlo  
mA  
Rx consumption (SMPS On)  
82/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Electrical characteristics  
6.3.5  
Operating conditions at power-up / power-down  
The parameters given in Table 32 are derived from tests performed under the ambient  
temperature condition summarized in Table 22.  
Table 32. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
-
10  
0
tVDD  
-
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
VDDUSB rise time rate  
VDDUSB fall time rate  
VDDRF rise time rate  
tVDDA  
tVDDUSB  
tVDDRF  
-
-
-
10  
0
µs/V  
10  
-
VDDRF fall time rate  
-
6.3.6  
Embedded reset and power control block characteristics  
The parameters given in Table 33 are derived from tests performed under the ambient  
temperature conditions summarized in Table 22: General operating conditions.  
Table 33. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
(2)  
tRSTTEMPO  
Reset temporization after BOR0 is detected VDD rising  
-
250  
400  
μs  
Rising edge  
Brown-out reset threshold 0  
1.62 1.66 1.70  
1.60 1.64 1.69  
2.06 2.10 2.14  
1.96 2.00 2.04  
2.26 2.31 2.35  
2.16 2.20 2.24  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.85 2.90 2.95  
2.76 2.81 2.86  
2.10 2.15 2.19  
2.00 2.05 2.10  
2.26 2.31 2.36  
2.15 2.20 2.25  
2.41 2.46 2.51  
2.31 2.36 2.41  
(2)  
VBOR0  
Falling edge  
Rising edge  
Brown-out reset threshold 1  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
Falling edge  
Rising edge  
Brown-out reset threshold 2  
Falling edge  
Rising edge  
Brown-out reset threshold 3  
Falling edge  
V
Rising edge  
Brown-out reset threshold 4  
Falling edge  
Rising edge  
Programmable voltage detector threshold 0  
Falling edge  
Rising edge  
PVD threshold 1  
Falling edge  
Rising edge  
PVD threshold 2  
Falling edge  
DS11929 Rev 3  
83/165  
152  
 
 
 
 
Electrical characteristics  
STM32WB55xx  
Table 33. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.69 2.74 2.79  
2.59 2.64 2.69  
2.85 2.91 2.96  
2.75 2.81 2.86  
2.92 2.98 3.04  
2.84 2.90 2.96  
VPVD3  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
VPVD4  
VPVD5  
VPVD6  
V
Hysteresis in  
continuous mode  
-
-
-
-
20  
30  
-
-
Vhyst_BORH0  
Hysteresis voltage of BORH0  
Hysteresis in  
other mode  
mV  
Hysteresis voltage of BORH (except  
BORH0) and PVD  
Vhyst_BOR_PVD  
-
-
100  
1.1  
-
BOR(3) (except BOR0) and PVD  
consumption from VDD  
IDD (BOR_PVD)(2)  
VPVM1  
1.6  
µA  
V
VDDUSB peripheral voltage monitoring  
-
1.18 1.22 1.26  
1.61 1.65 1.69  
Rising edge  
VPVM3  
VDDA peripheral voltage monitoring  
Falling edge  
1.6  
1.64 1.68  
Vhyst_PVM3  
Vhyst_PVM4  
DD (PVM1)(2)  
IDD (PVM3)(2)  
PVM3 hysteresis  
-
-
-
-
-
-
-
-
10  
10  
0.2  
2
-
-
-
-
mV  
µA  
PVM4 hysteresis  
I
PVM1 consumption from VDD  
PVM3 and PVM4 consumption from VDD  
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current  
characteristics tables.  
84/165  
DS11929 Rev 3  
STM32WB55xx  
Electrical characteristics  
6.3.7  
Embedded voltage reference  
The parameters given in Table 34 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 22: General operating  
conditions.  
Table 34. Embedded internal voltage reference  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TA < +125 °C 1.182 1.212 1.232  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
tS_vrefint  
tstart_vrefint  
IDD(VREFINTBUF  
VREFINT  
-
4(2)  
-
8
-
µs  
Start time of reference voltage  
buffer when ADC is enable  
-
-
-
-
12(2)  
20(2)  
VREFINT buffer consumption from  
VDD when converted by ADC  
)
-
12.5  
µA  
Internal reference voltage spread  
over the temperature range  
V
DD = 3 V  
5
7.5(2)  
50(2)  
mV  
TCoeff  
ACoeff  
Temperature coefficient  
Long term stability  
Voltage coefficient  
–40 °C < TA < +125 °C  
1000 hours, T = 25 °C  
3.0 V < VDD < 3.6 V  
-
-
30  
ppm/°C  
ppm  
300 1000(2)  
VDDCoeff  
-
250 1200(2) ppm/V  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
-
VREFINT  
1. The shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
Figure 17. V  
vs. temperature  
REFINT  
9
ꢁꢐꢆꢊꢄ  
ꢁꢐꢆꢊ  
ꢁꢐꢆꢆꢄ  
ꢁꢐꢆꢆ  
ꢁꢐꢆꢁꢄ  
ꢁꢐꢆꢁ  
ꢁꢐꢆꢂꢄ  
ꢁꢐꢆ  
ꢁꢐꢁꢈꢄ  
ꢁꢐꢁꢈ  
ꢁꢐꢁꢋꢄ  
ƒ&  
ꢉꢀꢂ  
ꢉꢆꢂ  
ꢆꢂ  
ꢀꢂ  
ꢍꢂ  
ꢋꢂ  
ꢁꢂꢂ  
ꢁꢆꢂ  
0HDQ  
0LQ  
0D[  
06Yꢀꢂꢁꢍꢈ9ꢁ  
DS11929 Rev 3  
85/165  
152  
 
 
 
 
Electrical characteristics  
STM32WB55xx  
6.3.8  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 14: Current consumption  
measurement scheme.  
Typical and maximum current consumption  
The MCU is put under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the f  
frequency (refer to the table “Number of wait states according  
HCLK  
to CPU clock (HCLK) frequency” available in the RM0434 reference manual).  
When the peripherals are enabled f  
= f  
PCLK  
HCLK  
PCLK  
For Flash memory and shared peripherals f  
= f  
= f  
HCLK HCLKS  
The parameters given in Table 35 to Table 46 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 22: General  
operating conditions.  
86/165  
DS11929 Rev 3  
 
Table 35. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF), V = 3.3 V  
DD  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
16 MHz  
2 MHz  
1.90  
1.90  
2.00  
2.20  
1.25  
8.60  
4.65  
2.65  
5.20  
3.35  
2.45  
2.55  
1.60  
9.00  
5.05  
3.00  
5.35  
3.50  
2.60  
1.05  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Range 2  
0.960 0.985 1.10  
f
HCLK = fHSI16 up to  
64 MHz  
8.15  
4.20  
2.25  
5.00  
3.15  
2.30  
8.25  
4.25  
2.30  
5.00  
3.15  
2.30  
8.40  
4.40  
2.40  
5.10  
3.25  
2.35  
16 MHz included,  
fHCLK = fHSE = 32 MHz  
Supply  
Range 1 32 MHz  
16 MHz  
IDD(Run)  
current in fHSI16 + PLL ON  
Run mode above 32 MHz  
All peripherals  
64 MHz  
SMPS  
32 MHz  
Range 1  
disabled  
mA  
16 MHz  
2 MHz  
1 MHz  
0.335 0.360 0.470 0.670  
Supply  
0.170 0.210 0.325 0.520 0.890 TBD TBD TBD  
current in fHCLK = fMSI  
Low-power All peripherals disabled  
run mode  
IDD(LPRun)  
400 kHz 0.0815 0.120 0.230 0.425 0.795 TBD TBD TBD  
100 kHz 0.0415 0.076 0.190 0.385 0.755 TBD TBD TBD  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 36. Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1, V = 3.3 V  
DD  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK 25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
16 MHz 2.00  
2.05  
2.15  
1.10  
9.00  
4.70  
2.55  
5.35  
3.35  
2.40  
2.30  
1.25  
9.20  
4.90  
2.70  
5.45  
3.45  
2.45  
2.60  
1.50  
9.55  
5.25  
3.00  
5.60  
3.60  
2.60  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Range 2  
2 MHz 0.970 1.00  
fHCLK = fHSI16 up to  
16 MHz included,  
64 MHz 8.80  
8.90  
4.55  
2.40  
5.30  
3.25  
2.35  
Supply  
fHCLK = fHSE = 32 MHz  
Range 1 32 MHz 4.50  
16 MHz 2.40  
IDD(Run)  
current in  
fHSI16 + PLL ON  
Run mode above 32 MHz  
All peripherals  
64 MHz 5.25  
disabled  
mA  
SMPS  
Range 1  
32 MHz 3.25  
16 MHz 2.35  
2 MHz 0.265 0.285 0.385 0.550 0.865 TBD TBD TBD  
1 MHz 0.135 0.170 0.270 0.430 0.745 TBD TBD TBD  
400 kHz 0.066 0.097 0.195 0.360 0.675 TBD TBD TBD  
100 kHz 0.031 0.0625 0.160 0.325 0.640 TBD TBD TBD  
Supply  
current in fHCLK = fMSI  
Low-power All peripherals disabled  
run mode  
IDD(LPRun)  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
STM32WB55xx  
Electrical characteristics  
Table 37. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), V = 3.3 V  
DD  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
1.90  
1.85  
1.85  
1.75  
1.60  
8.15  
8.00  
8.10  
7.60  
6.85  
5.00  
4.95  
4.95  
4.75  
4.40  
TBD  
TBD  
TBD  
TBD  
TBD  
320  
119  
116  
116  
109  
100  
127  
125  
127  
119  
107  
78  
Dhrystone 2.1  
mA  
µA/MHz  
Fibonacci  
While(1)  
Reduced code(1)  
Coremark  
Dhrystone 2.1  
Fibonacci  
mA  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
Supply current in  
Run mode  
IDD(Run)  
Reduced code(1)  
Coremark  
77  
Dhrystone 2.1  
Fibonacci  
77  
74  
While(1)  
69  
Reduced code(1)  
TBD  
TBD  
TBD  
TBD  
TBD  
160  
175  
175  
195  
113  
Coremark  
Dhrystone 2.1  
Fibonacci  
While(1)  
Reduced code(1)  
Coremark  
350  
Supply current in fHCLK = fMSI = 2 MHz  
Low-power run All peripherals disable  
IDD(LPRun)  
Dhrystone 2.1  
350  
Fibonacci  
390  
While(1)  
225  
1. Reduced code used for characterization results provided in Table 35 and Table 36.  
DS11929 Rev 3  
89/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
Table 38. Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1, V = 3.3 V  
DD  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
2.00  
1.75  
1.95  
1.85  
1.85  
8.80  
7.50  
8.60  
7.90  
8.00  
5.25  
4.65  
5.15  
4.85  
4.90  
TBD  
TBD  
TBD  
TBD  
TBD  
255  
125  
109  
122  
116  
116  
138  
117  
134  
123  
125  
82  
Dhrystone 2.1  
mA  
µA/MHz  
Fibonacci  
While(1)  
Reduced code(1)  
Coremark  
Dhrystone 2.1  
Fibonacci  
mA  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
Supply current in  
Run mode  
IDD(Run)  
Reduced code(1)  
Coremark  
73  
Dhrystone 2.1  
Fibonacci  
80  
76  
While(1)  
77  
Reduced code(1)  
TBD  
TBD  
TBD  
TBD  
TBD  
128  
103  
125  
115  
110  
Coremark  
Dhrystone 2.1  
Fibonacci  
While(1)  
Reduced code(1)  
Coremark  
205  
Supply current in fHCLK = fMSI = 2 MHz  
Low-power run All peripherals disable  
IDD(LPRun)  
Dhrystone 2.1  
Fibonacci  
250  
230  
While(1)  
220  
1. Reduced code used for characterization results provided in Table 35 and Table 36.  
90/165  
DS11929 Rev 3  
 
 
Table 39. Current consumption in Sleep and Low-power sleep modes, Flash memory ON  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
fHCLK = fHSI16 up Range 2 16 MHz 0.740 0.765 0.865 1.05  
to 16 MHz  
included,  
1.40  
3.40  
2.20  
1.55  
2.90  
2.25  
1.95  
805  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
64 MHz 2.65 2.70 2.80  
32 MHz 1.40 1.45 1.60  
3.00  
1.80  
Range 1  
fHCLK = fHSE up  
to 32 MHz  
Supply  
current in  
sleep mode,  
IDD(Sleep)  
mA  
16 MHz 0.845 0.875 0.990 1.20  
fHSI16 + PLL ON  
above 32 MHz  
64 MHz 2.60 2.60 2.65  
32 MHz 1.90 1.95 2.00  
16 MHz 1.70 1.70 1.75  
2.75  
2.10  
1.80  
430  
400  
380  
370  
SMPS  
Range 1  
All peripherals  
disabled  
2 MHz  
1 MHz  
90  
58  
44  
125  
93  
235  
205  
185  
175  
Supply  
775  
current in fHCLK = fMSI  
low-power All peripherals disabled  
sleep mode  
IDD(LPSleep)  
µA  
400 kHz  
72.5  
755  
100 kHz 31.5 63.5  
745  
1. Guaranteed by characterization results, unless otherwise specified.  
Table 40. Current consumption in Low-power sleep modes, Flash memory in Power down  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 125 °C 25 °C 55 °C 85 °C 105 °C 125 °C  
2 MHz  
1 MHz  
94.0  
56.5  
40.5  
27.5  
115  
86.0  
66.5  
57.5  
200  
170  
150  
140  
335  
305  
285  
275  
575  
550  
530  
520  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Supply  
current in  
low-power All peripherals  
sleep mode disabled  
fHCLK = fMSI  
I
DD(LPSleep)  
µA  
400 kHz  
100 kHz  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
 
 
Table 41. Current consumption in Stop 2 mode  
TYP  
Conditions  
-
MAX(1)  
Symbol  
Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 1.60 2.45 3.80 6.60 22.5  
2.4 V 1.75 2.50 3.85 6.70 22.5  
3.0 V 1.70 2.55 3.95 6.80 23.0  
3.6 V 1.85 2.65 4.10 7.00 23.5  
1.8 V 1.00 1.85 3.15 5.95 21.5  
2.4 V 1.10 1.85 3.20 6.00 22.0  
3.0 V 1.10 1.85 3.25 6.10 22.0  
3.6 V 1.15 1.95 3.35 6.25 23.0  
1.8 V 1.20 2.00 3.35 6.10 22.0  
2.4 V 1.20 2.00 3.40 6.20 22.0  
3.0 V 1.25 2.10 3.45 6.30 22.5  
3.6 V 1.30 2.15 3.60 6.55 23.0  
1.8 V 1.30 2.10 3.45 6.25 22.0  
2.4 V 1.45 2.25 3.55 6.40 22.5  
3.0 V 1.50 2.30 3.70 6.55 22.5  
3.6 V 1.75 2.50 3.95 6.85 23.5  
1.8 V 1.35 2.20 3.55 6.30 22.0  
2.4 V 1.50 2.35 3.65 6.50 22.5  
3.0 V 1.70 2.45 3.85 6.65 23.0  
3.6 V 1.80 2.60 4.05 6.95 23.5  
1.8 V 1.35 2.20 3.50 6.25 22.0  
2.4 V 1.45 2.25 3.65 6.40 22.5  
3.0 V 1.55 2.45 3.80 6.65 23.0  
3.6 V 1.70 2.55 4.05 6.95 23.5  
51.0  
52.0  
52.5  
54.0  
50.0  
51.0  
52.0  
53.0  
50.5  
51.0  
52.0  
53.5  
50.5  
51.5  
52.5  
53.5  
50.5  
51.5  
52.5  
54.0  
50.5  
51.5  
52.5  
54.0  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
110 TBD TBD TBD TBD TBD TBD  
115 TBD TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
BLE enabled  
LCD disabled  
Supply current  
in Stop 2  
(Stop 2) mode, RTC  
disabled  
IDD  
LCD disabled  
BLE disabled  
LCD enabled(2)  
and clocked  
by LSI  
BLE disabled  
µA  
RTC clocked  
by LSI,  
LCD disabled  
Supply current  
IDD  
in Stop 2  
(Stop 2  
mode, RTC  
with  
RTC clocked  
by LSI,  
enabled, BLE LCD enabled(2)  
disabled  
RTC)  
-
-
-
-
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
RTC clocked by  
LSE quartz(3)  
in low drive  
mode  
 
 
Table 41. Current consumption in Stop 2 mode (continued)  
TYP  
Conditions  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
Wakeup clock is  
HSI16, voltage 3.0 V  
-
-
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Range 2. See(4)  
.
Supply current Wakeup clock is  
during  
MSI = 32 MHz,  
voltage  
3.0 V  
3.0 V  
wakeup from  
Stop 2 mode  
bypass mode  
Range 1. See(4)  
.
IDD  
Wakeup clock is  
MSI = 4 MHz,  
voltage  
(wakeup  
from  
-
-
-
TBD  
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
µA  
Stop 2)  
Range 2. See(4)  
.
Wakeup clock is  
HSI16, voltage 3.0 V  
Range 1. See(4)  
Supply current  
during  
wakeup from  
Stop 2 mode  
SMPS mode  
.
Wakeup clock is  
MSI = 32 MHz,  
voltage  
3.0 V  
Range 1. See(4)  
.
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup timings.  
 
Table 42. Current consumption in Stop 1 mode  
TYP  
Conditions  
-
MAX(1)  
Symbol Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 5.55 9.85 16.0 29.0 97.0  
2.4 V 5.80 9.90 16.5 29.0 97.5  
3.0 V 5.90 9.90 16.5 29.0 98.0  
3.6 V 6.00 10.0 16.5 29.5 99.0  
1.8 V 5.05 9.20 15.5 28.0 96.0  
2.4 V 5.10 9.25 15.5 28.5 96.5  
3.0 V 5.15 9.30 15.5 28.5 97.0  
3.6 V 5.25 9.45 16.0 29.0 97.5  
1.8 V 5.05 9.30 15.5 28.5 96.0  
2.4 V 5.10 9.35 16.0 28.5 96.5  
3.0 V 5.20 9.65 16.0 28.5 97.0  
3.6 V 5.55 9.85 16.0 29.0 98.5  
1.8 V 5.30 9.35 16.0 28.5 96.5  
2.4 V 5.40 9.45 16.0 28.5 97.0  
3.0 V 5.70 9.55 16.5 29.0 98.5  
3.6 V 5.85 10.0 16.5 29.5 96.5  
1.8 V 5.25 9.60 16.0 28.5 96.5  
2.4 V 5.30 9.80 16.0 29.0 97.0  
3.0 V 5.85 9.75 16.5 29.0 97.5  
3.6 V 5.90 10.5 16.5 29.0 98.5  
1.8 V 5.35 9.55 16.0 28.5 96.5  
2.4 V 5.40 9.70 16.0 29.0 96.5  
3.0 V 5.75 9.70 16.0 29.0 97.5  
3.6 V 5.90 10.0 16.5 29.5 99.0  
215  
215  
215  
220  
210  
215  
215  
215  
210  
215  
215  
215  
215  
215  
220  
215  
215  
215  
215  
220  
215  
215  
215  
220  
435 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
445 TBD TBD TBD TBD TBD TBD  
450 TBD TBD TBD TBD TBD TBD  
435 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
445 TBD TBD TBD TBD TBD TBD  
435 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
445 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
445 TBD TBD TBD TBD TBD TBD  
435 TBD TBD TBD TBD TBD TBD  
435 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
440 TBD TBD TBD TBD TBD TBD  
445 TBD TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
BLE enabled  
LCD disabled  
Supply  
current in  
IDD  
BLE disabled  
LCD disabled  
Stop 1 mode,  
(Stop 1)  
RTC  
disabled  
BLE disabled  
LCD enabled(2)  
clocked by LSI  
,
µA  
RTC clocked by LSI  
LCD disabled  
Supply  
current in  
IDD  
(Stop 1 Stop 1 mode, RTC clocked by LSI  
with  
RTC) enabled,  
BLE disabled  
RTC  
LCD enabled(2)  
-
-
-
-
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
RTC clocked by  
LSE quartz(3) in  
Low drive mode  
 
 
Table 42. Current consumption in Stop 1 mode (continued)  
TYP  
Conditions  
-
MAX(1)  
Symbol Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
Wakeup clock  
HSI16,  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
-
-
-
-
-
TBD  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
voltage Range 2.  
See (4)  
.
Supply  
current  
during  
Wakeup clock  
MSI = 32 MHz,  
wakeup from voltage Range 1.  
Stop 1  
bypass mode  
See (4)  
.
IDD  
(wakeup  
from  
Wakeup clock  
MSI = 4 MHz,  
voltage Range 2.  
mA  
Stop1)  
See (4)  
.
Wakeup clock  
HSI16,  
Supply  
current  
during  
wakeup from  
Stop 1  
voltage Range 2.  
See (4)  
.
Wakeup clock  
MSI = 32 MHz,  
voltage Range 1.  
SMPS mode  
See (4)  
.
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup timings.  
Table 43. Current consumption in Stop 0 mode  
TYP  
Conditions  
-
MAX(1)  
Symbol  
Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 95.5 100  
2.4 V 97.5 105  
3.0 V 98.5 105  
3.6 V 100 105  
110  
110  
110  
115  
120 195  
125 195  
125 195  
125 200  
315  
315  
320  
320  
550  
555  
560  
560  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Supply current  
in Stop 0 mode,  
RTC disabled,  
BLE disabled,  
LCD disabled  
--  
µA  
Wakeup clock  
HSI16,  
3.0 V  
3.0 V  
3.0 V  
-
-
-
TBD  
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IDD  
(Stop 0)  
voltage Range 2.  
(2)  
See  
.
Supply current Wakeup clock is  
during wakeup MSI = 32 MHz,  
mA  
from Stop 0  
Bypass mode  
voltage Range 1.  
See (2)  
.
Wakeup clock is  
MSI = 4 MHz,  
voltage Range 2.  
See (2)  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup timings.  
 
 
Table 44. Current consumption in Standby mode  
TYP  
Conditions  
-
MAX(1)  
Symbol  
Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 0.850 0.925 1.150 1.55 4.00  
2.4 V 0.910 0.985 1.200 1.65 4.10  
9.00  
9.60  
19.50 TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
BLE enabled  
No independent  
watchdog  
21.0  
23.0  
25.0  
18.5  
20.0  
22.0  
24.0  
18.5  
20.0  
22.0  
24.0  
18.5  
20.0  
22.0  
24.5  
19.0  
20.5  
22.5  
24.5  
TBD  
TBD  
TBD  
TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
3.0 V 0.940 1.050 1.250 1.75 4.60 10.50  
3.6 V 1.050 1.150 1.400 1.90 5.10  
1.8 V 0.270 0.320 0.515 0.920 3.45  
2.4 V 0.270 0.350 0.540 0.955 3.50  
3.0 V 0.270 0.370 0.575 1.00 3.85  
11.50  
8.20  
8.80  
9.50  
Supplycurrent  
in Standby  
mode (backup BLE disabled  
registers and No independent  
I
DD  
(Standby)  
SRAM2a  
retained),  
RTC disabled  
watchdog  
3.6 V 0.300 0.410 0.645 1.15 4.20 10.50  
1.8 V 0.265 0.525 0.710 1.10 3.90  
2.4 V 0.280 0.595 0.790 1.20 4.00  
3.0 V 0.290 0.670 0.855 1.35 4.15  
3.6 V 0.295 0.770 0.990 1.50 4.60  
1.8 V 0.500 0.600 0.780 1.20 3.70  
2.4 V 0.630 0.705 0.910 1.30 3.80  
3.0 V 0.725 0.825 1.050 1.50 3.95  
3.6 V 0.860 0.970 1.200 1.70 4.25  
1.8 V 0.565 0.655 0.830 1.25 3.75  
2.4 V 0.635 0.790 0.975 1.40 4.10  
8.40  
9.05  
9.80  
11.00  
8.45  
9.10  
9.90  
11.00  
8.55  
9.20  
BLE disabled  
With  
independent  
watchdog  
µA  
RTC clocked by  
LSI, no  
independent  
watchdog  
Supplycurrent  
in Standby  
mode (backup RTC clocked by  
registers and LSI, with  
I
DD  
(Standby  
with RTC)  
SRAM2a  
retained),  
RTC enabled  
BLE disabled  
independent  
watchdog  
3.0 V 0.725 0.915 1.100 1.55 4.50 10.00  
3.6 V 0.870 1.050 1.300 1.80 4.90  
1.8 V 0.525 0.625 0.840 1.25 3.75  
2.4 V 0.665 0.755 0.960 1.35 4.05  
11.00  
8.60  
9.25  
RTC clocked by  
(2)  
LSE quartz in  
3.0 V 0.775 0.880 1.100 1.55 4.40 10.00  
3.6 V 0.935 1.050 1.300 1.80 5.00 11.00  
low drive mode  
 
 
Table 44. Current consumption in Standby mode (continued)  
TYP  
Conditions  
-
MAX(1)  
Symbol  
Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 0.160 0.210 0.380 0.660 2.30  
2.4 V 0.165 0.245 0.375 0.650 2.15  
3.0 V 0.155 0.250 0.385 0.630 2.25  
3.6 V 0.155 0.235 0.375 0.670 2.20  
5.15  
5.20  
5.20  
5.20  
10.9  
11.0  
11.0  
11.0  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
Supply  
current to be  
subtracted in  
IDD  
(SRAM2a) Standby  
-
µA  
(3)  
mode when  
SRAM2a is  
not retained  
Wakeup clock is  
(4)  
HSI16. See  
SMPS ON  
.
3.0 V  
3.0 V  
-
-
TBD  
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I
Supplycurrent  
DD  
(wakeup during  
from  
Standby) Standbymode  
mA  
wakeup from  
Wakeup clock is  
(4)  
HSI16. See  
SMPS OFF  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. The supply current in Standby with SRAM2a mode is: IDD(Standby) + IDD(SRAM2a). The supply current in Standby with RTC with SRAM2a mode is:  
IDD(Standby + RTC) + IDD(SRAM2a).  
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup timings.  
 
Table 45. Current consumption in Shutdown mode  
TYP  
Conditions  
-
MAX(1)  
Symbol  
Parameter  
Unit  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 0.039 0.013 0.030 0.100 0.635 1.950  
5.45  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD TBD TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
0.059  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Supply current  
in Shutdown  
mode (backup  
2.4 V 0.059 0.014 0.055 0.120 0.785 2.350  
3.0 V 0.064 0.037 0.070 0.180 1.000 2.900  
3.6 V 0.071 0.093 0.140 0.280 1.300 3.700  
1.8 V 0.320 0.315 0.355 0.420 0.985 2.300  
2.4 V 0.425 0.405 0.460 0.540 1.200 2.800  
3.0 V 0.535 0.535 0.595 0.700 1.500 3.450  
3.6 V 0.695 0.720 0.790 0.940 2.000 4.350  
6.50  
I
DD  
-
(Shutdown) registers  
retained) RTC  
8.00  
disabled  
9.75  
µA  
-
-
-
-
Supply current  
in Shutdown  
mode (backup  
registers  
retained) RTC  
enabled  
RTC clocked  
I
by LSE  
DD  
(2)  
(Shutdown  
with RTC)  
quartz  
in  
low drive  
mode  
I
Supply current  
during wakeup  
from Shutdown  
DD  
Wakeup clock  
MSI = 4 MHz. 3.0 V  
(wakeup  
from  
-
TBD  
-
-
-
-
-
-
-
-
-
-
-
-
mA  
(3)  
See  
.
Shutdown) mode  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
3. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup timings.  
 
 
Table 46. Current consumption in VBAT mode  
TYP  
Conditions  
-
MAX(1)  
Symbol Parameter  
Unit  
VBAT 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V 1.00 2.00 4.00 10.0 52.0  
2.4 V 1.00 2.00 5.00 12.0 60.0  
3.0 V 2.00 4.00 7.00 16.0 75.0  
3.6 V 7.00 15.0 23.0 42.0 170  
1.8 V 295 305 315 325 380  
2.4 V 385 395 400 415 475  
3.0 V 495 505 515 530 600  
3.6 V 630 645 660 685 830  
145  
165  
225  
450  
480  
595  
765  
1150  
370  
425  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC disabled  
725  
Backup  
domain  
supply  
current  
1150  
720  
IDD(VBAT)  
nA  
RTC enabled  
and clocked  
by LSE  
870  
1300  
1850  
quartz(2)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
Table 47. Current under Reset condition  
TYP  
MAX(1)  
Symbol Conditions  
Unit  
0 °C  
25 °C 40 °C 55 °C 85 °C 105 °C 125 °C 0 °C  
25 °C 40 °C 55 °C 85 °C 105 °C 125 °C  
1.8 V  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
2.4 V  
IDD(RST)  
nA  
3.0 V  
3.6 V  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
 
 
STM32WB55xx  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 68: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 48: Peripheral current consumption, the I/Os used by an application also contribute to  
the current consumption. When an I/O pin switches, it uses the current from the I/O supply  
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or  
external) connected to the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the I/O supply voltage  
SW  
V
DD  
f
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
+ C  
S
INT  
EXT  
C is the PCB board capacitance including the pad pin.  
S
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DS11929 Rev 3  
101/165  
152  
Electrical characteristics  
STM32WB55xx  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 48. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 18:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 48. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 48. Peripheral current consumption  
Low-power  
Peripheral  
Bus Matrix(1)  
Range 1  
Range 2  
Unit  
run and sleep  
2.40  
1.25  
0.465  
1.90  
2.00  
4.15  
12.0  
4.05  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7.60  
2.00  
1.05  
0.375  
1.55  
1.65  
3.40  
10.0  
3.35  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
6.25  
1.80  
1.05  
0.380  
1.80  
1.80  
4.45  
11.5  
3.90  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
7.10  
TSC  
CRC  
AHB1  
DMA1  
µA/MHz  
DMA2  
DMAMUX  
All AHB1 Peripherals  
AES1  
ADC independent clock domain  
ADC clock domain  
GPIOA(2)  
GPIOB(2)  
)
AHB2  
µA/MHz  
GPIOC(2)  
GPIOD(2)  
GPIOE(2)  
GPIOH(2)  
All AHB2 Peripherals  
QSPI  
AHB3  
µA/MHz  
102/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
Table 48. Peripheral current consumption (continued)  
Low-power  
run and sleep  
Peripheral  
Range 1  
Range 2  
Unit  
RNG independent clock domain  
RNG clock domain  
TBD  
TBD  
TBD  
TBD  
6.95  
4.40  
TBD  
TBD  
1.10  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.35  
1.65  
TBD  
TBD  
5.65  
TBD  
TBD  
TBD  
TBD  
0.335  
TBD  
N/A  
N/A  
N/A  
N/A  
SRAM2a and SRAM2b  
TBD  
TBD  
5.75  
3.65  
TBD  
TBD  
0.88  
TBD  
N/A  
TBD  
0.125  
7.00  
4.25  
TBD  
TBD  
1.25  
TBD  
N/A  
AHB Shared FLASH  
µA/MHz  
AES2  
PKA  
All AHB Shared Peripherals  
AHB to APB1 bridge(3)  
RTCA  
CRS  
USB FS independent clock domain  
USB FS clock domain  
I2C1 independent clock domain  
I2C1 clock domain  
I2C3 independent clock domain  
I2C3 clock domain  
LCD  
N/A  
N/A  
TBD  
TBD  
TBD  
TBD  
1.10  
1.40  
TBD  
TBD  
4.70  
TBD  
TBD  
TBD  
TBD  
0.285  
TBD  
TBD  
TBD  
TBD  
TBD  
2.10  
2.25  
TBD  
TBD  
4.90  
TBD  
TBD  
TBD  
TBD  
0.965  
TBD  
APB1  
µA/MHz  
SPI2  
LPTIM1 independent clock domain  
LPTIM1 clock domain  
TIM2  
LPUART1 independent clock domain  
LPUART1 clock domain  
LPTIM2 clock domain  
LPTIM2 independent clock domain  
WWDG  
All APB1 Peripherals  
DS11929 Rev 3  
103/165  
152  
Electrical characteristics  
STM32WB55xx  
Table 48. Peripheral current consumption (continued)  
Low-power  
run and sleep  
Peripheral  
Range 1  
Range 2  
Unit  
AHB to APB2(4)  
1.10  
8.20  
TBD  
2.75  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
0.885  
6.80  
TBD  
2.30  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
1.35  
7.25  
TBD  
2.55  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TIM1  
TIM17  
TIM16  
USART1 independent clock domain  
USART1 clock domain  
SPI1  
APB2  
µA/MHz  
SAI1 independent clock domain  
SAI1 clock domain  
All APB2 on  
ALL  
µA/MHz  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. The GPIOx (x= A…H) dynamic current consumption is approximately divided by a factor two vs. the values of this table  
when the GPIO port is locked through the LCKK and LCKy bits in the GPIOx_LCKR register. To save the full GPIOx current  
consumption, the GPIOx clock needs to be disabled in the RCC when all port I/Os are used in alternate function or analog  
mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).  
3. The AHB to APB1 bridge is automatically active when at least one peripheral is ON on the APB1.  
4. The AHB to APB2 bridge is automatically active when at least one peripheral is ON on the APB2.  
6.3.9  
Wakeup time from Low-power modes and voltage scaling  
transition times  
The wakeup times given in Table 49 are the latency between the event and the execution of  
the first user instruction.  
The device goes in Low-power mode after the WFE (Wait For Event) instruction.  
(1)  
Table 49. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Max  
Unit  
Wakeup time from  
tWUSLEEP Sleep mode  
to Run mode  
-
9
9
10  
10  
No. of  
CPU  
cycles  
Wakeup time from  
Wakeup in Flash with memory in power-down  
tWULPSLEEP Low-power sleep mode during low-power sleep mode (FPDS = 1 in  
to Low-power run mode PWR_CR1) and with clock MSI = 2 MHz  
104/165  
DS11929 Rev 3  
 
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 49. Low-power mode wakeup timings (continued)  
Parameter  
Conditions  
Typ Max  
2.38 2.6  
1.69 1.76  
Unit  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Wake up time from  
Stop 0 mode  
to Run mode in Flash  
memory  
1.7  
1.78  
7.9  
7.43  
tWUSTOP0  
µs  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
4.67 4.94  
5.09 5.34  
5.08 5.36  
8.36 8.76  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
Wake up time from  
Stop 0 mode  
to Run mode in SRAM1  
Wake up time from  
Stop 1 mode  
to Run in Flash memory  
SMPS bypassed  
Wake up time from  
Stop 1 mode  
to Run in Flash memory  
SMPS ON  
Range 1  
Range 2  
Range 1  
Wake up time from  
Stop 1 mode  
to Run in SRAM1  
SMPS bypassed  
tWUSTOP1  
µs  
Range 2  
Wake up time from  
Stop 1 mode to Run  
in SRAM1  
Range 1  
Range 2  
SMPS ON  
Wake up time from  
Stop 1 mode to  
Low-power run mode  
in Flash memory  
7.76 8.38  
TBD TBD  
Regulator in  
Low-power  
mode (LPR=1 in  
PWR_CR1)  
Wakeup clock MSI = 4 MHz  
Wake up time from  
Stop 1 mode to  
Low-power run mode  
in SRAM1  
DS11929 Rev 3  
105/165  
152  
Electrical characteristics  
STM32WB55xx  
(1)  
Table 49. Low-power mode wakeup timings (continued)  
Symbol  
Parameter  
Conditions  
Typ Max  
Unit  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
Wakeup clock HSI16 = 16 MHz  
5.12 5.42  
5.55 5.88  
5.56 5.88  
Wake up time from  
Stop 2 mode  
to Run mode in Flash  
memory  
Range 1  
Range 2  
SMPS bypassed  
9.0  
9.4  
Wake up time from  
Stop 2 mode  
to Run mode in Flash  
memory  
TBD TBD  
TBD TBD  
Range 1  
Range 2  
Range 1  
Wakeup clock HSI16 = 16 MHz  
TBD TBD  
SMPS ON  
tWUSTOP2  
µs  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 48 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
Wake up time from  
Stop 2 mode to Run  
mode in SRAM1  
SMPS bypassed  
Range 2  
Wake up time from  
Stop 2 mode to Run  
mode in SRAM1  
SMPS ON  
Range 1  
Range 2  
Wakeup time from  
Standby mode  
to Run mode  
TBD TBD  
SMPS Bypassed  
tWUSTBY  
Range 1  
Range 1  
Wakeup clock HSI16 = 16 MHz  
µs  
µs  
Wakeup time from  
Standby mode to Run  
mode  
TBD TBD  
49.75 52.32  
SMPS ON  
Wakeup time from  
tWUSHDN Shutdown mode  
to Run mode  
Wakeup clock MSI = 4 MHz  
1. Guaranteed by characterization results (VDD = 3 V, .T = 25 °C.  
(1)  
Table 50. Regulator modes transition times  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Wakeup time from Low-power run mode to  
Run mode(2)  
tWULPRUN  
Code run with MSI 2 MHz  
15.33  
20.67  
15.66  
µs  
Regulator transition time from Range 2 to  
Range 1 or Range 1 to Range 2(3)  
tVOST  
Code run with HSI16  
25.64  
1. Guaranteed by characterization results.  
2. Time until REGLPF flag is cleared in PWR_SR2.  
3. Time until VOSF flag is cleared in PWR_SR2.  
106/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 51. Wakeup time using LPUART  
Parameter Conditions  
Typ  
Max  
1.7  
Unit  
Stop mode 0  
-
-
Wakeup time needed to calculate the maximum  
tWULPUART LPUART baud rate allowing to wakeup up from Stop  
mode when LPUART clock source is HSI16  
µs  
Stop mode 1/2  
8.5  
1. Guaranteed by design.  
6.3.10  
External clock source characteristics  
High-speed external user clock generated from an external source  
The high-speed external (HSE) clock must be supplied with a 32 MHz crystal oscillator.  
The STM32WB55xx include internal programmable capacitances that can be used to tune  
the crystal frequency in order to compensate the PCB parasitic one.  
The characteristics in Table 52 and Table 53 are measured over recommended operating  
conditions, unless otherwise specified. Typical values are referred to T = 25 °C and  
A
V
= 3.0 V.  
DD  
(1)  
Table 52. HSE crystal requirements  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
fNOM  
Oscillator frequency  
Frequency tolerance  
-
-
32  
-
MHz  
ppm  
Includes initial accuracy, stability over  
temperature, aging and frequency pulling  
due to incorrect load capacitance.  
fTOL  
-
-
20  
CL  
ESR  
PD  
Load capacitance  
Equivalent series resistance  
Drive level  
-
-
-
6
-
-
-
-
8
pF  
100  
100  
-
µW  
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.  
Table 53. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Startup time  
for 80% amplitude stabilization  
VDDRF stabilized, XOTUNE=000000,  
-40 to +125 °C range  
tSUA(HSE)  
-
1000  
-
µs  
Startup time  
for XOREADY signal  
VDDRF stabilized, XOTUNE=000000,  
-40 to +125 °C range  
tSUR(HSE)  
-
250  
-
IDDRF(HSE) HSE current consumption  
XOTg(HSE) XOTUNE granularity  
HSEGMC=000, XOTUNE=000000  
-
50  
1
-
5
µA  
-
ppm  
XOTfp(HSE) XOTUNE frequency pulling  
XOTnb(HSE) XOTUNE number of tuning bits  
XOTst(HSE) XOTUNE setting time  
±20  
±40  
6
-
Capacitor bank  
-
-
-
bit  
-
0.1  
ms  
DS11929 Rev 3  
107/165  
152  
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
Note:  
For information about the trimming of the oscillator, refer to application note AN5042 “HSE  
trimming for RF applications using the STM32WB Series”.  
Low-speed external user clock generated from an external source  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. The information provided in this section is based on design simulation results  
obtained with typical external components specified in Table 54. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins to minimize output distortion and startup stabilization time.  
Refer to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 54. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LSEDRV[1:0] = 00  
Low drive capability  
-
250  
-
LSEDRV[1:0] = 01  
Medium low drive capability  
-
-
-
-
-
-
315  
-
IDD(LSE)  
LSE current consumption  
nA  
LSEDRV[1:0] = 10  
Medium high drive capability  
500  
-
LSEDRV[1:0] = 11  
High drive capability  
630  
-
LSEDRV[1:0] = 00  
Low drive capability  
-
-
-
0.50  
0.75  
1.70  
LSEDRV[1:0] = 01  
Medium low drive capability  
Gmcritmax Maximum critical crystal gm  
µA/V  
LSEDRV[1:0] = 10  
Medium high drive capability  
LSEDRV[1:0] = 11  
High drive capability  
-
-
-
2.70  
-
(2)  
tSU(LSE)  
Startup time  
VDD stabilized  
2
s
1. Guaranteed by design.  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32 MHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal, refer to the application note AN2867 “Oscillator  
design guide for STM8S, STM8A and STM32 microcontrollers” available from www.st.com.  
108/165  
DS11929 Rev 3  
 
STM32WB55xx  
Electrical characteristics  
Figure 18. Typical application with a 32.768 kHz crystal  
5HVRQDWRUꢅZLWKꢅLQWHJUDWHGꢅ  
FDSDFLWRUV  
&
/ꢁ  
26&ꢊꢆB,1  
I/6(  
'ULYHꢅ  
SURJUDPPDEOHꢅ  
DPSOLILHU  
ꢊꢆꢐꢃꢍꢋꢅN+]ꢅ  
UHVRQDWRU  
26&ꢊꢆB287  
&
/ꢆ  
06ꢊꢂꢆꢄꢊ9ꢆ  
Note:  
An external resistor is not required between OSC32_IN and OSC32_OUT, and it is  
forbidden to add one.  
6.3.11  
Internal clock source characteristics  
The parameters given in Table 55 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 22: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 55. HSI16 oscillator characteristics  
Symbol  
Parameter  
HSI16 Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI16  
VDD=3.0 V, TA=30 °C  
15.88  
-
16.08  
MHz  
Trimming code is not a  
multiple of 64  
0.2  
-4  
0.3  
-6  
0.4  
-8  
TRIM  
HSI16 user trimming step  
Trimming code is a  
multiple of 64  
DuCy(HSI16)(2) Duty Cycle  
-
45  
-1  
-2  
-
-
-
55  
1
%
TA= 0 to 85 °C  
TA= -40 to 125 °C  
HSI16 oscillator frequency drift over  
temperature  
Temp(HSI16)  
1.5  
HSI16 oscillator frequency drift over  
VDD  
VDD(HSI16)  
VDD=1.62 V to 3.6 V  
-0.1  
-
0.05  
tsu(HSI16)(2)  
HSI16 oscillator start-up time  
-
-
-
-
-
-
0.8  
3
1.2  
5
μs  
tstab(HSI16)(2) HSI16 oscillator stabilization time  
DD(HSI16)(2) HSI16 oscillator power consumption  
I
155  
190  
μA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS11929 Rev 3  
109/165  
152  
 
 
 
 
Electrical characteristics  
STM32WB55xx  
Figure 19. HSI16 frequency vs. temperature  
0+]  
ꢁꢍꢐꢀ  
ꢑꢆꢌ  
ꢑꢁꢐꢄꢌ  
ꢑꢁꢌ  
ꢁꢍꢐꢊ  
ꢁꢍꢐꢆ  
ꢁꢍꢐꢁ  
ꢁꢍ  
ꢁꢄꢐꢈ  
ꢁꢄꢐꢋ  
ꢁꢄꢐꢃ  
ꢉꢁꢌ  
ꢉꢁꢐꢄꢌ  
ꢉꢆꢌ  
ꢁꢄꢐꢍ  
ꢉꢀꢂ  
ꢉꢆꢂ  
ꢆꢂ  
ꢀꢂ  
PHDQ  
ꢍꢂ  
ꢋꢂ  
ꢁꢂꢂ  
ꢁꢆꢂꢅƒ&  
PLQ  
PD[  
06Yꢊꢈꢆꢈꢈ9ꢁ  
110/165  
DS11929 Rev 3  
 
STM32WB55xx  
Electrical characteristics  
Multi-speed internal (MSI) RC oscillator  
(1)  
Table 56. MSI oscillator characteristics  
Parameter Conditions  
Symbol  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
TA= -0 to 85 °C  
98.7  
100  
200  
101.3  
197.4  
202.6  
kHz  
405.2  
394.8  
400  
789.6  
800  
810.4  
1.013  
2.026  
4.052  
0.987  
1
1.974  
2
MSI mode  
3.948  
4
7.896  
8
8.104  
MHz  
16.21  
15.79  
16  
23.69  
24  
24.31  
32.42  
48.62  
-
31.58  
32  
MSI frequency  
after factory  
calibration, done  
at VDD=3 V and  
TA=30 °C  
47.38  
48  
fMSI  
-
98.304  
196.608  
393.216  
786.432  
1.016  
1.999  
3.998  
7.995  
15.991  
23.986  
32.014  
48.005  
-
-
-
kHz  
-
-
-
-
-
-
-
-
PLL mode  
XTAL=  
32.768 kHz  
-
-
-
-
MHz  
-
-
-
-
-
-
-
-
MSI oscillator  
-3.5  
3
TEMP(MSI)(2) frequency drift  
MSI mode  
%
6
TA= -40 to 125 °C  
-8  
-
over temperature  
DS11929 Rev 3  
111/165  
152  
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 56. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD  
1.62 to 3.6 V  
=
-1.2  
-
-
-
-
-
-
Range 0 to 3  
0.5  
VDD  
2.4 to 3.6 V  
=
-0.5  
-2.5  
-0.8  
-5  
VDD  
1.62 to 3.6 V  
=
MSI oscillator  
frequency drift  
over VDD  
VDD(MSI)(2)  
MSI mode Range 4 to 7  
0.7  
VDD  
2.4 to 3.6 V  
=
(reference is 3 V)  
%
VDD  
1.62 to 3.6 V  
=
Range 8 to 11  
1
VDD  
2.4 to 3.6 V  
=
-1.6  
Frequency  
TA= -40 to 85 °C  
TA= -40 to 125 °C  
-
-
1
2
2
4
FSAMPLING  
variation in  
MSI mode  
(MSI)(2)(6)  
sampling mode(3)  
For next  
transition  
-
-
-
-
-
-
-
-
-
-
-
-
3.458  
P_USB  
Period jitter for  
USB clock(4)  
PLL mode  
Range 11  
Jitter(MSI)(6)  
For paired  
transition  
3.916  
ns  
For next  
transition  
-
2
MT_USB  
Medium term jitter PLL mode  
Jitter(MSI)(6)  
for USB clock(5)  
Range 11  
For paired  
transition  
-
1
RMS cycle-to-  
cycle jitter  
CC jitter(MSI)(6)  
PLL mode Range 11  
60  
-
ps  
P jitter(MSI)(6) RMS period jitter PLL mode Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
10  
5
-
Range 0  
Range 1  
20  
10  
Range 2  
4
8
MSI oscillator  
start-up time  
t
SU(MSI)(6)  
μs  
7
Range 3  
3
Range 4 to 7  
Range 8 to 11  
3
6
6
2.5  
10 % of final  
frequency  
-
-
-
-
-
-
0.25  
0.5  
-
0.5  
MSI oscillator  
stabilization time Range 11  
PLL mode 5 % of final  
tSTAB(MSI)(6)  
1.25 ms  
2.5  
frequency  
1 % of final  
frequency  
112/165  
DS11929 Rev 3  
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 56. MSI oscillator characteristics (continued)  
Parameter  
Conditions  
Range 0  
Min  
Typ  
Max Unit  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.6  
0.8  
1.2  
1.9  
4.7  
6.5  
11  
1
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
1.2  
1.7  
2.5  
6
MSI oscillator  
power  
consumption  
9
MSI and  
PLL mode  
IDD(MSI)(6)  
µA  
15  
18.5  
62  
25  
80  
85  
110  
130  
190  
110  
155  
1. Guaranteed by characterization results.  
2. This is a deviation for an individual part once the initial frequency has been measured.  
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.  
4. Average period of MSI at 48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter  
of MSI at 48 MHz clock.  
5. Only accumulated jitter of MSI at 48 MHz is extracted over 28 cycles.  
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI at 48 MHz, for 1000 captures over  
28 cycles.  
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI at 48 MHz, for 1000 captures over  
56 cycles.  
6. Guaranteed by design.  
DS11929 Rev 3  
113/165  
152  
 
Electrical characteristics  
STM32WB55xx  
Figure 20. Typical current consumption vs. MSI frequency  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 57. HSI48 oscillator characteristics  
Symbol  
Parameter  
HSI48 frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
VDD = 3.0 V, TA = 30 °C  
-
-
-
48  
-
MHz  
HSI48 user trimming step  
0.11(2)  
0.18(2)  
USER TRIM  
COVERAGE  
HSI48 user trimming coverage  
±32 steps  
-
±3(3)  
45(2)  
-
±3.5(3)  
-
DuCy(HSI48) Duty cycle  
-
-
55(2)  
±3(3)  
VDD = 3.0 V to 3.6 V,  
TA = –15 to 85 °C  
%
Accuracy of the HSI48 oscillator  
ACCHSI48_REL over temperature  
(factory calibrated)  
VDD = 1.65 V to 3.6 V,  
TA = –40 to 125 °C  
-
-
±4.5(3)  
VDD = 3 V to 3.6 V  
-
-
-
-
0.025(3) 0.05(3)  
HSI48 oscillator frequency drift  
with VDD  
DVDD(HSI48)  
tsu(HSI48)  
VDD = 1.65 V to 3.6 V  
0.05(3)  
2.5(2)  
0.1(3)  
6(2)  
HSI48 oscillator start-up time  
-
-
μs  
I
DD(HSI48) HSI48 oscillator power consumption  
340(2)  
380(2)  
μA  
114/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Symbol  
Electrical characteristics  
(1)  
Table 57. HSI48 oscillator characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Next transition jitter  
NT jitter  
PT jitter  
-
-
±0.15(2)  
-
Accumulated jitter on 28 cycles(4)  
ns  
Paired transition jitter  
-
-
±0.25(2)  
-
Accumulated jitter on 56 cycles(4)  
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Jitter measurement are performed without clock source activated in parallel.  
Figure 21. HSI48 frequency vs. temperature  
ꢉꢆ  
ꢉꢀ  
ꢉꢍ  
ꢉꢄꢂ  
ꢉꢊꢂ  
ꢉꢁꢂ  
ꢁꢂ  
ꢊꢂ  
ꢄꢂ  
ꢃꢂ  
ꢈꢂ  
ꢁꢁꢂ  
ꢁꢊꢂ  
ƒ&  
$YJ  
PLQ  
PD[  
06Yꢀꢂꢈꢋꢈ9ꢁ  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 58. LSI1 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
V
DD = 3.0 V, TA = 30 °C  
31.04  
-
-
32.96  
34  
fLSI  
LSI1 frequency  
kHz  
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.5  
t
SU(LSI1)(2) LSI1 oscillator start-up time  
-
-
-
80  
130  
μs  
tSTAB(LSI1)(2) LSI1 oscillator stabilization time 5% of final frequency  
125 180  
110 180  
LSI1 oscillator power  
consumption  
IDD(LSI1)(2)  
-
-
nA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS11929 Rev 3  
115/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 59. LSI2 oscillator characteristics  
Conditions  
Symbol  
Parameter  
LSI2 frequency  
Min Typ Max Unit  
VDD = 3.0 V, TA = 30 °C  
21.6  
-
-
-
44.2  
44.4  
3.5  
fLSI2  
kHz  
ms  
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 21.2  
tSU(LSI2)(2) LSI2 oscillator start-up time  
-
-
0.7  
-
LSI2 oscillator power  
IDD(LSI2)(2)  
500 1180 nA  
1.5 0.4 °C  
consumption  
Allowed temperature change  
Tmax(LSI2)  
-
-
during sleep duration(3)  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
3. Includes accuracy of 32 Mhz crystal.  
6.3.12  
PLL characteristics  
The parameters given in Table 60 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 22: General operating conditions.  
DD  
(1)  
Table 60. PLL, PLLSAI1 characteristics  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLL input clock(2)  
-
-
4
45  
2
2
8
8
8
8
64  
64  
-
-
-
16  
55  
64  
16  
64  
16  
64  
16  
344  
128  
40  
-
MHz  
%
PLL input clock duty cycle  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
-
-
fPLL_P_OUT PLL multiplier output clock P  
fPLL_Q_OUT PLL multiplier output clock Q  
fPLL_R_OUT PLL multiplier output clock R  
fVCO_OUT PLL VCO output  
-
-
-
MHz  
-
-
-
-
tLOCK  
Jitter  
PLL lock time  
15  
40  
30  
μs  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
System clock 64 MHz  
ps  
-
-
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
200 260  
300 380  
520 650  
PLL power consumption  
on VDD  
I
DD(PLL)  
-
μA  
(1)  
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between the two PLLs.  
116/165  
DS11929 Rev 3  
 
 
 
 
 
STM32WB55xx  
Electrical characteristics  
6.3.13  
Flash memory characteristics  
(1)  
Table 61. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
tprog  
64-bit programming time  
-
Normal programming  
Fast programming  
Normal programming  
Fast programming  
-
81.7  
5.2  
90.8  
5.5  
4.0  
43.0  
31.0  
24.5  
25.0  
-
µs  
One row (64 double word)  
programming time  
tprog_row  
3.8  
41.8  
One page (4 KByte)  
programming time  
tprog_page  
ms  
30.4  
tERASE  
tME  
Page (4 KByte) erase time  
Mass erase time  
22.0  
-
22.1  
Write mode  
3.4  
Average consumption from VDD  
Maximum current (peak)  
Erase mode  
Write mode  
3.4  
-
IDD  
mA  
7 (for 6 µs)  
7 (for 67 µs)  
-
Erase mode  
-
1. Guaranteed by design.  
Table 62. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = –40 to +105 °C  
10  
30  
15  
7
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
tRET  
Data retention  
Years  
30  
15  
10  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
DS11929 Rev 3  
117/165  
152  
 
 
 
 
Electrical characteristics  
STM32WB55xx  
6.3.14  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 63. They are based on the EMS levels and classes  
defined in application note AN1709 “EMC design guide for STM8, STM32 and Legacy  
MCUs”, available on www.st.com.  
Table 63. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 64 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
TBD  
TBD  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C,  
fHCLK = 64 MHz,  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flow must include the management of runaway conditions such as:  
corrupted program counter  
unexpected reset  
critical data corruption (e.g. control registers)  
118/165  
DS11929 Rev 3  
 
 
 
STM32WB55xx  
Electrical characteristics  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for  
1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling two LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 64. EMI characteristics  
Max vs.  
[fHSE/fHCLK  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
8 MHz / 64 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI level  
TBD  
TBD  
TBD  
TBD  
TBD  
VDD = 3.6 V, TA = 25 °C,  
Peak level TBD package  
dBµV  
-
SEMI  
compliant with IEC 61967-2  
6.3.15  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 65. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
TA = +25 °C, conforming  
to ANSI/ESDA/JEDEC  
JS-001  
Electrostatic discharge  
voltage (human body model)  
VESD(HBM)  
2
2000  
V
Electrostatic discharge  
TA = +25 °C,  
VESD(CDM) voltage (charge device  
model)  
conforming to ANSI/ESD  
STM5.3.1 JS-002  
C3  
500  
1. Guaranteed by characterization results.  
DS11929 Rev 3  
119/165  
152  
 
 
 
 
Electrical characteristics  
Static latch-up  
STM32WB55xx  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
a supply overvoltage is applied to each power supply pin  
acurrent injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 66. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II  
6.3.16  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3.3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA / +0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 67.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
(1)  
Table 67. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all pins except PB0, PB1  
Injected current on PB0, PB1 pins  
TBD  
TBD  
N/A(2)  
TBD  
IINJ  
mA  
1. Guaranteed by characterization results.  
2. Injection not possible.  
120/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Electrical characteristics  
6.3.17  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 68 are derived from tests  
performed under the conditions summarized in Table 22: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 68. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O input  
-
-
0.3 x VDD  
low level voltage(1)  
VIL  
I/O input  
0.39 x VDD - 0.06  
low level voltage(2)  
V
I/O input  
0.7 x VDD  
-
-
-
-
high level voltage(1) 1.62 V < VDD < 3.6 V  
VIH  
I/O input  
0.49 x VDD + 0.26  
high level voltage(2)  
TT_xx, FT_xxx  
and NRST I/O  
input hysteresis  
Vhys  
-
200  
-
mV  
(3)  
0 VIN Max(VDDXXX  
)
-
-
-
-
±100  
650  
Max(VDDXXX) VIN  
FT_xx  
input leakage current  
Max(VDDXXX) +1 V(2)(3)(4)  
Max(VDDXXX) +1 V < VIN  
5.5 V(2)(3)(4)(5)(6)  
-
-
-
-
-
-
200(7)  
±150  
2500  
(3)  
0 VIN Max(VDDXXX  
)
Ilkg  
nA  
FT_lu, FT_u and  
PC3 IO  
Max(VDDXXX) VIN ≤  
Max(VDDXXX) +1 V(2)(3)  
input leakage current  
Max(VDDXXX) +1 V < VIN  
5.5 V(1)(3)(4)(8)  
-
-
-
-
-
-
250  
±150  
2000  
(3)  
VIN Max(VDDXXX  
)
TT_xx  
input leakage current  
Max(VDDXXX) VIN  
<
3.6 V(3)  
Weak pull-up  
RPU  
VIN = VSS  
25  
40  
55  
equivalent resistor(1)  
kꢀ  
Weak pull-down  
RPD  
CIO  
VIN = VDD  
25  
-
40  
5
55  
-
equivalent resistor(1)  
I/O pin capacitance  
-
pF  
1. Tested in production.  
2. Guaranteed by design, not tested in production.  
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by  
ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max)  
4. Max(VDDXXX) is the maximum value among all the I/O supplies.  
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].  
.
6. Refer to Figure 22: I/O input characteristics.  
DS11929 Rev 3  
121/165  
152  
 
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
7. To sustain a voltage higher than Min(VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors must  
be disabled. All FT_xx IO except FT_lu, FT_u and PC3.  
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS, whose  
contribution to the series resistance is minimal (~10%).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown  
in Figure 22 .  
Figure 22. I/O input characteristics  
Vil-Vih (all IO except BOOT0)  
3
2.5  
TTL requirement Vih min = 2V  
2
cmos vil spec 30%  
cmos vih spec 70%  
ttl vil spec ttl  
1.5  
1
ttl vih spec ttl  
datasheet Vil_rule  
datasheet Vih_rule  
TTL requirement Vil min = 0.8V  
0.5  
0
1.5  
2
2.5  
3
3.5  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ± 20 mA (with a relaxed V / V ).  
OL  
OH  
In the user application, the number of I/O pins that can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2.  
The sum of the currents sourced by all the I/Os on V , plus the maximum  
DD  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 18: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 18: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 22: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT  
unless otherwise specified).  
122/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
(1)  
Table 69. Output voltage characteristics  
Parameter Conditions  
Symbol  
Min  
Max Unit  
(2)  
VOL  
Output low level voltage for an I/O pin CMOS port(3)  
|IIO| = 8 mA  
-
0.4  
-
(2)  
VOH  
Output high level voltage for an I/O pin  
VDD - 0.4  
VDD 2.7 V  
(2)  
VOL  
Output low level voltage for an I/O pin TTL port(3)  
|IIO| = 8 mA  
-
0.4  
-
(2)  
VOH  
Output high level voltage for an I/O pin  
2.4  
VDD 2.7 V  
(2)  
(2)  
VOL  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
-
|IIO| = 20 mA  
VDD 2.7 V  
VOH  
VDD - 1.3  
-
V
(2)  
VOL  
VOH  
0.4  
|IIO| = 4 mA  
VDD 1.62 V  
(2)  
VDD - 0.45  
-
|IIO| = 20 mA  
VDD 2.7 V  
-
-
-
0.4  
Output low level voltage for an FT I/O  
|IIO| = 10 mA  
(2)  
VOLFM+  
0.4  
0.4  
pin in FM+ mode (FT I/O with “f” option) VDD 1.62 V  
|IIO| = 2 mA  
1.62 V VDD 1.08 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified  
in Table 18: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports  
and control pins) must always respect the absolute maximum ratings Σ IIO  
.
2. Guaranteed by design.  
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Table 70.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 22: General  
operating conditions.  
(1)(2)  
Table 70. I/O AC characteristics  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD ≤ ≤2.7 V  
-
-
-
-
-
-
-
-
5
1
Fmax Maximum frequency  
MHz  
10  
1.5  
25  
52  
17  
37  
00  
Tr/Tf Output rise and fall time  
ns  
DS11929 Rev 3  
123/165  
152  
 
 
 
 
 
Electrical characteristics  
Speed Symbol  
STM32WB55xx  
(1)(2)  
Table 70. I/O AC characteristics  
(continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD ≤ ≤2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=30 pF, 2.7 V VDD 3.6 V  
C=30 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=30 pF, 2.7 V VDD 3.6 V  
C=30 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
10  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
MHz  
50  
15  
01  
10  
11  
9
16  
ns  
MHz  
ns  
4.5  
9
50  
25  
100(3)  
37.5  
5.8  
11  
2.5  
5
120(3)  
50  
MHz  
180(3)  
75(3)  
3.3  
6
ns  
1.7  
3.3  
1. The maximum frequency is defined with (Tr+ Tf) 2/3 T, and Duty cycle comprised between 45 and 55%.  
2. The fall and rise time are defined, respectively, between 90 and 10%, and between 10 and 90% of the  
output waveform.  
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.  
6.3.18  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent  
pull-up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 22: General operating conditions.  
124/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Electrical characteristics  
(1)  
Table 71. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input  
low level voltage  
VIL(NRST)  
VIH(NRST)  
Vhys(NRST)  
RPU  
-
-
-
0.3 x VDD  
V
NRST input  
high level voltage  
-
0.7 x VDD  
-
200  
40  
-
-
-
NRST Schmitt trigger  
voltage hysteresis  
-
-
25  
-
mV  
Weak pull-up  
VIN = VSS  
55  
70  
-
kꢀ  
equivalent resistor(2)  
NRST input  
filtered pulse  
VF(NRST)  
VNF(NRST)  
-
ns  
NRST input  
not filtered pulse  
1.71 V VDD 3.6 V  
350  
-
1. Guaranteed by design.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is minimal (~10% order).  
Figure 23. Recommended NRST pin protection  
([WHUQDO  
UHVHWꢅFLUFXLWꢒꢁꢓ  
9''  
538  
1567ꢒꢆꢓ  
,QWHUQDOꢅUHVHW  
)LOWHU  
ꢂꢐꢁꢅ—)  
06ꢁꢈꢋꢃꢋ9ꢊ  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 71: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
DS11929 Rev 3  
125/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
6.3.19  
Analog switches booster  
(1)  
Table 72. Analog switches booster characteristics  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
Max  
Unit  
VDD  
1.62  
-
-
-
3.6  
V
tSU(BOOST)  
Booster startup time  
240  
µs  
Booster consumption for  
1.62 V VDD 2.0 V  
-
-
-
-
-
-
250  
500  
900  
Booster consumption for  
2.0 V VDD 2.7 V  
IDD(BOOST)  
µA  
Booster consumption for  
2.7 V VDD 3.6 V  
1. Guaranteed by design.  
126/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
6.3.20  
Analog-to-Digital converter characteristics  
Unless otherwise specified, the parameters given in Table 73 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 22: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1) (2) (3)  
Table 73. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.62  
2
-
-
3.6  
V
V
V
VDDA 2 V  
VDDA < 2 V  
VDDA  
Positive reference  
voltage  
VREF+  
VDDA  
Negative reference  
voltage  
VREF-  
-
VSSA  
V
Range 1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
64  
fADC  
ADC clock frequency  
MHz  
Range 2  
16  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
4.26  
4.92  
5.81  
7.11  
TBD  
TBD  
TBD  
TBD  
Sampling rate  
for FAST channels  
fs  
Msps  
Sampling rate  
for SLOW channels  
fADC = 64 MHz  
Resolution = 12 bits  
-
-
-
4.26  
MHz  
External trigger  
frequency  
fTRIG  
Resolution = 12 bits  
Differential mode  
-
15  
1/fADC  
(VREF+  
REF-) / 2  
- 0.18  
+
(VREF++  
REF-) / 2  
+ 0.18  
(VREF+  
VREF-) / 2  
+
V
V
V
V
Input common mode  
CMIN  
Conversion voltage  
range(2)  
(4)  
VAIN  
-
-
-
-
0
-
-
-
VREF+  
V
External input  
impedance  
RAIN  
CADC  
tSTAB  
50  
-
kꢀ  
pF  
Internal sample and hold  
capacitor  
-
5
1
Conversion  
cycle  
Power-up time  
Calibration time  
f
ADC = 64 MHz  
-
1.8125  
116  
µs  
tCAL  
1 / fADC  
DS11929 Rev 3  
127/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
(1) (2) (3)  
Table 73. ADC characteristics  
Conditions  
(continued)  
Symbol  
Parameter  
Min  
1.5  
Typ  
Max  
Unit  
CKMODE = 00  
2
-
2.5  
2.0  
Trigger conversion  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
-
latency Regular and  
injected channels  
without conversion abort  
tLATR  
1/fADC  
-
-
2.25  
-
-
2.125  
3.5  
2.5  
3
-
Trigger conversion  
latency Injected  
channels aborting a  
regular conversion  
-
3.0  
tLATRINJ  
1/fADC  
-
-
-
3.25  
3.125  
10.0  
640.5  
-
f
ADC = 64 MHz  
-
0.039  
2.5  
-
µs  
ts  
Sampling time  
-
1/fADC  
ADC voltage regulator  
start-up time  
t
-
-
-
-
20  
µs  
µs  
ADCVREG_STUP  
fADC = 64 MHz  
Resolution = 12 bits  
0.234  
1.019  
Total conversion time  
(including sampling time)  
tCONV  
ts + 12.5 cycles for successive  
approximations = 15 to 653  
Resolution = 12 bits  
1/fADC  
fs = 4.26 Msps  
fs = 1 Msps  
-
-
-
-
-
-
-
-
-
TBD  
160  
16  
TBD  
220  
50  
ADC consumption from  
the VDDA supply  
IDDA(ADC)  
µA  
fs = 10 ksps  
fs = 4.26 Msps  
TBD  
30  
TBD  
40  
ADC consumption from  
I
DDV_S(ADC) the VREF+ single ended fs = 1 Msps  
µA  
µA  
mode  
fs = 10 ksps  
fs = 4.26 Msps  
fs = 1 Msps  
fs = 10 ksps  
0.6  
2
TBD  
60  
TBD  
70  
ADC consumption from  
IDDV_D(ADC) the VREF+ differential  
mode  
1.3  
3
1. Guaranteed by design  
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4V). It is disable when VDDA 2.4 V.  
3. SMPS in bypass mode.  
4. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 4: Pinouts and pin description for further details.  
128/165  
DS11929 Rev 3  
STM32WB55xx  
Electrical characteristics  
(1)(2)  
Table 74. Maximum ADC RAIN  
RAIN max ()  
Resolution Sampling cycle at 64 MHz Sampling time [ns] at 64 MHz  
Fast channels(3) Slow channels(4)  
2.5  
6.5  
39.06  
101.56  
195.31  
382.81  
742.19  
1445.31  
3867.19  
10007.81  
39.06  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
12 bits  
10 bits  
8 bits  
6.5  
101.56  
195.31  
382.81  
742.19  
1445.31  
3867.19  
10007.81  
39.06  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
6.5  
101.56  
195.31  
382.81  
742.19  
1445.31  
3867.19  
10007.81  
39.06  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
2.5  
6.5  
101.56  
195.31  
382.81  
742.19  
1445.31  
3867.19  
10007.81  
12.5  
24.5  
47.5  
92.5  
247.5  
640.5  
6 bits  
1. Guaranteed by design.  
DS11929 Rev 3  
129/165  
152  
 
Electrical characteristics  
STM32WB55xx  
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4V). It is disabled when VDDA 2.4 V.  
3. Fast channels are PC0, PC1, PC2, PC3, PA0, PA1.  
4. Slow channels are all ADC inputs except the fast channels.  
(1)(2)(3)  
Table 75. ADC accuracy - Limited test conditions 1  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
EO  
EG  
ED  
unadjusted  
error  
Differential  
Single  
ended  
Offset error  
Gain error  
Differential  
TBD TBD TBD  
LSB  
TBD TBD TBD  
Single  
ended  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Differential  
Single  
ended  
Differential  
linearity  
error  
Differential  
130/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
(1)(2)(3)  
Table 75. ADC accuracy - Limited test conditions 1  
(continued)  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
TBD TBD TBD  
Single  
ended  
Integral  
linearity  
error  
TBD TBD TBD  
LSB  
TBD TBD TBD  
EL  
Differential  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Effective  
number of  
bits  
TBD TBD TBD  
bits  
TBD TBD TBD  
ENOB  
SINAD  
SNR  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
Differential  
Single  
ended  
TBD TBD TBD  
dB  
TBD TBD TBD  
Signal-to-  
noise ratio  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Total  
harmonic  
distortion  
THD  
Differential  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. Injecting negative current on any analog input pin should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog  
pins that may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disabled when VDDA 2.4 V. No oversampling.  
DS11929 Rev 3  
131/165  
152  
Electrical characteristics  
STM32WB55xx  
(1)(2)(3)  
Table 76. ADC accuracy - Limited test conditions 2  
Conditions(4)  
Fast channel (max speed)  
Symbol Parameter  
Min Typ Max Unit  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
EO  
unadjusted  
error  
Differential  
Single  
ended  
Offset error  
Gain error  
Differential  
Single  
ended  
TBD TBD TBD  
LSB  
TBD TBD TBD  
EG  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Differential  
linearity  
error  
ED  
Differential  
Single  
ended  
Integral  
linearity  
error  
EL  
Differential  
Single  
ended  
Effective  
number of  
bits  
TBD TBD TBD  
bits  
TBD TBD TBD  
ENOB  
Differential  
TBD TBD TBD  
132/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
(1)(2)(3)  
Table 76. ADC accuracy - Limited test conditions 2  
(continued)  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
Single  
ended  
TBD TBD TBD  
dB  
TBD TBD TBD  
Signal-to-  
SNR  
noise ratio  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Total  
harmonic  
distortion  
THD  
Differential  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. Injecting negative current on any analog input pin should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog  
pins that may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disabled when VDDA 2.4 V. No oversampling.  
(1)(2)(3)  
Table 77. ADC accuracy - Limited test conditions 3  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
EO  
EG  
unadjusted  
error  
Differential  
Single  
ended  
TBD TBD TBD  
LSB  
TBD TBD TBD  
Offset error  
Gain error  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Differential  
DS11929 Rev 3  
133/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
(1)(2)(3)  
Table 77. ADC accuracy - Limited test conditions 3  
(continued)  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Differential  
linearity  
error  
ED  
EL  
Differential  
TBD TBD TBD  
LSB  
TBD TBD TBD  
Single  
ended  
Integral  
linearity  
error  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Differential  
Single  
ended  
Effective  
ENOB number of  
bits  
TBD TBD TBD  
bits  
TBD TBD TBD  
Differential  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
TBD TBD TBD  
dB  
TBD TBD TBD  
Single  
ended  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
TBD TBD TBD  
Signal-to-  
SNR  
noise ratio  
Differential  
Single  
ended  
Total  
THD harmonic  
distortion  
TBD TBD TBD  
dB  
TBD TBD TBD  
Differential  
TBD TBD TBD  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. Injecting negative current on any analog input pin should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog  
pins that may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disabled when VDDA 2.4 V. No oversampling.  
134/165  
DS11929 Rev 3  
STM32WB55xx  
Electrical characteristics  
(1)(2)(3)  
Table 78. ADC accuracy - Limited test conditions 4  
Conditions(4)  
Symbol Parameter  
Min Typ Max Unit  
Fast channel (max speed)  
Single  
TBD TBD TBD  
ended  
Total  
unadjusted  
error  
Slow channel (max speed) TBD TBD TBD  
ET  
EO  
EG  
ED  
EL  
Fast channel (max speed)  
TBD TBD TBD  
Differential  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Fast channel (max speed) TBD TBD TBD  
Slow channel (max speed) TBD TBD TBD  
Single  
ended  
Offset error  
Gain error  
Differential  
Single  
ended  
LSB  
Differential  
Single  
ended  
Differential  
linearity  
error  
Differential  
Single  
ended  
Integral  
linearity  
error  
Differential  
Single  
ended  
Effective  
ENOB number of  
bits  
bits  
Differential  
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
SINAD  
Differential  
dB  
Single  
ended  
Signal-to-  
SNR  
noise ratio  
Differential  
DS11929 Rev 3  
135/165  
152  
 
Electrical characteristics  
STM32WB55xx  
(1)(2)(3)  
Table 78. ADC accuracy - Limited test conditions 4  
(continued)  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
TBD TBD TBD  
Single  
ended  
Slow channel (max speed) TBD TBD TBD  
Total  
THD  
harmonic  
distortion  
dB  
Fast channel (max speed)  
TBD TBD TBD  
Differential  
Slow channel (max speed) TBD TBD TBD  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
Figure 24. ADC accuracy characteristics  
966$  
ꢀꢂꢈꢄ  
(*  
ꢒꢁꢓꢅ([DPSOHꢅRIꢅDQꢅDFWXDOꢅWUDQVIHUꢅFXUYH  
ꢒꢆꢓꢅ7KHꢅLGHDOꢅWUDQVIHUꢅFXUYH  
ꢒꢊꢓꢅ(QGꢅSRLQWꢅFRUUHODWLRQꢅOLQH  
ꢀꢂꢈꢀ  
ꢀꢂꢈꢊ  
(7ꢌ ꢌWRWDOꢌXQDMXVWHGꢌHUURUꢔꢅPD[LPXPꢅGHYLDWLRQꢅ  
ꢅꢅꢅꢅEHWZHHQꢅWKHꢅDFWXDOꢅDQGꢅLGHDOꢅWUDQVIHUꢅFXUYHVꢐ  
(2 ꢌRIIVHWꢌHUURUꢔꢅPD[LPXPꢅGHYLDWLRQꢅ  
ꢅꢅꢅꢅEHWZHHQꢅWKHꢅILUVWꢅDFWXDOꢅWUDQVLWLRQꢅDQGꢅ  
ꢅꢅꢅꢅWKHꢅILUVWꢅLGHDOꢅRQHꢐ  
(* ꢌJDLQꢌHUURUꢔꢅGHYLDWLRQꢅEHWZHHQꢅWKHꢅODVWꢅ  
ꢅꢅꢅꢅꢅLGHDOꢅWUDQVLWLRQꢅDQGꢅWKHꢅODVWꢅDFWXDOꢅRQHꢐ  
(' ꢌGLIIHUHQWLDOꢌOLQHDULW\ꢌHUURUꢔꢅPD[LPXPꢅ  
ꢅꢅꢅꢅGHYLDWLRQꢅEHWZHHQꢅDFWXDOꢅVWHSVꢅDQGꢅWKHꢅLGHDOꢅRQHVꢐ  
(/ ꢌLQWHJUDOꢌOLQHDULW\ꢌHUURUꢔꢅPD[LPXPꢅGHYLDWLRQꢅ  
ꢅꢅꢅꢅEHWZHHQꢅDQ\ꢅDFWXDOꢅWUDQVLWLRQꢅDQGꢅWKHꢅHQGꢅSRLQWꢅ  
ꢅꢅꢅꢅFRUUHODWLRQꢅOLQHꢐ  
ꢒꢆꢓ  
(7  
ꢒꢊꢓ  
ꢒꢁꢓ  
(2  
(/  
('  
ꢁꢅ/6%ꢅ,'($/  
ꢀꢂꢈꢍ  
9''$  
ꢀꢂꢈꢀ ꢀꢂꢈꢄ  
ꢀꢂꢈꢊ  
06ꢁꢈꢋꢋꢂ9ꢆ  
136/165  
DS11929 Rev 3  
 
STM32WB55xx  
Electrical characteristics  
Figure 25. Typical connection diagram using the ADC  
9''$  
97  
6DPSOHꢅDQGꢅKROGꢅ$'&ꢅFRQYHUWHU  
ꢒꢁꢓ  
5$,1  
5$'&  
$,1[  
ꢁꢆꢉELWꢅ  
FRQYHUWHU  
ꢒꢆꢓ  
&
ꢒꢊꢓ  
&
SDUDVLWLF  
97  
,
ONJꢅ  
$'&  
9$,1  
06ꢊꢊꢈꢂꢂ9ꢄ  
1. Refer to Table 73: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (refer to Table 68: I/O static characteristics for the value of the pad capacitance). A high  
C
parasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.  
3. Refer to Table 68: I/O static characteristics for the values of Ilkg.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 13: Power supply  
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as  
close as possible to the chip.  
6.3.21  
Voltage reference buffer characteristics  
(1)  
Table 79. VREFBUF characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
RS = 0  
2.4  
2.8  
-
-
-
-
3.6  
3.6  
2.4  
2.8  
Normal mode  
VRS = 1  
Analog supply  
voltage  
VDDA  
VRS = 0  
VRS = 1  
VRS = 0  
VRS = 1  
VRS = 0  
VRS = 1  
1.65  
Degraded mode(2)  
Normal mode  
1.65  
V
2.046(3)  
2.498(3)  
VDDA-150 mV  
VDDA-150 mV  
2.048 2.049(3)  
2.5  
2.502(3)  
VREFBUF_ Voltage  
reference output  
OUT  
-
-
VDDA  
Degraded mode(2)  
VDDA  
Trim step  
resolution  
TRIM  
CL  
-
-
-
-
-
±0.05  
1
±0.1  
1.5  
%
Load capacitor  
0.5  
µF  
Equivalent  
series resistor  
of Cload  
esr  
-
-
-
-
-
-
-
-
2
4
Static load  
current  
Iload  
mA  
DS11929 Rev 3  
137/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 79. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I
load = 500 µA  
-
-
-
200  
100  
50  
1000  
500  
Iline_reg  
Iload_reg  
Line regulation 2.8 V VDDA 3.6 V  
ppm/V  
Iload = 4 mA  
Load regulation 500 μA Iload 4 mA Normal mode  
500  
ppm/mA  
Tcoeff_  
-40 °C < TJ < +125 °C  
-
-
-
-
+
vrefint  
50  
Temperature  
coefficient  
TCoeff  
ppm/ °C  
Tcoeff_  
0 °C < TJ < +50 °C  
+
vrefint  
50  
DC  
40  
25  
-
60  
40  
-
Power supply  
rejection  
PSRR  
tSTART  
dB  
µs  
100 kHz  
-
CL = 0.5 µF(4)  
300  
500  
650  
350  
650  
800  
Start-up time  
CL = 1.1 µF(4)  
CL = 1.5 µF(4)  
-
-
Control of  
maximum DC  
current drive on  
VREFBUF_OUT  
during start-up  
phase (5)  
IINRUSH  
-
-
-
8
-
mA  
µA  
Iload = 0 µA  
-
-
-
16  
18  
35  
25  
30  
50  
VREFBUF  
consumption  
from VDDA  
IDDA  
(VREFBUF)  
I
load = 500 µA  
Iload = 4 mA  
1. Guaranteed by design, unless otherwise specified.  
2. In degraded mode, the voltage reference buffer cannot maintain accurately the output voltage that will follow (VDDA - drop  
voltage).  
3. Guaranteed by test in production.  
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.  
5. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in  
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.  
138/165  
DS11929 Rev 3  
STM32WB55xx  
Electrical characteristics  
6.3.22  
Comparator characteristics  
(1)  
Table 80. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max Unit  
Analog supply voltage  
-
-
1.62  
-
3.6  
Comparator  
input voltage range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
VREFINT  
VSC  
-
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
200  
0.8  
100  
-
±10  
300  
1
mV  
nA  
µA  
µs  
Scaler static consumption  
from VDDA  
I
DDA(SCALER)  
tSTART_SCALER Scaler startup time  
200  
5
VDDA 2.7 V  
High-speed  
mode  
V
V
V
DDA < 2.7 V  
DDA 2.7 V  
DDA < 2.7 V  
-
7
Comparator startup time  
to reach propagation  
delay specification  
tSTART  
-
15  
25  
40  
80  
100  
0.9  
7
µs  
ns  
Medium mode  
-
Ultra-low-power mode  
-
VDDA 2.7 V  
VDDA < 2.7 V  
55  
55  
0.55  
4
High-speed  
mode  
Propagation delay with  
100 mV overdrive  
(3)  
tD  
Medium mode  
µs  
Ultra-low-power mode  
Full common mode range  
No hysteresis  
Voffset  
Comparator offset error  
Comparator hysteresis  
±5  
0
±20  
-
mV  
Low hysteresis  
8
-
Vhys  
mV  
nA  
Medium hysteresis  
High hysteresis  
15  
27  
400  
-
-
Static  
600  
Ultra-low-  
power mode  
With 50 kHz ±100 mV  
overdrive square signal  
-
-
-
-
-
1200  
5
-
Static  
7
Comparator consumption Medium  
from VDDA  
IDDA(COMP)  
With 50 kHz ±100 mV  
overdrive square signal  
mode  
6
-
100  
-
µA  
Static  
70  
75  
High-speed  
mode  
With 50 kHz ±100 mV  
overdrive square signal  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 34: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
DS11929 Rev 3  
139/165  
152  
 
 
 
Electrical characteristics  
STM32WB55xx  
6.3.23  
Temperature sensor characteristics  
Table 81. TS characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VTS linearity with temperature  
-
±1  
2.5  
±2  
2.7  
°C  
mV / °C  
V
Avg_Slope(2) Average slope  
2.3  
V30  
Voltage at 30 °C (±5 °C)(3)  
0.742  
-
0.76  
0.785  
tSTART  
Sensor buffer start-up time in continuous mode(4)  
8
15  
µs  
(TS_BUF)(1)  
Start-up time when entering in continuous mode(4)  
ADC sampling time when reading the temperature  
-
70  
-
120  
-
µs  
µs  
(1)  
tSTART  
(1)  
tS_temp  
5
Temperature sensor consumption from VDD, when  
selected by ADC  
I
DD(TS)(1)  
-
4.7  
7
µA  
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 11:  
Temperature sensor calibration values.  
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.  
6.3.24  
V
monitoring characteristics  
BAT  
Table 82. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
39  
3
-
-
-
kꢀ  
-
Ratio on VBAT measurement  
Error on Q  
Er(1)  
-10  
12  
10  
-
%
µs  
(1)  
tS_vbat  
ADC sampling time when reading the VBAT  
-
1. Guaranteed by design.  
Table 83. V  
charging characteristics  
BAT  
Symbol  
Parameter Conditions  
Min  
Typ  
5
Max  
Unit  
Battery  
charging  
resistor  
VBRS = 0  
VBRS = 1  
-
-
-
-
RBC  
kꢀ  
1.5  
140/165  
DS11929 Rev 3  
 
 
 
 
 
 
 
STM32WB55xx  
Electrical characteristics  
6.3.25  
SMPS step-down converter characteristics  
The SMPS step-down converter characteristic are given at 4 MHz clock, with a load of  
20 mA (unless otherwise specified), using a 10 µH inductor and a 4.7 µF capacitor.  
Table 84. SMPS step-down converter characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1)  
Unit  
V
ddsmps = 3.6 V, Vfbsmps = 1.4 V  
TBD  
TBD  
TBD  
TBD  
-
-
-
-
TBD  
TBD  
TBD  
TBD  
Tsmps_start Startup time from bypass mode  
Tsmps_trans Transition time  
μs  
Vddsmps = 2.0 V, Vfbsmps = 1.4 V  
fbsmps from 1.4 to 1.7 V  
Vfbsmps from 1.7 to 1.4 V  
V
mV / μs  
1. Maximum values are provided over the -40 °C to 90 °C temperature range.  
6.3.26  
LCD controller characteristics  
The devices embed a built-in step-up converter to provide a constant LCD reference voltage  
independently from the V voltage. An external capacitor C must be connected to the  
DD  
ext  
VLCD pin to decouple this converter.  
(1)  
Table 85. LCD controller characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
LCD external voltage  
-
-
-
-
-
-
-
-
-
-
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
2.62  
2.76  
2.89  
3.04  
3.19  
3.32  
3.46  
3.62  
-
-
-
-
-
-
-
-
V
Buffer OFF  
(BUFEN=0 is LCD_CR register)  
0.2  
-
-
2
2
-
Cext  
VLCD external capacitance  
μF  
μA  
Buffer ON  
(BUFEN=1 is LCD_CR register)  
1
-
Supply current from VDD at Buffer OFF  
3
VDD = 2.2 V  
(BUFEN=0 is LCD_CR register)  
(2)  
ILCD  
Supply current from VDD at Buffer OFF  
-
1.5  
-
VDD = 3.0 V  
(BUFEN=0 is LCD_CR register)  
DS11929 Rev 3  
141/165  
152  
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 85. LCD controller characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Buffer OFF  
(BUFFEN = 0, PON = 0)  
-
0.5  
-
Buffer ON  
(BUFFEN = 1, 1/2 Bias)  
-
-
-
0.6  
0.8  
1
-
-
-
Supply current from VLCD  
(VLCD = 3 V)  
IVLCD  
μA  
Buffer ON  
(BUFFEN = 1, 1/3 Bias)  
Buffer ON  
(BUFFEN = 1, 1/4 Bias)  
RHN  
RLN  
V44  
V34  
V23  
V12  
V13  
V14  
V0  
Total High resistor value for Low drive resistive network  
Total Low resistor value for High drive resistive network  
Segment/Common highest level voltage  
Segment/Common 3/4 level voltage  
-
-
-
-
-
-
-
-
-
5.5  
-
-
-
-
-
-
-
-
-
Mꢀ  
kꢀ  
240  
VLCD  
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
0
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
V
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
1. Guaranteed by design.  
2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio = 64, all pixels active, no LCD connected.  
6.3.27  
Timer characteristics  
The parameters given in the following tables are guaranteed by design. Refer to  
Section 6.3.17: I/O port characteristics for details on the input/output alternate function  
characteristics (output compare, input capture, external clock, PWM output).  
(1)  
Table 86. TIMx characteristics  
Symbol  
tres(TIM)  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
-
tTIMxCLK  
ns  
Timer resolution time  
fTIMxCLK = 64 MHz  
15.625  
-
fTIMxCLK/2  
40  
-
0
Timer external clock frequency  
on CH1 to CH4  
fEXT  
MHz  
bit  
fTIMxCLK = 64 MHz  
0
TIM1, TIM16, TIM17  
-
16  
ResTIM  
Timer resolution  
TIM2  
-
32  
-
fTIMxCLK = 64 MHz  
-
1
65536  
1024  
tTIMxCLK  
µs  
tTIMxCLK  
s
tCOUNTER  
16-bit counter clock period  
0.015625  
-
-
65536 × 65536  
67.10  
Maximum possible count with  
32-bit counter  
tMAX_COUNT  
fTIMxCLK = 64 MHz  
1. TIMx, is used as a general term in which x stands for 1, 2, 16 or 17.  
142/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Prescaler divider  
Electrical characteristics  
(1)  
Table 87. IWDG min/max timeout period at 32 kHz (LSI1)  
PR[2:0] bits  
Min timeout RL[11:0] = 0x000  
Max timeout RL[11:0] = 0xFFF Unit  
/4  
/8  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
1
/16  
/32  
/64  
/128  
/256  
2
3
4
4096  
8192  
ms  
2.0  
5
4.0  
16384  
32768  
6 or 7  
8.0  
1. The exact timings still depend on the phasing of the APB interface clock vs. the LSI clock, hence there is always a full RC  
period of uncertainty.  
6.3.28  
Communication interfaces characteristics  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): with a bit rate up to 100 kbit/s  
Fast-mode (Fm): with a bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.  
2
Table 88. Minimum I2CCLK frequency in all I C modes  
Symbol  
Parameter  
Condition  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
9
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
I2CCLK  
frequency  
f(I2CCLK)  
9
MHz  
19  
16  
Fast-mode Plus  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to the reference manual RM0434).  
The SDA and SCL I/O requirements are met with the following restriction: the SDA and SCL  
I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present. The 20 mA output drive  
DD  
requirement in Fast-mode Plus is supported partially.  
This limits the maximum load C  
supported in Fast-mode Plus, given by these formulas:  
load  
t (SDA/SCL) = 0.8473 x R x C  
r p load  
R (min) = [V - V (max)] / I (max)  
p
DD  
OL  
OL  
where R is the I2C lines pull-up. Refer to Section 6.3.17: I/O port characteristics for the I2C  
p
I/Os characteristics.  
DS11929 Rev 3  
143/165  
152  
 
 
 
 
 
Electrical characteristics  
STM32WB55xx  
All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 89 for the analog filter  
characteristics:  
(1)  
Table 89. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
110(3)  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 90 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 22: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 90. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
32  
Master transmitter mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
32  
32  
Slave receiver mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
fSCK  
1/tc(SCK)  
SPI clock frequency  
-
-
MHz  
Slave mode transmitter/full duplex  
2.7 < VDD < 3.6 V  
32(2)  
Voltage Range 1  
Slave mode transmitter/full duplex  
1.65 < VDD < 3.6 V  
20.5(2)  
Voltage Range 1  
Voltage Range 2  
8
-
tsu(NSS) NSS setup time  
th(NSS) NSS hold time  
tw(SCKH)  
Slave mode, SPI prescaler = 2  
Slave mode, SPI prescaler = 2  
4xTPCLK  
2xTPCLK  
-
-
-
-
SCK high and low time  
Master mode  
TPCLK - 1.5  
TPCLK  
TPCLK + 1  
tw(SCKL)  
144/165  
DS11929 Rev 3  
 
 
 
 
STM32WB55xx  
Electrical characteristics  
(1)  
Table 90. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Typ  
Max  
Unit  
tsu(MI)  
1.5  
1
-
-
-
-
-
-
-
-
Data input setup time  
Data input hold time  
tsu(SI)  
th(MI)  
th(SI)  
Slave mode  
Master mode  
Slave mode  
5
-
ns  
1
-
ta(SO) Data output access time  
tdis(SO) Data output disable time  
9
34  
16  
Slave mode  
9
Slave mode 2.7 < VDD < 3.6 V  
Voltage Range 1  
-
-
-
14.5  
15.5  
19.5  
15.5  
24  
Slave mode 1.65 < VDD < 3.6 V  
Voltage Range 1  
tv(SO)  
Data output valid time  
Slave mode 1.65 < VDD < 3.6 V  
Voltage Range 2  
ns  
26  
tv(MO)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
2.5  
3
-
th(SO)  
8
1
-
-
Data output hold time  
th(MO)  
-
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit into SCK low  
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50 %.  
Figure 26. SPI timing diagram - slave mode and CPHA = 0  
DS11929 Rev 3  
145/165  
152  
 
Electrical characteristics  
STM32WB55xx  
Figure 27. SPI timing diagram - slave mode and CPHA = 1  
166ꢅLQSXW  
W68ꢒ166ꢓ  
WKꢒ166ꢓ  
WFꢒ6&.ꢓ  
&3+$ ꢁ  
&32/ ꢂ  
&3+$ ꢁ  
&32/ ꢁ  
WZꢒ6&.+ꢓ  
WZꢒ6&./ꢓ  
WUꢒ6&.ꢓ  
WIꢒ6&.ꢓ  
WKꢒ62ꢓ  
WGLVꢒ62ꢓ  
WYꢒ62ꢓ  
WDꢒ62ꢓ  
0,62  
06%ꢅ287  
06%ꢅ,1  
%,7ꢍꢅ287  
/6%ꢅ287  
287387  
WKꢒ6,ꢓ  
WVXꢒ6,ꢓ  
026,  
,1387  
/6%ꢅ,1  
%,7ꢅꢁꢅ,1  
DLꢁꢀꢁꢊꢄE  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Figure 28. SPI timing diagram - master mode  
+LJK  
166ꢅLQSXW  
W
Fꢒ6&.ꢓ  
&3+$   
&32/ ꢂ  
&3+$   
&32/ ꢁ  
&3+$   
&32/ ꢂ  
&3+$   
&32/ ꢁ  
W
W
W
W
Zꢒ6&.+ꢓ  
Zꢒ6&./ꢓ  
Uꢒ6&.ꢓ  
Iꢒ6&.ꢓ  
W
VXꢒ0,ꢓ  
0,62  
,1387  
%,7ꢍꢅ,1  
/6%ꢅ,1  
06%ꢅ,1  
W
Kꢒ0,ꢓ  
026,  
287387  
%,7ꢁꢅ287  
/6%ꢅ287  
06%ꢅ287  
W
W
Kꢒ02ꢓ  
Yꢒ02ꢓ  
DLꢁꢀꢁꢊꢍF  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
146/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
Quad-SPI characteristics  
Unless otherwise specified, the parameters given in Table 91 and Table 92 for Quad-SPI  
are derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 22: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 15 or 20 pF  
Measurement points are set at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate  
function characteristics.  
(1)  
Table 91. Quad-SPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.65 < VDD< 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
40  
1.65 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
-
-
-
-
-
-
48  
60  
16  
FCK  
Quad-SPI clock  
frequency  
MHz  
1/t(CK)  
2.7 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.65 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
tw(CKH)  
tw(CKL)  
t
(CK)/2 - 0.5  
-
-
t(CK)/2 + 1  
Quad-SPI clock  
high and low time  
f
AHBCLK= 48 MHz, presc=1  
t(CK)/2 - 1  
t(CK)/2 + 0.5  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
2
3.5  
4.5  
6
-
-
ts(IN)  
Data input setup time  
Data input hold time  
-
-
-
-
-
th(IN)  
ns  
-
-
1
1
-
1.5  
1.5  
-
tv(OUT) Data output valid time  
th(OUT) Data output hold time  
-
0
0
-
-
1. Guaranteed by characterization results.  
DS11929 Rev 3  
147/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 92. Quad-SPI characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.65 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
-
-
-
40  
2.0 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
50  
48  
16  
FCK  
Quad-SPI clock  
frequency  
MHz  
1/t(CK)  
1.65 < VDD < 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.65 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
-
tw(CKH)  
t
(CK)/2  
-
-
t(CK)/2 + 1  
t(CK)/2  
Quad-SPI clock  
high and low time  
fAHBCLK = 48 MHz, presc=0  
tw(CKL)  
t(CK)/2 - 1  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
2.5  
3.5  
2.5  
1.5  
5.5  
6.5  
5
Data input setup  
time on rising edge  
tsr(IN)  
tsf(IN)  
thr(IN)  
thf(IN)  
-
-
-
-
-
-
Data input setup  
time on falling edge  
Data input hold  
time on rising edge  
Data input hold  
time on falling edge  
-
-
6
DHHC=0  
Voltage Range 1  
4
5.5  
ns  
Data output valid  
time on rising edge  
tvr(OUT)  
tvf(OUT)  
thr(OUT)  
thf(OUT)  
DHHC=1  
-
t(CK)/2 + 1 t(CK)/2 + 1.5  
Voltage Range 2  
4.5  
4
7
6
DHHC=0  
Voltage Range 1  
Data output valid  
time on falling edge  
DHHC=1  
-
t(CK)/2 + 1 t(CK)/2 + 2  
Voltage Range 2  
6
-
-
-
-
-
-
7.5  
DHHC=0  
2
-
-
-
-
-
-
Voltage Range 1  
Data output hold  
time on rising edge  
DHHC=1 t(CK)/2 + 0.5  
3.5  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
DHHC=0  
3
Data output hold  
time on falling edge  
DHHC=1 t(CK)/2 + 0.5  
5
1. Guaranteed by characterization results.  
148/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
Figure 29. Quad-SPI timing diagram - SDR mode  
WUꢒ&.ꢓ  
Wꢒ&.ꢓ  
WZꢒ&.+ꢓ  
WZꢒ&./ꢓ  
WIꢒ&.ꢓ  
&ORFN  
WYꢒ287ꢓ  
WKꢒ287ꢓ  
'DWDꢅRXWSXW  
'DWDꢅLQSXW  
'ꢂ  
'ꢁ  
'ꢆ  
WVꢒ,1ꢓ  
WKꢒ,1ꢓ  
'ꢂ  
'ꢁ  
'ꢆ  
06Yꢊꢍꢋꢃꢋ9ꢁ  
Figure 30. Quad-SPI timing diagram - DDR mode  
WUꢒ&.ꢓ  
Wꢒ&.ꢓ  
WZꢒ&.+ꢓ  
WZꢒ&./ꢓ  
WIꢒ&.ꢓ  
&ORFN  
WYIꢒ287ꢓ WKUꢒ287ꢓ  
'ꢂ  
WYUꢒ287ꢓ  
WKIꢒ287ꢓ  
'ꢊ  
'DWDꢅRXWSXW  
'ꢁ  
'ꢆ  
'ꢀ  
WVUꢒ,1ꢓ WKUꢒ,1ꢓ  
'ꢄ  
WVIꢒ,1ꢓ WKIꢒ,1ꢓ  
'DWDꢅLQSXW  
'ꢂ  
'ꢁ  
'ꢆ  
'ꢊ  
'ꢀ  
'ꢄ  
06Yꢊꢍꢋꢃꢈ9ꢁ  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 93 for SAI are derived  
from tests performed under the ambient temperature, fPCLKx frequency and VDD  
supply voltage conditions summarized inTable 22: General operating conditions, with  
the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output  
alternate function characteristics (CK,SD,FS).  
DS11929 Rev 3  
149/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
(1)  
Table 93. SAI characteristics  
Conditions  
Symbol  
Parameter  
Min  
Max Unit  
fMCLK  
SAI main clock output  
-
-
-
50  
Master transmitter  
2.7 V VDD 3.6 V  
23.5  
16  
Voltage Range 1  
Master transmitter  
1.65 V VDD 3.6 V  
Voltage Range 1  
-
-
-
Master receiver  
Voltage Range 1  
16  
MHz  
fCK  
SAI clock frequency(2) Slave transmitter  
2.7 V VDD 3.6 V  
26  
20  
Voltage Range 1  
Slave transmitter  
1.65 V VDD 3.6 V  
Voltage Range 1  
-
Slave receiver  
Voltage Range 1  
-
-
-
32  
8
Voltage Range 2  
Master mode  
21  
2.7 V VDD 3.6 V  
FS valid time  
tv(FS)  
Master mode  
1.65 V VDD 3.6 V  
-
30  
th(FS)  
tsu(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
10  
1.5  
2.5  
1
-
-
-
-
-
-
th(FS)  
Slave mode  
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
1.5  
6.5  
2.5  
ns  
-
Slave transmitter (after enable edge)  
2.7 V VDD 3.6 V  
-
19  
tv(SD_B_ST) Data output valid time  
Slave transmitter (after enable edge)  
-
10  
-
25  
-
1.65 V VDD 3.6 V  
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
18.5  
2.7 V VDD 3.6 V  
tv(SD_A_MT) Data output valid time  
Master transmitter (after enable edge)  
1.65 V VDD 3.6 V  
-
25  
-
th(SD_A_MT) Data output hold time Master transmitter (after enable edge)  
10  
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
150/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Electrical characteristics  
Figure 31. SAI master timing waveforms  
ꢃꢆF  
3#+  
3!)?3#+?8  
T
Hꢄ&3ꢅ  
3!)?&3?8  
ꢄOUTPUTꢅ  
T
T
T
Hꢄ3$?-4ꢅ  
Vꢄ&3ꢅ  
Vꢄ3$?-4ꢅ  
3!)?3$?8  
ꢄTRANSMITꢅ  
3LOT N  
3LOT Nꢇꢁ  
T
T
Hꢄ3$?-2ꢅ  
SUꢄ3$?-2ꢅ  
3!)?3$?8  
ꢄRECEIVEꢅ  
3LOT N  
-3ꢀꢁꢂꢂꢃ6ꢃ  
Figure 32. SAI slave timing waveforms  
ꢃꢆF  
3#+  
3!)?3#+?8  
T
T
T
Hꢄ&3ꢅ  
Wꢄ#+(?8ꢅ  
Wꢄ#+,?8ꢅ  
3!)?&3?8  
ꢄINPUTꢅ  
T
T
T
Hꢄ3$?34ꢅ  
SUꢄ&3ꢅ  
Vꢄ3$?34ꢅ  
3!)?3$?8  
ꢄTRANSMITꢅ  
3LOT N  
3LOT Nꢇꢁ  
T
T
Hꢄ3$?32ꢅ  
SUꢄ3$?32ꢅ  
3!)?3$?8  
ꢄRECEIVEꢅ  
3LOT N  
-3ꢀꢁꢂꢂꢁ6ꢃ  
DS11929 Rev 3  
151/165  
152  
 
 
Electrical characteristics  
STM32WB55xx  
USB characteristics  
The STM32WB55xx USB interface is fully compliant with the USB specification version 2.0,  
and is USB-IF certified (for Full-speed device operation).  
(1)  
Table 94. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDDUSB USB transceiver operating voltage  
-
3.0(2)  
-
3.6  
85  
V
USB crystal-less  
Tcrystal_less  
-
-
-15  
-
°C  
operation temperature  
Embedded USB_DP pull-up value  
during idle  
RPUI  
900  
1250 1600  
Embedded USB_DP pull-up value  
during reception  
RPUR  
-
1400 2300 3200  
28 36 44  
(3)  
ZDRV  
Output driver impedance(4)  
Driving high and low  
1. TA = -40 to 125 °C unless otherwise specified.  
2. The STM32WB55xx USB functionality is ensured down to 2.7 V, but the full USB electrical characteristics  
are degraded in the 2.7 to 3.0 V voltage range.  
3. Guaranteed by design.  
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
152/165  
DS11929 Rev 3  
 
STM32WB55xx  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
7.1  
7.2  
WLCSP100 package information  
For information on WLCSP100 package contact your local STMicroelectronics sales office.  
VFQFPN68 package information  
Figure 33. VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
package outline  
3,1ꢅꢁꢅ,'(17,),(5  
GGGꢅ&  
/$6(5ꢅ0$5.,1*  
'
$
$ꢁ  
ꢍꢋꢅꢍꢃ  
$ꢆ  
ꢁꢅ  
(
(
ꢂꢐꢁꢂꢅ&  
ꢒꢆ;ꢓ  
6($7,1*  
3/$1(  
&
723ꢅ9,(:  
'ꢆ  
6,'(ꢅ9,(:  
/
(ꢆ  
ꢆꢅ  
3,1ꢅꢁꢅ,'  
&ꢅꢂꢐꢊꢂꢅ;ꢅꢀꢄꢖ  
ꢍꢋꢅꢍꢃ  
E
H
(;326('ꢅ3$'ꢅ$5($  
%ꢂꢆꢈB9)4)31ꢍꢋB0(B9ꢁ  
%27720ꢅ9,(:  
1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed  
version. Very thin profile: 0.80 < A 1.00 mm.  
2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other  
feature of package body. Exact shape and size of this feature is optional.  
DS11929 Rev 3  
153/165  
160  
 
 
 
 
 
Package information  
STM32WB55xx  
Table 95. VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.80  
0
0.90  
0.02  
0.20  
0.20  
8.00  
6.40  
8.00  
6.40  
0.40  
0.50  
-
1.00  
0.05  
-
0.0315  
0
0.0354  
0.0008  
0.0008  
0.0079  
0.3150  
0.2520  
0.3150  
0.2520  
0.0157  
0.0197  
-
0.0394  
0.0020  
-
-
-
0.15  
7.85  
6.30  
7.85  
6.30  
-
0.25  
8.15  
6.50  
8.15  
6.50  
-
0.0059  
0.3091  
0.2480  
0.3091  
0.2480  
-
0.0098  
0.3209  
0.2559  
0.3209  
0.2559  
-
D
D2  
E
E2  
e
L
0.40  
-
0.60  
0.08  
0.0157  
-
0.0236  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 34. VFQFPN68, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat  
recommended footprint  
ꢂꢐꢄꢂ  
ꢍꢐꢀꢂ  
ꢍꢐꢀꢂ  
3,1ꢅꢁꢅ,'  
&ꢅꢂꢐꢊꢂꢅ;ꢅꢀꢄꢖ  
ꢂꢐꢆꢂ  
ꢂꢐꢀꢂ  
%ꢂꢆꢈB9)4)31ꢍꢋB)3B9ꢁ  
1. Dimensions are expressed in millimeters.  
154/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Package information  
7.3  
UFQFPN48 package information  
Figure 35. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline  
3LQꢅꢁꢅLGHQWLILHU  
ODVHUꢅPDUNLQJꢅDUHD  
'
$
(
<
(
6HDWLQJꢅ  
SODQH  
7
GGG  
$ꢁ  
E
H
'HWDLOꢅ<  
'
([SRVHGꢅSDGꢅ  
DUHD  
'ꢆ  
/
ꢀꢋ  
&ꢅꢂꢐꢄꢂꢂ[ꢀꢄƒ  
SLQꢁꢅFRUQHU  
5ꢅꢂꢐꢁꢆꢄꢅW\Sꢐ  
'HWDLOꢅ=  
(ꢆ  
ꢀꢋ  
=
$ꢂ%ꢈB0(B9ꢊ  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package, it must be electrically connected to  
the PCB ground.  
DS11929 Rev 3  
155/165  
160  
 
 
Package information  
STM32WB55xx  
Table 96. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint  
ꢂꢈꢀꢉ  
ꢌꢈꢁꢉ  
ꢎꢋ  
ꢀꢂ  
ꢀꢌ  
ꢊꢈꢌꢉ  
ꢉꢈꢁꢉ  
ꢂꢈꢀꢉ  
ꢊꢈꢋꢉ  
ꢌꢈꢁꢉ  
ꢊꢈꢌꢉ  
ꢉꢈꢀꢉ  
ꢃꢁ  
ꢁꢊ  
ꢃꢀ  
ꢁꢎ  
ꢉꢈꢂꢊ  
ꢉꢈꢊꢉ  
ꢉꢈꢊꢊ  
ꢊꢈꢋꢉ  
!ꢉ"ꢍ?&0?6ꢁ  
1. Dimensions are expressed in millimeters.  
156/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Package information  
Device marking for UFQFPN48  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 37. UFQFPN48 marking example (package top view)  
670ꢀꢁ:%ꢂꢂ  
3URGXFWꢅ  
LGHQWLILFDWLRQꢒꢁꢓ  
&*8ꢃ  
'DWHꢅFRGH  
<
::  
3LQꢅꢁꢅLGHQWLILHU  
%
5HYLVLRQꢅFRGH  
06ꢄꢁꢄꢋꢁ9ꢁ  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DS11929 Rev 3  
157/165  
160  
 
 
Package information  
STM32WB55xx  
7.4  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 22: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, can be calculated  
J
using the equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watt. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins:  
I/O  
P
max = Σ (V × I ) + Σ ((V – V ) × I  
)
I/O  
OL  
OL  
DD  
OH  
OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Note:  
When the SMPS is used, a portion of the power consumption is dissipated into the external  
inductor, therefore reducing the chip power dissipation. This portion depends mainly on the  
inductor ESR characteristics.  
Note:  
Note:  
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the  
chip power consumption.  
RF characteristics (such as sensitivity, Tx power, consumption) are provided up to 85 °C.  
Table 97. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
51  
UFQFPN48 - 7 mm x 7 mm  
Thermal resistance junction-ambient  
ΘJA  
47  
44  
°C/W  
VFQFPN68 - 8 mm x 8 mm  
Thermal resistance junction-ambient  
WLCSP100 - 0.4 mm pitch  
7.4.1  
7.4.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
158/165  
DS11929 Rev 3  
 
 
 
 
 
 
 
STM32WB55xx  
Package information  
As applications do not commonly use the STM32WB55xx at maximum dissipation, it is  
useful to calculate the exact power consumption and junction temperature to determine  
which temperature range will be best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82 °C (measured according to JESD51-2),  
Amax  
I
= 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in output  
OL  
OL  
at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
= 50 mA × 3.5 V= 175 mW  
INTmax  
= 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IOmax  
This gives: P  
= 175 mW and P  
= 272 mW:  
IOmax  
INTmax  
P
= 175 + 272 = 447 mW  
Dmax  
Using the values obtained in Table 97 T  
is calculated as follows:  
Jmax  
T
For VFQFPN68, 47 °C/W  
= 82 °C + (47 °C/W × 447 mW) = 82 °C + 21 °C = 103 °C  
Jmax  
This is within the range of the suffix 6 version parts (–40 < T < 105 °C), see Section 8.  
J
In this case, parts must be ordered at least with the temperature range suffix 6 (see  
Section 8).  
Note:  
With this given P  
user can find the T  
allowed for a given device temperature range  
Dmax  
Amax  
(order code suffix 7).  
Suffix 7: T = T  
- (47°C/W × 447 mW) = 125°C -21°C = 104 °C  
Jmax  
Amax  
Example 2: High-temperature application  
Using the same rules, it is possible to address applications that run at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 100 °C (measured according to JESD51-2),  
Amax  
I
= 20 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at low  
DDmax  
DD  
level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
= 20 mA × 3.5 V= 70 mW  
INTmax  
= 20 × 8 mA × 0.4 V = 64 mW  
IOmax  
This gives: P  
= 70 mW and P  
= 64 mW:  
IOmax  
INTmax  
P
= 70 + 64 = 134 mW  
Dmax  
Thus: P  
= 134 mW  
Dmax  
Using the values obtained in Table 97 T  
is calculated as follows:  
Jmax  
T
For UFQFPN48, 51°C/W  
= 100 °C + (51 °C/W × 134 mW) = 100 °C + 7 °C = 107 °C  
Jmax  
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
DS11929 Rev 3  
159/165  
160  
Package information  
STM32WB55xx  
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8), unless user reduces the power dissipation to be able to use suffix 6 parts.  
160/165  
DS11929 Rev 3  
STM32WB55xx  
Ordering information  
8
Ordering information  
Table 98. STM32WB55xx ordering information scheme  
STM32 WB 55  
Example:  
V
G
V
6
TR  
Device family  
®
STM32 = Arm based 32-bit microcontroller  
Product type  
®
WB = Wireless Bluetooth  
Device subfamily  
55 = Die 5, full set of features  
Pin count  
C = 48 pins  
R = 68 pins  
V = 100 pins  
Flash memory size  
C = 256 KB  
E = 512 KB  
G = 1 MB  
Package  
U = UFQFPN48 7 mm x 7 mm  
V = VFQFPN68 8 mm x 8 mm  
Y = WLCSP100 0.4 mm pitch  
Temperature range  
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)  
7 = Industrial temperature range, -40 to 105 °C (125 °C junction)  
Packing  
TR = tape and reel  
xxx = programmed parts  
DS11929 Rev 3  
161/165  
161  
 
 
 
 
Revision history  
STM32WB55xx  
9
Revision history  
Table 99. Document revision history  
Changes  
Date  
Revision  
25-Jul-2017  
1
Initial release.  
Updated document title, Features, Section 1: Introduction, Section 2:  
Description, Section 3.1: Architecture, Section 3.3.2: Memory protection  
unit, Section 3.3.3: Embedded Flash memory, Section 3.4: Security and  
safety, Section 3.6: RF subsystem, Section 3.6.1: RF front-end block  
diagram, Section 3.6.2: BLE general description, Section 3.7.1: Power  
supply distribution, Section 3.7.2: Power supply schemes, Section 3.7.4:  
Power supply supervisor, Section 3.10: Clocks and startup, Section 3.14:  
Analog to digital converter (ADC), Section 3.19: True random number  
generator (RNG), Section 5: Memory mapping, Section 6.3.25: SMPS  
step-down converter characteristics and Section 7.4.2: Selecting the  
product temperature range.  
Updated Table 2: STM32WB55xx family device features and peripheral  
counts, Table 6: Power supply typical components, Table 7: Features over  
all modes, Table 8: STM32WB55xx modes overview, Table 13: Timer  
features, Table 15: Legend/abbreviations used in the pinout table,  
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate  
functions, Table 23: RF transmitter BLE characteristics, Table 26: RF  
receiver BLE characteristics (1 Mbps) and added footnote to it, Table 28:  
RF BLE power consumption for VDD = 3.3 V, Table 31: RF 802.15.4  
power consumption for VDD = 3.3 V, Table 37: Typical current  
04-Apr-2018  
2
consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,  
Table 38: Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1, VDD = 3.3 V, Table 40: Current  
consumption in Low-power sleep modes, Flash memory in Power down,  
Table 41: Current consumption in Stop 2 mode, Table 42: Current  
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0  
mode, Table 44: Current consumption in Standby mode, Table 45: Current  
consumption in Shutdown mode, Table 48: Peripheral current  
consumption, Table 97: Package thermal characteristics and Table 98:  
STM32WB55xx ordering information scheme.  
Added Table 47: Current under Reset condition.  
Updated Figure 1: STM32WB55xx block diagram, Figure 2:  
STM32WB55xx RF front-end block diagram, Figure 4: Power distribution,  
Figure 6: Power supply overview, Figure 7: Clock tree, Figure 8:  
STM32WB55xxCx UFQFPN48 pinout(1)(2), Figure 9: STM32WB55xxRx  
VFQFPN68 pinout(1)(2), Figure 10: STM32WB55xxVx WLCSP100  
ballout(1) and Figure 13: Power supply scheme.  
162/165  
DS11929 Rev 3  
 
 
STM32WB55xx  
Revision history  
Table 99. Document revision history (continued)  
Date  
Revision  
Changes  
Changed document classification to Public.  
Updated Features, Section 3.6.2: BLE general description, Section 3.7.2:  
Power supply schemes, Section 3.7.3: Linear voltage regulator,  
Section 3.10: Clocks and startup, Section 6.3.10: External clock source  
characteristics, Section 6.3.20: Analog-to-Digital converter  
characteristics, Section 6.3.28: Communication interfaces characteristics,  
Section 7.1: WLCSP100 package information and Section 7.4: Thermal  
characteristics.  
Replaced VDDIOx with VDD throughout the whole document.  
Updated Table 5: Typical external components, footnote 2 of Table 7:  
Features over all modes, Table 8: STM32WB55xx modes overview and its  
footnote 5, Table 12: Internal voltage reference calibration values,  
Table 16: STM32WB55xx pin and ball definitions and its footnote 5,  
Table 17: Alternate functions, Table 20: Thermal characteristics, Table 21:  
Main performance at VDD = 3.3 V, Table 21: Main performance at VDD =  
3.3 V, Table 22: General operating conditions, Table 23: RF transmitter  
BLE characteristics and its footnote, Table 26: RF receiver BLE  
characteristics (1 Mbps), Table 28: RF BLE power consumption for VDD =  
3.3 V, Table 29: RF transmitter 802.15.4 characteristics and its footnote 1,  
Table 30: RF receiver 802.15.4 characteristics, Table 31: RF 802.15.4  
power consumption for VDD = 3.3 V, Table 34: Embedded internal  
voltage reference, Table 35: Current consumption in Run and Low-power  
run modes, code with data processing running from Flash, ART enable  
(Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current consumption  
in Run and Low-power run modes, code with data processing running  
from SRAM1, VDD = 3.3 V, Table 37: Typical current consumption in Run  
and Low-power run modes, with different codes running from Flash, ART  
enable (Cache ON Prefetch OFF), VDD= 3.3 V, Table 38: Typical current  
consumption in Run and Low-power run modes, with different codes  
running from SRAM1, VDD = 3.3 V, Table 39: Current consumption in  
Sleep and Low-power sleep modes, Flash memory ON, Table 40: Current  
consumption in Low-power sleep modes, Flash memory in Power down,  
Table 41: Current consumption in Stop 2 mode, Table 42: Current  
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0  
mode, Table 44: Current consumption in Standby mode, Table 45: Current  
consumption in Shutdown mode, Table 46: Current consumption in VBAT  
mode, Table 47: Current under Reset condition, Table 48: Peripheral  
current consumption, Table 49: Low-power mode wakeup timings,  
Table 50: Regulator modes transition times, Table 51: Wakeup time using  
LPUART, Table 53: HSE oscillator characteristics and added footnote to  
it, Table 59: LSI2 oscillator characteristics, Table 61: Flash memory  
characteristics, Table 63: EMS characteristics, Table 65: ESD absolute  
maximum ratings, Table 67: I/O current injection susceptibility, Table 68:  
I/O static characteristics and its footnotes, Table 69: Output voltage  
characteristics, Table 70: I/O AC characteristics and its footnotes 1 and 2,  
Table 71: NRST pin characteristics, Table 75: ADC accuracy - Limited test  
conditions 1, Table 76: ADC accuracy - Limited test conditions 2,  
Table 76: ADC accuracy - Limited test conditions 2, Table 77: ADC  
accuracy - Limited test conditions 3, Table 80: COMP characteristics,  
Table 89: I2C analog filter characteristics, Table 90: SPI characteristics,  
Table 91: Quad-SPI characteristics in SDR mode, Table 92: Quad-SPI  
characteristics in DDR mode and Table 93: SAI characteristics.  
08-Oct-2018  
3
DS11929 Rev 3  
163/165  
164  
Revision history  
STM32WB55xx  
Table 99. Document revision history (continued)  
Revision Changes  
Date  
Updated Figure 2: STM32WB55xx RF front-end block diagram, Figure 13:  
Power supply scheme, Figure 16: Typical energy detection (T = 27°C,  
VDD = 3.3 V) and Figure 22: I/O input characteristics.  
Added Figure 5: Power-up/down sequence, Figure 15: Typical link quality  
indicator code vs. Rx level and Figure 16: Typical energy detection (T =  
27°C, VDD = 3.3 V).  
3
08-Oct-2018  
Added Table 24: RF transmitter BLE characteristics (1 Mbps), Table 25:  
RF transmitter BLE characteristics (2 Mbps), Table 27: RF receiver BLE  
characteristics (2 Mbps), Table 52: HSE crystal requirements and  
Table 88: Minimum I2CCLK frequency in all I2C modes.  
(cont’d)  
Added Device marking for UFQFPN48.  
Removed former Figure 22: I/O AC characteristics definition(1) and  
Figure 27: SMPS efficiency - VDDSMPS = 3.6 V.  
164/165  
DS11929 Rev 3  
STM32WB55xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2018 STMicroelectronics – All rights reserved  
DS11929 Rev 3  
165/165  
165  
 
 

相关型号:

STM32WB35CCQ6ATR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ6AXXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ6TR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ6XXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ7ATR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ7AXXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ7TR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCQ7XXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCU6ATR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCU6AXXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCU6TR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR

STM32WB35CCU6XXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution
STMICROELECTR