STM32WB55VYV7XXX [STMICROELECTRONICS]

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution;
STM32WB55VYV7XXX
型号: STM32WB55VYV7XXX
厂家: ST    ST
描述:

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

文件: 总193页 (文件大小:3079K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32WB55xx  
STM32WB35xx  
Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4  
with FPU, Bluetooth® 5 and 802.15.4 radio solution  
Datasheet - production data  
Features  
.
Includes ST state-of-the-art patented  
technology  
Radio  
UFQFPN48  
7 x 7 mm solder pad  
VFQFPN68  
8 x 8 mm solder pad  
– 2.4 GHz  
®
– RF transceiver supporting Bluetooth 5  
specification, IEEE 802.15.4-2011 PHY  
and MAC, supporting Thread and   
FBGA  
®
Zigbee 3.0  
®
– RX sensitivity: -96 dBm (Bluetooth Low  
WLCSP100  
0.4 mm pitch  
UFBGA129  
0.5 mm pitch  
Energy at 1 Mbps), -100 dBm (802.15.4)  
– Programmable output power up to +6 dBm  
with 1 dB steps  
®
®
Core: Arm 32-bit Cortex -M4 CPU with FPU,  
adaptive real-time accelerator (ART  
– Integrated balun to reduce BOM  
– Support for 2 Mbps  
Accelerator) allowing 0-wait-state execution  
from Flash memory, frequency up to 64 MHz,  
MPU, 80 DMIPS and DSP instructions  
®
®
– Dedicated Arm 32-bit Cortex M0+ CPU  
for real-time Radio layer  
Performance benchmark  
– Accurate RSSI to enable power control  
– 1.25 DMIPS/MHz (Drystone 2.1)  
– Suitable for systems requiring compliance  
with radio frequency regulations ETSI EN  
300 328, EN 300 440, FCC CFR47 Part 15  
and ARIB STD-T66  
®
– 219.48 CoreMark (3.43 CoreMark/MHz at  
64 MHz)  
Energy benckmark  
– 303 ULPMark™ CP score  
– Support for external PA  
– Available integrated passive device (IPD)  
companion chip for optimized matching  
solution (MLPF-WB55-01E3 or   
MLPF-WB55-02E3)  
Supply and reset management  
– High efficiency embedded SMPS   
step-down converter with intelligent bypass  
mode  
Ultra-low-power platform  
– Ultra-safe, low-power BOR (brownout  
reset) with five selectable thresholds  
– 1.71 to 3.6 V power supply  
– – 40 °C to 85 / 105 °C temperature ranges  
– 13 nA shutdown mode  
– Ultra-low-power POR/PDR  
– Programmable voltage detector (PVD)  
– V  
mode with RTC and backup registers  
– 600 nA Standby mode + RTC + 32 KB  
RAM  
BAT  
Clock sources  
– 2.1 µA Stop mode + RTC + 256 KB RAM  
– 32 MHz crystal oscillator with integrated  
trimming capacitors (Radio and CPU clock)  
– Active-mode MCU: < 53 µA / MHz when RF  
and SMPS on  
– 32 kHz crystal oscillator for RTC (LSE)  
– Radio: Rx 4.5 mA / Tx at 0 dBm 5.2 mA  
– Internal low-power 32 kHz (±5%) RC (LSI1)  
– Internal low-power 32 kHz (stability  
±500 ppm) RC (LSI2)  
November 2020  
DS11929 Rev 10  
1/193  
This is information on a product in full production.  
www.st.com  
 
STM32WB55xx STM32WB35xx  
– Internal multispeed 100 kHz to 48 MHz  
oscillator, auto-trimmed by LSE (better than  
±0.25% accuracy)  
– 1x USB 2.0 FS device, crystal-less, BCD  
and LPM  
Touch sensing controller, up to 18 sensors  
– LCD 8x40 with step-up converter  
– 1x 16-bit, four channels advanced timer  
– 2x 16-bit, two channels timer  
– 1x 32-bit, four channels timer  
– 2x 16-bit ultra-low-power timer  
– 1x independent Systick  
– High speed internal 16 MHz factory  
trimmed RC (±1%)  
– 2x PLL for system clock, USB, SAI and  
ADC  
Memories  
– Up to 1 MB Flash memory with sector  
protection (PCROP) against R/W  
– 1x independent watchdog  
®
operations, enabling authentic Bluetooth  
– 1x window watchdog  
Low Energy and 802.15.4 SW stack  
Security and ID  
– Up to 256 KB SRAM, including 64 KB with  
hardware parity check  
– Secure firmware installation (SFI) for  
®
Bluetooth Low Energy and 802.15.4 SW  
– 20x32-bit backup register  
stack  
– Boot loader supporting USART, SPI, I2C  
and USB interfaces  
– 3x hardware encryption AES maximum  
®
®
256-bit for the application, the Bluetooth  
Low Energy and IEEE802.15.4  
– OTA (over the air) Bluetooth Low Energy  
and 802.15.4 update  
– Customer key storage / key manager  
services  
– Quad SPI memory interface with XIP  
– 1 Kbyte (128 double words) OTP  
– HW public key authority (PKA)  
Rich analog peripherals (down to 1.62 V)  
– Cryptographic algorithms: RSA,   
– 12-bit ADC 4.26 Msps, up to 16-bit with  
hardware oversampling, 200 µA/Msps  
Diffie-Helman, ECC over GF(p)  
– True random number generator (RNG)  
– 2x ultra-low-power comparator  
– Sector protection against R/W operation  
(PCROP)  
– Accurate 2.5 V or 2.048 V reference  
voltage buffered output  
– CRC calculation unit  
System peripherals  
– Die information: 96-bit unique ID  
– IEEE 64-bit unique ID. Possibility to derive  
– Inter processor communication controller  
®
(IPCC) for communication with Bluetooth  
Low Energy and 802.15.4  
®
802.15.4 64-bit and Bluetooth Low Energy  
48-bit EUI  
– HW semaphores for resources sharing  
between CPUs  
Up to 72 fast I/Os, 70 of them 5 V-tolerant  
Development support  
– 2x DMA controllers (7x channels each)  
supporting ADC, SPI, I2C, USART, QSPI,  
SAI, AES, timers  
– Serial wire debug (SWD), JTAG for the  
application processor  
– Application cross trigger with input / output  
– 1x USART (ISO 7816, IrDA, SPI Master,  
Modbus and Smartcard mode)  
– Embedded Trace Macrocell™ for  
application  
– 1x LPUART (low power)  
– 2x SPI 32 Mbit/s  
All packages are ECOPACK2 compliant  
– 2x I2C (SMBus/PMBus)  
– 1x SAI (dual channel high quality audio)  
Table 1. Device summary  
Part numbers  
Reference  
STM32WB55CC, STM32WB55CE, STM32WB55CG, STM32WB55RC, STM32WB55RE, STM32WB55RG,  
STM32WB55VC, STM32WB55VE, STM32WB55VG, STM32WB55VY  
STM32WB55xx  
STM32WB35xx  
STM32WB35CC, STM32WB35CE  
2/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.1  
3.2  
3.3  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . 19  
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.4  
3.5  
3.6  
Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
3.6.5  
RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
802.15.4 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.7  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.7.6  
Power supply distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.8  
3.9  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.11 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.12 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
DS11929 Rev 10  
3/193  
6
Contents  
STM32WB55xx STM32WB35xx  
3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 44  
3.13.2 Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . . . 45  
3.14 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.15 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.16 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.17 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
3.18 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.19 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.20.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.20.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 50  
3.20.3 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.20.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.20.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.21 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 52  
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.23 Universal synchronous/asynchronous receiver transmitter (USART) . . . 54  
3.24 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 54  
3.25 Serial peripheral interface (SPI1, SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.26 Serial audio interfaces (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.27 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.28 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3.28.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 57  
3.28.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
4
5
6
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.1.1  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
4/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Contents  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
RF 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 96  
Embedded reset and power control block characteristics . . . . . . . . . . . 96  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Wakeup time from Low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
6.3.10 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
6.3.11 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
6.3.12 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
6.3.13 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
6.3.15 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
6.3.19 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
6.3.20 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 140  
6.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 152  
6.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
6.3.24  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
BAT  
6.3.25 SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . 156  
6.3.26 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
6.3.28 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
DS11929 Rev 10  
5/193  
6
Contents  
STM32WB55xx STM32WB35xx  
6.3.29 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 158  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
7
7.1  
7.2  
7.3  
7.4  
7.5  
UFBGA129 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
VFQFPN68 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
7.5.1  
7.5.2  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 184  
8
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
6/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
STM32WB55xx and STM32WB35xx devices features and peripheral counts . . . . . . . . . . 14  
Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 20  
RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power supply typical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Features over all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32WB55xx and STM32WB35xx modes overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix . . . . . . . . . . . 39  
DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
STM32WB55xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
STM32WB35xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Alternate functions (STM32WB55xx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Alternate functions (STM32WB35xx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
RF transmitter BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
RF receiver BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
RF transmitter 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
RF receiver 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
RF 802.15.4 power consumption for VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . . . . . . . 100  
Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V. . . . . . . . . . . . 102  
Typical current consumption in Run and Low-power run modes,  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . 104  
Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . 104  
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
DS11929 Rev 10  
7/193  
9
List of tables  
STM32WB55xx STM32WB35xx  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
HSE clock source requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 121  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124  
HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Electrical sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
ADC sampling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
ADC accuracy - Limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ADC accuracy - Limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
ADC accuracy - Limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
ADC accuracy - Limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
BAT  
BAT  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
8/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
List of tables  
Table 97.  
Table 98.  
Table 99.  
USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Table 100. UFBGA129 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Table 101. UFBGA129 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Table 102. WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Table 103. WLCSP100 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Table 104. VFQFPN68 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Table 105. UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Table 106. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Table 107. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
DS11929 Rev 10  
9/193  
9
List of figures  
STM32WB55xx STM32WB35xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32WB55xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
STM32WB35xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
STM32WB55xx and STM32WB35xx RF front-end block diagram . . . . . . . . . . . . . . . . . . . 23  
External components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
STM32WB55xx - Power supply overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
STM32WB35xx - Power supply overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
(1) (2)  
Figure 10. STM32WB55Cx and STM32WB35Cx UFQFPN48 pinout  
Figure 11. STM32WB55Rx VFQFPN68 pinout  
Figure 12. STM32WB55Vx WLCSP100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 13. STM32WB55Vx UFBGA129 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
. . . . . . . . . . . . . . . . . . . . . . 58  
(1) (2)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
(1)  
(1)  
Figure 14. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 15. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 16. Power supply scheme (all packages except UFBGA129 and WLCSP100) . . . . . . . . . . . . 82  
Figure 17. Power supply scheme (UFBGA129 and WLCSP100 packages) . . . . . . . . . . . . . . . . . . . . 83  
Figure 18. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 19. Typical link quality indicator code vs. Rx level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 20. Typical energy detection (T = 27°C, VDD = 3.3 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figure 21. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 22. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 23. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 24. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 25. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Figure 26. HSI48 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Figure 27. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 28. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 29. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Figure 30. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Figure 31. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 32. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Figure 33. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Figure 34. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 35. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
Figure 36. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 37. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Figure 38. UFBGA129 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Figure 39. UFBGA129 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Figure 40. UFBGA129 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Figure 41. WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Figure 42. WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Figure 43. WLCSP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Figure 44. VFQFPN68 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Figure 45. VFQFPN68 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Figure 46. VFQFPN68 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Figure 47. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Figure 48. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
10/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
List of figures  
Figure 49. STM32WB55xx UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . 182  
Figure 50. STM32WB35xx UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . 182  
DS11929 Rev 10  
11/193  
11  
Introduction  
STM32WB55xx STM32WB35xx  
1
Introduction  
This document provides the ordering information and mechanical device characteristics of  
®
(a)  
the STM32WB55xx and STM32WB35xx microcontrollers, based on Arm cores  
.
This document must be read in conjunction with the reference manual (RM0434), available  
from the STMicroelectronics website www.st.com.  
®
®
®
For information on the Arm Cortex -M4 and Cortex -M0+ cores, refer, respectively, to the  
®
®
Cortex -M4 Technical Reference Manual and to the Cortex -M0+ Technical Reference  
Manual, both available on the www.arm.com website.  
For information on 802.15.4 refer to the IEEE website (www.ieee.org).  
®
For information on Bluetooth refer to www.bluetooth.com.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS11929 Rev 10  
12/193  
 
 
STM32WB55xx STM32WB35xx  
Description  
2
Description  
The STM32WB55xx and STM32WB35xx multiprotocol wireless and ultra-low-power  
®
devices embed a powerful and ultra-low-power radio compliant with the Bluetooth Low  
®
Energy SIG specification v5.0 and with IEEE 802.15.4-2011. They contain a dedicated Arm  
®
Cortex -M0+ for performing all the real-time low layer operation.  
The devices are designed to be extremely low-power and are based on the high-  
®
®
performance Arm Cortex -M4 32-bit RISC core operating at a frequency of up to 64 MHz.  
®  
This core features a Floating point unit (FPU) single precision that supports all Arm  
single-precision data-processing instructions and data types. It also implements a full set of  
DSP instructions and a memory protection unit (MPU) that enhances application security.  
Enhanced inter-processor communication is provided by the IPCC with six bidirectional  
channels. The HSEM provides hardware semaphores used to share common resources  
between the two processors.  
The devices embed high-speed memories (up to 1 Mbyte of Flash memory for  
STM32WB55xx, up to 512 Kbytes for STM32WB35xx, up to 256 Kbytes of SRAM for  
STM32WB55xx, 96 Kbytes for STM32WB35xx), a Quad-SPI Flash memory interface  
(available on all packages) and an extensive range of enhanced I/Os and peripherals.  
Direct data transfer between memory and peripherals and from memory to memory is  
supported by fourteen DMA channels with a full flexible channel mapping by the DMAMUX  
peripheral.  
The devices feature several mechanisms for embedded Flash memory and SRAM: readout  
protection, write protection and proprietary code readout protection. Portions of the memory  
®
can be secured for Cortex -M0+ exclusive access.  
The two AES encryption engines, PKA and RNG enable lower layer MAC and upper layer  
cryptography. A customer key storage feature may be used to keep the keys hidden.  
The devices offer a fast 12-bit ADC and two ultra-low-power comparators associated with a  
high accuracy reference voltage generator.  
These devices embed a low-power RTC, one advanced 16-bit timer, one general-purpose  
32-bit timer, two general-purpose 16-bit timers, and two 16-bit low-power timers.  
In addition, up to 18 capacitive sensing channels are available for STM32WB55xx (not on  
UFQFPN48 package). The STM32WB55xx also embed an integrated LCD driver up to 8x40  
or 4x44, with internal step-up converter.  
The STM32WB55xx and STM32WB35xx also feature standard and advanced  
communication interfaces, namely one USART (ISO 7816, IrDA, Modbus and Smartcard  
mode), one low- power UART (LPUART), two I2Cs (SMBus/PMBus), two SPIs (one for  
STM32WB35xx) up to 32 MHz, one serial audio interface (SAI) with two channels and three  
PDMs, one USB 2.0 FS device with embedded crystal-less oscillator, supporting BCD and  
LPM and one Quad-SPI with execute-in-place (XIP) capability.  
The STM32WB55xx and STM32WB35xx operate in the -40 to +105 °C (+125 °C junction)  
and -40 to +85 °C (+105 °C junction) temperature ranges from a 1.71 to 3.6 V power supply.  
A comprehensive set of power-saving modes enables the design of low-power applications.  
The devices include independent power supplies for analog input for ADC.  
DS11929 Rev 10  
13/193  
57  
 
 
Description  
STM32WB55xx STM32WB35xx  
The STM32WB55xx and STM32WB35xx integrate a high efficiency SMPS step-down  
converter with automatic bypass mode capability when the V falls below V  
(x=1, 2, 3,  
DD  
BORx  
4) voltage level (default is 2.0 V). It includes independent power supplies for analog input for  
ADC and comparators, as well as a 3.3 V dedicated supply input for USB.  
A V  
dedicated supply allows the devices to back up the LSE 32.768 kHz oscillator, the  
BAT  
RTC and the backup registers, thus enabling the STM32WB55xx and STM32WB35xx to  
supply these functions even if the main V is not present through a CR2032-like battery, a  
DD  
Supercap or a small rechargeable battery.  
The STM32WB55xx offer four packages, from 48 to 129 pins. The STM32WB35xx offer one  
package, 48 pins.  
Table 2. STM32WB55xx and STM32WB35xx devices features and peripheral counts  
Feature  
STM32WB55Cx  
STM32WB55Rx  
STM32WB55Vx  
STM32WB35Cx  
Flash  
256 K 512 K 1 M 256 K 512 K 1 M 256 K 512 K 1 M 640 K 256 K 512 K  
Memory  
density  
(bytes)  
SRAM  
128 K 256 K 256 K 128 K 256 K 256 K 128 K 256 K  
64 K 192 K 64 K 192 K 64 K  
64 K  
256 K  
192 K  
96 K  
SRAM1  
SRAM2  
32 KB  
BLE  
V5.0 (2 Mbps)  
Yes  
802.15.4  
Advanced  
1 (16 bits)  
General  
purpose  
2 (16 bits) + 1 (32 bits)  
Timers  
Low power  
SysTick  
SPI  
2 (16 bits)  
1
1
2
1
I2C  
2
USART(1)  
LPUART  
SAI  
1
1
2 channels  
USB FS  
QSPI  
Yes  
1
RTC  
1
Tamper pin  
1
2
3
1
Wakeup pin  
5
2
LCD, COMxSEG  
GPIOs  
Yes, 4x13  
Yes, 4x28  
Yes, 8x40 or 4x44  
No  
30  
No  
30  
49  
6
72  
18  
Capacitive sensing  
No  
12-bit ADC  
Number of channels  
13 channels  
(incl. 3 internal)  
19 channels  
(incl. 3 internal)  
13 channels  
(incl. 3 internal)  
Internal Vref  
14/193  
Yes  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Description  
Table 2. STM32WB55xx and STM32WB35xx devices features and peripheral counts (continued)  
Feature  
STM32WB55Cx  
STM32WB55Rx  
STM32WB55Vx  
STM32WB35Cx  
Analog comparator  
Max CPU frequency  
2
64 MHz  
-40to  
+85  
°C  
-40 to +85 and -  
40 to +105 °C  
Ambient  
-40 to +85 and -40 to +105 °C  
-40 to +105 and -40 to +125 °C  
-40to  
+105  
°C  
-40 to +105 and  
-40 to +125 °C  
Junction  
Operating voltage  
1.71 to 3.6 V  
WLCSP100  
0.4 mm pitch  
UFQFPN48  
7 mm x 7 mm  
0.5 mm pitch,  
solder pad  
VFQFPN68  
8 mm x 8 mm  
0.4 mm pitch,  
solder pad  
UFQFPN48  
7 mm x 7 mm  
0.5 mm pitch,  
solder pad  
Package  
UFBGA129  
0.5 mm pitch  
-
1. USART peripheral can be used as SPI.  
DS11929 Rev 10  
15/193  
57  
Description  
STM32WB55xx STM32WB35xx  
Figure 1. STM32WB55xx block diagram  
APB asynchronous  
RCC2  
NVIC  
BLE IP  
802.15.4  
LSI2  
32 kHz  
BLE / 802.15.4  
HSE2  
32 MHz  
Cortex-M0+  
RF IP  
WKUP  
BLE  
32 KB SRAM2a  
Backup  
LSE  
RTC2  
I-WDG  
TAMP  
32 kHz  
32 KB SRAM2b  
LSI1  
32 kHz  
PKA + RAM  
HSEM  
RNG  
PLL1  
ETM  
NVIC  
HSI 1%  
16 MHz  
and  
IPCC  
Cortex-M4  
(DSP)  
MSI up to  
48 MHz  
PLL2  
RCC + CSS  
PWR  
Power supply POR/  
PDR/BOR/PVD/AVD  
FPU  
MPU  
QSPI - XIP  
DMA1 7 channels  
DMA2 7 channels  
DMAMUX  
EXTI  
CRS  
RC48  
AES2  
USB FS + RAM  
WWDG  
Up to 192 KB  
SRAM1  
DBG  
Temp (oC) sensor  
GPIO Ports  
A, B, C, D, E, H  
SPI1  
SPI2  
ADC1 16-bit ULP  
4.26 Msps / 19 ch  
CRC  
TSC  
LCD  
I2C1  
AES1  
LPTIM1  
LPTIM2  
SAI1  
I2C3  
APB  
TIM1  
LPUART1  
TIM2  
USART1  
SYSCFG/COMP/VREF  
TIM16, TIM17  
MS41407V6  
16/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Description  
Figure 2. STM32WB35xx block diagram  
APB asynchronous  
RCC2  
NVIC  
BLE IP  
802.15.4  
LSI2  
32 kHz  
BLE / 802.15.4  
HSE2  
32 MHz  
Cortex-M0+  
RF IP  
WKUP  
BLE  
32 KB SRAM2a  
Backup  
LSE  
RTC2  
I-WDG  
TAMP  
32 kHz  
32 KB SRAM2b  
LSI1  
32 kHz  
PKA + RAM  
HSEM  
RNG  
PLL1  
HSI 1%  
16 MHz  
NVIC  
And  
IPCC  
PLL2  
MSI up to  
48 MHz  
Cortex-M4  
(DSP)  
RCC + CSS  
PWR  
Power supply POR/  
PDR/BOR/PVD/AVD  
FPU  
MPU  
QSPI - XIP  
DMA1 7 channels  
DMA2 7 channels  
DMAMUX  
EXTI  
CRS  
RC48  
AES2  
USB FS + RAM  
WWDG  
32 KB SRAM1  
DBG  
Temp (oC) sensor  
GPIO Ports  
A, B, C, E, H  
SPI1  
ADC1 16-bit ULP  
4.26 Msps / 19 ch  
CRC  
I2C1  
I2C3  
AES1  
APB  
TIM1  
LPTIM1  
LPTIM2  
SAI1  
LPUART1  
USART1  
TIM2  
TIM16, TIM17  
SYSCFG/COMP  
MS53592V1  
DS11929 Rev 10  
17/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
3
Functional overview  
3.1  
Architecture  
The STM32WB55xx and STM32WB35xx multiprotocol wireless devices embed a BLE and  
an 802.15.4 RF subsystem that interfaces with a generic microcontroller subsystem using  
®
®
an Arm Cortex -M4 CPU (called CPU1) on which the host application resides.  
The RF subsystem is composed of an RF analog front end, BLE and 802.15.4 digital MAC  
®
®
blocks as well as of a dedicated Arm Cortex -M0+ microcontroller (called CPU2), plus  
proprietary peripherals. The RF subsystem performs all of the BLE and 802.15.4 low layer  
stack, reducing the interaction with the CPU1 to high level exchanges.  
Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU  
(CPU1):  
Flash memories  
SRAM1, SRAM2a and SRAM2b (SRAM2a can be retained in Standby mode)  
Security peripherals (RNG, AES1, PKA)  
Clock RCC  
Power control (PWR)  
The communication and the sharing of peripherals between the RF subsystem and the  
®
Cortex -M4 CPU is performed through a dedicated inter processor communication  
controller (IPCC) and semaphore mechanism (HSEM).  
3.2  
Arm® Cortex®-M4 core with FPU  
®
®
The Arm Cortex -M4 with FPU is a processor for embedded systems. It has been  
developed to provide a low-cost platform that meets the needs of MCU implementation, with  
a reduced pin count and low-power consumption, while delivering outstanding  
computational performance and an advanced response to interrupts.  
®
®
The Arm Cortex -M4 with FPU 32-bit RISC processor features exceptional   
®
code-efficiency, delivering the high-performance expected from an Arm core in the  
memory size usually associated with 8- and 16-bit devices.  
The processor supports a set of DSP instructions enabling efficient signal processing and  
complex algorithm execution.  
Its single precision FPU speeds up software development by using metalanguage  
development tools, while avoiding saturation.  
®
With its embedded Arm core, the STM32WB55xx and STM32WB35xx are compatible with  
®
all Arm tools and software.  
Figure 1 and Figure 2 show the general block diagram of, respectively, the STM32WB55xx  
and STM32WB35xx devices.  
18/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.3  
Memories  
3.3.1  
Adaptive real-time memory accelerator (ART Accelerator)  
®
The ART Accelerator is a memory accelerator optimized for STM32 industry-standard Arm  
®
®
Cortex -M4 processors. It balances the inherent performance advantage of the Arm  
®
Cortex -M4 over Flash memory technologies, which normally require the processor to wait  
for the Flash memory at higher frequencies.  
To release the processor near 80 DMIPS performance at 64 MHz, the accelerator  
implements an instruction prefetch queue and branch cache, which increases program  
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 64 MHz.  
3.3.2  
Memory protection unit  
The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to eight protected areas, which can be divided  
up into eight subareas. The protection area sizes are between 32 bytes and the whole  
4 Gbytes of addressable memory.  
The MPU is especially helpful for applications where some critical or certified code must be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS   
(real-time operating system). If a program accesses a memory location prohibited by the  
MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.3.3  
Embedded Flash memory  
The STM32WB55xx and STM32WB35xx devices feature, respectively, up to 1 Mbyte and  
512 Kbytes of embedded Flash memory available for storing programs and data, as well as  
some customer keys.  
Flexible protections can be configured thanks to option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels are available:  
Level 0: no readout protection  
Level 1: memory readout protection: the Flash memory cannot be read from or  
written to if either debug features are connected, boot in SRAM or bootloader is  
selected  
®
®
Level 2: chip readout protection: debug features (Cortex -M4 and Cortex -M0+  
JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG  
fuse). This selection is irreversible.  
DS11929 Rev 10  
19/193  
57  
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Table 3. Access status vs. readout protection level and execution modes  
Debug, boot from SRAM or boot  
User execution  
Protection  
level  
from system memory (loader)  
Area  
Read  
Write  
Erase  
Read  
Write  
Erase  
1
2
1
2
1
2
1
2
1
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
N/A  
Yes  
N/A  
Yes  
N/A  
No  
No  
N/A  
No  
No  
N/A  
No  
Main  
memory  
No  
System  
memory  
No  
No  
N/A  
Yes  
N/A  
No  
N/A  
Yes  
Yes  
No(1)  
Yes  
Yes  
Yes  
Yes  
Yes  
Option  
bytes  
No(1)  
N/A(2)  
N/A  
N/A  
N/A(2)  
N/A  
No(2)  
N/A  
Backup  
registers  
N/A  
No  
N/A  
No  
Yes(2)  
SRAM2a  
SRAM2b  
Yes  
N/A  
N/A  
1. The option byte can be modified by the RF subsystem.  
2. Erased when RDP changes from Level 1 to Level 0.  
Write protection (WRP): the protected area is protected against erasing and  
programming. Two areas can be selected, with 4-Kbyte granularity.  
Proprietary code readout protection (PCROP): two parts of the Flash memory can be  
protected against read and write from third parties. The protected area is execute-only:  
it can only be reached by the STM32 CPU, as an instruction code, while all other  
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.  
Two areas can be selected, with 2-Kbyte granularity. An additional option bit  
(PCROP_RDP) makes possible to select if the PCROP area is erased or not when the  
RDP protection is changed from Level 1 to Level 0.  
A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be  
accessed by the host CPU1.  
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:  
single error detection and correction  
double error detection  
the address of the ECC fail can be read in the ECC register  
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis.  
A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.  
20/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.3.4  
Embedded SRAM  
The STM32WB55xx devices feature up to 256 Kbytes of embedded SRAM, split in three  
blocks:  
SRAM1: up to 192 Kbytes mapped at address 0x2000 0000  
SRAM2a: 32 Kbytes located at address 0x2003 0000 (contiguous to SRAM1) also  
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in  
Standby mode)  
SRAM2b: 32 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and  
mirrored at 0x1000 8000 with hardware parity check  
The STM32WB35xx devices feature 96 Kbytes of embedded SRAM, split in three blocks:  
SRAM1: 32 Kbytes mapped at address 0x2000 0000  
SRAM2a: 32 Kbytes located at address 0x2003 0000 (contiguous to SRAM1) also  
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in  
Standby mode)  
SRAM2b: 32 Kbytes located at address 0x2003 8000 (contiguous with SRAM2a) and  
mirrored at 0x1000 8000 with hardware parity check  
SRAM2a and SRAM2b can be write-protected, with 1-Kbyte granularity. A section of the  
SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the  
host CPU1.  
The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock  
speeds.  
3.4  
Security and safety  
The STM32WB55xx and STM32WB35xx contain many security blocks both for the BLE or  
IEEE 802.15.4 and the Host application.  
It includes:  
Customer storage of the BLE and 802.15.4 keys  
Secure Flash memory partition for RF subsystem-only access  
Secure SRAM partition, that can be accessed only by the RF subsystem  
True random number generator (RNG)  
Advance encryption standard hardware accelerators (AES-128bit and AES-256bit,  
supporting chaining modes ECB, CBC, CTR, GCM, GMAC, CCM)  
Private key acceleration (PKA) including:  
Modular arithmetic including exponentiation with maximum modulo size of 3136  
bits  
Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA  
verification with maximum modulo size of 521 bits  
Cyclic redundancy check calculation unit (CRC)  
A specific mechanism is in place to ensure that all the code executed by the RF subsystem  
CPU2 can be secure, whatever the Host application. For the AES1 a customer key can be  
managed by the CPU2 and used by the CPU1 to encrypt/decrypt data.  
DS11929 Rev 10  
21/193  
57  
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
3.5  
Boot modes and FW update  
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:  
Boot from user Flash  
Boot from system memory  
Boot from embedded SRAM  
The devices always boot on CPU1 core. The embedded bootloader code makes it possible  
to boot from various peripherals:  
USB  
UART  
I2C  
SPI  
Secure Firmware update (especially BLE and 802.15.4) from system boot and over the air is  
provided.  
3.6  
RF subsystem  
The STM32WB55xx and STM32WB35xx embed an ultra-low power multi-standard radio  
®
®
Bluetooth Low Energy (BLE) and 802.15.4 network processor, compliant with Bluetooth  
®
specification v5.0 and IEEE 802.15.4-2011. The BLE features 1 Mbps and 2 Mbps transfer  
®
rates, supports multiple roles simultaneously acting at the same time as Bluetooth Low  
Energy sensor and hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key  
agreement protocol, thus ensuring a secure connection.  
®
®
The Bluetooth Low Energy stack and 802.15.4 Low Level layer run on an embedded Arm  
®
Cortex -M0+ core (CPU2). The stack is stored on the embedded Flash memory, which is  
also shared with the Arm Cortex -M4 (CPU1) application, making it possible in-field stack  
update.  
®
®
3.6.1  
RF front-end block diagram  
The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF  
architecture in Rx mode.  
Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna  
(single ended connection, impedance close to 50 ). The natural bandpass behavior of the  
internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band  
interferer rejection.  
In Transmit mode, the maximum output power is user selectable through the programmable  
LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean  
power ramp-up.  
In receive mode the circuit can be used in standard high performance or in reduced power  
consumption (user programmable). The Automatic gain control (AGC) is able to reduce the  
chain gain at both RF and IF locations, for optimized interference rejection. Thanks to the  
use of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent  
linearity can be achieved.  
The bill of material is reduced thanks to the high degree of integration. The radio frequency  
source is synthesized form an external 32 MHz crystal that does not need any external  
22/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
trimming capacitor network thanks to a dual network of user programmable integrated  
capacitors.  
Figure 3. STM32WB55xx and STM32WB35xx RF front-end block diagram  
Timer and Power  
AGC  
control  
EXT_  
PA_TX  
RF control  
G
Interrupt  
Wakeup  
BLE  
BP  
filter  
LNA  
modulator  
BLE  
controller  
AHB  
APB  
G
BLE  
demodulator  
RF1  
802.15.4  
modulator  
APB  
802.15.4  
MAC  
Interrupt  
Wakeup  
802.15.4  
demodulator  
PLL  
See  
notes  
Adjust  
Adjust  
HSE  
Trimmed  
bias  
Max PA  
level  
SMPS  
LDO  
LDO  
LDO  
VDDSMPS VSSSMPS VLXSMPS  
OSC_OUT  
VFBSMPS  
VDDRF  
OSC_IN  
32 MHz  
Notes:  
- UFQFPN48 and VFQFPN68: VSS through exposed pad, and VSSRF pin must be connected to ground plane  
- WLCSP100 and UFBGA129: VSSRF pins must be connected to ground plane  
MS45477V6  
3.6.2  
BLE general description  
®
The BLE block is a master/slave processor, compliant with Bluetooth specification 5.0  
standard (2 Mbps).  
DS11929 Rev 10  
23/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
®
It integrates a 2.4 GHz RF transceiver and a powerful Cortex -M0+ core, on which a  
®
complete power-optimized stack for Bluetooth Low Energy protocol runs, providing  
master / slave role support  
GAP: central, peripheral, observer or broadcaster roles  
ATT/GATT: client and server  
SM: privacy, authentication and authorization  
L2CAP  
Link layer: AES-128 encryption and decryption  
®
In addition, according to Bluetooth specification v5.0, the BLE block provides:  
Multiple roles simultaneous support  
Master/slave and multiple roles simultaneously  
LE data packet length extension (making it possible to reach 800 kbps at application  
level)  
LE privacy 1.2  
LE secure connections  
Flexible Internet connectivity options  
High data rate (2 Mbps)  
The device allows the applications to meet the tight peak current requirements imposed by  
the use of standard coin cell batteries. When the high efficiency embedded SMPS   
step-down converter is used, the RF front end consumption (I  
) is only 8.1 mA at the  
tmax  
highest output power (+6 dBm).  
The power efficiency of the subsystem is optimized: while running with the radio and the  
®
applicative cores simultaneously using the SMPS, the Cortex -M4 core consumption  
reaches 53 µA / MHz in active mode.  
Ultra-low-power sleep modes and very short transition time between operating modes result  
in very low average current consumption during real operating conditions, resulting in longer  
battery life.  
The BLE block integrates a full bandpass balun, thus reducing the need for external  
components.  
®
The link between the Cortex -M4 application processor (CPU1) running the application, and  
®
the BLE stack running on the dedicated Cortex -M0+ (CPU2) is performed through a  
normalized API, using a dedicated IPCC.  
24/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
3.6.3  
802.15.4 general description  
The STM32WB55xx and STM32WB35xx embed a dedicated 802.15.4 hardware MAC:  
Support for 802.15.4 release 2011  
Advanced MAC frame filtering; hardwired firewall: Programmable filters based on  
source/destination addresses, frame version, security enabled, frame type  
256-byte RX FIFO; Up to 8 frames capacity, additional frame information (timing, mean  
RSSI, LQI)  
128-byte TX FIFO with retention  
Content not lost, retransmissions possible under CPU2 control  
Automatic frame acknowledgment, with programmable delay  
Advanced channel access features  
Full CSMA-CA support  
Superframe timer  
Beaconing support (require LSE)  
Flexible TX control with programmable delay  
Configuration registers with retention available down to Standby mode for  
software/auto-restore  
Autonomous sniffer, Wakeup based on timer or CPU2 request  
Automatic frame transmission/reception/sleep periods, Interrupt to the CPU2 on  
particular events  
3.6.4  
RF pin description  
The RF block contains dedicated pins, listed in Table 4.  
:
Table 4. RF pin list  
Name  
Type  
Description  
RF1  
RF Input/output, must be connected to the antenna through a low-pass matching network  
OSC_OUT  
OSC_IN  
32 MHz main oscillator, also used as HSE source  
External PA transmit control  
I/O  
RF_TX_  
MOD_EXT_PA  
VDDRF  
VDD Dedicated supply, must be connected to VDD  
VSS To be connected to GND  
VSSRF(1)  
1. On packages with exposed pad, this pad must be connected to GND plane for correct RF operation.  
3.6.5  
Typical RF application schematic  
The schematic in Figure 4 and the external components listed in Table 4 are purely  
indicative. For more details refer to the “Reference design” provided in separate documents.  
DS11929 Rev 10  
25/193  
57  
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Figure 4. External components for the RF part  
OSC_IN  
OSC_OUT  
VDDRF  
X1  
32 MHz  
VDD  
C1  
(including exposed pad)  
STM32WB  
microcontroller  
Antenna  
Cf2  
VSSRF  
Lf1  
Cf1  
RF1  
Antenna filter  
MS53575V1  
Table 5. Typical external components  
Description  
Component  
Value  
C1  
X1  
Decoupling capacitance for RF  
32 MHz crystal(1)  
100 nF // 100 pF  
32 MHz  
Antenna filter  
Antenna  
Antenna filter and matching network  
2.4 GHz band antenna  
Refer to AN5165, on www.st.com  
-
1. e.g. NDK reference: NX2016SA 32 MHz EXS00A-CS06654.  
Note:  
For more details refer to AN5165 “Development of RF hardware using STM32WB  
microcontrollers” available on www.st.com.  
3.7  
Power supply management  
3.7.1  
Power supply distribution  
The device integrate an SMPS step-down converter to improve low power performance  
when the V voltage is high enough. This converter has an intelligent mode that  
DD  
automatically enters in bypass mode when the V voltage falls below a specific BORx   
DD  
(x = 1, 2, 3 or 4) voltage.  
By default, at Reset the SMPS is in bypass mode.  
The device can be operated without the SMPS by just wiring its output to V . This is the  
DD  
case for applications where the voltage is low, or where the power consumption is not  
critical.  
26/193  
DS11929 Rev 10  
 
 
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
Figure 5. Power distribution  
VDD  
VDD  
VDDSMPS  
VDDSMPS  
SMPS  
SMPS  
(not used)  
SMPS mode or  
BYPASS mode  
VLXSMPS  
VLXSMPS  
L1  
LPR  
LPR  
VFBSMPS  
VFBSMPS  
C2  
RFR  
MR  
RFR  
MR  
SMPS configuration  
LDO configuration  
MS41409V4  
Table 6. Power supply typical components  
Description  
Component  
Value  
C2  
SMPS output capacitor(1)  
4.7 µF  
2.2 µH  
10 µH  
For 8 MHz(3)  
For 4 MHz(4)  
L1(2)  
SMPS inductance  
1. e.g. GRM155R60J475KE19.  
2. An extra 10 nH inductor in series with L1 is needed to improve the receiver performance,   
e.g Murata LQG15WZ10NJ02D  
3. e.g. Wurth 74479774222.  
4. e.g. Murata LQM21FN100M70L.  
The SMPS can also be switched on or set in bypass mode at any time by the application  
software, for example when very accurate ADC measurement are needed.  
3.7.2  
Power supply schemes  
The devices have different voltage supplies (see Figure 7 and Figure 8) and can operate  
within the following voltage ranges:  
V
= 1.71 to 3.6 V: external power supply for I/Os (V  
), the internal regulator and  
DDIO  
DD  
system functions such as RF, SMPS, reset, power management and internal clocks. It  
is provided externally through VDD pins. V  
connected to VDD pins.  
and V  
must be always  
DDRF  
DDSMPS  
V
= 1.62 (ADC/COMPs) to 3.6 V: external analog power supply for ADC,  
DDA  
comparators and voltage reference buffer. The V  
voltage level can be independent  
DDA  
from the V voltage. When not used V  
must be connected to V  
.
DD  
DDA  
DD  
V
= 3.0 to 3.6 V: external independent power supply for USB transceivers. When  
DDUSB  
not used V  
must be connected to V  
.
DDUSB  
DD  
V
= 2.5 to 3.6 V: the LCD controller can be powered either externally through the  
LCD  
VLCD pin, or internally from an internal voltage generated by the embedded step-up  
converter. This converter can generate a V voltage up to 3.6 V if V is higher than  
LCD  
DD  
2.0 V. Note that the LCD is available only on STM32WB55xx devices.  
DS11929 Rev 10  
27/193  
57  
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
During power up/down, the following power sequence requirements must be respected:  
When V is below 1 V the other power supplies (V  
, V  
, V ), must remain  
LCD  
DD  
DDA  
DDUSB  
below V + 300 mV  
DD  
When V is above 1 V all power supplies are independent.  
DD  
Figure 6. Power-up/down sequence  
V
3.6  
(1)  
VDDX  
VDD  
VBOR0  
1
0.3  
Power-on  
Invalid supply area  
Operating mode  
VDDX < VDD + 300 mV  
Power-down  
time  
VDDX independent from VDD  
MSv47490V1  
1. VDDX refers to any power supply among VDDA, VDDUSB and VLCD  
.
During the power down phase, V can temporarily become lower than other supplies only  
DD  
if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling  
capacitors to be discharged with different time constants during the power down transient  
phase.  
Note:  
V
, V  
and V must be wired together, so they can follow the same voltage  
DDSMPS  
DD  
DDRF  
sequence.  
28/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Functional overview  
Figure 7. STM32WB55xx - Power supply overview  
Interruptible domain (VDD12I  
)
On domain (VDD12O)  
(CPU1, CPU2,  
peripherals,  
SysConfig, AIEC,  
RCC, PwrCtrl,  
LPTIM, LPUSART  
IO  
logic  
SRAM1,  
IOs  
SRAM2b)  
Power  
switch  
Power  
switch  
VSS  
VSS  
VSS  
VFBSMPS  
VLXSMPS  
MR  
SMPS  
VDDSMPS  
RFR  
VSSSMPS  
LPR  
VDDRF  
RF domain  
Backup domain  
Radio  
VBKP12  
SRAM2a  
Power switch  
VSSRF  
VSS  
VSS  
(including exposed pad)  
Wakeup domain (VDDIO  
)
HSI, HSE1,  
2xPLL,  
LSI1, LSI2,  
IWDG, RF  
VDD  
Power switch  
VSW  
VBAT  
VSS  
Switch domain (VSW  
)
LSE, RTC,  
backup  
registers  
VBAT  
IOs  
IO  
logic  
VSS  
VSS  
VLCD  
VDDA  
LCD  
Analog domain  
REF_BUF  
ADC  
VREF+  
=
=
VREF+  
VREF-  
VSSA  
VDDUSB  
USB  
VUSB  
IOs  
transceiver(1)  
VSS  
USB domain (VUSB  
)
VSS  
MS41410V7  
1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUSB  
when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected  
the GPIOs associated with USB are powered as standard GPIOs.  
DS11929 Rev 10  
29/193  
57  
 
Functional overview  
STM32WB55xx STM32WB35xx  
Figure 8. STM32WB35xx - Power supply overview  
Interruptible domain (VDD12I  
)
On domain (VDD12O)  
(CPU1, CPU2,  
peripherals,  
SysConfig, AIEC,  
RCC, PwrCtrl,  
LPTIM, LPUSART  
IO  
logic  
SRAM1,  
IOs  
SRAM2b)  
Power  
switch  
Power  
switch  
VSS  
VSS  
VSS  
VFBSMPS  
VLXSMPS  
VDDSMPS  
VSSSMPS  
MR  
SMPS  
LPR  
RFR  
VDDRF  
RF domain  
Backup domain  
Radio  
VBKP12  
SRAM2a  
Power switch  
VSSRF  
VSS  
VSS  
(including exposed pad)  
Wakeup domain (VDDIO  
)
HSI, HSE1,  
2xPLL,  
LSI1, LSI2,  
IWDG, RF  
VDD  
Power switch  
VSW  
VBAT  
VSS  
Switch domain (VSW  
)
LSE, RTC,  
backup  
registers  
VBAT  
IOs  
IO  
logic  
VSS  
VSS  
VDDA  
Analog domain  
ADC  
VREF+  
=
=
VREF-  
VSS  
VDDUSB  
USB  
transceiver(1)  
VUSB  
IOs  
VSS  
USB domain (VUSB  
)
VSS  
MS53593V1  
1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUSB  
when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected  
the GPIOs associated with USB are powered as standard GPIOs.  
30/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.7.3  
Linear voltage regulator  
Three embedded linear voltage regulators supply most of the digital and RF circuitries, the  
main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).  
The MR is used in the Run and Sleep modes and in the Stop 0 mode.  
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is  
also used to supply the SRAM2a in Standby with retention.  
The RFR is used to supply the RF analog part, its activity is automatically managed by  
the RF subsystem.  
All the regulators are in power-down in Standby and Shutdown modes: the regulator output  
is in high impedance, and the kernel circuitry is powered down, inducing zero consumption.  
The ultralow-power STM32WB55xx and STM32WB35xx support dynamic voltage scaling to  
optimize its power consumption in run mode. The voltage from the main regulator that  
supplies the logic (VCORE) can be adjusted according to the system’s maximum operating  
frequency.  
There are two voltage and frequency ranges:  
Range 1, with the CPU running up to 64 MHz  
Range 2, with a maximum CPU frequency of 16 MHz (note that HSE can be active in  
this mode). All peripheral clocks are also limited to 16 MHz.  
VCORE can also be supplied by the low-power regulator, the main regulator being switched  
off. The system is then in Low-power run mode. In this case the CPU is running at up to  
2 MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode the  
RF subsystem is not available).  
3.7.4  
Power supply supervisor  
An integrated ultra-low-power brown-out reset (BOR) is active in all modes except  
Shutdown ensuring proper operation after power-on and during power down. The devices  
remain in reset mode when the monitored supply voltage V is below a specified  
DD  
threshold, without the need for an external reset circuit.  
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected  
through option bytes.The device features an embedded programmable voltage detector  
(PVD) that monitors the V power supply and compares it with the V  
threshold. An  
DD  
PVD  
interrupt can be generated when V drops below the V  
threshold and/or when V is  
DD  
PVD  
DD  
higher than the V  
threshold. The interrupt service routine can then generate a warning  
PVD  
message and/or put the MCU into a safe state. The PVD is enabled by software.  
In addition, the devices embed a peripheral voltage monitor (PVM) that compares the  
independent supply voltage V  
functional supply range.  
with a fixed threshold to ensure that the peripheral is in its  
DDA  
Any BOR level can also be used to automatically switch the SMPS step-down converter in  
bypass mode when the V voltage drops below a given voltage level. The mode of  
DD  
operation is selectable by register bit, the BOR level is selectable by option byte.  
3.7.5  
Low-power modes  
These ultra-low-power devices support several low-power modes to achieve the best  
compromise between low-power consumption, short startup time, available peripherals and  
available wakeup sources.  
DS11929 Rev 10  
31/193  
57  
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
By default, the microcontroller is in Run mode, Range 1, after a system or a power on  
Reset. It is up to the user to select one of the low-power modes described below:  
Sleep  
In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem,  
continue to operate and can wake up the CPU when an interrupt/event occurs.  
Low-power run  
This mode is achieved with VCORE supplied by the low-power regulator to minimize  
the regulator operating current. The code can be executed from SRAM or from the  
Flash memory, and the CPU1 frequency is limited to 2 MHz. The peripherals with  
independent clock can be clocked by HSI16. The RF subsystem is not available in this  
mode and must be OFF.  
Low-power sleep  
This mode is entered from the low-power run mode. Only the CPU1 clock is stopped.  
When wakeup is triggered by an event or an interrupt, the system reverts to the   
low-power run mode. The RF subsystem is not available in this mode and must be  
OFF.  
Stop 0, Stop 1 and Stop 2  
Stop modes achieve the lowest power consumption while retaining the content of all  
the SRAM and registers. The LSE (or LSI) is still running.  
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).  
Some peripherals with wakeup capability can enable the HSI16 RC during Stop modes  
to detect their wakeup condition.  
Three modes are available: Stop 0, Stop 1 and Stop 2. In Stop 2 mode, most of the  
VCORE domain is put in a lower leakage mode.  
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller  
wakeup time but a higher consumption than Stop 2. In Stop 0 mode the main regulator  
remains ON, allowing a very fast wakeup time but with higher consumption.  
In these modes the RF subsystem can wait for incoming events in all Stop modes.  
The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI  
up to 48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem or the  
SMPS is used the exits must be set to HSI16 only. If used, the SMPS is restarted  
automatically.  
Standby  
The Standby mode is used to achieve the lowest power consumption with BOR. The  
internal regulator is switched off so that the VCORE domain is powered off.  
The RTC can remain active (Standby mode with RTC).  
The brown-out reset (BOR) always remains active in Standby mode.  
The state of each I/O during standby mode can be selected by software: I/O with  
internal pull-up, internal pull-down or floating.  
After entering Standby mode, SRAM1, SRAM2b and register contents are lost except  
for registers in the Backup domain and Standby circuitry. Optionally, SRAM2a can be  
retained in Standby mode, supplied by the low-power regulator (Standby with 32 KB  
SRAM2a retention mode).  
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,  
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,  
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or  
from the RF system wakeup).  
32/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
The system clock after wakeup is 16 MHz, derived from the HSI16. If used, the SMPS  
is restarted automatically.  
In this mode the RF can be used.  
Shutdown  
The Shutdown mode allows to achieve the ultimate lowest power consumption. The  
internal regulator is switched off so that the VCORE domain is powered off.  
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).  
The BOR is not available in Shutdown mode. No power voltage monitoring is possible  
in this mode, therefore the switch to Backup domain is not supported.  
SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the  
Backup domain.  
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin  
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic  
wakeup, timestamp, tamper).  
The system clock after wakeup is 4 MHz, derived from the MSI.  
In this mode the RF is no longer operational.  
When the RF subsystem is active, it changes the power state according to its needs (Run,  
Stop, Standby). This operation is transparent for the CPU1 host application and managed by  
a dedicated HW state machine. At any given time the effective power state reached is the  
higher one needed by both the CPU1 and RF sub-system.  
Table 7 summarizes the peripheral features over all available modes. Wakeup capability is  
detailed in gray cells.  
(1)  
Table 7. Features over all modes  
Stop0/Stop1  
Stop 2  
Standby Shutdown  
Peripheral(2)  
-
-
-
-
CPU1  
CPU2  
Y
Y
-
-
Y
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Radio system  
(BLE, 802.15.4)  
Y
Y(3)  
Y
-
-
Y
Y
Y
Y
Y(4) Y(4)  
Flash memory  
SRAM1  
Y (5)  
Y
Y
Y(7)  
Y(7)  
Y(7)  
O
O(6) O(6)  
R
R
R
R
-
-
-
R
R
R
R
-
-
-
R
-
-
-
R
-
-
-
-
-
-
-
-
R
-
Y
Y
Y
O
Y
Y
Y(7)  
Y(7)  
Y(7)  
O
SRAM2a  
Y
-
-
R(8)  
-
-
-
SRAM2b  
Y
-
-
-
-
-
-
Quad-SPI  
O
-
-
-
-
-
-
Backup registers  
Brown-out reset (BOR)  
Y
Y
Y
R
Y
-
R
Y
-
R
Y
-
R
-
R
-
Y
Y
Y
Y
Y
Y
DS11929 Rev 10  
33/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
(1)  
Table 7. Features over all modes (continued)  
Stop0/Stop1 Stop 2  
Standby Shutdown  
Peripheral(2)  
-
-
-
-
Programmable voltage  
detector (PVD)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
Peripheral voltage monitor  
PVMx (x=1, 3)  
SMPS  
O
O
O
O
O
O
O
O
O(9)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DMAx (x = 1, 2)  
High speed internal  
(HSI16)  
O
O
O
O
O
O
O
-
O
-
O(10)  
-
-
-
O(10)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Oscillator HSI48  
-
-
-
-
High speed external  
(HSE)(11)  
O
O
Low speed internal  
(LSI1 or LSI2)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
O
O
-
-
-
-
O
O
-
-
-
-
-
O
-
-
-
-
-
O
-
Low speed external (LSE)  
Multi-speed internal  
(MSI)(12)  
48  
24  
48  
PLLx VCO maximum  
frequency  
344 128  
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Clock security system  
(CSS)  
O
O
O
O(13)  
O
O(13)  
Clock security system on  
LSE  
O
O
3
O
O
3
O
O
3
O
O
3
O
O
3
O
O
O
O
O
3
O
O
O
O
O
3
O
O
O
-
-
-
RTC / Auto wakeup  
O
3
O
O
O
3
Number of RTC  
tamper pins  
LCD  
O
O
O
O
O
-
O
-
O
-
O
O
O
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
USB FS  
USART1  
O
-
O
O
O
O
O(14) O(14)  
-
-
Low-power UART  
(LPUART1)  
O
O
O
O(14) O(14) O(14) O(14)  
O(15) O(15)  
O(15) O(15) O(15) O(15)  
-
-
-
-
-
I2C1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I2C3  
SPIx (x=1, 2)  
SAI1  
-
-
-
-
-
-
-
-
34/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
Standby Shutdown  
(1)  
Table 7. Features over all modes (continued)  
Stop0/Stop1 Stop 2  
Peripheral(2)  
-
-
-
-
ADC1  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VREFBUF  
O
O
-
COMPx (x=1, 2)  
Temperature sensor  
O
-
O
-
O
-
Timers TIMx  
(x=1, 2, 16, 17)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Low-power Timer 1  
(LPTIM1)  
O
O
O
O
O
O
O
-
O
-
Low-power Timer 2  
(LPTIM2)  
-
-
Independent watchdog  
(IWDG)  
O
O
O
O
Window watchdog  
(WWDG)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SysTick timer  
Touch sensing controller  
(TSC)  
True random number  
generator (RNG)  
O
-
O
-
-
-
-
-
-
-
-
-
-
-
AES2 hardware accelerator  
O
O
O
O
O
O
O
-
O
O
O
O
O
O
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CRC calculation unit  
IPCC  
HSEM  
PKA  
-
-
O
O
5
pins  
5
pins  
(16)  
(17)  
GPIOs  
O
O
O
O
O
O
O
O
-
1. Legend: Y = Yes (Enabled), O = Optional (Disabled by default, can be enabled by software), R = Data retained,   
- = Not available.  
2. Available peripherals depend upon package, STM32WB35xx features one SPI, no LCD, no TSC and two wakeup pins. See  
Table 2: STM32WB55xx and STM32WB35xx devices features and peripheral counts for more details.  
3. Bluetooth® Low Energy not possible in this mode.  
4. Standby with SRAM2a retention mode only.  
5. Flash memory programming only possible in Range 1 voltage, not in Range 2 and not in Low Power mode.  
6. The Flash memory can be configured in Power-down mode. By default, it is not in Power-down mode.  
7. The SRAM clock can be gated on or off.  
DS11929 Rev 10  
35/193  
57  
Functional overview  
STM32WB55xx STM32WB35xx  
8. SRAM2a content is preserved when the bit RRS is set in PWR_CR3 register.  
9. Stop 0 only. SMPS is automatically switched to Bypass or Open mode during Low power operation.  
10. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by  
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not  
need it anymore.  
11. The HSE can be used by the RF subsystem according with the need to perform RF operation (Tx or Rx).  
12. MSI maximum frequency.  
13. In case RF will be used and HSE will fail.  
14. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or  
received frame event.  
15. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
16. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.  
17. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when  
exiting the Shutdown mode.  
36/193  
DS11929 Rev 10  
Table 8. STM32WB55xx and STM32WB35xx modes overview  
Mode  
Regulator CPU1  
Flash  
SRAM  
Clocks  
DMA and peripherals(1)  
Wakeup source  
Consumption(2)  
Wakeup time  
Range 1  
Yes  
Range 2  
All  
107 µA/MHz  
100 µA/MHz  
Run  
ON(3)(4)  
ON  
Any  
Any  
N/A  
N/A  
All except RNG and USB-FS  
LPRun  
Sleep  
LPR  
Yes  
No  
No  
ON(3)  
ON(3)  
ON(3)  
ON  
except All except RF, RNG and USB-FS  
PLL  
N/A  
103 µA/MHz  
15.33 µs  
9 cycles  
9 cycles  
Range 1  
Range 2  
All  
41 µA/MHz  
46 µA/MHz  
Any interrupt  
or event  
ON(5)  
ON(5)  
Any  
All except RNG and USB-FS  
Any  
Any interrupt  
or event  
LPSleep  
LPR  
All except RF, RNG and USB-FS  
except  
PLL  
45 µA/MHz  
Reset pin, all I/Os,  
RF, BOR, PVD, PVM  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
Range 1  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1  
COMPx (x=1, 2)  
LSE,  
USART1(8)  
LSI,  
Stop 0  
No  
OFF  
ON  
100 µA  
1.7 µs  
HSE(6)  
,
LPUART1(8)  
I2Cx (x=1, 3)(9)  
LPUART1  
HSI16(7)  
Range 2  
I2Cx (x=1, 3)  
LPTIMx (x=1, 2)  
USB  
LPTIMx (x=1, 2), SMPS  
All other peripherals are frozen.  
Reset pin, all I/Os  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
USART1  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
LSE,  
LSI,  
USART1(8)  
LPUART1(8)  
I2Cx (x=1, 3)(9)  
9.2 µA w/o RTC  
9.6 µA w RTC  
Stop 1  
LPR  
No  
OFF  
ON  
4.7 µs  
HSE(6)  
,
HSI16(7)  
LPUART1  
I2Cx (x=1, 3)  
LPTIMx (x=1, 2)  
USB  
LPTIMx (x=1, 2)  
All other peripherals are frozen.  
 
 
Table 8. STM32WB55xx and STM32WB35xx modes overview (continued)  
Mode  
Regulator CPU1  
Flash  
SRAM  
Clocks  
DMA and peripherals(1)  
Wakeup source  
Consumption(2)  
Wakeup time  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
LPUART1(8)  
Reset pin, all I/Os  
RF, BOR, PVD, PVM  
RTC, LCD, IWDG  
COMPx (x=1, 2)  
LPUART1  
1.85 µA w/o RTC  
2.1 µA w RTC  
LSE,  
LSI  
Stop 2  
LPR  
No  
OFF  
ON  
5.71 µs  
I2C3(9)  
LPTIM1  
I2C3  
All other peripherals are frozen.  
LPTIM1  
RF, BOR, RTC, IWDG  
0.32 µA w/o RTC  
0.60 µA w RTC  
SRAM2a  
ON(10)  
LPR  
OFF  
RF, Reset pin  
5 I/Os (WKUPx)(11)  
BOR, RTC, IWDG  
All other peripherals are  
powered off.  
LSE,  
LSI  
Standby  
No  
No  
OFF  
OFF  
51 µs  
0.11 µA w/o RTC  
0.390 µA w RTC  
I/O configuration can be floating,  
pull-up or pull-down  
OFF  
RTC  
All other peripherals are  
powered off.  
5 I/Os (WKUPx)(11)  
RTC  
,
0.028 µA w/o RTC  
0.315 µA w/ RTC  
Shutdown  
OFF  
OFF  
LSE  
-
I/O configuration can be floating,  
pull-up or pull-down(12)  
1. Available peripherals depend upon package, STM32WB35xx features one SPI, no LCD, no TSC and two wakeup pins. See Table 2: STM32WB55xx and STM32WB35xx  
devices features and peripheral counts for more details.  
2. Typical current at VDD = 1.8 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.  
3. The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.  
4. Flash memory programming is only possible in Range 2 voltage.  
5. The SRAM1 and SRAM2 clocks can be gated off independently.  
6. HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.  
7. HSI16 (16 MHz) automatically used by some peripherals.  
8. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.  
9. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.  
10. SRAM1 and SRAM2b are OFF.  
11. I/Os with wakeup from Standby/Shutdown capability: PA0, PC13, PC12, PA2, PC5.  
12. I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.  
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.7.6  
Reset mode  
To improve the consumption under reset, the I/Os state under and after reset is “analog  
state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
3.8  
VBAT operation  
The VBAT pin allows to power the device VBAT domain (RTC, LSE and Backup registers)  
from an external battery, an external supercapacitor, or from V when no external battery  
DD  
nor an external supercapacitor are present. Three anti-tamper detection pins are available  
in VBAT mode.  
VBAT operation is automatically activated when V is not present.  
DD  
An internal VBAT battery charging circuit is embedded and can be activated when V is  
DD  
present.  
Note:  
When the microcontroller is supplied only from VBAT, external interrupts and RTC  
alarm/events do not exit it from VBAT operation.  
3.9  
Interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU1 resources and, consequently, reducing  
power supply consumption. In addition, these hardware connections result in fast and  
predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power  
run and Sleep, Stop 0, Stop 1 and Stop 2 modes.  
Table 9. STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix  
Source  
Destination  
Action  
TIMx  
ADC1  
DMA  
Timers synchronization or chaining  
Conversion triggers  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
-
-
-
-
-
-
-
TIMx  
Memory to memory transfer trigger  
Comparator output blanking  
COMPx  
TIM1  
TIM2  
Timer input channel, trigger, break  
from analog signals comparison  
Y
Y
Y
Y
-
-
COMPx  
ADC1  
Low-power timer triggered by analog  
signals comparison  
LPTIMERx  
TIM1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y(1)  
-
Timer triggered by analog watchdog  
DS11929 Rev 10  
39/193  
57  
 
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Table 9. STM32WB55xx and STM32WB35xx CPU1 peripherals interconnect matrix (continued)  
Source  
Destination  
Action  
TIM16  
Timer input channel from RTC events  
Y
Y
Y
Y
Y
Y
Y
Y
-
-
RTC  
Low-power timer triggered by RTC  
alarms or tampers  
LPTIMERx  
Y
Y(1)  
All clock sources  
(internal and external)  
TIM2  
TIM16, 17  
Clock source used as input channel  
for RC measurement and trimming  
Y
Y
Y
Y
Y
-
Y
-
-
-
-
-
USB  
TIM2  
Timer triggered by USB SOF  
CSS  
CPU (hard fault)  
SRAM (parity error)  
Flash memory (ECC error)  
COMPx  
TIM1  
TIM16,17  
Timer break  
Y
Y
Y
Y
-
-
PVD  
TIMx  
External trigger  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
-
-
Y(1)  
-
GPIO  
LPTIMERx External trigger  
ADC1 Conversion external trigger  
1. LPTIM1 only.  
40/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
3.10  
Clocks and startup  
The STM32WB55xx and STM32WB35xx devices integrate several clock sources:  
LSE: 32.768 kHz external oscillator, for accurate RTC and calibration with other  
embedded RC oscillators  
LSI1: 32 kHz on-chip low-consumption RC oscillator  
LSI2: almost 32 kHz, on-chip high-stability RC oscillator, used by the RF subsystem  
HSE: high quality 32 MHz external oscillator with trimming, needed by the RF  
subsystem  
HSI16: 16 MHz high accuracy on-chip RC oscillator  
MSI: 100 kHz to 48 MHz multiple speed on-chip low power oscillator, can be trimmed  
using the LSE signal  
HSI48: 48 MHz on-chip RC oscillator, for USB crystal-less purpose  
The clock controller (see Figure 9) distributes the clocks coming from the different  
oscillators to the core and the peripherals including the RF subsystem. It also manages  
clock gating for low power modes and ensures clock robustness. It features:  
Clock prescaler: to get the best trade-off between speed and current consumption,  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
System clock source: four different clock sources can be used to drive the master  
clock SYSCLK:  
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate  
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is  
available in the system (LSE), the MSI frequency can be automatically trimmed by  
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.  
System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency of  
64 MHz.  
Auxiliary clock source: two ultralow-power clock sources that can be used to drive  
the LCD controller and the real-time clock:  
32.768 kHz low-speed external crystal (LSE), supporting four drive capability  
modes. The LSE can also be configured in bypass mode for an external clock.  
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock accuracy is ±5%. The LSI source can be either the LSI1 or the LSI2  
on-chip oscillator.  
Peripheral clock sources: Several peripherals (RNG, SAI, USARTs, I2Cs, LPTimers,  
ADC) have their own independent clock whatever the system clock. Two PLLs, each  
DS11929 Rev 10  
41/193  
57  
 
Functional overview  
STM32WB55xx STM32WB35xx  
having three independent outputs for the highest flexibility, can generate independent  
clocks for the ADC, the RNG and the SAI.  
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz  
clock (MSI). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If an HSE  
clock failure occurs, the master clock is automatically switched to HSI16 and a software  
interrupt is generated if enabled. LSE failure can also be detected and an interrupt  
generated.  
Clock-out capability:  
MCO: microcontroller clock output: it outputs one of the internal clocks for  
external use by the application. Low frequency clocks (LSIx, LSE) are available  
down to Stop 1 low power state.  
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes  
down to Standby.  
Several prescalers allow the user to configure the AHB frequencies, the high speed APB  
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 64 MHz.  
42/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
Figure 9. Clock tree  
LSI1 RCC 32 kHz  
to IWDG  
LSI  
LSI2 RCC 32 kHz  
LSCO  
LSI  
to RTC and LCD(1)  
to BLE wakeup  
LSE  
LSE OSC  
32.768 kHz  
OSC32_OUT  
LSE  
OSC32_IN  
to 802.15.4 wakeup  
LSE CSS  
LSI1  
/32  
CPU1  
HPRE  
/1,2,...,512  
to CPU1, AHB1, AHB2, AHB3, and SRAM1  
to CPU1 FCLK  
LSI2  
HCLK1  
/32  
LSE  
to CPU1 system timer  
/8  
HSE  
MCO  
SYSCLK  
PLLRCLK  
HSI16  
/1 - 16  
APB1  
PCLK1  
x1 or  
to APB1  
PPRE1  
SYS clock  
/1,2,4,8,16  
to APB1 TIMx  
source control  
x2  
MSI  
PLLRCLK  
APB2  
PPRE2  
/1,2,4,8,16  
PCLK2  
to APB2  
RC48  
HSI16  
HSE  
HSE OSC  
32 MHz  
to APB2 TIMx  
OSC_OUT  
OSC_IN  
x1 or  
x2  
SYSCLK  
HSEPRE/1,2  
CPU2  
C2HPRE  
1,2,...,512  
to CPU2  
MSI  
HCLK2  
HSE CSS  
to CPU2 FCLK  
HSI16 RC  
16 MHz  
to CPU2 system timer  
/8  
MSI RC  
AHB4  
to AHB4, Flash memory, SRAM2  
HCLK4  
HCLK5  
100 kHz - 48 MHz  
SHDHPRE  
/1,2,...,512  
HSI48 RC  
48 MHz  
to APB3  
to AHB5  
MSI  
HSI16  
HSE  
HSI16  
/2  
/M  
to RF  
to  
HSI16  
PLL  
MSI  
SMPS  
PLLPCLK  
SMPSDIV  
xN  
/P  
/Q  
/R  
/2  
MSI  
HSI48  
to USB  
/1,2,3,4,6,8,12  
HSE  
PLLQCLK  
PLLRCLK  
/3  
PCLKn  
SYSCLK  
HSI16  
to RNG  
SMPS clock  
source control  
LSI  
LSE  
to SAI1  
to USART1  
HSI16  
PLLSAI1  
to LPUART1  
PLLSAI1PCLK  
PLLSAI1QCLK  
PLLSAI1RCLK  
LSE  
xN  
/P  
/Q  
/R  
SAI1_EXTCLK  
PCLKn  
HSI16  
LSI  
PCLKn  
SYSCLK  
HSI16  
to LPTIMx  
to ADC1  
to I2Cx  
SYSCLK  
LSE  
MS45402V7  
1. The LCD is not available on STM32WB35xx devices.  
3.11  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be  
achieved thanks to their mapping on the AHB2 bus.  
DS11929 Rev 10  
43/193  
57  
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
The I/Os alternate function configuration can be locked, if needed, following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
3.12  
Direct memory access controller (DMA)  
The device embeds two DMAs. Refer to Table 10 for the features implementation.  
Direct memory access (DMA) is used to provide high-speed data transfer between  
peripherals and memory as well as between memories. Data can be quickly moved by DMA  
without any CPU action. This keeps CPU resources free for other operations.  
The two DMA controllers have fourteen channels in total, a full cross matrix allows any  
peripheral to be mapped on any of the available DMA channels. Each DMA has an arbiter  
for handling the priority between DMA requests.  
The DMA supports:  
fourteen independently configurable channels (requests)  
A full cross matrix between peripherals and all the DMA channels exist. There is also a  
HW trigger possibility through the DMAMUX.  
Priorities between requests from DMA channels are software programmable (four  
levels consisting in very high, high, medium and low) or hardware in case of equality  
(request 1 has priority over request 2, etc.).  
Independent source and destination transfer size (byte, half word, word), emulating  
packing and unpacking. Source/destination addresses must be aligned on the data  
size.  
Support for circular buffer management.  
Three event flags (DMA half transfer, DMA transfer complete and DMA transfer error)  
logically OR-ed together in a single interrupt request for each channel.  
Memory-to-memory transfer.  
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral  
transfers.  
Access to Flash memory, SRAM, APB and AHB peripherals as source and destination.  
Programmable number of data to be transferred: up to 65536.  
Table 10. DMA implementation  
DMA features  
DMA1  
7
DMA2  
7
Number of regular channels  
A DMAMUX block makes it possible to route any peripheral source to any DMA channel.  
3.13  
Interrupts and events  
3.13.1  
Nested vectored interrupt controller (NVIC)  
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,  
and handle up to 63 maskable interrupt channels plus the 16 interrupt lines of the   
®
Cortex -M4 with FPU.  
44/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
The NVIC benefits are the following:  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.13.2  
Extended interrupts and events controller (EXTI)  
The EXTI manages wakeup through configurable and direct event inputs. It provides   
wake-up requests to the Power control, and generates interrupt requests to the CPUx NVIC  
and events to the CPUx event input.  
Configurable events/interrupts come from peripherals able to generate a pulse, and make it  
possible to select the Event/Interrupt trigger edge and/or a SW trigger.  
Direct events/interrupts are coming from peripherals having their own clearing mechanism.  
3.14  
Analog to digital converter (ADC)  
The device embeds a successive approximation analog-to-digital converter with the  
following features:  
12-bit native resolution, with built-in calibration  
Up to 16-bit resolution with 256 oversampling ratio  
4.26 Msps maximum conversion rate with full resolution  
Down to 39 ns sampling time  
Increased conversion rate for lower resolution (up to 7.11 Msps for 6-bit  
resolution)  
Up to sixteen external channels and three internal channels: internal reference  
voltages, temperature sensor  
Single-ended and differential mode inputs  
Low-power design  
Capable of low-current operation at low conversion rate (consumption decreases  
linearly with speed)  
Dual clock domain architecture: ADC speed independent from CPU frequency  
Highly versatile digital interface  
Single-shot or continuous/discontinuous sequencer-based scan mode: two groups  
of analog signals conversions can be programmed to differentiate background and  
high-priority real-time conversions  
The ADC supports multiple trigger inputs for synchronization with on-chip timers  
and external signals  
Results stored into three data register or in SRAM with DMA controller support  
DS11929 Rev 10  
45/193  
57  
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Data pre-processing: left/right alignment and per channel offset compensation  
Built-in oversampling unit for enhanced SNR  
Channel-wise programmable sampling time  
Three analog watchdog for automatic voltage monitoring, generating interrupts  
and trigger for selected timers  
Hardware assistant to prepare the context of the injected channels to allow fast  
context switching  
3.14.1  
Temperature sensor  
The temperature sensor (TS) generates a voltage V that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADC1_IN17 input channel, which is  
used to convert the sensor output voltage into a digital value.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored in the system memory area, accessible in read-only mode.  
Table 11. Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at a  
temperature of 30 °C (± 5 °C),  
VDDA = VREF+ = 3.0 V (± 10 mV)  
TS_CAL1  
0x1FFF 75A8 - 0x1FFF 75A9  
TS ADC raw data acquired at a  
temperature of 130 °C (± 5 °C),  
TS_CAL2  
0x1FFF 75CA - 0x1FFF 75CB  
VDDA = VREF+ = 3.0 V (± 10 mV)  
3.14.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for  
the ADC and the comparators. VREFINT is internally connected to the ADC1_IN0 input  
channel. The precise voltage of VREFINT is individually measured for each part by ST  
during production test and stored in the system memory area. It is accessible in read-only  
mode.  
Table 12. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at a  
VREFINT  
temperature of 30 °C (± 5 °C),  
0x1FFF 75AA - 0x1FFF 75AB  
VDDA = VREF+ = 3.6 V (± 10 mV)  
46/193  
DS11929 Rev 10  
 
 
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.15  
Voltage reference buffer (VREFBUF)  
The STM32WB55xx devices embed a voltage reference buffer that can be used as voltage  
reference for the ADC and also as voltage reference for external components through the  
VREF+ pin. The internal voltage reference buffer supports two voltages:  
2.048 V  
2.5 V  
An external voltage reference can be provided through the VREF+ pin when the internal  
voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on UFQFPN48  
package, hence the internal voltage reference buffer is not available on a dedicated pin, but  
user can still use the V  
value.  
DDA  
3.16  
Comparators (COMP)  
The STM32WB55xx and STM32WB35xx devices embed two rail-to-rail comparators with  
programmable reference voltage (internal or external), hysteresis and speed (low speed for  
low-power) and with selectable output polarity.  
The reference voltage can be one of the following:  
External I/O  
Internal reference voltage or submultiple (1/4, 1/2, 3/4).  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers  
and can be also combined into a window comparator.  
3.17  
Touch sensing controller (TSC)  
The touch sensing controller provides a simple solution for adding capacitive sensing  
functionality to any application. Capacitive sensing technology is able to detect finger  
presence near an electrode which is protected from direct touch by a dielectric such as  
glass or plastic. The capacitive variation introduced by the finger (or any conductive object)  
is measured using a proven implementation based on a surface charge transfer acquisition  
principle.  
The touch sensing controller is fully supported by the STMTouch touch sensing firmware  
library (free to use) and enables reliable touch sensing functionality in the end application.  
DS11929 Rev 10  
47/193  
57  
 
 
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
The main features of the touch sensing controller are the following:  
Proven and robust surface charge transfer acquisition principle  
Supports up to 18 capacitive sensing channels  
Up to six capacitive sensing channels can be acquired in parallel offering a very good  
response time  
Spread spectrum feature to improve system robustness in noisy environments  
Full hardware management of the charge transfer acquisition sequence  
Programmable charge transfer frequency  
Programmable sampling capacitor I/O pin  
Programmable channel I/O pin  
Programmable max count value to avoid long acquisition when a channel is faulty  
Dedicated end of acquisition and max count error flags with interrupt capability  
One sampling capacitor for up to three capacitive sensing channels to reduce the  
system components  
Compatible with proximity, touchkey, linear and rotary touch sensor implementation  
Designed to operate with STMTouch touch sensing firmware library  
Note:  
The number of capacitive sensing channels is dependent upon the package (not available  
on QFPN48) and subject to I/O availability.  
48/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Functional overview  
3.18  
Liquid crystal display controller (LCD)  
The STM32WB55xx devices embed an LCD controller with the following characteristics:  
Highly flexible frame rate control.  
Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.  
Supports Static, 1/2, 1/3 and 1/4 bias.  
Double buffered memory allows data in LCD_RAM registers to be updated at any time  
by the application firmware without affecting the integrity of the data displayed.  
LCD data RAM of up to 16 x 32-bit registers which contain pixel information  
(active/inactive)  
Software selectable LCD output voltage (contrast) from VLCD  
No need for external analog components:  
to VLCD  
.
max  
min  
A step-up converter is embedded to generate an internal VLCD voltage higher  
than V (up to 3.6 V if V > 2.0 V)  
DD  
DD  
Software selection between external and internal VLCD voltage source. In case of  
an external source, the internal boost circuit is disabled to reduce power  
consumption  
A resistive network is embedded to generate intermediate VLCD voltages  
The structure of the resistive network is configurable by software to adapt the  
power consumption to match the capacitive charge required by the LCD panel  
Integrated voltage output buffers for higher LCD driving capability.  
The contrast can be adjusted using two different methods:  
When using the internal step-up converter, the software can adjust VLCD between  
VLCD and VLCD  
min  
max  
Programmable dead time (up to eight phase periods) between frames.  
Full support of low-power modes: the LCD controller can be displayed in Sleep,   
Low-power run, Low-power sleep and Stop modes, or can be fully disabled to reduce  
power consumption.  
Built in phase inversion for reduced power consumption and EMI (electromagnetic  
interference).  
Start of frame interrupt to synchronize the software when updating the LCD data RAM.  
Blink capability:  
1, 2, 3, 4, 8 or all pixels can be programmed to blink at a configurable frequency  
Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.  
Used LCD segment and common pins should be configured as GPIO alternate functions  
and unused segment and common pins can be used for general purpose I/O or for another  
peripheral alternate function.  
Note:  
When the LCD relies on the internal step-up converter, the VLCD pin should be connected  
to V with a capacitor. Its typical value is 1 μF.  
SS  
3.19  
True random number generator (RNG)  
The devices embed a true RNG that delivers 32-bit random numbers generated by an  
integrated analog circuit.  
DS11929 Rev 10  
49/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
3.20  
Timers and watchdogs  
The STM32WB55xx and STM32WB35xx include one advanced 16-bit timer, one general-  
purpose 32-bit timer, two 16-bit basic timers, two low-power timers, two watchdog timers  
and a SysTick timer. Table 13 compares the features of the advanced control, general  
purpose and basic timers.  
Table 13. Timer features  
DMA  
request  
generation  
Capture/  
compare  
channels  
Timer  
type  
Counter  
resolution  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
Timer  
Advanced  
control  
Up, down,  
Up/down  
TIM1  
TIM2  
16-bits  
32-bits  
16-bits  
16-bits  
16-bits  
4
4
2
2
1
3
No  
1
General  
purpose  
Up, down,  
Up/down  
Any integer  
between 1  
and 65536  
General  
purpose  
TIM16  
TIM17  
Up  
Up  
Up  
Yes  
General  
purpose  
1
LPTIM1  
LPTIM2  
Low power  
1
3.20.1  
Advanced-control timer (TIM1)  
The advanced-control timer can be seen as a three-phase PWM multiplexed on six  
channels. They have complementary PWM outputs with programmable inserted   
dead-times. They can also be seen as complete general-purpose timers. The four  
independent channels can be used for:  
Input capture  
Output compare  
PWM generation (edge or center-aligned modes) with full modulation capability (0 to  
100%)  
One-pulse mode output  
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs  
disabled to turn off any power switches driven by these outputs.  
Many features are shared with those of the general-purpose TIMx timers (described in  
Section 3.20.2) using the same architecture, so the advanced-control timers can work  
together with the TIMx timers via the Timer Link feature for synchronization or event  
chaining.  
3.20.2  
General-purpose timers (TIM2, TIM16, TIM17)  
There are up to three synchronizable general-purpose timers embedded in the  
STM32WB55xx and STM32WB35xx (see Table 13 for differences). Each general-purpose  
timer can be used to generate PWM outputs, or act as a simple time base.  
TIM2  
Full-featured general-purpose timer  
50/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
Features four independent channels for input capture/output compare, PWM or  
one-pulse mode output. Can work together, or with the other general-purpose  
timers via the Timer Link feature for synchronization or event chaining.  
The counter can be frozen in debug mode.  
Independent DMA request generation, support of quadrature encoders.  
TIM16 and TIM17  
General-purpose timers with mid-range features:  
16-bit auto-reload upcounters and 16-bit prescalers.  
1 channel and 1 complementary channel.  
All channels can be used for input capture/output compare, PWM or one-pulse  
mode output.  
The timers can work together via the Timer Link feature for synchronization or  
event chaining. The timers have independent DMA request generation.  
The counters can be frozen in debug mode.  
3.20.3  
Low-power timer (LPTIM1 and LPTIM2)  
The devices embed two low-power timers, having an independent clock running in Stop  
mode if they are clocked by LSE, LSIx or by an external clock. They are able to wakeup the  
system from Stop mode.  
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.  
LPTIM2 is active in Stop 0 and Stop 1 modes.  
The low-power timers support the following features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
Configurable output: pulse, PWM  
Continuous/ one shot mode  
Selectable software/hardware input trigger  
Selectable clock source  
Internal clock sources: LSE, either LSI1 or LSI2, HSI16 or APB clock  
External clock source over LPTIM input (working even with no internal clock  
source running, used by pulse counter application)  
Programmable digital glitch filter  
Encoder mode (LPTIM1 only)  
3.20.4  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently  
from the main clock, it can operate in Stop and Standby modes. It can be used either as a  
watchdog to reset the device when a problem occurs, or as a free running timer for  
application timeout management. It is hardware or software configurable through the option  
bytes. The counter can be frozen in debug mode.  
DS11929 Rev 10  
51/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
3.20.5  
System window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from  
the main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.20.6  
SysTick timer  
This timer is dedicated to real-time operating systems, but could also be used as a standard  
down counter. It features:  
a 24-bit down counter  
autoreload capability  
a maskable system interrupt generation when the counter reaches 0  
a programmable clock source.  
3.21  
Real-time clock (RTC) and backup registers  
The RTC is an independent BCD timer/counter, supporting the following features:  
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,  
month, year, in BCD (binary-coded decimal) format.  
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.  
Two programmable alarms.  
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to  
synchronize it with a master clock.  
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be  
used to enhance the calendar precision.  
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal  
inaccuracy.  
Three anti-tamper detection pins with programmable filter.  
Timestamp feature, which can be used to save the calendar content. This function can  
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to  
VBAT mode.  
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable  
resolution and period.  
The RTC and the 20 backup registers are supplied through a switch that takes power either  
from the V supply (when present) or from the VBAT pin.  
DD  
The backup registers are 32-bit registers used to store 80 bytes of user application data  
when V power is not present. They are not reset by a system or power reset, or when the  
DD  
device wakes up from Standby or Shutdown mode.  
The RTC clock sources can be:  
a 32.768 kHz external crystal (LSE)  
an external resonator or oscillator (LSE)  
one of the internal low power RC oscillators (LSI1 or LSI2, with typical frequency of  
32 kHz)  
the high-speed external clock (HSE) divided by 32.  
52/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the  
LSE. When clocked by one of the LSIs, the RTC is not functional in VBAT mode, but is  
functional in all low-power modes except Shutdown mode.  
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt  
and wakeup the device from the low-power modes.  
3.22  
Inter-integrated circuit interface (I2C)  
The devices embed two I2Cs. Refer to Table 14 for the features implementation.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
I2C-bus specification and user manual rev. 5 compatibility:  
Slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 kbit/s  
Fast-mode (Fm), with a bitrate up to 400 kbit/s  
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
Programmable setup and hold times  
Optional clock stretching  
System Management Bus (SMBus) specification rev 2.0 compatibility:  
Hardware PEC (packet error checking) generation and verification with ACK  
control  
Address resolution protocol (ARP) support  
SMBus alert  
Power System Management Protocol (PMBus ) specification rev 1.1 compatibility  
Independent clock: a choice of independent clock sources allowing the I2C  
communication speed to be independent from the PCLK reprogramming. Refer to  
Figure 9: Clock tree.  
Wakeup from Stop mode on address match  
Programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 14. I2C implementation  
I2C features(1)  
I2C1  
I2C3  
Standard-mode (up to 100 kbit/s)  
X
X
X
X
X
X
X
X
X
X
Fast-mode (up to 400 kbit/s)  
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)  
Programmable analog and digital noise filters  
SMBus/PMBus hardware support  
DS11929 Rev 10  
53/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Table 14. I2C implementation (continued)  
I2C features(1)  
I2C1  
I2C3  
Independent clock  
X
X
-
X
X
X
Wakeup from Stop 0 / Stop 1 mode on address match  
Wakeup from Stop 2 mode on address match  
1. X: supported  
3.23  
Universal synchronous/asynchronous receiver transmitter  
(USART)  
The devices embed one universal synchronous receiver transmitter.  
This interface provides asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode and has  
LIN Master/Slave capability. It provides hardware management of the CTS and RTS signals,  
and RS485 driver enable.  
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart  
Card mode (ISO 7816 compliant) and SPI-like communication capability.  
The USART supports synchronous operation (SPI mode), and can be used as an SPI  
master.  
The USART has a clock domain independent from the CPU clock, allowing it to wake up the  
MCU from Stop mode using baudrates up to 200 kbaud. The wake up events from Stop  
mode are programmable and can be:  
the start bit detection  
any received data frame  
a specific programmed data frame.  
The USART interface can be served by the DMA controller.  
3.24  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The device embeds one Low-Power UART, enabling asynchronous serial communication  
with minimum power consumption. The LPUART supports half duplex single wire  
communication and modem operations (CTS/RTS), allowing multiprocessor  
communication.  
The LPUART has a clock domain independent from the CPU clock, and can wakeup the  
system from Stop mode using baudrates up to 220 kbaud. The wake up events from Stop  
mode are programmable and can be:  
the start bit detection  
any received data frame  
a specific programmed data frame.  
Only a 32.768 kHz clock (LSE) is needed for LPUART communication up to 9600 baud.  
Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an  
54/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Functional overview  
extremely low energy consumption. Higher speed clock can be used to reach higher  
baudrates.  
The LPUART interfaces can be served by the DMA controller.  
3.25  
3.26  
Serial peripheral interface (SPI1, SPI2)  
Two SPI interfaces enable communication up to 32 Mbit/s in master and up to 24 Mbit/s in  
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8  
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI  
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.  
The SPI interfaces can be served by the DMA controller.  
Serial audio interfaces (SAI1)  
The device embeds a dual channel SAI peripheral that supports full duplex audio operation.  
The SAI bus interface handles communications between the microcontroller and the serial  
audio protocol.  
The SAI peripheral supports:  
One independent audio sub-block that can be a transmitter or a receiver, with the  
respective FIFO  
8-word integrated FIFOs  
Synchronous or asynchronous mode  
Master or slave configuration  
Clock generator to target independent audio frequency sampling when audio sub-block  
is configured in master mode  
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit  
Peripheral with large configurability and flexibility allowing to target as example the  
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF  
out  
Up to 16 slots available with configurable size and with the possibility to select which  
ones are active in the audio frame  
Number of bits by frame may be configurable  
Frame synchronization active level configurable (offset, bit length, level)  
First active bit position in the slot is configurable  
LSB first or MSB first for data transfer  
Mute mode  
Stereo/Mono audio frame capability  
Communication clock strobing edge configurable (SCK)  
Error flags with associated interrupts if enabled respectively  
Overrun and underrun detection  
Anticipated frame synchronization signal detection in slave mode  
Late frame synchronization signal detection in slave mode  
Codec not ready for the AC’97 mode in reception  
DS11929 Rev 10  
55/193  
57  
 
 
Functional overview  
STM32WB55xx STM32WB35xx  
Interruption sources when enabled:  
Errors  
FIFO requests  
DMA interface with two dedicated channels to handle access to the dedicated  
integrated FIFO of the SAI audio sub-block.  
The PDM (Pulse Density Modulation) block allows the user to manage up to three digital  
microphone pairs (with two different clocks). This block performs Right and Left microphone   
de-interleaving and time alignment through programmable delay lines in order to properly  
feed the SAI.  
3.27  
Quad-SPI memory interface (QUADSPI)  
The Quad-SPI is a specialized communication interface targeting single, dual or quad SPI  
Flash memories. It can operate in any of the three following modes:  
Indirect mode: all the operations are performed using the QUADSPI registers  
Status polling mode: the external memory status register is periodically read and an  
interrupt can be generated in case of flag setting  
Memory-mapped mode: the external Flash memory is mapped and is seen by the  
system as if it were an internal memory. This mode can be used for the Execute In  
Place (XIP)  
The Quad-SPI interface supports:  
Three functional modes: indirect, status-polling, and memory-mapped  
SDR and DDR support  
Fully programmable opcode for both indirect and memory mapped mode  
Fully programmable frame format for both indirect and memory mapped mode  
Each of the five following phases can be configured independently (enable, length,  
single/dual/quad communication)  
Instruction phase  
Address phase  
Alternate bytes phase  
Dummy cycles phase  
Data phase  
Integrated FIFO for reception and transmission  
8, 16, and 32-bit data accesses are allowed  
DMA channel for indirect mode operations  
Programmable masking for external Flash memory flag management  
Timeout management  
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and  
access error  
56/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Functional overview  
3.28  
Development support  
3.28.1  
Serial wire JTAG debug port (SWJ-DP)  
®
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins  
can then be reused as GPIOs with alternate function): the JTAG TMS and TCK pins are  
shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is  
used to switch between JTAG-DP and SW-DP.  
3.28.2  
Embedded Trace Macrocell™  
®
The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data  
flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32WB55xx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then  
formatted for display on the host computer that runs the debugger software. TPA hardware  
is commercially available from common development tool vendors.  
The Embedded Trace Macrocell operates with third party debugger software tools.  
DS11929 Rev 10  
57/193  
57  
 
 
 
 
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
4
Pinouts and pin description  
(1)(2)  
Figure 10. STM32WB55Cx and STM32WB35Cx UFQFPN48 pinout  
VBAT  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PA10  
PC14-OSC32_IN  
2
VDD  
PC15-OSC32_OUT  
3
VDDSMPS  
VLXSMPS  
VSSSMPS  
VFBSMPS  
PE4  
PH3-BOOT0  
PB8  
4
5
PB9  
6
UFQFPN48  
NRST  
VDDA  
PA0  
7
8
PB1  
9
PB0  
PA1  
10  
11  
12  
AT1  
PA2  
AT0  
PA3  
OSC_IN  
MS42406V4  
1. The above figure shows the package top view.  
2. The exposed pad must be connected to ground plane.  
(1)(2)  
Figure 11. STM32WB55Rx VFQFPN68 pinout  
VBAT  
1
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
PA10  
PC13  
2
PC6  
PC14-OSC32_IN  
3
PB15  
PC15-OSC32_OUT  
4
PB14  
PH3-BOOT0  
PB8  
PB13  
5
PB12  
6
PB9  
VDD  
7
NRST  
PC0  
VDDSMPS  
VLXSMPS  
VSSSMPS  
VFBSMPS  
PE4  
8
9
VFQFPN68  
PC1  
10  
11  
12  
13  
14  
15  
16  
17  
PC2  
PC3  
VREF+  
VDDA  
PA0  
PB1  
PB0  
AT1  
PA1  
AT0  
PA2  
OSC_IN  
MS45417V3  
1. The above figure shows the package top view.  
2. The exposed pad must be connected to ground plane.  
58/193  
DS11929 Rev 10  
 
 
 
 
 
 
 
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
(1)  
Figure 12. STM32WB55Vx WLCSP100 ballout  
1
2
3
PA14  
VDDUSB  
PD1  
4
PA15  
PC9  
5
6
7
8
9
10  
VDD  
PE1  
PA11  
PA12  
PA13  
PA10  
PC12  
PD9  
PC10  
PC11  
PD6  
PB5  
PE2  
PD2  
PD5  
PB4  
PB7  
PD15  
PB8  
PA0  
PA6  
PA8  
PB2  
PD7  
PB3  
A
B
C
D
E
F
VDD  
VSS  
PD12  
PE0  
VSS  
PB13  
PD3  
PD0  
PD13  
VBAT  
PC14-  
PC15-  
VDDSMPS  
VLXSMPS  
VSSSMPS  
PE4  
PC6  
PD4  
PD8  
PD14  
PH3-BOOT0  
PC0  
OSC32_OUT OSC32_IN  
PB14  
PC7  
PD10  
PC8  
PD11  
PB6  
PH1  
NRST  
PC2  
PH0  
PB9  
VFBSMPS  
PE3  
PB15  
PB12  
AT0  
PA2  
PC4  
PC13  
PC5  
PA1  
PC1  
PC3  
G
H
J
PB1  
PB0  
AT1  
PA7  
VREF+  
PA3  
VDDA  
VSS  
VSSA  
VDD  
PA4  
OSC_IN  
VSSRF  
OSC_OUT  
VSSRF  
VDDRF  
VSSRF  
VSSRF  
RF1  
VSS  
VDD  
PB11  
PB10  
PA9  
PA5  
K
Radio  
USB  
SMPS  
VDD  
VSS  
MS42407V3  
1. The above figure shows the package top view.  
(1)  
Figure 13. STM32WB55Vx UFBGA129 ballout  
1
2
3
4
5
6
7
8
VDD  
_DCAP4  
9
10  
11  
12  
13  
PE1  
PB6  
PB5  
PD5  
PD10  
PA13  
VDDUSB  
PA12  
A
B
C
D
E
F
VSS  
PE2  
PE0  
PD15  
VBAT  
PB4  
PB7  
PD12  
PB3  
PD11  
PD7  
PD8  
PD4  
PD6  
PD2  
PD1  
PC10  
PA15  
PC12  
PA14  
PC6  
PD0  
VSS  
VSS  
PA11  
PC9  
_DCAP4  
PD13  
PC11  
PD3  
PA10  
PD14  
PD9  
PC8  
PC7  
PC15-  
OSC32_OUT  
PC14-  
OSC32_IN  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
PB14  
PB13  
VDD  
_DCAP1  
VSS  
_DCAP1  
PH0  
PH3-BOOT0  
PC1  
PC13  
PB9  
VDD  
VDD  
VDD  
VDD  
PB15  
PB12  
VLXSMPS  
VLXSMPS  
VFBSMPS  
VSS_DCAP3  
AT0  
VDDSMPS  
VSSSMPS  
PE3  
VDDSMPS  
VSSSMPS  
PE4  
PH1  
NRST  
PC2  
PB8  
PC0  
PC3  
VDDA  
PA4  
G
H
J
VSS  
VDD_DCAP3  
AT1  
VSSA  
PA1  
VSS  
PA9  
PA8  
VSS  
PB10  
PB11  
PB2  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
K
L
VREF+  
PA0  
PC5  
PC4  
VSSRF  
VSSRF  
RF1  
VSSRF  
VSSRF  
VSSRF  
PB1  
PB0  
VSS  
_DCAP2  
PA3  
PA6  
VSSRF  
VDDRF  
OSC_IN  
OSC_OUT  
M
N
VDD  
_DCAP2  
PA2  
PA5  
PA7  
No pin  
Power supply  
SMPS  
USB  
Radio  
MS51777V4  
1. The above figure shows the package top view.  
DS11929 Rev 10  
59/193  
80  
 
 
 
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Definition  
Table 15. Legend/abbreviations used in the pinout table  
Name  
Abbreviation  
Unless otherwise specified in brackets below the pin name, the pin function during and after  
reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Pin type  
Input only pin  
I/O  
FT  
TT  
RF  
RST  
Input / output pin  
5 V tolerant I/O  
3.6 V tolerant I/O  
RF I/O  
Bidirectional reset pin with weak pull-up resistor  
Option for TT or FT I/Os  
I/O, Fm+ capable  
I/O structure  
_f (1)  
_l (2)  
I/O, with LCD function supplied by VLCD  
I/O, with USB function supplied by VDDUSB  
I/O, with Analog switch function supplied by VDDA  
_u(3)  
_a(4) (5)  
Notes  
Alternate  
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.  
Functions selected through GPIOx_AFR registers  
functions  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.  
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.  
3. The related I/O structures in Table 16 are: FT_u, FT_lu.  
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.  
5. Analog switch for the TSC function is supplied by VDD  
.
60/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_ETR, TSC_G7_IO3,  
LCD_SEG36, TIM16_CH1,  
CM4_EVENTOUT  
-
-
-
-
C8 B2  
PE0  
PE1  
I/O FT_l  
I/O FT_l  
-
-
-
TSC_G7_IO2, LCD_SEG37,  
TIM17_CH1,  
CM4_EVENTOUT  
B10 A1  
E6 B1  
-
-
TRACECK, SAI1_PDM_CK1,  
TSC_G7_IO1, LCD_SEG38,  
SAI1_MCLK_A,  
-
-
PE2  
I/O FT_l  
I/O FT_l  
-
CM4_EVENTOUT  
TSC_G6_IO4, LCD_SEG33,  
LPTIM2_OUT,  
CM4_EVENTOUT  
-
-
-
-
C9 C1  
D8 D3  
PD13  
PD14  
-
-
-
-
TIM1_CH1, LCD_SEG34,  
CM4_EVENTOUT  
I/O FT_l  
I/O FT_l  
TIM1_CH2, LCD_SEG35,  
CM4_EVENTOUT  
-
1
-
-
E7 C2  
C10 D2  
G5 F4  
PD15  
VBAT  
PC13  
-
-
-
-
1
2
S
-
-
(1)  
(2)  
RTC_TAMP1/RTC_TS/  
RTC_OUT/WKUP2  
I/O  
FT  
CM4_EVENTOUT  
(1)  
(2)  
PC14-  
OSC32_IN  
2
3
3
4
D10 E3  
D9 E2  
I/O  
I/O  
FT  
FT  
CM4_EVENTOUT  
CM4_EVENTOUT  
OSC32_IN  
(1)  
(2)  
PC15-  
OSC32_OUT  
OSC32_OUT  
-
-
-
-
-
-
E5  
F6  
VSS  
VDD  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
S
-
-
-
E10 F1  
E9 G2  
E8 G1  
PH0  
I/O  
I/O  
I/O  
FT  
FT  
FT  
CM4_EVENTOUT  
CM4_EVENTOUT  
CM4_EVENTOUT, LSCO(3)  
-
-
PH1  
4
5
PH3-BOOT0  
TIM1_CH2N,  
SAI1_PDM_CK1, I2C1_SCL,  
QUADSPI_BK1_IO1,  
LCD_SEG16, SAI1_MCLK_A,  
TIM16_CH1,  
5
6
F7 G3  
PB8  
I/O FT_fl  
-
-
CM4_EVENTOUT  
DS11929 Rev 10  
61/193  
80  
 
 
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_CH3N, SAI1_PDM_DI2,  
I2C1_SDA, SPI2_NSS,  
IR_OUT, TSC_G7_IO4,  
QUADSPI_BK1_IO0,  
LCD_COM3, SAI1_FS_A,  
TIM17_CH1,  
6
7
F10 H4  
PB9  
I/O FT_fla  
-
-
-
CM4_EVENTOUT  
7
-
8
9
F9 H2  
F8 H3  
NRST  
PC0  
I/O RST  
I/O FT_fla  
-
-
-
LPTIM1_IN1, I2C3_SCL,  
LPUART1_RX, LCD_SEG18,  
LPTIM2_IN1,  
ADC1_IN1  
CM4_EVENTOUT  
LPTIM1_OUT, SPI2_MOSI,  
I2C3_SDA, LPUART1_TX,  
LCD_SEG19,  
-
-
10 G8 H1  
11 G9 J2  
PC1  
PC2  
I/O FT_fla  
I/O FT_la  
-
-
ADC1_IN2  
ADC1_IN3  
CM4_EVENTOUT  
LPTIM1_IN2, SPI2_MISO,  
LCD_SEG20,  
CM4_EVENTOUT  
-
-
-
-
-
-
E7  
H6  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
LPTIM1_ETR,  
SAI1_PDM_DI1, SPI2_MOSI,  
LCD_VLCD, SAI1_SD_A,  
LPTIM2_ETR,  
-
12 G10 J3  
PC3  
I/O FT_a  
-
-
ADC1_IN4  
CM4_EVENTOUT  
-
-
-
H10 K2  
VSSA  
VREF+  
VDDA  
VSS  
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
13 H8 L1  
14 H9 K3  
-
VREFBUF_OUT  
(4)  
8
-
-
-
-
-
-
J9 E9  
J10 F8  
-
-
-
VDD  
TIM2_CH1, COMP1_OUT,  
SAI1_EXTCLK, TIM2_ETR,  
CM4_EVENTOUT  
COMP1_INM, ADC1_IN5,  
RTC_TAMP2/WKUP1  
9
15 G7 M1  
PA0  
PA1  
I/O FT_a  
I/O FT_la  
-
-
TIM2_CH2, I2C1_SMBA,  
SPI1_SCK, LCD_SEG0,  
CM4_EVENTOUT  
10 16 G6 L2  
COMP1_INP, ADC1_IN6  
62/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
LSCO(3), TIM2_CH3,  
LPUART1_TX,  
QUADSPI_BK1_NCS,  
LCD_SEG1, COMP2_OUT,  
CM4_EVENTOUT  
COMP2_INM, ADC1_IN7,  
WKUP4  
11 17 F6 N1  
PA2  
PA3  
I/O FT_la  
I/O FT_la  
-
-
TIM2_CH4, SAI1_PDM_CK1,  
LPUART1_RX,  
QUADSPI_CLK, LCD_SEG2, COMP2_INP, ADC1_IN8  
SAI1_MCLK_A,  
12 18 J8 M2  
CM4_EVENTOUT  
SPI1_NSS, SAI1_FS_B,  
COMP1_INM,  
13 19 K10 L3  
14 20 K9 N2  
PA4  
PA5  
I/O FT_a  
I/O FT_a  
-
-
LPTIM2_OUT, LCD_SEG5,  
COMP2_INM, ADC1_IN9  
CM4_EVENTOUT  
TIM2_CH1, TIM2_ETR,  
SPI1_SCK, LPTIM2_ETR,  
SAI1_SD_B,  
COMP1_INM,  
COMP2_INM, ADC1_IN10  
CM4_EVENTOUT  
TIM1_BKIN, SPI1_MISO,  
LPUART1_CTS,  
15 21 H7 M3  
PA6  
PA7  
PA8  
I/O FT_la  
I/O FT_fla  
I/O FT_la  
-
-
-
QUADSPI_BK1_IO3,  
LCD_SEG3, TIM16_CH1,  
CM4_EVENTOUT  
ADC1_IN11  
ADC1_IN12  
ADC1_IN15  
TIM1_CH1N, I2C3_SCL,  
SPI1_MOSI,  
QUADSPI_BK1_IO2,  
LCD_SEG4, COMP2_OUT,  
TIM17_CH1,  
16 22 H6 N3  
CM4_EVENTOUT  
MCO, TIM1_CH1,  
SAI1_PDM_CK2,  
USART1_CK, LCD_COM0,  
SAI1_SCK_A, LPTIM2_OUT,  
CM4_EVENTOUT  
17 23 J7 M4  
TIM1_CH2, SAI1_PDM_DI2,  
I2C1_SCL, SPI2_SCK,  
USART1_TX, LCD_COM1,  
SAI1_FS_A,  
18 24 K8 L4  
PA9  
PC4  
I/O FT_fla  
I/O FT_la  
-
-
COMP1_INM, ADC1_IN16  
COMP1_INM, ADC1_IN13  
CM4_EVENTOUT  
LCD_SEG22,  
CM4_EVENTOUT  
-
25 G4 M5  
-
-
-
-
-
-
F3  
VSS_DCAP1  
VDD  
S
S
-
-
-
-
-
-
-
-
G7  
DS11929 Rev 10  
63/193  
80  
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
SAI1_PDM_DI3,  
LCD_SEG23,  
CM4_EVENTOUT  
COMP1_INP, ADC1_IN14,  
WKUP5  
-
26 H5 L5  
PC5  
PB2  
I/O FT_la  
I/O FT_a  
-
-
RTC_OUT, LPTIM1_OUT,  
I2C3_SMBA, SPI1_NSS,  
LCD_VLCD, SAI1_EXTCLK,  
CM4_EVENTOUT  
19 27 K7 N6  
COMP1_INP  
TIM2_CH3, I2C3_SCL,  
SPI2_SCK, LPUART1_RX,  
TSC_SYNC, QUADSPI_CLK,  
LCD_SEG10, COMP1_OUT,  
SAI1_SCK_A,  
-
-
28 K6 L6  
PB10  
PB11  
I/O FT_fl  
-
-
-
CM4_EVENTOUT  
TIM2_CH4, I2C3_SDA,  
LPUART1_TX,  
QUADSPI_BK1_NCS,  
LCD_SEG11, COMP2_OUT,  
CM4_EVENTOUT  
29 J6 M6  
I/O FT_fl  
-
-
-
-
-
-
-
G5  
G9  
VSS  
VSS  
S
S
S
S
S
S
S
I/O  
S
S
S
S
S
S
S
S
S
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
20 30 K5 H8  
VDD  
-
-
-
-
-
-
-
-
-
-
J4  
-
N8  
L7  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
RF1  
-
-
L8  
-
-
M8  
-
-
(5)  
21 31 K4 M9  
22 32 K3 M10  
RF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VSSRF  
VDDRF  
VSSRF  
VSSRF  
OSC_OUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K2 M11  
-
-
-
-
-
K8  
L9  
-
-
L10  
N11  
-
-
-
23 33 J3 N12  
-
-
-
-
K1 K10  
M12  
-
-
-
-
(6)  
24 34 J2 N13  
RF  
64/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
(6)  
25 35 J1 M13  
OSC_IN  
VSSRF  
AT0  
I
RF  
-
-
-
-
-
-
-
-
-
-
-
-
L11  
S
O
O
-
(7)  
26 36 H3 K11  
27 37 H4 K12  
RF  
RF  
(7)  
(8)  
AT1  
COMP1_OUT,  
28 38 H2 L13  
29 39 H1 L12  
PB0  
PB1  
I/O  
I/O  
TT  
TT  
CM4_EVENTOUT,  
EXT_PA_TX  
-
-
LPUART1_RTS_DE,  
LPTIM2_IN1,  
(8)  
CM4_EVENTOUT  
-
-
-
-
-
-
J5  
-
-
VSS  
VSS_DCAP2  
PE3  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M7  
-
-
G2 H12  
I/O  
I/O  
S
FT  
CM4_EVENTOUT  
30 40 G1 H13  
31 41 F2 H11  
PE4  
FT  
-
CM4_EVENTOUT  
VFBSMPS  
VSSSMPS  
VSSSMPS  
VLXSMPS  
VLXSMPS  
VDDSMPS  
VDDSMPS  
VSS  
-
-
-
-
G13  
S
-
-
32 42 F1 G12  
33 43 E1 F11  
S
-
-
S
-
-
-
-
-
G11  
S
-
-
34 44 D1 F12  
S
-
-
-
-
-
-
-
-
F13  
K4  
-
S
-
-
S
-
-
35 45 B1  
VDD  
S
-
-
TIM1_BKIN, I2C3_SMBA,  
SPI2_NSS, LPUART1_RTS,  
TSC_G1_IO1, LCD_SEG12,  
SAI1_FS_A,  
-
-
46 G3 H10  
PB12  
PB13  
I/O FT_l  
I/O FT_fl  
-
-
-
-
CM4_EVENTOUT  
TIM1_CH1N, I2C3_SCL,  
SPI2_SCK, LPUART1_CTS,  
TSC_G1_IO2, LCD_SEG13,  
SAI1_SCK_A,  
47 C1 E12  
CM4_EVENTOUT  
DS11929 Rev 10  
65/193  
80  
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_CH2N, I2C3_SDA,  
SPI2_MISO, TSC_G1_IO3,  
LCD_SEG14, SAI1_MCLK_A,  
CM4_EVENTOUT  
-
-
48 E2 E11  
PB14  
PB15  
I/O FT_fl  
I/O FT_l  
-
-
-
-
RTC_REFIN, TIM1_CH3N,  
SPI2_MOSI, TSC_G1_IO4,  
LCD_SEG15, SAI1_SD_A,  
CM4_EVENTOUT  
49 F3 F10  
50 D2 D10  
TSC_G4_IO1, LCD_SEG24,  
CM4_EVENTOUT  
-
-
-
PC6  
PC7  
PC8  
I/O FT_l  
I/O FT_l  
I/O FT_l  
-
-
-
-
-
-
TSC_G4_IO2, LCD_SEG25,  
CM4_EVENTOUT  
-
-
E3 D12  
F4 D11  
TSC_G4_IO3, LCD_SEG26,  
CM4_EVENTOUT  
TIM1_BKIN, TSC_G4_IO4,  
USB_NOE, LCD_SEG27,  
SAI1_SCK_B,  
-
-
B4 C13  
PC9  
I/O FT_l  
-
-
CM4_EVENTOUT  
-
-
-
-
-
K6  
-
VSS  
VSS  
S
S
-
-
-
-
-
-
-
-
B2  
TIM1_CH3, SAI1_PDM_DI1,  
I2C1_SDA, USART1_RX,  
USB_CRS_SYNC,  
LCD_COM2, SAI1_SD_A,  
TIM17_BKIN,  
36 51 B5 C12  
PA10  
I/O FT_fl  
-
-
-
CM4_EVENTOUT  
TIM1_CH4, TIM1_BKIN2,  
SPI1_MISO, USART1_CTS,  
USB_DM, CM4_EVENTOUT  
37 52 A1 B13  
38 53 A2 A13  
PA11  
PA12  
I/O FT_u  
I/O FT_u  
I/O FT_u  
-
-
-
TIM1_ETR, SPI1_MOSI,  
LPUART1_RX,  
USART1_RTS_DE, USB_DP,  
CM4_EVENTOUT  
-
JTMS-SWDIO, IR_OUT,  
USB_NOE, SAI1_SD_B,  
CM4_EVENTOUT  
PA13  
(JTMS_SWDIO)  
(9)  
39 54 A5 A11  
40 55 B3 A12  
VDDUSB  
VSS  
S
S
-
-
-
-
-
-
-
-
-
-
-
C11  
66/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
JTCK-SWCLK, LPTIM1_OUT,  
I2C1_SMBA, LCD_SEG5,  
SAI1_FS_B,  
PA14  
(JTCK_SWCLK)  
(9)  
(9)  
41 56 A3 C10  
42 57 A4 C9  
I/O FT_l  
I/O FT_l  
-
CM4_EVENTOUT  
JTDI, TIM2_CH1, TIM2_ETR,  
SPI1_NSS, TSC_G3_IO1,  
LCD_SEG17,  
PA15  
(JTDI)  
-
-
-
CM4_EVENTOUT, MCO  
-
-
-
-
J11  
VSS_DCAP3  
PC10  
S
-
-
-
-
TRACED1, TSC_G3_IO2,  
LCD_COM4/LCD_SEG28/  
LCD_SEG40,  
58 A6 B9  
I/O FT_l  
I/O FT_l  
CM4_EVENTOUT  
TSC_G3_IO3,  
LCD_COM5/LCD_SEG29/  
LCD_SEG41,  
-
-
59 B6 C8  
PC11  
PC12  
-
-
-
CM4_EVENTOUT  
LSCO(3), TRACED3,  
TSC_G3_IO4,  
LCD_COM6/LCD_SEG30/  
LCD_SEG42,  
60 C5 B10  
I/O FT_l  
RTC_TAMP3/WKUP3  
CM4_EVENTOUT  
-
-
61 C4 B11  
62 C3 C7  
PD0  
PD1  
I/O  
I/O  
FT  
FT  
-
-
SPI2_NSS, CM4_EVENTOUT  
SPI2_SCK, CM4_EVENTOUT  
-
-
TRACED2, TSC_SYNC,  
-
-
-
-
-
-
A7 B7  
C2 D8  
D3 C6  
PD2  
PD3  
PD4  
I/O FT_l  
-
-
-
LCD_COM7/LCD_SEG31/LC  
D_SEG43, CM4_EVENTOUT  
-
-
-
SPI2_SCK, SPI2_MISO,  
QUADSPI_BK1_NCS,  
CM4_EVENTOUT  
I/O  
I/O  
FT  
FT  
SPI2_MOSI, TSC_G5_IO1,  
QUADSPI_BK1_IO0,  
CM4_EVENTOUT  
TSC_G5_IO2,  
QUADSPI_BK1_IO1,  
SAI1_MCLK_B,  
-
-
B7 A6  
PD5  
I/O  
FT  
-
-
CM4_EVENTOUT  
DS11929 Rev 10  
67/193  
80  
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
SAI1_PDM_DI1,  
TSC_G5_IO3,  
-
-
-
-
C6 D6  
PD6  
PD7  
I/O  
FT  
-
-
QUADSPI_BK1_IO2,  
SAI1_SD_A,  
CM4_EVENTOUT  
-
-
TSC_G5_IO4,  
QUADSPI_BK1_IO3,  
LCD_SEG39,  
A8 C5  
I/O FT_l  
CM4_EVENTOUT  
-
-
-
-
B9 B12  
D4 B6  
VSS  
PD8  
S
-
-
-
-
-
-
TIM1_BKIN2, LCD_SEG28,  
CM4_EVENTOUT  
I/O FT_l  
I/O FT_l  
TRACED0, LCD_SEG29,  
CM4_EVENTOUT  
-
-
-
-
D5 D4  
E4 A7  
PD9  
-
-
-
-
TRIG_INOUT, TSC_G6_IO1,  
LCD_SEG30,  
CM4_EVENTOUT  
PD10  
I/O FT_l  
I/O FT_l  
I/O FT_l  
TSC_G6_IO2, LCD_SEG31,  
LPTIM2_ETR,  
CM4_EVENTOUT  
-
-
-
-
E5 B5  
B8 B4  
PD11  
PD12  
-
-
-
-
TSC_G6_IO3, LCD_SEG32,  
LPTIM2_IN1,  
CM4_EVENTOUT  
JTDO-TRACESWO,  
TIM2_CH2, SPI1_SCK,  
USART1_RTS_DE,  
LCD_SEG7, SAI1_SCK_B,  
CM4_EVENTOUT  
PB3  
(JTDO)  
(9)  
(9)  
43 63 A9 C4  
I/O FT_la  
I/O FT_fla  
COMP2_INM  
COMP2_INP  
NJTRST, I2C3_SDA,  
SPI1_MISO, USART1_CTS,  
TSC_G2_IO1, LCD_SEG8,  
SAI1_MCLK_B, TIM17_BKIN,  
CM4_EVENTOUT  
PB4  
(NJTRST)  
44 64 C7 B3  
LPTIM1_IN1, I2C1_SMBA,  
SPI1_MOSI, USART1_CK,  
LPUART1_TX, TSC_G2_IO2,  
LCD_SEG9, COMP2_OUT,  
SAI1_SD_B, TIM16_BKIN,  
CM4_EVENTOUT  
45 65 D6 A3  
PB5  
I/O FT_l  
-
-
68/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 16. STM32WB55xx pin and ball definitions (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
LPTIM1_ETR, I2C1_SCL,  
USART1_TX, TSC_G2_IO3,  
LCD_SEG6, SAI1_FS_B,  
TIM16_CH1N, MCO,  
46 66 F5 A2  
PB6  
PB7  
I/O FT_fla  
I/O FT_fla  
-
-
COMP2_INP  
CM4_EVENTOUT  
LPTIM1_IN2, TIM1_BKIN,  
I2C1_SDA, USART1_RX,  
TSC_G2_IO4, LCD_SEG21, COMP2_INM, PVD_IN  
TIM17_CH1N,  
47 67 D7 C3  
CM4_EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
J5  
J7  
J9  
B8  
-
VSS  
S
S
S
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VSS  
VSS  
VSS_DCAP4  
VDD  
48 68 A10  
-
-
-
-
-
-
-
-
-
-
-
-
A8  
F2  
J12  
N7  
VDD_DCAP4  
VDD_DCAP1  
VDD_DCAP3  
VDD_DCAP2  
1. PC13, PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA),  
the use of the PC13, PC14 and PC15 GPIOs in output mode is limited:  
- the speed must not exceed 2 MHz with a maximum load of 30 pF  
- these GPIOs must not be used as current sources (e.g. to drive a LED).  
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of  
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup  
domain and RTC register descriptions in the reference manual RM0434, available on www.st.com.  
3. The clock on LSCO is available in Run and Stop modes, and on PA2 in Standby and Shutdown modes.  
4. On UFQFPN48 VDDA is connected to VREF+.  
5. RF pin, use the nominal PCB layout.  
6. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).  
7. Reserved, must be kept unconnected.  
8. High frequency (above 32 kHz) may impact the RF performance. Set output speed GPIOB_OSPEEDRy[1:0] to 00 (y = 0 and  
1) during RF operation.  
9. After reset these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and  
PB4 pins and the internal pull-down on PA14 pin are activated.  
DS11929 Rev 10  
69/193  
80  
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 17. STM32WB35xx pin and ball definitions  
Pin  
Alternate functions  
Additional functions  
Name (function  
after reset)  
1
2
3
4
VBAT  
S
-
-
-
-
OSC32_IN  
OSC32_OUT  
-
(1) (2)  
PC14-OSC32_IN  
I/O  
FT  
FT  
FT  
CM4_EVENTOUT  
(1) (2)  
PC15-OSC32_OUT I/O  
CM4_EVENTOUT  
PH3-BOOT0  
I/O  
-
CM4_EVENTOUT, LSCO(3)  
TIM1_CH2N, SAI1_PDM_CK1,  
I2C1_SCL, QUADSPI_BK1_IO1,  
SAI1_MCLK_A, TIM16_CH1,  
CM4_EVENTOUT  
5
6
PB8  
I/O FT_f  
-
-
-
-
TIM1_CH3N, SAI1_PDM_DI2,  
I2C1_SDA, SPI2_NSS, IR_OUT,  
QUADSPI_BK1_IO0, SAI1_FS_A,  
TIM17_CH1, CM4_EVENTOUT  
PB9  
I/O FT_f  
I/O RST  
7
8
NRST  
VDDA  
-
-
-
-
-
-
S
-
TIM2_CH1, COMP1_OUT,  
SAI1_EXTCLK, TIM2_ETR,  
CM4_EVENTOUT  
COMP1_INM, ADC1_IN5,  
RTC_TAMP2/WKUP1  
9
PA0  
PA1  
PA2  
I/O FT_a  
I/O FT_a  
I/O FT_a  
-
-
-
TIM2_CH2, I2C1_SMBA, SPI1_SCK,  
CM4_EVENTOUT  
10  
11  
COMP1_INP, ADC1_IN6  
LSCO(3), TIM2_CH3, LPUART1_TX,  
QUADSPI_BK1_NCS, COMP2_OUT,  
CM4_EVENTOUT  
COMP2_INM, ADC1_IN7,  
WKUP4  
TIM2_CH4, SAI1_PDM_CK1,  
LPUART1_RX, QUADSPI_CLK,  
SAI1_MCLK_A, CM4_EVENTOUT  
12  
13  
14  
PA3  
PA4  
PA5  
I/O FT_a  
I/O FT_a  
I/O FT_a  
-
-
-
COMP2_INP, ADC1_IN8  
SPI1_NSS, SAI1_FS_B,  
LPTIM2_OUT, CM4_EVENTOUT  
COMP1_INM,  
COMP2_INM, ADC1_IN9  
TIM2_CH1, TIM2_ETR, SPI1_SCK,  
LPTIM2_ETR, SAI1_SD_B,  
CM4_EVENTOUT  
COMP1_INM,  
COMP2_INM, ADC1_IN10  
TIM1_BKIN, SPI1_MISO,  
15  
16  
17  
PA6  
PA7  
PA8  
I/O FT_a  
I/O FT_fa  
I/O FT_a  
-
-
-
LPUART1_CTS,QUADSPI_BK1_IO3, ADC1_IN11  
TIM16_CH1, CM4_EVENTOUT  
TIM1_CH1N, I2C3_SCL, SPI1_MOSI,  
QUADSPI_BK1_IO2, COMP2_OUT,  
TIM17_CH1, CM4_EVENTOUT  
ADC1_IN12  
ADC1_IN15  
MCO, TIM1_CH1, SAI1_PDM_CK2,  
USART1_CK, SAI1_SCK_A,  
LPTIM2_OUT, CM4_EVENTOUT  
70/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Pinouts and pin description  
Table 17. STM32WB35xx pin and ball definitions (continued)  
Pin  
Alternate functions  
Additional functions  
Name (function  
after reset)  
TIM1_CH2, SAI1_PDM_DI2,  
18  
19  
PA9  
PB2  
I/O FT_fa  
I/O FT_a  
-
-
I2C1_SCL, SPI2_SCK, USART1_TX, COMP1_INM, ADC1_IN16  
SAI1_FS_A, CM4_EVENTOUT  
RTC_OUT, LPTIM1_OUT,  
I2C3_SMBA, SPI1_NSS,  
COMP1_INP  
SAI1_EXTCLK, CM4_EVENTOUT  
20  
21  
22  
23  
24  
25  
26  
27  
VDD  
RF1  
S
I/O  
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(4)  
RF  
-
VSSRF  
VDDRF  
OSC_OUT  
OSC_IN  
AT0  
-
S
-
-
(5)  
O
I
RF  
RF  
RF  
RF  
(5)  
(6)  
(6)  
O
O
AT1  
COMP1_OUT, CM4_EVENTOUT,  
EXT_PA_TX  
(7)  
(7)  
28  
29  
PB0  
PB1  
I/O  
I/O  
TT  
TT  
-
-
LPUART1_RTS_DE, LPTIM2_IN1,  
CM4_EVENTOUT  
30  
31  
32  
33  
34  
35  
PE4  
I/O  
S
FT  
-
-
-
-
-
-
CM4_EVENTOUT  
-
-
-
-
-
-
VFBSMPS  
VSSSMPS  
VLXSMPS  
VDDSMPS  
VDD  
-
-
-
-
-
-
-
-
-
-
S
S
S
S
TIM1_CH3, SAI1_PDM_DI1,  
I2C1_SDA, USART1_RX,  
USB_CRS_SYNC, SAI1_SD_A,  
TIM17_BKIN, CM4_EVENTOUT  
36  
PA10  
I/O FT_f  
-
-
TIM1_CH4, TIM1_BKIN2,  
SPI1_MISO, USART1_CTS,  
USB_DM, CM4_EVENTOUT  
37  
38  
PA11  
PA12  
I/O FT_u  
I/O FT_u  
-
-
-
-
TIM1_ETR, SPI1_MOSI,  
LPUART1_RX, USART1_RTS_DE,  
USB_DP, CM4_EVENTOUT  
PA13  
(JTMS-SWDIO)  
JTMS-SWDIO, IR_OUT, USB_NOE,  
SAI1_SD_B, CM4_EVENTOUT  
(8)  
39  
40  
I/O  
S
FT  
-
-
-
VDDUSB  
-
-
DS11929 Rev 10  
71/193  
80  
Pinouts and pin description  
STM32WB55xx STM32WB35xx  
Table 17. STM32WB35xx pin and ball definitions (continued)  
Pin  
Alternate functions  
Additional functions  
Name (function  
after reset)  
JTCK-SWCLK, LPTIM1_OUT,  
I2C1_SMBA, SAI1_FS_B,  
CM4_EVENTOUT  
PA14  
(JTCK-SWCLK)  
(8)  
(8)  
41  
42  
43  
I/O  
I/O  
FT  
FT  
-
-
JTDI, TIM2_CH1, TIM2_ETR,  
SPI1_NSS, CM4_EVENTOUT, MCO  
PA15 (JTDI)  
PB3 (JTDO)  
JTDO-TRACESWO, TIM2_CH2,  
SPI1_SCK, USART1_RTS_DE,  
SAI1_SCK_B, CM4_EVENTOUT  
I/O FT_a  
I/O FT_fa  
-
COMP2_INM  
COMP2_INP  
NJTRST, I2C3_SDA, SPI1_MISO,  
USART1_CTS, SAI1_MCLK_B,  
TIM17_BKIN, CM4_EVENTOUT  
(8)  
44  
45  
PB4 (NJTRST)  
PB5  
LPTIM1_IN1, I2C1_SMBA,  
SPI1_MOSI, USART1_CK,  
LPUART1_TX, COMP2_OUT,  
SAI1_SD_B, TIM16_BKIN,  
CM4_EVENTOUT  
I/O FT_a  
-
-
-
LPTIM1_ETR, I2C1_SCL,  
USART1_TX, SAI1_FS_B,  
TIM16_CH1N, MCO,  
CM4_EVENTOUT  
46  
PB6  
I/O FT_fa  
I/O FT_fa  
COMP2_INP  
LPTIM1_IN2, TIM1_BKIN, I2C1_SDA,  
USART1_RX, TIM17_CH1N,  
CM4_EVENTOUT  
47  
48  
PB7  
-
-
COMP2_INM, PVD_IN  
-
VDD  
S
-
-
1. PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA), the  
use of the PC14 and PC15 GPIOs in output mode is limited:  
- the speed must not exceed 2 MHz with a maximum load of 30 pF  
- these GPIOs must not be used as current sources (e.g. to drive a LED).  
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of  
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup  
domain and RTC register descriptions in the reference manual RM0434, available on www.st.com.  
3. The clock on LSCO is available in Run and Stop modes, and on PA2 in Standby and Shutdown modes.  
4. RF pin, use the nominal PCB layout.  
5. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).  
6. Reserved, must be kept unconnected.  
7. High frequency (above 32 kHz) may impact the RF performance. Set output speed GPIOB_OSPEEDRy[1:0] to 00 (y = 0  
and 1) during RF operation.  
8. After reset these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and  
PB4 pins and the internal pull-down on PA14 pin are activated.  
72/193  
DS11929 Rev 10  
 
Table 18. Alternate functions (STM32WB55xx)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
SPI2  
USB/  
QUADSPI  
SYS_AF  
RF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
TIM2_  
CH1  
COMP1_  
OUT  
SAI1_  
EXTCLK  
TIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
TIM2_  
CH2  
I2C1_  
SMBA  
SPI1_  
SCK  
CM4_  
EVENTOUT  
-
-
LCD_SEG0  
LCD_SEG1  
LCD_SEG2  
LCD_SEG5  
-
-
-
-
-
-
-
PA1  
TIM2_  
CH3  
LPUART1  
_TX  
QUADSPI_  
BK1_NCS  
COMP2_  
OUT  
CM4_  
EVENTOUT  
LSCO  
-
-
-
-
-
PA2  
TIM2_  
CH4  
SAI1_  
PDM_CK1  
LPUART1  
_RX  
QUADSPI_  
CLK  
SAI1  
_MCLK_A  
CM4_  
EVENTOUT  
-
-
-
-
-
PA3  
SPI1_  
NSS  
SAI1  
_FS_B  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
PA4  
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
SCK  
SAI1  
_SD_B  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
PA5  
TIM1_  
BKIN  
SPI1_  
MISO  
LPUART1  
_CTS  
QUADSPI_  
BK1_IO3  
TIM1_  
BKIN  
TIM16  
_CH1  
CM4_  
EVENTOUT  
PA6  
-
-
-
-
-
-
-
LCD_SEG3  
LCD_SEG4  
LCD_COM0  
LCD_COM1  
LCD_COM2  
-
-
-
TIM1_  
CH1N  
I2C3_  
SCL  
SPI1_  
MOSI  
QUADSPI_  
BK1_IO2  
COMP2_  
OUT  
TIM17  
_CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
PA7  
A
TIM1_  
CH1  
SAI1_  
PDM_CK2  
USART1_  
CK  
SAI1  
_SCK_A  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
MCO  
-
-
-
-
-
-
PA8  
TIM1_  
CH2  
SAI1_  
PDM_DI2  
I2C1_  
SCL  
SPI2_  
SCK  
USART1_  
TX  
SAI1  
_FS_A  
CM4_  
EVENTOUT  
PA9  
-
-
-
-
-
-
TIM1_  
CH3  
SAI1_  
PDM_DI1  
I2C1_  
SDA  
USART1_  
RX  
USB_CRS  
_SYNC  
SAI1  
_SD_A  
TIM17  
_BKIN  
CM4_  
EVENTOUT  
-
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM1_  
CH4  
TIM1_  
BKIN2  
SPI1_  
MISO  
USART1_  
CTS  
TIM1_  
BKIN2  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
USB_DM  
-
-
-
-
-
-
-
TIM1_  
ETR  
SPI1_  
MOSI  
USART1_ LPUART1  
RTS_DE  
CM4_  
EVENTOUT  
-
-
-
-
USB_DP  
-
-
-
-
-
_RX  
JTMS-  
SWDIO  
SAI1  
_SD_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
IR_OUT  
USB_NOE  
-
JTCK-  
SWCLK  
LPTIM1_  
OUT  
I2C1_  
SMBA  
SAI1  
_FS_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
LCD_SEG5  
LCD_SEG17  
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
NSS  
CM4_  
EVENTOUT  
JTDI  
MCO  
-
 
Table 18. Alternate functions (STM32WB55xx) (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
SPI2  
USB/  
QUADSPI  
SYS_AF  
RF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
EXT  
_PA  
_TX  
COMP1_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB0  
LPUART1  
_RTS_DE  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB1  
PB2  
RTC_  
OUT  
LPTIM1_  
OUT  
I2C3_  
SMBA  
SPI1_  
NSS  
SAI1_  
EXTCLK  
CM4_  
EVENTOUT  
-
-
-
-
LCD_VLCD  
-
-
JTDO-  
TRACE  
SWO  
TIM2_  
CH2  
SPI1_  
SCK  
USART1_  
RTS_DE  
SAI1_  
SCK_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
LCD_SEG7  
-
-
PB3  
I2C3_  
SDA  
SPI1_  
MISO  
USART1_  
CTS  
TSC_G2  
_IO1  
SAI1_  
MCLK_B  
TIM17_  
BKIN  
CM4_  
EVENTOUT  
PB4  
NJTRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG8  
LCD_SEG9  
LCD_SEG6  
LCD_SEG21  
LCD_SEG16  
LCD_COM3  
LCD_SEG10  
LCD_SEG11  
LCD_SEG12  
LCD_SEG13  
LCD_SEG14  
LCD_SEG15  
LPTIM1_  
IN1  
I2C1_  
SMBA  
SPI1_  
MOSI  
USART1_ LPUART1 TSC_G2  
COMP2_  
OUT  
SAI1_  
SD_B  
TIM16_  
BKIN  
CM4_  
EVENTOUT  
-
PB5  
CK  
_TX  
_IO2  
LPTIM1_  
ETR  
I2C1_  
SCL  
USART1_  
TX  
TSC_G2  
_IO3  
SAI1_  
FS_B  
TIM16_  
CH1N  
CM4_  
EVENTOUT  
MCO  
-
-
-
-
-
-
-
-
PB6  
LPTIM1_  
IN2  
TIM1_  
BKIN  
I2C1_  
SDA  
USART1_  
RX  
TSC_G2  
_IO4  
TIM17_  
CH1N  
CM4_  
EVENTOUT  
PB7  
-
-
-
-
-
-
-
-
-
-
B
TIM1_  
CH2N  
SAI1_  
PDM_CK1  
I2C1_  
SCL  
QUADSPI_  
BK1_IO1  
SAI1_  
MCLK_A  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
PB8  
TIM1_  
CH3N  
SAI1_  
PDM_DI2  
I2C1_  
SDA  
SPI2_  
NSS  
TSC_G7 QUADSPI_  
_IO4  
SAI1_  
FS_A  
TIM17_  
CH1  
CM4_  
EVENTOUT  
IR_OUT  
PB9  
BK1_IO0  
TIM2_  
CH3  
I2C3_  
SCL  
SPI2_SC  
K
LPUART1  
_RX  
TSC  
_SYNC  
QUADSPI_  
CLK  
COMP1_  
OUT  
SAI1_  
SCK_A  
CM4_  
EVENTOUT  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
-
-
-
-
-
-
-
-
TIM2_  
CH4  
I2C3_  
SDA  
LPUART1  
_TX  
QUADSPI_  
BK1_NCS  
COMP2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
TIM1_  
BKIN  
TIM1_  
BKIN  
I2C3_  
SMBA  
SPI2_  
NSS  
LPUART1 TSC_G1  
_RTS _IO1  
SAI1_  
FS_A  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
TIM1_  
CH1N  
I2C3_  
SCL  
SPI2_  
SCK  
LPUART1 TSC_G1  
SAI1_  
SCK_A  
CM4_  
EVENTOUT  
-
-
-
_CTS  
_IO2  
TIM1_  
CH2N  
I2C3_  
SDA  
SPI2_  
MISO  
TSC_G1  
_IO3  
SAI1_  
MCLK_A  
CM4_  
EVENTOUT  
-
RTC_  
REFIN  
TIM1_  
CH3N  
SPI2_  
MOSI  
TSC_G1  
_IO4  
SAI1_  
SD_A  
CM4_  
EVENTOUT  
-
-
Table 18. Alternate functions (STM32WB55xx) (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
SPI2  
USB/  
QUADSPI  
SYS_AF  
RF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
LPTIM1_  
IN1  
I2C3  
_SCL  
LPUART1  
_RX  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG18  
LCD_SEG19  
LCD_SEG20  
LCD_VLCD  
LCD_SEG22  
LCD_SEG23  
LCD_SEG24  
LCD_SEG25  
LCD_SEG26  
-
-
-
-
-
-
-
-
-
-
-
-
-
PC0  
LPTIM1_  
OUT  
SPI2_  
MOSI  
I2C3  
_SDA  
LPUART1  
_TX  
CM4_  
EVENTOUT  
-
-
-
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
LPTIM1_  
IN2  
SPI2_  
MISO  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM1_  
ETR  
SAI1_  
PDM_DI1  
SPI2_  
MOSI  
SAI1  
_SD_A  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_  
PDM_DI3  
CM4_  
EVENTOUT  
TSC_G4  
_IO1  
CM4_  
EVENTOUT  
-
-
-
TSC_G4  
_IO2  
CM4_  
EVENTOUT  
TSC_G4  
_IO3  
CM4_  
EVENTOUT  
C
TIM1  
_BKIN  
TSC_G4  
_IO4  
SAI1  
_SCK_B  
CM4_  
EVENTOUT  
USB_NOE LCD_SEG27  
LCD_COM4  
TRACE  
D1  
TSC_G3  
_IO2  
CM4_  
EVENTOUT  
PC10  
PC11  
PC12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG28  
LCD_SEG40  
-
-
-
-
-
-
-
-
-
LCD_COM5  
LCD_SEG29  
LCD_SEG41  
TSC_G3  
_IO3  
CM4_  
EVENTOUT  
-
LCD_COM6  
LCD_SEG30  
LCD_SEG42  
TRACE  
D3  
TSC_G3  
_IO4  
CM4_  
EVENTOUT  
LSCO  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC13  
PC14  
PC15  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
Table 18. Alternate functions (STM32WB55xx) (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
SPI2  
USB/  
QUADSPI  
SYS_AF  
RF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
SPI2_  
NSS  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD0  
SPI2_  
SCK  
CM4_  
EVENTOUT  
PD1  
PD2  
LCD_COM7  
LCD_SEG31  
LCD_SEG43  
TRACE  
D2  
TSC_  
SYNC  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_  
MISO  
QUADSPI_  
BK1_NCS  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SPI2_SCK  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD3  
SPI2_  
MOSI  
TSC_  
G5_IO1  
QUADSPI_  
BK1_IO0  
CM4_  
EVENTOUT  
-
-
-
PD4  
TSC_  
G5_IO2  
QUADSPI_  
BK1_IO1  
SAI1_  
MCLK_B  
CM4_  
EVENTOUT  
PD5  
-
-
-
-
-
-
-
-
-
-
-
-
SAI1_  
PDM_DI1  
TSC_  
G5_IO3  
QUADSPI_  
BK1_IO2  
SAI1_  
SD_A  
CM4_  
EVENTOUT  
-
PD6  
TSC_  
G5_IO4  
QUADSPI_  
BK1_IO3  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
LCD_SEG39  
LCD_SEG28  
LCD_SEG29  
LCD_SEG30  
LCD_SEG31  
LCD_SEG32  
LCD_SEG33  
LCD_SEG34  
LCD_SEG35  
-
-
-
-
-
-
-
-
-
PD7  
D
TIM1  
_BKIN2  
CM4_  
EVENTOUT  
PD8  
-
-
-
-
-
-
-
-
-
-
TRACE  
D0  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
PD9  
TRIG  
_INOUT  
TSC_  
G6_IO1  
CM4_  
EVENTOUT  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
TSC_  
G6_IO2  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
TSC_  
G6_IO3  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
TSC_  
G6_IO4  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
TIM1_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
TIM1_  
CH2  
CM4_  
EVENTOUT  
Table 18. Alternate functions (STM32WB55xx) (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2/  
SAI1/  
TIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
I2C1/  
I2C3  
SPI1/  
SPI2  
USB/  
QUADSPI  
SYS_AF  
RF  
USART1 LPUART1  
TSC  
LCD  
SAI1  
EVENTOUT  
TIM1_  
ETR  
TSC_  
G7_IO3  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LCD_SEG36  
-
-
-
-
-
-
-
-
-
-
PE0  
TSC_  
G7_IO2  
TIM17_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
LCD_SEG37  
PE1  
PE2  
PE3  
PE4  
PH0  
PH1  
PH3  
SAI1_  
PDM_CK1  
TSC_  
G7_IO1  
SAI1_  
MCLK_A  
CM4_  
EVENTOUT  
TRACECK  
LCD_SEG38  
-
-
-
-
-
-
E
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CM4_  
EVENTOUT  
-
CM4_  
EVENTOUT  
-
-
CM4_  
EVENTOUT  
H
CM4_  
EVENTOUT  
LSCO  
Table 19. Alternate functions (STM32WB35xx)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF10  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
SAI1/  
TIM1  
I2C1/  
I2C3  
USB/  
QUADSPI  
SYS_AF  
SPI1  
RF  
USART1 LPUART1  
SAI1  
EVENTOUT  
TIM2_  
CH1  
COMP1_  
OUT  
SAI1_  
EXTCLK  
TIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
TIM2_  
CH2  
I2C1_  
SMBA  
SPI1_  
SCK  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
PA1  
TIM2_  
CH3  
LPUART1 QUADSPI_ COMP2_  
CM4_  
EVENTOUT  
LSCO  
-
-
-
-
-
PA2  
_TX  
BK1_NCS  
OUT  
TIM2_  
CH4  
SAI1_  
PDM_CK1  
LPUART1 QUADSPI_  
SAI1  
_MCLK_A  
CM4_  
EVENTOUT  
-
-
-
PA3  
_RX  
-
CLK  
-
SPI1_  
NSS  
SAI1  
_FS_B  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
PA4  
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
SCK  
SAI1  
_SD_B  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
PA5  
-
-
-
-
TIM1_  
BKIN  
SPI1_  
MISO  
LPUART1 QUADSPI_  
_CTS  
TIM1_  
BKIN  
TIM16  
_CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
PA6  
BK1_IO3  
TIM1_  
CH1N  
I2C3_  
SCL  
SPI1_  
MOSI  
QUADSPI_ COMP2_  
TIM17  
_CH1  
CM4_  
EVENTOUT  
-
-
-
PA7  
BK1_IO2  
OUT  
A
TIM1_  
CH1  
SAI1_  
PDM_CK2  
USART1_  
CK  
SAI1  
_SCK_A  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
PA8  
MCO  
-
-
-
-
-
-
-
-
-
-
TIM1_  
CH2  
SAI1_  
PDM_DI2  
I2C1_  
SCL  
USART1_  
TX  
SAI1  
_FS_A  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
PA9  
TIM1_  
CH3  
SAI1_  
PDM_DI1  
I2C1_  
SDA  
USART1_  
RX  
USB_CRS  
_SYNC  
SAI1  
_SD_A  
TIM17  
_BKIN  
CM4_  
EVENTOUT  
-
PA10  
PA11  
PA12  
PA13  
PA14  
PA15  
TIM1_  
CH4  
TIM1_  
BKIN2  
SPI1_  
MISO  
USART1_  
CTS  
TIM1_  
BKIN2  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
USB_DM  
-
-
-
-
-
-
-
TIM1_  
ETR  
SPI1_  
MOSI  
USART1_ LPUART1  
RTS_DE  
CM4_  
EVENTOUT  
-
-
-
-
USB_DP  
-
-
-
-
_RX  
JTMS-  
SWDIO  
SAI1  
_SD_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
IR_OUT  
USB_NOE  
JTCK-  
SWCLK  
LPTIM1_  
OUT  
I2C1_  
SMBA  
SAI1  
_FS_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
TIM2_  
CH1  
TIM2_  
ETR  
SPI1_  
NSS  
CM4_  
EVENTOUT  
JTDI  
MCO  
-
 
 
Table 19. Alternate functions (STM32WB35xx) (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF10  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
COMP1/  
COMP2/  
TIM1  
TIM1/  
TIM2  
SAI1/  
TIM1  
I2C1/  
I2C3  
USB/  
QUADSPI  
SYS_AF  
SPI1  
RF  
USART1 LPUART1  
SAI1  
EVENTOUT  
EXT  
_PA  
_TX  
COMP1_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB0  
LPUART1  
_RTS_DE  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
PB1  
PB2  
RTC_  
OUT  
LPTIM1_  
OUT  
I2C3_  
SMBA  
SPI1_  
NSS  
SAI1_  
EXTCLK  
CM4_  
EVENTOUT  
-
-
-
-
-
-
JTDO-  
TRACE  
SWO  
TIM2_  
CH2  
SPI1_  
SCK  
USART1_  
RTS_DE  
SAI1_  
SCK_B  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
PB3  
I2C3_  
SDA  
SPI1_  
MISO  
USART1_  
CTS  
SAI1_  
MCLK_B  
TIM17_  
BKIN  
CM4_  
EVENTOUT  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PC14  
PC15  
PE4  
PH3  
NJTRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
B
LPTIM1_  
IN1  
I2C1_  
SMBA  
SPI1_  
MOSI  
USART1_ LPUART1  
COMP2_  
OUT  
SAI1_  
SD_B  
TIM16_  
BKIN  
CM4_  
EVENTOUT  
-
CK  
_TX  
LPTIM1_  
ETR  
I2C1_  
SCL  
USART1_  
TX  
SAI1_  
FS_B  
TIM16_  
CH1N  
CM4_  
EVENTOUT  
MCO  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LPTIM1_  
IN2  
TIM1_  
BKIN  
I2C1_  
SDA  
USART1_  
RX  
TIM17_  
CH1N  
CM4_  
EVENTOUT  
-
-
-
TIM1_  
CH2N  
SAI1_  
PDM_CK1  
I2C1_  
SCL  
QUADSPI_  
BK1_IO1  
SAI1_  
MCLK_A  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
TIM1_  
CH3N  
SAI1_  
PDM_DI2  
I2C1_  
SDA  
QUADSPI_  
BK1_IO0  
SAI1_  
FS_A  
TIM17_  
CH1  
CM4_  
EVENTOUT  
-
IR_OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
C
CM4_  
EVENTOUT  
-
-
CM4_  
EVENTOUT  
E
H
CM4_  
EVENTOUT  
LSCO  
Memory mapping  
STM32WB55xx STM32WB35xx  
5
Memory mapping  
The STM32WB55xx and STM32WB35xx devices feature a single physical address space  
that can be accessed by the application processor and by the RF subsystem.  
A part of the Flash memory and of the SRAM2a and SRAM2b memories are made secure,  
exclusively accessible by the CPU2, protected against execution, read and write from CPU1  
and DMA.  
In case of shared resources the SW should implement arbitration mechanism to avoid  
access conflicts. This happens for peripherals Reset and Clock Controller (RCC), Power  
Controller (PWC), EXTI and Flash interface, and can be implemented using the built-in  
semaphore block (HSEM).  
By default the RF subsystem and CPU2 operate in secure mode. This implies that part of  
the Flash and of the SRAM2 memories can only be accessed by the RF subsystem and by  
the CPU2. In this case the Host processor (CPU1) has no access to these resources.  
The detailed memory map and the peripheral mapping can be found in the reference  
manual RM0434.  
80/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V = 3 V. They  
DDA  
are given only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 14.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 15.  
Figure 14. Pin loading conditions  
Figure 15. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MS19210V1  
MS19211V1  
DS11929 Rev 10  
81/193  
169  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.1.6  
Power supply scheme  
Figure 16. Power supply scheme (all packages except UFBGA129 and WLCSP100)  
VBAT  
Backup circuitry  
1.55 V to 3.6 V  
(LSE, RTC and  
backup registers)  
Power switch  
Regulator  
VDD  
VCORE  
n x VDD  
GPIOs  
VDDIO1  
OUT  
Kernel logic  
IO  
logic  
(CPU, digital  
n x 100 nF + 1 x 4.7 μF  
IN  
and memories  
VSS  
VDDA  
VDDA  
VREF+(2)  
ADC  
COMPs  
10 nF + 1 μF  
100 nF + 1 μF  
VREF-  
VSS  
VDD  
VDDSMPS  
VLXSMPS  
SMPS  
Regulator  
4.7 μF  
L1(1)  
VFBSMPS  
4.7 μF  
VSSSMPS  
VDDUSB  
VDD  
USB  
transceiver  
VDD  
100 nF  
VDDRF  
VSSRF  
100 nF  
+ 100 pF  
Radio  
Exposed pad  
VSS  
To all modules  
MS53167V3  
1. The value of L1 depends upon the frequency, as indicated in Table 6.  
2. VREF+ connection is not available on UFQFPN48 package.  
82/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 17. Power supply scheme (UFBGA129 and WLCSP100 packages)  
VDD_DCAPx(2)  
1 x 100 nF  
VSS_DCAPx(2)  
VBAT  
Backup circuitry  
(LSE, RTC and  
backup registers)  
1.55 to 3.6 V  
Power switch  
Regulator  
VDD  
VCORE  
n x VDD  
VDDIO1  
OUT  
Kernel logic  
IO  
logic  
(CPU, digital  
GPIOs  
1 x 4.7 μF  
IN  
and memories  
n x VSS  
VDDA  
VDDA  
VREF  
ADCs  
OPAMPs  
COMPs  
VREF+  
10 nF + 1 μF  
100 nF 1 μF  
VREF-  
VREFBUF  
VSSA  
VDD  
VDDSMPS  
SMPS  
Regulator  
VLXSMPS  
VFBSMPS  
4.7 μF  
L1(1)  
4.7 μF  
VSSSMPS  
VDDUSB  
VDD  
USB  
100 nF  
transceiver  
VDD  
VDDRF  
VSSRF  
100 nF  
+ 100 pF  
Radio  
MS53132V2  
1. The value of L1 depends upon the frequency, as indicated in Table 6.  
2. For UFBGA129 package VDD_DCAPx and VSS_DCAPx balls are connected to VDD and VSS internally, to  
simplify the 2-layer board layout and especially the ground plane below the BGA.  
V
DD power supply can be made with a single connection to the center of the BGA on the board bottom  
layer. The decoupling 100 nF capacitors are connected without cutting the board ground plane.  
DS11929 Rev 10  
83/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Caution:  
Each power supply pair (V / V , V  
/ V etc.) must be decoupled with filtering  
SSA  
DD  
SS  
DDA  
ceramic capacitors as shown in Figure 16. These capacitors must be placed as close as  
possible to (or below) the appropriate pins on the underside of the PCB to ensure the good  
functionality of the device.  
6.1.7  
Current consumption measurement  
Figure 18. Current consumption measurement scheme  
IDDSMPS  
VDDSMPS  
IDDRF  
VDDRF  
IDDUSB  
VDDUSB  
IDDVBAT  
VBAT  
IDD  
VDD  
IDDA  
VDDA  
MS45416V1  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 20, Table 21 and Table 22  
may cause permanent damage to the device. These are stress ratings only and functional  
operation of the device at these conditions is not implied. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
Device mission profile (application conditions) is compliant with JEDEC JESD47  
Qualification Standard, extended mission profiles are available on demand.  
84/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)  
Table 20. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDDX - VSS (including VDD, VDDA, VDDUSB, VLCD, VDDRF  
,
-0.3  
4.0  
V
DDSMPS, VBAT, VREF+  
)
min (VDD, VDDA, VDDUSB, VLCD  
VDDRF, VDDSMPS) + 4.0(3)(4)  
,
V
Input voltage on FT_xxx pins  
(2)  
VSS-0.3  
VIN  
Input voltage on TT_xx pins  
Input voltage on any other pin  
4.0  
4.0  
Variations between different VDDX power pins  
of the same domain  
|VDDx  
|
-
50  
mV  
V
Variations between all the different ground  
pins(5)  
|VSSx-VSS  
|
-
-
50  
VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA  
0.4  
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the  
external power supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 21 for the maximum allowed injected current values.  
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.  
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 21. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin except FT_f  
Output current sunk by any FT_f pin  
130  
130  
100  
100  
20  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT_xxx, TT_xx, RST and B pins, except PB0 and PB1  
Injected current on PB0 and PB1  
20  
100  
100  
–5 / +0(4)  
-5/0  
25  
IIO(PIN)  
(3)  
IINJ(PIN)  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(5)  
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external  
power supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be  
sunk/sourced between two consecutive power supply pins referring to high pin count packages.  
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 20: Voltage  
characteristics for the maximum allowed input voltage values.  
DS11929 Rev 10  
85/193  
169  
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative  
injected currents (instantaneous values).  
Table 22. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
TSTG  
TJ  
–65 to +150  
130  
°C  
86/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3  
Operating conditions  
6.3.1  
Summary of main performance  
Table 23. Main performance at V = 3.3 V  
DD  
Parameter  
Test conditions  
Typ  
Unit  
VBAT (VBAT = 1.8 V, VDD = 0 V)  
Shutdown (VDD = 1.8 V)  
Standby (VDD = 1.8 V, 32 Kbytes RAM retention)  
Stop2  
0.002  
0.013  
0.320  
1.85  
Core current  
consumption  
ICORE  
Sleep (16 MHz)  
740  
LP run (2 MHz)  
320  
Run (64 MHz)  
5000  
4500  
5200  
Radio RX(1)  
µA  
Radio TX 0 dBm output power(1)  
Advertising(2)  
(Tx = 0 dBm; Period 1.28 s; 31 bytes, 3 channels)  
13  
4
BLE  
Advertising(2)  
(Tx = 0 dBm, 6 bytes; period 10.24 s, 3 channels)  
Peripheral  
IPERI current  
consumption  
LP timers  
I2C3  
-
-
-
-
6
7.1  
7.7  
2.5  
LPUART  
RTC  
1. Power consumption including RF subsystem and digital processing.  
2. Power consumption integrated over 100 s, including Cortex-M4, RF subsystem, digital processing and Cortex-M0+.  
6.3.2  
General operating conditions  
Table 24. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK Internal AHB clock frequency  
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
0
64  
64  
64  
3.6  
-
0
0
MHz  
-
-
VDD  
VDDA  
VBAT  
Standard operating voltage  
1.71(1)(2)  
1.62  
2.4  
ADC or COMP used  
VREFBUF used  
Analog supply voltage  
3.6  
3.6  
V
ADC, COMP, VREFBUF  
0
not used  
Backup operating voltage  
-
1.55  
DS11929 Rev 10  
87/193  
169  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Table 24. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VFBSMPS SMPS Feedback voltage  
VDDRF Minimum RF voltage  
-
-
1.4  
1.71  
3.0  
0
3.6  
3.6  
USB used  
3.6  
VDDUSB USB supply voltage  
USB not used  
TT_xx I/O  
3.6  
V
–0.3  
V
DD + 0.3  
min (min (VDD, VDDA  
,
VIN  
I/O input voltage  
All I/O except TT_xx  
–0.3  
VDDUSB, VLCD) + 3.6 V,  
5.5 V)(3)(4)  
UFQFPN48  
-
-
-
-
803  
425  
558  
481  
85  
Power dissipation at  
TA = 85 °C for suffix 6  
or  
VFQFPN68  
PD  
mW  
WLCSP100  
TA = 105 °C for suffix 7(5)  
UFBGA129  
Maximum power dissipation  
Low-power dissipation(6)  
Maximum power dissipation  
Low-power dissipation(6)  
Suffix 6 version  
Ambient temperature for the  
suffix 6 version  
–40  
–40  
–40  
105  
105  
125  
105  
125  
TA  
TJ  
Ambient temperature for the  
suffix 7 version  
°C  
Junction temperature range  
Suffix 7 version  
1. When RESET is released functionality is guaranteed down to VBOR0 Min.  
2. When VDDmin is lower then 1.95 V, the SMPS operation mode must be conditioned by enabling the BORH configuration to  
force SMPS bypass mode, or the SMPS must not be enabled.  
3. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.  
Maximum I/O input voltage is the smallest value between min (VDD, VDDA, VDDUSB, VLCD) + 3.6 V and 5.5V.  
4. For operation with voltage higher than min (VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors  
must be disabled.  
5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.5: Thermal  
characteristics).  
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:  
Thermal characteristics).  
6.3.3  
RF BLE characteristics  
RF characteristics are given at 1 Mbps, unless otherwise specified.  
Table 25. RF transmitter BLE characteristics  
Symbol  
Parameter  
Frequency operating range  
Crystal frequency  
Test conditions  
Min  
Typ  
-
Max  
Unit  
MHz  
kHz  
Fop  
Fxtal  
F  
-
-
-
2402  
2480  
-
-
32  
250  
-
-
Delta frequency  
88/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 25. RF transmitter BLE characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
-
-
-
-
1
2
2
-
Rgfsk  
On Air data rate  
RF channel spacing  
Mbps  
MHz  
PLLres  
(1)  
Table 26. RF transmitter BLE characteristics (1 Mbps)  
Symbol  
Parameter  
Test conditions  
Min Typ Max Unit  
SMPS Bypass or   
ON (VFBSMPS = 1.7 V and  
-
-
6.0  
3.7  
-
-
VDD > 1.95 V)(2)  
Maximum output power  
SMPS Bypass (VDD > 1.71 V) or  
ON (VFBSMPS = 1.4 V and  
VDD > 1.95 V), Code 29(2)  
dBm  
Prf  
-
-
-
0
-20  
-
-
-
0 dBm output power  
-
Minimum output power  
Tx = 0 dBm - Typical  
-0.5  
0.4  
dB  
Pband  
Output power variation over the band  
Tx = maximum output power  
-
-
-
670  
-50  
-53  
-
-
-
kHz  
BW6dB 6 dB signal bandwidth  
2 MHz  
Bluetooth® Low Energy: -20 dBm  
IBSE  
In band spurious emission  
dBm  
3 MHz Bluetooth® Low Energy: -30 dBm  
Bluetooth® Low Energy: ±50 kHz  
-50  
-20  
-
-
+50  
+20  
kHz  
fd  
Frequency drift  
Bluetooth® Low Energy:  
±20 kHz / 50 µs  
kHz/  
50 µs  
maxdr  
Maximum drift rate  
Bluetooth® Low Energy:   
±150 kHz  
-150  
225  
-
-
-
+150  
275  
-
fo  
Frequency offset  
kHz  
Bluetooth® Low Energy:   
between 225 and 275 kHz  
f1  
fa  
Frequency deviation average  
Frequency deviation  
f2 (average) / f1 (average)  
Bluetooth® Low Energy:> 0.80  
0.80  
-
< 1 GHz  
1 GHz  
-
-
-
-
-61  
-46  
-
-
Out of band  
spurious emission  
OBSE(3)  
dBm  
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and  
impedance matching networks to interface with a 50 antenna.  
2. VFBSMPS and VDD must be set to different voltage levels, depending upon the desired TX signal (see AN5246 Usage of  
SMPS on STM32WB Series microcontrollers, available on www.st.com).  
3. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440  
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
DS11929 Rev 10  
89/193  
169  
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 27. RF transmitter BLE characteristics (2 Mbps)  
Symbol  
Parameter  
Test conditions  
Min Typ Max Unit  
SMPS Bypass or ON  
(VFBSMPS = 1.7 V and  
-
-
6.0  
3.7  
-
-
VDD > 1.95 V)(2)  
Maximum output power  
SMPS Bypass or ON  
(VFBSMPS = 1.4 V and  
VDD > 1.71 V), Code 29(2)  
dBm  
Prf  
-
-
-
0
-20  
-
-
-
0 dBm output power  
-
Minimum output power  
Tx = 0 dBm - Typical  
-0.5  
0.4  
dB  
Pband  
Output power variation over the band  
Tx = maximum output power  
-
-
-
670  
-56  
-57  
-58  
-
-
-
kHz  
BW6dB  
6 dB signal bandwidth  
4 MHz  
Bluetooth® Low Energy: -20 dBm  
Bluetooth® Low Energy: -20 dBm  
IBSE  
fd  
In band spurious emission  
5 MHz  
dBm  
kHz  
6 MHz Bluetooth® Low Energy: -30 dBm  
Bluetooth® Low Energy: ±50 kHz  
-50  
-20  
-
-
-
-
50  
20  
Frequency drift  
Bluetooth® Low Energy:  
±20 kHz / 50 µs  
kHz/  
50 µs  
maxdr  
fo  
Maximum drift rate  
Frequency offset  
Bluetooth® Low Energy: ±150 kHz -150  
150  
550  
Bluetooth® Low Energy:   
450  
kHz  
f1  
Frequency deviation average  
between 450 and 550 kHz  
Frequency deviation  
f2 (average) / f1 (average)  
Bluetooth® Low Energy:> 0.80  
0.80  
-
-
-
fa  
< 1 GHz  
1 GHz  
-
-
-
-
-61  
-46  
-
-
Out of band  
spurious emission  
OBSE(3)  
dBm  
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and  
impedance matching networks to interface with a 50 antenna.  
2. VFBSMPS and VDD must be set to different voltage levels, depending upon the desired TX signal (see AN5246 Usage of  
SMPS on STM32WB Series microcontrollers, available on www.st.com).  
3. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440  
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).  
90/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 28. RF receiver BLE characteristics (1 Mbps)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
PER <30.8%  
Prx_max  
Maximum input signal  
0
Bluetooth® Low Energy: min -10 dBm  
High sensitivity mode (SMPS Bypass)  
High sensitivity mode (SMPS ON)  
-96  
PER <30.8%  
Bluetooth® Low Energy: max -70 dBm  
Psens(1)  
dBm  
-95.5  
RSSI maximum value  
RSSI minimum value  
RSSI accuracy  
-
-7  
-94  
2
Rssimaxrange  
Rssiminrange  
Rssiaccu  
-
-
Co-channel rejection  
Bluetooth® Low Energy: 21 dB  
8
C/Ico  
Adj 5 MHz  
-53  
-53  
-48  
-33  
-46  
-39  
-35  
-2  
Bluetooth® Low Energy: -27 dB  
Adj -5 MHz  
Bluetooth® Low Energy: -27 dB  
Adj = 4 MHz  
Bluetooth® Low Energy: -27 dB  
Adj = -4 MHz  
Bluetooth® Low Energy: -15 dB  
dB  
Adj = 3 MHz  
Adjacent channel interference  
C/I  
Bluetooth® Low Energy: -27 dB  
Adj = 2 MHz  
Bluetooth® Low Energy: -17 dB  
Adj = -2 MHz  
Bluetooth® Low Energy: -15 dB  
Adj = 1 MHz  
Bluetooth® Low Energy: 15 dB  
Adj = -1 MHz  
2
Bluetooth® Low Energy: 15 dB  
C/Image  
P_IMD  
Image rejection (Fimage = -3 MHz)  
Intermodulation  
Bluetooth® Low Energy: -9 dB  
-29  
-34  
|f2-f1| = 3 MHz  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 4 MHz  
-30  
-32  
dBm  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 5 MHz  
Bluetooth® Low Energy: -50 dBm  
DS11929 Rev 10  
91/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Table 28. RF receiver BLE characteristics (1 Mbps) (continued)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
30 to 2000 MHz  
-3  
Bluetooth® Low Energy: -30 dBm  
2003 to 2399 MHz  
-5  
-2  
7
Bluetooth® Low Energy: -35 dBm  
P_OBB  
Out of band blocking  
dBm  
2484 to 2997 MHz  
Bluetooth® Low Energy: -35 dBm  
3 to 12.75 GHz  
Bluetooth® Low Energy: -30 dBm  
1. With ideal TX.  
Table 29. RF receiver BLE characteristics (2 Mbps)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
PER <30.8%  
Prx_max  
Maximum input signal  
0
Bluetooth® Low Energy: min -10 dBm  
High sensitivity mode (SMPS Bypass)  
High sensitivity mode (SMPS ON)  
-93  
PER <30.8%  
Bluetooth® Low Energy: max -70 dBm  
Psens(1)  
dBm  
-92.5  
RSSI maximum value  
RSSI minimum value  
RSSI accuracy  
-
-7  
-94  
2
Rssimaxrange  
Rssiminrange  
Rssiaccu  
-
-
Co-channel rejection  
Bluetooth® Low Energy spec: 21 dB  
9
C/Ico  
Adj 8MHz  
-53  
-50  
-49  
-46  
-42  
-3  
Bluetooth® Low Energy: -27 dB  
Adj -8 MHz  
Bluetooth® Low Energy: -27 dB  
Adj = 6 MHz  
Bluetooth® Low Energy: -27 dB  
dB  
Adj = -6 MHz  
Adjacent channel interference  
C/I  
Bluetooth® Low Energy: -15 dB  
Adj = 4 MHz  
Bluetooth® Low Energy: -17 dB  
Adj = 2 MHz  
Bluetooth® Low Energy:15 dB  
Adj = -2 MHz  
-3  
Bluetooth® Low Energy:15 dB  
C/Image  
Image rejection (Fimage = -4 MHz)  
Bluetooth® Low Energy: -9 dB  
-26  
92/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 29. RF receiver BLE characteristics (2 Mbps) (continued)  
Parameter Test conditions  
Symbol  
Typ  
Unit  
|f2-f1| = 6 MHz  
-29  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 8 MHz  
P_IMD  
Intermodulation  
-30  
-29  
-3  
Bluetooth® Low Energy: -50 dBm  
|f2-f1| = 10 MHz  
Bluetooth® Low Energy: -50 dBm  
30 to 2000 MHz  
dBm  
Bluetooth® Low Energy: -30 dBm  
2003 to 2399 MHz  
-9  
Bluetooth® Low Energy: -35 dBm  
P_OBB  
Out of band blocking  
2484 to 2997 MHz  
-3  
Bluetooth® Low Energy: -35 dBm  
3 to 12.75 GHz  
4
Bluetooth® Low Energy: -30 dBm  
1. With ideal TX.  
(1)  
Table 30. RF BLE power consumption for V = 3.3 V  
DD  
Symbol  
Parameter  
Typ Unit  
TX maximum output power consumption (SMPS Bypass)  
12.7  
7.8  
Itxmax  
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V)  
TX 0 dBm output power consumption (SMPS Bypass)  
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V)  
Rx consumption (SMPS Bypass)  
8.8  
mA  
5.2  
Itx0dbm  
7.9  
4.5  
Irxlo  
Rx consumption (SMPS On, VFBSMPS = 1.4 V)  
1. Power consumption including RF subsystem and digital processing.  
6.3.4  
RF 802.15.4 characteristics  
Table 31. RF transmitter 802.15.4 characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
Fop  
Fxtal  
F  
Frequency operating range  
Crystal frequency  
-
-
-
-
-
2405  
-
32  
5
2480  
-
-
-
-
-
-
-
-
MHz  
Delta frequency  
Roqpsk On air data rate  
250  
5
kbps  
MHz  
PLLres RF channel spacing  
DS11929 Rev 10  
93/193  
169  
 
 
 
 
 
Electrical characteristics  
Symbol  
STM32WB55xx STM32WB35xx  
Table 31. RF transmitter 802.15.4 characteristics (continued)  
Parameter  
Conditions  
Min Typ Max Unit  
SMPS Bypass or ON  
(VFBSMPS = 1.7 V and  
VDD > 1.95 V)  
-
-
5.7  
3.7  
-
-
Maximum output power(1)  
SMPS Bypass  
(VDD > 1.71 V) or ON  
(VFBSMPS = 1.4 V and  
VDD > 1.95 V)  
Prf  
dBm  
0 dBm output power  
-
-
-
0
-20  
-
-
Minimum output power  
-
-
0.4  
-
Pband Output power variation over the band Tx = 0 dBm - Typical  
-0.5  
dB  
%
EVMrms EVM rms  
Txpd Transmit power density  
Pmax  
-
-
8
|f - fc| > 3.5 MHz  
-35  
-
dB  
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific  
external RF filter and impedance matching networks to interface with a 50 antenna.  
Table 32. RF receiver 802.15.4 characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Prx_max  
Maximum input signal  
Min: -20 dBm and PER < 1%  
-10  
-100  
-98  
35  
Sensitivity (SMPS Bypass)  
Sensitivity (SMPS ON)  
Adjacent channel rejection  
Alternate channel rejection  
dBm  
Max: -85 dBm and PER < 1%  
Rsens  
-
-
C/adj  
C/alt  
dB  
46  
Figure 19. Typical link quality indicator code vs. Rx level  
94/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 20. Typical energy detection (T = 27°C, V = 3.3 V)  
DD  
(1)  
Table 33. RF 802.15.4 power consumption for V = 3.3 V  
DD  
Symbol  
Parameter  
Typ  
Unit  
TX maximum output power consumption (SMPS Bypass)  
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V)  
TX 0 dBm output power consumption (SMPS Bypass)  
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V)  
Rx consumption (SMPS Bypass)  
11.7  
6.5  
9.1  
4.5  
9.2  
4.5  
Itxmax  
Itx0dbm  
mA  
Irxlo  
Rx consumption (SMPS On)  
1. Power consumption including RF subsystem and digital processing.  
DS11929 Rev 10  
95/193  
169  
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.5  
Operating conditions at power-up / power-down  
The parameters given in Table 34 are derived from tests performed under the ambient  
temperature condition summarized in Table 24.  
Table 34. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD rise time rate  
-
10  
0
tVDD  
-
VDD fall time rate  
VDDA rise time rate  
VDDA fall time rate  
VDDUSB rise time rate  
VDDUSB fall time rate  
VDDRF rise time rate  
tVDDA  
tVDDUSB  
tVDDRF  
-
-
-
10  
0
µs/V  
10  
-
VDDRF fall time rate  
-
6.3.6  
Embedded reset and power control block characteristics  
The parameters given in Table 35 are derived from tests performed under the ambient  
temperature conditions summarized in Table 24: General operating conditions.  
Table 35. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
(2)  
tRSTTEMPO  
Reset temporization after BOR0 is detected VDD rising  
-
250  
400  
μs  
Rising edge  
Brown-out reset threshold 0  
1.62 1.66 1.70  
1.60 1.64 1.69  
2.06 2.10 2.14  
1.96 2.00 2.04  
2.26 2.31 2.35  
2.16 2.20 2.24  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.85 2.90 2.95  
2.76 2.81 2.86  
2.10 2.15 2.19  
2.00 2.05 2.10  
2.26 2.31 2.36  
2.15 2.20 2.25  
2.41 2.46 2.51  
2.31 2.36 2.41  
(2)  
VBOR0  
Falling edge  
Rising edge  
Brown-out reset threshold 1  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
Falling edge  
Rising edge  
Brown-out reset threshold 2  
Falling edge  
Rising edge  
Brown-out reset threshold 3  
Falling edge  
V
Rising edge  
Brown-out reset threshold 4  
Falling edge  
Rising edge  
Programmable voltage detector threshold 0  
Falling edge  
Rising edge  
PVD threshold 1  
Falling edge  
Rising edge  
PVD threshold 2  
Falling edge  
96/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 35. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.69 2.74 2.79  
2.59 2.64 2.69  
2.85 2.91 2.96  
2.75 2.81 2.86  
2.92 2.98 3.04  
2.84 2.90 2.96  
VPVD3  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
PVD threshold 6  
VPVD4  
VPVD5  
VPVD6  
V
Hysteresis in  
continuous mode  
-
-
-
-
20  
30  
-
-
Vhyst_BORH0  
Hysteresis voltage of BORH0  
Hysteresis in  
other mode  
mV  
Hysteresis voltage of BORH (except  
BORH0) and PVD  
Vhyst_BOR_PVD  
-
-
100  
1.1  
-
BOR(3) (except BOR0) and PVD  
consumption from VDD  
IDD (BOR_PVD)(2)  
VPVM1  
1.6  
µA  
V
VDDUSB peripheral voltage monitoring  
-
1.18 1.22 1.26  
1.61 1.65 1.69  
Rising edge  
VPVM3  
VDDA peripheral voltage monitoring  
Falling edge  
1.6  
1.64 1.68  
Vhyst_PVM3  
Vhyst_PVM1  
DD (PVM1)(2)  
IDD (PVM3)(2)  
PVM3 hysteresis  
-
-
-
-
-
-
-
-
10  
10  
0.2  
2
-
-
-
-
mV  
µA  
PVM1 hysteresis  
I
PVM1 consumption from VDD  
PVM3 consumption from VDD  
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current  
characteristics tables.  
DS11929 Rev 10  
97/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.7  
Embedded voltage reference  
The parameters given in Table 36 are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions.  
Table 36. Embedded internal voltage reference  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TA < +125 °C 1.182 1.212 1.232  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
tS_vrefint  
tstart_vrefint  
IDD(VREFINTBUF  
VREFINT  
-
4(2)  
-
8
-
µs  
Start time of reference voltage  
buffer when ADC is enabled  
-
-
-
-
12(2)  
20(2)  
VREFINT buffer consumption from  
VDD when converted by ADC  
)
-
12.5  
µA  
Internal reference voltage spread  
over the temperature range  
V
DD = 3 V  
5
7.5(2)  
50(2)  
mV  
TCoeff  
ACoeff  
Temperature coefficient  
Long term stability  
Voltage coefficient  
–40 °C < TA < +125 °C  
1000 hours, T = 25 °C  
3.0 V < VDD < 3.6 V  
-
-
30  
ppm/°C  
ppm  
300 1000(2)  
VDDCoeff  
-
250 1200(2) ppm/V  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
-
VREFINT  
1. The shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
Figure 21. V  
vs. temperature  
REFINT  
V
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
°C  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Mean  
Min  
Max  
MSv40169V1  
98/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.8  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code.  
The current consumption is measured as described in Figure 18: Current consumption  
measurement scheme.  
Typical and maximum current consumption  
The MCU is put under the following conditions:  
All I/O pins are in analog input mode  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted with the minimum wait states number,  
depending on the f  
frequency (refer to the table “Number of wait states according  
HCLK  
to CPU clock (HCLK) frequency” available in the reference manual).  
When the peripherals are enabled f  
= f  
PCLK  
HCLK  
PCLK  
For Flash memory and shared peripherals f  
= f  
= f  
HCLK HCLKS  
The parameters given in Table 37 to Table 48 are derived from tests performed under  
ambient temperature and supply voltage conditions summarized in Table 24: General  
operating conditions.  
DS11929 Rev 10  
99/193  
169  
 
Table 37. Current consumption in Run and Low-power run modes, code with data processing  
running from Flash, ART enable (Cache ON Prefetch OFF), V = 3.3 V  
DD  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C  
16 MHz  
2 MHz  
1.90  
1.90  
2.00  
2.20  
1.25  
8.60  
4.65  
2.65  
5.20  
3.35  
2.45  
2.40  
1.25  
9.30  
4.25  
2.65  
-
2.52  
1.57  
2.96  
2.05  
Range 2  
0.960 0.985 1.10  
fHCLK = fHSI16 up to  
16 MHz included,  
fHCLK = fHSE = 32 MHz  
64 MHz  
8.15  
4.20  
2.25  
5.00  
3.15  
2.30  
8.25  
4.25  
2.30  
5.00  
3.15  
2.30  
8.40  
4.40  
2.40  
5.10  
3.25  
2.35  
9.60 10.02  
Supply  
Range 1 32 MHz  
16 MHz  
4.63  
5.17  
IDD(Run)  
current in fHSI16 + PLL ON  
Run mode above 32 MHz  
All peripherals  
2.91  
3.52  
64 MHz  
SMPS  
32 MHz  
Range 1  
-
-
-
-
-
-
disabled  
mA  
-
16 MHz  
2 MHz  
1 MHz  
-
0.335 0.360 0.470 0.670 0.480 0.910 1.47  
0.170 0.210 0.325 0.520 0.270 0.730 1.31  
Supply  
current in fHCLK = fMSI  
Low-power All peripherals disabled  
run mode  
IDD(LPRun)  
400 kHz 0.0815 0.120 0.230 0.425 0.140 0.590 1.18  
100 kHz 0.0415 0.076 0.190 0.385 0.070 0.550 1.14  
1. Guaranteed by characterization results, unless otherwise specified.  
 
Table 38. Current consumption in Run and Low-power run modes, code with data processing  
running from SRAM1, V = 3.3 V  
DD  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C  
16 MHz 2.00  
2.05  
2.15  
1.10  
9.00  
4.70  
2.55  
5.35  
3.35  
2.40  
2.30  
1.25  
2.57  
1.62  
3.04  
1.90  
3.64  
2.55  
Range 2  
2 MHz 0.970 1.00  
fHCLK = fHSI16 up to  
16 MHz included,  
64 MHz 8.80  
8.90  
4.55  
2.40  
5.30  
3.25  
2.35  
9.20 10.50 10.80 11.30  
Supply  
fHCLK = fHSE = 32 MHz  
Range 1 32 MHz 4.50  
16 MHz 2.40  
4.90  
2.70  
5.45  
3.45  
2.45  
4.63  
4.89  
5.62  
IDD(Run)  
current in  
fHSI16 + PLL ON  
2.50  
2.70  
3.21  
Run mode above 32 MHz  
All peripherals  
64 MHz 5.25  
-
-
-
-
-
-
-
-
-
disabled  
mA  
SMPS  
Range 1  
32 MHz 3.25  
16 MHz 2.35  
2 MHz 0.265 0.285 0.385 0.550 0.440 0.940 1.620  
1 MHz 0.135 0.170 0.270 0.430 0.290 0.760 1.480  
400 kHz 0.066 0.097 0.195 0.360 0.200 0.670 1.380  
100 kHz 0.031 0.0625 0.160 0.325 0.170 0.470 1.330  
Supply  
current in fHCLK = fMSI  
Low-power All peripherals disabled  
run mode  
IDD(LPRun)  
1. Guaranteed by characterization results, unless otherwise specified.  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Table 39. Typical current consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), V = 3.3 V  
DD  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
1.90  
1.85  
1.85  
1.75  
1.60  
8.15  
8.00  
8.10  
7.60  
6.85  
5.00  
4.95  
4.95  
4.75  
4.40  
4.07  
3.99  
4.04  
3.79  
3.42  
320  
119  
116  
116  
109  
100  
127  
125  
127  
119  
107  
78  
Dhrystone 2.1  
Fibonacci  
mA  
µA/MHz  
While(1)  
Reduced code(1)  
Coremark  
Dhrystone 2.1  
Fibonacci  
mA  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
Supply current in  
Run mode  
IDD(Run)  
Reduced code(1)  
Coremark  
77  
Dhrystone 2.1  
Fibonacci  
77  
74  
While(1)  
69  
Reduced code(1)  
64  
Coremark  
62  
Dhrystone 2.1  
Fibonacci  
63  
59  
While(1)  
53  
Reduced code(1)  
160  
175  
175  
195  
113  
Coremark  
350  
Supply current in  
Low-power run  
f
HCLK = fMSI = 2 MHz  
IDD(LPRun)  
Dhrystone 2.1  
Fibonacci  
350  
All peripherals disable  
390  
While(1)  
225  
1. Reduced code used for characterization results provided in Table 37 and Table 38.  
2. Value computed. MCU consumption when RF TX and SMPS are ON.  
102/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 40. Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1, V = 3.3 V  
DD  
Conditions  
TYP  
TYP  
Symbol  
Parameter  
Unit  
Unit  
Voltage  
scaling  
-
Code  
25 °C  
25 °C  
Reduced code(1)  
Coremark  
2.00  
1.75  
1.95  
1.85  
1.85  
8.80  
7.50  
8.60  
7.90  
8.00  
5.25  
4.65  
5.15  
4.85  
4.90  
4.39  
3.74  
4.29  
3.94  
3.99  
255  
125  
109  
122  
116  
116  
138  
117  
134  
123  
125  
82  
Dhrystone 2.1  
Fibonacci  
mA  
µA/MHz  
While(1)  
Reduced code(1)  
Coremark  
Dhrystone 2.1  
Fibonacci  
mA  
mA  
mA  
µA  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
While(1)  
Supply current in  
Run mode  
IDD(Run)  
Reduced code(1)  
Coremark  
73  
Dhrystone 2.1  
Fibonacci  
80  
76  
While(1)  
77  
Reduced code(1)  
69  
Coremark  
58  
Dhrystone 2.1  
Fibonacci  
67  
62  
While(1)  
62  
Reduced code(1)  
128  
103  
125  
115  
110  
Coremark  
205  
Supply current in  
Low-power run  
fHCLK = fMSI = 2 MHz  
All peripherals disable  
IDD(LPRun)  
Dhrystone 2.1  
Fibonacci  
250  
230  
While(1)  
220  
1. Reduced code used for characterization results provided in Table 37 and Table 38.  
2. Value computed. MCU consumption when RF TX and SMPS are ON.  
DS11929 Rev 10  
103/193  
169  
 
Table 41. Current consumption in Sleep and Low-power sleep modes, Flash memory ON  
Conditions TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
-
fHCLK  
25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C  
fHCLK = fHSI16 up  
to 16 MHz  
included,  
fHCLK = fHSE up to  
32 MHz  
fHSI16 + PLL ON  
above 32 MHz  
All peripherals  
disabled  
Range 2 16 MHz  
64 MHz  
0.740 0.765  
0.865  
2.80  
1.05  
3.00  
1.80  
1.20  
2.75  
2.10  
1.80  
0.840 1.210 1.810  
2.65  
1.40  
2.70  
1.45  
3.00  
1.55  
3.33  
1.86  
3.91  
2.49  
2.02  
-
Range 1  
32 MHz  
16 MHz  
64 MHz  
32 MHz  
16 MHz  
2 MHz  
1.60  
Supply  
current in  
sleep mode,  
IDD(Sleep)  
0.845 0.875  
0.990  
2.65  
0.970 1.40  
2.60  
1.90  
1.70  
2.60  
1.95  
1.70  
-
-
-
-
-
-
SMPS  
Range 1  
2.00  
-
mA  
1.75  
-
0.090 0.125  
0.058 0.093  
0.235  
0.205  
0.430 0.130 0.600  
0.400 0.090 0.570  
0.380 0.070 0.540  
1.19  
1.16  
1.11  
1.13  
Supply  
current in  
1 MHz  
fHCLK = fMSI  
low-power All peripherals disabled  
IDD(LPSleep)  
400 kHz 0.044 0.0725 0.185  
sleep mode  
100 kHz 0.0315 0.0635 0.0175 0.370 0.055 0.530  
1. Guaranteed by characterization results, unless otherwise specified.  
Table 42. Current consumption in Low-power sleep modes, Flash memory in Power down  
Conditions  
TYP  
MAX(1)  
Symbol Parameter  
Unit  
-
fHCLK  
25 °C  
55 °C  
85 °C  
105 °C  
25 °C  
85 °C  
105 °C  
2 MHz  
1 MHz  
94.0  
56.5  
40.5  
27.5  
115  
86.0  
66.5  
57.5  
200  
170  
150  
140  
335  
305  
285  
275  
135  
94.2  
68.0  
54.6  
610  
560  
540  
539  
1201  
1171  
1129  
1131  
Supply  
current in  
f
HCLK = fMSI  
IDD  
µA  
(LPSleep) low-power All peripherals  
400 kHz  
100 kHz  
sleep mode disabled  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 43. Current consumption in Stop 2 mode  
Conditions TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
50.0 1.58 4.12 56.9 132.7  
51.0  
MAX(1)  
Symbol  
Parameter  
Unit  
-
1.8 V 1.00 1.85 3.15 5.95 21.5  
2.4 V 1.10 1.85 3.20 6.00 22.0  
3.0 V 1.10 1.85 3.25 6.10 22.0  
3.6 V 1.15 1.95 3.35 6.25 23.0  
1.8 V 1.20 2.00 3.35 6.10 22.0  
2.4 V 1.20 2.00 3.40 6.20 22.0  
3.0 V 1.25 2.10 3.45 6.30 22.5  
3.6 V 1.30 2.15 3.60 6.55 23.0  
1.8 V 1.30 2.10 3.45 6.25 22.0  
2.4 V 1.45 2.25 3.55 6.40 22.5  
3.0 V 1.50 2.30 3.70 6.55 22.5  
3.6 V 1.75 2.50 3.95 6.85 23.5  
1.8 V 1.35 2.20 3.55 6.30 22.0  
2.4 V 1.50 2.35 3.65 6.50 22.5  
3.0 V 1.70 2.45 3.85 6.65 23.0  
3.6 V 1.80 2.60 4.05 6.95 23.5  
1.8 V 1.35 2.20 3.50 6.25 22.0  
2.4 V 1.45 2.25 3.65 6.40 22.5  
3.0 V 1.55 2.45 3.80 6.65 23.0  
3.6 V 1.70 2.55 4.05 6.95 23.5  
-
-
-
-
LCD disabled  
BLE disabled  
52.0 1.60 4.17 57.9 135.6  
53.0 1.69 4.40 58.6 135.7  
50.5 1.76 4.30 57.1 133.3  
Supply current  
in Stop 2  
(Stop 2) mode, RTC  
disabled  
IDD  
LCD enabled(2)  
and clocked  
by LSI  
51.0  
-
-
-
-
52.0 1.85 4.41 58.1 135.8  
53.5 1.97 4.66 59.4 136.6  
50.5 1.91 4.50 57.2 133.0  
BLE disabled  
RTC clocked  
by LSI,  
LCD disabled  
51.5  
-
-
-
-
µA  
52.5 2.11 4.64 58.3 136.1  
53.5 2.26 5.12 59.7 136.9  
50.5 1.99 4.57 57.4 133.8  
Supply current  
IDD  
in Stop 2  
(Stop 2  
mode, RTC  
with  
RTC clocked  
by LSI,  
51.5  
-
-
-
-
enabled, BLE LCD enabled(2)  
disabled  
52.5 2.17 4.87 58.4 136.3  
54.0 2.41 5.11 59.9 137.1  
50.5 1.91 4.29 57.1 133.5  
RTC)  
RTC clocked by  
LSE quartz(3)  
in low drive  
mode  
51.5  
-
-
-
-
52.5 2.01 4.31 58.0 135.9  
54.0 2.16 4.40 81.6 137.0  
 
Table 43. Current consumption in Stop 2 mode (continued)  
Conditions  
TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
Wakeup clock is  
HSI16, voltage 3.0 V  
-
-
389  
320  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Range 2. See(4)  
.
Supply current Wakeup clock is  
IDD  
during  
wakeup from  
MSI = 32 MHz,  
voltage  
(wakeup  
from  
3.0 V  
3.0 V  
µA  
Stop 2 modeRange 1. See(4)  
.
Stop 2)  
bypass mode  
Wakeup clock is  
MSI = 4 MHz,  
voltage  
-
528  
-
-
-
-
-
-
-
-
Range 2. See(4)  
.
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading  
capacitors.  
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51: Low-power mode  
wakeup timings.  
Table 44. Current consumption in Stop 1 mode  
Conditions TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
210 7.00 28.4 343.7 738.6  
215  
MAX(1)  
Symbol Parameter  
Unit  
-
1.8 V 5.05 9.20 15.5 28.0 96.0  
2.4 V 5.10 9.25 15.5 28.5 96.5  
3.0 V 5.15 9.30 15.5 28.5 97.0  
3.6 V 5.25 9.45 16.0 29.0 97.5  
1.8 V 5.05 9.30 15.5 28.5 96.0  
2.4 V 5.10 9.35 16.0 28.5 96.5  
3.0 V 5.20 9.65 16.0 28.5 97.0  
3.6 V 5.55 9.85 16.0 29.0 98.5  
1.8 V 5.30 9.35 16.0 28.5 96.5  
2.4 V 5.40 9.45 16.0 28.5 97.0  
3.0 V 5.70 9.55 16.5 29.0 98.5  
3.6 V 5.85 10.0 16.5 29.5 96.5  
1.8 V 5.25 9.60 16.0 28.5 96.5  
2.4 V 5.30 9.75 16.0 29.0 97.0  
3.0 V 5.85 9.80 16.5 29.0 97.5  
3.6 V 5.90 10.5 16.5 29.0 98.5  
1.8 V 5.35 9.55 16.0 28.5 96.5  
2.4 V 5.40 9.70 16.0 29.0 96.5  
3.0 V 5.75 9.70 16.0 29.0 97.5  
3.6 V 5.90 10.0 16.5 29.5 99.0  
-
-
-
-
BLE disabled  
LCD disabled  
Supply  
current in  
Stop 1 mode,  
(Stop 1)  
RTC  
215 7.07 28.5 346.8 746.0  
215 7.30 28.8 351.0 749.4  
210 7.10 28.7 344.4 739.0  
IDD  
BLE disabled  
LCD enabled(2)  
clocked by LSI  
215  
-
-
-
-
disabled  
,
215 7.26 29.6 345.0 747.0  
215 7.62 29.8 349.0 750.8  
215 7.30 29.5 343.7 739.2  
215  
-
-
-
-
RTC clocked by LSI  
LCD disabled  
µA  
220 7.69 29.7 347.2 746.1  
215 8.08 29.8 349.9 751.1  
215 7.10 29.0 344.3 739.9  
Supply  
current in  
IDD  
215  
-
-
-
-
(Stop 1 Stop 1 mode,RTC clocked by LSI  
with  
RTC) enabled,  
BLE disabled  
RTC  
LCD enabled(2)  
215 7.53 29.8 347.4 746.2  
220 8.18 29.9 350.6 751.8  
215 6.00 28.7 343.9 738.7  
RTC clocked by  
LSE quartz(3) in  
Low drive mode  
215  
-
-
-
-
215 7.40 28.9 346.6 743.8  
220 7.58 29.2 349.0 749.9  
 
Table 44. Current consumption in Stop 1 mode (continued)  
Conditions  
-
TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
MAX(1)  
Symbol Parameter  
Unit  
Wakeup clock  
HSI16,   
3.0 V  
3.0 V  
3.0 V  
-
-
-
129  
124  
207  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
voltage Range 2.  
See (4)  
.
Supply  
IDD  
(wakeup during  
from  
Stop1) Stop 1  
bypass mode  
current  
Wakeup clock   
MSI = 32 MHz,  
µA  
wakeup from voltage Range 1.  
See (4)  
.
Wakeup clock   
MSI = 4 MHz,  
voltage Range 2.  
See (4)  
.
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 51: Low-power mode wakeup  
timings.  
Table 45. Current consumption in Stop 0 mode  
Conditions TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
1.8 V 95.5 100  
2.4 V 97.5 105  
3.0 V 98.5 105  
3.6 V 100 105  
110  
110  
110  
115  
120 195  
125 195  
125 195  
125 200  
315  
315  
320  
320  
110.0 114.2 458.1 874.8  
Supply current  
in Stop 0 mode,  
RTC disabled,  
BLE disabled,  
LCD disabled  
-
-
-
-
--  
117.3 134.3 461.8 880.0  
165.0 135.7 494.0 884.1  
Wakeup clock  
HSI16,  
3.0 V  
3.0 V  
3.0 V  
-
-
-
331  
349  
196  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IDD  
(Stop 0)  
voltage Range 2.  
µA  
See (2)  
.
Supply current Wakeup clock is  
during wakeup MSI = 32 MHz,  
from Stop 0  
Bypass mode  
voltage Range 1.  
See (2)  
.
Wakeup clock is  
MSI = 4 MHz,  
voltage Range 2.  
See (2)  
.
1. Guaranteed by characterization results, unless otherwise specified.  
2. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51: Low-power mode  
wakeup timings.  
 
Table 46. Current consumption in Standby mode  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
1.8 V 0.270 0.320 0.515 0.920 3.45  
2.4 V 0.270 0.350 0.540 0.955 3.50  
3.0 V 0.270 0.370 0.575 1.00 3.85  
8.20  
8.80  
9.50  
0.300 0.828 7.850 19.300  
BLE disabled  
No independent  
watchdog  
-
-
-
-
Supplycurrent  
in Standby  
mode (backup  
registers and  
SRAM2a  
0.380 0.945 8.505 21.200  
3.6 V 0.300 0.410 0.645 1.15 4.20 10.50 0.400 1.040 8.980 22.400  
I
DD  
(Standby)  
1.8 V 0.265 0.525 0.710 1.10 3.90  
2.4 V 0.280 0.595 0.790 1.20 4.00  
3.0 V 0.290 0.670 0.855 1.35 4.15  
3.6 V 0.295 0.770 0.990 1.50 4.60  
1.8 V 0.500 0.600 0.780 1.20 3.70  
2.4 V 0.630 0.705 0.910 1.30 3.80  
3.0 V 0.725 0.825 1.050 1.50 3.95  
3.6 V 0.860 0.970 1.200 1.70 4.25  
1.8 V 0.565 0.655 0.830 1.25 3.75  
2.4 V 0.635 0.790 0.975 1.40 4.10  
8.40  
9.05  
9.80  
0.520 1.095 8.041 19.500  
BLE disabled  
With  
independent  
watchdog  
retained),   
RTC disabled  
-
-
-
-
0.730 1.253 8.774 21.400  
11.00 0.851 1.356 9.360 22.840  
8.45  
9.10  
9.90  
0.680 1.165 8.143 19.660  
RTC clocked by  
LSI, no  
independent  
watchdog  
-
-
-
-
µA  
0.930 1.463 8.977 21.440  
Supplycurrent  
in Standby  
11.00 1.050 1.628 9.634 23.080  
8.55  
9.20  
0.734 1.196 8.187 19.710  
mode (backup RTC clocked by  
registers and LSI, with  
I
DD  
-
-
-
-
(Standby with  
RTC)  
SRAM2a  
independent  
watchdog  
3.0 V 0.725 0.915 1.100 1.55 4.50 10.00 1.028 1.573 9.072 21.810  
retained),   
RTC enabled  
BLE disabled  
3.6 V 0.870 1.050 1.300 1.80 4.90  
1.8 V 0.525 0.625 0.840 1.25 3.75  
2.4 V 0.665 0.755 0.960 1.35 4.05  
11.00 1.144 1.723 9.730 23.200  
8.60  
9.25  
0.600 1.061 8.029 19.610  
RTC clocked by  
-
-
-
-
(2)  
LSE quartz in  
3.0 V 0.775 0.880 1.100 1.55 4.40 10.00 0.600 1.100 8.719 21.570  
3.6 V 0.935 1.050 1.300 1.80 5.00 11.00 0.750 1.171 9.460 23.030  
low drive mode  
 
Table 46. Current consumption in Standby mode (continued)  
Conditions  
TYP  
MAX(1)  
Symbol  
Parameter  
Unit  
-
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
1.8 V 0.160 0.210 0.380 0.660 2.30  
2.4 V 0.165 0.245 0.375 0.650 2.15  
3.0 V 0.155 0.250 0.385 0.630 2.25  
3.6 V 0.155 0.235 0.375 0.670 2.20  
5.15  
5.20  
5.20  
5.20  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Supply  
current to be  
subtracted in  
Standby  
mode when  
SRAM2a is  
not retained  
IDD  
-
µA  
(SRAM2a)(3)  
Supplycurrent  
during  
wakeup from  
Standbymode  
I
Wakeup clock is  
HSI16. See .3.0 V  
SMPS OFF  
DD  
(4)  
(wakeup from  
Standby)  
-
1.73  
-
-
-
-
-
-
-
-
mA  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading  
capacitors.  
3. The supply current in Standby with SRAM2a mode is: IDD(Standby) + IDD(SRAM2a). The supply current in Standby with RTC with  
SRAM2a mode is: IDD(Standby + RTC) + IDD(SRAM2a).  
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 51.  
Table 47. Current consumption in Shutdown mode  
Conditions TYP  
VDD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C  
MAX(1)  
Symbol  
Parameter  
Unit  
-
1.8 V 0.039 0.013 0.030 0.100 0.635  
2.4 V 0.059 0.014 0.055 0.120 0.785  
3.0 V 0.064 0.037 0.070 0.180 1.000  
3.6 V 0.071 0.093 0.140 0.280 1.300  
1.8 V 0.320 0.315 0.355 0.420 0.985  
2.4 V 0.425 0.405 0.460 0.540 1.200  
3.0 V 0.535 0.535 0.595 0.700 1.500  
3.6 V 0.695 0.720 0.790 0.940 2.000  
1.950  
2.350  
2.900  
3.700  
2.300  
2.800  
3.450  
4.350  
-
-
-
-
-
-
-
-
-
-
2.099  
-
6.200  
-
Supply current in  
Shutdown mode  
(backup  
I
DD  
-
(Shutdown) registers  
retained) RTC  
0.185 2.670  
0.247 3.120  
0.572 2.702  
7.490  
8.450  
6.180  
-
disabled  
µA  
Supply current in  
Shutdown mode RTC clocked  
(backup  
registers  
retained) RTC  
enabled  
I
-
-
DD  
by LSE  
(Shutdown  
with RTC)  
(2)  
quartz in low  
0.664 2.990  
0.790 3.730  
7.800  
9.140  
drive mode  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
Table 48. Current consumption in VBAT mode  
Conditions  
TYP  
MAX(1)  
Symbol Parameter  
Unit  
-
VBAT 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C  
1.8 V 1.00 2.00 4.00 10.0 52.0  
2.4 V 1.00 2.00 5.00 12.0 60.0  
3.0 V 2.00 4.00 7.00 16.0 75.0  
3.6 V 7.00 15.0 23.0 42.0 170  
1.8 V 295 305 315 325 380  
2.4 V 385 395 400 415 475  
3.0 V 495 505 515 530 600  
3.6 V 630 645 660 685 830  
145  
165  
225  
450  
480  
595  
765  
1150  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC disabled  
Backup  
domain  
supply  
current  
I
DD(VBAT)  
nA  
RTC enabled  
and clocked  
by LSE  
quartz(2)  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
 
 
Table 49. Current under Reset condition  
TYP  
MAX(1)  
25 °C 40 °C 55 °C 85 °C 105 °C  
Symbol Conditions  
Unit  
0 °C  
25 °C 40 °C 55 °C 85 °C 105 °C 0 °C  
1.8 V  
-
-
-
-
410  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.4 V  
-
750  
-
IDD(RST)  
µA  
3.0 V  
550  
750  
3.6 V  
1. Guaranteed by characterization results, unless otherwise specified.  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
I/O system current consumption  
The current consumption of the I/O system has two components: static and dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 72: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, they must either be configured in analog mode, or forced internally to a definite  
digital value. This can be done either by using pull-up/down resistors or by configuring the  
pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 50: Peripheral current consumption, the I/Os used by an application also contribute to  
the current consumption. When an I/O pin switches, it uses the current from the I/O supply  
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or  
external) connected to the pin:  
ISW = VDD fSW C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load  
is the I/O supply voltage  
SW  
V
f
DD  
is the I/O switching frequency  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
IO  
EXT  
C
C
is the I/O pin capacitance  
IO  
is the PCB board capacitance plus any connected external device pin  
EXT  
capacitance.  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
114/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in Table 50. The MCU is placed  
under the following conditions:  
All I/O pins are in Analog mode  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 20:  
Voltage characteristics  
The power consumption of the digital part of the on-chip peripherals is given in  
Table 50. The power consumption of the analog part of the peripherals (where  
applicable) is indicated in each related section of the datasheet.  
Table 50. Peripheral current consumption  
Low-power  
Peripheral  
Bus matrix(1)  
Range 1  
Range 2  
Unit  
run and sleep  
2.40  
1.25  
0.465  
1.90  
2.00  
4.15  
12.0  
4.00  
2.55  
2.25  
7.45  
7.60  
3.80  
2.00  
0.170  
8.35  
6.95  
4.40  
17.5  
2.00  
1.05  
0.375  
1.55  
1.65  
3.40  
10.0  
3.30  
2.10  
1.90  
6.20  
6.25  
N/A  
1.80  
1.05  
0.380  
1.80  
1.80  
4.45  
11.5  
3.90  
2.10  
1.90  
6.60  
7.10  
N/A  
TSC  
CRC  
AHB1  
DMA1  
DMA2  
DMAMUX  
All AHB1 peripherals  
AES1  
ADC1 independent clock domain  
ADC1 clock domain  
All AHB2 peripherals  
QSPI  
AHB2(2)  
AHB3  
µA/MHz  
TRNG independent clock domain  
TRNG clock domain  
SRAM2  
N/A  
N/A  
0.135  
6.90  
5.75  
3.65  
14.5  
0.135  
8.45  
7.00  
4.25  
16.0  
AHB Shared FLASH  
AES2  
PKA  
All AHB shared peripherals  
DS11929 Rev 10  
115/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Table 50. Peripheral current consumption (continued)  
Low-power  
run and sleep  
Peripheral  
Range 1  
Range 2  
Unit  
RTCA  
1.10  
0.24  
3.20  
2.05  
2.50  
4.80  
2.10  
3.70  
1.35  
1.65  
2.10  
3.60  
5.65  
2.70  
4.45  
3.95  
2.20  
0.335  
27.0  
1.10  
8.20  
2.85  
2.75  
4.40  
8.80  
1.75  
2.50  
2.40  
28.0  
97.5  
0.88  
0.20  
N/A  
1.25  
0.20  
N/A  
CRS  
USB FS independent clock domain  
USB FS clock domain  
I2C1 independent clock domain  
I2C1 clock domain  
I2C3 independent clock domain  
I2C3 clock domain  
LCD  
N/A  
N/A  
4.40  
4.00  
3.50  
3.10  
1.10  
1.40  
3.40  
3.00  
4.70  
4.15  
3.70  
3.25  
3.70  
0.285  
22.5  
0.885  
6.80  
2.40  
2.30  
7.80  
7.30  
1.45  
1.50  
N/A  
4.40  
5.50  
3.55  
3.55  
2.10  
2.25  
3.00  
3.80  
4.90  
3.85  
5.25  
4.50  
3.80  
0.965  
25.5  
1.35  
7.25  
2.40  
2.55  
7.00  
7.75  
1.45  
3.50  
N/A  
APB1  
SPI2  
LPTIM1 independent clock domain  
LPTIM1 clock domain  
TIM2  
LPUART1 independent clock domain  
LPUART1 clock domain  
LPTIM2 clock domain  
LPTIM2 independent clock domain  
WWDG  
µA/MHz  
All APB1 peripherals  
AHB to APB2(3)  
TIM1  
TIM17  
TIM16  
USART1 independent clock domain  
USART1 clock domain  
SPI1  
APB2  
SAI1 independent clock domain  
SAI1 clock domain  
All APB2 on  
23.0  
80.5  
25.5  
90.0  
ALL  
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).  
2. GPIOs consumption during read and write accesses.  
3. The AHB to APB2 bridge is automatically active when at least one peripheral is ON on the APB2.  
116/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.9  
Wakeup time from Low-power modes and voltage scaling  
transition times  
The wakeup times given in Table 51 are the latency between the event and the execution of  
the first user instruction.  
The device goes in Low-power mode after the WFE (Wait For Event) instruction.  
(1)  
Table 51. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Max  
Unit  
Wakeup time from  
tWUSLEEP Sleep mode  
-
9
9
10  
10  
No. of  
CPU  
cycles  
to Run mode  
Wakeup time from   
Wakeup in Flash with memory in power-down  
tWULPSLEEP Low-power sleep mode during low-power sleep mode (FPDS = 1 in  
to Low-power run mode PWR_CR1) and with clock MSI = 2 MHz  
Wakeup clock MSI = 32 MHz  
2.38 2.96  
1.69 2.00  
1.70 2.01  
7.43 8.59  
2.63 3.00  
1.80 2.00  
1.82 2.02  
7.58 8.70  
4.67 5.56  
5.09 6.03  
5.08 6.00  
8.36 9.28  
4.88 5.55  
5.29 5.95  
5.28 5.96  
8.49 9.30  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Range 1  
Range 2  
Wake up time from  
Stop 0 mode   
to Run mode in Flash  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
memory  
tWUSTOP0  
Wake up time from  
Stop 0 mode   
to Run mode in SRAM1  
Wake up time from  
Stop 1 mode   
to Run in Flash memory  
SMPS bypassed  
µs  
Wake up time from  
Stop 1 mode   
to Run in SRAM1  
SMPS bypassed  
tWUSTOP1  
Wake up time from  
Stop 1 mode to   
Low-power run mode  
in Flash memory  
7.96 9.59  
8.00 9.47  
Regulator in  
Low-power  
mode (LPR = 1  
in PWR_CR1)  
Wakeup clock MSI = 4 MHz  
Wake up time from  
Stop 1 mode to   
Low-power run mode  
in SRAM1  
DS11929 Rev 10  
117/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 51. Low-power mode wakeup timings (continued)  
Symbol  
Parameter  
Conditions  
Typ Max  
Unit  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 32 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
Wakeup clock MSI = 4 MHz  
5.27 6.07  
5.71 6.52  
5.72 6.52  
9.10 9.93  
5.20 5.94  
5.64 6.42  
5.64 6.43  
9.05 9.85  
Wake up time from  
Stop 2 mode   
to Run mode in Flash  
memory  
SMPS bypassed  
Range 1  
Range 2  
Range 1  
Range 2  
tWUSTOP2  
µs  
Wake up time from  
Stop 2 mode to Run  
mode in SRAM1  
SMPS bypassed  
Wakeup time from  
Standby mode  
to Run mode  
tWUSTBY  
Range 1  
Wakeup clock HSI16 = 16 MHz  
51.0 58.1  
µs  
SMPS Bypassed  
1. Guaranteed by characterization results (VDD = 3 V, .T = 25 °C).  
(1)  
Table 52. Regulator modes transition times  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
Wakeup time from Low-power run mode to  
Run mode(2)  
tWULPRUN  
Code run with MSI 2 MHz  
15.33  
21.4  
16.30  
µs  
Regulator transition time from Range 2 to  
Range 1 or Range 1 to Range 2(3)  
tVOST  
Code run with HSI16  
28.9  
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).  
2. Time until REGLPF flag is cleared in PWR_SR2.  
3. Time until VOSF flag is cleared in PWR_SR2.  
(1)  
Table 53. Wakeup time using LPUART  
Symbol  
Parameter  
Conditions  
Stop mode 0  
Typ  
Max  
1.7  
Unit  
-
-
Wakeup time needed to calculate the maximum  
tWULPUART LPUART baud rate allowing to wakeup up from Stop  
mode when LPUART clock source is HSI16  
µs  
Stop mode 1/2  
8.5  
1. Guaranteed by design.  
118/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.10  
External clock source characteristics  
High-speed external user clock generated from an external source  
The high-speed external (HSE) clock is supplied with a 32 MHz crystal oscillator or a sine  
wave.  
The devices include internal programmable capacitances that can be used to tune the  
crystal frequency in order to compensate the PCB parasitic one.  
The characteristics in Table 54 and Table 55 are measured over recommended operating  
conditions, unless otherwise specified. Typical values are referred to T = 25 °C and   
A
V
= 3.0 V.  
DD  
(1)  
Table 54. HSE crystal requirements  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
fNOM  
Oscillator frequency  
-
-
32  
-
MHz  
Includes initial accuracy, stability over  
temperature, aging and frequency pulling  
due to incorrect load capacitance.  
(2)  
fTOL  
Frequency tolerance  
-
-
ppm  
CL  
Load capacitance  
-
-
6
-
-
-
8
pF  
ESR  
Equivalent series resistance  
100  
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.  
2. Refer to the standard specification: 50 ppm for BLE, 40 ppm for 802.15.4 and when both BLE and 802.15.4 are used.  
(1)  
Table 55. HSE clock source requirements  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
fHSE_ext  
User external clock source frequency  
-
32  
-
-
MHz  
Includes initial accuracy, stability  
over temperature and aging.  
(2)  
fTOL  
Frequency tolerance  
-
ppm  
VHSE  
Clock input voltage limits  
Sine wave, AC-coupled(3)  
0.4  
-
50  
-
1.6  
55  
VPP  
%
DuCy(HSE) Duty cycle  
-
45  
-
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
-127  
φn(HSE)  
Phase noise for 32 MHz  
-
-
-135 dBc/Hz  
-138  
-
-
1. Guaranteed by design.  
2. Refer to the standard specification: 50 ppm for BLE, 40 ppm for 802.15.4 and when both BLE and 802.15.4 are used.  
3. Only AC coupled is supported (capacitor 470 pF to 100 nF).  
DS11929 Rev 10  
119/193  
169  
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Table 56. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Startup time  
for 80% amplitude stabilization  
tSUA(HSE)  
-
1000  
-
VDDRF stabilized, XOTUNE=000000,   
µs  
-40 to +125 °C range  
Startup time  
for XOREADY signal  
tSUR(HSE)  
-
250  
-
IDDRF(HSE) HSE current consumption  
XOTg(HSE) XOTUNE granularity  
HSEGMC=000, XOTUNE=000000  
-
50  
1
-
5
µA  
-
ppm  
XOTfp(HSE) XOTUNE frequency pulling  
XOTnb(HSE) XOTUNE number of tuning bits  
XOTst(HSE) XOTUNE setting time  
±20  
±40  
0
-
Capacitor bank  
-
-
-
bit  
-
0.1  
ms  
Note:  
For information about oscillator trimming refer to AN5165 “Development of RF hardware  
using STM32WB microcontrollers”, available from www.st.com.  
Low-speed external user clock generated from an external source  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. The information provided in this section is based on design simulation results  
obtained with typical external components specified in Table 57. In the application, the  
resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins to minimize output distortion and startup stabilization time.  
Refer to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 57. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LSEDRV[1:0] = 00  
Low drive capability  
-
250  
-
LSEDRV[1:0] = 01  
Medium low drive capability  
-
-
-
-
-
-
315  
-
IDD(LSE)  
LSE current consumption  
nA  
LSEDRV[1:0] = 10  
Medium high drive capability  
500  
-
LSEDRV[1:0] = 11  
High drive capability  
630  
-
LSEDRV[1:0] = 00  
Low drive capability  
-
-
-
0.50  
0.75  
1.70  
LSEDRV[1:0] = 01  
Medium low drive capability  
Gmcritmax Maximum critical crystal gm  
µA/V  
LSEDRV[1:0] = 10  
Medium high drive capability  
LSEDRV[1:0] = 11  
High drive capability  
-
-
-
2.70  
-
(2)  
tSU(LSE)  
Startup time  
VDD stabilized  
2
s
120/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
1. Guaranteed by design.  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.  
Note:  
For information on selecting the crystal refer to application note AN2867 “Oscillator design  
guide for STM8S, STM8A and STM32 microcontrollers” available from www.st.com.  
Figure 22. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden  
to add one.  
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.  
The external clock signal has to respect the I/O characteristics detailed in Section 6.3.17.  
The recommend clock input waveform is shown in Figure 23.  
Figure 23. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
(1)  
Table 58. Low-speed external user clock characteristics – Bypass mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock  
source frequency  
fLSE_ext  
-
21.2  
32.768  
44.4  
kHz  
DS11929 Rev 10  
121/193  
169  
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 58. Low-speed external user clock characteristics – Bypass mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
OSC32_IN input pin  
high level voltage  
VLSEH  
-
0.7 VDDx  
-
VDDx  
V
OSC32_IN input pin  
low level voltage  
VLSEL  
-
-
VSS  
250  
-
-
0.3 VDDx  
-
tw(LSEH) OSC32_IN high or  
tw(LSEL) low time  
ns  
Includes initial  
accuracy, stability over  
temperature, aging and  
frequency pulling  
ftolLSE  
Frequency tolerance  
-500  
-
+500  
ppm  
1. Guaranteed by design.  
6.3.11  
Internal clock source characteristics  
The parameters given in Table 59 are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 24: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 59. HSI16 oscillator characteristics  
Symbol  
Parameter  
HSI16 Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI16  
VDD=3.0 V, TA=30 °C  
15.88  
-
16.08  
MHz  
Trimming code is not a  
multiple of 64  
0.2  
-4  
0.3  
-6  
0.4  
-8  
TRIM  
HSI16 user trimming step  
Trimming code is a  
multiple of 64  
DuCy(HSI16)(2) Duty Cycle  
-
45  
-1  
-2  
-
-
-
55  
1
%
TA= 0 to 85 °C  
TA= -40 to 125 °C  
HSI16 oscillator frequency drift over  
temperature  
Temp(HSI16)  
1.5  
HSI16 oscillator frequency drift over  
VDD  
VDD(HSI16)  
VDD=1.62 V to 3.6 V  
-0.1  
-
0.05  
tsu(HSI16)(2)  
HSI16 oscillator start-up time  
-
-
-
-
-
-
0.8  
3
1.2  
5
μs  
tstab(HSI16)(2) HSI16 oscillator stabilization time  
IDD(HSI16)(2) HSI16 oscillator power consumption  
155  
190  
μA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
122/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 24. HSI16 frequency vs. temperature  
MHz  
16.4  
+2%  
+1.5%  
+1%  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
-1%  
-1.5%  
-2%  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
min  
mean  
max  
MSv39299V1  
DS11929 Rev 10  
123/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Multi-speed internal (MSI) RC oscillator  
(1)  
Table 60. MSI oscillator characteristics  
Parameter Conditions  
Symbol  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
TA= -0 to 85 °C  
98.7  
100  
200  
101.3  
197.4  
202.6  
kHz  
405.2  
394.8  
400  
789.6  
800  
810.4  
1.013  
2.026  
4.052  
0.987  
1
1.974  
2
MSI mode  
3.948  
4
7.896  
8
8.104  
MHz  
16.21  
15.79  
16  
23.69  
24  
24.31  
32.42  
48.62  
-
31.58  
32  
MSI frequency  
after factory  
calibration, done  
at VDD=3 V and  
TA=30 °C  
47.38  
48  
fMSI  
-
98.304  
196.608  
393.216  
786.432  
1.016  
1.999  
3.998  
7.995  
15.991  
23.986  
32.014  
48.005  
-
-
-
kHz  
-
-
-
-
-
-
-
-
PLL mode  
XTAL=  
32.768 kHz  
-
-
-
-
MHz  
-
-
-
-
-
-
-
-
MSI oscillator  
-3.5  
3
TEMP(MSI)(2) frequency drift  
MSI mode  
%
6
TA= -40 to 125 °C  
-8  
-
over temperature  
124/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)  
Table 60. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD =   
1.62 to 3.6 V  
-1.2  
-
Range 0 to 3  
0.5  
V
DD =   
-0.5  
-2.5  
-0.8  
-5  
-
-
-
-
-
2.4 to 3.6 V  
VDD =   
MSI oscillator  
frequency drift  
over VDD  
1.62 to 3.6 V  
VDD(MSI)(2)  
MSI mode Range 4 to 7  
0.7  
VDD =   
2.4 to 3.6 V  
(reference is 3 V)  
%
VDD =   
1.62 to 3.6 V  
Range 8 to 11  
1
VDD =   
-1.6  
2.4 to 3.6 V  
Frequency  
TA= -40 to 85 °C  
TA= -40 to 125 °C  
-
-
1
2
2
4
FSAMPLING  
variation in  
MSI mode  
(MSI)(2)(6)  
sampling mode(3)  
For next  
transition  
-
-
-
-
-
-
-
-
-
-
-
-
3.458  
P_USB  
Period jitter for  
USB clock(4)  
PLL mode  
Range 11  
Jitter(MSI)(6)  
For paired  
transition  
3.916  
ns  
For next  
transition  
-
2
MT_USB  
Medium term jitter PLL mode  
Jitter(MSI)(6)  
for USB clock(5)  
Range 11  
For paired  
transition  
-
1
RMS cycle-to-  
cycle jitter  
CC jitter(MSI)(6)  
PLL mode Range 11  
60  
-
ps  
P jitter(MSI)(6) RMS period jitter PLL mode Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
10  
5
-
Range 0  
Range 1  
20  
10  
Range 2  
4
8
MSI oscillator  
start-up time  
t
SU(MSI)(6)  
μs  
7
Range 3  
3
Range 4 to 7  
Range 8 to 11  
3
6
6
2.5  
10 % of final  
frequency  
-
-
-
-
-
-
0.25  
0.5  
-
0.5  
MSI oscillator  
stabilization time Range 11  
PLL mode5 % of final  
tSTAB(MSI)(6)  
1.25 ms  
2.5  
frequency  
1 % of final  
frequency  
DS11929 Rev 10  
125/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 60. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Range 0  
Min  
Typ  
Max Unit  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.6  
0.8  
1.2  
1.9  
4.7  
6.5  
11  
1
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
1.2  
1.7  
2.5  
6
MSI oscillator  
power  
consumption  
9
MSI and  
PLL mode  
IDD(MSI)(6)  
µA  
15  
18.5  
62  
25  
80  
85  
110  
130  
190  
110  
155  
1. Guaranteed by characterization results.  
2. This is a deviation for an individual part once the initial frequency has been measured.  
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.  
4. Average period of MSI at 48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter  
of MSI at 48 MHz clock.  
5. Only accumulated jitter of MSI at 48 MHz is extracted over 28 cycles.  
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI at 48 MHz, for 1000 captures over   
28 cycles.  
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI at 48 MHz, for 1000 captures over  
56 cycles.  
6. Guaranteed by design.  
126/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 25. Typical current consumption vs. MSI frequency  
High-speed internal 48 MHz (HSI48) RC oscillator  
(1)  
Table 61. HSI48 oscillator characteristics  
Symbol  
Parameter  
HSI48 frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI48  
TRIM  
VDD = 3.0 V, TA = 30 °C  
-
-
-
48  
-
MHz  
HSI48 user trimming step  
0.11(2)  
0.18(2)  
USER TRIM  
COVERAGE  
HSI48 user trimming coverage  
±32 steps  
-
±3(3)  
45(2)  
-
±3.5(3)  
-
DuCy(HSI48) Duty cycle  
-
-
55(2)  
±3(3)  
VDD = 3.0 V to 3.6 V,  
TA = –15 to 85 °C  
%
Accuracy of the HSI48 oscillator  
ACCHSI48_REL over temperature  
VDD = 1.65 V to 3.6 V,  
TA = –40 to 125 °C  
-
-
±4.5(3)  
(factory calibrated)  
VDD = 3 V to 3.6 V  
-
-
-
-
0.025(3) 0.05(3)  
HSI48 oscillator frequency drift  
with VDD  
DVDD(HSI48)  
tsu(HSI48)  
VDD = 1.65 V to 3.6 V  
0.05(3)  
2.5(2)  
0.1(3)  
6(2)  
HSI48 oscillator start-up time  
-
-
μs  
I
DD(HSI48) HSI48 oscillator power consumption  
340(2)  
380(2)  
μA  
DS11929 Rev 10  
127/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 61. HSI48 oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Next transition jitter  
NT jitter  
-
-
±0.15(2)  
-
Accumulated jitter on 28 cycles(4)  
ns  
Paired transition jitter  
PT jitter  
-
-
±0.25(2)  
-
Accumulated jitter on 56 cycles(4)  
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.  
2. Guaranteed by design.  
3. Guaranteed by characterization results.  
4. Jitter measurement are performed without clock source activated in parallel.  
Figure 26. HSI48 frequency vs. temperature  
%
6
4
2
0
-2  
-4  
-6  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
°C  
Avg  
min  
max  
MSv40989V1  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 62. LSI1 oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
V
DD = 3.0 V, TA = 30 °C  
31.04  
-
-
32.96  
34  
fLSI  
LSI1 frequency  
kHz  
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.5  
t
SU(LSI1)(2) LSI1 oscillator start-up time  
-
-
-
80  
130  
μs  
tSTAB(LSI1)(2) LSI1 oscillator stabilization time 5% of final frequency  
125 180  
110 180  
LSI1 oscillator power  
consumption  
IDD(LSI1)(2)  
-
-
nA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
128/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Min Typ Max Unit  
(1)  
Table 63. LSI2 oscillator characteristics  
Symbol  
Parameter  
Conditions  
V
DD = 3.0 V, TA = 30 °C  
21.6  
-
-
-
44.2  
44.4  
3.5  
fLSI2  
LSI2 frequency  
kHz  
ms  
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 21.2  
tSU(LSI2)(2) LSI2 oscillator start-up time  
-
-
0.7  
-
LSI2 oscillator power  
IDD(LSI2)(2)  
500 1180 nA  
consumption  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
6.3.12  
PLL characteristics  
The parameters given in Table 64 are derived from tests performed under temperature and  
V
supply voltage conditions summarized in Table 24: General operating conditions.  
DD  
(1)  
Table 64. PLL, PLLSAI1 characteristics  
Symbol  
fPLL_IN  
Parameter  
Conditions  
Min  
Typ Max Unit  
PLL input clock(2)  
-
-
2.66  
45  
2
-
-
16  
55  
64  
16  
64  
16  
64  
16  
344  
128  
40  
-
MHz  
%
PLL input clock duty cycle  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
-
-
fPLL_P_OUT PLL multiplier output clock P  
fPLL_Q_OUT PLL multiplier output clock Q  
fPLL_R_OUT PLL multiplier output clock R  
fVCO_OUT PLL VCO output  
2
-
8
-
8
-
MHz  
8
-
8
-
96  
64  
-
-
-
tLOCK  
Jitter  
PLL lock time  
15  
40  
30  
μs  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
System clock 64 MHz  
ps  
-
-
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
200 260  
300 380  
520 650  
PLL power consumption  
on VDD  
IDD(PLL)  
-
μA  
(1)  
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between the two PLLs.  
DS11929 Rev 10  
129/193  
169  
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.13  
Flash memory characteristics  
(1)  
Table 65. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
tprog  
64-bit programming time  
-
81.7  
5.2  
90.8  
5.5  
4.0  
43.0  
31.0  
24.5  
25.0  
-
µs  
Normal programming  
Fast programming  
Normal programming  
Fast programming  
-
One row (64 double word)  
programming time  
tprog_row  
3.8  
41.8  
30.4  
22.0  
22.1  
3.4  
One page (4 Kbytes)  
programming time  
tprog_page  
ms  
tERASE  
tME  
Page (4 Kbytes) erase time  
Mass erase time  
-
Write mode  
IDD  
Average consumption from VDD  
mA  
Erase mode  
3.4  
-
1. Guaranteed by design.  
Table 66. Flash memory endurance and data retention  
Symbol  
Parameter  
Endurance  
Conditions  
Min(1)  
Unit  
NEND  
TA = –40 to +105 °C  
10  
30  
15  
7
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
1 kcycle(2) at TA = 125 °C  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
tRET  
Data retention  
Years  
30  
15  
10  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
130/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.14  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).  
the device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 67. They are based on the EMS levels and classes  
defined in application note AN1709 “EMC design guide for STM8, STM32 and Legacy  
MCUs”, available on www.st.com.  
Table 67. EMS characteristics  
Symbol  
Parameter  
Conditions  
Level/Class  
VDD = 3.3 V, TA = +25 °C,   
fHCLK = 64 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
Fast transient voltage burst limits to be  
VDD = 3.3 V, TA = +25 °C,   
VEFTB applied through 100 pF on VDD and VSS fHCLK = 64 MHz,  
5A  
pins to induce a functional disturbance  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flow must include the management of runaway conditions such as:  
corrupted program counter  
unexpected reset  
critical data corruption (e.g. control registers)  
DS11929 Rev 10  
131/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for  
1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling two LEDs through the I/O ports). This emission test is compliant with the  
IEC 61967-2 standard, which specifies the test board and the pin loading.  
Table 68. EMI characteristics  
Peripheral ON  
SMPS OFF or ON  
[fHSE / fCPUM4, fCPUM0  
Monitored  
frequency band  
]
Symbol Parameter  
Conditions  
Unit  
32 MHz / 64 MHz, 32 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI level  
1
4
VDD = 3.6 V, TA = 25 °C,  
Peak level WLCSP100 package  
dBµV  
-
SEMI  
-1  
7
compliant with IEC 61967-2  
1.5  
6.3.15  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the ANSI/JEDEC standard.  
Table 69. ESD absolute maximum ratings  
Symbol  
VESD(HBM)  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge voltage TA = +25 °C, conforming to  
(human body model)  
2
2000  
ANSI/ESDA/JEDEC JS-001  
V
C2a(2)  
C1(3)  
500(2)  
250(3)  
Electrostatic discharge voltage TA = +25 °C, conforming to  
VESD(CDM)  
(charge device model)  
ANSI/ESD STM5.3.1 JS-002  
1. Guaranteed by characterization results.  
2. UFQFPN48, VFQPN68 and WLCSP100 packages.  
3. UFBGA129 package.  
132/193  
DS11929 Rev 10  
 
 
 
 
 
STM32WB55xx STM32WB35xx  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
a supply overvoltage is applied to each power supply pin  
a current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 70. Electrical sensitivity  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II  
6.3.16  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3.3 V-capable I/O pins) should be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
cases when abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher  
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out  
of the -5 µA / 0 µA range) or other functional failure (for example reset occurrence or  
oscillator frequency deviation).  
The characterization results are given in Table 71.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
(1)  
Table 71. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all pins except PB0, PB1  
Injected current on PB0, PB1 pins  
-5  
-5  
N/A(2)  
0
IINJ  
mA  
1. Guaranteed by characterization results.  
2. Injection not possible.  
DS11929 Rev 10  
133/193  
169  
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.17  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 72 are derived from tests  
performed under the conditions summarized in Table 24: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 72. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O input  
-
-
0.3 x VDD  
low level voltage(1)  
VIL  
I/O input  
0.39 x VDD - 0.06  
low level voltage(2)  
V
I/O input  
0.7 x VDD  
-
-
-
-
high level voltage(1) 1.62 V < VDD < 3.6 V  
VIH  
I/O input  
0.49 x VDD + 0.26  
high level voltage(2)  
TT_xx, FT_xxx  
and NRST I/O  
input hysteresis  
Vhys  
-
200  
-
mV  
(3)  
0 VIN Max(VDDXXX  
)
-
-
-
-
±100  
650  
Max(VDDXXX) VIN  
FT_xx  
input leakage current  
Max(VDDXXX) +1 V(2)(3)(4)  
Max(VDDXXX) +1 V < VIN  
5.5 V(2)(3)(4)(5)(6)  
-
-
-
-
-
-
200(7)  
±150  
2500  
(3)  
0 VIN Max(VDDXXX  
)
Ilkg  
nA  
FT_lu, FT_u and  
PC3 IO  
Max(VDDXXX) VIN ≤  
Max(VDDXXX) +1 V(2)(3)  
input leakage current  
Max(VDDXXX) +1 V < VIN  
5.5 V(1)(3)(4)(8)  
-
-
-
-
-
-
250  
±150  
2000  
(3)  
VIN Max(VDDXXX  
)
TT_xx  
input leakage current  
Max(VDDXXX) VIN  
<
3.6 V(3)  
Weak pull-up  
RPU  
VIN = VSS  
25  
40  
55  
equivalent resistor(1)  
kꢀ  
Weak pull-down  
RPD  
CIO  
VIN = VDD  
25  
-
40  
5
55  
-
equivalent resistor(1)  
I/O pin capacitance  
-
pF  
1. Tested in production.  
2. Guaranteed by design, not tested in production.  
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by  
ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max)  
4. Max(VDDXXX) is the maximum value among all the I/O supplies.  
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].  
.
6. Refer to Figure 27: I/O input characteristics.  
134/193  
DS11929 Rev 10  
 
 
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
7. To sustain a voltage higher than Min(VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors must  
be disabled. All FT_xx IO except FT_lu, FT_u and PC3.  
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS, whose  
contribution to the series resistance is minimal (~10%).  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown  
in Figure 27 .  
Figure 27. I/O input characteristics  
Vil-Vih (all IO except BOOT0)  
3
2.5  
TTL requirement Vih min = 2V  
2
cmos vil spec 30%  
cmos vih spec 70%  
ttl vil spec ttl  
1.5  
1
ttl vih spec ttl  
datasheet Vil_rule  
datasheet Vih_rule  
TTL requirement Vil min = 0.8V  
0.5  
0
1.5  
2
2.5  
3
3.5  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or  
source up to ± 20 mA (with a relaxed V / V ).  
OL  
OH  
In the user application, the number of I/O pins that can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2.  
The sum of the currents sourced by all the I/Os on V , plus the maximum  
DD  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
ΣI  
(see Table 20: Voltage characteristics).  
VDD  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of  
SS  
the MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see  
SS  
VSS  
Table 20: Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT  
unless otherwise specified).  
DS11929 Rev 10  
135/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 73. Output voltage characteristics  
Parameter Conditions  
Symbol  
Min  
Max Unit  
(2)  
VOL  
VOH  
Output low level voltage for an I/O pin CMOS port(3)   
|IIO| = 8 mA  
-
0.4  
-
(2)  
Output high level voltage for an I/O pin  
VDD - 0.4  
VDD 2.7 V  
(2)  
VOL  
Output low level voltage for an I/O pin TTL port(3)   
|IIO| = 8 mA  
-
0.4  
-
(2)  
VOH  
Output high level voltage for an I/O pin  
2.4  
VDD 2.7 V  
(2)  
VOL  
VOH  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
Output low level voltage for an I/O pin  
Output high level voltage for an I/O pin  
-
1.3  
-
|IIO| = 20 mA  
VDD 2.7 V  
(2)  
VDD - 1.3  
-
V
(2)  
VOL  
0.4  
|IIO| = 4 mA  
VDD 1.62 V  
(2)  
VOH  
VDD - 0.45  
-
|IIO| = 20 mA  
VDD 2.7 V  
-
-
-
0.4  
Output low level voltage for an FT I/O  
|IIO| = 10 mA  
(2)  
VOLFM+  
0.4  
0.4  
pin in FM+ mode (FT I/O with “f” option) VDD 1.62 V  
|IIO| = 2 mA  
1.62 V VDD 1.08 V  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified  
in Table 20: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports  
and control pins) must always respect the absolute maximum ratings Σ IIO  
.
2. Guaranteed by design.  
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Table 74.  
Unless otherwise specified, the parameters given are derived from tests performed under  
the ambient temperature and supply voltage conditions summarized in Table 24: General  
operating conditions.  
(1)(2)  
Table 74. I/O AC characteristics  
Speed Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD ≤ ≤2.7 V  
-
-
-
-
-
-
-
-
5
1
Fmax Maximum frequency  
MHz  
10  
1.5  
25  
52  
17  
37  
00  
Tr/Tf Output rise and fall time  
ns  
136/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Speed Symbol  
Electrical characteristics  
(1)(2)  
Table 74. I/O AC characteristics  
(continued)  
Parameter  
Conditions  
Min  
Max  
Unit  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD ≤ ≤2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=50 pF, 2.7 V VDD 3.6 V  
C=50 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=30 pF, 2.7 V VDD 3.6 V  
C=30 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
C=30 pF, 2.7 V VDD 3.6 V  
C=30 pF, 1.62 V VDD 2.7 V  
C=10 pF, 2.7 V VDD 3.6 V  
C=10 pF, 1.62 V VDD 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
10  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
Fmax Maximum frequency  
Tr/Tf Output rise and fall time  
MHz  
50  
15  
01  
10  
11  
9
16  
ns  
MHz  
ns  
4.5  
9
50  
25  
100(3)  
37.5  
5.8  
11  
2.5  
5
120(3)  
50  
MHz  
180(3)  
75(3)  
3.3  
6
ns  
1.7  
3.3  
1. The maximum frequency is defined with (Tr+ Tf) 2/3 T, and Duty cycle comprised between 45 and 55%.  
2. The fall and rise time are defined, respectively, between 90 and 10%, and between 10 and 90% of the  
output waveform.  
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.  
6.3.18  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent   
pull-up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 24: General operating conditions.  
DS11929 Rev 10  
137/193  
169  
 
 
Electrical characteristics  
Symbol  
STM32WB55xx STM32WB35xx  
(1)  
Table 75. NRST pin characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
NRST input  
low level voltage  
VIL(NRST)  
VIH(NRST)  
Vhys(NRST)  
RPU  
-
-
-
0.3 x VDD  
V
NRST input  
high level voltage  
-
0.7 x VDD  
-
200  
40  
-
-
-
NRST Schmitt trigger  
voltage hysteresis  
-
-
25  
-
mV  
Weak pull-up  
VIN = VSS  
55  
70  
-
kꢀ  
equivalent resistor(2)  
NRST input  
filtered pulse  
VF(NRST)  
VNF(NRST)  
-
ns  
NRST input  
not filtered pulse  
1.71 V VDD 3.6 V  
350  
-
1. Guaranteed by design.  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is minimal (~10%).  
Figure 28. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF  
MS19878V3  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 75, otherwise the reset will not be taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
138/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.19  
Analog switches booster  
(1)  
Table 76. Analog switches booster characteristics  
Symbol  
Parameter  
Supply voltage  
Min  
Typ  
Max  
Unit  
VDD  
1.62  
-
-
-
3.6  
V
tSU(BOOST)  
Booster startup time  
240  
µs  
Booster consumption for  
1.62 V VDD 2.0 V  
-
-
-
-
-
-
250  
500  
900  
Booster consumption for  
2.0 V VDD 2.7 V  
IDD(BOOST)  
µA  
Booster consumption for  
2.7 V VDD 3.6 V  
1. Guaranteed by design.  
DS11929 Rev 10  
139/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.20  
Analog-to-Digital converter characteristics  
Unless otherwise specified, the parameters given in Table 77 are preliminary values derived  
from tests performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK  
DDA  
conditions summarized in Table 24: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1) (2) (3)  
Table 77. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.62  
2
-
-
3.6  
V
V
V
VDDA 2 V  
VDDA < 2 V  
VDDA  
Positive reference  
voltage  
VREF+  
VDDA  
Negative reference  
voltage  
VREF-  
-
VSSA  
V
Range 1  
0.14  
-
-
-
-
-
-
-
-
-
-
64  
fADC  
ADC clock frequency  
MHz  
Range 2  
0.14  
16  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
Resolution = 12 bits  
Resolution = 10 bits  
Resolution = 8 bits  
Resolution = 6 bits  
-
-
-
-
-
-
-
-
4.26  
4.92  
5.81  
7.11  
3.36  
4.00  
4.57  
7.11  
Sampling rate  
for FAST channels  
fs  
Msps  
Sampling rate  
for SLOW channels  
fADC = 64 MHz  
Resolution = 12 bits  
-
-
-
4.26  
MHz  
External trigger  
frequency  
fTRIG  
Resolution = 12 bits  
Differential mode  
-
15  
1/fADC  
(VREF+  
REF-) / 2  
- 0.18  
+
(VREF++  
REF-) / 2  
+ 0.18  
(VREF+  
VREF-) / 2  
+
V
V
V
V
Input common mode  
CMIN  
Conversion voltage  
range(2)  
(4)  
VAIN  
-
-
-
-
0
-
-
-
VREF+  
V
External input  
impedance  
RAIN  
CADC  
tSTAB  
50  
-
kꢀ  
pF  
Internal sample and hold  
capacitor  
-
5
1
Conversion  
cycle  
Power-up time  
Calibration time  
f
ADC = 64 MHz  
-
1.8125  
116  
µs  
tCAL  
1 / fADC  
140/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1) (2) (3)  
Table 77. ADC characteristics  
(continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
CKMODE = 00  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
1.5  
2
-
2.5  
2.0  
Trigger conversion  
latency Regular and  
injected channels  
-
tLATR  
1/fADC  
-
-
2.25  
2.125  
3.5  
without conversion abort  
-
-
2.5  
3
-
Trigger conversion  
latency Injected  
channels aborting a  
regular conversion  
-
3.0  
tLATRINJ  
1/fADC  
-
-
-
3.25  
3.125  
10.0  
640.5  
-
f
ADC = 64 MHz  
-
0.039  
2.5  
-
µs  
ts  
Sampling time  
-
1/fADC  
ADC voltage regulator  
start-up time  
-
-
-
-
20  
tADCVREG_STUP  
µs  
µs  
fADC = 64 MHz  
Resolution = 12 bits  
0.234  
1.019  
Total conversion time  
(including sampling time)  
tCONV  
ts + 12.5 cycles for successive  
approximations = 15 to 653  
Resolution = 12 bits  
1/fADC  
fs = 4.26 Msps  
fs = 1 Msps  
-
-
-
-
-
-
-
-
-
730  
160  
16  
830  
220  
50  
ADC consumption from  
the VDDA supply  
IDDA(ADC)  
µA  
fs = 10 ksps  
fs = 4.26 Msps  
130  
30  
160  
40  
ADC consumption from  
I
DDV_S(ADC) the VREF+ single ended fs = 1 Msps  
µA  
µA  
mode  
fs = 10 ksps  
fs = 4.26 Msps  
fs = 1 Msps  
fs = 10 ksps  
0.6  
250  
60  
2
310  
70  
ADC consumption from  
IDDV_D(ADC) the VREF+ differential  
mode  
1.3  
3
1. Guaranteed by design  
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
DDA < 2.4V). It is disable when VDDA 2.4 V.  
V
3. SMPS in bypass mode.  
4. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.  
Refer to Section 4: Pinouts and pin description for further details.  
DS11929 Rev 10  
141/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)(2)  
Table 78. ADC sampling time  
Fast channel  
Slow channel  
Resolution  
(bits)  
RAIN  
(k)  
Minimum sampling Sampling Minimum sampling Sampling  
time (ns)  
cycles  
time (ns)  
cycles  
0
0.05  
0.1  
0.2  
0.5  
1
33  
37  
6.5  
6.5  
57  
62  
6.5  
6.5  
42  
6.5  
67  
6.5  
51  
6.5  
76  
6.5  
78  
6.5  
104  
151  
526  
994  
1932  
4744  
9430  
47  
12.5  
12.5  
47.5  
92.5  
247.5  
640.5  
640.5  
6.5  
12  
123  
482  
931  
1830  
4527  
9021  
27  
12.5  
47.5  
92.5  
247.5  
640.5  
640.5  
2.5  
5
10  
20  
50  
100  
0
0.05  
0.1  
0.2  
0.5  
1
30  
2.5  
51  
6.5  
34  
6.5  
55  
6.5  
41  
6.5  
62  
6.5  
64  
6.5  
85  
6.5  
10  
100  
395  
763  
1500  
3709  
7391  
21  
12.5  
47.5  
92.5  
247.5  
640.5  
640.5  
2.5  
124  
431  
816  
1584  
3891  
7734  
37  
12.5  
47.5  
92.5  
247.5  
640.5  
640.5  
2.5  
5
10  
20  
50  
100  
0
0.05  
0.1  
0.2  
0.5  
1
24  
2.5  
40  
6.5  
27  
2.5  
43  
6.5  
32  
6.5  
49  
6.5  
50  
6.5  
67  
6.5  
8
78  
6.5  
97  
6.5  
5
308  
595  
1169  
2891  
5762  
47.5  
92.5  
247.5  
247.5  
640.5  
337  
637  
1237  
3037  
6038  
24.5  
47.5  
92.5  
247.5  
640.5  
10  
20  
50  
100  
142/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)(2)  
Table 78. ADC sampling time  
Fast channel  
(continued)  
Slow channel  
Resolution  
(bits)  
RAIN  
(k)  
Minimum sampling Sampling Minimum sampling Sampling  
time (ns)  
cycles  
time (ns)  
cycles  
0
0.05  
0.1  
0.2  
0.5  
1
15  
17  
2.5  
2.5  
26  
28  
2.5  
2.5  
19  
2.5  
31  
2.5  
23  
2.5  
35  
2.5  
36  
6.5  
48  
6.5  
6
56  
6.5  
69  
6.5  
5
221  
427  
839  
2074  
4133  
24.5  
47.5  
92.5  
247.5  
640.5  
242  
458  
890  
2184  
4342  
24.5  
47.5  
92.5  
247.5  
640.5  
10  
20  
50  
100  
1. Guaranteed by design.  
2. VDD = 1.62 V, Cpcb = 4.7 pF, 125 °C, booster enabled.  
DS11929 Rev 10  
143/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)(2)(3)  
Table 79. ADC accuracy - Limited test conditions 1  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
5
5
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
unadjusted  
error  
3.5  
3.5  
1
4.5  
4.5  
2.5  
2.5  
2.5  
2.5  
4.5  
4.5  
3.5  
3.5  
1.5  
1.5  
1.2  
1.2  
2.5  
2.5  
2
Differential  
Single  
ended  
1
EO  
EG  
Offset error  
Gain error  
1.5  
1.5  
2.5  
2.5  
2.5  
2.5  
1
Differential  
Single  
ended  
LSB  
Differential  
Single  
ended  
Differential  
linearity  
error  
1
ED  
1
Differential  
1
1.5  
1.5  
1
Single  
ended  
Integral  
linearity  
error  
EL  
Differential  
1
2
10.4 10.5  
10.4 10.5  
10.8 10.9  
10.8 10.9  
64.4 65  
64.4 65  
66.8 67.4  
66.8 67.4  
-
Single  
ended  
Effective  
number of  
bits  
-
ENOB  
SINAD  
SNR  
bits  
-
Differential  
-
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
-
Differential  
-
dB  
65  
65  
67  
67  
66  
66  
68  
68  
-
Single  
ended  
-
Signal-to-  
noise ratio  
-
Differential  
-
144/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)(2)(3)  
Table 79. ADC accuracy - Limited test conditions 1  
(continued)  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-74  
-74  
-79  
-73  
-73  
-76  
Single  
ended  
Total  
harmonic  
distortion  
THD  
dB  
Differential  
Slow channel (max speed)  
-
-79  
-76  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS11929 Rev 10  
145/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)(2)(3)  
Table 80. ADC accuracy - Limited test conditions 2  
Conditions(4)  
Fast channel (max speed)  
Symbol Parameter  
Min Typ Max Unit  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
4
6.5  
6.5  
5.5  
5.5  
4.5  
5
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
EO  
EG  
ED  
EL  
unadjusted  
error  
3.5  
3.5  
1
Differential  
Single  
ended  
1
Offset error  
Gain error  
1.5  
1.5  
2.5  
2.5  
2.5  
2.5  
1
3
Differential  
3
6
Single  
ended  
6
LSB  
3.5  
3.5  
1.5  
1.5  
1.2  
1.2  
3.5  
3.5  
3
Differential  
Single  
ended  
Differential  
linearity  
error  
1
1
Differential  
1
1.5  
1.5  
1
Single  
ended  
Integral  
linearity  
error  
Differential  
1
2.5  
-
10 10.5  
10 10.5  
10.7 10.9  
10.7 10.9  
Single  
ended  
Effective  
ENOB number of  
bits  
-
bits  
-
Differential  
-
62  
62  
65  
65  
-
Single  
ended  
Signal-to-  
-
noise and  
distortion  
SINAD  
66 67.4  
66 67.4  
-
ratio  
Differential  
-
dB  
64  
64  
66  
66  
-
Single  
ended  
-
Signal-to-  
SNR  
noise ratio  
66.5 68  
66.5 68  
-
Differential  
-
146/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)(2)(3)  
Table 80. ADC accuracy - Limited test conditions 2  
(continued)  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-74  
-74  
-79  
-65  
-67  
-70  
Single  
ended  
Total  
harmonic  
distortion  
THD  
dB  
Differential  
Slow channel (max speed)  
-
-79  
-71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS11929 Rev 10  
147/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)(2)(3)  
Table 81. ADC accuracy - Limited test conditions 3  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5.5  
4.5  
4.5  
4.5  
2
7.5  
6.5  
7.5  
5.5  
5
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
unadjusted  
error  
Differential  
Single  
ended  
2.5  
2
5
EO  
EG  
Offset error  
Gain error  
3.5  
3
Differential  
2.5  
4.5  
3.5  
3.5  
3.5  
1.2  
1.2  
1
7
Single  
ended  
6
LSB  
4
Differential  
5
1.5  
1.5  
1.2  
1.2  
3.5  
3.5  
2.5  
2.5  
-
Single  
ended  
Differential  
linearity  
error  
ED  
Differential  
1
3
Single  
ended  
Integral  
linearity  
error  
2.5  
2
EL  
Differential  
2
10 10.4  
10 10.4  
10.6 10.7  
10.6 10.7  
Single  
ended  
Effective  
number of  
bits  
-
ENOB  
SINAD  
SNR  
bits  
-
Differential  
-
62  
62  
65  
65  
63  
63  
66  
66  
64  
64  
66  
66  
65  
65  
67  
67  
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
-
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
noise ratio  
-
Differential  
-
148/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)(2)(3)  
Table 81. ADC accuracy - Limited test conditions 3  
(continued)  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-69  
-71  
-72  
-67  
-67  
-71  
Single  
ended  
Total  
harmonic  
distortion  
THD  
dB  
Differential  
Slow channel (max speed)  
-
-72  
-71  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.  
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.  
DS11929 Rev 10  
149/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)(2)(3)  
Table 82. ADC accuracy - Limited test conditions 4  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
5
4
5.4  
5
Single  
ended  
Total  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
Slow channel (max speed)  
ET  
unadjusted  
error  
4
5
Differential  
3.5  
2
4.5  
4
Single  
ended  
2
4
EO  
EG  
Offset error  
Gain error  
2
3.5  
3.5  
4.5  
4.5  
4
Differential  
2
4
Single  
ended  
4
LSB  
3
Differential  
3
4
1
1.5  
1.5  
1.2  
1.2  
3
Single  
ended  
Differential  
linearity  
error  
1
ED  
1
Differential  
1
2.5  
2.5  
2
Single  
ended  
Integral  
linearity  
error  
3
EL  
2.5  
2.5  
-
Differential  
2
10.2 10.5  
10.2 10.5  
10.6 10.7  
10.6 10.7  
Single  
ended  
Effective  
number of  
bits  
-
ENOB  
SINAD  
SNR  
bits  
-
Differential  
-
63  
63  
65  
65  
64  
64  
66  
66  
65  
65  
66  
66  
65  
65  
67  
67  
-
Single  
ended  
Signal-to-  
noise and  
distortion  
ratio  
-
-
Differential  
-
dB  
-
Single  
ended  
-
Signal-to-  
noise ratio  
-
Differential  
-
150/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)(2)(3)  
Table 82. ADC accuracy - Limited test conditions 4  
(continued)  
Symbol  
Parameter  
Conditions(4)  
Min Typ Max Unit  
Fast channel (max speed)  
Slow channel (max speed)  
Fast channel (max speed)  
-
-
-
-71  
-71  
-73  
-69  
-69  
-72  
Single  
ended  
Total  
harmonic  
distortion  
THD  
dB  
Differential  
Slow channel (max speed)  
-
-73  
-72  
1. Guaranteed by design.  
2. ADC DC accuracy values are measured after internal calibration.  
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins that may potentially inject negative current.  
4. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when  
V
DDA < 2.4 V). It is disabled when VDDA 2.4 V. No oversampling.  
Figure 29. ADC accuracy characteristics  
EG  
(1) Example of an actual transfer curve  
(2) Ideal transfer curve  
(3) End point correlation line  
4095  
4094  
4093  
ET = Total unadjusted error: maximum deviation  
between actual and ideal transfer curves  
(2)  
EO = Offset error: maximum deviation between the  
first actual transition and the first ideal one  
ET  
(3)  
7
(1)  
EG = Gain error: deviation between the last ideal  
6
5
4
3
2
1
transition and the last actual one  
EL  
ED  
ED = Differential linearity error: maximum  
deviation between actual steps and the ideal ones  
EO  
EL = Integral linearity error: maximum deviation  
between any actual transition and the end point  
correlation line  
1 LSB ideal  
6
V
REF+/4096  
1
2
3
4
5
4093 4094 4095 4096  
7
MS54001V1  
DS11929 Rev 10  
151/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Figure 30. Typical connection diagram using the ADC  
VDDA  
VT  
Sample and hold ADC converter  
(1)  
RAIN  
RADC  
AINx  
12-bit  
converter  
(2)  
(3)  
Cparasitic  
CADC  
VT  
Ilkg  
VAIN  
MS33900V5  
1. Refer to Table 77: ADC characteristics for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (refer to Table 72: I/O static characteristics for the value of the pad capacitance). A high  
C
parasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.  
3. Refer to Table 72: I/O static characteristics for the values of Ilkg.  
General PCB design guidelines  
Power supply decoupling has to be performed as shown in Figure 16: Power supply scheme  
(all packages except UFBGA129 and WLCSP100). The 10 nF capacitor needs to be  
ceramic (good quality), placed as close as possible to the chip.  
6.3.21  
Voltage reference buffer characteristics  
(1)  
Table 83. VREFBUF characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
RS = 0  
2.4  
2.8  
-
-
-
-
3.6  
3.6  
2.4  
2.8  
Normal mode  
VRS = 1  
Analog supply  
voltage  
VDDA  
VRS = 0  
VRS = 1  
VRS = 0  
VRS = 1  
VRS = 0  
VRS = 1  
1.65  
Degraded mode(2)  
Normal mode  
1.65  
V
2.046(3)  
2.498(3)  
VDDA-150 mV  
VDDA-150 mV  
2.048 2.049(3)  
2.5  
2.502(3)  
VREFBUF_ Voltage  
reference output  
OUT  
-
-
VDDA  
Degraded mode(2)  
VDDA  
Trim step  
resolution  
TRIM  
CL  
-
-
-
-
-
±0.05  
1
±0.1  
1.5  
%
Load capacitor  
0.5  
µF  
Equivalent  
series resistor  
of Cload  
esr  
-
-
-
-
-
-
-
-
2
4
Static load  
current  
Iload  
mA  
152/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)  
Table 83. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I
load = 500 µA  
-
-
-
200  
100  
50  
1000  
500  
Iline_reg  
Iload_reg  
Line regulation 2.8 V VDDA 3.6 V  
ppm/V  
Iload = 4 mA  
Load regulation 500 μA Iload 4 mA Normal mode  
500  
ppm/mA  
Tcoeff_  
-40 °C < TJ < +125 °C  
-
-
-
-
+
vrefint  
50  
Temperature  
coefficient  
TCoeff  
ppm/ °C  
Tcoeff_  
0 °C < TJ < +50 °C  
+
vrefint  
50  
DC  
40  
25  
-
60  
40  
-
Power supply  
rejection  
PSRR  
tSTART  
dB  
µs  
100 kHz  
-
CL = 0.5 µF(4)  
300  
500  
650  
350  
650  
800  
Start-up time  
CL = 1.1 µF(4)  
CL = 1.5 µF(4)  
-
-
Control of  
maximum DC  
current drive on  
VREFBUF_OUT  
during start-up  
phase (5)  
IINRUSH  
-
-
-
8
-
mA  
µA  
Iload = 0 µA  
-
-
-
16  
18  
35  
25  
30  
50  
VREFBUF  
consumption  
from VDDA  
IDDA  
(VREFBUF)  
I
load = 500 µA  
Iload = 4 mA  
1. Guaranteed by design, unless otherwise specified.  
2. In degraded mode, the voltage reference buffer cannot maintain accurately the output voltage that will follow (VDDA - drop  
voltage).  
3. Guaranteed by test in production.  
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.  
5. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in  
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.  
DS11929 Rev 10  
153/193  
169  
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.22  
Comparator characteristics  
(1)  
Table 84. COMP characteristics  
Conditions  
Symbol  
VDDA  
Parameter  
Min  
Typ  
Max Unit  
Analog supply voltage  
-
-
1.62  
-
3.6  
Comparator  
input voltage range  
VIN  
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
VREFINT  
VSC  
-
BRG_EN=0 (bridge disable)  
BRG_EN=1 (bridge enable)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
200  
0.8  
100  
-
±10  
300  
1
mV  
nA  
µA  
µs  
Scaler static consumption  
from VDDA  
I
DDA(SCALER)  
tSTART_SCALER Scaler startup time  
200  
5
VDDA 2.7 V  
High-speed  
mode  
V
V
V
DDA < 2.7 V  
DDA 2.7 V  
DDA < 2.7 V  
-
7
Comparator startup time  
to reach propagation  
delay specification  
tSTART  
-
15  
25  
40  
80  
100  
0.9  
7
µs  
ns  
Medium mode  
-
Ultra-low-power mode  
-
VDDA 2.7 V  
VDDA < 2.7 V  
55  
55  
0.55  
4
High-speed  
mode  
Propagation delay with  
100 mV overdrive  
(3)  
tD  
Medium mode  
µs  
Ultra-low-power mode  
Full common mode range  
No hysteresis  
Voffset  
Comparator offset error  
Comparator hysteresis  
±5  
0
±20  
-
mV  
Low hysteresis  
8
-
Vhys  
mV  
nA  
Medium hysteresis  
High hysteresis  
15  
27  
400  
-
-
Static  
600  
Ultra-low-  
power mode  
With 50 kHz ±100 mV  
overdrive square signal  
-
-
-
-
-
1200  
5
-
Static  
7
Comparator consumption Medium  
from VDDA  
IDDA(COMP)  
With 50 kHz ±100 mV  
overdrive square signal  
mode  
6
-
100  
-
µA  
Static  
70  
75  
High-speed  
mode  
With 50 kHz ±100 mV  
overdrive square signal  
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 36: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
154/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
6.3.23  
Temperature sensor characteristics  
Table 85. TS characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VTS linearity with temperature  
-
±1  
2.5  
±2  
2.7  
°C  
mV / °C  
V
Avg_Slope(2) Average slope  
2.3  
V30  
Voltage at 30 °C (±5 °C)(3)  
0.742  
-
0.76  
0.785  
tSTART  
Sensor buffer start-up time in continuous mode(4)  
8
15  
µs  
(TS_BUF)(1)  
Start-up time when entering in continuous mode(4)  
ADC sampling time when reading the temperature  
-
70  
-
120  
-
µs  
µs  
(1)  
tSTART  
(1)  
tS_temp  
5
Temperature sensor consumption from VDD, when  
selected by ADC  
I
DD(TS)(1)  
-
4.7  
7
µA  
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 11:  
Temperature sensor calibration values.  
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.  
6.3.24  
V
monitoring characteristics  
BAT  
(1)  
Table 86. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Resistor bridge for VBAT  
Min  
Typ  
Max  
Unit  
R
Q
-
-
3 x 39  
-
-
kꢀ  
-
Ratio on VBAT measurement  
Error on Q  
3
-
Er(2)  
-10  
12  
10  
-
%
µs  
(2)  
tS_vbat  
ADC sampling time when reading VBAT  
-
1. 1.55 < VBAT < 3.6 V.  
2. Guaranteed by design.  
Table 87. V  
charging characteristics  
BAT  
Symbol  
Parameter Conditions  
Min  
Typ  
5
Max  
Unit  
Battery  
charging  
resistor  
VBRS = 0  
VBRS = 1  
-
-
-
-
RBC  
kꢀ  
1.5  
DS11929 Rev 10  
155/193  
169  
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
6.3.25  
6.3.26  
SMPS step-down converter characteristics  
The SMPS step-down converter characteristic are given at 4 MHz clock, with a 20 mA load  
(unless otherwise specified), using a 10 µH inductor and a 4.7 µF capacitor.  
LCD controller characteristics  
The STM32WB55xx devices embed a built-in step-up converter to provide a constant LCD  
reference voltage independently from the V voltage. An external capacitor C must be  
DD  
ext  
connected to the VLCD pin to decouple this converter.  
(1)  
Table 88. LCD controller characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
LCD external voltage  
-
-
-
-
-
-
-
-
-
-
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
2.62  
2.76  
2.89  
3.04  
3.19  
3.32  
3.46  
3.62  
-
-
-
-
-
-
-
-
V
Buffer OFF   
(BUFEN=0 is LCD_CR register)  
0.2  
-
2
2
-
Cext  
VLCD external capacitance  
μF  
μA  
Buffer ON   
(BUFEN=1 is LCD_CR register)  
1
-
-
-
-
-
-
-
Supply current from VDD at Buffer OFF   
3
VDD = 2.2 V  
(BUFEN=0 is LCD_CR register)  
(2)  
ILCD  
Supply current from VDD at Buffer OFF   
1.5  
0.5  
0.6  
0.8  
1
-
VDD = 3.0 V  
(BUFEN=0 is LCD_CR register)  
Buffer OFF  
(BUFFEN = 0, PON = 0)  
-
Buffer ON  
(BUFFEN = 1, 1/2 Bias)  
-
Supply current from VLCD  
(VLCD = 3 V)  
IVLCD  
μA  
Buffer ON  
(BUFFEN = 1, 1/3 Bias)  
-
Buffer ON  
(BUFFEN = 1, 1/4 Bias)  
-
RHN  
RLN  
Total High resistor value for Low drive resistive network  
Total Low resistor value for High drive resistive network  
-
-
5.5  
-
-
Mꢀ  
kꢀ  
240  
156/193  
DS11929 Rev 10  
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
(1)  
Table 88. LCD controller characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V44  
V34  
V23  
V12  
V13  
V14  
V0  
Segment/Common highest level voltage  
Segment/Common 3/4 level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
-
-
-
-
-
-
-
VLCD  
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
0
-
-
-
-
-
-
-
V
1. Guaranteed by design.  
2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio = 64, all pixels active, no LCD connected.  
6.3.27  
Timer characteristics  
The parameters given in the following tables are guaranteed by design. Refer to  
Section 6.3.17 for details on the input/output alternate function characteristics (output  
compare, input capture, external clock, PWM output).  
(1)  
Table 89. TIMx characteristics  
Symbol  
tres(TIM)  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
-
1
-
Timer resolution time  
fTIMxCLK = 64 MHz  
15.625  
-
fTIMxCLK/2  
40  
-
0
Timer external clock frequency  
on CH1 to CH4  
fEXT  
MHz  
bit  
fTIMxCLK = 64 MHz  
0
TIM1, TIM16, TIM17  
-
16  
ResTIM  
Timer resolution  
TIM2  
-
32  
-
fTIMxCLK = 64 MHz  
-
1
65536  
1024  
tTIMxCLK  
µs  
tTIMxCLK  
s
tCOUNTER  
16-bit counter clock period  
0.015625  
-
-
65536 × 65536  
67.10  
Maximum possible count with  
32-bit counter  
tMAX_COUNT  
fTIMxCLK = 64 MHz  
1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17.  
DS11929 Rev 10  
157/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 90. IWDG min/max timeout period at 32 kHz (LSI1)  
Prescaler divider  
PR[2:0] bits  
Min timeout RL[11:0] = 0x000  
Max timeout RL[11:0] = 0xFFF Unit  
/4  
/8  
0
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
1
/16  
/32  
/64  
/128  
/256  
2
3
4
4096  
8192  
ms  
2.0  
5
4.0  
16384  
32768  
6 or 7  
8.0  
1. The exact timings still depend on the phasing of the APB interface clock vs. the LSI clock, hence there is always a full RC  
period of uncertainty.  
6.3.28  
Clock recovery system (CRS)  
The devices embed a special block for the automatic trimming of the internal 48 MHz  
oscillator to guarantee its optimal accuracy over the whole device operational range.  
This automatic trimming is based on the external synchronization signal, which can be  
derived from USB Sart Of Frame (SOF) signalization, from LSE oscillator, from an external  
signal on CRS_SYNC pin or generated by user software.  
For faster lock-in during startup it is also possible to combine automatic trimming with  
manual trimming action.  
6.3.29  
Communication interfaces characteristics  
I2C interface characteristics  
2
The I2C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): bit rate up to 100 kbit/s  
Fast-mode (Fm): bit rate up to 400 kbit/s  
Fast-mode Plus (Fm+): bit rate up to 1 Mbit/s.  
2
Table 91. Minimum I2CCLK frequency in all I C modes  
Symbol  
Parameter  
Condition  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
9
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
I2CCLK  
frequency  
f(I2CCLK)  
9
MHz  
19  
16  
Fast-mode Plus  
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (see the reference manual).  
158/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
The SDA and SCL I/O requirements are met with the following restriction: the SDA and SCL  
I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present. The 20 mA output drive  
DD  
requirement in Fast-mode Plus is supported partially.  
This limits the maximum load C  
supported in Fast-mode Plus, given by these formulas:  
load  
t (SDA/SCL) = 0.8473 x R x C  
r p load  
R (min) = [V - V (max)] / I (max)  
p
DD  
OL  
OL  
where R is the I2C lines pull-up. Refer to Section 6.3.17 for the I2C I/Os characteristics.  
p
All I2C SDA and SCL I/Os embed an analog filter, refer to Table 92 for its characteristics.  
(1)  
Table 92. I2C analog filter characteristics  
Symbol  
Parameter  
Min  
Max  
Unit  
Maximum pulse width of spikes that  
are suppressed by the analog filter  
tAF  
50(2)  
110(3)  
ns  
1. Guaranteed by design.  
2. Spikes with widths below tAF(min) are filtered.  
3. Spikes with widths above tAF(max) are not filtered  
SPI characteristics  
Unless otherwise specified, the parameters given in Table 93 for SPI are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 24: General operating conditions.  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics  
(NSS, SCK, MOSI, MISO for SPI).  
DS11929 Rev 10  
159/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 93. SPI characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Master mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
32  
Master transmitter mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
32  
32  
Slave receiver mode  
1.65 < VDD < 3.6 V  
Voltage Range 1  
fSCK  
1/tc(SCK)  
SPI clock frequency  
-
-
MHz  
Slave mode transmitter/full duplex  
2.7 < VDD < 3.6 V  
32(2)  
Voltage Range 1  
Slave mode transmitter/full duplex  
1.65 < VDD < 3.6 V  
20.5(2)  
Voltage Range 1  
Voltage Range 2  
8
-
tsu(NSS) NSS setup time  
th(NSS) NSS hold time  
tw(SCKH)  
Slave mode, SPI prescaler = 2  
Slave mode, SPI prescaler = 2  
4xTPCLK  
2xTPCLK  
-
-
-
-
SCK high and low time  
Master mode  
TPCLK - 1.5  
TPCLK  
TPCLK + 1  
tw(SCKL)  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
1.5  
1
-
-
-
-
-
-
-
-
Data input setup time  
Data input hold time  
5
-
ns  
th(SI)  
1
-
ta(SO) Data output access time  
tdis(SO) Data output disable time  
9
34  
16  
Slave mode  
9
Slave mode 2.7 < VDD < 3.6 V  
Voltage Range 1  
-
-
-
14.5  
15.5  
19.5  
15.5  
24  
Slave mode 1.65 < VDD < 3.6 V  
Voltage Range 1  
tv(SO)  
Data output valid time  
Slave mode 1.65 < VDD < 3.6 V  
Voltage Range 2  
ns  
26  
tv(MO)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
2.5  
3
-
th(SO)  
8
1
-
-
Data output hold time  
th(MO)  
-
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit into SCK low  
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50 %.  
160/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 31. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
MISO  
MSB OUT  
BIT6 OUT  
BIT1 IN  
LSB OUT  
OUTPUT  
(SI)  
MOSI  
INPUT  
LSB IN  
MSB IN  
(SI)  
Figure 32. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tSU(NSS)  
th(NSS)  
tc(SCK)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(SO)  
tdis(SO)  
tv(SO)  
ta(SO)  
MISO  
MSB OUT  
MSB IN  
BIT6 OUT  
LSB OUT  
OUTPUT  
th(SI)  
tsu(SI)  
MOSI  
INPUT  
LSB IN  
BIT 1 IN  
ai14135b  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DS11929 Rev 10  
161/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
Figure 33. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
162/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Quad-SPI characteristics  
Unless otherwise specified, the parameters given in Table 94 and Table 95 for Quad-SPI  
are derived from tests performed under the ambient temperature, f frequency and V  
AHB  
DD  
supply voltage conditions summarized in Table 24: General operating conditions, with the  
following configuration:  
Output speed is set to OSPEEDRy[1:0] = 11  
Capacitive load C = 15 or 20 pF  
Measurement points are set at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17 for more details on the input/output alternate function  
characteristics.  
(1)  
Table 94. Quad-SPI characteristics in SDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.65 < VDD< 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
40  
1.65 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
-
-
-
-
-
-
48  
60  
16  
FCK  
Quad-SPI  
clock frequency  
MHz  
1/t(CK)  
2.7 < VDD< 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.65 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
tw(CKH)  
tw(CKL)  
t
(CK)/2 - 0.5  
-
-
t(CK)/2 + 1  
Quad-SPI clock  
high and low time  
f
AHBCLK= 48 MHz, presc=1  
t(CK)/2 - 1  
t(CK)/2 + 0.5  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
2
3.5  
4.5  
6
-
-
ts(IN)  
Data input setup time  
Data input hold time  
-
-
-
-
-
th(IN)  
ns  
-
-
1
1
-
1.5  
1.5  
-
tv(OUT) Data output valid time  
th(OUT) Data output hold time  
-
0
0
-
-
1. Guaranteed by characterization results.  
DS11929 Rev 10  
163/193  
169  
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 95. Quad-SPI characteristics in DDR mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1.65 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
40  
2.0 < VDD < 3.6 V, CLOAD = 20 pF  
Voltage Range 1  
-
-
-
-
-
50  
48  
16  
FCK  
Quad-SPI clock  
frequency  
MHz  
1/t(CK)  
1.65 < VDD < 3.6 V, CLOAD = 15 pF  
Voltage Range 1  
1.65 < VDD < 3.6 V CLOAD = 20 pF  
Voltage Range 2  
-
tw(CKH)  
t
(CK)/2  
-
-
t(CK)/2 + 1  
t(CK)/2  
Quad-SPI clock  
high and low time  
fAHBCLK = 48 MHz, presc=0  
tw(CKL)  
t(CK)/2 - 1  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
2.5  
3.5  
2.5  
1.5  
5.5  
6.5  
5
Data input setup  
time on rising edge  
tsr(IN)  
tsf(IN)  
thr(IN)  
thf(IN)  
-
-
-
-
-
-
Data input setup  
time on falling edge  
Data input hold  
time on rising edge  
Data input hold  
time on falling edge  
-
-
6
DHHC=0  
Voltage Range 1  
4
5.5  
ns  
Data output valid  
time on rising edge  
tvr(OUT)  
tvf(OUT)  
thr(OUT)  
thf(OUT)  
DHHC=1  
-
t(CK)/2 + 1 t(CK)/2 + 1.5  
Voltage Range 2  
4.5  
4
7
6
DHHC=0  
Voltage Range 1  
Data output valid  
time on falling edge  
DHHC=1  
-
t(CK)/2 + 1 t(CK)/2 + 2  
Voltage Range 2  
6
-
-
-
-
-
-
7.5  
DHHC=0  
2
-
-
-
-
-
-
Voltage Range 1  
Data output hold  
time on rising edge  
DHHC=1 t(CK)/2 + 0.5  
3.5  
Voltage Range 2  
Voltage Range 1  
Voltage Range 2  
DHHC=0  
3
Data output hold  
time on falling edge  
DHHC=1 t(CK)/2 + 0.5  
5
1. Guaranteed by characterization results.  
164/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 34. Quad-SPI timing diagram - SDR mode  
tr(CK)  
t(CK)  
tw(CKH)  
tw(CKL)  
tf(CK)  
Clock  
tv(OUT)  
th(OUT)  
Data output  
D0  
D1  
D2  
ts(IN)  
th(IN)  
Data input  
D0  
D1  
D2  
MSv36878V1  
Figure 35. Quad-SPI timing diagram - DDR mode  
tr(CLK)  
t(CLK)  
tw(CLKH)  
tw(CLKL)  
tf(CLK)  
Clock  
tvf(OUT) thr(OUT)  
IO0  
tvr(OUT)  
thf(OUT)  
IO3  
Data output  
IO1  
IO2  
IO4  
tsr(IN)thr(IN)  
IO5  
tsf(IN) thf(IN)  
Data input  
IO0  
IO1  
IO2  
IO3  
IO4  
IO5  
MSv36879V3  
SAI characteristics  
Unless otherwise specified, the parameters given in Table 96 for SAI are derived  
from tests performed under the ambient temperature, fPCLKx frequency and VDD  
supply voltage conditions summarized inTable 24: General operating conditions, with  
the following configuration:  
Output speed is set to OSPEEDRy[1:0] = 10  
Capacitive load C = 30 pF  
Measurement are performed at CMOS levels: 0.5 V  
DD  
Refer to Section 6.3.17 for more details on the input/output alternate function  
characteristics (CK,SD,FS).  
DS11929 Rev 10  
165/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
(1)  
Table 96. SAI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
fMCLK  
SAI main clock output  
-
-
50  
Master transmitter  
2.7 V VDD 3.6 V  
Voltage Range 1  
-
23.5  
16  
Master transmitter  
1.65 V VDD 3.6 V  
Voltage Range 1  
-
-
-
Master receiver  
Voltage Range 1  
16  
MHz  
fCK  
SAI clock frequency(2) Slave transmitter  
2.7 V VDD 3.6 V  
26  
20  
Voltage Range 1  
Slave transmitter  
1.65 V VDD 3.6 V  
Voltage Range 1  
-
Slave receiver  
Voltage Range 1  
-
-
-
32  
8
Voltage Range 2  
Master mode  
2.7 V VDD 3.6 V  
21  
tv(FS)  
FS valid time  
Master mode  
-
30  
1.65 V VDD 3.6 V  
th(FS)  
tsu(FS)  
FS hold time  
FS setup time  
FS hold time  
Master mode  
Slave mode  
10  
1.5  
2.5  
1
-
-
-
-
-
-
th(FS)  
Slave mode  
tsu(SD_A_MR)  
tsu(SD_B_SR)  
th(SD_A_MR)  
th(SD_B_SR)  
Master receiver  
Slave receiver  
Master receiver  
Slave receiver  
Data input setup time  
Data input hold time  
1.5  
6.5  
2.5  
ns  
-
Slave transmitter (after enable edge)  
2.7 V VDD 3.6 V  
-
19  
tv(SD_B_ST) Data output valid time  
Slave transmitter (after enable edge)  
1.65 V VDD 3.6 V  
-
10  
-
25  
-
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge)  
Master transmitter (after enable edge)  
2.7 V VDD 3.6 V  
18.5  
tv(SD_A_MT) Data output valid time  
Master transmitter (after enable edge)  
1.65 V VDD 3.6 V  
-
25  
-
th(SD_A_MT) Data output hold time Master transmitter (after enable edge)  
10  
1. Guaranteed by characterization results.  
2. APB clock frequency must be at least twice SAI clock frequency.  
166/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Figure 36. SAI master timing waveforms  
1/f  
SCK  
SAI_SCK_X  
SAI_FS_X  
t
h(FS)  
(output)  
t
t
t
h(SD_MT)  
v(FS)  
v(SD_MT)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_MR)  
su(SD_MR)  
SAI_SD_X  
(receive)  
Slot n  
MS32771V1  
Figure 37. SAI slave timing waveforms  
1/f  
SCK  
SAI_SCK_X  
t
t
t
h(FS)  
w(CKH_X)  
w(CKL_X)  
SAI_FS_X  
(input)  
t
t
t
h(SD_ST)  
su(FS)  
v(SD_ST)  
SAI_SD_X  
(transmit)  
Slot n  
Slot n+2  
t
t
h(SD_SR)  
su(SD_SR)  
SAI_SD_X  
(receive)  
Slot n  
MS32772V1  
DS11929 Rev 10  
167/193  
169  
 
 
Electrical characteristics  
STM32WB55xx STM32WB35xx  
USB characteristics  
The STM32WB55xx and STM32WB35xx USB interface is fully compliant with the USB  
specification version 2.0, and is USB-IF certified (for Full-speed device operation).  
(1)  
Table 97. USB electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDDUSB USB transceiver operating voltage  
-
3.0(2)  
-
3.6  
85  
V
USB crystal-less  
Tcrystal_less  
-
-
-15  
-
°C  
operation temperature  
Embedded USB_DP pull-up value  
during idle  
RPUI  
900  
1250 1600  
Embedded USB_DP pull-up value  
during reception  
RPUR  
-
1400 2300 3200  
28 36 44  
(3)  
ZDRV  
Output driver impedance(4)  
Driving high and low  
1. TA = -40 to 125 °C unless otherwise specified.  
2. The STM32WB55xx and STM32WB35xx USB functionality is ensured down to 2.7 V, but the full USB  
electrical characteristics are degraded in the 2.7 to 3.0 V voltage range.  
3. Guaranteed by design.  
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching  
impedance is already included in the embedded driver.  
JTAG/SWD interface characteristics  
Unless otherwise specified, the parameters given in Table 98 and Table 99 are derived from  
tests performed under the ambient temperature, f frequency and supply voltage  
PCLKx  
conditions summarized in Table 24: General operating conditions, with the following  
configuration:  
Capacitive load C = 30 pF  
Measurement points are done at CMOS levels: 0.5 V  
DD  
Table 98. JTAG characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
2.7 < VDD < 3.6 V  
-
-
-
29  
1/tc(TCK)  
TCK clock frequency  
MHz  
1.65 < VDD < 3.6 V  
-
21  
tisu(TMS)  
tih(TMS)  
tisu(TDI)  
tih(TDI)  
TMS input setup time  
TMS input hold time  
TDI input setup time  
TDI input hold time  
-
2.5  
2
-
-
-
-
-
-
1.5  
2
-
-
-
-
-
ns  
2.7 < VDD < 3.6 V  
1.65 < VDD < 3.6 V  
-
-
13.5  
13.5  
-
16.5  
23  
-
tov(TDO)  
toh(TDO)  
TDO output valid time  
TDO output hold time  
-
11  
168/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Electrical characteristics  
Table 99. SWD characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
2.7 < VDD < 3.6 V  
-
-
-
-
55  
35  
-
1/tc(SWCLK) SWCLK clock frequency  
MHz  
1.65 < VDD < 3.6 V  
tisu(TMS)  
tih(TMS)  
SWDIO input setup time  
SWDIO input hold time  
-
2.5  
2
-
-
-
-
2.7 < VDD < 3.6 V  
1.65 < VDD < 3.6 V  
-
-
16  
16  
-
18  
28  
-
ns  
tov(TDO)  
toh(TDO)  
SWDIO output valid time  
SWDIO output hold time  
-
13  
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics  
(CK, SD, WS).  
DS11929 Rev 10  
169/193  
169  
 
Package information  
STM32WB55xx STM32WB35xx  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK is an ST trademark.  
7.1  
UFBGA129 package information  
This UFBGA is a 129-ball, 7 x 7 mm, 0.5 mm fine pitch, square ball grid array package.  
Figure 38. UFBGA129 package outline  
SEATING  
PLANE  
A4  
A1 corner index area  
B
A2  
A
B
C
D
E
F
G
H J K L M  
N
b
1
2
e
3
4
5
6
7
8
E
E1  
9
10  
11  
12  
13  
b (129 balls)  
A
B
eee  
C
M
M
C
f f f  
F
e
F
A1  
A
D1  
D
ddd  
C
BOTTOM VIEW  
B09R_UFBGA129_ME_V2  
1. Drawing is not to scale.  
2. - The terminal A1 corner must be identified on the top surface by using a corner chamfer,  
ink or metalized markings, or other feature of package body or integral heat slug.  
- A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1  
corner. Exact shape of each corner is optional.  
Table 100. UFBGA129 mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A(2)  
A1  
-
-
0.60  
0.11  
-
-
-
0.024  
-
-
-
-
0.004  
A2  
-
-
0.13  
0.32  
0.29  
-
-
0.005  
0.013  
0.011  
-
-
A4  
-
b(3)  
0.24  
0.34  
0.009  
0.013  
170/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Package information  
Table 100. UFBGA129 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
D
E
6.85  
7.00  
7.00  
6.00  
6.00  
0.50  
0.50  
-
7.15  
0.270  
0.276  
0.276  
0.236  
0.236  
0.020  
0.020  
-
0.281  
6.85  
7.15  
0.270  
0.281  
D1  
E1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e
-
-
F
-
-
ddd  
eee(4)  
fff(5)  
0.08  
0.15  
0.05  
0.003  
0.006  
0.002  
-
-
-
-
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. - UFBGA stands for Ultra Thin Profile Fine Pitch Ball Grid Array.  
- Ultra thin profile: 0.50 < A 0.65mm / Fine pitch: e < 1.00mm pitch.  
- The total profile height (Dim A) is measured from the seating plane to the top of the component  
- The maximum total package height is calculated by the following methodology:  
A Max = A1 Typ + A2 Typ + A4 Typ + (A1²+A2²+A4² tolerance values).  
3. The typical balls diameters before mounting is 0.20 mm.  
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B.  
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true  
position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball  
must lie within this tolerance zone.  
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.  
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position  
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each  
tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball  
must lie simultaneously in both tolerance zones.  
Figure 39. UFBGA129 recommended footprint  
Dpad  
Dsm  
BGA_WLCSP_FT_V1  
DS11929 Rev 10  
171/193  
185  
 
Package information  
STM32WB55xx STM32WB35xx  
Table 101. UFBGA129 recommended PCB design rules  
Dimension Recommended values  
Pitch  
0.5 mm  
Dpad  
0,360 mm  
Dsm  
0.460 mm typ. (depends on soldermask registration tolerance)  
Stencil opening  
Stencil thickness  
0.360 mm  
0.100 mm  
Device marking for UFBGA129  
Figure 40 gives an example of topside marking orientation versus pin 1 identifier location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 40. UFBGA129 marking example (package top view)  
STM32WB  
Product identification(1)  
55V  
Additional  
information  
Y WW Y  
Pin 1 identifier  
Date code  
MS53511V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
172/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Package information  
7.2  
WLCSP100 package information  
WLCSP100 is a 100-ball, 4.390 x 4.371 mm, 0.4 mm pitch, wafer level chip scale package.  
Figure 41. WLCSP100 outline  
e1  
A1  
A1 BALL LOCATION  
F
10  
1
G
e
A
DETAIL A  
e4  
e2  
E
E
K
K
e
e3  
H
A
D
D
A2  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
A3  
A2  
BUMP  
FRONT VIEW  
A1  
SEATING PLANE  
DETAIL A  
ROTATED 90  
A08S_WLCSP100_ME_V1  
DS11929 Rev 10  
173/193  
185  
 
 
Package information  
STM32WB55xx STM32WB35xx  
Table 102. WLCSP100 mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A2  
A3  
b
-
-
0.18  
0.38  
0.025(2)  
0.25  
4.40  
4.38  
0.40  
3.60  
3.60  
0.08  
0.08  
0.480(3)  
0.306(3)  
0.32  
0.47  
-
0.59  
-
-
0.023  
-
-
-
0.007  
0.015  
0.001  
0.010  
0.1728  
0.1721  
0.0157  
0.1417  
0.1417  
0.0031  
0.0033  
0.0187  
0.0119  
0.0124  
0.0185  
-
-
-
-
-
-
-
-
-
-
0.22  
0.28  
0.009  
0.0110  
D
4.38  
4.42  
0.1715  
0.1742  
E
4.36  
4.40  
0.1707  
0.1735  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
e1  
e2  
e3  
e4  
F
-
-
-
-
-
-
-
-
-
-
G
-
-
H
-
-
K
-
-
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.10  
0.05  
0.05  
0.0039  
0.0039  
0.0039  
0.0020  
0.0020  
-
-
-
-
-
-
-
-
1. Values in inches are converted from mm and rounded to the third decimal place.  
2. Nominal dimension rounded to the third decimal place results from process capability.  
3. Calculated dimensions are rounded to third decimal place.  
174/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Package information  
Figure 42. WLCSP100 recommended footprint  
Dpad  
Dsm  
A08S_WLCSP100_FP_V1  
1. Dimensions are expressed in millimeters.  
Table 103. WLCSP100 recommended PCB design rules  
Dimension Recommended values  
Pitch  
0.4 mm  
Dpad  
0.225 mm  
Dsm  
0.290 mm typ. (depends on the soldermask registration tolerance)  
Stencil opening  
Stencil thickness  
0.250 mm  
0.100 mm  
Device marking for WLCSP100  
Figure 43 gives an example of topside marking orientation versus pin 1 identifier location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
DS11929 Rev 10  
175/193  
185  
 
 
Package information  
STM32WB55xx STM32WB35xx  
Figure 43. WLCSP100 marking example (package top view)  
Pin 1 identifier  
WB55V  
Product  
identification(1)  
Y ww Y  
Date code  
MS53512V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
176/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Package information  
7.3  
VFQFPN68 package information  
VFQFPN68 is a 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package.  
Figure 44. VFQFPN68 package outline  
PIN 1 IDENTIFIER  
LASER MARKING  
ddd C  
D
A
A1  
68 67  
A2  
1
2
E
E
0.10 C  
(2X)  
SEATING  
PLANE  
C
TOP VIEW  
D2  
SIDE VIEW  
L
E2  
2
1
PIN 1 ID  
C 0.30 X 45'  
68 67  
b
e
EXPOSED PAD AREA  
B029_VFQFPN68_ME_V1  
BOTTOM VIEW  
1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed  
version. Very thin profile: 0.80 < A 1.00 mm.  
2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other  
feature of package body. Exact shape and size of this feature is optional.  
Table 104. VFQFPN68 mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A
A1  
A3  
b
0.80  
0
0.90  
0.02  
0.20  
0.20  
8.00  
6.40  
1.00  
0.05  
-
0.0315  
0
0.0354  
0.0008  
0.0008  
0.0079  
0.3150  
0.2520  
0.0394  
0.0020  
-
-
-
0.15  
7.85  
6.30  
0.25  
8.15  
6.50  
0.0059  
0.3091  
0.2480  
0.0098  
0.3209  
0.2559  
D
D2  
DS11929 Rev 10  
177/193  
185  
 
 
 
Package information  
STM32WB55xx STM32WB35xx  
Table 104. VFQFPN68 mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
E
E2  
e
7.85  
6.30  
-
8.00  
6.40  
0.40  
0.50  
-
8.15  
6.50  
-
0.3091  
0.3150  
0.2520  
0.0157  
0.0197  
-
0.3209  
0.2559  
-
0.2480  
-
L
0.40  
-
0.60  
0.08  
0.0157  
-
0.0236  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Figure 45. VFQFPN68 recommended footprint  
8.30  
7.00  
6.65  
6.40  
0.40  
0.15  
0.25  
0.82  
0.65  
B029_VFQFPN68_FP_V2  
1. Dimensions are expressed in millimeters.  
Device marking for VFQFPN68  
Figure 45 gives an example of topside marking orientation versus pin 1 identifier location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
178/193  
DS11929 Rev 10  
 
STM32WB55xx STM32WB35xx  
Package information  
Figure 46. VFQFPN68 marking example (package top view)  
STM32WB55  
Product  
identification(1)  
R
Y
Pin 1 identifier  
MS53514V1  
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified  
and therefore not approved for use in production. ST is not responsible for any consequences resulting  
from such use. In no event will ST be liable for the customer using any of these engineering samples in  
production. ST’s Quality department must be contacted prior to any decision to use these engineering  
samples to run a qualification activity.  
DS11929 Rev 10  
179/193  
185  
 
Package information  
STM32WB55xx STM32WB35xx  
7.4  
UFQFPN48 package information  
UFQFPN48 is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.  
Figure 47. UFQFPN48 outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package, it must be electrically connected to  
the PCB ground.  
180/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Package information  
inches(1)  
Table 105. UFQFPN48 mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to four decimal digits.  
Figure 48. UFQFPN48 recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
DS11929 Rev 10  
181/193  
185  
 
 
Package information  
STM32WB55xx STM32WB35xx  
Device marking for UFQFPN48  
Figure 49 and Figure 50 give examples of topside marking orientation versus pin 1 identifier  
location. The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 49. STM32WB55xx UFQFPN48 marking example (package top view)  
STM32WB55  
Product  
identification(1)  
CGU6  
Date code  
Y
WW  
Pin 1 identifier  
Y
Revision code  
MS51581V2  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
Figure 50. STM32WB35xx UFQFPN48 marking example (package top view)  
STM32WB35  
Product  
identification(1)  
CCU6  
Date code  
Y
WW  
Pin 1 identifier  
A
Revision code  
MS53143V2  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
182/193  
DS11929 Rev 10  
 
 
 
 
STM32WB55xx STM32WB35xx  
Package information  
7.5  
Thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 24: General operating conditions.  
The maximum chip-junction temperature, T max, in degrees Celsius, can be calculated  
J
using the equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C / W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watt. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins:  
I/O  
P
max = Σ (V × I ) + Σ ((V – V ) × I  
)
I/O  
OL  
OL  
DD  
OH  
OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Note:  
When the SMPS is used, a portion of the power consumption is dissipated into the external  
inductor, therefore reducing the chip power dissipation. This portion depends mainly on the  
inductor ESR characteristics.  
Note:  
Note:  
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the  
chip power consumption.  
RF characteristics (such as sensitivity, Tx power, consumption) are provided up to 85 °C.  
Table 106. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
24.9  
UFQFPN48 - 7 mm x 7 mm  
Thermal resistance junction-ambient  
47.0  
35.8  
41.5  
13.0  
36.1  
N/A  
VFQFPN68 - 8 mm x 8 mm  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
WLCSP100 - 0.4 mm pitch  
Thermal resistance junction-ambient  
UFBGA129 - 0.5 mm pitch  
Thermal resistance junction-board  
UFQFPN48 - 7 mm x 7 mm  
Thermal resistance junction-board  
VFQFPN68 - 8 mm x 8 mm  
ΘJB  
°C/W  
Thermal resistance junction-board  
WLCSP100 - 0.4 mm pitch  
Thermal resistance junction-board  
16.2  
UFBGA129 - 0.5 mm pitch  
DS11929 Rev 10  
183/193  
185  
 
 
 
 
Package information  
STM32WB55xx STM32WB35xx  
Table 106. Package thermal characteristics (continued)  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-case  
1.3  
UFQFPN48 - 7 mm x 7 mm  
Thermal resistance junction-case  
13.7  
N/A  
VFQFPN68 - 8 mm x 8 mm  
ΘJC  
°C/W  
Thermal resistance junction-case  
WLCSP100 - 0.4 mm pitch  
Thermal resistance junction-case  
34.9  
UFBGA129 - 0.5 mm pitch  
7.5.1  
7.5.2  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the ordering  
information scheme shown in Section 8.  
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at  
maximum dissipation and, to a specific maximum junction temperature.  
As applications do not commonly use the device at maximum dissipation, it is useful to  
calculate the exact power consumption and junction temperature to determine which  
temperature range is best suited to the application.  
The following examples show how to calculate the temperature range needed for a given  
application.  
Example 1: High-performance application  
Assuming the following application conditions:  
Maximum ambient temperature T max = 82 °C (measured according to JESD51-2),  
A
I
max = 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at  
DD  
DD  
low level with I = 8 mA, V = 0.4 V and maximum 8 I/Os used at the same time in  
OL  
OL  
output at low level with I = 20 mA, V = 1.3 V  
OL  
OL  
P
P
max = 50 mA × 3.5 V = 175 mW  
INT  
max = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW  
IO  
This gives: P  
max = 175 mW and P max = 272 mW  
IO  
INT  
P max = 175 + 272 = 447 mW  
D
Using the values obtained in Table 106 T max is calculated as follows:  
J
For VFQFPN68, 47 °C / W  
T max = 82 °C + (47 °C / W × 447 mW) = 82 °C + 21 °C = 103 °C  
J
This is within the range of the suffix 6 version parts (–40 < T < 105 °C), see Section 8.  
J
In this case, parts must be ordered at least with the temperature range suffix 6.  
184/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Package information  
Note:  
With this given P max user can find the T max allowed for a given device temperature  
D
A
range (order code suffix 7).  
Suffix 7: T max = T max - (47 °C / W × 447 mW) = 125 °C - 21 °C = 103 °C  
A
J
Example 2: High-temperature application  
Using the same rules, it is possible to address applications running at high ambient  
temperatures with a low dissipation, as long as junction temperature T remains within the  
J
specified range.  
Assuming the following application conditions:  
Maximum ambient temperature T max = 100 °C (measured according to JESD51-2),  
A
I
max = 50 mA, V = 3.5 V, maximum 20 I/Os used at the same time in output at  
DD  
DD  
low level with I = 8 mA, V = 0.4 V  
OL  
OL  
P
P
max = 50 mA × 3.5 V = 175 mW  
INT  
max = 20 × 8 mA × 0.4 V = 64 mW  
IO  
This gives: P  
= 175 mW and P max = 64 mW  
IO  
INTmax  
P max = 175 + 64 = 239 mW  
D
Thus: P max = 239 mW  
D
Using the values obtained in Table 106 T max is calculated as follows:  
J
For UFQFPN48, 24.9 °C / W  
T max = 100 °C + (24.9 °C / W × 239 mW) = 100 °C + 6 °C = 106 °C  
J
This is above the range of the suffix 6 version parts (–40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 7 (see  
Section 8), unless user reduces the power dissipation to be able to use suffix 6 parts.  
DS11929 Rev 10  
185/193  
185  
Ordering information  
STM32WB55xx STM32WB35xx  
8
Ordering information  
Example:  
STM32  
WB  
55  
V
G
V
6 A TR  
Device family  
®
STM32 = Arm based 32-bit microcontroller  
Product type  
®
WB = Wireless Bluetooth  
Device subfamily  
55 = Die 5, full set of features  
35 = Die 3, full set of features(1)  
Pin count  
C = 48 pins  
R = 68 pins  
V = 100 or 129 pins  
Flash memory size  
C = 256 Kbytes  
E = 512 Kbytes  
Y
(2) = 640 Kbytes  
G = 1 Mbyte  
Package  
U = UFQFPN48 7 x 7 mm  
V = VFQFPN68 8 x 8 mm  
Y = WLCSP100 0.4 mm pitch  
Q = UFBGA129 0.5 mm pitch  
Temperature range  
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)  
7 = Industrial temperature range, -40 to 105 °C (125 °C junction)  
Identification code  
A = Proprietary identification code  
blank = Non-proprietary identification code  
Packing  
TR = tape and reel  
xxx = programmed parts  
1. STM32WB35xx only available with 48-pin UFQFPN48 package, 256 or 512 Kbytes Flash  
memory.  
2. Only STM32WB55VY, WLCSP100 package, temperature range -40 to 85 °C (105 °C junction).  
186/193  
DS11929 Rev 10  
 
 
STM32WB55xx STM32WB35xx  
Revision history  
9
Revision history  
Table 107. Document revision history  
Changes  
Date  
Revision  
25-Jul-2017  
1
Initial release.  
Updated document title, Features, Section 1: Introduction, Section 2:  
Description, Section 3.1: Architecture, Section 3.3.2: Memory protection  
unit, Section 3.3.3: Embedded Flash memory, Section 3.4: Security and  
safety, Section 3.6: RF subsystem, Section 3.6.1: RF front-end block  
diagram, Section 3.6.2: BLE general description, Section 3.7.1: Power  
supply distribution, Section 3.7.2: Power supply schemes, Section 3.7.4:  
Power supply supervisor, Section 3.10: Clocks and startup, Section 3.14:  
Analog to digital converter (ADC), Section 3.19: True random number  
generator (RNG), Section 5: Memory mapping, Section 6.3.25: SMPS  
step-down converter characteristics and Section 7.5.2: Selecting the  
product temperature range.  
Updated Table 2: STM32WB55xx devices features and peripheral  
counts, Table 6: Power supply typical components, Table 7: Features  
over all modes, Table 8: STM32WB55xx modes overview, Table 13:  
Timer features, Table 15: Legend/abbreviations used in the pinout table,  
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate  
functions, Table 23: RF transmitter BLE characteristics, Table 26: RF  
receiver BLE characteristics (1 Mbps) and added footnote to it, Table 28:  
RF BLE power consumption for VDD = 3.3 V, Table 31: RF 802.15.4  
power consumption for VDD = 3.3 V, Table 37: Typical current  
consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,  
Table 38: Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1, VDD = 3.3 V, Table 40:  
Current consumption in Low-power sleep modes, Flash memory in Power  
down, Table 41: Current consumption in Stop 2 mode, Table 42: Current  
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0  
mode, Table 44: Current consumption in Standby mode, Table 45:  
Current consumption in Shutdown mode, Table 48: Peripheral current  
consumption, Table 104: Package thermal characteristics and Table 97:  
STM32WB55xx ordering information scheme.  
04-Apr-2018  
2
Added Table 47: Current under Reset condition.  
Updated Figure 1: STM32WB55xx block diagram, Figure 2:  
STM32WB55xx RF front-end block diagram, Figure 4: Power distribution,  
Figure 6: Power supply overview, Figure 7: Clock tree, Figure 8:  
STM32WB55Cx UFQFPN48 pinout(1)(2), Figure 9: STM32WB55Rx  
VFQFPN68 pinout(1)(2), Figure 10: STM32WB55Vx WLCSP100 ballout(1)  
and Figure 14: Power supply scheme (all packages except UFBGA129).  
DS11929 Rev 10  
187/193  
192  
 
 
Revision history  
STM32WB55xx STM32WB35xx  
Table 107. Document revision history (continued)  
Date  
Revision  
Changes  
Changed document classification to Public.  
Updated Features, Section 3.6.2: BLE general description, Section 3.7.2:  
Power supply schemes, Section 3.7.3: Linear voltage regulator,  
Section 3.10: Clocks and startup, Section 6.3.10: External clock source  
characteristics, Section 6.3.20: Analog-to-Digital converter  
characteristics, Section 6.3.29: Communication interfaces characteristics,  
Section 7.2: WLCSP100 package information and Section 7.5: Thermal  
characteristics.  
Replaced VDDIOx with VDD throughout the whole document.  
Updated Table 5: Typical external components, footnote 2 of Table 7:  
Features over all modes, Table 8: STM32WB55xx modes overview and  
its footnote 5, Table 12: Internal voltage reference calibration values,  
Table 16: STM32WB55xx pin and ball definitions and its footnote 6,  
Table 17: Alternate functions, Table 20: Thermal characteristics,  
Table 21: Main performance at VDD = 3.3 V, Table 21: Main performance  
at VDD = 3.3 V, Table 22: General operating conditions, Table 23: RF  
transmitter BLE characteristics and its footnote, Table 26: RF receiver  
BLE characteristics (1 Mbps), Table 28: RF BLE power consumption for  
VDD = 3.3 V, Table 29: RF transmitter 802.15.4 characteristics and its  
footnote 1, Table 30: RF receiver 802.15.4 characteristics, Table 31: RF  
802.15.4 power consumption for VDD = 3.3 V, Table 34: Embedded  
internal voltage reference, Table 35: Current consumption in Run and  
Low-power run modes, code with data processing running from Flash,  
ART enable (Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current  
consumption in Run and Low-power run modes, code with data  
processing running from SRAM1, VDD = 3.3 V, Table 37: Typical current  
consumption in Run and Low-power run modes, with different codes  
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,  
Table 38: Typical current consumption in Run and Low-power run modes,  
with different codes running from SRAM1, VDD = 3.3 V, Table 39:  
Current consumption in Sleep and Low-power sleep modes, Flash  
memory ON, Table 40: Current consumption in Low-power sleep modes,  
Flash memory in Power down, Table 41: Current consumption in Stop 2  
mode, Table 42: Current consumption in Stop 1 mode, Table 43: Current  
consumption in Stop 0 mode, Table 44: Current consumption in Standby  
mode, Table 45: Current consumption in Shutdown mode, Table 46:  
Current consumption in VBAT mode, Table 47: Current under Reset  
condition, Table 48: Peripheral current consumption, Table 49: Low-  
power mode wakeup timings, Table 50: Regulator modes transition times,  
Table 51: Wakeup time using LPUART, Table 53: HSE clock source  
requirements and added footnote to it, Table 61: LSI2 oscillator  
characteristics, Table 63: Flash memory characteristics, Table 65: EMS  
characteristics, Table 67: ESD absolute maximum ratings, Table 69: I/O  
current injection susceptibility, Table 70: I/O static characteristics and its  
footnotes, Table 71: Output voltage characteristics, Table 72: I/O AC  
characteristics and its footnotes 1 and 2, Table 73: NRST pin  
08-Oct-2018  
3
characteristics, Table 77: ADC accuracy - Limited test conditions 1,  
Table 78: ADC accuracy - Limited test conditions 2, Table 79: ADC  
accuracy - Limited test conditions 3, Table 80: ADC accuracy - Limited  
test conditions 4, Table 82: COMP characteristics, Table 90: I2C analog  
filter characteristics, Table 91: SPI characteristics, Table 92: Quad-SPI  
characteristics in SDR mode, Table 93: Quad-SPI characteristics in DDR  
mode and Table 94: SAI characteristics.  
188/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Revision history  
Table 107. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Figure 2: STM32WB55xx RF front-end block diagram,  
Figure 14: Power supply scheme (all packages except UFBGA129),  
Figure 18: Typical energy detection (T = 27°C, VDD = 3.3 V) and  
Figure 25: I/O input characteristics.  
Added Figure 5: Power-up/down sequence, Figure 17: Typical link quality  
indicator code vs. Rx level and Figure 18: Typical energy detection (T =  
27°C, VDD = 3.3 V).  
3
08-Oct-2018  
(cont’d) Added Table 24: RF transmitter BLE characteristics (1 Mbps), Table 25:  
RF transmitter BLE characteristics (2 Mbps), Table 27: RF receiver BLE  
characteristics (2 Mbps), Table 52: HSE crystal requirements and  
Table 89: Minimum I2CCLK frequency in all I2C modes.  
Added Device marking for UFQFPN48.  
Removed former Figure 22: I/O AC characteristics definition(1) and  
Figure 27: SMPS efficiency - VDDSMPS = 3.6 V.  
Updated document title.  
Product status moved to Production data.  
Introduced BGA129 package, hence updated image on cover page,  
Table 16: STM32WB55xx pin and ball definitions and Section 8: Ordering  
information, and added Figure 11: STM32WB55Vx UFBGA129 ballout(1)  
and Section 7.1: UFBGA129 package information.  
Updated Features, Section 3.3.4: Embedded SRAM, Section 3.17: Touch  
sensing controller (TSC) and Section 3.24: Low-power universal  
asynchronous receiver transmitter (LPUART).  
20-Feb-2019  
4
Added Section 6.3.28: Clock recovery system (CRS).  
Added Table 76: ADC sampling time.  
Removed former Table 75: Maximum ADC RAIN and Table 84: SMPS  
step-down converter characteristics.  
Updated captions of figures 8, 9 and 10.  
Updated Figure 43: VFQFPN68 recommended footprint.  
DS11929 Rev 10  
189/193  
192  
Revision history  
STM32WB55xx STM32WB35xx  
Table 107. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Table 2: STM32WB55xx devices features and peripheral  
counts, Table 8: STM32WB55xx modes overview and its footnotes,  
Table 21: Main performance at VDD = 3.3 V, Table 22: General operating  
conditions, Table 23: RF transmitter BLE characteristics, Table 24: RF  
transmitter BLE characteristics (1 Mbps), Table 25: RF transmitter BLE  
characteristics (2 Mbps), Table 26: RF receiver BLE characteristics (1  
Mbps), Table 27: RF receiver BLE characteristics (2 Mbps), Table 28: RF  
BLE power consumption for VDD = 3.3 V, Table 29: RF transmitter  
802.15.4 characteristics, Table 31: RF 802.15.4 power consumption for  
VDD = 3.3 V, Table 35: Current consumption in Run and Low-power run  
modes, code with data processing running from Flash, ART enable  
(Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current consumption  
in Run and Low-power run modes, code with data processing running  
from SRAM1, VDD = 3.3 V, Table 37: Typical current consumption in Run  
and Low-power run modes, with different codes running from Flash, ART  
enable (Cache ON Prefetch OFF), VDD= 3.3 V, Table 38: Typical current  
consumption in Run and Low-power run modes, with different codes  
4
20-Feb-2019  
(cont’d) running from SRAM1, VDD = 3.3 V, Table 39: Current consumption in  
Sleep and Low-power sleep modes, Flash memory ON, Table 40: Current  
consumption in Low-power sleep modes, Flash memory in Power down,  
Table 41: Current consumption in Stop 2 mode, Table 42: Current  
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0  
mode, Table 44: Current consumption in Standby mode, Table 45:  
Current consumption in Shutdown mode, Table 46: Current consumption  
in VBAT mode, Table 47: Current under Reset condition, Table 48:  
Peripheral current consumption and its footnotes, Table 49: Low-power  
mode wakeup timings, Table 50: Regulator modes transition times and its  
footnote 1, Table 65: EMS characteristics, Table 66: EMI characteristics,  
Table 67: ESD absolute maximum ratings, Table 69: I/O current injection  
susceptibility, Table 75: ADC characteristics, Table 77: ADC accuracy -  
Limited test conditions 1, Table 78: ADC accuracy - Limited test  
conditions 2, Table 79: ADC accuracy - Limited test conditions 3,  
Table 80: ADC accuracy - Limited test conditions 4 and Table 104:  
Package thermal characteristics.  
Updated Features, Section 2: Description, Section 6.1.6: Power supply  
scheme, Section 6.2: Absolute maximum ratings and Section 7.2:  
WLCSP100 package information.  
Updated Table 6: Power supply typical components, Table 7: Features  
over all modes, Table 11: Temperature sensor calibration values,  
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate  
functions, Table 21: Main performance at VDD = 3.3 V, Table 26: RF  
receiver BLE characteristics (1 Mbps), Table 34: Embedded internal  
04-Oct-2019  
5
voltage reference, Table 62: PLL, PLLSAI1 characteristics and Table 67:  
ESD absolute maximum ratings.  
Updated Figure 6: Power supply overview and Figure 33: Quad-SPI  
timing diagram - DDR mode.  
Added Figure 15: Power supply scheme (UFBGA129 package) and  
Figure 21: Low-speed external clock source AC timing diagram.  
Added Table 56: Low-speed external user clock characteristics – Bypass  
mode.  
190/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
Revision history  
Table 107. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Features, Section 2: Description, I/O system current  
consumption, Section 3.17: Touch sensing controller (TSC), Section 7.1:  
UFBGA129 package information, Section 7.2: WLCSP100 package  
information, Section 7.3: VFQFPN68 package information, Section 7.4:  
UFQFPN48 package information, Section 7.5: Thermal characteristics  
and Section 8: Ordering information.  
Added JTAG/SWD interface characteristics, Device marking for  
UFBGA129, Device marking for WLCSP100 and Device marking for  
VFQFPN68.  
Updated Table 2: STM32WB55xx devices features and peripheral  
counts, Table 7: Features over all modes, Table 16: STM32WB55xx pin  
and ball definitions, Table 17: Alternate functions, Table 18: Voltage  
characteristics, Table 22: General operating conditions, Table 26: RF  
receiver BLE characteristics (1 Mbps), Table 27: RF receiver BLE  
characteristics (2 Mbps), Table 30: RF receiver 802.15.4 characteristics,  
Table 47: Current under Reset condition, Table 61: LSI2 oscillator  
characteristics and Table 104: Package thermal characteristics.  
19-Feb-2020  
6
Added footnote 5 to Table 15: Legend/abbreviations used in the pinout  
table.  
Updated Figure 2: STM32WB55xx RF front-end block diagram, Figure 6:  
Power supply overview, Figure 7: Clock tree, Figure 11: STM32WB55Vx  
UFBGA129 ballout(1), Figure 14: Power supply scheme (all packages  
except UFBGA129), Figure 36: UFBGA129 package outline and  
Figure 47: UFQFPN48 marking example (package top view).  
Updated Section 3.6.5: Typical RF application schematic and  
Section 6.3.10: External clock source characteristics.  
Updated Table 16: STM32WB55xx pin and ball definitions and Table 54:  
HSE crystal requirements.  
Updated Figure 11: STM32WB55Vx UFBGA129 ballout(1) and Figure 14:  
Power supply scheme (all packages except UFBGA129).  
10-Apr-2020  
7
Minor text edits across the whole document.  
Introduced STM32WB55VY.  
Updated Section 3.3.4: Embedded SRAM, Section 3.4: Security and  
safety, Section 3.14: Analog to digital converter (ADC), Section 6.3.10:  
External clock source characteristics and Section 8: Ordering  
information.  
Updated Table 1: Device summary, Table 2: STM32WB55xx and  
STM32WB35xx devices features and peripheral counts, Table 26: RF  
transmitter BLE characteristics (1 Mbps), Table 27: RF transmitter BLE  
characteristics (2 Mbps), Table 65: Flash memory characteristics and  
Table 77: ADC characteristics.  
17-Jun-2020  
8
Updated Figure 10: STM32WB55Cx and STM32WB35Cx UFQFPN48  
pinout(1)(2), Figure 11: STM32WB55Rx VFQFPN68 pinout(1)(2) and  
Figure 17: Power supply scheme (UFBGA129 and WLCSP100  
packages).  
Updated footnote 5 of Table 15: Legend/abbreviations used in the pinout  
table and footnote 8 of Table 16: STM32WB55xx pin and ball definitions.  
Added footnote 3 to Table 16, footnote 2 to Figure 16, footnote 1 to  
Table 86 and footnotes to tables 23, 30 and 33.  
Added Table 55: HSE clock source requirements.  
DS11929 Rev 10  
191/193  
192  
Revision history  
STM32WB55xx STM32WB35xx  
Table 107. Document revision history (continued)  
Date  
Revision  
Changes  
Added STM32WB35xx devices.  
Updated Section 2: Description, Section 3.3.4: Embedded SRAM and  
Section 8: Ordering information.  
Updated Table 1: Device summary, Table 2: STM32WB55xx and  
STM32WB35xx devices features and peripheral counts, Table 7:  
Features over all modes and Table 106: Package thermal characteristics.  
Added Table 17: STM32WB35xx pin and ball definitions and Table 19:  
Alternate functions (STM32WB35xx).  
Added Figure 2: STM32WB35xx block diagram, Figure 8:  
STM32WB35xx - Power supply overview and Figure 50: STM32WB35xx  
UFQFPN48 marking example (package top view),  
02-Jul-2020  
9
Updated Figure 1: STM32WB55xx block diagram, Figure 4: External  
components for the RF part, Figure 16: Power supply scheme (all  
packages except UFBGA129 and WLCSP100), Figure 17: Power supply  
scheme (UFBGA129 and WLCSP100 packages) and added footnote to  
Figure 9: Clock tree.  
Added footnote 1 to Table 8: STM32WB55xx and STM32WB35xx modes  
overview.  
Updated Features, Section 3.15: Voltage reference buffer (VREFBUF)  
and Section 3.28.2: Embedded Trace Macrocell™.  
Updated Table 9: STM32WB55xx and STM32WB35xx CPU1 peripherals  
interconnect matrix, Table 17: STM32WB35xx pin and ball definitions,  
Table 26: RF transmitter BLE characteristics (1 Mbps), Table 27: RF  
transmitter BLE characteristics (2 Mbps), Table 31: RF transmitter  
802.15.4 characteristics, Table 50: Peripheral current consumption,  
Table 54: HSE crystal requirements, Table 55: HSE clock source  
requirements, footnote 2 of Table 57: Low-speed external user clock  
characteristics and Table 86: VBAT monitoring characteristics.  
23-Nov-2020  
10  
Added footnote 2 to Table 24, footnote 2 to Table 26 and footnote 2 to  
Table 27.  
Updated Figure 9: Clock tree and Figure 13: STM32WB55Vx UFBGA129  
ballout(1)  
.
Minor text edits across the whole document.  
192/193  
DS11929 Rev 10  
STM32WB55xx STM32WB35xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS11929 Rev 10  
193/193  
193  
 

相关型号:

STM32WB55VYY6ATR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY6AXXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY6TR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY6XXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY7ATR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY7AXXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY7TR

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55VYY7XXX

Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4 with FPU, Bluetooth® 5 and 802.15.4 radio solution

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WB55XX

Multiprotocol wireless 32-bit MCU Arm

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WC-RFCKIT

STM32W low-cost RF control kit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WL54CC

Sub-GHz Wireless Microcontrollers. Dual-core Arm Cortex-M4/M0+ @48 MHz with 256 Kbytes of Flash memory, 64 Kbytes of SRAM. (G)FSK, (G)MSK, BPSK modulations. AES 256-bit. Multiprotocol System-on-Chip.

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM32WL54CCI6TR

Multiprotocol LPWAN dual core 32-bit Arm® Cortex®-M4/M0 LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB Flash, 64KB SRAM

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR