STM32WLE4JCI7XXX [STMICROELECTRONICS]

Multiprotocol LPWAN 32-bit Arm® Cortex®-M4 MCUs, LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB Flash, 64KB SRAM;
STM32WLE4JCI7XXX
型号: STM32WLE4JCI7XXX
厂家: ST    ST
描述:

Multiprotocol LPWAN 32-bit Arm® Cortex®-M4 MCUs, LoRa®, (G)FSK, (G)MSK, BPSK, up to 256KB Flash, 64KB SRAM

LPWA 静态存储器
文件: 总145页 (文件大小:2974K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32WLE5xx STM32WLE4xx  
Multiprotocol LPWAN 32-bit Arm® Cortex®-M4 MCUs, LoRa®,  
(G)FSK, (G)MSK, BPSK, up to 256KB Flash, 64KB SRAM  
Datasheet - production data  
Features  
Radio  
Frequency range: 150 MHz to 960 MHz  
UFBGA73  
(5 x 5 mm)  
WLCSP59  
®
UFQFPN48  
(7 x 7 mm)  
Modulation: LoRa , (G)FSK, (G)MSK and  
BPSK  
– Adaptive real-time accelerator (ART  
Accelerator) allowing 0-wait-state  
RX sensitivity: 123 dBm for 2-FSK  
®
(at 1.2 Kbit/s), 148 dBm for LoRa  
execution from Flash memory, frequency  
up to 48 MHz, MPU and DSP instructions  
(at 10.4 kHz, spreading factor 12)  
Transmitter high output power, programmable  
– 1.25 DMIPS/MHz (Dhrystone 2.1)  
up to +22 dBm  
Transmitter low output power, programmable  
Security and identification  
up to +15 dBm  
Hardware encryption AES 256-bit  
True random number generator (RNG)  
Compliant with the following radio frequency  
regulations such as ETSI EN 300 220,  
EN 300 113, EN 301 166, FCC CFR 47  
Part 15, 24, 90, 101 and the Japanese ARIB  
STD-T30, T-67, T-108  
Sector protection against read/write operations  
(PCROP, RDP, WRP)  
CRC calculation unit  
Compatible with standardized or proprietary  
Unique device identifier (64-bit UID compliant  
®
protocols such as LoRaWAN , Sigfox™,  
with IEEE 802-2001 standard)  
W-MBus and more (fully open wireless  
system-on-chip)  
96-bit unique die identifier  
Hardware public key accelerator (PKA)  
Ultra-low-power platform  
Supply and reset management  
1.8 V to 3.6 V power supply  
High-efficiency embedded SMPS step-down  
40 °C to +105 °C temperature range  
converter  
Shutdown mode: 31 nA (V = 3 V)  
DD  
SMPS to LDO smart switch  
Standby (+ RTC) mode:  
Ultra-safe, low-power BOR (brownout reset)  
360 nA (V = 3 V)  
DD  
with 5 selectable thresholds  
Stop2 (+ RTC) mode: 1.07 µA (V = 3 V)  
DD  
Ultra-low-power POR/PDR  
®
Active-mode MCU: < 72 µA/MHz (CoreMark )  
Active-mode RX: 4.82 mA  
Programmable voltage detector (PVD)  
V  
mode with RTC and 20x32-byte backup  
registers  
BAT  
Active-mode TX: 15 mA at 10 dBm and 87 mA  
®
at 20 dBm (LoRa 125 kHz)  
Clock sources  
Core  
32 MHz crystal oscillator  
®
®
32-bit Arm Cortex -M4 CPU  
TCXO support: programmable supply voltage  
November 2020  
DS13105 Rev 8  
1/145  
This is information on a product in full production.  
www.st.com  
 
STM32WLE5/E4xx  
32 kHz oscillator for RTC with calibration  
Controllers  
High-speed internal 16 MHz factory trimmed  
2x DMA controller (7 channels each)  
supporting ADC, DAC, SPI, I2C, LPUART,  
USART, AES and timers  
RC (± 1 %)  
Internal low-power 32 kHz RC  
2x USART (ISO 7816, IrDA, SPI)  
1x LPUART (low-power)  
Internal multi-speed low-power 100 kHz to  
48 MHz RC  
PLL for CPU, ADC and audio clocks  
2x SPI 16 Mbit/s (1 over 2 supporting I2S)  
3x I2C (SMBus/PMBus™)  
Memories  
2x 16-bit 1-channel timer  
Up to 256-Kbyte Flash memory  
Up to 64-Kbyte RAM  
20x32-bit backup register  
1x 16-bit 4-channel timer (supporting  
motor control)  
1x 32-bit 4-channel timer  
Bootloader supporting USART and SPI  
3x 16-bit ultra-low-power timer  
interfaces  
1x RTC with 32-bit sub-second wakeup  
OTA (over-the-air) firmware update capable  
Sector protection against read/write operations  
counter  
1x independent SysTick  
1x independent watchdog  
1x window watchdog  
Rich analog peripherals (down to 1.62 V)  
12-bit ADC 2.5 Msps, up to 16 bits with  
hardware oversampling, conversion range up  
to 3.6 V  
Up to 43 I/Os, most 5 V-tolerant  
12-bit DAC, low-power sample-and-hold  
2x ultra-low-power comparators  
Development support  
Serial-wire debug (SWD), JTAG  
System peripherals  
All packages ECOPACK2 compliant  
Semaphores for processor firmware process  
synchronization  
Table 1. Device summary  
Reference  
Part number  
STM32WLE5C8, STM32WLE5CB, STM32WLE5CC  
STM32WLE5xx microcontrollers STM32WLE5J8, STM32WLE5JB, STM32WLE5JC  
STM32WLE5U8, STM32WLE5UB, STM32WLE5UC  
STM32WLE4C8, STM32WLE4CB, STM32WLE4CC  
STM32WLE4xx microcontrollers STM32WLE4J8, STM32WLE4JB, STM32WLE4JC  
STM32WLE4U8, STM32WLE4UB, STM32WLE4UC  
2/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Contents  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1  
3.2  
3.3  
3.4  
3.5  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Arm Cortex-M core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . . 15  
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5.1  
3.5.2  
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.6  
3.7  
3.8  
Security management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Sub-GHz radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
RF-PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.9  
Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.9.1  
3.9.2  
3.9.3  
3.9.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.10 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.10.1 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.11 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.12 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
3.13 Hardware semaphore (HSEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.14 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
DS13105 Rev 8  
3/145  
6
Contents  
STM32WLE5/E4xx  
3.16 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.16.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 39  
3.16.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 39  
3.17 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.18 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.18.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.18.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
REFINT  
3.18.3  
V
battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
BAT  
3.19 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.20 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.21 Comparator (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.22 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.23 Advanced encryption standard hardware accelerator (AES) . . . . . . . . . . 42  
3.24 Public key accelerator (PKA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.25 Timer and watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.25.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.25.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 43  
3.25.3 Low-power timers (LPTIM1, LPTIM2 and LPTIM3) . . . . . . . . . . . . . . . . 44  
3.25.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.25.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.25.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.26 Real-time clock (RTC), tamper and backup registers . . . . . . . . . . . . . . . 45  
3.27 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.28 Universal synchronous/asynchronous receiver transmitter  
(USART/UART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.29 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 47  
3.30 Serial peripheral interface (SPI)/integrated-interchip sound  
interface (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.31 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Pinouts, pin description and alternate functions . . . . . . . . . . . . . . . . . 49  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4
5
5.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.1.1  
5.1.2  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Contents  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
Main performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Sub-GHz radio characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . 74  
Embedded reset and power-control block characteristics . . . . . . . . . . . 75  
Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Wakeup time from low-power modes and voltage scaling  
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
5.3.9  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
5.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.3.12 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
5.3.14 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
5.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
5.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
5.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 114  
5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
5.3.21  
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
BAT  
5.3.22 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 120  
5.3.23 Digital-to-analog converter characteristics . . . . . . . . . . . . . . . . . . . . . . 122  
5.3.24 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
5.3.25 Timers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
5.3.26 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 128  
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
6.1  
UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
DS13105 Rev 8  
5/145  
6
Contents  
STM32WLE5/E4xx  
6.2  
6.3  
6.4  
WLCSP59 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
UFBGA73 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
7
8
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
6/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Main features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Access status versus RDP level and execution mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Sub-GHz radio transmit high output power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
FSK mode intermediate frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
LoRa mode intermediate frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Functionalities depending on system operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
MCU and sub-GHz radio operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DMA1 and DMA2 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
USART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SPI and SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
STM32WLE5/E4xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Main performances at VDD = 3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Operating range of RF pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Sub-GHz radio power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Sub-GHz radio power consumption in transmit mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Sub-GHz radio general specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Sub-GHz radio receive mode specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Sub-GHz radio transmit mode specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Sub-GHz radio power management specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Embedded reset and power-control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Embedded internal voltage reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Current consumption in Run and LPRun modes, CoreMark code with data  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 78  
Current consumption in Run and LPRun modes, CoreMark code  
with data running from SRAM1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Typical current consumption in Run and LPRun modes, with different codes  
running from Flash memory, ART enable (cache ON, prefetch OFF) . . . . . . . . . . . . . . . . 80  
Typical current consumption in Run and LPRun modes,  
Table 37.  
Table 38.  
Table 39.  
with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Current consumption in Sleep and LPSleep modes, Flash memory ON . . . . . . . . . . . . . . 84  
Current consumption in LPSleep mode, Flash memory in power-down. . . . . . . . . . . . . . . 84  
Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Current consumption during wakeup from Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
DS13105 Rev 8  
7/145  
9
List of tables  
STM32WLE5/E4xx  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
Table 70.  
Table 71.  
Table 72.  
Table 73.  
Table 74.  
Table 75.  
Table 76.  
Table 77.  
Table 78.  
Table 79.  
Table 80.  
Table 81.  
Table 82.  
Table 83.  
Table 84.  
Table 85.  
Table 86.  
Table 87.  
Table 88.  
Table 89.  
Table 90.  
Table 91.  
Table 92.  
Table 93.  
Table 94.  
Table 95.  
Table 96.  
Current consumption during wakeup from Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current consumption during wakeup from Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Current consumption during wakeup from Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
HSE32 crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
HSE32 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
HSE32 TCXO regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . . 98  
HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Flash memory endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Analog switches booster characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Maximum ADC R  
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
AIN  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
V
V
monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
BAT  
BAT  
VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
DAC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
USART characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Dynamic JTAG characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Dynamic SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
UFQFPN48 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
UFBGA73 - Mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
8/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
List of tables  
Table 97.  
Table 98.  
Table 99.  
UFBGA recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . . 139  
Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
DS13105 Rev 8  
9/145  
9
List of figures  
STM32WLE5/E4xx  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32WLE5/E4xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
sub-GHz radio system block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High output power PA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low output power PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-up/power-down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Supply configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 10. UFBGA73 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 11. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 12. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 13. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 14. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Figure 15. VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 16. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 17. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 18. HSI16 frequency versus temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Figure 19. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 20. I/O input characteristics - V and V on all I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
IL  
IH  
Figure 21. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Figure 22. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Figure 23. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Figure 24. VREFOUT_TEMP when VRS = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Figure 25. VREFOUT_TEMP when VRS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Figure 26. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Figure 27. SPI timing diagram - Slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Figure 28. SPI timing diagram - Slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 29. SPI timing diagram - Master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Figure 30. UFQFPN48 - Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Figure 31. UFQFPN48 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Figure 32. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Figure 33. UFBGA73 - Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Figure 34. UFBGA73 - Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Figure 35. UFBGA73 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
10/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Introduction  
1
Introduction  
This document provides information on the STM32WLE5/E4xx microcontrollers.  
®(a)  
®
®
For information on the Arm  
Cortex -M4 core, refer to the Cortex -M4 Technical  
Reference Manual available from the www.arm.com website.  
®
For information on LoRa modulation, refer to the Semtech website  
(https://www.semtech.com/technology/lora).  
2
Description  
The STM32WLE5/E4xx long-range wireless and ultra-low-power devices embed a powerful  
and ultra-low-power LPWAN-compliant radio solution, enabling the following modulations:  
®
LoRa , (G)FSK, (G)MSK, and BPSK.  
®
The LoRa modulation is available in STM32WLx5xx only.  
These devices are designed to be extremely low-power and are based on the  
®
®
high-performance Arm Cortex -M4 32-bit RISC core operating at a frequency of up to  
48 MHz. This core implements a full set of DSP instructions and an independent memory  
protection unit (MPU) that enhances the application security.  
The devices embed high-speed memories (Flash memory up to 256 Kbytes, SRAM up to  
64 Kbytes), and an extensive range of enhanced I/Os and peripherals.  
The devices also embed several protection mechanisms for embedded Flash memory and  
SRAM: readout protection, write protection and proprietary code readout protection.  
These devices offer a 12-bit ADC, a 12-bit DAC low-power sample-and-hold, two  
ultra-low-power comparators associated with a high-accuracy reference voltage generator.  
The devices embed a low-power RTC with a 32-bit sub-second wakeup counter, one 16-bit  
single-channel timer, two 16-bit four-channel timers (supporting motor control), one 32-bit  
four-channel timer and three 16-bit ultra-low-power timers.  
These devices also embed two DMA controllers (7 channels each) allowing any transfer  
combination between memory (Flash memory, SRAM1 and SRAM2) and peripheral, using  
the DMAMUX1 for flexible DMA channel mapping.  
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
DS13105 Rev 8  
11/145  
14  
 
 
 
Description  
STM32WLE5/E4xx  
The devices also feature the standard and advanced communication interfaces listed below:  
two USART (supporting LIN, smartcard, IrDA, modem control and ISO7816)  
one low-power UART (LPUART)  
three I2C (SMBus/PMBus)  
2
two SPIs (up to 16 MHz, one supporting I S)  
semaphores for processor firmware process synchronization  
(a)  
The operating temperature/voltage ranges are 40 °C to +105 °C (+85 °C with radio) from  
a 1.8 V to 3.6 V power supply. A comprehensive set of power-saving modes allows the  
design of low-power applications.  
The devices integrate a high-efficiency SMPS step-down converter and independent power  
supplies for ADC, DAC and comparator analog inputs.  
A V  
dedicated supply allows the LSE 32.768 kHz oscillator, the RTC and the backup  
BAT  
registers to be backed up. The devices can maintain these functions even if the main V is  
DD  
not present, through a CR2032-like battery, a supercap or a small rechargeable battery.  
Table 2. Main features and peripheral counts  
STM32WLE5Cx  
STM32WLE4Cx  
STM32WLE5Jx  
STM32WLE4Jx  
STM32WLE5Ux  
STM32WLE4Ux  
Feature  
CPU  
Arm Cortex-M4  
48  
Maximum CPU frequency (MHz)  
Flash memory density (Kbytes)  
256/128/64  
32/16/0  
SRAM1  
SRAM density (Kbytes)  
SRAM2  
32/32/20  
Available on STM32WLE5xx devices.  
Not available on STM32WLE4xx devices  
LoRa  
(G)FSK  
Radio  
(G)MSK  
BPSK  
Yes  
Yes  
Low output power (up to  
15 dBm)  
Radio power amplifier  
High output power (up to  
22 dBm)  
General purpose  
Low-power  
SysTick  
4
3
1
Timer  
a. Devices with suffix 6 operate up to 85 °C. Devices with suffix 7 can operate up to 105 °C except radio.  
12/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Description  
Table 2. Main features and peripheral counts (continued)  
STM32WLE5Cx  
STM32WLE4Cx  
STM32WLE5Jx  
STM32WLE4Jx  
STM32WLE5Ux  
STM32WLE4Ux  
Feature  
SPI/I2S  
2 (1 supporting I2S)  
I2C  
3
2
1
1
1
1
2
1
1
1
1
1
1
Communication  
interface  
USART  
LPUART  
Independent  
Window  
Watchdog  
RTC (with wakeup counter)  
DMA (7 channels)  
Semaphores  
AES 256 bits  
RNG  
PKA  
PCROP, RDP, WRP  
CRC  
Security  
64-bit UID compliant with  
IEEE 802-2001 standard  
1
96-bit die ID  
1
Tamper pins  
Wakeup pins  
GPIOs  
3
3
3
2
2
3
43  
29  
22  
ADC (number of channels, ext + int)  
DAC (number of channels)  
Internal VREFBUF  
1 (9 + 4)  
1 (12 + 4)  
1 (1)  
1 (8 + 4)  
No  
Yes  
No  
Analog comparator  
2
Operating voltage  
1.8 to 3.6 V  
Ambient operating temperature  
Junction temperature  
–40 °C to +105 °C / –40 °C to +85 °C (with radio)  
–40 °C to +125 °C / –40 °C to +105 °C  
UFQFPN48  
(7 x 7 mm)  
UFBGA73  
(5 x 5 mm)  
Package  
WLCSP59  
DS13105 Rev 8  
13/145  
14  
Description  
STM32WLE5/E4xx  
Figure 1. STM32WLE5/E4xx block diagram  
LDO/SMPS  
Sub-GHz  
radio  
HSE32  
32 MHz  
SRAM2  
LSE  
32 kHz  
RTC  
TAMP  
backup memory  
LSI  
32 kHz  
Backup  
domain  
IWDG  
HSI 1 %  
16 MHz  
PLL  
MSI 5 %  
0.1-48MHz  
NVIC  
SRAM1  
RCC  
Cortex-M4  
(DSP)  
Power supply  
POR/PDR/BOR/PVD/PVM  
≤ 48 MHz  
SYSCFG/  
COMP/VREF  
MPU  
DMA1 (7 channels)  
DMA2 (7 channels)  
DMAMUX  
PWR  
EXTI  
HSEM  
RNG  
AES  
WWDG  
SPI1  
SPI2S2  
I2C1  
GPIO ports A,B,C,H  
CRC  
I2C2  
PKA  
DAC (12 bits)  
LPUART1  
I2C3  
Temperature sensor  
TIM1  
ADC (12 bits ULP,  
2 Msps, 12 channels)  
APB1 and APB 2  
USART1  
LPTIM1  
TIM2  
LPTIM2  
TIM16  
TIM17  
LPTIM3  
USART2  
MSv64324V1  
14/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Functional overview  
3
Functional overview  
3.1  
Architecture  
The devices embed a sub-GHz RF subsystem that interfaces with a generic microcontroller  
subsystem using an Arm Cortex-M4 (called CPU).  
An RF low-layer stack is needed and is to be run on CPU with the host application code.  
The RF subsystem communication is done through an internal SPI interface.  
3.2  
Arm Cortex-M core  
With its embedded Arm core, the STM32WLE5/E4xx devices are compatible with all  
Arm tools and software.  
Figure 1 shows the general block diagram of the STM32WLE5/E4xx devices.  
Arm Cortex-M4  
The Arm Cortex-M4 is a processor for embedded systems. It has been developed to provide  
a low-cost platform that meets the needs of MCU implementation, with a reduced pin count  
and low-power consumption, while delivering outstanding computational performance and  
an advanced response to interrupts.  
The Arm Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering  
the high-performance expected from an Arm core in the memory size usually associated  
with 8- and 16-bit devices.  
This processor supports a set of DSP instructions that allow efficient signal processing and  
complex algorithm execution.  
3.3  
Adaptive real-time memory accelerator (ART Accelerator)  
The ART Accelerator is a memory accelerator that is optimized for STM32 industry-standard  
Arm Cortex-M4 processor. The ART Accelerator balances the inherent performance  
advantage of the Arm Cortex-M4 over Flash memory technologies, that normally require the  
processor to wait for the Flash memory at higher frequencies.  
To release the processor near 60 DMIPS performance at 48 MHz, the ART Accelerator  
implements an instruction prefetch queue and branch cache, that increases the program  
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the  
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program  
execution from Flash memory at a CPU frequency up to 48 MHz.  
3.4  
Memory protection unit (MPU)  
The memory protection unit (MPU) is used to manage the CPU accesses to memory, to  
prevent one task to accidentally corrupt the memory or resources used by any other active  
task. This memory area is organized into up to eight protected areas that can in turn be  
divided up into eight subareas. The protection area sizes are between 32 bytes and the  
whole 4 Gbytes of addressable memory.  
DS13105 Rev 8  
15/145  
48  
 
 
 
 
 
Functional overview  
STM32WLE5/E4xx  
The MPU is especially helpful for applications where some critical or certified code must be  
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-  
time operating system). If a program accesses a memory location that is prohibited by the  
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can  
dynamically update the MPU area setting, based on the process to be executed.  
The MPU is optional and can be bypassed for applications that do not need it.  
3.5  
Memories  
3.5.1  
Embedded Flash memory  
The Flash memory interface manages the accesses from CPU AHB ICode/DCode to the  
Flash memory. It implements the access, the erase and program Flash memory operations,  
and the read and write protection.  
The main features of the Flash memory are listed below:  
Memory organization: 1 bank  
main memory: up to 256 Kbytes  
page size: 2 Kbytes  
72-bit wide data read (64 bits plus 8 ECC bits)  
72-bit wide data write (64 bits plus 8 ECC bits)  
Page erase and mass erase  
Flexible protections can be configured thanks to option bytes:  
Readout protection (RDP) to protect the whole memory. Three levels are available:  
Level 0: no readout protection  
Level 1: memory readout protection. The Flash memory cannot be read from or  
written to if either debug features are connected, boot in SRAM or bootloader is  
selected.  
Level 2: chip readout protection. Debug features (JTAG and serial wire), boot in  
SRAM and bootloader selection are disabled (JTAG fuse). This selection is  
irreversible.  
Table 3. Access status versus RDP level and execution mode  
Debug, boot from SRAM or boot from  
User execution  
RDP  
level  
system memory (loader)  
Area  
Read  
Write  
Erase  
Read  
Write  
Erase  
1
2
1
2
1
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
NA  
Yes  
NA  
Yes  
NA  
No  
NA  
No  
No  
NA  
No  
Main memory  
System memory  
Option bytes  
No  
No  
NA  
Yes  
NA  
NA  
Yes  
NA  
Yes  
No(1)  
Yes  
No(1)  
16/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Functional overview  
Table 3. Access status versus RDP level and execution mode (continued)  
Debug, boot from SRAM or boot from  
system memory (loader)  
User execution  
Write  
RDP  
level  
Area  
Read  
Erase  
Read  
Write  
Erase  
1
2
1
2
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NA(2)  
No  
NA  
No  
NA  
No  
NA  
No  
NA  
NA(2)  
Backup registers  
SRAM2  
NA  
NA  
Yes(2)  
Yes  
No(2)  
NA  
1. The option byte can be modified by the sub-GHz radio.  
2. Erased when RDP changes from Level 1 to Level 0.  
Write protection (WRP): the protected area is protected against erasing and  
programming. Two areas can be selected, with 4-Kbyte granularity.  
Proprietary code readout protection (PCROP): two parts of the Flash memory can be  
protected against read and write from third parties. The protected area is execute-only:  
it can only be reached by the STM32 CPU, as an instruction code, while all other  
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.  
Two areas can be selected, with 2-Kbyte granularity. An additional option bit  
(PCROP_RDP) is used to select if the PCROP area is erased or not when the RDP  
protection is changed from Level 1 to Level 0.  
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:  
single error detection and correction  
double error detection  
address of the ECC fail can be read in the FLASH_ECCR register  
3.5.2  
Embedded SRAM  
The devices feature up to 64 Kbytes of embedded SRAM, split in two blocks:  
SRAM1: up to 32 Kbytes mapped at address 0x2000 0000  
SRAM2: up to 32 Kbytes located at address 0x2000 8000 (contiguous to SRAM1), also  
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in  
Standby mode)  
The SRAMs can be accessed in read/write with 0 wait states for all CPU clock speeds.  
DS13105 Rev 8  
17/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
3.6  
Security management  
The devices contain many security blocks, such as:  
RNG  
AES: 128-and 256-bit AES, supporting ECB, CBC, CTR, GCM, GMAC and CCM  
chaining modes  
PKA:  
modular arithmetic including exponentiation with maximum modulo size of  
3136 bits  
elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA  
verification with maximum modulo size of 521 bits  
cyclic redundancy check calculation unit (CRC)  
3.7  
Boot modes  
At startup, BOOT0 pin and BOOT1 option bit are used to select one of the following boot  
options:  
Boot from user Flash memory  
Boot from boot system memory (where embedded bootloader is located)  
Boot from embedded SRAM  
The bootloader makes possible to download code from USART or SPI.  
3.8  
Sub-GHz radio  
3.8.1  
Introduction  
The sub-GHz radio is an ultra-low-power sub-GHz radio operating in the 150 - 960 MHz ISM  
band. LoRa, (G)FSK/(G)MSK modulation in transmit and receive, and (D)BPSK in transmit  
only, allow an optimal trade-off between range, data rate and power consumption. This sub-  
®
GHz radio is compliant with the LoRaWAN specification v1.0 and radio regulations such as  
ETSI EN 300 220, EN 300 113, EN 301 166, FCC CFR 47 part 15, 24, 90, 101 and the ARIB  
STD-T30, T-67, T-108.  
The sub-GHz radio consists of:  
an analog front-end transceiver, capable of outputting up to + 15 dBm maximum power  
on its RFO_LP pin and up to + 22 dBm maximum power on RFO_HP pin  
a digital modem bank providing the following modulation schemes:  
LoRa Rx/Tx with bandwidth (BW) from 7.8 - 500 kHz, spreading factor (SF)  
5 - 12, bit rate (BR) from 0.013 to 17.4 Kbit/s (real bitrate)  
FSK and GFSK Rx/Tx with BR from 0.6 to 300 Kbit/s  
(G)MSK Tx with BR from 0 to 10 Kbit/s  
BPSK and DBPSK TX only with bitrate for 100 and 600 bit/s  
a digital control including all data processing and sub-GHz radio configuration control  
a high-speed clock generation  
18/145  
DS13105 Rev 8  
 
 
 
 
 
STM32WLE5/E4xx  
Functional overview  
3.8.2  
General description  
The sub-GHz radio provides an internal processing unit to handle communication with the  
system CPU. Communication is handled by commands sent over the SPI interface, and a  
set of interrupts is used to signal events. BUSY information signals operation activity and is  
used to indicate when the sub-GHz radio commands cannot be received.  
The block diagram of the sub-GHz radio system is shown in the figure below.  
Figure 2. sub-GHz radio system block diagram  
VDDPA  
VR_PA  
Sub-GHz radio  
SUBGHZSPI  
BUSY  
FSK  
RFO_HP  
RFO_LP  
RFI_P  
modem  
Interrups  
Radio  
control  
Data  
and  
control  
Sub-GHz  
HSEON  
RF frontend  
RFI_N  
LoRa  
HSEBYPPWR  
modem  
PB0_VDDTCXO  
OSC_IN  
(note)  
HSERDY  
hse32  
HSE32  
OSC_OUT  
MSv62615V1  
Note: LoRa modem is only available on STM32WLE5xx devices.  
3.8.3  
Transmitter  
The transmit chain comprises the modulated output from the modem, that directly  
modulates the RF-PLL. An optional pre-filtering of the bit stream can be enabled to reduce  
the power in the adjacent channel also dependent on the selected modulation scheme. The  
modulated signal from the RF-PLL directly drives the high output power PA (HP PA) or low  
output power PA (LP PA).  
Transmitter high output power  
Transmit high output power up to + 22 dBm, is supported through the RFO_HP RF pin.  
DS13105 Rev 8  
19/145  
48  
 
 
 
Functional overview  
STM32WLE5/E4xx  
For this, the REG PA must be supplied directly from V on VDDSMPS pin, as shown in the  
DD  
figure below.  
The output power range is programmable in 32 steps of ~ 1 dB. The power amplifier  
ramping timing is also programmable.This allows adaptation to meet radio regulation  
requirements.  
Figure 3. High output power PA  
SMPS mode  
LDO mode  
VDD  
VDD  
VDDSMPS (1.8 to 3.6V)  
VDDSMPS (1.8 to 3.6V)  
VLXSMPS  
VLXSMPS  
LDO/SMPS  
LDO/SMPS  
VFBSMPS (1.55V)  
VFBSMPS (1.55V)  
VDDPA  
VDD  
VDD  
VDDPA  
VR_PA (up to 3.1V)  
RFO_HP  
VR_PA (up to 3.1V)  
RFO_HP  
REG  
PA  
REG  
PA  
HP PA  
HP PA  
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil  
between VLXSMPS and VFBSMPS pins.  
MSv62616V2  
The table below gives the maximum transmit output power versus the V  
supply level.  
DDPA  
Table 4. Sub-GHz radio transmit high output power  
VDDPA supply (V)  
Transmit output power (dBm)  
3.3  
2.7  
2.4  
1.8  
+ 22  
+ 20  
+ 19  
+ 16  
Transmitter low output power  
The transmit low output power up to + 15 dBm on full V range (1.8 to 3.6 V), is supported  
DD  
through the RFO_LP RF pin. For this, the REG PA must be supplied from the regulated  
V
supply at 1.55 V, as shown in the figure below.  
FBSMPS  
The output power range is programmable in 32 steps of ~1 dB. The power amplifier ramping  
timing is also programmable.This allows adaptation to meet radio regulation requirements.  
20/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Functional overview  
Figure 4. Low output power PA  
LDO mode  
SMPS mode  
VDD  
VDD  
VDDSMPS (1.8 to 3.6V)  
VDDSMPS (1.8 to 3.6V)  
VLXSMPS  
VLXSMPS  
LDO/SMPS  
LDO/SMPS  
VFBSMPS (1.55V)  
VDDPA  
VFBSMPS (1.55V)  
VDDPA  
VR_PA (up to 1.35V)  
VR_PA (up to 1.35V)  
REG  
PA  
REG  
PA  
RFO_LP  
RFO_LP  
LP PA  
LP PA  
Note: Use of the SMPS is optional. When SMPS is not used, the BOM can be reduced by removing the coil  
between VLXSMPS and VFBSMPS pins.  
MSv62617V2  
3.8.4  
Receiver  
The receive chain comprises a differential low-noise amplifier (LNA), a down-converter to  
low-IF by mixer operation in quadrature configuration. The I and Q signals are low pass  
filtered and a Ʃ∆ ADC converts them into the digital domain. In the digital modem, the  
signals are decimated, further down converted and channel filtered. The demodulation is  
done according to the selected modulation scheme.  
The down mixing to low-IF is done by mixing the receive signal with the local RF-PLL  
located in the negative frequency, where -f = -f + -f . (where f is the local RF-PLL  
lo  
rf  
if  
lo  
frequency, f is the received signal and f is the intermediate frequency). The wanted signal  
rf  
if  
is located at f = f + f .  
rf  
lo  
if  
The receiver features automatic I and Q calibration, that improves image rejection. The  
calibration is done automatically at startup before using the receiver, and can be requested  
by command.  
The receiver supports LoRa, (G)MSK and (G)FSK modulations.  
3.8.5  
RF-PLL  
The RF-PLL is used as the frequency synthesizer for the generation of the local oscillator  
frequency (f ) for both transmit and receive chains. The RF-PLL uses auto calibration and  
lo  
uses the 32 MHz HSE32 reference. The sub-GHz radio covers all continuous frequencies in  
the range between 150 to 960 MHz.  
DS13105 Rev 8  
21/145  
48  
 
 
 
Functional overview  
STM32WLE5/E4xx  
3.8.6  
Intermediate frequencies  
The sub-GHz radio receiver operates mostly in low-IF configuration, except for specific high-  
bandwidth settings.  
Table 5. FSK mode intermediate frequencies  
Setting name  
Bandwidth (kHz)  
fif (kHz)  
RX_BW_467  
RX_BW_234  
RX_BW_117  
RX_BW_58  
RX_BW_29  
RX_BW_14  
RX_BW_7  
467.0  
234.3  
117.3  
58.6  
29.3  
14.6  
7.3  
250  
RX_BW_373  
RX_BW_187  
RX_BW_93  
RX_BW_46  
RX_BW_23  
RX_BW_11  
RX_BW_5  
373.6  
187.2  
93.8  
46.9  
23.4  
11.7  
5.8  
200  
RX_BW_312  
RX_BW_156  
RX_BW_78  
RX_BW_39  
RX_BW_19  
RX_BW_9  
312.0  
156.2  
78.2  
39.0  
19.5  
9.7  
167  
RX_BW_4  
4.8  
Table 6. LoRa mode intermediate frequencies  
Setting name  
Bandwidth (kHz)  
fif (kHz)  
LORA_BW_500  
LORA_BW_250  
LORA_BW_125  
LORA_BW_62  
LORA_BW_41  
LORA_BW_31  
LORA_BW_20  
500  
250  
0
125  
250  
62.5  
41.67  
31.25  
20.83  
167  
250  
167  
22/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Functional overview  
Table 6. LoRa mode intermediate frequencies (continued)  
Setting name  
Bandwidth (kHz)  
fif (kHz)  
LORA_BW_15  
LORA_BW_10  
LORA_BW_7  
15.63  
10.42  
7.81  
250  
167  
250  
3.9  
Power supply management  
The devices embed two different regulators: one LDO and one DC/DC (SMPS). The SMPS  
can be optionally switched-on by software to improve the power efficiency. As LDO and  
SMPS operate in parallel, the SMPS switch-on is transparent to the user and only the power  
efficiency is affected.  
3.9.1  
Power supply schemes  
The devices require a V operating voltage supply between 1.8 V and 3.6 V. Several  
DD  
independent supplies (V  
peripherals:  
, V  
, V  
, V  
) can be provided for specific  
DDSMPS  
FBSMPS  
DDA  
DDRF  
V
= 1.8 V to 3.6 V  
DD  
V
is the external power supply for the I/Os, the system analog blocks such as reset,  
DD  
power management, internal clocks and low-power regulator. It is provided externally  
through VDD pins.  
V
= 1.8 V to 3.6 V  
DDSMPS  
V
is the external power supply for the SMPS step-down converter. It is provided  
DDSMPS  
externally through VDDSMPS supply pin and must be connected to the same supply as  
V
V
V
.
DD  
= 1.45 V to 1.62 V (1.55 V typical)  
FBSMPS  
is the external power supply for the main system regulator. It is provided  
FBSMPS  
externally through VFBSMPS pin and is supplied through the SMPS step-down  
converter.  
V
= 0 V to 3.6 V (DAC minimum voltage is 1.71 V without buffer and 1.8 V with  
DDA  
buffer. COMP and ADC minimum voltage is 1.62 V. VREFBUF minimum voltage is  
2.4 V)  
V
is the external analog power supply for A/D converters, D/A converters, voltage  
DDA  
reference buffer, and comparators. The V  
voltage level is independent from the V  
DDA  
DD  
voltage (see power-up and power-down limitations below) and must preferably be  
connected to V when these peripherals are not used.  
DD  
V
= 1.8 V to 3.6 V  
DDRF  
V
is an external power supply for the radio. It is provided externally through the  
DDRF  
VDDRF pin and must be connected to the same supply as V  
.
DD  
V
= 1.45 V to 1.62 V  
DDRF1V5  
V
is an external power supply for the radio. It is provided externally through the  
DDRF1V5  
VDDRF1V5 pin and must be connected externally to VFBSMPS.  
V
= 1.55 V to 3.6 V  
BAT  
V
is the power supply for RTC, TAMP, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
DS13105 Rev 8  
23/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
VREF-, VREF+  
is the input reference voltage for ADC and DAC. It is also the output of the  
V
REF+  
internal voltage reference buffer when enabled.  
V
When V  
When V  
< 2 V, V  
must be equal to V  
.
DDA  
DDA  
DDA  
REF+  
REF+  
2 V, V  
must be between 2 V and V  
.
DDA  
can be grounded when ADC/DAC is not active. The internal voltage reference  
REF+  
buffer supports the following output voltages, configured with VRS bit in the  
VREFBUF_CSR register:  
V
V
around 2.048 V: this requires V  
2.4 V.  
REF+  
REF+  
DDA  
around 2.5 V: this requires V  
2.8 V.  
DDA  
During power up and power down, the following power sequence is required:  
1. When V < 1 V other power supplies (V ) must remain below V + 300 mV.  
DD  
DDA  
DD  
During power down, V can temporarily become lower then other supplies only if the  
DD  
energy provided to the device remains below 1 mJ. This allows external decoupling  
capacitors to be discharged with different time constants during this transient phase.  
2. When V > 1 V, all other power supplies (V  
) become independent.  
DDA  
DD  
An embedded linear voltage regulator is used to supply the internal digital power V  
.
CORE  
V
is the power supply for digital peripherals, SRAM1 and SRAM2. The Flash memory  
CORE  
is supplied by V  
and V . V  
is split in two parts: V  
part and an interruptible  
CORE  
DD  
CORE  
DDO  
part V  
.
DDI  
Figure 5. Power-up/power-down sequence  
V
3.6  
VDDA  
VDD  
VBOR0  
1
0.3  
Power-on  
Operating mode  
Power-down  
VDDA independent from VDD  
time  
Invalid supply area  
VDDA < VDD + 300 mV  
MSv68044V1  
Note:  
V
, V  
and V must be wired together, so they can follow the same voltage  
DDSMPS  
DD  
DDRF  
sequence.  
24/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Functional overview  
Figure 6. Power supply overview  
VSW  
VBAT  
VDD  
en  
VDDSMPS  
VLXSMPS  
POR  
LDO/SMPS  
FW mode  
mode  
VFBSMPS  
VDDRF1V5  
LPR  
MR  
RFLDO  
VLP  
VMAIN  
VBKP  
VRF  
VDDO  
VDDI  
MSv50973V1  
The different supply configurations are shown in the figure below.  
Figure 7. Supply configurations  
VDD  
VDD  
VDDSMPS  
VLXSMPS  
VDDSMPS  
VLXSMPS  
LDO/SMPS  
MR  
LDO/SMPS  
MR  
VFBSMPS  
VDDRF1V5  
VFBSMPS  
VDDRF1V5  
LPR  
LPR  
RF  
LDO  
RF  
LDO  
LDO/SMPS supply  
LDO supply  
MSv50974V1  
DS13105 Rev 8  
25/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
The LDO or SMPS step-down converter operating mode can be configured by one of the  
following:  
by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that  
depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown).  
by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio  
operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active).  
After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority  
over LDO selection.  
While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is  
not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio  
activity may add a delay for entering the MCU software requested supply mode.  
The LDO or SMPS supply mode can be checked with the SMPSRDY flag in power status  
register 2 (PWR_SR2).  
Note:  
When the radio is active, the supply mode is not changed until after the radio activity is  
finished.  
During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO  
or SMPS step-down converter is switched off. When exiting low-power modes (except  
Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the  
SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and  
Standby modes.  
Independently from the MCU software selected supply operating mode, the sub-GHz radio  
allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz  
radio SetRegulatorMode()command).  
The maximum load current delivered by the SMPS can be selected by the sub- GHz radio  
SUBGHZ_SMPSC2R register.  
The inrush current of the LDO and SMPS step-down converter can be controlled via the  
sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz  
radio Deep-sleep mode.  
The SMPS needs a clock to be functional. If for any reason this clock stops, the device may  
be destroyed. To avoid this situation, a clock detection is used to, in case of a clock failure,  
switch off the SMPS and enable the LDO. The SMPS clock detection is enabled by the sub-  
GHz radio SUBGHZ_SMPSC0R.CLKDE. By default, the SMPS clock detection is disabled  
and must be enabled before enabling the SMPS.  
Danger:  
Before enabling the SMPS, the SMPS clock detection must be  
enabled in the sub-GHz radio SUBGHZ_SMPSC0R.CLKDE.  
3.9.2  
Power supply supervisor  
The devices integrate a power-on reset/power-down reset, coupled with a Brownout reset  
(BOR) circuitry.  
BOR0 level cannot be disabled. Other BOR levels can be enabled by user option. When  
enabled, BOR is active in all power modes except in Shutdown  
26/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Functional overview  
Five BOR thresholds can be selected through option bytes.  
During power-on, BOR keeps the device under reset until the supply voltage V reaches  
DD  
the specified V  
threshold:  
BORx  
When V drops below the selected threshold, a device reset is generated.  
DD  
When V is above the V  
upper limit, the device reset is released and the system  
BORx  
DD  
can start.  
The devices feature an embedded PVD (programmable voltage detector) that monitors the  
power supply and compares it with the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
threshold and/or when V is higher than the V  
DD  
PVD  
DD PVD  
threshold. The interrupt service routine can then generate a warning message and/or put  
the MCU into a safe state.  
The PVD is enabled by software and can be configured to monitor the V supply level  
DD  
needed for the sub-GHz radio operation. For this, the PVD must select its lowest threshold,  
and the PVD and the wakeup must be enabled by the EWPVD bit in PWR_CR3 register.  
Only a voltage drop below the PVD level generates a wakeup event.  
In addition, the devices embed a PVM (peripheral voltage monitor) that compares the  
independent supply voltage V  
functional supply range.  
with a fixed threshold to ensure that the peripheral is in its  
DDA  
Finally, a radio end-of-life monitor provides information on the V supply when V is too  
DD  
DD  
low to operate the sub-GHz radio. When reaching the EOL level, the software must stop all  
radio activity in a safe way.  
3.9.3  
Linear voltage regulator  
Two embedded linear voltage regulators supply all the digital circuitries, except for the  
Standby circuitry and the Backup domain. The main regulator (MR) output voltage (V  
)
CORE  
can be programmed by software to two different power ranges (range 1 and range 2), to  
optimize the consumption depending on the system maximum operating frequency.  
The voltage regulators are always enabled after a reset. Depending on the application  
modes, the V  
supply is provided either by the main regulator or by the low-power  
CORE  
regulator (LPR).  
When MR is used, a dynamic voltage scaling is proposed to optimize power as follows:  
range 1: high-performance range  
The system clock frequency can be up to 48 MHz. The Flash memory access time for  
read access is minimum. Write and erase operations are possible.  
range 2: low-power range  
The system clock frequency can be up to 16 MHz.The Flash memory access time for a  
read access is increased as compared to range 1. Write and erase operations are  
possible.  
Note:  
MR is supplied by V during power-on or at wakeup from Stop1, Stop2, Standby or  
DD  
Shutdown mode. MR is powered by LDO/SMPS after these transition phases.  
3.9.4  
VBAT operation  
The VBAT pin is used to power the device V  
domain (RTC, LSE and backup registers)  
BAT  
from an external battery, an external super-capacitor, or from V when no external battery  
DD  
DS13105 Rev 8  
27/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
nor an external super-capacitor are present. Three anti-tamper detection pins are available  
in VBAT mode.  
VBAT operation is automatically activated when V is not present.  
DD  
An internal V  
present.  
battery charging circuit is embedded and can be activated when V is  
DD  
BAT  
Note:  
When the microcontroller is supplied only from V  
alarm/events do not exit it from VBAT operation.  
, external interrupts and RTC  
BAT  
3.10  
Low-power modes  
The devices support several low-power modes to achieve the best compromise between  
low-power consumption, short startup time, available peripherals and available wakeup  
sources.  
By default, the microcontroller is in Run mode, range 1, after a system or a power-on reset.  
It is up to the user to select one of the low-power modes described below:  
Sleep mode: CPU clock off, all peripherals including CPU core peripherals (among  
them NVIC, SysTick) can run and wake up the CPU when an interrupt or an event  
occurs.  
Low-power run mode (LPRun): when the system clock frequency is reduced below  
2 MHz. The code is executed from the SRAM or from the Flash memory. The regulator  
is in low-power mode to minimize the operating current.  
Low-power sleep mode (LPSleep): entered from the LPRun mode.  
Stop 0 and Stop 1 modes: the content of SRAM1, SRAM2 and of all registers is  
retained. All clocks in the V  
domain are stopped. PLL, MSI, HSI16 and HSE32 are  
CORE  
disabled. LSI and LSE can be kept running.  
RTC can remain active (Stop mode with RTC, Stop mode without RTC). The sub-GHz  
radio may remain active independently from the CPU.  
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop  
mode to detect their wakeup condition.  
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller  
wakeup time but a higher consumption compared with Stop 2.  
In Stop 0 mode, the main regulator remains on, resulting in the fastest wakeup time but  
with much higher consumption. The active peripherals and wakeup sources are the  
same as in Stop 1 mode that uses the low-power regulator.  
The system clock, when exiting Stop 0 or Stop 1 mode, can be either MSI up to 48 MHz  
or HSI16, depending on the software configuration.  
Stop 2 mode: part of the V  
and some peripherals preserve their contents (see Table 7).  
domain is powered off. Only SRAM1, SRAM2, CPU  
CORE  
All clocks in the V domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.  
CORE  
LSI and LSE can be kept running.  
RTC can remain active (Stop 2 mode with RTC, Stop 2 mode without RTC). The sub-  
GHz radio may also remain active independent from the CPU.  
Some peripherals with the wakeup capability can enable HSI16 RC during the Stop 2  
mode to detect their wakeup condition (see Table 7).  
The system clock when exiting from Stop 2 mode, can be either MSI up to 48 MHz or  
28/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Functional overview  
HSI16, depending on the software configuration.  
Standby mode: V  
SRAM2 content as detailed below:  
domain is powered off. However, it is possible to preserve the  
CORE  
Standby mode with SRAM2 retention when the RRS bit is set in the PWR control  
register 3 (PWR_CR3). In this case, SRAM2 is supplied by the low-power  
regulator.  
Standby mode when the RRS bit is cleared in the PWR control register 3  
(PWR_CR3). In this case the main regulator and the low-power regulator are  
powered off.  
All clocks in the V  
domain are stopped. PLL, MSI, HSI16 and HSE32 are disabled.  
CORE  
LSI and LSE can be kept running.  
Th RTC can remain active (Standby mode with RTC, Standby mode without RTC). The  
sub-GHz radio and the PVD may also remain active when enabled independent from  
the CPU. In Standby mode, the PVD selects its lowest level.  
The system clock, when exiting Standby modes, is MSI at 4 MHz.  
Shutdown mode: V  
domain is powered off. All clocks in the V  
domain are  
CORE  
CORE  
stopped. PLL, MSI, HSI16, LSI and HSE32 are disabled. LSE can be kept running. The  
system clock when exiting the Shutdown mode, is MSI at 4 MHz. In this mode, the  
supply voltage monitoring is disabled and the product behavior is not guaranteed in  
case of a power voltage drop.  
The table below summarizes the peripheral features over all available modes. Wakeup  
capability is detailed in gray cells.  
(1)  
Table 7. Functionalities depending on system operating mode  
Stop 0  
Stop 1  
Stop 2 Standby Shutdown  
Peripheral  
-
-
-
-
-
CPU  
Y
R
O
Y
R
O
R
O
-
R
O
-
R
O
-
-
-
-
-
-
-
-
-
Sub-GHz radio system  
O
O
O
O
O
O
O
Flash memory  
(up to 256 Kbytes)  
O(2)  
Y
O(2) O(3)  
R
-
R
-
R
-
R
-
R
-
R
(3)  
Flash memory interface  
SRAM1  
Y
Y
Y
Y
Y
Y
O(2)  
O(2)  
Y
Y
Y
Y
Y
Y
Y
O(2)  
O(2)  
Y
R
R
R
R
Y
-
-
R
R
R
R
Y
-
-
R
R
R
R
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
SRAM2  
-
-
-
O(4)  
-
-
-
Backup registers  
Brownout reset (BOR)  
-
-
-
R
-
R
-
R
-
Y
Y
Y
Y
Y
Y
Y
Programmable voltage  
detector (PVD)  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O(5) O(5)  
-
-
-
-
-
-
Peripheral voltage monitor  
(PVM3)  
-
-
DS13105 Rev 8  
29/145  
48  
 
Functional overview  
STM32WLE5/E4xx  
(1)  
Table 7. Functionalities depending on system operating mode (continued)  
Stop 0 Stop 1 Stop 2 Standby Shutdown  
Peripheral  
-
-
-
-
-
DMAx (x = 1, 2)  
O
O
O
O
O
O
O
O
O
O
3
O
O
O
O
O
O
O
O
O
O
3
O
O
O
O
O
O
R
R
-
-
R
R
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
DMAMUX1  
-
High-speed internal (HSI16)  
High-speed external (HSE32)  
Low-speed internal (LSI)  
Low-speed external (LSE)  
Multi-speed internal (MSI)  
Clock security system (CSS)  
Clock security system on LSE  
RTC/auto wakeup  
Number of tamper pins  
USARTx (x= 1, 2)  
Low-power UART (LPUART1)  
I2Cx (x = 1, 2)  
O(6)  
-
O(6)  
O(7)  
O
-
O(6)  
O(7)  
O
O
O
-
-
-
-
-
-
-
O(7) O(7) O(7)  
-
-
-
O(7)  
-
-
-
-
O
O
O
O
O
O
3
O
O
O
O
O
O
3
O
O
O
R
O
O
3
-
-
-
O
O
-
-
-
-
-
-
O
-
-
-
O
-
-
O
-
-
O
-
-
-
-
-
R
-
-
-
-
-
-
-
O
O
O
O
O
O
O
O
O
3
O
O
O
-
O
O
3
-
O
O
O
-
-
-
-
O
O
3
-
O
O
-
O
3
-
3
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O(8) O(8) O(8) O(8)  
-
O(8) O(8) O(8) O(8) O(8) O(8)  
O(9) O(9) O(9) O(9)  
O(9) O(9) O(9) O(9) O(9) O(9)  
-
-
-
-
-
-
-
-
-
-
-
-
I2C3  
-
-
-
-
-
SPI1  
R
R
R
R
R
O
O
R
R
O
O
-
-
R
R
R
R
R
O
O
R
R
O
O
-
-
-
-
-
-
-
-
-
-
-
SUBGHZSPI  
-
-
-
-
-
SPI2S2  
-
-
-
-
-
-
-
-
-
ADC  
-
-
-
-
-
-
-
-
-
DAC  
-
-
-
-
-
-
-
-
-
VREFBUF  
-
-
R
O
-
-
-
-
-
-
-
COMPx (x = 1, 2)  
Temperature sensor  
TIMx (x = 1, 2, 16, 17)  
LPTIM1  
O
-
O
-
O
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
O
O
O
O
-
O
-
-
-
-
-
-
LPTIMx (x = 2, 3)  
-
-
-
-
-
Independent watchdog  
(IWDG)  
O
O
O
O
O
O
O
O
O
O
O
O
-
-
-
Window watchdog (WWDG)  
SysTick timer  
O
O
O
O
O
O
O
O
R
R
-
-
R
R
-
-
R
R
-
-
-
-
-
-
-
-
-
-
-
-
30/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Functional overview  
(1)  
Table 7. Functionalities depending on system operating mode (continued)  
Stop 0 Stop 1 Stop 2 Standby Shutdown  
Peripheral  
-
-
-
-
-
True random number  
generator (RNG)  
O
O(1  
R
R
R
-
R
-
-
-
-
-
-
-
-
(10)  
0)  
AES hardware accelerator  
PKA hardware accelerator  
CRC calculation unit  
HSEM  
O
O
O
O
O
O
O
O
R
O
O
O
O
O
O
O
O
O
R
O
R
R
R
R
R
-
-
R
R
R
R
R
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R
-
-
-
-
-
EXTI  
O
O
R
O
3
pin  
3
R
(13)  
GPIOs  
O
O
O
O
O
O
O
O
O
O
pins  
-
(11)  
s
(12)  
(12)  
1. Legend: Y = Yes (enabled). O = Optional (disabled by default and can be enabled by software). R = data retained.  
- = Not available. Gray cells indicate wakeup capability.  
2. The SRAM clock can be gated on or off.  
3. Flash memory can be placed in power-down mode.  
4. The SRAM2 content can optionally be retained when the PWR_CR3.RRS bit is set.  
5. Only when the sub-GHz radio is active.  
6. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by  
the peripheral, and only feeds the peripheral that requested it. HSI16 is automatically put off when the peripheral does not  
need it anymore.  
7. HSE32 can be used by sub-GHz radio system.  
8. USART reception is functional in Stop 0 and Stop 1 modes. LPUART1 reception is functional is Stop 0, Stop 1, and Stop 2  
modes. LPUART1 generates a wakeup interrupt on Start address match or received frame event.  
9. I2Cx (x= 1, 2) address detection is functional in Stop 0 and Stop 1 modes. I2C3 address detection is functional in Stop 0,  
Stop 1 and Stop 2 modes. I2C3 generates a wakeup interrupt in case of address match.  
10. Voltage scaling range 1 only.  
11. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.  
12. The I/Os with wakeup from Standby/Shutdown capability are PA0, PC13 and PB3.  
13. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode, but the configuration is lost when  
exiting the Shutdown mode.  
DS13105 Rev 8  
31/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
Table 8. Low-power mode summary  
Voltage  
Wakeup  
Wakeup  
system clock  
regulators  
Mode name  
Entry  
Effect on clocks  
source(1)  
MR LPR  
WFI or return  
from ISR  
CPU clock OFF  
Sleep  
(Sleep-now or  
Sleep-on-exit)  
Any interrupt  
Wakeup event  
Clear LPR bit  
Same as before  
entering Sleep mode  
ON ON  
No effect on other clocks  
or analog clock sources  
WFE  
Same as LPRun  
clock  
LPRun  
Set LPR bit  
None  
OFF ON  
OFF ON  
OFF ON  
Set LPR bit +  
WFI or return  
from ISR  
Any interrupt  
CPU clock OFF  
Same as before  
entering LPSleep  
mode  
LPSleep  
No effect on other clocks  
or analog clock sources  
Set LPR bit +  
WFE  
Wakeup event  
LPMS = 0b000 +  
SLEEPDEEP bit  
+ WFI or return  
from ISR or WFE  
Stop 0  
ON  
HSI16 when  
LPMS = 0b001 + Any EXTI line  
STOPWUCK = 1 in  
SLEEPDEEP bit (configured in the RCC_CFGR.  
Stop 1  
Stop 2  
All clocks OFF  
except HSI16, LSI and  
LSE  
+ WFI or return  
from ISR or WFE  
EXTI registers).  
MSI with the  
ON  
Specific  
peripherals  
events  
frequency before  
entering the Stop  
mode when  
OFF  
LPMS = 0b010+  
SLEEPDEEP bit  
+ WFI or return  
from ISR or WFE  
(with I2C3,  
LPUART1,  
LPTIM1,  
STOPWUCK = 0.  
SRAM1,  
SRAM2)  
LPMS = 0b011+  
Set RRS bit +  
SLEEPDEEP bit  
+ WFI or return  
from ISR or WFE  
Wakeup PVD,  
RFIRQ, wakeup  
RFBUSY, WKUP  
pin edge, RTC  
Standby (with  
SRAM2)  
OFF ON  
OFF OFF  
OFF OFF  
All clocks OFF  
except LSI and LSE  
and TAMP event, MSI 4 MHz  
LSECSS,  
external reset in  
NRST pin,  
LPMS = 0b011 +  
Clear RRS bit +  
SLEEPDEEP bit  
+ WFI or return  
from ISR or WFE  
Standby  
IWDG reset  
WKUP pin edge,  
RTC and TAMP  
LPMS = 0b1xx +  
SLEEPDEEP bit  
+ WFI or return  
from ISR or WFE  
All clocks OFF  
except LSE  
Shutdown  
event, external  
reset in NRST  
pin  
MSI 4 MHz  
1. Refer to Table 7: Functionalities depending on system operating mode.  
32/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Functional overview  
Relation between MCU and sub-GHz radio operating modes  
The CPU and sub-GHz radio have their own operating modes (see the table below).  
Table 9. MCU and sub-GHz radio operating modes  
CPU operating mode  
Sub-GHz radio operating mode  
Description  
Sleep, Calibration, Standby, Active  
(FS, TX, RX)  
LDO or SMPS regulator active, MCU running in  
main regulator (MR) mode  
Run, Sleep  
(1)  
LDO and SMPS regulator off, MCU running in low  
power regulator (LPR) mode  
Deep-Sleep  
LPRun, LPSleep  
Stop 0  
Sleep, Calibration, Standby, Active  
(FS, TX, RX)  
LDO or SMPS regulator active, MCU running in low  
power regulator (LPR) mode  
Sleep, Calibration, Standby, Active  
(FS, TX, RX)(1)  
LDO or SMPS regulator active, MCU running in  
main regulator (MR) mode  
LDO and SMPS regulator off, MCU using low power  
regulator (LPR) mode  
Deep-Sleep  
Stop 1 and Stop 2  
Sleep, Calibration, Standby, Active  
(FS, TX, RX)  
LDO or SMPS regulator active, MCU using low  
power regulator (LPR) mode  
LDO and SMPS regulator off, MCU regulator off or  
Deep-Sleep  
on in low power (LPR) mode(2)  
.
Standby  
Sleep, Calibration, Standby, Active  
(FS, TX, RX)  
LDO or SMPS regulator active, MCU regulator off or  
on in low power (LPR) mode(2)  
Shutdown  
Deep-Sleep(3)  
LDO and SMPS regulator off, MCU regulator off  
1. In the MCU Run, Sleep and Stop 0 modes, the sub-GHz radio is prevented from entering Deep-sleep mode.  
2. When retaining SRAM2 in Standby mode, the MCU uses the low-power regulator (LPR) mode.  
3. When the CPU is in Shutdown mode, the sub-GHz radio cannot be activated and is forced in Deep-sleep mode.  
3.10.1  
Reset mode  
In order to improve the consumption under reset, the I/Os state under and after reset is  
"analog state" (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is  
deactivated when the reset source is internal.  
This excludes the five serial-wire JTAG debug ports that are in pull-up/pull-down after reset.  
3.11  
Peripheral interconnect matrix  
Several peripherals have direct connections between them. This allows autonomous  
communication between peripherals, saving CPU resources and, consequently, reducing  
power-supply consumption. In addition, these hardware connections allow fast and  
predictable latency.  
Depending on peripherals, these interconnections can operate in Run, Sleep, LPRun,  
LPSleep, Stop 0, Stop 1 and Stop 2 modes.  
DS13105 Rev 8  
33/145  
48  
 
 
 
 
 
 
Functional overview  
STM32WLE5/E4xx  
(1) (2)  
Table 10. Peripherals interconnect matrix  
Destination  
Source  
TIM1  
TIM2  
-
X
-
X
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
X
-
X
X
-
X
X
-
X
X
-
-
-
-
-
-
-
TIM16  
TIM17  
LPTIM1  
LPTIM2  
LPTIM3  
ADC  
-
-
-
X
X
-
-
X
-
-
-
-
-
-
-
-
-
-
X
X
-
-
X
X
-
-
-
X
X
X
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
-
X
-
-
-
-
-
-
Temperature  
sensor  
-
-
-
-
-
-
-
X
-
-
-
-
-
-
VBAT(3)  
VREFINT  
HSE32  
LSE  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
X
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
X
-
-
-
-
-
-
X
-
X
-
-
-
-
-
-
MSI  
-
X
-
-
-
-
-
-
LSI  
-
-
X
-
-
-
-
-
-
MCO  
-
-
X
-
-
-
-
-
-
GPIO EXTI  
RTC  
-
-
-
-
-
X
-
X
-
X
-
-
-
X
-
-
X
X
X
X
-
X
X
X
X
-
TAMP  
-
-
-
-
-
-
COMP1  
COMP2  
SYST ERR  
X
X
X
X
X
-
X
X
X
X
X
X
-
-
-
-
-
-
-
-
-
1. For more details, refer to section “Interconnection details” of the reference manual.  
2. The “-” symbol in grayed cells means no interconnect.  
3. VDD on STM32WLE5/4UxYx devices.  
34/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Functional overview  
3.12  
Reset and clock controller (RCC)  
The following different clock sources can be used to drive the system clock (SYSCLK):  
HSI16 (high-speed internal) 16 MHz RC oscillator clock  
MSI (multi-speed internal) RC oscillator clock from 100 kHz to 48 MHz  
HSE32 (high-speed external) 32 MHz oscillator clock, with trimming capacitors.  
PLL clock  
The MSI is used as system clock source after startup from reset, configured at 4 MHz.  
The devices have the following additional clock sources:  
LSI: 32 kHz low-speed internal RC that may drive the independent watchdog and  
optionally the RTC used for auto-wakeup from Stop and Standby modes.  
LSE: 32.768 kHz low-speed external crystal that optionally drives the RTC used for  
auto-wakeup from Stop, Standby and Shutdown modes, or the real-time clock  
(RTCCLK).  
Each clock source can be switched on or off independently when it is not used, to optimize  
power consumption.  
Several prescalers can be used to configure the AHB frequencies (HCLK3/PCLK3, HCLK1),  
the high-speed APB2 (PCLK2) and the low-speed APB1 (PCLK1) domains. The maximum  
frequency of the AHB (HCLK3, HCLK1), the PCLK1 and the PCLK2 domains is 48 MHz.  
Most peripheral clocks are derived from their bus clock (HCLK, PCLK) except the following:  
The clock used for true RNG, is derived (selected by software) from one of the following  
sources:  
PLL VCO (PLLQCLK) (only available in Run mode)  
MSI (only available in Run mode)  
LSI clock  
LSE clock  
The ADC clock is derived (selected by software) from one of the following sources:  
system clock (SYSCLK) (only available in Run mode)  
HSI16 clock (only available in Run mode)  
PLL VCO (PLLPCLK) (only available in Run mode)  
The DAC uses the LSI clock in sample and hold mode  
The (LP)U(S)ARTs clocks are derived (selected by software) from one of the following  
sources:  
system clock (SYSCLK) (only available in Run mode)  
HSI16 clock (available in Run and Stop modes)  
LSE clock (available in Run and Stop modes)  
APB clock (PCLK depending on which APB the U(S)ART is mapped) (available in  
CRun and CSleep when also enabled in (LP)U(S)ARTxSMEN)  
The wakeup from Stop mode is supported only when the clock is HSI16 or LSE.  
DS13105 Rev 8  
35/145  
48  
 
Functional overview  
STM32WLE5/E4xx  
The I2Cs clocks are derived (selected by software) from one of the following sources:  
system clock (SYSCLK) (only available in Run mode)  
HSI16 clock (available in Run and Stop modes)  
APB clock (PCLK depending on which APB the I2C is mapped) (available in CRun  
and CSleep when also enabled in I2CxSMEN.)  
The wakeup from Stop mode is supported only when the clock is HSI16.  
The SPI2S2 I2S clock is derived (selected by software) from one of the following  
sources:  
HSI16 clock (only available in Run mode)  
PLL VCO (PLLQCLK) (only available in Run mode)  
external input I2S_CK (available in Run and Stop modes)  
The low-power timers (LPTIMx) clock is derived (selected by software) from one of the  
following sources:  
LSI clock (available in Run and Stop modes)  
LSE clock (available in Run and Stop modes)  
HSI16 clock (only available in Run mode)  
APB clock (PCLK depending on which APB the LPTIMx is mapped) (available in  
Run and CStop when enabled in LPTIMxSMEN.)  
external clock mapped on LPTIMx_IN1 (available in Run and Stop modes)  
The functionality in Stop mode (including wakeup) is supported only when the clock is  
LSI or LSE, or in external clock mode.  
The RTC clock is derived (selected by software) from one of the following sources:  
LSE clock  
LSI clock  
HSE32 clock divided by 32  
The functionality in Stop mode (including wakeup) is supported only when the clock is  
LSI or LSE.  
The IWDG clock is always the LSI clock.  
The RCC feeds the CPU system timer (SysTick) external clock with the AHB clock (HCLK1)  
divided by eight. The SysTick can work either with this clock or directly with the CPU clock  
(HCLK1), configurable in the SysTick control and status register.  
FCLK1 acts as CPU free-running clock. For more details, refer to the programming manual  
STM32 Cortex-M4 MCUs and MPUs programming manual (PM0214).  
36/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Functional overview  
Figure 8. Clock tree  
to IWDG  
to RTC  
LSI RCC 32 kHz  
LSCO  
LSI  
LSE OSC  
OSC32_OUT  
OSC32_IN  
32.768 kHz  
LSE  
LSE CSS  
LSI  
CPU  
/32  
LSE  
HCLK1  
to CPU, AHB1, AHB2  
to CPU FCLK  
HPRE  
/1,2,...,512  
HSE32  
SYSCLK  
PLLRCLK  
PLLQCLK  
PLLPCLK  
HSI16  
to CPU system timer  
/8  
MCO  
/1 - 16  
APB1  
PPRE1  
/1,2,4,8,16  
PCLK1  
to APB1  
SYS clock  
source  
x1 or  
x2  
to APB1 TIMx  
control  
PLLRCLK  
MSI  
APB2  
PPRE2  
/1,2,4,8,16  
MSI  
PCLK2  
to APB2  
HSE32 OSC  
32 MHz  
x1 or  
x2  
OSC_OUT  
OSC_IN  
to APB2 TIMx  
SYSCLK  
HSE CSS  
HSEPRE  
/1,2  
HSE32  
HSI16 RC  
16 MHz  
HSI16  
MSI RC  
AHB3  
SHDHPRE  
/1,2,...,512  
100 kHz - 48 MHz  
HCLK3  
to AHB3, Flash, SRAM1, SRAM2  
MSI  
PCLK3  
to APB3  
to RF  
HSI16  
/M  
PCLKn  
PCLKn  
HSI16  
LSI  
HSI16  
SYSCLK  
HSI16  
LSE  
SYSCLK  
to ADC  
to USART1  
to LPTIM1  
to LPTIM2  
to LPTIM3  
PLL  
to USART2  
x
N
PLLPCLK  
to LPUART1  
/P  
/Q  
/R  
LSE  
PLLQCLK  
PLLRCLK  
LSI  
LSE  
MSI  
PCLKn  
SYSCLK  
HSI16  
to SPI2S2  
HSI16  
to RNG  
LSI  
to I2C1  
to I2C2  
to I2C3  
I2S_CKIN  
DAC  
MSv62605V2  
1. For full details about the internal and external clock source characteristics, refer to the electrical characteristics section in  
the device datasheet.  
2. The ADC clock can additionally be derived from the AHB clock of the ADC bus interface, divided by a programmable factor  
(1, 2 or 4). When the programmable factor is 1, the AHB prescaler must be equal to 1.  
3.13  
Hardware semaphore (HSEM)  
The HSEM provides a 16- (32-bit) register based semaphores. The semaphores can be  
used to ensure synchronization between different processes running on the core. The  
HSEM provides a non blocking mechanism to lock semaphores in an atomic way. The  
following functions are provided:  
Locking a semaphore can be done in two ways:  
2-step lock: by writing COREID and PROCID to the semaphore, followed by a  
read check  
1-step lock: by reading the COREID from the semaphore  
Interrupt generation when a semaphore is unlocked: Each semaphore may generate  
an interrupt on one of the interrupt lines.  
Semaphore clear protection: A semaphore is only unlocked when COREID and  
PROCID match.  
Global semaphore clear per COREID  
DS13105 Rev 8  
37/145  
48  
 
 
 
Functional overview  
STM32WLE5/E4xx  
3.14  
General-purpose inputs/outputs (GPIOs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be  
achieved thanks to their mapping on the AHB2 bus.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
3.15  
Direct memory access controller (DMA)  
The DMA (direct memory access) is used to provide high-speed data transfer between  
peripherals and memory, as well as memory to memory. Data can be quickly moved by  
DMA without any CPU actions. This keeps CPU resources free for other operations.  
The DMA controller has 14 channels in total. A full cross matrix allows the peripherals, with  
DMA support, to be mapped on any of the available DMA channels. Each DMA channel has  
an arbiter for handling the priority between DMA requests.  
The DMA main features are listed below:  
14 independently configurable channels (requests)  
a full cross matrix between peripherals and all 14 channels and an hardware trigger  
possibility through the DMAMUX1  
software programmable priorities between requests from channels of one DMA (four  
levels: very-high, high, medium, low), plus hardware priorities management in case of  
equality (example: request 1 has priority over request 2)  
independent source and destination transfer size (byte, half-word, word), emulating  
packing and unpacking. Source/destination addresses must be aligned on the data  
size.  
support for circular buffer management  
three event flags (DMA half-transfer, DMA transfer complete and DMA transfer error),  
logically ORed together in a single interrupt request for each channel  
memory-to-memory transfer  
peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers  
access to Flash memory, SRAM, APB and AHB peripherals, as source and destination  
programmable number of data to be transferred (up to 65536)  
Table 11. DMA1 and DMA2 implementation  
Feature  
Number of channels  
DMA1  
DMA2  
7
7
DMAMUX1 is used to route the peripherals with DMA source support, to any DMA channel.  
38/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Functional overview  
3.16  
Interrupts and events  
3.16.1  
Nested vectored interrupt controller (NVIC)  
The devices embed an NIVC able to manage 16 priority levels, and to handle up to  
62 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M4.  
The NVIC benefits are the following:  
low-latency interrupt processing  
interrupt entry vector table address passed directly to the core  
early processing of interrupts  
processing of late-arriving higher-priority interrupts  
support for tail chaining  
processor state automatically saved  
interrupt entry restored on interrupt exit, with no instruction overhead  
The NVIC hardware block provides flexible interrupt management features with minimal  
interrupt latency.  
3.16.2  
Extended interrupt/event controller (EXTI)  
The EXTI manages wakeup through configurable and direct event inputs. It provides wake-  
up requests to the power control, and generates interrupt requests to the CPU NVIC and  
events to the CPU event input.  
Configurable events/interrupts come from peripherals that are able to generate a pulse and  
allow the selection between the event/interrupt trigger edge and a software trigger.  
Direct events/interrupts come from peripherals having their own clearing mechanism.  
3.17  
Cyclic redundancy check (CRC)  
The CRC calculation unit is used to get a CRC code from 8-, 16- or 32-bit data word and a  
generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the functional safety standards, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps to compute a signature  
of he software during runtime, to be compared with a reference signature generated at link  
time and stored at a given memory location.  
3.18  
Analog-to-digital converter (ADC)  
A native 12-bit ADC is embedded into the devices. It can be extended to 16-bit resolution  
through hardware oversampling. The ADC has up to 12 external channels and four internal  
(a)  
channels (temperature sensor, voltage reference, V  
monitoring, DAC output). The  
BAT  
ADC performs conversions in single-shot or scan mode. In scan mode, automatic  
conversion is performed on a selected group of analog inputs.  
a. VDD on STM32WLE5/E4UxYx devices.  
DS13105 Rev 8  
39/145  
48  
 
 
 
 
 
 
Functional overview  
STM32WLE5/E4xx  
The ADC frequency is independent from the CPU frequency, allowing maximum sampling  
rate of ~2 Msps even with a low CPU speed. An auto-shutdown function guarantees that the  
ADC is powered off except during the active conversion phase.  
The ADC can be served by the DMA controller. It can operate in the whole V supply  
DD  
range.  
The ADC features a hardware oversampler up to 256 samples, improving the resolution to  
16 bits. Refer to the application note Improving STM32F1 Series, STM32F3 Series and  
STM32Lx Series ADC resolution by oversampling (AN2668).  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all scanned channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start triggers, to allow the application to synchronize A/D conversions with timers.  
3.18.1  
Temperature sensor  
The temperature sensor (TS) generates a V voltage that varies linearly with temperature.  
TS  
The temperature sensor is internally connected to the ADC VIN[12] input channel, to  
convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall  
accuracy of the temperature measurement. As the offset of the temperature sensor may  
vary from part to part due to process variation, the uncalibrated internal temperature sensor  
is suitable only for relative temperature measurements.  
To improve the accuracy of the temperature sensor, each part is individually factory-  
calibrated by ST. The resulting calibration data is stored in the device engineering bytes,  
accessible in read-only mode.  
Table 12. Temperature sensor calibration values  
Calibration value  
Description  
Memory address  
name  
TS ADC raw data acquired at 30 °C (± 5 °C),  
VDDA = VREF+ = 3.3 V (± 10 mV)  
TS_CAL1  
0x1FFF 75A8 - 0x1FFF 75A9  
0x1FFF 75C8 - 0x1FFF 75C9  
TS ADC raw data acquired at 130 °C (± 5 °C),  
VDDA = VREF+ = 3.3 V (± 10 mV)  
TS_CAL2  
3.18.2  
Internal voltage reference (V  
)
REFINT  
V
provides a stable (bandgap) voltage output for the ADC and comparators. V  
REFINT  
REFINT  
is internally connected to the ADC VIN[13] input channel.  
V
is individually and precisely measured, for each part, by ST, during production test  
REFINT  
and stored in the device engineering bytes. It is accessible in read-only mode.  
40/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Functional overview  
Table 13. Internal voltage reference calibration values  
Calibration value name  
Description  
Memory address  
Raw data acquired at 30 °C (± 5 °C),  
VREFINT_CAL  
0x1FFF 75AA - 0x1FFF 75AB  
VDDA = VREF+ = 3.3 V (± 10 mV)  
3.18.3  
V
battery voltage monitoring  
BAT  
(a)  
This embedded hardware feature allows the application to measure the V  
battery  
, and thus  
BAT  
voltage using the ADC VIN[14] input channel. As V  
may be higher than V  
BAT  
DDA  
outside the ADC input range, the VBAT pin is internally connected to a bridge divider by  
three. As a consequence, the converted digital value is one third the V  
voltage.  
BAT  
3.19  
Digital-to-analog converter (DAC)  
The 1-channel 12-bit buffered DAC converts a digital value into an analog voltage available  
on the channel output. The architecture of each channel is based on an integrated resistor  
string and an inverting amplifier. The digital circuitry is common for both channels.  
DAC main features:  
1 DAC output channel  
8-bit or 12-bit output mode  
buffer offset calibration (factory and user trimming)  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
independent or simultaneous conversion for DAC channels  
DMA capability for either DAC channel  
triggering with timer events, synchronized with DMA  
triggering with external events  
Sample-and-hold low-power mode, with internal or external capacitor  
3.20  
Voltage reference buffer (VREFBUF)  
The devices embed a voltage reference buffer that can be used as voltage reference for  
ADC, and also as voltage reference for external components through the VREF+ pin.  
VREFBUF supports two voltages: 2.048 V and 2.5 V.  
An external voltage reference can be provided through the VREF+ pin when VREFBUF  
is off.  
a. VDD on STM32WLE5/E4UxYx devices.  
DS13105 Rev 8  
41/145  
48  
 
 
 
 
 
Functional overview  
STM32WLE5/E4xx  
3.21  
Comparator (COMP)  
The devices embed two rail-to-rail comparators with programmable reference voltage  
(internal or external), hysteresis and speed (low speed for low-power) and with selectable  
output polarity.  
The reference voltage can be one of the following:  
external I/O  
internal reference voltage or submultiple (1/4, 1/2, 3/4)  
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers,  
and can be also combined into a window comparator.  
3.22  
3.23  
True random number generator (RNG)  
The devices embed a true RNG that delivers 32-bit random numbers generated by an  
integrated analog circuitry.  
Advanced encryption standard hardware accelerator (AES)  
The AES encrypts or decrypts data, using an algorithm and implementation fully compliant  
with the advanced encryption standard (AES) defined in FIPS (federal information  
processing standards) publication 197.  
Multiple chaining modes are supported (ECB, CBC, CTR, GCM, GMAC, CCM), for key  
sizes of 128 or 256 bits. The AES supports DMA single transfers for incoming and outgoing  
data (two DMA channels required).  
3.24  
3.25  
Public key accelerator (PKA)  
The PKA is used to compute cryptographic public key primitives, specifically those related to  
RSA (Rivest, Shamir and Adleman), Diffie-Hellmann or ECC (elliptic curve cryptography)  
over GF(p) (Galois fields). These operations are executed in the Montgomery domain.  
Timer and watchdog  
The devices include one advanced 16-bit timer, one general-purpose 32-bit timer, two 16-bit  
basic timers, three low-power timers, two watchdog timers and a SysTick timer.  
The table below compares the features of the advanced control, general purpose and basic  
timers.  
42/145  
DS13105 Rev 8  
 
 
 
 
 
STM32WLE5/E4xx  
Functional overview  
Table 14. Timer features  
Counter  
resolution  
(bits)  
DMA  
request  
generation  
Capture/  
compare  
channels  
Timer  
Timer type  
Counter  
type  
Prescaler  
factor  
Complementary  
outputs  
name  
Advanced  
TIM1  
Up, down  
and  
up/down  
16  
32  
3
control  
4
2
1
TIM2  
NA  
General  
purpose  
Any integer  
between  
1 and 65536  
TIM16  
Yes  
TIM17  
16  
Up  
1
LPTIM1  
Low power LPTIM2  
LPTIM3  
3.25.1  
Advanced-control timer (TIM1)  
The advanced-control timer TIM1 can be seen as a three-phase PWM multiplexed on six  
channels. Each channel has complementary PWM outputs with programmable inserted  
dead-times. Each channel can also be seen as complete general-purpose timers.  
The four independent channels can be used for:  
input capture  
output compare  
PWM generation (edge or center-aligned modes) with full modulation capability  
(0 - 100 %)  
one-pulse mode output  
In debug mode, the TIM1 counter can be frozen and the PWM outputs disabled to turn off  
any power switches driven by these outputs.  
Many features are shared with those of the general-purpose timers (described in the next  
section) using the same architecture. TIM1 can then work together with TIM2 via the  
peripheral interconnect matrix, for synchronization or event chaining.  
3.25.2  
General-purpose timers (TIM2, TIM16, TIM17)  
Each general-purpose timer can be used to generate PWM outputs, or act as a simple time  
base.  
TIM2 main features:  
full-featured general-purpose timer  
four independent channels for input capture/output compare, PWM or one-pulse mode  
output  
counter that can be frozen in debug mode  
independent DMA request generation, support of quadrature encoders  
DS13105 Rev 8  
43/145  
48  
 
 
 
Functional overview  
STM32WLE5/E4xx  
TIM16 and TIM17 main features:  
general-purpose timers with mid-range features  
16-bit auto-reload upcounters and 16-bit prescalers  
1 channel and 1 complementary channel  
channels that can all be used for input capture/output compare, PWM or one-pulse  
mode output  
counter that can be frozen in debug mode  
independent DMA request generation  
3.25.3  
Low-power timers (LPTIM1, LPTIM2 and LPTIM3)  
These low-power timers have an independent clock and run in Stop mode if they are  
clocked by LSE, LSI, or by an external clock. They are able to wake up the system from  
Stop mode.  
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.  
LPTIM2 and LPTIM3 are active in Stop 0 and Stop 1 modes.  
LPTIM1/2/3 main features:  
16-bit up counter with 16-bit autoreload register  
16-bit compare register  
configurable output: pulse, PWM  
continuous/one-shot mode  
selectable software/hardware input trigger  
selectable clock source  
internal clock sources: LSE, either LSI, HSI16 or APB clock  
external clock source over LPTIM input (works even with no internal clock source  
running, used by pulse counter application)  
programmable digital glitch filter  
encoder mode (LPTIM1 only)  
3.25.4  
3.25.5  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and a 8-bit prescaler. The  
IWDG is clocked from an independent 32 kHz internal RC (LSI). As the IWDG operates  
independently from the main clock, it can operate in Stop and Standby modes.  
The IWDG can be used either as a watchdog to reset the device when a problem occurs, or  
as a free running timer for application timeout management. The IWDG is hardware or  
software configurable through the option bytes. The counter can be frozen in debug mode.  
System window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free running. The  
WWDG can be used as a watchdog to reset the device when a problem occurs.  
The WWDG is clocked from the main clock and has an early warning interrupt capability.  
The counter can be frozen in debug mode.  
44/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Functional overview  
3.25.6  
SysTick timer  
This timer is dedicated to real-time operating systems, but can also be used as a standard  
down counter.  
SysTick timer main features:  
24-bit down counter  
autoreload capability  
maskable system interrupt generation when the counter reaches 0  
programmable clock source  
3.26  
Real-time clock (RTC), tamper and backup registers  
The RTC is an independent BCD timer/counter. The RTC provides a time-of-day  
clock/calendar with programmable alarm interrupts.  
As long as the supply voltage remains in the operating range, the RTC never stops,  
regardless of the device status (Run mode, low-power mode or under reset).  
The RTC provides an automatic wakeup to manage all low-power modes.  
The RTC is functional in VBAT mode.  
Twenty 32-bit backup registers are retained in all low-power modes and also in VBAT mode.  
These registers can be used to store sensitive data as their content is protected by a tamper  
detection circuit.  
Three tamper pins and four internal tampers are available for anti-tamper detection. The  
external tamper pins can be configured for edge or level detection with or without filtering.  
3.27  
Inter-integrated circuit interface (I2C)  
The device embeds three I2Cs, with features implementation listed in the he table below.  
2
The I C bus interface handles communications between the microcontroller and the serial  
2
2
I C bus. It controls all I C bus-specific sequencing, protocol, arbitration and timing.  
The I2C peripheral supports:  
2
I C bus specification and user manual rev. 5 compatibility:  
slave and master modes, multimaster capability  
Standard-mode (Sm), with a bitrate up to 100 Kbit/s  
Fast-mode (Fm), with a bitrate up to 400 Kbit/s  
Fast-mode plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os  
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses  
programmable setup and hold times  
clock stretching (optional)  
SMBus (system management bus) specification rev 2.0 compatibility:  
hardware PEC (packet error checking) generation and verification with ACK  
control  
address resolution protocol (ARP) support  
SMBus alert  
DS13105 Rev 8  
45/145  
48  
 
 
 
Functional overview  
STM32WLE5/E4xx  
PMBus (power system management protocol) specification rev 1.1 compatibility  
2
independent clock: a choice of independent clock sources allowing the I C  
communication speed to be independent from the PCLK reprogramming (see Figure 8)  
wakeup from Stop mode on address match  
programmable analog and digital noise filters  
1-byte buffer with DMA capability  
Table 15. I2C implementation  
I2C features(1)  
I2C1(2)  
I2C2(2)  
I2C3  
7-bit addressing mode  
10-bit addressing mode  
X
X
X
X
X
X
Standard-mode (up to 100 Kbit/s)  
Fast-mode (up to 400 Kbit/s)  
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)  
Independent clock  
X
X
X
X
X
X
X
X
X
X
X
X
Wakeup from Stop mode  
X(3)  
X(3)  
X(4)  
SMBus/PMBus  
X
X
X
1. X = supported.  
2. The register content is lost in Stop 2 mode.  
3. Wakeup supported from Stop 0 and Stop 1 modes.  
4. Wakeup supported from Stop 0, Stop 1 and Stop 2 modes.  
3.28  
Universal synchronous/asynchronous receiver transmitter  
(USART/UART)  
The devices embed two universal synchronous receiver transmitters, USART1 and  
USART2 (see Table 16 for the implementation details).  
Each USART provides asynchronous communication, IrDA SIR ENDEC support,  
multiprocessor communication mode, single-wire half-duplex communication mode. Each  
USART has LIN Master/Slave capability and provides hardware management of the CTS  
and RTS signals, and RS485 driver enable.  
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides  
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability.  
The USART supports synchronous operation (SPI mode), and can be used as an SPI  
master.  
The USART has a clock domain independent from the CPU clock, allowing the USART to  
wake up the MCU from Stop mode, using baudrates up to 200 kbaud.  
The wakeup events from Stop mode are programmable and can be one of the following:  
start bit detection  
any received data frame  
a specific programmed data frame  
46/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Functional overview  
The USART interface can be served by the DMA controller.  
3.29  
Low-power universal asynchronous receiver transmitter  
(LPUART)  
The devices embed one low-power UART (LPUART1) that enables asynchronous serial  
communication with minimum power consumption. The LPUART supports half-duplex  
single-wire communication and modem operations (CTS/RTS), allowing multiprocessor  
communication.  
The LPUART has a clock domain independent from the CPU clock, and can wake up the  
system from Stop mode using baudrates up to 220 Kbaud. The wakeup events from Stop  
mode are programmable and can be one of the following:  
start bit detection  
any received data frame  
a specific programmed data frame  
Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to  
9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame  
while having an extremely low-energy consumption. Higher speed clock can be used to  
reach higher baudrates.  
The LPUART interface can be served by the DMA controller.  
Table 16. USART/LPUART features  
USART modes/features(1)  
USART1/2  
LPUART1  
Hardware flow control for modem  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
-
Continuous communication using DMA  
Multiprocessor communication  
Synchronous mode (Master/Slave)  
Smartcard mode  
-
Single-wire half-duplex communication  
IrDA SIR ENDEC block  
LIN mode  
X
-
-
Dual clock domain and wakeup from low-power mode  
Receiver timeout interrupt  
Modbus communication  
Auto baud rate detection  
Driver enable  
X
-
-
-
X
USART data length  
7, 8 and 9 bits  
Tx/Rx FIFO  
X
X
Tx/Rx FIFO size  
8
1. X = supported.  
DS13105 Rev 8  
47/145  
48  
 
 
Functional overview  
STM32WLE5/E4xx  
3.30  
Serial peripheral interface (SPI)/integrated-interchip sound  
interface (I2S)  
The SPI/I2S interface can be used to communicate with external devices using the SPI  
protocol or the I S audio protocol. SPI or I2S mode is selectable by software. SPI Motorola  
2
®
mode is selected by default after a device reset.  
The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial  
communication with external devices. The SPI interface can be configured as master and, in  
this case, it provides the communication clock (SCK) to the external slave device. The SPI  
interface can also operate in multimaster configuration.  
2
The I S protocol is also a synchronous serial communication interface. It can operate in  
slave or master mode with half-duplex communication. It can address four different audio  
2
standards including the Philips I S standard, the MSB- and LSB-justified standards and the  
PCM standard.  
(1)  
Table 17. SPI and SPI/I2S implementation  
Features  
SPI1  
SPI2S2  
SUBGHZSPI  
Enhanced NSSP and TI modes  
Hardware CRC calculation  
I2S support  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Data size configurable (bits)  
Rx/Tx FIFO size (bits)  
from 4 to 16  
32  
Wakeup capability from LPSleep  
Yes  
1. The SPI1 and SPI2S2 instances are general purpose type while the SUBGHZSPI instance is dedicated for  
Sub-GHz radio control exclusively. Radio is controlled internally through SUBGHZSPI and, for debug  
purpose only, from the external.  
3.31  
Development support  
Serial-wire JTAG debug port (SWJ-DP)  
The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial-wire debug  
port, that enables either a serial-wire debug or a JTAG probe to be connected to the target.  
The debug is performed using only two pins instead of the five required by the JTAG (JTAG  
pins can then be reused as GPIOs with alternate function). The JTAG TMS and TCK pins  
are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin  
is used to switch between JTAG-DP and SW-DP.  
48/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Pinouts, pin description and alternate functions  
4
Pinouts, pin description and alternate functions  
Figure 9. UFQFPN48 pinout  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PA0  
PA1  
PA2  
PA3  
VDD  
PA4  
PA13  
2
PA12  
3
PA11  
4
PA10  
5
PB12  
6
PB2  
UFQFPN48  
7
PB0-VDD_TCXO  
VDDRF1V55  
VDDRF  
OSC_OUT  
OSC_IN  
VDDPA  
8
9
10  
11  
12  
MSv48144V4  
1. The above figure shows the package top view.  
2. The exposed pad must be connected to the ground plain.  
DS13105 Rev 8  
49/145  
60  
 
 
Pinouts, pin description and alternate functions  
STM32WLE5/E4xx  
Figure 10. UFBGA73 pinout  
1
2
3
4
5
6
7
8
9
VSSSMPS  
VDDSMPS  
PA14  
VDDA  
VDD  
VBAT  
PA12  
A
B
C
D
E
F
PC14-  
VLXSMPS  
PB3  
VFBSMPS  
PB4  
PA15  
PB7  
PB8  
PB15  
PB9  
VREF+  
VSS  
PC13  
PB13  
PA13  
PA10  
PB2  
PA11  
OSC32_IN  
PC15-  
OSC32  
_OUT  
PB14  
PA0  
PB5  
PC2  
PC3  
VSS  
VDD  
PB6  
PC1  
VDD  
PC0  
VSS  
PC4  
PC5  
PA6  
PA9  
PB12  
PB1  
VDDRF  
PB0-  
VDD_TCXO  
VDDRF  
1V55  
NRST  
OSC_OUT  
PC6  
PA2  
PA5  
PA1  
PA7  
PA8  
PB11  
PB10  
VSS  
VDD  
VSSRF  
VSSRF  
RFI_P  
VSSRF  
RFI_N  
VSSRF  
VDDPA  
RFO_LP  
OSC_IN  
VR_PA  
G
H
J
PA3  
PA4  
PH3-  
BOOT0  
RFO_HP  
MSv48145V4  
1. The above figure shows the package top view.  
Table 18. Legend/abbreviations used in the pinout table  
Abbreviation Definition  
Name  
Unless otherwise specified in brackets below the pin name, the pin function during and  
after reset is the same as the actual pin name  
Pin name  
S
I
Supply pin  
Input only pin  
Input / output pin  
Output only pin  
5 V tolerant I/O  
Radio RF pin  
3 V tolerant I/O  
Pin type  
I/O  
O
FT  
RF  
TT  
I/O structure  
Option for FT I/Os  
_f  
I/O, Fm+ capable  
_a  
I/O, with Analog switch function supplied by VDDA  
50/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Pinouts, pin description and alternate functions  
Definition  
Table 18. Legend/abbreviations used in the pinout table (continued)  
Name  
Abbreviation  
Unless otherwise specified by a note, all I/Os are set as analog inputs during and after  
reset.  
Notes  
Alternate  
functions  
Functions selected through GPIOx_AFR registers  
Pin  
functions  
Additional  
functions  
Functions directly selected/enabled through peripheral registers  
Table 19. STM32WLE5/E4xx pin definition  
Pin name  
Pin number  
(function after  
reset)  
Alternate functions  
Additional functions  
-
E10  
-
VSS  
PB3  
S
-
-
-
-
-
JTDO/TRACESWO,  
TIM2_CH2, SPI1_SCK,  
RF_IRQ0, USART1_RTS,  
DEBUG_RF_DTB1,  
COMP1_INM,  
COMP2_INM,  
ADC_IN2,  
1
D11 C1  
I/O FT_a  
I/O FT_fa  
I/O FT_a  
TAMP_IN3/WKUP3  
CM4_EVENTOUT  
NJTRST, I2C3_SDA,  
SPI1_MISO, USART1_CTS,  
DEBUG_RF_LDORDY,  
TIM17_BKIN,  
COMP1_INP,  
COMP2_INP,  
ADC_IN3  
2
3
D9  
C2  
D2  
PB4  
PB5  
-
-
CM4_EVENTOUT  
LPTIM1_IN1, I2C1_SMBA,  
SPI1_MOSI, RF_IRQ1,  
USART1_CK, COMP2_OUT,  
TIM16_BKIN,  
-
-
CM4_EVENTOUT  
-
-
F7  
E3  
E2  
VSS  
VDD  
S
S
-
-
-
-
-
-
-
-
F11  
LPTIM1_ETR, I2C1_SCL,  
USART1_TX, TIM16_CH1N,  
CM4_EVENTOUT  
4
5
6
-
-
-
E1  
C3  
D3  
PB6  
PB7  
PB8  
I/O FT_f  
I/O FT_f  
I/O FT_f  
-
-
-
-
-
-
LPTIM1_IN2, TIM1_BKIN,  
I2C1_SDA, USART1_RX,  
TIM17_CH1N,  
CM4_EVENTOUT  
TIM1_CH2N, I2C1_SCL,  
RF_IRQ2, TIM16_CH1,  
CM4_EVENTOUT  
DS13105 Rev 8  
51/145  
60  
 
 
Pinouts, pin description and alternate functions  
STM32WLE5/E4xx  
Additional functions  
Table 19. STM32WLE5/E4xx pin definition (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
TIM1_CH3N, I2C1_SDA,  
SPI2_NSS/I2S2_WS,  
IR_OUT, TIM17_CH1,  
CM4_EVENTOUT  
-
-
-
-
C4  
PB9  
PC0  
I/O FT_f  
I/O FT_f  
I/O FT_f  
-
-
-
-
LPTIM1_IN1, I2C3_SCL,  
LPUART1_RX, LPTIM2_IN1,  
CM4_EVENTOUT  
F2  
LPTIM1_OUT,  
SPI2_MOSI/I2S2_SD,  
I2C3_SDA, LPUART1_TX,  
CM4_EVENTOUT  
-
-
-
-
-
-
F1  
D4  
D5  
PC1  
PC2  
PC3  
-
-
-
-
-
-
LPTIM1_IN2, SPI2_MISO,  
CM4_EVENTOUT  
I/O  
I/O  
FT  
FT  
LPTIM1_ETR,  
SPI2_MOSI/I2S2_SD,  
LPTIM2_ETR,  
CM4_EVENTOUT  
-
-
-
-
-
-
F3  
E4  
G2  
PC4  
PC5  
PC6  
I/O  
I/O  
I/O  
FT  
FT  
FT  
-
-
-
CM4_EVENTOUT  
CM4_EVENTOUT  
-
-
-
I2S2_MCK, CM4_EVENTOUT  
TIM2_CH1, I2C3_SMBA,  
I2S_CKIN, USART2_CTS,  
COMP1_OUT,  
DEBUG_PWR_REGLP1S,  
TIM2_ETR, CM4_EVENTOUT  
7
8
9
H11 D6  
PA0  
PA1  
PA2  
I/O FT_a  
-
-
-
TAMP_IN2/WKUP1  
TIM2_CH2, LPTIM3_OUT,  
I2C1_SMBA, SPI1_SCK,  
USART2_RTS,  
LPUART1_RTS,  
DEBUG_PWR_REGLP2S,  
CM4_EVENTOUT  
G10 G3  
I/O FT_a  
-
LSCO, TIM2_CH3,  
USART2_TX, LPUART1_TX,  
COMP2_OUT,  
DEBUG_PWR_LDORDY,  
CM4_EVENTOUT  
F9  
H2  
I/O FT_a  
I/O FT_a  
LSCO  
TIM2_CH4, I2S2_MCK,  
USART2_RX, LPUART1_RX,  
CM4_EVENTOUT  
10  
-
C8  
E6  
H1  
G5  
PA3  
-
-
-
-
VSS  
S
-
-
52/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Pin number  
Pinouts, pin description and alternate functions  
Table 19. STM32WLE5/E4xx pin definition (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
11  
12  
K11  
J10  
H5  
J1  
VDD  
PA4  
S
-
-
-
-
-
-
RTC_OUT2, LPTIM1_OUT,  
SPI1_NSS, USART2_CK,  
DEBUG_SUBGHZSPI_  
NSSOUT, LPTIM2_OUT,  
CM4_EVENTOUT  
I/O  
FT  
TIM2_CH1, TIM2_ETR,  
SPI2_MISO, SPI1_SCK,  
DEBUG_SUBGHZSPI_  
SCKOUT, LPTIM2_ETR,  
CM4_EVENTOUT  
13  
14  
H9  
G8  
J2  
PA5  
PA6  
I/O  
I/O  
FT  
FT  
-
-
-
-
TIM1_BKIN, I2C2_SMBA,  
SPI1_MISO, LPUART1_CTS,  
DEBUG_SUBGHZSPI_  
MISOOUT, TIM16_CH1,  
CM4_EVENTOUT  
F4  
TIM1_CH1N, I2C3_SCL,  
SPI1_MOSI, COMP2_OUT,  
DEBUG_SUBGHZSPI_  
MOSIOUT, TIM17_CH1,  
CM4_EVENTOUT  
15  
16  
E8  
H3  
J3  
PA7  
PA8  
I/O FT_fa  
I/O FT_a  
-
-
-
-
MCO, TIM1_CH1,  
SPI2_SCK/I2S2_CK,  
USART1_CK, LPTIM2_OUT,  
CM4_EVENTOUT  
L10  
TIM1_CH2,  
SPI2_NSS/I2S2_WS,  
I2C1_SCL,  
SPI2_SCK/I2S2_CK,  
USART1_TX,  
17  
K9  
E5  
PA9  
I/O FT_fa  
-
-
CM4_EVENTOUT  
TIM2_CH3, I2C3_SCL,  
SPI2_SCK/I2S2_CK,  
LPUART1_RX, COMP1_OUT,  
CM4_EVENTOUT  
-
-
-
-
H4  
G4  
PB10  
PB11  
I/O FT_f  
I/O FT_f  
-
-
-
-
TIM2_CH4, I2C3_SDA,  
LPUART1_TX, COMP2_OUT,  
CM4_EVENTOUT  
18  
19  
-
J8  
H7  
L8  
F5  
J5  
-
NRST  
PH3-BOOT0  
VDD  
I/O  
I/O  
S
FT  
FT  
-
-
-
-
-
-
CM4_EVENTOUT  
-
BOOT0  
-
DS13105 Rev 8  
53/145  
60  
Pinouts, pin description and alternate functions  
STM32WLE5/E4xx  
Additional functions  
Table 19. STM32WLE5/E4xx pin definition (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
-
-
K7  
-
VSS  
VSSRF  
VSSRF  
RFI_P  
S
S
S
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
J6  
H5  
L6  
K5  
G4  
J4  
L4  
-
H6  
G6  
J6  
H7  
G7  
-
-
-
-
20  
21  
-
RF  
RFI_N  
I
RF  
VSSRF  
VSSRF  
RFO_LP  
VSSRF  
RFO_HP  
VSSRF  
VR_PA  
VDDPA  
VSSRF  
OSC_IN  
OSC_OUT  
VSSRF  
VDDRF  
VDDRF1V55  
VSS  
S
S
O
S
O
S
S
S
S
I
-
-
-
22  
-
J8  
G8  
J9  
-
RF  
-
23  
-
K3  
H3  
L2  
H1  
K1  
G2  
F1  
F3  
E2  
D1  
F5  
-
RF  
-
24  
25  
-
H9  
H8  
-
-
-
-
26  
27  
-
G9  
F8  
-
RF  
O
S
S
S
S
S
RF  
-
-
-
-
-
28  
29  
-
E8  
F7  
D9  
E9  
-
VDD  
COMP1_OUT,  
CM4_EVENTOUT  
30  
-
B1  
-
F6 PB0-VDD_TCXO I/O  
TT  
-
-
-
LPUART1_RTS_DE,  
LPTIM2_IN1,  
CM4_EVENTOUT  
COMP2_INP,  
ADC_IN5  
E7  
D8  
PB1  
PB2  
I/O FT_a  
I/O FT_a  
LPTIM1_OUT, I2C3_SMBA,  
SPI1_NSS,  
DEBUG_RF_SMPSRDY,  
CM4_EVENTOUT  
COMP1_INP,  
COMP2_INM,  
ADC_IN4  
31  
32  
-
-
-
-
TIM1_BKIN, I2C3_SMBA,  
SPI2_NSS/I2S2_WS,  
LPUART1_RTS,  
E6  
PB12  
I/O  
FT  
-
CM4_EVENTOUT  
54/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
Pin number  
Pinouts, pin description and alternate functions  
Table 19. STM32WLE5/E4xx pin definition (continued)  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
TIM1_CH1N, I2C3_SCL,  
SPI2_SCK/I2S2_CK,  
LPUART1_CTS,  
-
-
-
-
D7  
C6  
PB13  
PB14  
I/O FT_fa  
I/O FT_fa  
-
-
ADC_IN0  
ADC_IN1  
CM4_EVENTOUT  
TIM1_CH2N, I2S2_MCK,  
I2C3_SDA, SPI2_MISO,  
CM4_EVENTOUT  
RTC_REFIN, TIM1_CH3,  
I2C1_SDA,  
SPI2_MOSI/I2S2_SD,  
USART1_RX,  
DEBUG_RF_HSE32RDY,  
TIM17_BKIN,  
COMP1_INM,  
COMP2_INM,  
DAC_OUT1,  
ADC_IN6  
33  
34  
D3  
E4  
C8  
B9  
PA10  
PA11  
I/O FT_fa  
-
-
CM4_EVENTOUT  
TIM1_CH4, TIM1_BKIN2,  
LPTIM3_ETR, I2C2_SDA,  
SPI1_MISO, USART1_CTS,  
DEBUG_RF_NRESET,  
CM4_EVENTOUT  
COMP1_INM,  
COMP2_INM,  
ADC_IN7  
I/O FT_fa  
TIM1_ETR, LPTIM3_IN1,  
I2C2_SCL, SPI1_MOSI,  
RF_BUSY, USART1_RTS,  
CM4_EVENTOUT  
35  
36  
D5  
D7  
A9  
B8  
PA12  
PA13  
I/O FT_fa  
I/O FT_a  
-
-
ADC_IN8  
ADC_IN9  
JTMS-SWDIO, I2C2_SMBA,  
IR_OUT, CM4_EVENTOUT  
-
-
C2  
A2  
-
B7  
A7  
A8  
VSS  
VDD  
VBAT  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
37  
TAMP_IN1/  
RTC_OUT1/RTC_TS/  
WKUP2  
38  
-
C7  
PC13  
I/O  
FT  
-
CM4_EVENTOUT  
39  
40  
B3  
A4  
B6 PC14-OSC32_IN I/O  
PC15-  
FT  
FT  
-
-
CM4_EVENTOUT  
CM4_EVENTOUT  
OSC32_IN  
C5  
I/O  
OSC32_OUT  
OSC32_OUT  
VREF+  
VDDA  
-
41  
-
-
B5  
A5  
-
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
B5  
C4  
VSS  
DS13105 Rev 8  
55/145  
60  
Pinouts, pin description and alternate functions  
STM32WLE5/E4xx  
Table 19. STM32WLE5/E4xx pin definition (continued)  
Pin number  
Pin name  
(function after  
reset)  
Alternate functions  
Additional functions  
JTCK-SWCLK, LPTIM1_OUT,  
I2C1_SMBA,  
42  
C6  
A8  
-
A4  
PA14  
PA15  
PB15  
I/O FT_a  
I/O FT_fa  
I/O FT_f  
-
-
ADC_IN10  
CM4_EVENTOUT  
JTDI, TIM2_CH1, TIM2_ETR,  
I2C2_SDA, SPI1_NSS,  
CM4_EVENTOUT  
COMP1_INM,  
COMP2_INP,  
ADC_IN11  
43  
-
B3  
B4  
TIM1_CH3N, I2C2_SCL,  
SPI2_MOSI/I2S2_SD,  
CM4_EVENTOUT  
-
44  
-
A6  
B7  
-
-
VDD  
VSS  
S
S
S
S
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
49(1) G6  
-
VSS  
45  
46  
47  
48  
B9  
B2  
VFBSMPS  
VDDSMPS  
VLXSMPS  
VSSSMPS  
A10 A2  
B11 B1  
C10 A1  
1. Pin 49 is an exposed pad that must be connected to VSS  
.
56/145  
DS13105 Rev 8  
Table 20. Alternate functions  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9 AF10 AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2S2/  
TIM1/  
LPTIM3  
I2C1/  
I2C2/  
I2C3  
USART1  
/
USART2  
COMP1/  
COMP2/  
TIM1  
SYS_  
AF  
TIM1/  
TIM2  
SPI1/  
SPI2S2  
RF  
LPUART1  
-
-
-
DEBUG  
EVENOUT  
TIM2_  
CH1  
I2C3_  
SMBA  
I2S_  
CKIN  
USART2_  
CTS  
COMP1_ DEBUG_PWR  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TIM2_ETR  
PA0  
OUT  
_REGLP1S  
TIM2_  
CH2  
LPTIM3_  
OUT  
I2C1_  
SMBA  
SPI1_  
SCK  
USART2_ LPUART1_  
RTS RTS  
DEBUG_PWR  
_REGLP2S  
CM4_  
EVENTOUT  
-
LSCO  
-
-
-
-
-
PA1  
PA2  
PA3  
TIM2_  
CH3  
USART2_ LPUART1_  
TX TX  
COMP2_ DEBUG_PWR  
CM4_  
EVENTOUT  
-
-
-
-
-
OUT  
_LDORDY  
TIM2_  
CH4  
I2S2_  
MCK  
USART2_ LPUART1_  
CM4_  
EVENTOUT  
-
-
RX  
RX  
-
DEBUG_  
SUBGHZSPI_  
NSSOUT  
RTC_  
OUT2  
LPTIM1  
_OUT  
SPI1_  
NSS  
USART2_  
CK  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA4  
PA5  
PA6  
PA7  
PA8  
PA9  
DEBUG_  
SUBGHZSPI_  
SCKOUT  
TIM2_  
CH1  
TIM2_  
ETR  
SPI2_  
MISO  
SPI1_  
SCK  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
-
-
-
-
-
DEBUG_  
SUBGHZSPI_  
MISOOUT  
TIM1_  
BKIN  
I2C2_  
SMBA  
SPI1_  
MISO  
LPUART1_  
CTS  
TIM1_  
BKIN  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
DEBUG_  
SUBGHZSPI_  
MOSIOUT  
TIM1_  
CH1N  
I2C3_  
SCL  
SPI1_  
MOSI  
COMP2_  
OUT  
TIM17_  
CH1  
CM4_  
EVENTOUT  
-
MCO  
-
-
-
-
SPI2_  
SCK/  
I2S2_CK  
TIM1_  
CH1  
USART1_  
CK  
LPTIM2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
SPI2_  
NSS/  
I2S2_WS  
SPI2_  
SCK/  
I2S2_CK  
TIM1_  
CH2  
I2C1_  
SCL  
USART1_  
TX  
CM4_  
EVENTOUT  
-
SPI2_  
MOSI/  
I2S2_SD  
RTC_  
REFIN  
TIM1_  
CH3  
I2C1_  
SDA  
USART1_  
RX  
DEBUG_RF_  
HSE32RDY  
TIM17_  
BKIN  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
PA10  
PA11  
TIM1_  
CH4  
TIM1_  
BKIN2  
LPTIM3_  
ETR  
I2C2_  
SDA  
SPI1_  
MISO  
USART1_  
CTS  
TIM1_  
BKIN2  
DEBUG_RF_  
NRESET  
CM4_  
EVENTOUT  
-
-
 
Table 20. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9 AF10 AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2S2/  
TIM1/  
LPTIM3  
I2C1/  
I2C2/  
I2C3  
USART1  
/
USART2  
COMP1/  
COMP2/  
TIM1  
SYS_  
AF  
TIM1/  
TIM2  
SPI1/  
SPI2S2  
RF  
LPUART1  
-
-
-
DEBUG  
EVENOUT  
TIM1_  
ETR  
LPTIM3_  
IN1  
I2C2_  
SCL  
SPI1_  
MOSI  
USART1_  
RTS  
CM4_  
EVENTOUT  
-
-
-
-
RF_BUSY  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA12  
JTMS-  
SWDIO  
I2C2_  
SMBA  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IR_OUT  
PA13  
PA14  
PA15  
PB0  
JTCK- LPTIM1_  
I2C1_  
SMBA  
CM4_  
EVENTOUT  
-
-
-
SWCLK  
OUT  
TIM2_  
CH1  
TIM2_  
ETR  
I2C2_  
SDA  
SPI1_  
NSS  
CM4_  
EVENTOUT  
JTDI  
COMP1_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
LPUART1_  
RTS_DE  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
PB1  
LPTIM1_  
OUT  
I2C3_  
SMBA  
SPI1_  
NSS  
DEBUG_RF_  
SMPSRDY  
CM4_  
EVENTOUT  
-
-
-
-
PB2  
JTDO/  
TRACE  
SWO  
TIM2_  
CH2  
SPI1_  
SCK  
USART1_  
RTS  
DEBUG_RF_  
DTB1  
CM4_  
EVENTOUT  
-
-
-
RF_IRQ0  
-
-
-
-
-
PB3  
I2C3_  
SDA  
SPI1_  
MISO  
USART1_  
CTS  
DEBUG_RF_  
LDORDY  
TIM17_  
BKIN  
CM4_  
EVENTOUT  
NJTRST  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB4  
PB5  
PB6  
PB7  
PB8  
LPTIM1_  
IN1  
I2C1_  
SMBA  
SPI1_  
MOSI  
USART1_  
CK  
COMP2_  
OUT  
TIM16_  
BKIN  
CM4_  
EVENTOUT  
-
-
-
-
RF_IRQ1  
-
-
-
-
LPTIM1_  
ETR  
I2C1_  
SCL  
USART1_  
TX  
TIM16_  
CH1N  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
LPTIM1_  
IN2  
TIM1_  
BKIN  
I2C1_  
SDA  
USART1_  
RX  
TIM17_  
CH1N  
CM4_  
EVENTOUT  
-
TIM1_  
CH2N  
I2C1_  
SCL  
TIM16_  
CH1  
CM4_  
EVENTOUT  
-
-
RF_IRQ2  
-
-
SPI2_  
NSS/  
I2S2_WS  
TIM1_  
CH3N  
I2C1_  
SDA  
TIM17_  
CH1  
CM4_  
EVENTOUT  
PB9  
-
-
-
-
-
-
IR_OUT  
-
-
-
-
-
-
-
-
-
SPI2_  
SCK/  
I2S2_CK  
TIM2_  
CH3  
I2C3_  
SCL  
LPUART1_  
RX  
COMP1_  
OUT  
CM4_  
EVENTOUT  
-
-
-
PB10  
Table 20. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9 AF10 AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2S2/  
TIM1/  
LPTIM3  
I2C1/  
I2C2/  
I2C3  
USART1  
/
USART2  
COMP1/  
COMP2/  
TIM1  
SYS_  
AF  
TIM1/  
TIM2  
SPI1/  
SPI2S2  
RF  
LPUART1  
-
-
-
DEBUG  
EVENOUT  
TIM2_  
CH4  
I2C3_  
SDA  
LPUART1_  
TX  
COMP2_  
OUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB11  
SPI2_  
NSS/  
I2S2_WS  
TIM1_  
BKIN  
TIM1_  
BKIN  
I2C3_  
SMBA  
LPUART1_  
RTS  
CM4_  
EVENTOUT  
-
PB12  
SPI2_  
SCK/  
I2S2_CK  
TIM1_  
CH1N  
I2C3_  
SCL  
LPUART1_  
CTS  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PB13  
PB14  
PB15  
TIM1_  
CH2N  
I2C3_  
SDA  
SPI2_  
MISO  
CM4_  
EVENTOUT  
I2S2_MCK  
-
-
-
SPI2_  
MOSI/  
I2S2_SD  
TIM1_  
CH3N  
I2C2_  
SCL  
CM4_  
EVENTOUT  
Table 20. Alternate functions (continued)  
AF0  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9 AF10 AF11  
AF12  
AF13  
AF14  
AF15  
TIM2/  
TIM16/  
TIM17/  
LPTIM2  
Port  
TIM1/  
TIM2/  
LPTIM1  
SPI2S2/  
TIM1/  
LPTIM3  
I2C1/  
I2C2/  
I2C3  
USART1  
/
USART2  
COMP1/  
COMP2/  
TIM1  
SYS_  
AF  
TIM1/  
TIM2  
SPI1/  
SPI2S2  
RF  
LPUART1  
-
-
-
DEBUG  
EVENOUT  
LPTIM1_  
IN1  
I2C3_  
SCL  
LPUART1_  
RX  
LPTIM2_  
IN1  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC0  
SPI2_  
MOSI/  
I2S2_SD  
LPTIM1_  
OUT  
I2C3_  
SDA  
LPUART1_  
TX  
CM4_  
EVENTOUT  
-
-
PC1  
PC2  
PC3  
LPTIM1_  
IN2  
SPI2_  
MISO  
CM4_  
EVENTOUT  
-
-
-
-
-
-
SPI2_  
MOSI/  
I2S2_SD  
LPTIM1_  
ETR  
LPTIM2_  
ETR  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PC4  
PC5  
CM4_  
EVENTOUT  
I2S2_  
MCK  
CM4_  
EVENTOUT  
PC6  
CM4_  
EVENTOUT  
-
-
-
PC13  
PC14  
PC15  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
CM4_  
EVENTOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PH3  
STM32WLE5/E4xx  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V and, for parameter values  
SS  
based on characterization results, measurements are performed on the UFQFPN48  
package.  
5.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies, by tests in production  
on 100 % of the devices, with an ambient temperature at T = 25 °C and T = T max (given  
A
A
A
by the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ±3σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = V  
Typical values are given only as design guidelines and are not tested.  
= V  
= 3 V.  
BAT  
A
DD  
DDA  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95 % of the devices have an  
error less than or equal to the value indicated (mean ± 2σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 11.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 12.  
Figure 11. Pin loading conditions  
Figure 12. Pin input voltage  
MCU pin  
MCU pin  
C = 50 pF  
VIN  
MSv68046V1  
MSv68045V1  
DS13105 Rev 8  
61/145  
133  
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
5.1.6  
Power supply scheme  
Figure 13. Power supply scheme  
VBAT  
VBAT  
1.55 to 3.6 V  
Backup circuitry  
(LSE, RTC and  
backup registers)  
Power switch  
VDD  
VCORE  
n x VDD  
LPR  
Kernel logic  
OUT  
I/O  
logic  
(CPU, digital  
GPIOs  
n x 100 nF + 1 x 4.7 μF  
IN  
and memories  
n x VSS  
VDDA  
VDDA  
MR  
VREF  
ADC  
VREF+  
DAC  
10 nF + 1 μF  
COMPs  
VREFBUF  
100 nF 1 μF  
VREF-  
VSS  
VDDRF  
VDD  
VDDSMPS  
VLXSMPS  
LDO/SMPS  
4.7 μF  
Sub-GHz radio  
15 μH  
VFBSMPS  
VDDRF1V5  
470 nF  
RFLDO  
REG PA  
VSSSMPS  
VDDPA (= VDDRF1V5 or VDDSMPS)  
Exposed pad  
To all modules (VSS/VSSRF)  
MSv64325V5  
Caution:  
Each power supply pair (such as V /V  
V
/V ) must be decoupled with filtering  
DD SS or DDA SS  
ceramic capacitors as shown in the above figure. These capacitors must be placed as close  
as possible to (or below) the appropriate pins on the underside of the PCB to ensure the  
good functionality of the device.  
Note:  
For the UFQFPN48 and WLCSP59 package, VREF+ is internally connected to VDDA.  
62/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 14. Current consumption measurement scheme  
IDDSMPS  
VDDSMPS  
VDDSMPS  
IDDRF  
VDDRF  
VDDRF  
IDDVBAT  
VBAT  
VDD  
VBAT  
VDD  
IDD  
IDDA  
VDDA  
VDDA  
MSv64326V2  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in the tables below, may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Device mission profile (application conditions) is compliant with JEDEC JESD47  
Qualification Standard, extended mission profiles are available on demand.  
(1)  
Table 21. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
V
DDX - VSS (including VDD, VDDA, VDDRF  
,
–0.3  
3.9  
V
DDSMPS, VBAT, VREF+  
)
Input voltage on FT_xx pins  
Input voltage on TT pins  
min (VDD, VDDA, VDDRF, VDDSMPS) + 3.9(3)(4)  
V
(2)  
V
SS - 0.3  
3.9  
3.9  
VIN  
Input voltage on any other pin  
Variations between different VDDX  
power pins of the same domain  
|VDDx  
|VSSx-VSS  
VREF+ - VDDA  
|
-
-
-
50  
50  
mV  
V
Variations between all the different  
ground pins(5)  
|
Allowed voltage difference for  
0.4  
V
REF+ > VDDA  
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power  
supply, in the permitted range.  
DS13105 Rev 8  
63/145  
133  
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
2. VIN maximum must always be respected. Refer to the next table for the maximum allowed injected current values.  
3. This formula must be applied only on the power supplies related to the I/O structure described in Table 19:  
STM32WLE5/E4xx pin definition.  
4. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.  
5. Include VREF- pin.  
Table 22. Current characteristics  
Symbol  
Ratings  
Max  
Unit  
IVDD  
IVSS  
Total current into sum of all VDD power lines (source)(1)  
Total current out of sum of all VSS ground lines (sink)(1)  
Maximum current into each VDD power pin (source)(1)  
Maximum current out of each VSS ground pin (sink)(1)  
Output current sunk by any I/O and control pin, except FT_f  
Output current sunk by any FT_f pin  
130  
130  
130  
100  
20  
IVDD(PIN)  
IVSS(PIN)  
IIO(PIN)  
20  
mA  
Output current sourced by any I/O and control pin  
Total output current sunk by sum of all I/Os and control pins(2)  
Total output current sourced by sum of all I/Os and control pins(2)  
Injected current on FT_xx, TT and RST pins, except PB0  
Injected current on PB0  
20  
100  
100  
–5 / +0(4)  
-5/0  
25  
IIO(PIN)  
(3)  
IINJ(PIN)  
|IINJ(PIN)  
|
Total injected current (sum of all I/Os and control pins)(5)  
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS) pins must always be connected to the external power  
supplies, in the permitted range.  
2. This current consumption must be correctly distributed over all I/Os and control pins.  
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the  
specified maximum value.  
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to the previous table for the  
maximum allowed input voltage values.  
5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative  
injected currents (instantaneous values).  
Table 23. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Maximum junction temperature  
Value  
Unit  
°C  
TSTG  
TJ  
-65 to +150  
125  
64/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
5.3  
Operating conditions  
5.3.1  
Main performances  
Table 24. Main performances at V = 3 V  
DD  
Parameter  
Test conditions  
Typ  
Unit  
VBAT (VBAT = 3V, VDD = 0 V)  
0.005  
0.031  
0.360  
1
Shutdown  
Standby (32-Kbyte RAM retention)  
Stop 2, RTC enabled  
ICORE Core current consumption  
µA  
Sleep (16 MHz)  
770  
220  
3450  
4.82  
21  
LPRun (2 MHz)  
Run, SMPS ON (48 MHz)  
LoRa 125 kHz, SMPS ON  
434 to 490 MHz, 14 dBm, 3.3 V  
868 to 915 MHz, 14 dBm, 3.3 V  
434 to 490 MHz, 22 dBm, 3.3 V  
868 to 915 MHz, 22 dBm, 3.3 V  
Rx boosted  
Tx low power  
26  
mA  
120  
107  
Tx high power  
5.3.2  
General operating conditions  
Table 25. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
Internal AHB clock frequency  
-
fPCLK1 Internal APB1 clock frequency  
fPCLK2 Internal APB2 clock frequency  
-
0
48  
MHz  
-
-
VDD  
VDDA  
VBAT  
Standard operating voltage  
1.8(1)  
1.62  
1.71  
2.4  
3.6  
ADC or COMP used  
DAC used  
Analog supply voltage  
3.6  
V
VREFBUF used  
ADC, DAC, COMP and  
VREFBUF not used  
0
Backup operating voltage  
-
1.55  
1.4  
3.6  
3.6  
3.6  
VFBSMPS SMPS feedback voltage  
VDDRF Minimum RF voltage  
-
-
1.8  
TT I/O  
–0.3  
VDD + 0.3  
V
min between  
min (VDD, VDDA) + 3.6 V  
and 5.5 V(2)(3)  
VIN  
I/O input voltage  
All I/O except TT  
DS13105 Rev 8  
–0.3  
65/145  
133  
 
 
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 25. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Power dissipation at  
TA = 85 °C for suffix 6 version  
or TA = 105 °C for suffix 7(4)  
PD  
UFBGA73  
-
392.0  
mW  
Maximum power  
dissipation  
85  
Ambient temperature for  
suffix 6 version  
–40  
Low-power dissipation(5)  
105  
105  
TA  
°C  
°C  
Maximum power  
dissipation  
Ambient temperature for the  
suffix 7 version  
–40  
–40  
Low-power dissipation(5)  
125  
105  
125  
Suffix 6 version  
TJ  
Junction temperature range  
Suffix 7 version  
1. When the reset is released, the functionality is guaranteed down to VBOR0 min.  
2. This formula has to be applied only on the power supplies related to the I/O structure described in Table 19:  
STM32WLE5/E4xx pin definition. Maximum I/O input voltage is the smallest value between min (VDD, VDDA) + 3.6 V and  
5.5 V.  
3. For operation with voltage higher than min (VDD, VDDA) + 0.3 V, the internal pull-up and pull-down resistors must be  
disabled.  
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 98: Package thermal  
characteristics).  
5. In low-power dissipation state, TA can be extended to this range, as long as TJ does not exceed TJ max (see Table 98:  
Package thermal characteristics).  
66/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
5.3.3  
Sub-GHz radio characteristics  
Electrical characteristics of the sub-GHz radio are given with the following conditions unless  
otherwise specified:  
V
= 3.3 V. The current consumption is measured as described in Figure 14.  
DD  
I
includes current consumption of all supplies (V  
, V  
, V , V  
, V  
).  
BAT  
DD  
DDRF  
DDSMPS  
DD  
DDA  
All peripherals except Sub-GHz radio are disabled and the system is in Standby mode.  
Temperature = 25 °C  
HSE32 = 32 MHz  
F
= 434/868/915 MHz  
RF  
All RF impedances matched using reference design  
Reference design implementing a 32 MHz crystal oscillator  
Transmit mode output power defined in 50 load  
FSK BER (bit error rate) = 0.1 %, 2-level FSK modulation without pre-filtering,  
BR = 4.8 Kbit/s, FDA = 5 kHz, BW_F = 20 kHz  
LoRa PER (packet error rate) = 1 %, packet of 64 bytes, preamble of 8 bytes, error  
correction code CR = 4/5, CRC on payload enabled, no reduced encoding, no implicit  
header  
Sensitivities given using highest LNA gain step  
Power consumption measured with -140 dBm signal and AGC ON  
Blocking immunity, ACR and co-channel rejection, given for a single tone interferer and  
referenced to sensitivity +6 dB, blocking tests performed with unmodulated signal  
Bandwidth expressed on DSB (double-sided band)  
Table 26. Operating range of RF pads  
Pad  
Description  
Max  
Unit  
RFI_P/RFI_N  
RF input power  
Voltage Standing Wave Ratio (VSWR)  
0
dBm  
RFO_LP/RFO_HP/VR_PA  
10.1  
DS13105 Rev 8  
67/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 27. Sub-GHz radio power consumption  
Conditions  
Symbol  
Mode  
Min  
Typ  
Max Unit  
Deep-Sleep  
mode (Sleep  
with cold  
All blocks off  
-
50  
-
start)(1)(2)  
nA  
Sleep mode  
(with warm  
start)(2)(3)  
Configuration retained  
-
-
140  
810  
-
Configuration retained + RC64k  
-
HSE32 off  
-
-
-
414  
564  
700  
-
-
Sleep, LDO  
mode(4)  
LDO, band-gap,  
RC 13 MHz on  
HSE32 on  
µA  
Band-gap,  
RC 13 MHz on,  
SMPS 40 mA max  
HSE32 off  
HSE32 on  
-
Sleep, SMPS  
mode(4)  
-
-
950  
0.7  
-
Standby mode  
(RC 13 MHz on)  
RC 13 MHz on, HSE32 off  
-
-
IDD  
SMPS mode  
40 mA max settings  
-
-
-
-
-
-
-
-
-
1.05  
0.99  
2.66  
4.05  
4.47  
4.82  
5.12  
5.46  
8.18  
8.90  
9.52  
10.22  
Standby mode  
(HSE32)  
mA  
LDO mode  
-
SMPS mode used with 40 mA drive capability  
-
-
-
-
-
Synthesizer  
mode  
LDO mode  
FSK 4.8 Kbit/s  
Receive mode,  
SMPS mode  
used  
LoRa 125 kHz  
SMPS 40 mA max  
Rx boosted, FSK 4.8 Kbit/s  
RX boosted, LoRa 125 kHz  
FSK 4.8 Kbit/s  
-
mA  
-
LoRa 125 kHz  
Receive mode,  
LDO mode used  
FSK 4.8 Kbit/s  
RX boosted  
LoRa 125 kHz  
1. Cold start is equivalent to device at POR or when the device wakes up from Sleep mode with all blocks off.  
2. Only Sub-GHz radio power consumption.  
3. Warm start only happens when the device wakes up from Sleep mode with its configuration retained,  
4. System in Stop 0 mode range 2.  
68/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
Table 28. Sub-GHz radio power consumption in transmit mode  
Symbol Frequency band (MHz)  
PA match (conditions)  
Power output  
Typ  
Unit  
+14 dBm, VDDRF = 3.3 V  
+10 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 1.8 V  
+10 dBm, VDDRF = 1.8 V  
+15 dBm, VDDRF = 3.3 V  
+10 dBm, VDDRF = 3.3 V  
+15 dBm, VDDRF = 1.8 V  
+10 dBm, VDDRF = 1.8 V  
+14 dBm, VDDRF = 3.3 V  
+10 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 1.8  
+10 dBm, VDDRF = 1.8 V  
+15 dBm, VDDRF = 3.3 V  
+10 dBm, VDDRF = 3.3 V  
+15 dBm, VDDRF = 1.8 V  
+10 dBm, VDDRF = 1.8 V  
23.5  
17.5  
41.5  
28.5  
25.5  
15  
Low power  
(optimized for 14 dBm)  
868 to 915  
Low power  
(optimal settings)(1)  
51  
25  
22.5  
13.5  
39.5  
22.5  
24.5  
13.5  
43  
Low power  
(optimized for 14 dBm)  
434 to 490  
Low power (optimal settings)  
Low-power PA, SMPS OFF  
21.5  
45.5  
43.5  
119  
107.5  
98  
IDD  
mA  
868 to 915  
+14 dBm, VDDRF = 3.3 V  
434 to 490  
+22 dBm, VDDRF = 3.3 V  
+20 dBm, VDDRF = 3.3 V  
+17 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 3.3 V  
+20 dBm, VDDRF = 3.3 V  
High power  
(optimized for 22 dBm)  
868 to 915  
92  
92.5  
58  
High power (optimal settings) +17 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 3.3 V  
45.5  
110.5  
90  
+22 dBm, VDDRF = 3.3 V  
+20 dBm, VDDRF = 3.3 V  
+17 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 3.3 V  
+20 dBm, VDDRF = 3.3 V  
High power  
(optimized for 22 dBm)  
71  
434 to 490  
59  
72  
High power (optimal settings) +17 dBm, VDDRF = 3.3 V  
+14 dBm, VDDRF = 3.3 V  
43.5  
38  
1. Optimal settings can be used to optimize power consumption when the output power is NOT 22 dBm (high power) or  
14 dBm (low power). In that case, a dedicated firmware configuration associated to a dedicated board matching network  
(see AN5457 for details) corresponding to the custom output power, can be used.  
DS13105 Rev 8  
69/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 29. Sub-GHz radio general specifications  
Description Conditions Min  
Frequency synthesizer range Low-power PA  
Symbol  
Typ  
Max  
Unit  
FR  
150  
-
960  
MHz  
Hz  
FSTEP Frequency synthesizer step  
High-resolution mode HSE / 2(2)(5)  
-
-
-
-
-
095  
–100  
–120  
–135  
40  
-
-
-
-
-
100 kHz offset  
PHN(1) Synthesizer phase noise  
1 MHz offset  
dBc/Hz  
(2)  
(868 to 915 MHz)  
10 MHz offset  
TS_FS Synthesizer wakeup time  
From Standby, HSE32 mode  
TS_HO  
Synthesizer hop time  
P
10 MHz step  
-
-
40  
-
-
µs  
TS_OS  
From Standby, RC(3) normal mode  
from HSE32 off  
Crystal oscillator wakeup time  
C
170  
Crystal oscillator trimming range  
OSC_  
TRM  
for crystal frequency error  
Min/max XTAL specifications  
±15  
±30  
-
ppm  
compensation(4)  
Programmable  
(min modulation index is 0.5)  
BR_F Bitrate, FSK  
0.6  
0.6  
-
-
-
300(5) Kbit/s  
200 kHz  
62.5(6) Kbit/s  
Programmable  
(FDA + BR_F/2 250 kHz)  
FDA  
Frequency deviation, FSK  
Min for SF12, BW_L = 7.8 kHz  
Max for SF7, BW_L = 500 kHz  
BR_L Bitrate, LoRa  
0.018  
BW_L Signal BW, LoRa  
Programmable  
7.8  
5
-
-
500(6)  
12  
kHz  
-
SF  
Spreading factor for LoRa  
Programmable, chips/symbol = 2SF  
1. Phase Noise specifications are given for the recommended PLL bandwidth to be used for the specific modulation/BR,  
optimized settings may be used for specific applications.  
2. Phase Noise is not constant over frequency, due to the topology of the PLL. For two frequencies close to each other, the  
phase noise may change significantly  
3. Wakeup time till crystal oscillator frequency is within ±10 ppm.  
4. OSC_TRIM is the available trimming range to compensate for crystal initial frequency error and to allow crystal temperature  
compensation implementation. The total available trimming range is higher and allows the compensation for all device  
process variations  
5. Maximum bit rate is assumed to scale with the RF frequency: for example 300 Kbit /s in the 869-to-915 MHz frequency  
band and only 50 Kbit/s at 150 MHz.  
6. For RF frequencies below 400 MHz, there is a scaling between the frequency and supported bandwidth. Some bandwidths  
may not be available below 400 MHz.  
70/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
Table 30. Sub-GHz radio receive mode specifications  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
BR = 0.6 Kbit/s, FDA = 0.8 kHz,  
BW = 4 kHz  
-
–125  
-
BR = 1.2 Kbit/s, FDA = 5 kHz,  
BW = 20 kHz  
-
-
-
-
–123  
–117  
–108  
–103  
-
-
-
-
Sensitivity 2-FSK,  
RX boosted gain,  
split RF paths for RX and Tx,  
RF switch insertion loss excluded  
BR = 4.8 Kbit/s, FDA = 5 kHz,  
BW = 20 kHz  
RXS_2FB  
BR = 38.4 Kbit/s, FDA = 40 kHz,  
BW = 160 kHz  
BR = 250 Kbit/s, FDA = 125 kHz,  
BW = 500 kHz  
BW = 10.4 kHz, SF = 7  
BW = 10.4 kHz, SF = 12  
BW = 125 kHz, SF = 7  
BW = 125 kHz, SF = 12  
BW = 250 kHz, SF = 7  
BW = 250 kHz, SF = 12  
BW = 500 kHz, SF = 7  
BW = 500 kHz, SF = 12  
-
-
-
-
-
-
-
-
–135  
–148  
–125  
–138  
–122  
–135  
–118  
–130  
-
-
-
-
-
-
-
-
dBm  
Sensitivity LoRa,  
RX boosted gain,  
split RF paths for RX and Tx,  
RF switch insertion loss excluded  
RXS_LB  
Sensitivity 2-FSK, RX power  
RSX_2F saving gain with direct tie  
connection between RX and Tx  
BR = 4.8 Kbit/s, FDA = 5 kHz,  
BW = 20 kHz  
-
-
–115  
–135  
-
-
Sensitivity LoRa, RX power  
RXS_L saving gain with direct tie  
connection between RX and Tx  
BW = 125 kHz, SF = 12  
CCR_F Co-channel rejection, FSK  
-
-
-
-
-
–9  
7
-
-
-
-
SF = 7  
SF = 12  
CCR_L Co-channel rejection, LoRa  
19  
44  
ACR_F Adjacent channel rejection, FSK Offset = ±50 kHz  
Offset = ±1.5 x BW_L,  
-
-
-
-
-
60  
71  
67  
70  
76  
-
-
-
-
-
BW = 125 kHz, SF = 7  
ACR_L Adjacent channel rejection, LoRa  
Offset = ±1.5 x BW_L,  
dB  
BW = 125 kHz, SF = 12  
Offset = ±1 MHz, BR = 4.8 Kbit/s,  
FDA = 5 kHz, BW = 20 kHz  
Offset = ±2 MHz, BR = 4.8 Kbit/s,  
FDA = 5 kHz, BW = 20 kHz  
BI_F  
Blocking immunity, FSK  
Offset = ±10 MHz,BR = 4.8 Kbit/s,  
FDA = 5 kHz, BW = 20 kHz  
DS13105 Rev 8  
71/145  
133  
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 30. Sub-GHz radio receive mode specifications (continued)  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Unit  
Offset = ±1 MHz, BW = 125 kHz,  
SF = 12  
-
87  
-
Offset = ±2 MHz, BW = 125 kHz,  
SF = 12  
BI_L  
Blocking immunity, LoRa  
-
-
91  
96  
-
-
dB  
Offset = ±10 MHz, BW = 125 kHz,  
SF = 12  
Unwanted tones are 1 MHz and  
1.96 MHz above LO.  
868 to 915 MHz band  
-
-
–9  
-
-
IIP3  
Third order input intercept point  
dBm  
dB  
Unwanted tones are 1 MHz and  
1.96 MHz above LO.  
433 MHz band  
–15  
Without IQ calibration  
With IQ calibration  
-
-
30  
54  
-
-
IMA  
Image attenuation  
-
467  
-
BW_F  
DSB channel filter BW, FSK  
Programmable, typical values  
FS to RWX  
4.8  
-
kHz  
µs  
TS_RX Receiver wakeup time  
41  
All bandwidths, ±25 % of BW.  
Maximum tolerated frequency  
offset between transmitter and  
receiver, SF7 to SF12  
-
±25  
-
BW  
The tighter limit between this line  
and the three lines below applies.  
FERR_L  
SF12  
SF11  
SF10  
–50  
–100  
–200  
-
-
-
50  
Maximum tolerated frequency  
offset between transmitter and  
receiver, SF10 to SF12  
100  
200  
ppm  
Table 31. Sub-GHz radio transmit mode specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max Unit  
Highest power step setting  
for low-power PA (LP PA)  
-
+15(1)  
+22  
-
TXOP  
Max RF output power  
dBm  
-
Highest power step setting  
for high-power PA (HP PA)  
-
-
LP PA, under SMPS or LDO  
VDDop range from 1.8 to 3.7 V  
0.5  
-
RF output power drop  
versus supply voltage  
HP PA, +22 dBm, VDD = 2.7 V  
HP PA, +22 dBm, VDD = 2.4 V  
HP PA, +22 dBm, VDD = 1.8 V  
-
-
-
2
3
6
-
-
-
TXDRP  
dB  
Programmable in 31 steps,  
typical value  
TXPRNG RF output power range  
TXOP-31  
-
-
TXOP dBm  
dB  
RF output power step  
TXACC  
-
±2  
-
accuracy  
72/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
Table 31. Sub-GHz radio transmit mode specifications (continued)  
Symbol  
Description  
Conditions  
Programmable  
Min  
Typ  
Max Unit  
TXRMP PA ramping time  
TS_TX TX wakeup time  
10  
-
3400  
µs  
Frequency synthesizer  
enabled  
-
36 + PA ramping  
-
1. For low-power PA, +15 dBm maximum RF output power can be reached with optimal settings.  
Table 32. Sub-GHz radio power management specifications  
Frequency  
(MHz)  
Symbol  
Description  
Conditions  
Unit  
470 490 868  
TRPOR  
VEOLL  
VEOLH  
VEOLD  
Required POR reset pulse duration  
End-of-life low-threshold voltage  
End-of-life high-threshold voltage  
End-of-life hysteresis voltage  
For VDD 1.8 V  
50 100  
-
µs  
V
-
1.81 1.89 1.96  
1.86 1.94 2.1  
-
VEOLH - VEOLL  
50  
53  
56  
mV  
V
LDO or SMPS over process,  
voltage and temperature range  
VREG  
Main regulated supply  
1.47 1.55 1.62  
Load transient for ILSMPS 100 µA to High BW mode  
-
-
25  
47  
-
-
LDTRSMPS 100 mA in 10 µs  
LDO running  
mV  
Low BW mode  
ILSMPS  
SMPS load current  
-
-
-
-
-
100 mA  
SMPS high power, VDD = 3.3 V  
SMPS low power, VDD = 3.3 V  
538  
460  
-
IDDSMPS  
SMPS quiescent current  
µA  
-
SMPS 100 mA max VDD = 3.3 V,  
ILSMPS = 6 mA  
-
-
-
-
-
71  
89  
88  
91  
86  
-
-
SMPS 100 mA max VDD = 3.3 V,  
ILSMPS = 50 mA  
SMPS converter average efficiency  
SMPS 100 mA max VDD = 1.8 V,  
ILSMPS = 6 mA  
EFFSMPS EFF = VREG x ILOAD /  
VDDSMPS x IDD  
-
-
-
%
SMPS 100 mA max VDD = 2.0 V,  
ILSMPS = 50 mA  
SMPS 100 mA max VDD = 3.3 V,  
ILSMPS = 100 mA  
Cout  
Lout  
Shared between LDO and SMPS  
SMPS inductor  
±20 % tolerance  
-
-
-
-
470  
15  
-
-
-
nF  
µH  
µs  
TSSMPS  
Sleep and Sleep, SMPS startup time For ILIM = 50 mA  
70  
DS13105 Rev 8  
73/145  
133  
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 32. Sub-GHz radio power management specifications (continued)  
Frequency  
(MHz)  
Symbol  
Description  
Conditions  
Unit  
470 490 868  
VDD = 3.3 V,  
ILOAD = 0 to 100 mA,  
current limiter off  
-
-
95  
-
-
IDDLDO  
LDO quiescent current  
LDO load current  
VDD = 3.3 V, ILOAD = 100 mA,  
µA  
380  
current limiter on  
VDD = 3.3 V, ILOAD = 50 mA,  
current limiter on  
-
-
-
-
280  
100  
25  
-
-
-
-
ILDO  
-
-
mA  
mV  
Load transient for ILDO 100 µA to  
100 mA in 10 µs  
LDTRLDO  
TSLDO  
VDIG  
Sleep and Sleep, LDO startup time  
Digital regulator target voltage  
Current limiter max value  
For ILIM = 50 mA  
60  
µs  
V
-
-
1.14 1.2 1.26  
25  
ILM(1)  
50 200 mA  
1. The default current limiter value is set to 50 mA.  
5.3.4  
Operating conditions at power-up/power-down  
Parameters given in the table below are derived from tests performed under the ambient  
temperature condition summarized in Table 25: General operating conditions.  
Table 33. Operating conditions at power-up/power-down  
Symbol  
Parameter  
VDD rise time rate  
Min  
Max  
Unit  
-
10  
0
tVDD  
tVDDA  
tVDDRF  
VDD fall time rate  
VDDA rise time rate  
µs/V  
VDDA fall time rate  
10  
-
VDDRF rise time rate  
VDDRF fall time rate  
-
74/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
5.3.5  
Embedded reset and power-control block characteristics  
Parameters given in the table below are derived from tests performed under the ambient  
temperature conditions summarized in Table 25: General operating conditions.  
Table 34. Embedded reset and power-control block characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
(2)  
tRSTTEMPO  
Reset temporization after BOR0 is detected VDD rising  
-
250  
400  
μs  
Rising edge  
Brownout reset threshold 0  
1.72 1.76 1.80  
1.70 1.74 1.78  
2.06 2.10 2.14  
1.96 2.00 2.04  
2.26 2.31 2.35  
2.16 2.20 2.24  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.85 2.90 2.95  
2.76 2.81 2.86  
1.88 1.95 2.02  
1.83 1.90 1.97  
2.26 2.31 2.36  
2.15 2.20 2.25  
2.41 2.46 2.51  
2.31 2.36 2.41  
2.56 2.61 2.66  
2.47 2.52 2.57  
2.69 2.74 2.79  
2.59 2.64 2.69  
2.85 2.91 2.96  
2.75 2.81 2.86  
2.92 2.98 3.04  
2.84 2.90 2.96  
(2)  
VBOR0  
Falling edge  
Rising edge  
Brownout reset threshold 1  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
VPVD6  
Falling edge  
Rising edge  
Brownout reset threshold 2  
Falling edge  
Rising edge  
Brownout reset threshold 3  
Falling edge  
V
Rising edge  
Brownout reset threshold 4  
Falling edge  
Rising edge  
Programmable voltage detector threshold 0  
Falling edge  
Rising edge  
PVD threshold 1  
Falling edge  
Rising edge  
PVD threshold 2  
Falling edge  
Rising edge  
PVD threshold 3  
Falling edge  
Rising edge  
PVD threshold 4  
Falling edge  
V
Rising edge  
PVD threshold 5  
Falling edge  
Rising edge  
PVD threshold 6  
Falling edge  
Hysteresis in  
-
-
-
-
20  
30  
-
-
continuous mode  
Hysteresis voltage of BORH0  
Vhyst_BORH0  
Hysteresis in  
other mode  
mV  
Hysteresis voltage of BORH (except  
BORH0) and PVD  
Vhyst_BOR_PVD  
-
100  
1.1  
-
BOR(3) (except BOR0) and PVD  
consumption from VDD  
IDD (BOR_PVD)(2)  
-
1.6  
µA  
DS13105 Rev 8  
75/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 34. Embedded reset and power-control block characteristics (continued)  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max Unit  
Rising edge  
1.61 1.65 1.69  
VPVM3  
VDDA peripheral voltage monitoring  
V
Falling edge  
1.6  
1.64 1.68  
Vhyst_PVM3  
PVM3 hysteresis  
-
-
-
-
10  
2
-
-
mV  
µA  
IDD (PVM3)(2)  
PVM3 consumption from VDD  
1. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes.  
2. Guaranteed by design.  
3. BOR0 is enabled in all modes (except Shutdown) and its consumption is therefore included in the supply current  
characteristics tables.  
5.3.6  
Embedded voltage reference  
Parameters given in the table below are derived from tests performed under the ambient  
temperature and supply voltage conditions summarized in Table 25: General operating  
conditions.  
Table 35. Embedded internal voltage reference  
Symbol  
VREFINT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Internal reference voltage  
–40 °C < TJ < +105 °C  
1.182 1.212 1.232  
V
ADC sampling time when reading  
the internal reference voltage  
(1)  
tS_vrefint  
tstart_vrefint  
IDD(VREFINTBUF  
VREFINT  
-
4(2)  
-
8
-
µs  
Start time of reference voltage  
buffer when ADC is enable  
-
-
-
-
12(2)  
20(2)  
VREFINT buffer consumption from  
VDD when converted by ADC  
)
-
12.5  
µA  
Internal reference voltage spread  
over the temperature range  
VDD = 3.3 V  
5
7.5(2)  
50(2)  
mV  
TCoeff  
ACoeff  
Temperature coefficient  
Long term stability  
Voltage coefficient  
–40 °C < TJ < +105 °C  
1000 hours, T = 25 °C  
3.0 V < VDD < 3.6 V  
-
-
30  
ppm/°C  
ppm  
300 1000(2)  
VDDCoeff  
-
250 1200(2) ppm/V  
VREFINT_DIV1 1/4 reference voltage  
VREFINT_DIV2 1/2 reference voltage  
VREFINT_DIV3 3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
-
VREFINT  
1. The shortest sampling time can be determined in the application by multiple iterations.  
2. Guaranteed by design.  
76/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
Figure 15. V  
versus temperature  
REFINT  
V
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
1.2  
1.195  
1.19  
1.185  
°C  
-40  
-20  
0
20  
Mean  
40  
60  
80  
100  
120  
Min  
Max  
MSv66005V3  
5.3.7  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as operating  
voltage, ambient temperature, I/O pin loading, device software configuration, operating  
frequencies, I/O pin switching rate, program location in memory and executed binary code.  
The current consumption is measured as described in Figure 14.  
Typical and maximum current consumption  
The device is put under the following conditions:  
All I/O pins are in analog input mode.  
All peripherals are disabled, except when explicitly mentioned.  
The Flash memory access time is adjusted with the minimum wait-states number,  
depending on the f  
frequency. Refer to the table ‘Number of wait states according  
HCLK  
to Flash clock (HCLK3) frequency’ in the reference manual (RM0461).  
f
f
= f  
= f  
when the peripherals are enabled.  
PCLK  
PCLK  
HCLK  
HCLK  
= f  
for the Flash memory and shared peripherals.  
HCLKS  
Parameters given in the tables below (Table 36 to Table 52) are derived from tests  
performed under ambient temperature and supply voltage conditions summarized in  
Table 25: General operating conditions.  
DS13105 Rev 8  
77/145  
133  
 
 
Table 36. Current consumption in Run and LPRun modes, CoreMark code with data  
running from Flash memory, ART enable (cache ON, prefetch OFF)  
Conditions  
Typ  
Max(1)  
85 °C  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
fHCLK  
(MHz)  
-
25 °C  
55 °C  
85 °C  
105 °C  
25 °C  
105 °C  
16  
8
1.85  
1.10  
1.90  
1.15  
1.95  
1.20  
2.10  
1.30  
2.20  
2.40  
2.80  
Range 2  
1.40  
1.60  
1.90  
2
0.585  
1.50  
0.610  
1.45  
0.670  
1.65  
0.760  
1.70  
-
-
-
16  
8
-
-
-
SMPS  
1.00  
1.05  
1.05  
1.10  
-
-
-
-
-
-
Range 2  
fHCLK = fMSI  
2
0.730  
5.55  
0.750  
5.65  
0.780  
5.80  
0.830  
5.95  
Supply current  
in Run mode  
IDD (Run)  
All peripherals  
disabled  
48  
32  
16  
48  
32  
16  
2
7.40  
5.60  
3.70  
-
11.0  
8.40  
6.60  
-
14.0  
13.0  
11.0  
-
Range 1  
3.85  
3.95  
4.05  
4.20  
mA  
2.15  
2.20  
2.30  
2.45  
3.40  
3.45  
3.55  
3.60  
SMPS  
Range 1  
2.50  
2.55  
2.60  
2.65  
-
-
-
1.60  
1.60  
1.65  
1.70  
-
-
-
0.220  
0.120  
0.058  
0.235  
0.135  
0.0715  
0.290  
0.185  
0.120  
0.380  
0.275  
0.210  
0.270  
0.150  
0.084  
0.490  
0.390  
0.330  
0.880  
0.780  
0.710  
fHCLK = fMSI  
IDD  
Supply current  
1
(LPRun) in LPRun mode  
All peripherals disabled  
0.4  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 37. Current consumption in Run and LPRun modes, CoreMark code  
with data running from SRAM1  
Conditions  
Typ  
Max(1)  
85 °C  
Symbol  
Parameter  
Unit  
Voltage  
scaling  
fHCLK  
(MHz)  
-
25 °C  
55 °C  
85 °C  
105 °C  
25 °C  
105 °C  
16  
8
1.90  
1.10  
-
1.90  
1.15  
-
2.00  
1.20  
-
2.10  
1.30  
-
2.20  
2.40  
2.80  
Range 2  
1.40  
1.60  
2.00  
2
-
-
-
16  
8
1.40  
1.00  
0.730  
5.65  
3.90  
2.20  
3.45  
2.50  
1.60  
0.220  
0.120  
0.052  
1.45  
1.05  
0.750  
5.75  
4.00  
2.25  
3.50  
2.55  
1.60  
0.230  
0.130  
0.064  
1.50  
1.05  
0.780  
5.90  
4.10  
2.30  
3.60  
2.60  
1.65  
0.285  
0.180  
0.115  
1.55  
1.10  
0.825  
6.05  
4.25  
2.45  
3.65  
2.70  
1.70  
0.375  
0.270  
0.205  
-
-
-
SMPS  
Range 2  
-
-
-
-
-
-
f
HCLK = fMSI  
2
IDD  
(Run)  
Supply current  
in Run mode  
All peripherals  
disabled  
48  
32  
16  
48  
32  
16  
2
6.50  
4.60  
2.50  
-
6.70  
4.80  
2.80  
-
7.10  
5.20  
3.20  
-
Range 1  
mA  
SMPS  
Range 1  
-
-
-
-
-
-
0.240  
0.140  
0.077  
0.480  
0.380  
0.320  
0.860  
0.770  
0.710  
fHCLK = fMSI  
IDD  
(LPRun)  
Supply current  
in LPRun mode  
1
All peripherals disabled  
0.4  
1. Guaranteed by characterization results, unless otherwise specified.  
 
Table 38. Typical current consumption in Run and LPRun modes, with different codes  
running from Flash memory, ART enable (cache ON, prefetch OFF)  
Conditions  
Typ  
Typ  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25 °C  
25 °C  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
1.90  
1.85  
1.85  
1.80  
1.60  
1.45  
1.40  
1.40  
1.40  
1.30  
5.70  
5.55  
5.50  
5.40  
4.65  
3.50  
3.40  
3.40  
3.30  
2.90  
118.75  
115.63  
115.63  
112.50  
100.00  
90.63  
87.50  
87.50  
87.50  
81.25  
118.75  
115.63  
114.58  
112.50  
96.88  
72.92  
70.83  
70.83  
68.75  
60.42  
Range 2  
f
HCLK = 16 MHz  
While(1)  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
SMPS  
Range 2  
fHCLK = 16 MHz  
While(1)  
fHCLK = fMSI  
Supply current in  
Run mode  
IDD(Run)  
mA  
µA/MHz  
All peripherals disabled  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
Range 1  
fHCLK = 48 MHz  
While(1)  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
SMPS  
Range 1  
fHCLK = 48 MHz  
While(1)  
 
Table 38. Typical current consumption in Run and LPRun modes, with different codes  
running from Flash memory, ART enable (cache ON, prefetch OFF) (continued)  
Conditions  
Typ  
Typ  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25 °C  
25 °C  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
0.225  
0.220  
0.220  
0.240  
0.175  
112.50  
110.00  
110.00  
120.00  
87.50  
fHCLK = fMSI = 2 MHz  
Supply current in  
LPRun mode  
IDD(LPRun)  
mA  
µA/MHz  
All peripherals disabled  
While(1)  
1. CoreMark used for characterization results provided in Table 36 and Table 38.  
Table 39. Typical current consumption in Run and LPRun modes,  
with different codes running from SRAM1  
Conditions  
Typ  
Typ  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25 °C  
25 °C  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
1.95  
1.90  
1.90  
1.90  
1.75  
1.45  
1.45  
1.45  
1.45  
1.35  
5.90  
5.65  
5.70  
5.65  
5.10  
3.60  
3.45  
3.50  
3.45  
3.15  
121.88  
118.75  
118.75  
118.75  
109.38  
90.63  
Range 2  
f
HCLK = 16 MHz  
While(1)  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
90.63  
Range 2  
SMPS ON  
90.63  
fHCLK = 16 MHz  
90.63  
While(1)  
84.38  
fHCLK = fMSI  
All peripherals disabled  
Supply current  
in Run mode  
IDD(Run)  
mA  
µA/MHz  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
122.92  
117.71  
118.75  
117.71  
106.25  
75.00  
Range 1  
fHCLK = 48 MHz  
While(1)  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
71.88  
Range 1  
SMPS ON  
72.92  
fHCLK = 48 MHz  
71.88  
While(1)  
65.63  
 
Table 39. Typical current consumption in Run and LPRun modes,  
with different codes running from SRAM1 (continued)  
Conditions  
Typ  
Typ  
Symbol  
Parameter  
Unit  
Unit  
-
Voltage scaling  
Code  
25 °C  
25 °C  
Reduced code  
CoreMark(1)  
Dhrystone 2.1  
Fibonacci  
0.225  
0.220  
0.225  
0.225  
0.195  
112.50  
110.00  
112.50  
112.50  
97.50  
fHCLK = fMSI = 2 MHz  
Supply current  
in LPRun mode  
IDD(LPRun)(2)  
mA  
µA/MHz  
All peripherals disabled  
While(1)  
1. CoreMark used for characterization results provided in Table 36 and Table 38.  
2. Flash memory in power-down mode.  
Table 40. Current consumption in Sleep and LPSleep modes, Flash memory ON  
Conditions Typ  
Max(1)  
85 °C  
Symbol  
Parameter  
Unit  
Voltage  
fHCLK  
(MHz)  
-
25 °C  
55 °C  
85 °C  
105 °C  
25 °C  
105 °C  
scaling  
16  
8
0.770  
0.570  
0.445  
1.70  
0.800  
0.600  
0.470  
1.70  
0.860  
0.655  
0.525  
1.80  
0.955  
0.745  
0.615  
1.90  
1.00  
0.780  
0.650  
2.10  
1.60  
1.10  
-
1.30  
0.990  
0.860  
2.30  
1.90  
1.40  
-
1.60  
1.40  
1.30  
2.70  
2.30  
1.80  
-
Range 2  
2
48  
32  
16  
48  
32  
16  
2
fHCLK = fMSI  
Supply current  
in Sleep mode  
IDD(Sleep)  
Range 1  
1.25  
1.30  
1.40  
1.50  
All peripherals disabled  
0.845  
1.35  
0.875  
1.40  
0.945  
1.45  
1.05  
1.50  
mA  
SMPS  
Range 1  
1.15  
1.15  
1.20  
1.25  
-
-
-
0.895  
0.068  
0.044  
0.0225  
0.018  
0.915  
0.950  
0.130  
0.105  
0.0885  
0.081  
1.00  
-
-
-
0.0805  
0.0565  
0.040  
0.220  
0.195  
0.180  
0.170  
0.095  
0.069  
0.052  
0.045  
0.330  
0.310  
0.290  
0.280  
0.720  
0.700  
0.680  
0.670  
Supply current  
in LPSleep  
mode  
1
fHCLK = fMSI  
All peripherals disabled  
IDD(LPSleep)  
0.4  
0.1  
0.032  
1. Guaranteed by characterization results, unless otherwise specified.  
Table 41. Current consumption in LPSleep mode, Flash memory in power-down  
Conditions  
fHCLK (MHz)  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
-
25 °C  
55 °C  
85 °C  
105 °C  
25 °C  
85 °C  
105 °C  
2
58.0  
35.5  
18.5  
11.0  
74.5  
50.5  
33.5  
26.5  
125  
99.0  
81.5  
74.5  
215  
190  
170  
165  
86.0  
60.0  
41.0  
36.0  
330  
300  
280  
280  
710  
690  
670  
660  
fHCLK = fMS  
1
IDD  
Supply current in  
LPSleep mode  
µA  
All peripherals  
disabled  
(LPSleep)  
0.4  
0.1  
1. Guaranteed by characterization results, unless otherwise specified.  
 
 
Table 42. Current consumption in Stop 2 mode  
Conditions  
VDD (V)  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
0 °C 25 °C 55 °C 85 °C  
105 °C  
0 °C 25 °C 85 °C  
105 °C  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
0.545 0.830  
0.525 0.850  
0.605 0.885  
0.630 0.935  
0.650 0.880  
0.630 0.945  
0.715 1.00  
0.750 1.10  
2.45  
2.60  
2.80  
3.10  
2.55  
2.70  
2.90  
3.15  
8.45  
8.80  
9.25  
9.75  
8.25  
8.85  
9.70  
10.5  
13.5  
14.0  
14.5  
15.5  
13.5  
14.0  
15.0  
15.5  
1.20  
-
2.20  
-
24.0  
-
66.0  
-
IDD  
Supply current in Stop 2 mode  
RTC disabled  
(Stop 2)  
1.10  
1.40  
1.30  
-
2.60  
2.80  
2.30  
-
26.0  
26.0  
24.0  
-
69.0  
71.0  
66.0  
-
µA  
IDD  
Supply current in Stop 2 mode  
RTC enabled, clocked by LSI(2)  
(Stop 2 with  
RTC)  
1.40  
1.50  
2.80  
3.00  
26.0  
26.0  
69.0  
71.0  
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LSI using LSIPRE = 1 configuration.  
Table 43. Current consumption during wakeup from Stop 2 mode  
Typ at 25 °C  
Conditions  
Unit  
VDD = 1.8 V  
VDD = 2.4 V  
VDD = 3.0 V  
VDD = 3.6 V  
Wakeup clock: MSI 4 MHz, voltage range 2  
Wakeup clock: MSI 2 MHz, voltage range 2  
Wakeup clock: MSI 4 MHz, voltage range 1  
Wakeup clock: MSI 16 MHz, voltage range 1  
Wakeup clock: MSI 48 MHz, voltage range 1  
2.93  
4.44  
3.03  
1.75  
1.75  
3.22  
5.03  
3.14  
1.95  
1.40  
3.45  
5.82  
3.51  
2.00  
1.89  
4.79  
7.36  
4.66  
3.06  
2.80  
nAs  
 
 
Table 44. Current consumption in Stop 1 mode  
Conditions  
VDD (V)  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
0 °C 25 °C 55 °C 85 °C  
105 °C  
0 °C 25 °C 85 °C  
105 °C  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
2.05  
2.15  
2.15  
2.25  
2.15  
2.15  
2.25  
2.30  
4.00  
3.95  
4.15  
4.20  
4.10  
4.10  
4.20  
4.15  
14.0  
14.0  
14.0  
14.0  
14.0  
14.0  
14.0  
14.5  
47.0  
47.0  
47.5  
48.0  
47.0  
47.5  
47.5  
48.5  
74.5  
75.0  
75.5  
76.5  
75.0  
75.5  
76.0  
77.0  
6.10  
-
20.0  
-
200  
-
480  
-
IDD  
Supply current in Stop 1 mode  
RTC disabled  
(Stop 1)  
5.90  
6.20  
6.30  
-
20.0  
20.0  
20.0  
-
200  
200  
200  
-
490  
490  
480  
-
µA  
IDD  
Supply current in Stop 1 mode  
RTC enabled, clocked by LSI(2)  
(Stop 1with  
RTC)  
6.40  
6.70  
21.0  
21.0  
200  
200  
490  
490  
1. Guaranteed based on test during characterization, unless otherwise specified.  
2. LSI using LSIPRE = 1 configuration.  
Table 45. Current consumption during wakeup from Stop 1 mode  
Typ at 25 °C  
Conditions  
Unit  
VDD = 1.8 V  
VDD = 2.4 V  
VDD = 3.0 V  
VDD = 3.6 V  
Wakeup clock: MSI 4 MHz, voltage range 2  
Wakeup clock: MSI 2 MHz, voltage range 2  
Wakeup clock: MSI 4 MHz, voltage range 1  
Wakeup clock: MSI 16 MHz, voltage range 1  
Wakeup clock: MSI 48 MHz, voltage range 1  
1.05  
1.81  
1.15  
1.81  
1.09  
2.12  
1.18  
2.40  
0.766  
0.310  
0.0707  
1.23  
1.34  
1.49  
nAs  
0.169  
0.461  
0.935  
0.533  
0.836  
0.565  
 
 
 
Table 46. Current consumption in Stop 0 mode  
Conditions  
Typ  
Max(1)  
25 °C 85 °C 105 °C  
Symbol  
Parameter  
Unit  
VDD  
(V)  
-
0 °C  
25 °C  
55 °C  
85 °C 105 °C  
0 °C  
1.8  
2.4  
3.0  
3.6  
335  
360  
390  
425  
345  
370  
400  
435  
365  
395  
425  
460  
415  
445  
475  
515  
455  
485  
515  
550  
480  
-
500  
-
740  
-
1200  
-
IDD  
Supply current in Stop 0 mode  
RTC disabled  
µA  
(Stop 0)  
540  
580  
570  
600  
800  
840  
1200  
1300  
1. Guaranteed based on test during characterization, unless otherwise specified.  
Table 47. Current consumption during wakeup from Stop 0 mode  
Typ at 25 °C  
Conditions  
Unit  
VDD = 1.8 V  
VDD = 2.4 V  
VDD = 3.0 V  
VDD = 3.6 V  
Wakeup clock: MSI 4 MHz, voltage range 2  
Wakeup clock: MSI 2 MHz, voltage range 2  
Wakeup clock: MSI 4 MHz, voltage range 1  
Wakeup clock: MSI 16 MHz, voltage range 1  
Wakeup clock: MSI 48 MHz, voltage range 1  
3.45  
3.05  
3.20  
1.07  
0.867  
3.76  
3.20  
3.66  
1.25  
1.13  
3.45  
3.74  
3.30  
1.71  
1.39  
4.04  
3.35  
4.11  
nAs  
1.80  
0.949  
 
 
Table 48. Current consumption in Standby mode  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
VDD  
(V)  
-
0 °C  
25 °C  
55 °C  
85 °C  
105 °C  
0 °C  
25 °C  
85 °C  
105 °C  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
0.009  
0.022  
0.046  
0.075  
0.130  
0.140  
0.165  
0.190  
0.215  
0.230  
0.260  
0.305  
0.270  
0.295  
0.345  
0.415  
0.027  
0.051  
0.071  
0.125  
0.205  
0.225  
0.255  
0.300  
0.295  
0.325  
0.360  
0.425  
0.350  
0.390  
0.445  
0.535  
0.245  
0.340  
0.470  
0.650  
0.820  
0.915  
1.05  
1.00  
1.35  
1.75  
2.30  
2.90  
3.25  
3.70  
4.25  
3.10  
3.45  
3.95  
4.55  
3.15  
3.50  
4.00  
4.60  
2.40  
2.85  
3.40  
4.05  
5.55  
6.05  
6.60  
7.25  
5.30  
5.95  
6.85  
7.85  
5.80  
6.25  
6.85  
7.55  
-
-
-
-
-
-
-
-
No retention  
-
-
-
-
Supply current in  
Standby mode  
RTC disabled  
Backup registers  
retained  
-
-
-
-
IDD  
(Standby)  
0.200  
0.550  
8.20  
24.0  
-
-
-
-
SRAM2 retained  
0.280  
0.710  
9.40  
27.0  
1.20  
0.330  
0.770  
10.0  
28.0  
µA  
0.895  
0.990  
1.15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by LSI  
(PREDIV = 1)  
Supply current in  
Standby mode  
(backup registers  
and SRAM2  
retained)  
RTC enabled  
IDD  
(Standby  
with RTC)  
1.30  
0.975  
1.10  
RTC clocked by LSE  
quartz(2) in low drive  
mode  
1.25  
1.45  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
Table 49. Current consumption during wakeup from Standby mode  
Typ at 25 °C  
Symbol  
Conditions  
Unit  
VDD = 1.8 V  
VDD = 2.4 V  
VDD = 3.0 V  
VDD = 3.6 V  
Wakeup clock: MSI 4 MHz  
Wakeup clock: MSI 8 MHz  
23.5  
15.2  
81.3  
15.7  
111  
114  
IDD (wakeup from Standby)  
nAs  
17.3  
19.6  
 
 
Table 50. Current consumption in Shutdown mode  
Conditions  
Typ  
Max(1)  
Symbol  
Parameter  
Unit  
VDD  
(V)  
-
0 °C  
25 °C  
55 °C  
85 °C  
105 °C  
0 °C  
25 °C  
85 °C  
105 °C  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
0.001  
0.008  
0.018  
0.041  
0.054  
0.090  
0.160  
0.250  
0.140  
0.165  
0.205  
0.265  
0.008  
0.018  
0.031  
0.062  
0.065  
0.105  
0.175  
0.280  
0.155  
0.185  
0.225  
0.295  
0.105  
0.135  
0.180  
0.260  
0.145  
0.200  
0.295  
0.440  
0.270  
0.315  
0.380  
0.500  
0.380  
0.445  
0.545  
0.690  
0.545  
0.665  
0.860  
1.15  
0.995  
1.20  
1.45  
1.80  
1.35  
1.60  
1.95  
2.45  
1.20  
1.40  
1.70  
2.10  
0.001  
0.043  
1.70  
6.40  
Supply current in Shutdown mode  
RTC disabled  
Backup registers retained  
-
-
-
-
IDD  
(Shutdown)  
0.078  
0.150  
2.40  
8.50  
0.110  
0.190  
2.90  
9.90  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
RTC clocked by  
µA  
an external clock  
Supply current  
in Shutdown  
mode (backup  
registers  
IDD  
(Shutdown  
with RTC)  
0.605  
0.705  
0.855  
1.10  
retained)  
RTC enabled  
RTC clocked by  
LSE quartz (2) in  
low drive mode  
1. Guaranteed by characterization results, unless otherwise specified.  
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
 
Table 51. Current consumption in VBAT mode  
Conditions  
Typ  
Max  
Symbol  
Parameter  
Unit  
VBAT  
(V)  
-
0 °C  
25 °C  
55 °C  
85 °C  
105 °C  
105 °C  
1.8  
2.4  
3.0  
3.6  
1.8  
2.4  
3.0  
3.6  
1.00  
1.00  
1.00  
3.00  
140  
155  
185  
230  
3.00  
3.00  
5.00  
11.0  
150  
170  
200  
245  
19.0  
22.0  
31.0  
50.0  
180  
200  
235  
295  
95.0  
110  
150  
220  
275  
310  
375  
485  
180  
200  
270  
380  
390  
435  
545  
710  
1.00  
1.00  
1.00  
3.00  
140  
155  
185  
230  
RTC disabled  
Backup domain  
supply current  
IDD(VBAT)  
nA  
RTC enabled and  
clocked by LSE quartz(1)  
1. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.  
Table 52. Current under Reset condition  
Conditions  
Typ  
Symbol  
Unit  
VDD (V)  
25 °C  
1.8 V  
2.4 V  
3.0 V  
3.6 V  
600  
650  
700  
780  
IDD(RST)  
µA  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
I/O system current consumption  
The current consumption of the I/O system has two components: a static and a dynamic.  
I/O static current consumption  
All the I/Os used as inputs with pull-up generate current consumption when the pin is  
externally held low. The value of this current consumption can be simply computed by using  
the pull-up/pull-down resistors values given in Table 72: I/O static characteristics.  
For the output pins, any external pull-down or external load must also be considered to  
estimate the current consumption.  
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate  
voltage level is externally applied. This current consumption is caused by the input Schmitt  
trigger circuits used to discriminate the input value. Unless this specific configuration is  
required by the application, this supply current consumption can be avoided by configuring  
these I/Os in analog mode. This is notably the case of ADC input pins which should be  
configured as analog inputs.  
Caution:  
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,  
as a result of external electromagnetic noise. To avoid current consumption related to  
floating pins, these pins must either be configured in analog mode, or forced internally to a  
definite digital value. This can be done either by using pull-up/down resistors or by  
configuring the pins in output mode.  
I/O dynamic current consumption  
In addition to the internal peripheral current consumption measured previously (see  
Table 53: Peripheral current consumption, the I/Os used by an application also contribute to  
the current consumption. When an I/O pin switches, it uses the current from the I/O supply  
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or  
external) connected to the pin:  
ISW = VDD × fSW × C  
where  
I
is the current sunk by a switching I/O to charge/discharge the capacitive load.  
is the I/O supply voltage.  
SW  
V
f
DD  
is the I/O switching frequency.  
SW  
C is the total capacitance seen by the I/O pin: C = C + C  
Io  
EXT .  
C
is the PCB board capacitance plus any connected external device pin  
EXT  
capacitance.  
The test pin is configured in push-pull output mode and is toggled by software at a fixed  
frequency.  
DS13105 Rev 8  
91/145  
133  
Electrical characteristics  
STM32WLE5/E4xx  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in the table below. The device is  
placed under the following conditions:  
All I/O pins are in analog mode.  
The given value is calculated by measuring the difference of the current consumptions:  
when the peripheral is clocked on  
when the peripheral is clocked off  
Ambient operating temperature and supply voltage conditions summarized in Table 21:  
Voltage characteristics.  
The power consumption of the digital part of the on-chip peripherals is given in the table  
below. The power consumption of the analog part of the peripherals (where applicable)  
is indicated in each related section of the datasheet.  
Table 53. Peripheral current consumption  
Peripheral  
Range 1  
Range 2  
LPRun and LPSleep  
Unit  
CRC1  
DMA1  
0.42  
2.29  
2.50  
3.96  
9.17  
0.01  
0.01  
0.01  
0.01  
0.62  
2.50  
7.92  
3.33  
1.04  
0.62  
0.62  
0.42  
16.0  
0.83  
1.67  
2.29  
1.67  
2.50  
1.67  
0.38  
1.88  
1.94  
3.38  
7.50  
0.12  
0.12  
0.12  
0.06  
0.56  
2.13  
6.56  
2.75  
N/A  
1.00  
1.45  
1.50  
2.50  
9.30  
0.20  
0.15  
0.15  
0.10  
0.40  
1.80  
11.3  
2.15  
N/A  
AHB1 DMA2  
µA/MHz  
DMAMUX1  
All AHB1 peripherals  
GPIOA  
GPIOB  
AHB2 GPIOC  
µA/MHz  
GPIOH  
All AHB2 peripherals  
AES1  
FLASH  
PKA  
RNG1  
AHB3  
µA/MHz  
RNG1 independent clock domain  
N/A  
N/A  
SRAM1  
0.38  
0.37  
13.4  
0.69  
1.37  
1.94  
1.37  
2.00  
1.37  
0.55  
0.50  
16.0  
0.50  
1.05  
1.40  
1.05  
1.60  
0.90  
SRAM2  
All AHB3 peripherals(1)  
DAC  
I2C1  
I2C1 independent clock domain  
APB1  
µA/MHz  
I2C2  
I2C2 independent clock domain  
I2C3  
92/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
Table 53. Peripheral current consumption (continued)  
Peripheral  
Range 1  
Range 2  
LPRun and LPSleep  
Unit  
I2C3 independent clock domain  
LPTIM1  
2.29  
1.67  
2.50  
1.67  
2.50  
0.83  
2.29  
2.08  
1.87  
1.44  
2.19  
1.37  
2.12  
0.69  
1.94  
1.81  
1.30  
1.50  
1.45  
0.90  
1.55  
0.65  
0.65  
3.55  
LPTIM1 independent clock domain  
LPTIM2  
LPTIM2 independent clock domain  
LPTIM3  
LPTIM3 independent clock domain  
LPUART1  
APB1  
µA/MHz  
LPUART1 independent clock  
domain  
2.50  
2.06  
1.35  
RTCAPB  
2.08  
1.46  
4.58  
1.88  
4.58  
0.42  
19.6  
1.25  
0.21  
1.25  
6.25  
2.29  
2.29  
1.67  
4.17  
15.8  
1.46  
1.46  
62.9  
1.81  
1.19  
3.81  
1.56  
3.75  
0.31  
16.1  
1.00  
0.13  
1.06  
5.19  
1.94  
1.87  
1.38  
3.38  
13.0  
1.25  
1.25  
52.3  
1.50  
0.90  
2.95  
1.35  
3.05  
0.05  
20.2  
0.70  
0.30  
0.90  
8.30  
1.35  
1.25  
1.00  
2.90  
15.8  
1.10  
1.10  
59.7  
SPI2  
TIM2  
USART2  
USART2 independent clock domain  
WWDG1  
All APB1 peripherals(1)  
ADC  
ADC independent clock domain  
SPI1  
TIM1  
APB2 TIM16  
TIM17  
µA/MHz  
USART1  
USART1 independent clock domain  
All APB2 peripherals(1)  
SUBGHZSPI  
APB3  
All APB3 peripherals  
µA/MHz  
All peripherals(1)  
1. Without independent clocks.  
5.3.8  
Wakeup time from low-power modes and voltage scaling  
transition times  
The wakeup times given in the table below, are the latency between the event and the  
execution of the first user instruction.  
The device goes in low-power mode after the WFE (wait for event) instruction.  
DS13105 Rev 8  
93/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
(1)  
Table 54. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ Max  
Unit  
Wakeup time from  
Sleep to Run mode  
tWUSLEEP  
-
0.188 0.222  
µs  
Wakeup time from  
tWULPSLEEP LPSleep to LPRun  
mode  
Wakeup in Flash with memory in power-down  
during LPSleep mode (FPDS = 1 in PWR_CR1)  
and with clock MSI = 2 MHz  
3.81 4.38  
Wakeup clock MSI = 48 MHz  
Wakeup clock MSI = 16 MHz  
2.14 2.90  
2.78 3.58  
Wakeup clock HSI16 = 16 MHz  
To Run mode  
1.99  
-
Wakeup time from  
tWUSTOP0 Stop 0 mode in Flash  
memory(2)  
Wakeup clock HSI16 = 16 MHz  
(Range 1)  
1.01 1.13  
µs  
with HSIKERON enabled  
Wakeup clock MSI = 4 MHz  
6.79 8.21  
10.4 12.2  
10.5 12.3  
5.15 6.55  
5.73 7.14  
5.71 7.10  
Wakeup clock MSI = 2 MHz  
To LPRun mode Wakeup clock MSI = 2 MHz  
Wakeup clock MSI = 48 MHz  
Wakeup clock MSI = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
To Run mode  
Wakeup time from  
tWUSTOP1 Stop 1 mode in Flash  
memory(2)  
Wakeup clock HSI16 = 16 MHz  
with HSIKERON enabled  
(Range 1)  
4.57 6.52  
µs  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 2 MHz  
8.43 9.93  
11.9 13.7  
10.6 13.9  
5.56 6.85  
6.32 7.59  
6.28 7.51  
To LPRun mode Wakeup clock MSI = 2 MHz  
Wakeup clock MSI = 48 MHz  
Wakeup clock MSI = 16 MHz  
Wakeup clock HSI16 = 16 MHz  
To Run mode  
Wakeup clock HSI16 = 16 MHz  
(Range 1)  
Wakeup time from  
tWUSTOP2 Stop 2 mode in Flash  
memory(2)  
µs  
µs  
6.26 7.53  
with HSIKERON enabled  
Wakeup clock MSI = 4 MHz  
Wakeup clock MSI = 2 MHz  
9.69 10.9  
14.0 15.4  
34.3 39.2  
22.4 25.6  
Wakeup clock MSI = 4 MHz  
Range 1  
Wakeup time from  
tWUSTBY  
Standby to Run mode  
Wakeup clock MSI = 8 MHz  
Wakeup time from  
tWUSHUTD  
Range 1  
Wakeup clock MSI = 4 MHz  
264  
316  
Shutdown to Run mode  
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).  
2. Wakeup time is equivalent when code is executed from SRAM1 compared to Flash memory. It is also equivalent when  
going to Range 2 rather than Range 1.  
94/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 55. Regulator modes transition times  
Parameter Conditions  
Typ  
Max  
Unit  
Transition time from LPRun to Run  
mode(2)  
tWULPRUN  
Code run with MSI = 2 MHz  
19.6  
-
Regulator transition time from Range 2 to  
Range 1(3)  
21.9  
23.1  
32.2  
33.9  
µs  
tVOST  
Code run with HSI16  
Regulator transition time from Range 1 to  
Range 2(3)  
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).  
2. Time until REGLPF flag is cleared in PWR_SR2.  
3. Time until VOSF flag is cleared in PWR_SR2.  
5.3.9  
External clock source characteristics  
High-speed external user clock generated from an external source  
The high-speed external (HSE32) clock can be supplied with a 32 MHz crystal oscillator or  
by a TCXO (temperature controlled crystal oscillator).  
Crystal oscillator  
The devices include internal programmable capacitances that can be used to tune the  
crystal frequency in order to compensate the PCB parasitic one.  
Characteristics in the tables below, are measured over recommended operating conditions,  
unless otherwise specified. Typical values are referred to T = 25 °C and V = 3 V.  
A
DD  
(1)  
Table 56. HSE32 crystal requirements  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
fnom  
Oscillator frequency  
-
-
-
32  
-
-
MHz  
Initial  
±10  
fTOL  
Frequency accuracy  
Over temperature (-20 to 70 °C)  
-
-
±10 ppm  
±10  
Aging over 10 years  
-
-
-
CLoad Load capacitance(2)  
9.5  
0.3  
1.3  
10  
0.6  
1.89  
10.5  
pF  
2
CShunt Crystal shunt capacitance  
Cmotion Crystal motional capacitance  
-
-
2.5  
60  
fF  
Crystal equivalent series  
resistance  
ESR  
-
-
-
-
30  
-
PD  
Drive level  
100  
µW  
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.  
2. Load capacitance can be managed by internal programmable capacitances at calibration phase. No need to add external  
foot capacitances. The values indicated take into account the combination of the two foot capacitances.  
DS13105 Rev 8  
95/145  
133  
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 57. HSE32 oscillator characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
VDDRF stabilized,  
SUBGHZ_HSEINTRIMR = 0x12,  
-40 to +105 °C temperature range  
Startup time for 80% amplitude  
stabilization  
tSUA(HSE)  
-
1000  
-
µs  
VDDRF stabilized,  
Startup time  
for HSEREADY signal  
tSUR(HSE)  
SUBGHZ_HSEINTRIMR = 0x12,  
-40 to +105 °C temperature range  
-
180  
-
HSEGMC = 000,  
SUBGHZ_HSEINTRIMR = 0x12  
IDDRF(HSE) HSE32 current consumption  
-
50  
1
-
5
µA  
SUBGHZ_HSEINTRIMR  
XOTg(HSE)  
-
granularity  
ppm  
SUBGHZ_HSEINTRIMR  
XOTfp(HSE)  
±15  
±30  
6
-
frequency pulling  
Capacitor bank  
SUBGHZ_HSEINTRIMR  
XOTnb(HSE)  
-
-
-
bit  
number of tuning bits  
SUBGHZ_HSEINTRIMR setting  
XOTst(HSE)  
time  
-
0.1  
ms  
For more information about the trimming methodology of the oscillator, refer to the  
application note HSE trimming for STM32 wireless MCUs (AN5042).  
TCXO regulator  
Table 58. HSE32 TCXO regulator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Regulated voltage range for  
TCXO voltage supply  
VTCXO  
VDDOP > VTCXO + 200 mV  
1.6  
1.7  
1.5  
-
3.3  
4
V
ILTCXO  
Load current for TCXO regulator -  
-
-
mA  
µs  
From enable to regulated voltage  
within 25 mV from target  
TSVTCXO Startup time for TCXO regulator  
50  
Quiescent current  
-
-
-
70  
2
µA  
%
Current consumption for TCXO  
IDDTCXO  
regulator  
Relative to load current  
1.6  
Provided through a 220 resistor  
in series with a capacitance  
(voltage divider)(1)  
Amplitude voltage for external  
ATCXO  
0.4  
0.6  
1.2  
Vpk-pk  
TCXO applied to OSC_IN pin  
1. In order to minimize spurious injection, the capacitance value must be calculated such that an amplitude of  
0.4 to 0.5 Vpk-pk on OSC_IN is obtained. For TCXO output voltage of 0.8 Vpk-pk, 10 pF can be used.  
Low-speed external user clock generated from an external source  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator  
oscillator. The information provided in this section is based on design simulation results  
obtained with typical external components specified in the table below. In the application,  
96/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
the resonator and the load capacitors have to be placed as close as possible to the  
oscillator pins to minimize output distortion and startup stabilization time.  
Refer to the crystal resonator manufacturer for more details on the resonator characteristics  
(frequency, package, accuracy).  
(1)  
Table 59. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LSEDRV[1:0] = 00 - Low drive capability  
LSEDRV[1:0] = 01 - Medium-low drive capability  
LSEDRV[1:0] = 10 - Medium-high drive capability  
LSEDRV[1:0] = 11 - High drive capability  
LSEDRV[1:0] = 00 - Low drive capability  
LSEDRV[1:0] = 01 - Medium-low drive capability  
LSEDRV[1:0] = 10 - Medium-high drive capability  
LSEDRV[1:0] = 11 - High drive capability  
VDD stabilized  
-
-
-
-
-
-
-
-
-
250  
-
315  
-
-
LSE current  
consumption  
IDD(LSE)  
nA  
500  
630  
-
-
-
0.50  
0.75  
1.70  
2.70  
-
Maximum  
Gmcritmax critical crystal  
gm  
µA/V  
s
-
-
(2)  
tSU(LSE)  
Startup time  
2
1. Guaranteed by design.  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32.768 kHz oscillation is  
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.  
For more information on the crystal selection, refer to application note Oscillator design  
guide for STM8AF/AL/S, STM32 MCUs and MPUs (AN2867).  
Figure 16. Typical application with a 32.768 kHz crystal  
Resonator with integrated  
capacitors  
CL1  
OSC32_IN  
fLSE  
Drive  
32.768 kHz  
resonator  
programmable  
amplifier  
OSC32_OUT  
CL2  
MS30253V2  
Note:  
No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden  
to add one.  
In bypass mode, the LSE oscillator is switched off and the input pin is a standard GPIO.  
DS13105 Rev 8  
97/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
The external clock signal has to respect the I/O characteristics detailed in Section 5.3.16:  
I/O port characteristics.The recommend clock input waveform is shown in the figure below.  
Figure 17. Low-speed external clock source AC timing diagram  
t
w(LSEH)  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
r(LSE)  
f(LSE)  
t
w(LSEL)  
T
LSE  
MS19215V2  
(1)  
Table 60. Low-speed external user clock characteristics – Bypass mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
VLSEH  
VLSEL  
-
21.2  
32.768  
44.4  
kHz  
OSC32_IN input pin high-  
level voltage  
0.7 x  
VDDx  
-
-
-
-
-
-
VDDx  
V
OSC32_IN input pin low-  
level voltage  
VSS  
250  
0.3 x VDDx  
-
tw(LSEH)  
tw(LSEL)  
OSC32_IN high or low time  
Frequency tolerance  
ns  
Includes initial accuracy,  
stability over temperature,  
aging and frequency pulling  
ftolLSE  
–500  
-
+500  
ppm  
1. Guaranteed by design.  
5.3.10  
Internal clock source characteristics  
Parameters given in the table below are derived from tests performed under ambient  
temperature and supply voltage conditions summarized in Table 25: General operating  
conditions. The provided curves are characterization results, not tested in production.  
High-speed internal (HSI16) RC oscillator  
(1)  
Table 61. HSI16 oscillator characteristics  
Symbol  
fHSI16  
Parameter  
HSI16 frequency  
Conditions  
Min  
Typ  
Max  
Unit  
VDD = 3.0 V, TA = 30 °C 15.88  
-
16.08 MHz  
98/145  
DS13105 Rev 8  
 
 
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 61. HSI16 oscillator characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Trimming code is not a  
multiple of 48  
0.2  
0.3  
0.4  
TRIM  
HSI16 user trimming step  
Duty cycle  
Trimming code is a  
multiple of 48  
–4  
45  
–6  
-
–8  
55  
DuCy(HSI16)  
%
-
(2)  
Tj = 0 to 85 °C  
–1  
-
-
1
1.5  
0.05  
1.2  
5
Temp(HSI16) HSI16 oscillator frequency drift  
Tj = -40 to 125 °C  
–2  
VDD(HSI16) HSI16 oscillator frequency drift over VDD VDD = 1.8 V to 3.6 V  
–0.1  
-
tsu(HSI16)(2) HSI16 oscillator start-up time  
tstab(HSI16)(2) HSI16 oscillator stabilization time  
IDD(HSI16)(2) HSI16 oscillator power consumption  
-
-
-
-
-
-
0.8  
3
μs  
155  
190  
μA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
Figure 18. HSI16 frequency versus temperature  
MHz  
16.4  
+2 %  
+1.5 %  
+1 %  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
-1 %  
-1.5 %  
-2 %  
-40  
-20  
0
20  
40  
60  
80  
100  
120 °C  
MSv66006V3  
Mean  
Min  
Max  
DS13105 Rev 8  
99/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Multi-speed internal (MSI) RC oscillator  
(1)  
Table 62. MSI oscillator characteristics  
Parameter Conditions  
Symbol  
Min  
Typ  
Max Unit  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Range 0  
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
Tj = 0 to 85 °C  
98.7  
100  
200  
101.3  
197.4  
202.6  
kHz  
405.2  
394.8  
400  
789.6  
800  
810.4  
1.013  
2.026  
4.052  
0.987  
1
1.974  
2
MSI mode  
3.948  
4
7.896  
8
8.104  
MHz  
16.21  
15.79  
16  
23.69  
24  
24.31  
32.42  
48.62  
-
31.58  
32  
MSI frequency  
after factory  
calibration, done  
at VDD= 3 V and  
TA= 30 °C  
47.38  
48  
fMSI  
-
98.304  
196.608  
393.216  
786.432  
1.016  
1.999  
3.998  
7.995  
15.991  
23.986  
32.014  
48.005  
-
-
-
kHz  
-
-
-
-
-
-
-
-
PLL mode  
XTAL=  
32.768 kHz  
-
-
-
-
MHz  
-
-
-
-
-
-
-
-
MSI oscillator  
–3.5  
3
TEMP(MSI)(2) frequency drift  
MSI mode  
%
6
Tj = -40 to 125 °C  
–8  
-
over temperature  
100/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 62. MSI oscillator characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD  
1.8 to 3.6 V  
=
–1.2  
-
Range 0 to 3  
0.5  
VDD  
2.4 to 3.6 V  
=
–0.5  
–2.5  
–0.8  
–5  
-
-
-
-
-
VDD  
1.8 to 3.6 V  
=
MSI oscillator  
frequency drift  
over VDD  
VDD(MSI)(2)  
MSI mode Range 4 to 7  
0.7  
VDD  
2.4 to 3.6 V  
=
(reference is 3 V)  
%
VDD  
1.8 to 3.6 V  
=
Range 8 to 11  
1
VDD  
2.4 to 3.6 V  
=
–1.6  
Frequency  
Tj = -40 to 85 °C  
Tj = -40 to 125 °C  
-
-
1
2
2
4
FSAMPLING  
variation in  
MSI mode  
(MSI)(2)(4)  
sampling mode(3)  
RMS cycle-to-  
cycle jitter  
CC jitter(MSI)(4)  
PLL mode Range 11  
-
-
60  
-
ps  
P jitter(MSI)(4) RMS period jitter PLL mode Range 11  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50  
10  
5
-
Range 0  
Range 1  
20  
10  
Range 2  
4
8
MSI oscillator  
start-up time  
t
SU(MSI)(4)  
μs  
7
Range 3  
3
Range 4 to 7  
Range 8 to 11  
3
6
6
2.5  
10 % of final  
frequency  
-
-
-
-
-
-
0.25  
0.5  
-
0.5  
MSI oscillator  
stabilization time Range 11  
PLL mode 5 % of final  
tSTAB(MSI)(4)  
1.25 ms  
2.5  
frequency  
1 % of final  
frequency  
DS13105 Rev 8  
101/145  
133  
Electrical characteristics  
STM32WLE5/E4xx  
(1)  
Table 62. MSI oscillator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Range 0  
Min  
Typ  
Max Unit  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.6  
0.8  
1.2  
1.9  
4.7  
6.5  
11  
1
Range 1  
Range 2  
Range 3  
Range 4  
Range 5  
Range 6  
Range 7  
Range 8  
Range 9  
Range 10  
Range 11  
1.2  
1.7  
2.5  
6
MSI oscillator  
power  
consumption  
9
MSI and  
PLL mode  
IDD(MSI)(4)  
µA  
15  
18.5  
62  
25  
80  
85  
110  
130  
190  
110  
155  
1. Guaranteed by characterization results.  
2. This is a deviation for an individual part once the initial frequency has been measured.  
3. Sampling mode means LPRun and LPSleep modes with temperature sensor disabled.  
4. Guaranteed by design.  
102/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
Figure 19. Typical current consumption vs. MSI frequency  
Low-speed internal (LSI) RC oscillator  
(1)  
Table 63. LSI oscillator characteristics  
Parameter Conditions  
VDD = 3 V, TA = 30 °C  
Symbol  
Min Typ Max Unit  
31.04  
-
-
32.96  
34  
fLSI  
LSI frequency  
kHz  
VDD = 1.8 to 3.6 V, Tj = -40 to 125 °C  
-
29.5  
tSU(LSI)(2) LSI oscillator startup time  
-
-
80  
130  
μs  
tSTAB(LSI)(2) LSI oscillator stabilization time 5 % of final frequency  
125 180  
110 180  
LSI oscillator power  
consumption  
IDD(LSI)(2)  
-
-
nA  
1. Guaranteed by characterization results.  
2. Guaranteed by design.  
DS13105 Rev 8  
103/145  
133  
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
5.3.11  
PLL characteristics  
Parameters given in the table below are derived from tests performed under temperature  
and V supply voltage conditions summarized in Table 25: General operating conditions.  
DD  
(1)  
Table 64. PLL characteristics  
Symbol  
fPLL_IN  
Parameter  
PLL input clock(2)  
PLL input clock duty cycle  
Conditions  
Min  
Typ Max Unit  
-
-
2.66  
45  
3
-
-
16  
55  
48  
16  
48  
16  
48  
16  
344  
128  
40  
-
MHz  
%
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
Voltage scaling Range 1  
Voltage scaling Range 2  
-
-
fPLL_P_OUT PLL multiplier output clock P  
fPLL_Q_OUT PLL multiplier output clock Q  
fPLL_R_OUT PLL multiplier output clock R  
fVCO_OUT PLL VCO output  
3
-
12  
12  
12  
12  
96  
96  
-
-
-
MHz  
-
-
-
-
tLOCK  
Jitter  
PLL lock time  
15  
40  
30  
μs  
RMS cycle-to-cycle jitter  
RMS period jitter  
-
System clock 48 MHz  
ps  
-
-
VCO freq = 96 MHz  
VCO freq = 192 MHz  
VCO freq = 344 MHz  
-
200 260  
300 380  
520 650  
PLL power consumption on  
VDD  
I
DD(PLL)  
-
μA  
(1)  
-
1. Guaranteed by design.  
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared  
between the two PLLs.  
5.3.12  
Flash memory characteristics  
(1)  
Table 65. Flash memory characteristics  
Symbol  
Parameter  
64-bit programming time  
Conditions  
Typ  
Max  
Unit  
tprog  
-
81.7  
90.8  
µs  
Normal  
programming  
One row (64 double-words) programming time  
5.2  
3.8  
5.5  
4.0  
tprog_row  
Fast programming  
Normal  
programming  
41.8  
43.0  
ms  
tprog_page One 2-Kbyte page programming time  
Fast programming  
30.4  
22.0  
22.1  
31.0  
24.5  
25.0  
tERASE  
tME  
2-Kbyte page erase time  
Mass erase time  
-
-
104/145  
DS13105 Rev 8  
 
 
 
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 65. Flash memory characteristics (continued)  
Parameter Conditions  
Write mode  
Typ  
Max  
Unit  
3.4  
-
-
-
-
Average consumption from VDD  
Erase mode  
Write mode  
Erase mode  
3.4  
IDD  
mA  
7 (for 6 µs)  
7 (for 67 µs)  
Maximum current (peak)  
1. Guaranteed by design.  
Table 66. Flash memory endurance and data retention  
Conditions  
Symbol  
Parameter  
Endurance  
Min(1)  
Unit  
NEND  
TA = -40 to +105 °C  
10  
30  
15  
30  
15  
10  
kcycles  
1 kcycle(2) at TA = 85 °C  
1 kcycle(2) at TA = 105 °C  
tRET  
Data retention  
10 kcycles(2) at TA = 55 °C  
10 kcycles(2) at TA = 85 °C  
10 kcycles(2) at TA = 105 °C  
Years  
1. Guaranteed by characterization results.  
2. Cycling performed over the whole temperature range.  
5.3.13  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling two LEDs through I/O ports).  
the device is stressed by the following electromagnetic events until a failure occurs (failure  
indicated by the LEDs):  
ESD (electrostatic discharge, positive and negative) applied to all device pins until a  
functional disturbance occurs (test compliant with IEC 61000-4-2 standard)  
FTB (burst of fast transient voltage, positive and negative) applied to VDD and VSS  
pins, through a 100 pF capacitor, until a functional disturbance occurs (test compliant  
with IEC 61000-4-4 standard)  
A device reset allows normal operations to be resumed.  
The test results given in the table below, are based on the EMS levels and classes defined  
in application note EMC design guide for STM8, STM32 and Legacy MCUs (AN1709).  
DS13105 Rev 8  
105/145  
133  
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Level/Class  
Table 67. EMS characteristics  
Conditions  
Voltage limits to be applied on any I/O pin to VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz,  
Symbol  
Parameter  
VFESD  
2B  
5A  
induce a functional disturbance  
conforming to IEC 61000-4-2  
Fast transient voltage burst limits to be  
VEFTB applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, TA = +25 °C, fHCLK = 48 MHz,  
conforming to IEC 61000-4-4  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software.  
Note:  
Good EMC performance is highly dependent on the user application and the software in  
particular.It is then recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for the application.  
Software recommendations  
The software flow must include the management of runaway conditions such as:  
corrupted program counter  
unexpected reset  
critical data corruption (control registers)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 s.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring. For more details, refer to the application note  
Software techniques for improving microcontrollers EMC performance (AN1015).  
Electromagnetic interference (EMI)  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling two LEDs through the I/O ports). This emission test is compliant with the  
IEC 61967-2 standard, that specifies the test board and the pin loading.  
106/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Symbol Parameter  
Electrical characteristics  
Table 68. EMI characteristics  
Monitored  
Peripheral ON  
SMPS OFF  
fHSE = /fCPUM4, fCPUM0  
]
Conditions  
Unit  
frequency band  
fHSE = 32 MHz  
fCPU = 48 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
1 GHz to 2 GHz  
EMI level  
1
4
0
7
2
V
DD = 3.6 V, TA = 25 °C,  
Peak level UFBGA73 package  
compliant with IEC 61967-2  
dBµV  
-
SEMI  
5.3.14  
Electrical sensitivity characteristics  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 s) are applied to  
the pins of each sample according to each pin combination. The sample size depends on  
the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to  
the ANSI/JEDEC standard.  
Table 69. ESD absolute maximum ratings  
Symbol  
VESD(HBM)  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge voltage TA = +25 °C, conforming to  
(human body model)  
2
2000  
500  
ANSI/ESDA/JEDEC JS-001  
V
Electrostatic discharge voltage TA = +25 °C, conforming to  
(charge device model)  
VESD(CDM)  
C2a  
ANSI/ESD STM5.3.1 JS-002  
1. Guaranteed by characterization results.  
Static latch-up  
The following complementary static tests are required on three parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 70. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
Level A  
DS13105 Rev 8  
107/145  
133  
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
5.3.15  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard, 3V-capable I/O pins), must be avoided during normal product  
DD  
operation. However, in order to give an indication of the robustness of the microcontroller in  
case abnormal injection accidentally happens, susceptibility tests are performed on a  
sample basis during device characterization.  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating-input mode. While current is injected into  
the I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out-of-range parameter: ADC error above a certain limit  
(higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent  
pins (out of the -5 µA/0 µA range) or other functional failure (for example reset occurrence  
or oscillator frequency deviation).  
The characterization results are given in the table below.  
Negative induced leakage current is caused by negative injection and positive induced  
leakage current is caused by positive injection.  
(1)  
Table 71. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on all pins except PB0  
Injected current on PB0 pin  
–5  
–5  
N/A(2)  
0
IINJ  
mA  
1. Guaranteed by characterization results.  
2. Injection not possible.  
108/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
5.3.16  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the conditions summarized in Table 25: General operating conditions. All  
I/Os are designed as CMOS- and TTL-compliant.  
Table 72. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O input low-level voltage(1)  
-
-
0.3 x VDD  
VIL  
0.39 x VDD  
- 0.06  
I/O input low-level voltage(2)  
I/O input high-level voltage(1)  
I/O input high-level voltage(2)  
V
0.7 x VDD  
-
-
-
-
1.8 V < VDD < 3.6 V  
VIH  
0.49 x VDD  
+ 0.26  
TT, FT_xx and NRST I/O  
input hysteresis  
Vhys  
-
-
-
200  
-
mV  
nA  
(3)(4)  
0 VIN Max(VDDXXX  
)
-
-
±100  
650  
Max(VDDXXX) VIN  
FT_xx input leakage current Max(VDDXXX) +1 V(2)(3)(4)  
Ilkg  
Max(VDDXXX) +1 V < VIN  
5.5 V(2)(3)(4)(5)(6)  
-
-
200(7)  
(3)  
V
IN Max(VDDXXX  
)
-
-
-
-
±150  
2000  
TT input leakage current  
Max(VDDXXX) VIN < 3.6 V(3)  
Weak pull-up equivalent  
resistor(1)  
RPU  
VIN = VSS  
25  
40  
55  
kꢁ  
Weak pull-down equivalent  
resistor(1)  
RPD  
CIO  
VIN = VDD  
25  
-
40  
5
55  
-
I/O pin capacitance  
-
pF  
1. Tested in production.  
2. Guaranteed by design, not tested in production.  
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by  
ITotal_Ileak_max = 10 μA + number of I/Os where VIN is applied on the pad x Ilkg(Max)  
4. Max(VDDXXX) is the maximum value among all the I/O supplies.  
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].  
.
6. Refer to the figure below.  
7. To sustain a voltage higher than [Min(VDD, VDDA) + 0.3 V], the internal pull-up and pull-down resistors must be disabled on  
all FT_xx I/O.  
DS13105 Rev 8  
109/145  
133  
 
 
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their  
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown  
in the figure below.  
Figure 20. I/O input characteristics - V and V on all I/Os  
IL  
IH  
VIH spec 70 %  
VIL spec 30 %  
VIH rule  
VIL rule  
VIH spec TTL  
VIL spec TTL  
MSv64346V1  
Output driving current  
The GPIOs can sink or source up to ±8 mA, and sink or source up to ± 20 mA (with a  
relaxed V /V ).  
OL OH  
In the user application, the number of I/O pins that can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2: Absolute maximum ratings.  
The sum of the currents sourced by all the I/Os on V , plus the maximum consumption of  
DD  
the MCU sourced on V  
cannot exceed the absolute maximum rating ΣI  
(see  
DD,  
VDD  
Table 21: Voltage characteristics).  
The sum of the currents sunk by all the I/Os on V , plus the maximum consumption of the  
SS  
MCU sunk on V , cannot exceed the absolute maximum rating ΣI  
(see Table 21:  
VSS  
SS  
Voltage characteristics).  
Output voltage levels  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 25: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT  
unless otherwise specified).  
110/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
(1)  
Table 73. Output voltage characteristics  
Parameter Conditions  
Output low-level voltage for an I/O pin  
Symbol  
Min  
Max Unit  
(2)  
CMOS port(3)  
VOL  
VOH  
-
0.4  
-
(2)  
|IIO| = 8 mA, VDD 2.7 V  
Output high-level voltage for an I/O pin  
Output low-level voltage for an I/O pin  
Output high-level voltage for an I/O pin  
Output low-level voltage for an I/O pin  
Output high-level voltage for an I/O pin  
Output low-level voltage for an I/O pin  
Output high-level voltage for an I/O pin  
VDD - 0.4  
(2)  
(2)  
TTL port(3)  
|IIO| = 8 mA, VDD 2.7 V  
VOL  
-
0.4  
-
VOH  
2.4  
(2)  
VOL  
VOH  
-
1.3  
|IIO| = 20 mA, VDD 2.7 V  
|IIO| = 4 mA, VDD 1.8 V  
V
(2)  
VDD - 1.3  
-
(2)  
VOL  
-
0.4  
-
(2)  
VOH  
VDD - 0.45  
-
Output low-level voltage for an FT I/O |IIO| = 20 mA, VDD 2.7 V  
0.4  
(2)  
VOLFM+  
pin in FM+ mode  
(FT I/O with “f” option)  
|IIO| = 10 mA, VDD 1.8 V  
-
0.4  
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 21:  
Voltage characteristics. The sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always  
respect the absolute maximum ratings Σ IIO  
.
2. Guaranteed by design.  
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.  
Input/output AC characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 25: General operating conditions.  
(1)(2)  
Table 74. I/O AC characteristics  
OSPEEDx[1:0](3)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
-
-
-
-
-
-
-
-
5
1
Maximum  
frequency  
Fmax  
MHz  
10  
1.5  
25  
52  
17  
37  
0b00  
Output rise and  
fall time  
Tr/Tf  
ns  
DS13105 Rev 8  
111/145  
133  
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
(1)(2)  
Table 74. I/O AC characteristics  
(continued)  
OSPEEDx[1:0](3)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 50 pF, 2.7 V VDD 3.6 V  
C = 50 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 30 pF, 2.7 V VDD 3.6 V  
C = 30 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
C = 30 pF, 2.7 V VDD 3.6 V  
C = 30 pF, 1.8 V VDD 2.7 V  
C = 10 pF, 2.7 V VDD 3.6 V  
C = 10 pF, 1.8 V VDD 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25  
10  
Maximum  
frequency  
Fmax  
MHz  
50  
15  
0b01  
9
16  
Output rise and  
fall time  
Tr/Tf  
Fmax  
Tr/Tf  
Fmax  
Tr/Tf  
ns  
MHz  
ns  
4.5  
9
50  
25  
Maximum  
frequency  
100(4)  
37.5  
5.8  
11  
0b10  
Output rise and  
fall time  
2.5  
5
120(4)  
50  
Maximum  
frequency  
MHz  
180(4)  
75(4)  
3.3  
6
0b11  
Output rise and  
fall time  
ns  
1.7  
3.3  
1. The maximum frequency is defined with (Tr+ Tf) 2/3 T, and duty cycle comprised between 45 and 55 %.  
2. The fall and rise time are defined, respectively, between 90 and 10 %, and between 10 and 90 % of the output waveform.  
3. OSPEED0[1:0] in GPIOA_OSPEEDR, GPIOB_OSPEEDR and GPIOC_OSPEEDR. OSPEED3[1:0] in GPIOH_OSPEEDR  
4. This value represents the I/O capability but the maximum system frequency is limited to 48 MHz.  
5.3.17  
NRST pin characteristics  
The NRST pin input driver uses the CMOS technology. It is connected to a permanent  
pull-up resistor, R  
.
PU  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature and supply voltage conditions summarized in  
Table 25: General operating conditions.  
112/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 75. NRST pin characteristics  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST input low level voltage  
VIH(NRST) NRST input high level voltage  
Vhys(NRST) NRST Schmitt trigger voltage hysteresis  
-
-
-
-
0.3 x VDD  
V
-
0.7 x VDD  
-
-
-
-
25  
-
200  
40  
-
mV  
RPU  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
55  
70  
-
kꢁ  
VF(NRST) NRST input, filtered pulse  
VNF(NRST) NRST input, not filtered pulse  
1. Guaranteed by design.  
-
ns  
1.8 V VDD 3.6 V  
350  
-
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series  
resistance is minimal (~10 %).  
Figure 21. Recommended NRST pin protection  
External  
reset circuit(1)  
VDD  
RPU  
NRST(2)  
Internal reset  
Filter  
0.1 μF  
MS19878V3  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in the above table.  
Otherwise the reset is not be taken into account by the device.  
3. The external capacitor on NRST must be placed as close as possible to the device.  
5.3.18  
Analog switches booster  
(1)  
Table 76. Analog switches booster characteristics  
Symbol  
VDD  
tSU(BOOST) Booster startup time  
Booster consumption for 1.8 V VDD 2.0 V  
Parameter  
Min  
Typ  
Max  
Unit  
Supply voltage  
1.8  
-
-
-
-
-
3.6  
240  
250  
500  
900  
V
-
-
-
-
µs  
IDD(BOOST) Booster consumption for 2.0 V VDD 2.7 V  
Booster consumption for 2.7 V VDD 3.6 V  
1. Guaranteed by design.  
µA  
DS13105 Rev 8  
113/145  
133  
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
5.3.19  
Analog-to-digital converter characteristics  
Unless otherwise specified, the parameters given in the table below are preliminary values  
derived from tests performed under ambient temperature, f  
frequency and V  
supply  
PCLK  
DDA  
voltage conditions summarized in Table 25: General operating conditions.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1)  
Table 77. ADC characteristics  
Symbol  
Parameter  
Conditions(2)  
Min  
Typ  
Max  
Unit  
VDDA  
Analog supply voltage  
-
1.62  
2
-
3.6  
V
DDA 2 V  
-
VDDA  
V
Positive reference  
voltage  
VREF+  
VDDA < 2 V  
VDDA  
Range 1  
0.14  
-
-
-
-
-
-
-
-
-
-
35  
fADC  
ADC clock frequency  
MHz  
Range 2  
0.14  
16  
12 bits, VDDA > 2 V  
10 bits, VDDA > 2 V  
8 bits, VDDA > 2 V  
6 bits, VDDA > 2 V  
12 bits, VDDA 2 V  
10 bits, VDDA 2 V  
8 bits, VDDA 2 V  
6 bits, VDDA 2 V  
-
-
-
-
-
-
-
-
2.50  
2.92  
3.50  
4.38  
2.18  
2.50  
2.92  
3.50  
fs  
Sampling rate  
Msps  
f
ADC = 35 MHz,  
-
-
-
-
2.35  
2.18  
12 bits, VDDA > 2 V  
fADC = 35 MHz,  
External trigger  
frequency  
fTRIG  
MHz  
12 bits, VDDA 2 V  
12 bits, VDDA > 2 V  
12 bits, VDDA 2 V  
-
-
-
-
fADC/15  
fADC/17  
Conversion voltage  
range  
VAIN  
RAIN  
CADC  
tSTAB  
-
-
-
-
VSS  
-
-
VREF+  
V
External input  
impedance  
-
-
50  
-
kꢁ  
pF  
Internal sample and  
hold capacitor  
5
2
Conversion  
cycle  
ADC power-up time  
Calibration time  
f
ADC = 35 MHz  
2.35  
82  
µs  
tCAL  
-
1/fADC  
114/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 77. ADC characteristics  
Parameter  
Conditions(2)  
CKMODE = 00  
(continued)  
Min  
Typ  
Max  
Unit  
2
-
6.5  
12.5  
3.5  
-
3
1/fADC  
CKMODE = 01  
CKMODE = 10  
CKMODE = 11  
Trigger conversion  
latency  
tLATR  
1/fPCLK  
fADC = 35 MHz  
0.043  
1.5  
4.59  
µs  
ts  
Sampling time  
-
-
160.5  
1/fADC  
ADC voltage regulator  
start-up time  
-
-
-
-
20  
tADCVREG_STUP  
µs  
fADC = 35 MHz  
Resolution = 12 bits  
0.40  
4.95  
µs  
Total conversion time  
(including sampling  
time)  
tCONV  
ts + 12.5 cycles for successive  
approximation  
Resolution = 12 bits  
1/fADC  
= 14 to 173  
Laps of time allowed  
between two  
conversions without  
rearm  
tIDLE  
-
-
-
µs  
100  
fs = 2.5 Msps  
fs = 1 Msps  
fs = 10 ksps  
fs = 2.5 Msps  
fs = 1 Msps  
fs = 10 ksps  
-
-
-
-
-
-
410  
164  
17  
-
-
-
-
-
-
ADC consumption  
from VDDA  
IDDA(ADC)  
µA  
µA  
65  
ADC consumption  
from VREF+  
single ended mode  
IDDV(ADC)  
26  
0.26  
1. Guaranteed by design  
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and  
disabled when VDDA 2.4 V.  
Table 78. Maximum ADC R  
values  
AIN  
Resolution  
Sampling cycle at 35 MHz (ns)  
Sampling time at 35 MHz (ns)  
Max. RAIN(1)(2)()  
1.5(3)  
3.5  
43  
50  
100  
680  
7.5  
214  
2200  
4700  
8200  
15000  
33000  
50000  
12.5  
19.5  
39.5  
79.5  
160.5  
357  
12 bits  
557  
1129  
2271  
4586  
DS13105 Rev 8  
115/145  
133  
 
Electrical characteristics  
STM32WLE5/E4xx  
Table 78. Maximum ADC R  
values (continued)  
AIN  
Resolution  
Sampling cycle at 35 MHz (ns)  
Sampling time at 35 MHz (ns)  
Max. RAIN(1)(2)()  
1.5(3)  
3.5  
43  
100  
214  
357  
557  
1129  
2271  
4586  
43  
68  
820  
7.5  
3300  
5600  
10000  
22000  
39000  
50000  
82  
12.5  
19.5  
39.5  
79.5  
160.5  
1.5(3)  
3.5  
10 bits  
100  
214  
357  
557  
1129  
2271  
4586  
43  
1500  
3900  
6800  
12000  
27000  
50000  
50000  
390  
7.5  
12.5  
19.5  
39.5  
79.5  
160.5  
1.5(3)  
3.5  
8 bits  
100  
214  
357  
557  
1129  
2271  
4586  
2200  
5600  
10000  
15000  
33000  
50000  
50000  
7.5  
12.5  
19.5  
39.5  
79.5  
160.5  
6 bits  
1. Guaranteed by design.  
2. I/O analog switch voltage booster must be enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and  
disabled when VDDA 2.4 V.  
3. Only allowed with VDDA > 2 V  
(1)(2)(3)  
Table 79. ADC accuracy  
Symbol Parameter  
Conditions(4)  
Min Typ Max Unit  
V
DDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
-
-
3
3
4
2 V < VDDA, VREF+ < 3.6 V,  
fADC = 35 MHz; fs 2.5 Msps, TA = entire range  
Total  
6.5  
ET  
unadjusted  
error  
LSB  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
3
7.5  
116/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Symbol Parameter  
Electrical characteristics  
Min Typ Max Unit  
(1)(2)(3)  
Table 79. ADC accuracy  
Conditions(4)  
DDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
(continued)  
V
-
-
1.5  
2
2 V < VDDA, VREF+ < 3.6 V,  
1.5 4.5  
1.5 5.5  
fADC = 35 MHz; fs 2.5 Msps, TA = entire range  
EO  
EG  
Offset error  
LSB  
LSB  
LSB  
LSB  
bit  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
V
DDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
-
-
3
3
3.5  
5
2 V < VDDA, VREF+ < 3.6 V,  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
Gain error  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
3
6.5  
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
-
-
1.2 1.5  
1.2 1.5  
2 V < VDDA, VREF+ < 3.6 V,  
Differential fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
linearity error  
ED  
1.62 V < VDDA = VREF+ < 3.6 V,TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
1.2 1.5  
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
-
-
2.5  
2.5  
3
3
2 V < VDDA, VREF+ < 3.6 V,  
Integral  
linearity error  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
EL  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
2.5 3.5  
V
DDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C 10.1 10.2  
-
-
2 V < VDDA, VREF+ < 3.6 V,  
Effective  
number of  
bits  
9.6 10.2  
9.5 10.2  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
ENOB  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C 62.5 63  
-
-
Signal-to-  
noise and  
distortion  
ratio  
2 V < VDDA, VREF+ < 3.6 V,  
59.5 63  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
dB  
SINAD  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
59  
63  
-
VDDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
63  
60  
64  
64  
-
-
2 V < VDDA, VREF+ < 3.6 V,  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
Signal-to-  
noise ratio  
dB  
SNR  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
60  
64  
-
DS13105 Rev 8  
117/145  
133  
Electrical characteristics  
Symbol Parameter  
STM32WLE5/E4xx  
Min Typ Max Unit  
(1)(2)(3)  
Table 79. ADC accuracy  
Conditions(4)  
DDA = VREF+ = 3 V, fADC = 35 MHz, fs 2.5 Msps, TA = 25 °C  
(continued)  
V
-
-
-74 -73  
-74 -70  
2 V < VDDA, VREF+ < 3.6 V,  
fADC = 35 MHz, fs 2.5 Msps, TA = entire range  
Total  
harmonic  
distortion  
dB  
THD  
1.62 V < VDDA = VREF+ < 3.6 V, TA = entire range  
Range 1: fADC = 35 MHz, fs 2.2 Msps  
Range 2: fADC = 16 MHz, fs 1.1 Msps  
-
-74 -70  
1. Based on characterization results, not tested in production.  
2. ADC DC accuracy values are measured after internal calibration.  
3. Injecting negative current on any analog input pin significantly reduces the accuracy of A-to-D conversion of signal on  
another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins susceptible to receive  
negative current.  
4. I/O analog switch voltage booster enabled (BOOSTEN = 1 in the SYSCFG_CFGR1) when VDDA < 2.4 V and disabled when  
DDA 2.4 V.  
V
Figure 22. ADC accuracy characteristics  
EG  
Code  
4095  
(1) Example of an actual transfer curve  
(2) Ideal transfer curve  
4094  
(3) End point correlation line  
4093  
ET  
total unadjusted error: maximum deviation  
between the actual and ideal transfer curves.  
(2)  
ET  
EO  
offset error: maximum deviation between the  
first actual transition and the first ideal one.  
(3)  
7
(1)  
6
5
4
3
2
1
EG gain error: deviation between the last ideal  
transition and the last actual one.  
EL  
EO  
ED  
differential linearity error: maximum deviation  
between actual steps and the ideal ones.  
ED  
EL integral linearity error: maximum deviation between  
any actual transition and the end point correlation line.  
1 LSB ideal  
0
1
2
3
4
5
6
7
4093 4094 4095  
(VAIN / VREF+)*4095  
MSv19880V3  
118/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
Figure 23. Typical connection diagram using the ADC  
VDDA  
VT  
Sample and hold ADC converter  
(1)  
RAIN  
RADC  
AINx  
12-bit  
converter  
(2)  
(3)  
Cparasitic  
CADC  
VT  
Ilkg  
VAIN  
MS33900V5  
1. Refer to Table 79: ADC accuracy for the values of RAIN, RADC and CADC  
.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance  
(refer to Table 72: I/O static characteristics for the value of the pad capacitance). A high Cparasitic value downgrades the  
conversion accuracy. To remedy this, fADC must be reduced.  
3. Refer to Table 72: I/O static characteristics for the values of Ilkg.  
General PCB design guidelines  
Power supply decoupling must be performed as shown in Figure 13: Power supply scheme.  
The 100 nF capacitor must be ceramic (good quality) and must be placed as close as  
possible to the chip.  
5.3.20  
Temperature sensor characteristics  
Table 80. TS characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VTS linearity with temperature  
-
±1  
2.5  
±2  
2.7  
°C  
mV/°C  
V
Avg_Slope(2) Average slope  
2.3  
V30  
Voltage at 30 °C (±5 °C)(3)  
0.742  
0.76  
0.785  
tSTART  
Sensor buffer startup time in continuous mode(4)  
-
8
15  
µs  
(TS_BUF)(1)  
Startup time when entering in continuous mode(4)  
ADC sampling time when reading the temperature  
-
70  
-
120  
-
µs  
µs  
(1)  
tSTART  
(1)  
tS_temp  
5
Temperature sensor consumption from VDD, when  
selected by the ADC  
I
DD(TS)(1)  
-
4.7  
7
µA  
1. Guaranteed by design.  
2. Guaranteed by characterization results.  
3. Measured at VDDA = 3.3 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to  
Table 12: Temperature sensor calibration values.  
4. Continuous mode means Run and Sleep modes, or temperature sensor enable in LPRun and LPSleep modes.  
DS13105 Rev 8  
119/145  
133  
 
 
 
 
 
Electrical characteristics  
STM32WLE5/E4xx  
5.3.21  
V
monitoring characteristics  
BAT  
(1)  
Table 81. V  
monitoring characteristics  
BAT  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(2)  
R
Q
Resistor bridge for VBAT  
-
-
3 * 39  
-
-
kꢁ  
-
Ratio on VBAT measurement  
Error on Q  
3
-
Er(3)  
-10  
12  
10  
-
%
µs  
(3)  
tS_vbat  
ADC sampling time when reading VBAT  
-
1. 1.55 V < VBAT < 3.6 V.  
2. VDD on STM32WLE5/4UxYx devices.  
3. Guaranteed by design.  
Table 82. V  
charging characteristics  
BAT  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
kꢁ  
VBRS = 0  
VBRS = 1  
-
-
5
-
-
RBC  
Battery charging resistor  
1.5  
5.3.22  
Voltage reference buffer characteristics  
(1)  
Table 83. VREFBUF characteristics  
Symbol  
Parameter  
Conditions  
VRS = 0  
RS = 1  
Min  
Typ  
Max  
Unit  
2.4  
2.8  
-
3.6  
3.6  
Normal mode  
V
-
Analog supply  
voltage  
VDDA  
VRS = 0  
VRS = 1  
1.62  
1.62  
2.044  
-
-
2.4  
Degraded mode(2)  
2.8  
Normal mode  
ILOAD=100 μA,  
TJ = 30 °C  
V
RS = 0  
VRS = 1  
RS = 0  
2.048  
2.052  
V
2.495  
2.030  
2.478  
2.5  
2.505  
2.057  
2.509  
Normal mode  
V
2.048  
2.500  
VREFBUF_ Voltage  
ILOAD=100 μA,  
-40 °C < TJ < 125 °C  
reference output  
OUT  
VRS = 1  
VRS = 0  
VRS = 1  
VDDA - 250 mV  
VDDA - 250 mV  
-
-
VDDA  
VDDA  
Degraded mode(2)  
Trim step  
resolution  
TRIM  
CL  
-
-
-
-
-
±0.05  
1
±0.1  
1.5  
%
Load capacitor  
0.5  
µF  
Equivalent  
series resistor  
of Cload  
esr  
-
-
-
-
-
-
-
-
2
4
Static load  
current  
Iload  
mA  
120/145  
DS13105 Rev 8  
 
 
 
 
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
(1)  
Table 83. VREFBUF characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Normal  
mode  
ppm  
/V  
Iline_reg  
Line regulation 2.8 V VDDA 3.6 V  
Load regulation 500 μA Iload 4 mA  
-
-
2000  
Normal  
mode  
ppm  
/mA  
Iload_reg  
-
-
-
50  
-
500  
±[Tcoeff _ vrefint  
+ 50]  
-40 °C < TJ < +105 °C  
Temperature  
ppm  
/°C  
Tcoeff  
coefficient  
±[Tcoeff_vrefint  
+ 50]  
0 °C < TJ < +50 °C  
-
DC  
40  
25  
-
55  
40  
-
Power supply  
rejection  
PSRR  
tSTART  
dB  
µs  
100 kHz  
-
CL = 0.5 µF(3)  
300  
500  
650  
350  
650  
800  
Startup time  
CL = 1.1 µF(3)  
CL = 1.5 µF(3)  
-
-
Control of  
maximum DC  
current drive on  
VREFBUF_OUT  
during start-up  
phase (4)  
IINRUSH  
-
-
-
8
-
mA  
µA  
Iload = 0 µA  
-
-
-
16  
18  
35  
25  
30  
50  
VREFBUF  
consumption  
from VDDA  
IDDA  
(VREFBUF)  
Iload = 500 µA  
I
load = 4 mA  
1. Guaranteed by design or characterization. Not tested in production.  
2. In degraded mode, VREFBUF cannot maintain accurately the output voltage that follows (VDDA - drop voltage).  
3. The capacitive load must include a 100 nF capacitor in order to cut-off the high-frequency noise.  
4. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in  
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.  
Figure 24. VREFOUT_TEMP when VRS = 0  
V
2.06  
Max  
2.055  
2.05  
2.045  
Mean  
2.04  
2.035  
Min  
2.03  
2.025  
-40  
-20  
0
20  
40  
60  
80  
100  
120°C  
MSv62522V2  
DS13105 Rev 8  
121/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
Figure 25. VREFOUT_TEMP when VRS = 1  
V
2.51  
Max  
2.505  
2.5  
2.495  
2.49  
2.485  
2.48  
Mean  
Min  
2.475  
-40  
-20  
0
20  
40  
60  
80  
100  
120°C  
MSv62523V2  
5.3.23  
Symbol  
VDDA  
Digital-to-analog converter characteristics  
(1)  
Table 84. DAC characteristics  
Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
1.71  
1.80  
1.71  
1.80  
-
-
-
-
Analog supply voltage for  
DAC ON  
3.6  
V
Other modes  
DAC output buffer OFF, DAC_OUT  
pin not connected (internal  
connection only)  
VREF+  
Positive reference voltage  
VDDA  
V
Other modes  
Connected to VSS  
DAC output  
5
25  
9.6  
-
-
-
-
RL  
Resistive load  
buffer ON  
Connected to VDDA  
-
11.7  
-
RO  
Output impedance  
DAC output buffer OFF  
13.8  
2
Output impedance sample- VDD = 2.7 V  
and-hold mode, output  
kꢁ  
RBON  
VDD = 2.0 V  
-
-
-
-
-
-
3.5  
buffer ON  
Output impedance sample VDD = 2.7 V  
and hold mode, output  
16.5  
18.0  
RBOFF  
VDD = 2.0 V  
buffer OFF  
CL  
DAC output buffer ON  
Sample-and-hold mode  
-
-
-
50  
1
pF  
µF  
Capacitive load  
CSH  
0.1  
VREF+  
- 0.2  
DAC output buffer ON  
DAC output buffer OFF  
0.2  
0
-
-
Voltage on DAC_OUT  
output  
VDAC_OUT  
V
VREF+  
122/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
(1)  
Table 84. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
±0.5 LSB  
-
-
-
-
-
1.7  
1.6  
3
Normal mode  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and the  
±1 LSB  
±2 LSB  
±4 LSB  
±8 LSB  
2.9  
DAC output  
buffer ON  
CL 50 pF  
RL 5 kꢁ  
1.55  
1.48  
1.4  
2.85  
2.8  
tSETTLING highest input codes, when  
DAC_OUT reaches final  
µs  
2.75  
value ±0.5 LSB, ±1 LSB,  
±2 LSB, ±4 LSB, ±8 LSB)  
Normal mode DAC output buffer  
OFF, ±1LSB, CL = 10 pF  
-
-
2
4.2  
2
2.5  
7.5  
5
Normal mode DAC output buffer ON  
CL 50 pF, RL 5 kꢁ  
Wakeup time from off state  
tWAKEUP (setting the ENx bit in the  
µs  
(2)  
DAC control register) until  
final value ±1 LSB  
Normal mode DAC output buffer  
OFF, CL 10 pF  
-
Normal mode DAC output buffer ON  
CL 50 pF, RL 5 k, DC  
PSRR  
VDDA supply rejection ratio  
-
-80  
-
-28  
-
dB  
Minimum time between two DAC_MCR:MODEx[2:0] = 000 or 001  
consecutive writes into the CL 50 pF, RL 5 kꢁ  
DAC_DORx register to  
1
TW_to_W guarantee a correct  
DAC_OUT for a small  
variation of the input code  
(1 LSB)  
µs  
DAC_MCR:MODEx[2:0] = 010 or 011  
CL 10 pF  
1.4  
-
-
DAC output buffer  
ON, CSH = 100 nF  
-
-
0.7  
3.5  
18  
DAC_OUT pin  
connected  
Sampling time in sample  
and hold mode (code  
transition between the  
ms  
DAC output buffer  
OFF, CSH = 100 nF  
10.5  
tSAMP  
lowest input code and the  
highest input code when  
DACOUT reaches final  
value ±1LSB)  
DAC_OUT pin  
not connected  
DAC output buffer  
(internal  
-
2
3.5  
µs  
OFF  
connection  
only)  
Sample and hold mode,  
DAC_OUT pin connected  
(3)  
Ileak  
Output leakage current  
-
-
-
nA  
Internal sample and hold  
capacitor  
CIint  
-
5.2  
7
8.8  
pF  
µs  
tTRIM  
Middle code offset trim time DAC output buffer ON  
50  
-
-
-
-
-
VREF+ = 3.6 V  
1500  
750  
Middle code offset for 1 trim  
code step  
Voffset  
µV  
VREF+ = 1.8 V  
-
DS13105 Rev 8  
123/145  
133  
Electrical characteristics  
STM32WLE5/E4xx  
(1)  
Table 84. DAC characteristics (continued)  
Conditions Min  
No load, middle  
Symbol  
Parameter  
Typ  
Max  
Unit  
-
-
-
315  
500  
code (0x800)  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
450  
670  
DAC consumption from  
VDDA  
IDDA(DAC)  
µA  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
-
0.2  
315 x  
670 x  
Sample and hold mode, CSH  
100 nF  
=
-
Ton/(Ton Ton/(Ton  
+Toff)(4) +Toff  
)
(4)  
No load, middle  
code (0x800)  
-
-
-
185  
340  
240  
400  
DAC output  
buffer ON  
No load, worst code  
(0xF1C)  
DAC output  
buffer OFF  
No load, middle  
code (0x800)  
155  
205  
DAC consumption from  
VREF+  
IDDV(DAC)  
µA  
185 x  
400 x  
Sample and hold mode, buffer ON,  
CSH = 100 nF, worst case  
-
-
Ton/(Ton Ton/(Ton  
+Toff)(4) +Toff  
)
(4)  
155 x 205 x  
Sample and hold mode, buffer OFF,  
CSH = 100 nF, worst case  
Ton/(Ton Ton/(Ton  
+Toff)(4) +Toff  
)
(4)  
1. Guaranteed by design.  
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
3. Refer to Table 72: I/O static characteristics.  
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to the reference manual for more details.  
Figure 26. 12-bit buffered/non-buffered DAC  
Buffered/non-buffered DAC  
Buffer(1)  
RLOAD  
DAC_OUTx  
12-bit  
digital-to-analog  
converter  
CLOAD  
(1) The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads  
directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in  
the DAC_CR register.  
MSv47959V2  
124/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
.
(1)  
Table 85. DAC accuracy  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
DAC output buffer ON  
-
-
-
±2  
±2  
Differential non  
linearity (2)  
DNL  
-
DAC output buffer OFF  
10 bits  
-
Monotonicity  
Guaranteed  
DAC output buffer ON, CL 50 pF, RL 5 kꢁ  
DAC output buffer OFF, CL 50 pF, no RL  
-
-
-
-
-
-
±4  
±4  
INL  
Integral non linearity(3)  
VREF+ = 3.6 V  
±12  
DAC output buffer ON  
LSB  
Offset error at code  
0x800(3)  
CL 50 pF, RL 5 kꢁ  
Offset  
VREF+ = 1.8 V  
-
-
-
-
-
-
±25  
±8  
DAC output buffer OFF, CL 50 pF, no RL  
DAC output buffer OFF, CL 50 pF, no RL  
Offset error at code  
0x001(4)  
Offset1  
±5  
V
REF+ = 3.6 V  
-
-
-
-
±5  
±7  
Offset Error at code  
0x800 after calibration CL 50 pF, RL 5 kꢁ  
DAC output buffer ON  
OffsetCal  
VREF+ = 1.8 V  
DAC output buffer ON, CL 50 pF, RL 5 kꢁ  
DAC output buffer OFF, CL 50 pF, no RL  
-
-
-
-
±0.5  
%
±0.5  
Gain  
Gain error(5)  
DAC output buffer ON, CL 50 pF, RL 5 kꢁ  
DAC output buffer OFF, CL 50 pF no RL  
DAC output buffer ON, CL 50 pF, RL 5 kꢁ  
-
-
-
-
-
-
±30  
TUE  
Total unadjusted error  
LSB  
±12  
Total unadjusted error  
after calibration  
TUECal  
±23  
LSB  
dB  
DAC output buffer ON, CL 50 pF, RL 5 k,  
1 kHz, BW 500 kHz  
-
-
-
-
-
-
71.2  
71.6  
-78  
-
-
-
-
-
-
SNR  
THD  
Signal-to-noise ratio  
DAC output buffer OFF, CL 50 pF, no RL,  
1 kHz, BW 500 kHz  
DAC output buffer ON, CL 50 pF, RL 5 k,  
1 kHz  
Total harmonic  
distortion  
dB  
dB  
DAC output buffer OFF, CL 50 pF, no RL,  
1 kHz  
-79  
DAC output buffer ON, CL 50 pF, RL 5 k,  
1 kHz  
70.4  
71  
Signal-to-noise and  
distortion ratio  
SINAD  
DAC output buffer OFF, CL 50 pF, no RL,  
1 kHz  
DS13105 Rev 8  
125/145  
133  
 
Electrical characteristics  
STM32WLE5/E4xx  
(1)  
Table 85. DAC accuracy (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DAC output buffer ON, CL 50 pF, RL 5 k,  
1 kHz  
-
11.4  
-
Effective number of  
bits  
ENOB  
bits  
DAC output buffer OFF, CL 50 pF, no RL,  
1 kHz  
-
11.5  
-
1. Guaranteed by design.  
2. Difference between two consecutive codes - 1 LSB.  
3. Difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095.  
4. Difference between the value measured at code (0x001) and the ideal value.  
5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF  
when buffer is OFF, and from code giving 0.2 V and (VREF+ – 0.2) V when buffer is ON.  
5.3.24  
Comparator characteristics  
(1)  
Table 86. COMP characteristics  
Symbol  
VDDA  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Analog supply voltage  
-
1.62  
-
3.6  
Comparator  
input voltage range  
VIN  
-
0
-
VDDA  
V
(2)  
VBG  
Scaler input voltage  
Scaler offset voltage  
-
-
VREFINT  
VSC  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
±5  
200  
0.8  
100  
-
±10  
300  
1
mV  
nA  
µA  
µs  
BRG_EN = 0 (bridge disabled)  
Scaler static consumption  
from VDDA  
I
DDA(SCALER)  
BRG_EN = 1 (bridge enabled)  
-
tSTART_SCALER Scaler startup time  
200  
5
VDDA 2.7 V  
High-speed  
mode  
VDDA < 2.7 V  
-
7
Comparator startup time  
to reach propagation  
delay specification  
tSTART  
V
DDA 2.7 V  
VDDA < 2.7 V  
Ultra-low-power mode  
-
15  
25  
40  
80  
100  
0.9  
7
µs  
Medium mode  
-
-
VDDA 2.7 V  
VDDA < 2.7 V  
55  
55  
0.55  
4
High-speed  
mode  
ns  
Propagation delay with  
100 mV overdrive  
(3)  
tD  
Medium mode  
µs  
Ultra-low-power mode  
Full common mode range  
No hysteresis  
Voffset  
Comparator offset error  
Comparator hysteresis  
±5  
0
±20  
-
mV  
Low hysteresis  
8
-
Vhys  
mV  
Medium hysteresis  
High hysteresis  
15  
27  
-
-
126/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Symbol  
Electrical characteristics  
(1)  
Table 86. COMP characteristics (continued)  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Static  
-
400  
600  
Ultra-low-  
power mode  
nA  
-
With 50 kHz ±100 mV  
overdrive square signal  
-
-
-
-
-
1200  
5
Static  
7
-
Comparator consumption Medium  
IDDA(COMP)  
With 50 kHz ±100 mV  
overdrive square signal  
from VDDA  
mode  
6
µA  
Static  
70  
75  
100  
High-speed  
mode  
With 50 kHz ±100 mV  
overdrive square signal  
-
1. Guaranteed by design, unless otherwise specified.  
2. Refer to Table 35: Embedded internal voltage reference.  
3. Guaranteed by characterization results.  
5.3.25  
Timers characteristics  
Parameters given in the following tables are guaranteed by design. Refer to Section 5.3.16:  
I/O port characteristics for details on the input/output alternate function characteristics  
(output compare, input capture, external clock, PWM output).  
(1)  
Table 87. TIMx characteristics  
Symbol  
tres(TIM)  
Parameter  
Conditions  
Min  
Max  
Unit  
-
1
-
tTIMxCLK  
ns  
Timer resolution time  
fTIMxCLK = 48 MHz  
15.625  
-
fTIMxCLK/2  
40  
-
0
Timer external clock frequency  
on CH1 to CH4  
fEXT  
MHz  
bit  
fTIMxCLK = 48 MHz  
0
TIM1, TIM16, TIM17  
-
16  
ResTIM  
Timer resolution  
TIM2  
-
32  
-
fTIMxCLK = 48 MHz  
-
1
65536  
1024  
tTIMxCLK  
µs  
tTIMxCLK  
s
tCOUNTER  
16-bit counter clock period  
0.015625  
-
-
65536 × 65536  
67.10  
Maximum possible count with  
32-bit counter  
tMAX_COUNT  
fTIMxCLK = 48 MHz  
1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17.  
DS13105 Rev 8  
127/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
(1)  
Table 88. IWDG min/max timeout period at 32 kHz (LSI)  
PR[2:0] bits Min timeout (RL[11:0] = 0x000) Max timeout (RL[11:0] = 0xFFF) Unit  
Prescaler divider  
/4  
/8  
0x0  
0x1  
0.125  
0.250  
0.500  
1.0  
512  
1024  
2048  
4096  
8192  
16384  
32768  
/16  
/32  
/64  
/128  
/256  
0x2  
0x3  
ms  
0x4  
2.0  
0x5  
4.0  
0x6 or 0x7  
8.0  
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock, hence there is always a full  
RC period of uncertainty.  
5.3.26  
Communication interfaces characteristics  
I2C interface characteristics  
2
2
The I C interface meets the timings requirements of the I C-bus specification and user  
manual rev. 03 for:  
Standard-mode (Sm): bitrate up to 100 Kbit/s  
Fast-mode (Fm): bitrate up to 400 Kbit/s  
Fast-mode Plus (Fm+): bitrate up to 1 Mbit/s  
2
The I C timings requirements are guaranteed by design when the I2C peripheral is properly  
configured (refer to the reference manual) and when the II2CCLK frequency is greater than  
the minimum shown in the table below.  
Table 89. Minimum I2CCLK frequency in all I2C modes  
Symbol  
Parameter  
Conditions  
Min  
Unit  
Standard-mode  
Fast-mode  
-
2
8
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
Analog filter ON, DNF = 0  
Analog filter OFF, DNF = 1  
f(I2CCLK)  
I2CCLK frequency  
9
MHz  
18  
16  
Fast-mode Plus  
The SDA and SCL I/O requirements are met with the following restrictions:  
The SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain,  
the PMOS connected between the I/O pin and V is disabled, but is still present.  
DD  
The 20 mA output drive requirement in Fast-mode Plus is partially supported. This  
limits the maximum load C  
supported in Fast-mode Plus, given by these formulas:  
load  
t (SDA/SCL) = 0.8473 x R x C  
r p load  
R (min) = [V - V (max)] / I (max)  
p
DD  
OL  
OL  
where R is the I2C lines pull-up. Refer to Section 5.3.16: I/O port characteristics  
p
for more details.  
128/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Electrical characteristics  
All I2C SDA and SCL I/Os embed an analog filter (refer to the table below for its  
characteristics).  
(1)  
Table 90. I2C analog filter characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
tAF  
Maximum pulse width of spikes that are suppressed by the analog filter  
50(2)  
100(3)  
ns  
1. Guaranteed by characterization.  
2. Spikes with widths below tAF(min) filtered.  
3. Spikes with widths above tAF(max) not filtered.  
USART characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 25: General operating conditions, with the following configuration:  
OSPEEDRy[1:0] set to 10 (output speed)  
capacitive load C = 30 pF  
measurement points at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, CK, TX, and RX for USART).  
Table 91. USART characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Typ  
Max  
Unit  
-
-
-
-
-
6
16  
-
fCK  
USART clock frequency  
MHz  
Slave mode  
Slave mode  
Slave mode  
-
tker + 5  
2
tsu(NSS)  
th(NSS)  
tw(CKH)  
tw(CKL)  
NSS setup time  
NSS hold time  
CK high time  
CK low time  
-
Master mode  
1 / fCK / 2 - 1 1 / fCK / 2 1 / fCK / 2 + 1  
Master mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
Slave mode  
Master mode  
Slave mode  
22  
3
-
-
-
-
tsu(RX)  
th(RX)  
tv(TX)  
th(TX)  
Data input setup time  
Data input hold time  
Data output valid time  
Data output hold time  
ns  
0
-
-
1
-
-
-
13  
0.5  
-
22  
1
-
-
10  
0
-
-
DS13105 Rev 8  
129/145  
133  
 
 
Electrical characteristics  
STM32WLE5/E4xx  
SPI characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 25: General operating conditions, with the following configuration:  
output speed set to OSPEEDRy[1:0] = 11  
capacitive load C = 30 pF  
measurements done at CMOS levels: 0.5 x V  
DD  
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO for SPI).  
(1)  
Table 92. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Master mode  
1.8 < VDD < 3.6 V, Range 1  
24  
Master transmitter mode  
1.8 < VDD < 3.6 V, Range 1  
24  
24  
fSCK  
1/tc(SCK)  
Slave receiver mode  
1.8 < VDD < 3.6 V, Range 1  
SPI clock frequency  
-
-
MHz  
Slave mode transmitter/full duplex  
2.7 < VDD < 3.6 V, Range 1  
24(2)  
24(2)  
Slave mode transmitter/full duplex  
1.8 < VDD < 3.6 V, Range 1  
tsu(NSS) NSS setup time  
th(NSS) NSS hold time  
tw(SCKH)  
Slave mode, SPI prescaler = 2  
Slave mode, SPI prescaler = 2  
3 x TPCLK  
2 x TPCLK  
-
-
-
-
-
SCK high and low time  
Master mode  
TPCLK - 1  
TPCLK  
TPCLK + 1  
tw(SCKL)  
tsu(MI)  
tsu(SI)  
th(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
1
1
6
2
9
9
-
-
-
-
Data input setup time  
Data input hold time  
-
-
ns  
th(SI)  
-
-
ta(SO) Data output access time  
tdis(SO) Data output disable time  
12  
10  
34  
16  
Slave mode  
130/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Electrical characteristics  
(1)  
Table 92. SPI characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Slave mode, 2.7 < VDD < 3.6 V  
Range 1  
-
10  
13.5  
Slave mode, 2.7 < VDD < 3.6 V  
Range 2  
-
-
-
17  
10  
17  
18  
20  
24  
tv(SO)  
Data output valid time  
Slave mode, 1.8 < VDD < 3.6 V  
Range 1  
ns  
Slave mode, 1.8 < VDD < 3.6 V  
Range 2  
tv(MO)  
th(SO)  
th(MO)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
1
-
1.5  
8
0
-
-
Data output hold time  
-
1. Guaranteed by characterization results.  
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), that has to fit into SCK low or  
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master  
having tsu(MI) = 0 while Duty(SCK) = 50 %.  
Figure 27. SPI timing diagram - Slave mode and CPHA = 0  
NSS input  
MISO  
MSB OUT  
BIT6 OUT  
BIT1 IN  
LSB OUT  
OUTPUT  
(SI)  
MOSI  
INPUT  
LSB IN  
MSB IN  
(SI)  
DS13105 Rev 8  
131/145  
133  
 
Electrical characteristics  
STM32WLE5/E4xx  
Figure 28. SPI timing diagram - Slave mode and CPHA = 1  
NSS input  
tSU(NSS)  
th(NSS)  
tc(SCK)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(SO)  
tdis(SO)  
tv(SO)  
ta(SO)  
MISO  
MSB OUT  
MSB IN  
BIT6 OUT  
LSB OUT  
OUTPUT  
th(SI)  
tsu(SI)  
MOSI  
INPUT  
LSB IN  
BIT 1 IN  
ai14135b  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Figure 29. SPI timing diagram - Master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD  
.
132/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Electrical characteristics  
JTAG/SWD characteristics  
Unless otherwise specified, the parameters given in the table below are derived from tests  
performed under the ambient temperature, f frequency and supply voltage conditions  
PCLKx  
summarized in Table 25: General operating conditions, with the following configuration:  
capacitive load C = 30 pF  
measurement done at CMOS levels: 0.5 x V  
DD.  
Refer to Section 5.3.16: I/O port characteristics for more details.  
Table 93. Dynamic JTAG characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V < VDD < 3.6 V  
-
-
-
-
33  
25  
-
fPP  
TCK clock frequency  
MHz  
1/tc(TCK)  
1.8 V < VDD < 3.6 V  
tisu(TMS) TMS input setup time  
-
0.5  
1
-
tih(TMS)  
tisu(TDI)  
tih(TDI)  
TMS input hold time  
TDI input setup time  
TDI input hold time  
-
-
-
-
1
-
-
-
2.5  
-
-
-
ns  
2.7 V < VDD < 3.6 V  
12  
12  
-
15  
20  
-
tov(TDO) TDO output valid time  
toh(TDO) TDO output hold time  
1.8 V< VDD < 3.6 V  
-
-
10  
Table 94. Dynamic SWD characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V < VDD < 3.6 V  
-
-
-
-
58  
41  
-
fPP  
SWCLK clock frequency  
MHz  
1/tc(SWCLK)  
1.8 < VDD < 3.6 V  
tisu(SWDIO) SWDIO input setup time  
tih(SWDIO) SWDIO input hold time  
-
1
2
-
-
-
-
-
2.7 V < VDD < 3.6 V  
15  
15  
-
17  
24  
-
ns  
tov(SWDIO) SWDIO output valid time  
toh(SWDIO) SWDIO output hold time  
1.8 V < VDD < 3.6 V  
-
-
9
DS13105 Rev 8  
133/145  
133  
 
 
Package information  
STM32WLE5/E4xx  
6
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at www.st.com. ECOPACK  
is an ST trademark.  
6.1  
UFQFPN48 package information  
This UFQFPN is a 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.  
Figure 30. UFQFPN48 - Outline  
Pin 1 identifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
134/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Package information  
inches(1)  
Table 95. UFQFPN48 - Mechanical data  
millimeters  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
D
0.500  
0.000  
6.900  
6.900  
5.500  
5.500  
0.300  
-
0.550  
0.020  
7.000  
7.000  
5.600  
5.600  
0.400  
0.152  
0.250  
0.500  
-
0.600  
0.050  
7.100  
7.100  
5.700  
5.700  
0.500  
-
0.0197  
0.0000  
0.2717  
0.2717  
0.2165  
0.2165  
0.0118  
-
0.0217  
0.0008  
0.2756  
0.2756  
0.2205  
0.2205  
0.0157  
0.0060  
0.0098  
0.0197  
-
0.0236  
0.0020  
0.2795  
0.2795  
0.2244  
0.2244  
0.0197  
-
E
D2  
E2  
L
T
b
0.200  
-
0.300  
-
0.0079  
-
0.0118  
-
e
ddd  
-
0.080  
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 31. UFQFPN48 - Recommended footprint  
7.30  
6.20  
48  
37  
1
36  
5.60  
0.20  
7.30  
5.80  
6.20  
5.60  
0.30  
12  
25  
13  
24  
0.75  
0.50  
0.55  
5.80  
A0B9_FP_V2  
1. Dimensions are expressed in millimeters.  
DS13105 Rev 8  
135/145  
140  
 
 
Package information  
STM32WLE5/E4xx  
Device marking for UFQFPN48  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 32. UFQFPN48 marking example (package top view)  
STM32WLE5  
Product identification(1)  
CCU6  
Date code  
YWW  
Pin 1 identifier  
Revision code  
R
MSv66046V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
136/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Package information  
6.2  
6.3  
WLCSP59 package information  
For more information on this package, contact the local STMicroelectronics sales office.  
UFBGA73 package information  
This UFBGA is a 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package.  
Figure 33. UFBGA73 - Outline  
SEATING PLANE  
C
ddd  
C
A4 A2  
SIDE VIEW  
A1  
A
E
B
E1  
A
F
e
F
J
H
G
F
E
D
C
B
A
D1  
D
e
1
2 3 4 5 6 7 8 9  
A1 INDEX CORNER AREA  
b (73 BALLS)  
A
B
eee  
C
C
M
M
BOTTOM VIEW  
f f f  
B08E_UFBGA73_ME_V1  
1. Drawing is not to scale.  
2. - The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metalized  
markings, or other feature of package body or integral heat slug.  
- A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1  
corner. Exact shape of each corner is optional.  
Table 96. UFBGA73 - Mechanical data  
millimeters  
Typ  
inches(1)  
Typ  
Symbol  
Min  
Max  
Min  
Max  
A(2)  
A1  
-
-
-
-
0.60  
0.11  
-
-
-
-
0.236  
0.0043  
DS13105 Rev 8  
137/145  
140  
 
 
 
 
Package information  
STM32WLE5/E4xx  
Table 96. UFBGA73 - Mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A2  
A4  
b(3)  
D
-
0.13  
0.32  
0.29  
5.00  
4.00  
5.00  
4.00  
0.50  
0.50  
-
-
-
-
0.0051  
0.0126  
0.0114  
0.1969  
0.1575  
0.1969  
0.1575  
0.0197  
0.0197  
-
-
-
-
-
0.24  
0.34  
5.15  
-
0.0094  
0.0134  
4.85  
0.1909  
0.2028  
D1  
E
-
-
-
4.85  
5.15  
-
0.1909  
0.2028  
E1  
e
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
F
-
-
ddd  
eee(4)  
fff(5)  
0.08  
0.15  
0.05  
0.0031  
0.0059  
0.0020  
-
-
-
-
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. - UFBGA stands for Ultra-Thin Profile Fine Pitch Ball Grid Array.  
- Ultra Thin profile: 0.50 < A 0.65mm / Fine pitch: e < 1.00mm pitch.  
- The total profile height (Dim A) is measured from the seating plane to the top of the component  
- The maximum total package height is calculated by the following methodology:  
A Max = A1 Typ + A2 Typ + A4 Typ + (A1²+A2²+A4² tolerance values)  
3. The typical balls diameters before mounting is 0.20 mm.  
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For  
each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position  
with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie  
within this tolerance zone.  
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.  
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position  
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each  
tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball  
must lie simultaneously in both tolerance zones.  
Figure 34. UFBGA73 - Recommended footprint  
Dpad  
Dsm  
MSv62396V1  
138/145  
DS13105 Rev 8  
 
STM32WLE5/E4xx  
Package information  
Table 97. UFBGA recommended PCB design rules (0.5 mm pitch BGA)  
Dimension Recommended values  
Pitch  
Dpad  
0.5 mm  
0.230 mm  
0.330 mm typ. (depends on the soldermask  
registration tolerance)  
Dsm  
Stencil opening  
0.280 mm  
Stencil thickness  
Pad trace width  
Ball diameter  
Between 0.100 mm and 0.125 mm  
0.100 mm  
0.280 mm  
Device marking for UFBGA73  
The following figure gives an example of topside marking versus pin 1 position identifier  
location.  
The printed markings may differ depending on the supply chain.  
Other optional marking or inset/upset marks, which depend on supply chain operations, are  
not indicated below.  
Figure 35. UFBGA73 marking example (package top view)  
Product identification(1)  
WLE5J8I6  
Y WW R  
Date code  
Revision code  
Pin 1 identifier  
MSv64357V1  
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not approved for use in production. ST is not responsible for any consequences  
resulting from such use. In no event will ST be liable for the customer using any of these engineering  
samples in production. ST’s Quality department must be contacted prior to any decision to use these  
engineering samples to run a qualification activity.  
DS13105 Rev 8  
139/145  
140  
 
 
Package information  
STM32WLE5/E4xx  
6.4  
Package thermal characteristics  
The maximum chip junction temperature (T max) must never exceed the values given in  
J
Table 25: General operating conditions.  
The maximum chip-junction temperature, T max (in °C), can be calculated using the  
J
equation:  
T max = T max + (P max x Θ )  
J
A
D
JA  
where:  
T max is the maximum ambient temperature in °C.  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W.  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max).  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watt. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins:  
I/O  
P
max = Σ (V × I ) + Σ ((V – V ) × I  
)
OH  
I/O  
OL  
OL  
DD  
OH  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
When the SMPS is used, a portion of the power consumption is dissipated into the external  
inductor, therefore reducing the device power dissipation. This portion depends mainly on  
the inductor ESR characteristics.  
As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the  
device power consumption.  
RF characteristics (such as sensitivity, Tx power consumption) are provided up to 85 °C.  
Table 98. Package thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
UFBGA73 - 5 x 5 mm  
UFQFPN48 - 7 x 7 mm  
WLCSP59  
20.1  
27.4  
TBD  
ΘJA  
Thermal resistance junction-board  
UFBGA73 - 5 x 5 mm  
UFQFPN48 - 7 x 7 mm  
WLCSP59  
20.2  
11.7  
TBD  
ΘJB  
°C/W  
Thermal resistance junction-top case  
UFBGA73 - 5 x 5 mm  
UFQFPN48 - 7 x 7 mm  
WLCSP59  
31.1  
8.5  
ΘJC  
TBD  
140/145  
DS13105 Rev 8  
 
 
 
STM32WLE5/E4xx  
Ordering information  
7
Ordering information  
Example:  
STM32  
WL  
E5  
J
C
I
6 TR  
Device family  
STM32 = Arm based 32-bit microcontroller  
Product type  
WL = wireless long range  
Device subfamily  
E5 = Cortex-M4, full set of modulations  
E4 = Cortex-M4, full set of modulations except LoRa  
Pin/ball count  
C = 48  
U= 59  
J = 73  
Flash memory size  
8 = 64 Kbytes  
B = 128 Kbytes  
C = 256 Kbytes  
Package  
I = UFBGA  
U= UFQFPN  
Y= WLCSP  
Temperature range  
6 = -40 to 85 °C (105 °C junction)  
7 = -40 to 105 °C (125 °C junction)  
Packing  
TR = tape and reel  
xxx = programmed parts  
For a list of available options (such as speed or package) or for further information on any  
aspect of this device, contact the nearest ST sales office.  
DS13105 Rev 8  
141/145  
141  
 
Revision history  
STM32WLE5/E4xx  
8
Revision history  
Table 99. Document revision history  
Changes  
Date  
Revision  
20-Dec-2019  
8-Jan-2020  
1
2
Initial release.  
Updated Ultra-low-power platform features.  
Updated:  
– TJ in Table 2: Main features and peripheral counts and in the whole doc  
– Section 3.9.1: Power supply schemes  
Table 12: Temperature sensor calibration values  
Table 13: Internal voltage reference calibration values  
– Ff renamed RF in Table 18: Legend/abbreviations used in the pinout table and  
Table 19: STM32WLE5J8/JB/JC pin definition  
– new RF AF in Table 20: Alternate functions  
– Section 5.1.2: Typical values  
– Figure 12: Current consumption measurement scheme  
Table 21: Voltage characteristics  
Table 23: Thermal characteristics  
25-Feb-2020  
3
Table 25: General operating conditions  
– Section 5.3.3: Sub-GHz radio characteristics  
Table 34: Embedded internal voltage reference  
Table 57: MSI oscillator characteristics  
Table 58: LSI oscillator characteristics  
Table 67: I/O static characteristics  
Table 68: Output voltage characteristics  
Table 69: I/O AC characteristics  
Table 72: ADC characteristics  
Table 75: TS characteristics  
Table 76: VBAT monitoring characteristics  
Removed table LSI2 oscillator.  
Updated:  
27-Feb-2020  
4
– Features  
Table 24: Main performances at VDD = 3 V  
142/145  
DS13105 Rev 8  
 
 
STM32WLE5/E4xx  
Revision history  
Table 99. Document revision history (continued)  
Revision Changes  
Date  
Updated:  
– Radio in Features  
– Section 3.8.3: Transmitter  
Table 13: Internal voltage reference calibration values  
– F6 I/O structure and footnotes in Table 19: STM32WLE5xx pin definition  
– Figure 11: Power supply scheme  
– IVDD(PIN) in Table 22: Current characteristics  
– New Table 26: Operating range of RF pads  
– PA match in Table 27: Sub-GHz radio power consumption  
– EFFSMPS in Table 32: Sub-GHz radio power management specifications  
– IDD(Run) in Table 36  
29-Jun-2020  
5
– New Table 43, Table 45, Table 47 and Table 49  
– New footnote in Table 56: HSE32 crystal requirements  
– Note 2 in Table 59: Low-speed external user clock characteristics  
Temp(HSI16) in Table 61: HSI16 oscillator characteristics  
– Tj replacing TA in Table 62 and Table 63  
– Ilkg in Table 72: I/O static characteristics  
Table 73: Output voltage characteristics  
Table 77: ADC characteristics  
Table 79: ADC accuracy  
Updated:  
– Package list in the cover page  
Table 1: Device summary  
Table 2: Main features and peripheral counts  
– New Figure 8: UFQFPN48 pinout and Figure 9: WLCSP59 pinout  
– Figure 10: UFBGA73 pinout  
8-Jul-2020  
6
– Figure 13: Power supply scheme  
Table 19: STM32WLE5/E4xx pin definition  
Table 20: Alternate functions  
Table 70: ESD absolute maximum ratings  
Table 82: VBAT monitoring characteristics  
Table 93: SPI characteristics  
Section 7: Ordering information  
DS13105 Rev 8  
143/145  
144  
Revision history  
STM32WLE5/E4xx  
Table 99. Document revision history (continued)  
Revision Changes  
Date  
Updated:  
Table 1 with STM32WLE4xx products (without LoRa) and -40/+105 °C  
Table 2: Main features and peripheral counts  
Figure 9: UFBGA73 pinout (formatting only)  
Table 19: STM32WLE5/E4xx pin definition and Table 20: Alternate functions  
– TJ in Table 23: Thermal characteristics  
– IINJ(PIN) in Table 22: Current characteristics  
Table 25: General operating conditions  
Table 27: Sub-GHz radio power consumption  
Table 28: Sub-GHz radio power consumption in transmit mode  
– Figure 14: VREFINT versus temperature  
5-Oct-2020  
7
– all TBD and values at 105 °C in Table 36 to Table 55  
Table 56: HSE32 crystal requirements  
– Figure 17: HSI16 frequency versus temperature  
Table 71: I/O current injection susceptibility  
– Footnote of Table 72: I/O static characteristics  
Table 83: VREFBUF characteristics  
– new Figure 23 and Figure 24  
Table 98: Package thermal characteristics  
Section 7: Ordering information  
Updated:  
Features  
– New logos in Section 1: Introduction  
Section 3.6: Security management  
– New Figure 5: Power-up/power-down sequence  
– New Section 3.13: Hardware semaphore (HSEM)  
– New Section 3.17: Cyclic redundancy check (CRC)  
Table 9: MCU and sub-GHz radio operating modes  
Section 3.18.3: VBAT battery voltage monitoring  
Figure 13: Power supply scheme  
9-Nov-2020  
8
Table 28: Sub-GHz radio power consumption in transmit mode  
Table 44: Current consumption in Stop 1 mode  
Table 53: Peripheral current consumption  
– tWUSTOP1 in Table 54: Low-power mode wakeup timings  
Table 81: VBAT monitoring characteristics  
144/145  
DS13105 Rev 8  
STM32WLE5/E4xx  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgment.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other  
product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS13105 Rev 8  
145/145  
145  
 
 

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX