STM704MM6F [STMICROELECTRONICS]

IC,POWER SUPPLY SUPERVISOR,SOP,8PIN,PLASTIC;
STM704MM6F
型号: STM704MM6F
厂家: ST    ST
描述:

IC,POWER SUPPLY SUPERVISOR,SOP,8PIN,PLASTIC

光电二极管
文件: 总33页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM69XA, STM70X, STM80X, STM81X  
5V Supervisor with Battery Switchover  
FEATURES SUMMARY  
5V OPERATING VOLTAGE  
Figure 1. Packages  
NVRAM SUPERVISOR FOR EXTERNAL  
LPSRAM  
CHIP-ENABLE GATING (STM818 only) FOR  
EXTERNAL LPSRAM (7ns max PROP  
DELAY)  
8
RST AND RST OUTPUTS  
1
200ms (TYP) t  
rec  
SO8 (M)  
WATCHDOG TIMER - 1.6sec (TYP)  
AUTOMATIC BATTERY SWITCHOVER  
LOW BATTERY SUPPLY CURRENT - 0.4µA  
(TYP)  
POWER-FAIL COMPARATOR (PFI/PFO)  
LOW SUPPLY CURRENT - 40µA (TYP)  
GUARANTEED RST (RST) ASSERTION  
TSSOP8 3x3 (DS)*  
DOWN TO V = 1.0V  
CC  
OPERATING TEMPERATURE:  
–40°C to 85°C (Industrial Grade)  
Table 1. Device Options  
Active-  
Low  
Active-  
High  
Manual  
Reset  
Input  
Battery  
Switch-  
over  
Power-fail  
Compar-  
ator  
Chip-  
Enable  
Gating  
Battery  
Freshness  
Seal  
Watchdog  
Input  
(1)  
(1)  
RST  
RST  
STM690A  
STM692A  
STM703  
STM704  
STM802L/M  
STM805L  
STM817L/M  
STM818L/M  
STM819L/M  
Note: 1. All RST and RST outputs are push-pull.  
* Contact local ST sales office for availability.  
July 2004  
1/33  
 
 
 
STM690A/692A/703/704/802/805/817/818/819  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram (STM703/704/819). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Logic Diagram (STM818). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 5. STM690A/692A/802/805/817 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. STM703/704/819 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 7. STM818 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Table 3. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 8. Block Diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 9. Block Diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 10.Block Diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 11.Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Push-button Reset Input (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Watchdog Input (NOT available on STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 4. I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip-Enable Gating (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Input (STM818 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Output (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 12.Chip-Enable Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 13.Chip Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power-fail Input/Output (NOT available on STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 14.Power-fail Comparator Waveform (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 15.Power-fail Comparator Waveform (STM690A/692A/703/704/802/805) . . . . . . . . . . . . . 13  
Using a SuperCap™ as a Backup Power Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 16.Using a SuperCap™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Negative-Going V Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CC  
Battery Freshness Seal (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 17.Freshness Seal Enable Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 18.V  
-to-V  
On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
OUT  
BAT  
Figure 19.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 20.V Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PFI  
2/33  
STM690A/692A/703/704/802/805/817/818/819  
Figure 21.Reset Comparator Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 22.Power-up t vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
rec  
Figure 23.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 24.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 25.E to E  
On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CON  
Figure 26.PFI to PFO Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 27.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 28.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 29.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 30.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 31.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 32.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 33.V to Reset Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
CC  
Figure 34.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . . 22  
Figure 35.E to E  
Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
CON  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 6. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 36.E to ECON Propagation Delay Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 37.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 38.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 39.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 7. DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 40.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . . 28  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 28  
Figure 41.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 29  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 29  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 10. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 11. Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3/33  
STM690A/692A/703/704/802/805/817/818/819  
SUMMARY DESCRIPTION  
The STMXXX SUPERVISORs are self-contained  
devices which provide microprocessor superviso-  
ry functions with the ability to non-volatize and  
write-protect external LPSRAM. A precision volt-  
These devices also offer a watchdog timer (except  
for STM703/704/819) as well as a power-fail com-  
parator (except for STM818) to provide the system  
with an early warning of impending power failure.  
age reference and comparator monitors the V  
CC  
These devices are available in a standard 8-pin  
SOIC package or a space-saving 8-pin TSSOP  
package.  
input for an out-of-tolerance condition. When an  
invalid V condition occurs, the reset output  
CC  
(RST) is forced low (or high in the case of RST).  
Figure 2. Logic Diagram (STM690A/692A/802/  
805/817)  
Figure 4. Logic Diagram (STM818)  
V
V
BAT  
CC  
V
V
BAT  
CC  
V
OUT  
WDI  
E
V
OUT  
RST  
STM818  
WDI  
PFI  
STM690A/  
692A/802/  
805/817  
(1)  
RST(RST)  
E
CON  
PFO  
V
SS  
AI07896  
V
SS  
AI07894  
Note: 1. For STM805, reset output is active-high.  
Table 2. Signal Names  
MR  
WDI  
RST  
RST  
Push-button Reset Input  
Watchdog Input  
Figure 3. Logic Diagram (STM703/704/819)  
V
V
BAT  
Active-Low Reset Output  
Active-High Reset Output  
Chip Enable Input  
CC  
(1)  
E
V
OUT  
MR  
PFI  
STM703  
/704/819  
(1)  
Conditioned Chip Enable Output  
E
CON  
RST  
PFO  
V
Supply Voltage Output  
Supply Voltage  
OUT  
V
CC  
V
Back-up Supply Voltage  
Power-fail Input  
Power-fail Output  
Ground  
BAT  
V
SS  
AI07895  
PFI  
PFO  
V
SS  
Note: 1. STM818  
4/33  
 
 
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 5. STM690A/692A/802/805/817  
Connections  
Figure 6. STM703/704/819 Connections  
SO8/TSSOP8  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
V
BAT  
V
OUT  
1
2
3
4
8
7
6
5
RST  
MR  
CC  
(1)  
V
RST(RST)  
WDI  
V
CC  
SS  
V
SS  
PFI  
PFO  
PFI  
PFO  
AI07890  
AI07889  
Note: 1. For STM805, reset output is active-high.  
Figure 7. STM818 Connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
CC  
RST  
WDI  
E
V
SS  
E
CON  
AI07892  
Table 3. Pin Description  
Pin  
Name  
Function  
STM690A  
STM692A  
STM802  
STM817  
STM703  
STM704  
STM819  
STM818  
STM805  
Push-button Reset Input.  
A logic low on /MR asserts the reset output. Reset  
remains asserted as long as MR is low and for t  
rec  
6
6
MR  
after MR returns high. This active-low input has an  
internal pull-up. It can be driven from a TTL or  
CMOS logic line, or shorted to ground with a switch.  
Leave open if unused.  
Watchdog Input.  
If WDI remains high or low for 1.6sec, the internal  
watchdog timer runs out and reset is triggered. The  
6
6
WDI internal watchdog timer clears while reset is  
asserted or when WDI sees a rising or falling edge.  
The watchdog function can be disabled by allowing  
the WDI pin to float.  
Active-Low Reset Output.  
Pulses low for t when triggered, and stays low  
rec  
whenever V is below the reset threshold or when  
CC  
7
7
7
7
RST  
RST  
MR is a logic low. It remains low for t after either  
rec  
V
CC  
rises above the reset threshold, the watchdog  
triggers a reset, or MR goes from low to high.  
Active-High Reset Output.  
Inverse of RST.  
Supply Output for External LPSRAM. When V  
CC  
is above the switchover voltage (V ), V  
is  
SO  
OUT  
V
connected to V through a P-channel MOSFET  
CC  
1
2
1
2
1
2
1
2
OUT  
switch. When V falls below V , V  
connects  
CC  
SO BAT  
to V . Connect to V if no battery is used.  
OUT CC  
V
Supply Voltage.  
CC  
5/33  
 
 
 
STM690A/692A/703/704/802/805/817/818/819  
Pin  
Name  
Function  
STM690A  
STM692A  
STM802  
STM817  
STM703  
STM704  
STM819  
STM818  
STM805  
Backup-Battery Input.  
When V falls below V , V  
switches from  
SO OUT  
CC  
V
to V . When V rises above V  
+
may  
V
8
4
8
8
8
CC  
BAT  
CC  
SO  
BAT  
hysteresis, V  
exceed V . Connect to V if no battery is used.  
reconnects to V . V  
OUT  
CC BAT  
CC  
CC  
Chip Enable Input.  
The input to the chip-enable gating circuit. Connect  
to ground if unused.  
E
Conditioned Chip Enable Output.  
E
CON  
goes low only when E is low and reset is not  
asserted. If E  
is low when reset is asserted,  
CON  
E
5
4
4
4
CON  
E
CON  
will remain low for 15µs or until E goes high,  
whichever occurs first. In the disabled mode, E  
is pulled up to V  
CON  
.
OUT  
PFI Power-fail Input.  
When PFI is less than V  
or when V falls below  
CC  
PFI  
PFI  
2.4V (or V ), PFO goes low; otherwise, PFO  
SO  
remains high. Connect to ground if unused.  
PFO Power-fail Output.  
When PFI is less than V , or V falls below 2.4V  
PFI  
CC  
3
5
3
5
3
5
3
PFO  
(or V ), PFO goes low; otherwise, PFO remains  
SO  
high. Leave open if unused.  
V
SS  
Ground.  
Figure 8. Block Diagram (STM690A/692A/802/805/817)  
VCC  
VOUT  
VBAT  
COMPARE  
COMPARE  
VSO  
VRST  
trec  
Generator  
RST(RST)(1)  
WATCHDOG  
TIMER  
WDI  
PFI  
VPFI  
COMPARE  
PFO  
AI07897  
Note: 1. For STM805, reset output is active-high.  
6/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 9. Block Diagram (STM703/704/819)  
VCC  
VOUT  
VBAT  
COMPARE  
VSO  
COMPARE  
VRST  
trec  
Generator  
RST  
MR  
PFI  
VPFI  
COMPARE  
PFO  
AI07898  
Figure 10. Block Diagram (STM818)  
VCC  
VOUT  
VBAT  
COMPARE  
VSO  
COMPARE  
VRST  
trec  
Generator  
WATCHDOG  
TIMER  
RST  
WDI  
ECON OUTPUT  
CONTROL  
E
ECON  
AI07899a  
7/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 11. Hardware Hookup  
Regulator  
Unregulated  
Voltage  
VCC  
VCC  
LPSRAM  
VIN  
VCC  
VCC  
VOUT  
0.1µF  
E
STMXXX  
E
0.1µF  
WDI(1)  
E(2)  
From Microprocessor  
(2)  
ECON  
R1  
R2  
PFI(3)  
MR(4)  
VBAT  
PFO(3)  
RST  
To Microprocessor NMI  
To Microprocessor Reset  
Push-Button  
AI07893  
Note: 1. For STM690A/692A/802/805/817/818.  
2. For STM818 only.  
3. Not available on STM818.  
4. For STM703/704/819.  
8/33  
 
STM690A/692A/703/704/802/805/817/818/819  
OPERATION  
Reset Output  
The STMXXX SUPERVISOR asserts a reset sig-  
the device is used in a noisy environment, connect  
a 0.1µF capacitor from MR to GND to provide ad-  
ditional noise immunity. MR may float, or be tied to  
nal to the MCU whenever V goes below the re-  
CC  
set threshold (V  
), a watchdog time-out occurs,  
RST  
or when the Push-button Reset Input (MR) is taken  
V
when not used.  
CC  
low. RST is guaranteed to be a logic low (logic  
Watchdog Input (NOT available on STM703/  
704/819)  
The watchdog timer can be used to detect an out-  
of-control MCU. If the MCU does not toggle the  
high for STM805) for 0V < V  
< V  
if V  
is  
BAT  
CC  
RST  
greater than 1V. Without a back-up battery, RST is  
guaranteed valid down to V =1V.  
CC  
During power-up, once V  
exceeds the reset  
CC  
Watchdog Input (WDI) within t  
(1.6sec typ), the  
WD  
threshold an internal timer keeps RST low for the  
reset is asserted. The internal watchdog timer is  
cleared by either:  
1. a reset pulse, or  
2. by toggling WDI (high-to-low or low-to-high),  
which can detect pulses as short as 50ns. If  
WDI is tied high or low, a reset pulse is  
reset time-out period, t . After this interval RST  
rec  
returns high.  
If V drops below the reset threshold, RST goes  
CC  
low. Each time RST is asserted, it stays low for at  
least the reset time-out period (t ). Any time V  
rec  
CC  
goes below the reset threshold the internal timer  
triggered every 1.8sec (t  
+ t ).  
WD  
rec  
clears. The reset timer starts when V  
above the reset threshold.  
returns  
CC  
The timer remains cleared and does not count for  
as long as reset is asserted. As soon as reset is re-  
leased, the timer starts counting (see Figure  
39., page 24).  
Push-button Reset Input (STM703/704/819)  
A logic low on MR asserts reset. Reset remains  
asserted while MR is low, and for t (see Figure  
rec  
Note: The watchdog function may be disabled by  
floating WDI or tri-stating the driver connected to  
WDI. When tri-stated or disconnected, the maxi-  
mum allowable leakage current is 10uA and the  
maximum allowable load capacitance is 200pF.  
Note: Input frequency greater than 20ns (50MHz)  
will be filtered.  
38., page 24) after it returns high. The MR input  
has an internal 40kpull-up resistor, allowing it to  
be left open if not used. This input can be driven  
with TTL/CMOS-logic levels or with open-drain/  
collector outputs. Connect a normally open mo-  
mentary switch from MR to GND to create a man-  
ual reset function; external debounce circuitry is  
not required. If MR is driven from long cables or  
9/33  
STM690A/692A/703/704/802/805/817/818/819  
Back-up Battery Switchover  
Chip-Enable Gating (STM818 only)  
In the event of a power failure, it may be necessary  
to preserve the contents of external SRAM  
Internal gating of the chip enable (E) signal pre-  
vents erroneous data from corrupting the external  
CMOS RAM in the event of an undervoltage con-  
dition. The STM818 uses a series transmission  
through V  
. With a backup battery installed with  
, the devices automatically switch the  
OUT  
voltage V  
BAT  
SRAM to the back-up supply when V falls.  
Note: If back-up battery is not used, connect both  
gate from E to E  
(see Figure 12., page 11).  
CC  
CON  
During normal operation (reset not asserted), the  
E transmission gate is enabled and passes all E  
transitions. When reset is asserted, this path be-  
comes disabled, preventing erroneous data from  
corrupting the CMOS RAM. The short E propaga-  
V
and V  
to V  
.
BAT  
OUT  
CC  
This family of Supervisors does not always con-  
nect V to V when V is greater than V  
.
CC  
BAT  
OUT  
BAT  
V
connects to V  
CC  
(through a 100switch)  
BAT  
OUT  
RST  
tion delay from E to E  
enables the STM818 to  
CON  
when V is below V  
and V  
. This is done to  
BAT  
be used with most µPs. If E is low when reset as-  
serts, E remains low for typically 15µs to per-  
allow the back-up battery (e.g., a 3.6V lithium cell)  
to have a higher voltage than V  
CON  
.
CC  
mit the current WRITE cycle to complete. Connect  
Assuming V  
> 2.0V, switchover at V ensures  
SO  
BAT  
E to V if unused.  
SS  
that battery back-up mode is entered before V  
gets too close to the 2.0V minimum required to re-  
liably retain data in most external SRAMs. When  
OUT  
Chip Enable Input (STM818 only)  
The chip-enable transmission gate is disabled and  
E is high impedance (disabled mode) while reset  
is asserted. During a power-down sequence when  
V
recovers, hysteresis is used to avoid oscilla-  
CC  
tion around the V  
point. V  
is connected to  
SO  
OUT  
V
passes the reset threshold, the chip-enable  
CC  
V
through a 3PMOS power switch.  
CC  
transmission gate disables and E immediately be-  
comes high impedance if the voltage at E is high.  
If E is low when reset asserts, the chip-enable  
transmission gate will disable 15µs after reset as-  
serts (see Figure 13., page 11). This permits the  
current WRITE cycle to complete during power-  
down.  
Note: The back-up battery may be removed while  
is valid, assuming V is adequately decou-  
pled (0.1µF typ), without danger of triggering a re-  
set.  
V
CC  
BAT  
Table 4. I/O Status in Battery Back-up  
Any time a reset is generated, the chip-enable  
transmission gate remains disabled and E remains  
high impedance (regardless of E activity) for the  
reset time-out period. When the chip enable trans-  
mission gate is enabled, the impedance of E ap-  
pears as a 40resistor in series with the load at  
Pin  
Status  
V
OUT  
Connected to V  
through internal switch  
BAT  
V
Disconnected from V  
Disabled  
CC  
PFI  
PFO  
E
OUT  
E
. The propagation delay through the chip-en-  
CON  
Logic low  
able transmission gate depends on V , the  
CC  
source impedance of the drive connected to E,  
High impedance  
Logic high  
and the loading on E  
(see “Typical Operating  
CON  
E
CON  
Characteristics”). The chip enable propagation de-  
lay is production tested from the 50% point on E to  
WDI  
Watchdog timer is disabled  
the 50% point on E  
using a 50driver and a  
CON  
50pF load capacitance (see Figure 37., page 24).  
For minimum propagation delay, minimize the ca-  
WDO Logic low  
MR  
RST  
RST  
Disabled  
pacitive load at E  
pedance driver.  
and use a low-output im-  
CON  
Logic low  
Chip Enable Output (STM818 only)  
When the chip-enable transmission gate is en-  
Logic high  
Connected to V  
V
BAT  
OUT  
abled, the impedance of E  
is equivalent to a  
CON  
40resistor in series with the source driving E. In  
the disabled mode, the transmission gate is off  
and an active pull-up connects E  
to V  
(see  
CON  
OUT  
Figure 12., page 11). This pull-up turns off when  
the transmission gate is enabled.  
10/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 12. Chip-Enable Gating  
VCC  
trec  
Generator  
RST  
COMPARE  
VRST  
VOUT  
ECON OUTPUT  
CONTROL  
E
ECON  
AI08802  
Figure 13. Chip Enable Waveform  
VCC  
VRST  
VBAT  
ECON  
½ trec  
½ trec  
trec  
15µs  
trec  
RST  
E
AI08803b  
11/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Power-fail Input/Output (NOT available on STM818)  
The Power-fail Input (PFI) is compared to an inter-  
nal reference voltage (independent from the V  
comparator). If PFI is less than the power-fail  
V
drops below 2.4V (or V ). When power re-  
CC SO  
turns, PFO is forced high (STM817/819 only), irre-  
spective of V for the WRITE protect time (t ).  
RST  
PFI  
rec  
threshold (V ), the Power-Fail Output (PFO) will  
At the end of this time, the power-fail comparator  
is enabled and PFO follows PFI. If the comparator  
PFI  
go low. This function is intended for use as an un-  
dervoltage detector to signal a failing power sup-  
ply. Typically PFI is connected through an external  
voltage divider (see Figure 11., page 8) to either  
the unregulated DC input (if it is available) or the  
is unused, PFI should be connected to V  
and  
SS  
PFO left unconnected. PFO may be connected to  
MR on the STM703/704/818 so that a low voltage  
on PFI will generate a reset output.  
regulated output of the V regulator. The voltage  
divider can be set up such that the voltage at PFI  
CC  
Applications Information  
These Supervisor circuits are not short-circuit pro-  
falls below V  
several milliseconds before the  
PFI  
tected. Shorting V  
to ground - excluding pow-  
OUT  
regulated V input to the STMXXX or the micro-  
CC  
er-up transients such as charging a decoupling  
capacitor - destroys the device. Decouple both  
processor drops below the minimum operating  
voltage.  
During battery back-up, the power-fail comparator  
turns off and PFO goes (or remains) low (see Fig-  
ure 14 and Figure 15., page 13). This occurs after  
V
and V  
pins to ground by placing 0.1µF ca-  
BAT  
CC  
pacitors as close to the device as possible.  
Figure 14. Power-fail Comparator Waveform (STM817/818/819)  
VCC  
VRST  
VSO (or 2.4V)  
trec  
PFO  
(STM817/819)  
PFO follows PFI  
PFO follows PFI  
RST to ECON Delay (STM818)  
RST  
ECON (STM818)  
AI08804a  
12/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 15. Power-fail Comparator Waveform (STM690A/692A/703/704/802/805)  
VCC  
VRST  
2.4V (or VSO  
)
trec  
PFO  
PFO follows PFI  
PFO follows PFI  
RST  
AI08832a  
Using a SuperCap™ as a Backup Power  
Source  
Figure 16. Using a SuperCap™  
5V  
SuperCaps™ are capacitors with extremely high  
capacitance values (e.g., order of 0.47F) for their  
size. Figure 16 shows how to use a SuperCap as  
a back-up power source. The SuperCap may be  
connected through a diode to the 5V input. Since  
VCC  
VOUT  
To external SRAM  
STMXXX  
VBAT  
V
can exceed V while V is above the reset  
BAT  
CC CC  
threshold, there are no special precautions when  
using these supervisors with a SuperCap.  
RST  
To µP  
GND  
AI08805  
Negative-Going V Transients  
CC  
The STMXXXs are relatively immune to negative-  
going V transients (glitches). This graph shows  
CC  
typical transient duration versus reset comparator  
overdrive (for which the STMXXX will NOT gener-  
ate a reset pulse). The graph was generated using  
a negative pulse applied to V , starting at V  
+
CC  
RST  
0.3V and ending below the reset threshold by the  
13/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Battery Freshness Seal (STM817/818/819)  
Figure 17. Freshness Seal Enable Waveform  
The battery freshness seal disconnects the back-  
VRST  
up battery from internal circuitry and V  
until it is  
OUT  
needed. This allows an OEM to ensure that the  
back-up battery connected to V will be fresh  
when the final product is put to use. To enable the  
freshness seal:  
VCC  
BAT  
trec  
RST  
1. Connect a battery to V  
2. Ground PFO;  
;
BAT  
ECON out state latched  
at 1/2 trec  
,
Freshness  
3. Bring V above the reset threshold and hold  
(Externally held at 0V)  
Seal enabled  
CC  
ECON  
it there until reset is deasserted following the  
reset timeout period; and  
(STM818)  
PFO out state latched  
at 1/2 trec  
,
Freshness  
Seal Enabled  
(Externally held at 0V)  
4. Bring V down again (Figure 17).  
CC  
PFO  
(STM817/819)  
Use the same procedure for the STM818, but  
AI08806  
ground E  
instead of PFO. Once the battery  
CON  
freshness seal is enabled (disconnecting the  
back-up battery from internal circuitry and any-  
thing connected to V  
), it remains enabled until  
OUT  
V
is brought above V  
.
CC  
RST  
14/33  
 
STM690A/692A/703/704/802/805/817/818/819  
TYPICAL OPERATING CHARACTERISTICS  
Note: Typical values are at T = 25°C  
A
Figure 18. V  
-to-V  
BAT  
On-Resistance vs. Temperature  
OUT  
220  
200  
180  
160  
140  
120  
100  
V
= 0V  
CC  
V
= 2V  
BAT  
V
= 3V  
BAT  
V
= 3.3V  
BAT  
V
= 5V  
BAT  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09140  
Figure 19. Supply Current vs. Temperature (no load)  
30  
25  
20  
15  
10  
5
2.5V  
3.3V  
3.6V  
5.0V  
5.5V  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE [°C]  
AI09141  
15/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 20. V  
Threshold vs. Temperature  
PFI  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
V
= 5V  
CC  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
V
= 3.0V  
BAT  
1.225  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09142  
Figure 21. Reset Comparator Propagation Delay vs. Temperature  
24  
22  
V
= 3.0V  
BAT  
20  
18  
16  
14  
12  
10  
100mV OVERDRIVE  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09143  
Figure 22. Power-up t  
vs. Temperature  
rec  
215  
210  
205  
200  
195  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09144  
16/33  
 
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 23. Normalized Reset Threshold vs. Temperature  
1.002  
1.000  
0.998  
0.996  
0.994  
V
= 3.0V  
BAT  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09145  
Figure 24. Watchdog Time-out Period vs. Temperature  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
1.62  
1.60  
1.58  
1.56  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09146  
Figure 25. E to E  
On-Resistance vs. Temperature  
CON  
90  
80  
70  
60  
50  
40  
V
= 3V  
CC  
30  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09147  
17/33  
 
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 26. PFI to PFO Propagation Delay vs. Temperature  
9
8
7
6
5
4
3
2
1
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09148  
Figure 27. RST Output Voltage vs. Supply Voltage  
6
5
4
V
CC  
3
2
1
0
V
RST  
500 ms/div  
AI09149  
18/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 28. RST Output Voltage vs. Supply Voltage  
6
5
V
CC  
4
3
2
1
0
V
RST  
500 ms/div  
AI09150  
Figure 29. RST Response Time (Assertion)  
6
5
4
3
2
1
0
V
CC  
V
RST  
2 µs/div  
AI09151  
19/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 30. RST Response Time (Assertion)  
6
V
CC  
5
4
3
2
1
0
V
RST  
2µs/div  
AI09152  
Figure 31. Power-fail Comparator Response Time (Assertion)  
6
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
5
4
PFO  
3
PFI  
2
1
0
2µs/div  
AI09153  
20/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 32. Power-fail Comparator Response Time (De-Assertion)  
6
5
4
3
2
1
0
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
PFO  
PFI  
1.15  
2 µs/div  
AI09154  
Figure 33. V to Reset Propagation Delay vs. Temperature  
CC  
60  
50  
40  
30  
20  
10  
0
10V/ms  
1V/ms  
0.25V/ms  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09155  
21/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 34. Maximum Transient Duration vs. Reset Threshold Overdrive  
250  
200  
150  
100  
50  
0
1
10  
100  
1000  
10000  
RESET COMPARATOR OVERDRIVE, V  
– V [mV]  
CC  
RST  
AI09156  
Figure 35. E to E  
Propagation Delay vs. Temperature  
CON  
3.5  
E Rising  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
E Falling  
0
140  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE [°C]  
AI09157  
22/33  
 
 
STM690A/692A/703/704/802/805/817/818/819  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings” table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 5. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
T
Storage Temperature (V Off)  
–55 to 150  
°C  
STG  
CC  
Lead Solder Temperature for 10 seconds  
Input or Output Voltage  
Supply Voltage  
(1)  
260  
°C  
V
T
SLD  
V
–0.3 to V +0.3  
IO  
CC  
V
/V  
–0.3 to 6.0  
20  
V
CC BAT  
I
O
Output Current  
mA  
mW  
P
Power Dissipation  
320  
D
Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150  
seconds).  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 6, Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 6. Operating and AC Measurement Conditions  
Parameter  
STM690A/692A/703/704/802/  
Unit  
805/817/818/819  
V
/V  
Supply Voltage  
1.0 to 5.5  
–40 to 85  
5  
V
°C  
ns  
V
CC BAT  
Ambient Operating Temperature (T )  
A
Input Rise and Fall Times  
0.2 to 0.8V  
Input Pulse Voltages  
CC  
0.3 to 0.7V  
Input and Output Timing Ref. Voltages  
V
CC  
23/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Figure 36. E to ECON Propagation Delay Test Circuit  
VCC  
VCC  
VBAT  
3.6V  
STMXXX  
50Equivalent  
Source Impedance  
E
ECON  
50Ω  
50Cable  
(1)  
50pF CL  
50Ω  
GND  
AI08854  
Note: 1. C includes load capacitance and scope probe capacitance.  
L
Figure 37. AC Testing Input/Output Waveforms  
0.8V  
CC  
0.7V  
0.3V  
CC  
CC  
0.2V  
CC  
AI02568  
Figure 38. MR Timing Waveform  
MR  
tMLRL  
RST (1)  
trec  
tMLMH  
AI07837a  
Note: 1. RST for STM805.  
Figure 39. Watchdog Timing  
VCC  
trec  
RST  
tWD  
WDI  
AI07891  
24/33  
STM690A/692A/703/704/802/805/817/818/819  
Table 7. DC and AC Characteristics  
Alter-  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
native  
V
,
CC  
(2)  
(3)  
T = –40 to +85°C  
Operating Voltage  
5.5  
60  
35  
V
A
1.2  
V
BAT  
V
V
Supply Current  
Excluding I  
Excluding I  
(V < 5.5V)  
CC  
25  
25  
µA  
µA  
CC  
OUT  
I
CC  
(V  
BAT  
= 2.3V,  
Supply Current in  
OUT  
CC  
V
= 2.0V, MR = V  
)
Battery Back-up Mode  
CC  
CC  
V
Supply Current in  
BAT  
(4)  
Excluding I  
(V  
= 3.6V)  
0.4  
1.0  
µA  
V
I
OUT  
BAT  
BAT  
Battery Back-up Mode  
V
0.03  
V
CC  
CC  
(5)  
I
= 5mA  
OUT1  
0.015  
V
0.3  
V
0.15  
CC  
CC  
V
V
V
Voltage (Active)  
Voltage (Battery  
I
= 75mA  
V
OUT1  
OUT  
OUT1  
V
CC  
V
CC  
(5)  
V
I
= 250µA, V > 2.5V  
CC  
OUT1  
0.0015 0.0006  
V
BAT  
V
BAT  
I
= 250µA, V  
= 1mA, V  
= 2.3V  
BAT  
V
OUT2  
0.1  
0.034  
OUT  
V
OUT2  
Back-up)  
V
BAT  
I
= 2.3V  
BAT  
V
OUT2  
0.14  
V
V
to V  
On-resistance  
3
4
CC  
OUT  
to V  
On-resistance  
100  
125  
2
BAT  
OUT  
4.5V < V < 5.5V  
Input Leakage Current (MR)  
Input Leakage Current (PFI)  
75  
300  
+25  
160  
µA  
nA  
µA  
µA  
V
CC  
0V = V = V  
–25  
IN  
CC  
I
LI  
WDI = V , time average  
120  
–15  
CC  
Input Leakage Current  
(6)  
(WDI)  
WDI = GND, time average  
–20  
2.0  
V
V
4.5V < V < 5.5V  
Input High Voltage (MR)  
Input High Voltage (WDI)  
Input Low Voltage (MR)  
Input Low Voltage (WDI)  
IH  
CC  
V
(max) < V < 5.5V  
0.7V  
CC  
V
IH  
RST  
CC  
V
4.5V < V < 5.5V  
0.8  
V
IL  
IL  
CC  
V
V
(max) < V < 5.5V  
0.3V  
CC  
V
RST  
CC  
V
= V  
(max), I  
3.2mA  
=
Output Low Voltage (PFO,  
RST, RST)  
CC  
RST  
SINK  
0.3  
V
V
V
V
V
OL  
V
CC  
= V (max),  
RST  
Output Low Voltage (E  
)
0.2V  
CON  
CC  
I
= 1.6mA, E = 0V  
OUT  
I
= 50µA; V = 1.0V;  
CC  
= 0V; T = 0°C to 85°C  
A
SINK  
0.3  
0.3  
V
BAT  
V
OL  
Output Low Voltage (RST)  
I
= 100µA; V = 1.2V;  
CC  
SINK  
V
= 0V  
BAT  
25/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Alter-  
native  
(1)  
Sym  
Description  
Min  
2.4  
Typ  
Max  
Unit  
V
Test Condition  
I
= 1mA,  
(max)  
Output High Voltage (RST,  
RST)  
SOURCE  
V
CC  
= V  
RST  
V
= V  
(max),  
CC  
RST  
V
OH  
Output High Voltage (E  
)
0.8V  
CC  
V
CON  
I
= 1.6mA, E = V  
CC  
OUT  
I
V
= 75µA,  
SOURCE  
0.8V  
Output High Voltage (PFO)  
Output High Voltage  
V
CC  
= V  
(max)  
CC  
RST  
I
V
= 4µA; V = 1.1V;  
CC  
SOURCE  
0.8  
0.9  
V
= 0V; T = 0°C to 85°C  
A
BAT  
V
OH  
I
= 4µA; V = 1.2V;  
CC  
SOURCE  
V
V
BAT  
= 0V  
V
Battery Back-up (E  
,
CON  
OH  
V
OHB  
I
= 100µA,  
0.8V  
BAT  
V
SOURCE  
RST, RST)  
Power-fail Comparator (NOT available on STM818)  
All other  
versions  
1.20  
1.25  
1.250  
2
1.30  
V
V
PFI Falling  
(V = 5V)  
CC  
V
PFI  
PFI Input Threshold  
STM802  
1.225  
1.275  
PFI to PFO Propagation  
Delay  
t
µs  
PFD  
PFO Output Short to  
GND Current  
I
V
CC  
= 5V, V = 0V  
PFO  
0.1  
0.75  
2.0  
mA  
SC  
Battery Switchover  
V
RST  
V
RST  
V
RST  
V
RST  
> V  
< V  
> V  
< V  
V
V
V
BAT  
BAT  
BAT  
BAT  
BAT  
Power-down  
Power-up  
Battery Back-up  
V
RST  
(7,8)  
Switchover Voltage  
V
SO  
V
BAT  
V
(V < V  
& V < V  
)
CC  
BAT  
CC  
RST  
V
V
RST  
Hysteresis  
40  
mV  
Reset Thresholds  
STM690A/703, STM8XXL  
STM692A/704, STM8XXM  
4.50  
4.25  
4.65  
4.40  
25  
4.75  
4.50  
V
V
Reset Threshold  
V
RST  
Reset Threshold Hysteresis  
to RST Delay (from  
mV  
V
CC  
STM817/818/819  
100  
200  
µs  
V
, V falling at 10V/ms)  
RST CC  
t
RST Pulse Width  
140  
280  
ms  
rec  
26/33  
STM690A/692A/703/704/802/805/817/818/819  
Alter-  
native  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Push-button Reset Input (STM703/704/819)  
STM703/704  
STM819  
150  
1
ns  
µs  
ns  
ns  
ns  
kΩ  
t
t
MR  
MR Pulse Width  
MLMH  
STM703/704  
STM819  
250  
t
t
MRD  
MR to RST Output Delay  
MLRL  
120  
100  
63  
MR Glitch Immunity  
MR Pull-up Resistor  
STM819  
MR = 0V; V = 5V  
45  
85  
CC  
Watchdog Timer (NOT available on STM703/704/819)  
t
V
(max) < V < 5.5V  
Watchdog Timeout Period  
WDI Pulse Width  
1.12  
50  
1.60  
2.24  
s
WD  
RST  
CC  
V
RST  
(max) < V < 5.5V  
ns  
CC  
Chip-Enable Gating (STM818 only)  
E-to-E Resistance  
V
= V  
(max)  
40  
2
150  
7
CON  
CC  
RST  
E-to-E  
Propagation Delay  
4.5V < V < 5.5V  
ns  
µs  
CON  
CC  
Reset-to-E  
High Delay  
(Power-down)  
15  
CON  
V
= 5V, Disable Mode,  
CC  
E
CON  
Short Circuit Current  
0.1  
0.75  
2.0  
mA  
E = Logic high, E  
= 0V  
CON  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 4.75V to 5.5V for “L” versions; V = 4.5V to 5.5V for “M” ver-  
A
CC  
CC  
sions; and V  
= 2.8V (except where noted).  
BAT  
2. V supply current, logic input leakage, Watchdog functionality, Push-button Reset functionality, PFI functionality, state of RST and  
CC  
RST tested at V  
= 3.6V, and V = 5.5V. The state of RST or RST and PFO is tested at V = V (min). Either V or V  
BAT  
CC CC CC CC BAT  
can go to 0V if the other is greater than 2.0V.  
3. V (min) = 1.0V for T = 0°C to +85°C.  
CC  
A
4. Tested at V  
= 3.6V, V = 3.5V and 0V.  
BAT  
CC  
5. Guaranteed by design.  
6. WDI input is designed to be driven by a three-state output device. To float WDI, the “high impedance mode” of the output device  
must have a maximum leakage current of 10µA and a maximum output capacitance of 200pF. The output device must also be able  
to source and sink at least 200µA when active.  
7. When V  
8. When V  
> V > V  
, V  
remains connected to V until V drops below V  
.
BAT  
RST  
CC  
RST  
OUT  
CC  
CC  
RST  
> V > V  
, V  
remains connected to V until V drops below the battery voltage (V  
) – 75mV.  
BAT  
CC  
BAT OUT  
CC  
CC  
27/33  
STM690A/692A/703/704/802/805/817/818/819  
PACKAGE MECHANICAL  
Figure 40. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing  
h x 45˚  
A2  
A
C
B
ddd  
e
D
8
1
E
H
A1  
α
L
SO-A  
Note: Drawing is not to scale.  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min  
1.35  
0.10  
0.33  
0.19  
4.80  
inches  
Min  
Symb  
Typ  
Max  
1.75  
0.25  
0.51  
0.25  
5.00  
0.10  
4.00  
Typ  
Max  
0.069  
0.010  
0.020  
0.010  
0.197  
0.004  
0.157  
A
A1  
B
0.053  
0.004  
0.013  
0.007  
0.189  
C
D
ddd  
E
3.80  
0.150  
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
h
L
α
N
8
8
28/33  
STM690A/692A/703/704/802/805/817/818/819  
Figure 41. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note: Drawing is not to scale.  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.10  
0.15  
0.95  
0.40  
0.23  
0.10  
3.10  
Typ  
Max  
0.043  
0.006  
0.037  
0.016  
0.009  
0.004  
0.122  
A
A1  
A2  
b
0.05  
0.75  
0.25  
0.13  
0.002  
0.030  
0.010  
0.005  
0.85  
0.034  
c
CP  
D
3.00  
0.65  
4.90  
3.00  
0.55  
0.95  
2.90  
0.118  
0.026  
0.193  
0.118  
0.022  
0.037  
0.114  
e
E
4.65  
2.90  
0.40  
5.15  
3.10  
0.70  
0.183  
0.114  
0.016  
0.203  
0.122  
0.030  
E1  
L
L1  
α
0°  
6°  
0°  
6°  
N
8
8
29/33  
 
STM690A/692A/703/704/802/805/817/818/819  
PART NUMBERING  
Table 10. Ordering Information Scheme  
Example:  
STMXXX  
L
M
6
E
Device Type  
STMXXX  
Reset Threshold Voltage  
L = STM690A/703, STM8XXL = V  
= 4.50V to 4.75V  
RST  
M = STM692A/704, STM8XXM = V  
= 4.25V to 4.50V  
RST  
Package  
M = SO8  
(1)  
DS = TSSOP8  
Temperature Range  
6 = –40 to 85°C  
Shipping Method  
®
E = Tubes (Pb-Free - ECO PACK )  
®
F = Tape & Reel (Pb-Free - ECO PACK )  
Note: 1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
30/33  
 
STM690A/692A/703/704/802/805/817/818/819  
Table 11. Marking Description  
Part Number  
STM690A  
STM692A  
STM703  
Reset Threshold  
Package  
SO8  
Topside Marking  
4.65V  
4.65V  
4.65V  
4.40V  
4.65V  
4.40V  
4.65V  
690A  
692A  
703  
SO8  
SO8  
STM704  
SO8  
704  
STM802L  
STM802M  
STM805L  
SO8  
802L  
802M  
805L  
SO8  
SO8  
SO8  
STM817L  
STM817M  
STM818L  
STM818M  
STM819L  
STM819M  
4.65V  
4.40V  
4.65V  
4.40V  
4.65V  
4.40V  
817L  
817M  
818L  
818M  
819L  
819M  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
31/33  
 
STM690A/692A/703/704/802/805/817/818/819  
REVISION HISTORY  
Table 12. Document Revision History  
Date  
Version  
1.0  
Revision Details  
October 2003  
31-Oct-03  
First Issue  
1.1  
Update DC Characteristics (Table 7)  
Reformatted; updated characteristics (Figure 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15,  
17; Table 3, 4, 7, 9, 11)  
22-Dec-03  
2.0  
Add Typical Characteristics (Figure 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,  
30, 31, 32, 33, 34, 35)  
16-Jan-04  
08-Apr-04  
25-May-04  
2.1  
2.2  
3.0  
Update characteristics (Figure 13, 21, 26, 28, 29, 30, 33, 34; Table 1,7)  
Remove references to ‘Open Drain’ (Figure 2, 5, 8; Table 2); update characteristics  
(Table 3, 7)  
Update package availability, pin description; promote document (Figure 1, 14, 15;  
Table 3. 7, 10)  
05-Jul-04  
4.0  
32/33  
STM690A/692A/703/704/802/805/817/818/819  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners.  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany -  
Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore -  
Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
33/33  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX