STM802SM6F [STMICROELECTRONICS]

3V Supervisor with Battery Switchover; 3V监控器,电池切换
STM802SM6F
型号: STM802SM6F
厂家: ST    ST
描述:

3V Supervisor with Battery Switchover
3V监控器,电池切换

电源电路 电池 电源管理电路 光电二极管 监控
文件: 总31页 (文件大小:447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM690, STM704, STM795  
STM802, STM804, STM805, STM806  
3V Supervisor with Battery Switchover  
FEATURES SUMMARY  
RST OR RST OUTPUTS  
Figure 1. Packages  
NVRAM SUPERVISOR FOR EXTERNAL  
LPSRAM  
CHIP-ENABLE GATING (STM795 only) FOR  
EXTERNAL LPSRAM (7ns max PROP  
DELAY)  
8
MANUAL (PUSH-BUTTON) RESET INPUT  
1
200ms (TYP) t  
rec  
WATCHDOG TIMER - 1.6sec (TYP)  
AUTOMATIC BATTERY SWITCHOVER  
LOW BATTERY SUPPLY CURRENT - 0.4µA  
(TYP)  
SO8 (M)  
POWER-FAIL COMPARATOR (PFI/PFO)  
LOW SUPPLY CURRENT - 40µA (TYP)  
GUARANTEED RST (RST) ASSERTION  
TSSOP8 3x3 (DS)*  
DOWN TO V = 1.0V  
CC  
OPERATING TEMPERATURE:  
–40°C to 85°C (Industrial Grade)  
Table 1. Device Options  
Active-  
High  
RST  
Power-fail  
Compar-  
Chip-  
Enable  
Gating  
Active-  
Watchdog  
Input  
Manual  
Reset Input Switch-over  
Battery  
(1)  
Low RST  
ator  
STM690T/S/R  
STM704T/S/R  
STM795T/S/R  
STM802T/S/R  
STM804T/S/R  
(2)  
(2)  
(2)  
STM805T/S/R  
STM806T/S/R  
Note: 1. All RST outputs push-pull (unless otherwise noted)  
2. Open drain output.  
* Contact local ST sales office for availability.  
September 2004  
1/31  
STM690/704/795/802/804/805/806  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table 1. Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram (STM690/802/804/805) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. Logic Diagram (STM704/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Logic Diagram (STM795). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 2. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 5. STM690/802/804/805 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. STM704/806 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 7. STM795 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 3. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 8. Block Diagram (STM690/802/804/805) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 9. Block Diagram (STM704/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 10.Block Diagram (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 11.Hardware Hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Reset Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Push-button Reset Input (STM704/806). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Watchdog Input (NOT available on STM704/795/806) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Back-up Battery Switchover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. I/O Status in Battery Back-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Chip-Enable Gating (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Input (STM795 only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Chip Enable Output (STM795 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 12.Chip-Enable Gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 13.Chip Enable Waveform (STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power-fail Input/Output (NOT available on STM795) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 14.Power-fail Comparator Waveform (STM690/704/802/804/805/806) . . . . . . . . . . . . . . . . 11  
Using a SuperCap™ as a Backup Power Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 15.Using a SuperCap™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Negative-Going V Transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
CC  
TYPICAL OPERATING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 16.V  
-to-V  
On-Resistance vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
OUT  
BAT  
Figure 17.Supply Current vs. Temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 18.V Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
PFI  
Figure 19.Reset Comparator Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 20.Power-up t vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
rec  
2/31  
STM690/704/795/802/804/805/806  
Figure 21.Normalized Reset Threshold vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 22.Watchdog Time-out Period vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 23.E to E  
On-Resistance vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
CON  
Figure 24.PFI to PFO Propagation Delay vs. Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 25.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 26.RST Output Voltage vs. Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 27.RST Response Time (Assertion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 28.RESET Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 29.Power-fail Comparator Response Time (Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 30.Power-fail Comparator Response Time (De-Assertion) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 31.V to Reset Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
CC  
Figure 32.Maximum Transient Duration vs. Reset Threshold Overdrive. . . . . . . . . . . . . . . . . . . . . 20  
Figure 33.E to E  
Propagation Delay vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
CON  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 5. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 6. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 34.E to ECON Propagation Delay Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 35.AC Testing Input/Output Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 36.MR Timing Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 37.Watchdog Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 7. DC and AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 38.SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing. . . . 26  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data . . 26  
Figure 39.TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline . . . . . . . . . . . 27  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data . . . . 27  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 10. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 11. Marking Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 12. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3/31  
STM690/704/795/802/804/805/806  
SUMMARY DESCRIPTION  
The STM690/704/795/802/804/805/806 Supervi-  
sors are self-contained devices which provide mi-  
croprocessor supervisory functions with the ability  
to non-volatize and write-protect external  
LPSRAM. A precision voltage reference and com-  
a watchdog timer (except for STM704/795/806) as  
well as a power-fail comparator (except for  
STM795) to provide the system with an early  
warning of impending power failure.  
These devices are available in a standard 8-pin  
SOIC package or a space-saving 8-pin TSSOP  
package.  
parator monitors the V  
input for an out-of-toler-  
CC  
ance condition. When an invalid V  
condition  
CC  
occurs, the reset output (RST) is forced low (or  
high in the case of RST). These devices also offer  
Figure 2. Logic Diagram (STM690/802/804/805)  
Figure 4. Logic Diagram (STM795)  
V
V
BAT  
V
V
BAT  
CC  
CC  
V
V
OUT  
OUT  
V
WDI  
PFI  
STM690/  
802/804/  
805  
CCSW  
(1)  
RST  
E
RST(RST)  
STM795  
E
PFO  
CON  
V
V
SS  
SS  
AI08848  
AI08846  
Note: 1. For STM804/805, reset output is active-high and open  
drain.  
Table 2. Signal Names  
MR  
WDI  
RST  
Push-button Reset Input  
Figure 3. Logic Diagram (STM704/806)  
Watchdog Input  
V
V
BAT  
CC  
Active-Low Reset Output  
Active-High Reset Output  
(1)  
RST  
V
OUT  
(2)  
Chip Enable Input  
E
MR  
PFI  
STM704  
STM806  
RST  
PFO  
(2)  
Conditioned Chip Enable Output  
Switch Output  
E
CON  
(2)  
V
CC  
Vccsw  
V
Supply Voltage Output  
Supply Voltage  
OUT  
V
SS  
V
AI08847  
CC  
V
Back-up Supply Voltage  
Power-fail Input  
Power-fail Output  
Ground  
BAT  
PFI  
PFO  
V
SS  
Note: 1. Open drain for STM804/805 only.  
2. STM795  
4/31  
STM690/704/795/802/804/805/806  
Figure 5. STM690/802/804/805 Connections  
Figure 6. STM704/806 Connections  
SO8/TSSOP8  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
V
BAT  
(1)  
OUT  
1
2
3
4
8
7
6
5
V
RST(RST)  
WDI  
CC  
V
RST  
MR  
CC  
V
SS  
V
SS  
PFI  
PFO  
PFI  
PFO  
AI08849  
AI08850  
Note: 1. For STM804/805, reset output is active-high and open  
drain.  
Figure 7. STM795 Connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
RST  
E
CC  
V
CCSW  
CON  
V
E
SS  
AI08851  
5/31  
STM690/704/795/802/804/805/806  
Pin Descriptions  
MR. A logic low on /MR asserts the reset output.  
Reset remains asserted as long as MR is low and  
PFI. When PFI is less than V  
or when V falls  
PFI CC  
below V  
(2.4V), PFO goes low; otherwise, PFO  
SW  
for t after MR returns high. This active-low input  
remains high. Connect to ground if unused.  
rec  
has an internal pull-up. It can be driven from a TTL  
or CMOS logic line, or shorted to ground with a  
switch. Leave open if unused.  
PFO. When PFI is less than V , or V falls be-  
PFI  
CC  
low V , PFO goes low; otherwise, PFO remains  
SW  
high. Leave open if unused.  
WDI. If WDI remains high or low for 1.6sec, the in-  
ternal watchdog timer runs out and reset is trig-  
gered. The internal watchdog timer clears while  
reset is asserted or when WDI sees a rising or fall-  
ing edge.  
V
. When V is above the switchover voltage  
CC  
OUT  
SO  
(V ), V  
channel MOSFET switch. When V  
V
is connected to V  
through a P-  
OUT  
CC  
falls below  
CC  
, V  
SO BAT  
connects to V  
. Connect to V if no  
OUT CC  
battery is used.  
The watchdog function cannot be disabled by al-  
lowing the WDI pin to float.  
switches to battery, Vccsw is  
OUT  
switches back to V , Vccsw is  
CC  
low. It can be used to drive gate of external PMOS  
transistor for I requirements exceeding 75mA.  
rec  
OUT  
when MR is a logic low. It remains low for t after  
rec  
E. The input to the chip-enable gating circuit. Con-  
nect to ground if unused.  
either V  
rises above the reset threshold, the  
CC  
watchdog triggers a reset, or MR goes from low to  
high.  
E
. E  
goes low only when E is low and re-  
CON  
CON  
set is not asserted. If E  
is low when reset is as-  
CON  
RST (Open Drain). Pulses high for t when trig-  
rec  
serted, E  
will remain low for 15µs or until E  
CON  
gered, and stays high whenever V is above the  
CC  
goes high, whichever occurs first. In the disabled  
mode, E is pulled up to V  
reset threshold or when MR is a logic high. It re-  
.
OUT  
CON  
mains high for t after either V  
falls below the  
rec  
CC  
V
. When V  
falls below V , V  
switches  
OUT  
BAT  
CC  
SO  
reset threshold, the watchdog triggers a reset, or  
MR goes from high to low.  
from V  
to V  
. When V  
rises above V  
+
CC  
BAT  
CC  
SO  
hysteresis, V  
reconnects to V . V  
may ex-  
OUT  
CC BAT  
ceed V . Connect to V if no battery is used.  
CC  
CC  
Table 3. Pin Description  
Pin  
Name  
Function  
STM690  
STM802  
STM704  
STM806  
STM804  
STM805  
STM795  
7
1
2
3
4
5
6
8
6
7
4
5
1
2
3
8
6
7
4
5
1
2
3
8
6
7
4
5
1
2
3
8
MR  
Push-button Reset Input  
WDI Watchdog Input  
RST Active-Low Reset Output  
RST Active-High Reset Output  
PFI PFI Power-fail Input  
PFO PFO Power-fail Output  
V
OUT  
Supply Output for External LPSRAM  
Supply Voltage  
V
CC  
V
CC  
Switch Output  
Vccsw  
V
SS  
Ground  
E
Chip Enable Input  
E
CON  
Conditioned Chip Enable Output  
Backup-Battery Input  
V
BAT  
6/31  
STM690/704/795/802/804/805/806  
Figure 8. Block Diagram (STM690/802/804/805)  
VCC  
VOUT  
VBAT  
COMPARE  
COMPARE  
VSO  
VRST  
trec  
Generator  
RST(RST)(1)  
WATCHDOG  
TIMER  
WDI  
PFI  
VPFI  
COMPARE  
PFO  
AI07897  
Note: 1. For STM804/805, reset output is active-high and open drain.  
Figure 9. Block Diagram (STM704/806)  
VCC  
VOUT  
VBAT  
COMPARE  
COMPARE  
VSO  
VRST  
trec  
Generator  
RST  
MR  
PFI  
VPFI  
COMPARE  
PFO  
AI07898  
7/31  
STM690/704/795/802/804/805/806  
Figure 10. Block Diagram (STM795)  
VCC  
VOUT  
VBAT  
VCCSW  
COMPARE  
COMPARE  
VSO  
trec  
Generator  
RST  
VRST  
ECON OUTPUT  
CONTROL  
E
ECON  
PFO  
PFI  
VPFI  
COMPARE  
AI08852  
Figure 11. Hardware Hookup  
(2)  
VCCSW  
Regulator  
Unregulated  
Voltage  
VCC  
VCC  
LPSRAM  
VIN  
VCC  
VCC  
VOUT  
STM690/704/  
795/802/804/  
805/806  
0.1µF  
E
E
0.1µF  
WDI(1)  
From Microprocessor  
E(2)  
(2)  
ECON  
R1  
R2  
PFI(3)  
MR(4)  
VBAT  
PFO(3)  
RST  
To Microprocessor NMI  
To Microprocessor Reset  
Push-Button  
AI08853  
Note: 1. For STM690/802/804/805.  
2. For STM795 only.  
3. Not available on STM795.  
4. For STM704/806.  
8/31  
STM690/704/795/802/804/805/806  
OPERATION  
Reset Output  
The STM690/704/795/802/804/805/806 Supervi-  
sor asserts a reset signal to the MCU whenever  
Note: Input frequency greater than 20ns (50MHz)  
will be filtered.  
V
goes below the reset threshold (V  
), a  
CC  
RST  
Back-up Battery Switchover  
In the event of a power failure, it may be necessary  
to preserve the contents of external SRAM  
watchdog time-out occurs, or when the Push-but-  
ton Reset Input (MR) is taken low. RST is guaran-  
teed to be a logic low (logic high for STM804/805)  
through V  
. With a backup battery installed with  
, the devices automatically switch the  
OUT  
for 0V < V  
< V  
if V  
is greater than 1V.  
CC  
RST  
BAT  
voltage V  
BAT  
Without a back-up battery, RST is guaranteed val-  
id down to V =1V.  
During power-up, once V  
threshold an internal timer keeps RST low for the  
reset time-out period, t . After this interval RST  
returns high.  
If V drops below the reset threshold, RST goes  
low. Each time RST is asserted, it stays low for at  
least the reset time-out period (t ). Any time V  
goes below the reset threshold the internal timer  
clears. The reset timer starts when V  
above the reset threshold.  
Push-button Reset Input (STM704/806)  
A logic low on MR asserts reset. Reset remains  
SRAM to the back-up supply when V falls.  
Note: If back-up battery is not used, connect both  
CC  
CC  
exceeds the reset  
CC  
V
and V  
to V  
.
BAT  
OUT  
CC  
This family of Supervisors does not always con-  
nect V to V when V is greater than V  
rec  
.
CC  
BAT  
OUT  
BAT  
V
connects to V  
CC  
(through a 100switch)  
(2.4V) or V  
BAT  
OUT  
SW  
CC  
when V is below V  
(whichever  
BAT  
is lower). This is done to allow the back-up battery  
(e.g., a 3.6V lithium cell) to have a higher voltage  
rec  
CC  
than V  
.
CC  
returns  
CC  
Assuming that V  
> 2.0V, switchover at V en-  
SO  
BAT  
sures that battery back-up mode is entered before  
V
gets too close to the 2.0V minimum required  
OUT  
to reliably retain data in most external SRAMs.  
When V recovers, hysteresis is used to avoid  
asserted while MR is low, and for t (see Figure  
rec  
CC  
36., page 22) after it returns high. The MR input  
has an internal 40kpull-up resistor, allowing it to  
be left open if not used. This input can be driven  
with TTL/CMOS-logic levels or with open-drain/  
collector outputs. Connect a normally open mo-  
mentary switch from MR to GND to create a man-  
ual reset function; external debounce circuitry is  
not required. If MR is driven from long cables or  
the device is used in a noisy environment, connect  
a 0.1µF capacitor from MR to GND to provide ad-  
ditional noise immunity. MR may float, or be tied to  
oscillation around the V point. V  
is connect-  
SO  
OUT  
ed to V through a 3PMOS power switch.  
CC  
Note: The back-up battery may be removed while  
V
is valid, assuming V  
is adequately decou-  
CC  
BAT  
pled (0.1µF typ), without danger of triggering a re-  
set.  
Table 4. I/O Status in Battery Back-up  
Pin  
Status  
V
when not used.  
V
OUT  
Connected to V  
through internal switch  
BAT  
CC  
Watchdog Input (NOT available on STM704/  
795/806)  
The watchdog timer can be used to detect an out-  
of-control MCU. If the MCU does not toggle the  
V
Disconnected from V  
Disabled  
CC  
PFI  
PFO  
E
OUT  
Logic Low  
Watchdog Input (WDI) within t  
(1.6sec typ), the  
WD  
High impedance  
Logic High  
reset is asserted. The internal watchdog timer is  
cleared by either:  
1. a reset pulse, or  
2. by toggling WDI (high-to-low or low-to-high),  
which can detect pulses as short as 50ns. If  
WDI is tied high or low, a reset pulse is  
E
CON  
WDI  
MR  
Watchdog timer is disabled  
Disabled  
RST  
RST  
Logic Low  
triggered every 1.8sec (t  
+ t ).  
WD  
rec  
The timer remains cleared and does not count for  
as long as reset is asserted. As soon as reset is re-  
leased, the timer starts counting (see Figure  
37., page 23).  
Logic High  
V
BAT  
Connected to V  
OUT  
Vccsw Logic High (STM795)  
9/31  
STM690/704/795/802/804/805/806  
Chip-Enable Gating (STM795 only)  
Any time a reset is generated, the chip-enable  
transmission gate remains disabled and E remains  
high impedance (regardless of E activity) for the  
first half of the reset time-out period (t /2). When  
rec  
the chip enable transmission gate is enabled, the  
mal operation (reset not asserted), the E transmis-  
sion gate is enabled and passes all E transitions.  
When reset is asserted, this path becomes dis-  
abled, preventing erroneous data from corrupting  
the CMOS RAM. The short E propagation delay  
impedance of E appears as a 40resistor in se-  
ries with the load at E  
. The propagation delay  
CON  
through the chip-enable transmission gate de-  
pends on V , the source impedance of the drive  
CC  
connected to E, and the loading on E  
. The chip  
CON  
from E to E  
enables the STM795 to be used  
enable propagation delay is production tested  
CON  
with most µPs. If E is low when reset asserts,  
remains low for typically 10µs to permit the  
current WRITE cycle to complete.  
from the 50% point on E to the 50% point on E  
using a 50driver and a 50pF load capacitance  
(see Figure 35., page 22). For minimum propaga-  
CON  
E
CON  
tion delay, minimize the capacitive load at E  
and use a low-output impedance driver.  
Chip Enable Output (STM795 only)  
CON  
Chip Enable Input (STM795 only)  
The chip-enable transmission gate is disabled and  
E is high impedance (disabled mode) while reset  
is asserted. During a power-down sequence when  
When the chip-enable transmission gate is en-  
abled, the impedance of E is equivalent to a  
V
passes the reset threshold, the chip-enable  
CC  
CON  
transmission gate disables and E immediately be-  
comes high impedance if the voltage at E is high.  
If E is low when reset asserts, the chip-enable  
transmission gate will disable 10µs after reset as-  
serts (see Figure 13). This permits the current  
WRITE cycle to complete during power-down.  
40resistor in series with the source driving E. In  
the disabled mode, the transmission gate is off  
and an active pull-up connects E  
to V  
(see  
CON  
OUT  
Figure 12). This pull-up turns off when the trans-  
mission gate is enabled.  
Figure 12. Chip-Enable Gating  
VCC  
trec  
Generator  
RST  
COMPARE  
VRST  
VOUT  
E
CON OUTPUT  
CONTROL  
E
ECON  
AI08802  
Figure 13. Chip Enable Waveform (STM795)  
VCC  
VRST  
VBAT  
ECON  
½ trec  
½ trec  
trec  
10µs  
trec  
RST  
E
AI08855b  
10/31  
STM690/704/795/802/804/805/806  
Power-fail Input/Output (NOT available on STM795)  
The Power-fail Input (PFI) is compared to an inter-  
drops  
CC  
nal reference voltage (independent from the V  
RST  
comparator). If PFI is less than the power-fail  
er-fail comparator is enabled and PFO follows PFI.  
If the comparator is unused, PFI should be con-  
threshold (V ), the Power-Fail Output (PFO) will  
PFI  
go low. This function is intended for use as an un-  
dervoltage detector to signal a failing power sup-  
ply. Typically PFI is connected through an external  
voltage divider (see Figure 11., page 8) to either  
the unregulated DC input (if it is available) or the  
nected to V  
and PFO left unconnected. PFO  
SS  
may be connected to MR on the STM704/806 so  
that a low voltage on PFI will generate a reset out-  
put.  
Applications Information  
These Supervisor circuits are not short-circuit pro-  
tected. Shorting V  
er-up transients such as charging a decoupling  
capacitor - destroys the device. Decouple both  
regulated output of the V regulator. The voltage  
CC  
divider can be set up such that the voltage at PFI  
to ground - excluding pow-  
OUT  
falls below V  
several milliseconds before the  
input to the STM690/704/795/802/  
PFI  
regulated V  
CC  
804/805/806 or the microprocessor drops below  
the minimum operating voltage.  
During battery back-up, the power-fail comparator  
is turned off and PFO goes (or remains) low (see  
V
and V  
pins to ground by placing 0.1µF ca-  
CC  
BAT  
pacitors as close to the device as possible.  
Figure 14. Power-fail Comparator Waveform (STM690/704/802/804/805/806)  
V
CC  
V
RST  
V
(2.4V)  
SW  
trec  
PFO  
PFO follows PFI  
PFO follows PFI  
RST  
AI08861a  
11/31  
STM690/704/795/802/804/805/806  
Using a SuperCap™ as a Backup Power  
Source  
Negative-Going V Transients  
The STM690/704/795/802/804/805/806 Supervi-  
CC  
SuperCaps™ are capacitors with extremely high  
capacitance values (e.g., order of 0.47F) for their  
size. Figure 15 shows how to use a SuperCap as  
a back-up power source. The SuperCap may be  
sors are relatively immune to negative-going V  
CC  
transients (glitches). Figure 32., page 20 was gen-  
erated using a negative pulse applied to V  
,
CC  
starting at V  
+ 0.3V and ending below the reset  
RST  
connected through a diode to the V  
supply.  
is above  
threshold by the magnitude indicated (comparator  
overdrive). The graph indicates the maximum  
CC  
Since V  
can exceed V  
while V  
BAT  
CC  
CC  
the reset threshold, there are no special precau-  
tions when using these supervisors with a Super-  
Cap.  
pulse width a negative V  
transient can have  
CC  
without causing a reset pulse. As the magnitude of  
the transient increases (further below the thresh-  
old), the maximum allowable pulse width decreas-  
es. Any combination of duration and overdrive  
which lies under the curve will NOT generate a re-  
Figure 15. Using a SuperCap™  
5V  
set signal. Typically, a V  
transient that goes  
CC  
100mV below the reset threshold and lasts 40µs or  
VCC  
VOUT  
To external SRAM  
STMXXX  
VBAT  
RST  
To µP  
GND  
AI08805  
12/31  
STM690/704/795/802/804/805/806  
TYPICAL OPERATING CHARACTERISTICS  
Note: Typical values are at T = 25°C.  
A
Figure 16. V  
-to-V  
BAT  
On-Resistance vs. Temperature  
OUT  
220  
200  
180  
160  
140  
120  
100  
V
= 0V  
CC  
V
= 2V  
BAT  
V
= 3V  
BAT  
V
= 3.3V  
BAT  
V
= 5V  
BAT  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09140  
Figure 17. Supply Current vs. Temperature (no load)  
30  
25  
20  
15  
10  
5
2.5V  
3.3V  
3.6V  
5.0V  
5.5V  
0
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TEMPERATURE [°C]  
AI09141  
13/31  
STM690/704/795/802/804/805/806  
Figure 18. V  
Threshold vs. Temperature  
PFI  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
V
= 5V  
CC  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
V
= 3.0V  
BAT  
1.225  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09142  
Figure 19. Reset Comparator Propagation Delay vs. Temperature  
24  
22  
V
= 3.0V  
BAT  
20  
18  
16  
14  
12  
10  
100mV OVERDRIVE  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09143  
Figure 20. Power-up t  
vs. Temperature  
rec  
215  
210  
205  
200  
195  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09144  
14/31  
STM690/704/795/802/804/805/806  
Figure 21. Normalized Reset Threshold vs. Temperature  
1.002  
1.000  
0.998  
0.996  
V
= 3.0V  
BAT  
0.994  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09145  
Figure 22. Watchdog Time-out Period vs. Temperature  
1.74  
1.72  
1.70  
1.68  
1.66  
1.64  
1.62  
1.60  
1.58  
1.56  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
TEMPERATURE [°C]  
AI09146  
Figure 23. E to E  
On-Resistance vs. Temperature  
CON  
90  
80  
70  
60  
50  
40  
V
= 3V  
CC  
30  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09147  
15/31  
STM690/704/795/802/804/805/806  
Figure 24. PFI to PFO Propagation Delay vs. Temperature  
9
8
7
6
5
4
3
2
1
0
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE [°C]  
AI09148  
Figure 25. RST Output Voltage vs. Supply Voltage  
6
5
4
V
CC  
3
2
1
0
V
RST  
500 ms/div  
AI09149  
16/31  
STM690/704/795/802/804/805/806  
Figure 26. RST Output Voltage vs. Supply Voltage  
6
5
V
CC  
4
3
2
1
0
V
RST  
500 ms/div  
AI09150  
Figure 27. RST Response Time (Assertion)  
6
5
4
3
2
1
0
V
CC  
V
RST  
2 µs/div  
AI09151  
17/31  
STM690/704/795/802/804/805/806  
Figure 28. RESET Response Time (Assertion)  
6
V
CC  
5
4
3
2
1
0
V
RST  
2µs/div  
AI09152  
Figure 29. Power-fail Comparator Response Time (Assertion)  
6
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
5
4
PFO  
3
PFI  
2
1
0
2µs/div  
AI09153  
18/31  
STM690/704/795/802/804/805/806  
Figure 30. Power-fail Comparator Response Time (De-Assertion)  
6
5
4
3
2
1
0
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
PFO  
PFI  
1.15  
2 µs/div  
AI09154  
Figure 31. V to Reset Propagation Delay vs. Temperature  
CC  
60  
50  
40  
30  
20  
10  
0
10V/ms  
1V/ms  
0.25V/ms  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE [°C]  
AI09155  
19/31  
STM690/704/795/802/804/805/806  
Figure 32. Maximum Transient Duration vs. Reset Threshold Overdrive  
250  
200  
150  
100  
50  
0
1
10  
100  
1000  
10000  
RESET COMPARATOR OVERDRIVE, V  
– V [mV]  
CC  
RST  
AI09156  
Figure 33. E to E  
Propagation Delay vs. Temperature  
CON  
3.5  
E Rising  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
E Falling  
0
140  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE [°C]  
AI09157  
20/31  
STM690/704/795/802/804/805/806  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings” table may cause per-  
manent damage to the device. These are stress  
ratings only and operation of the device at these or  
any other conditions above those indicated in the  
Operating sections of this specification is not im-  
plied. Exposure to Absolute Maximum Rating con-  
ditions for extended periods may affect device  
reliability. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 5. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
T
Storage Temperature (V Off)  
–55 to 150  
°C  
STG  
CC  
Lead Solder Temperature for 10 seconds  
Input or Output Voltage  
Supply Voltage  
(1)  
260  
°C  
V
T
SLD  
V
–0.3 to V +0.3  
IO  
CC  
V
/V  
–0.3 to 6.0  
20  
V
CC BAT  
I
O
Output Current  
mA  
mW  
P
Power Dissipation  
320  
D
Note: 1. Reflow at peak temperature of 255°C to 260°C for < 30 seconds (total thermal budget not to exceed 180°C for between 90 to 150  
seconds).  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 6, Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 6. Operating and AC Measurement Conditions  
Parameter  
STM690/704/795/  
Unit  
802/804/805/806  
V
/V  
Supply Voltage  
1.0 to 5.5  
–40 to 85  
5  
V
°C  
ns  
V
CC BAT  
Ambient Operating Temperature (T )  
A
Input Rise and Fall Times  
0.2 to 0.8V  
Input Pulse Voltages  
CC  
0.3 to 0.7V  
Input and Output Timing Ref. Voltages  
V
CC  
21/31  
STM690/704/795/802/804/805/806  
Figure 34. E to E  
Propagation Delay Test Circuit  
CON  
VCC  
VCC  
VBAT  
3.6V  
STM690/704/  
795/802/804/  
805/806  
25Equivalent  
Source Impedance  
E
ECON  
50Ω  
50Cable  
50Ω  
(1)  
50pF CL  
GND  
AI08854  
Note: 1. C includes load capacitance and scope probe capacitance.  
L
Figure 35. AC Testing Input/Output Waveforms  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
Figure 36. MR Timing Waveform  
MR  
tMLRL  
RST (1)  
trec  
tMLMH  
AI07837a  
Note: 1. RST for STM805.  
22/31  
STM690/704/795/802/804/805/806  
Figure 37. Watchdog Timing  
VCC  
trec  
RST  
tWD  
WDI  
AI07891  
Table 7. DC and AC Characteristics  
Alter-  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
native  
V
,
CC  
(2)  
(3)  
T = –40 to +85°C  
A
Operating Voltage  
5.5  
V
1.1  
V
BAT  
Excluding I  
Excluding I  
(V < 5.5V)  
CC  
40  
35  
60  
50  
µA  
µA  
OUT  
V
V
Supply Current  
CC  
(V < 3.6V)  
CC  
OUT  
I
CC  
Excluding I  
OUT  
= 2.3V,  
Supply Current in  
CC  
(V  
25  
35  
µA  
BAT  
Battery Back-up Mode  
V
CC  
= 2.0V, MR = V  
)
CC  
Excluding I  
V
Supply Current in  
OUT  
BAT  
(4)  
0.4  
1.0  
µA  
V
I
BAT  
(V  
BAT  
= 3.6V)  
Battery Back-up Mode  
V
0.03  
V
CC  
CC  
(5)  
I
= 5mA  
OUT1  
0.015  
V
0.3  
V
0.15  
CC  
CC  
I
= 75mA  
V
OUT1  
V
V
V
Voltage (Active)  
Voltage (Battery  
OUT1  
OUT  
I
= 250µA,  
OUT1  
V
CC  
V
CC  
V
(5)  
0.0015  
0.0006  
V
> 2.5V  
CC  
V
BAT  
V
BAT  
I
= 250µA, V  
= 1mA, V  
= 2.3V  
BAT  
V
V
OUT2  
0.1  
0.034  
OUT  
V
OUT2  
Back-up)  
V
BAT  
I
= 2.3V  
BAT  
OUT2  
0.14  
V
to V  
On-resistance  
3
4
CC  
OUT  
V
to V  
On-resistance  
100  
BAT  
OUT  
STM704/806 only;  
Input Leakage Current (MR)  
20  
75  
2
350  
µA  
MR = 0V; V = 3V  
CC  
I
LI  
0V = V = V  
Input Leakage Current (PFI)  
Input Leakage Current (WDI)  
–25  
–1  
+25  
+1  
nA  
µA  
IN  
CC  
CC  
0V = V = V  
IN  
STM804/805/795;  
I
LO  
Output Leakage Current  
–1  
+1  
µA  
(6)  
0V = V = V  
IN  
CC  
V
V
RST  
V
RST  
(max) < V < 5.5V  
0.7V  
CC  
Input High Voltage (MR, WDI)  
Input Low Voltage (MR, WDI)  
V
V
IH  
CC  
V
(max) < V < 5.5V  
0.3V  
CC  
IL  
CC  
23/31  
STM690/704/795/802/804/805/806  
Alter-  
native  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
V
Test Condition  
V
= V  
(max),  
= 3.2mA  
Output Low Voltage (PFO,  
RST, RST, Vccsw)  
CC  
RST  
0.3  
I
SINK  
V
OL  
OL  
V
= V  
(max),  
= 1.6mA, E = 0V  
CC  
RST  
Output Low Voltage (E  
)
0.2V  
CC  
V
CON  
I
OUT  
I
= 40µA; V = 1.0V;  
CC  
OL  
V
= V  
;
CC  
0.3  
0.3  
V
BAT  
T = 0°C to 85°C  
A
V
Output Low Voltage (RST)  
Output High Voltage (RST,  
I
OL  
= 200µA;  
V
V
V
V
V
V
= 1.2V; V  
= V  
CC  
BAT  
CC  
I
= 1mA,  
(max)  
SOURCE  
2.4  
(7)  
V
= V  
RST)  
CC  
RST  
V
= V  
(max),  
CC  
RST  
V
OH  
Output High Voltage (E  
)
0.8V  
CON  
CC  
I
= 1.6mA, E = V  
OUT  
CC  
I
= 75µA,  
SOURCE  
0.8V  
0.8V  
Output High Voltage (PFO)  
CC  
V
= V  
(max)  
CC  
RST  
V
OH  
Battery Back-up (E  
Vccsw, RST)  
,
CON  
V
OHB  
I
= 100µA,  
SOURCE  
BAT  
Power-fail Comparator (NOT available on STM795)  
STM802/  
804/806  
1.212  
1.187  
1.237  
1.262  
V
PFI Falling  
(V < 3.6V)  
V
PFI  
PFI Input Threshold  
CC  
STM690/  
704/805  
1.237  
10  
1.287  
20  
V
PFI Rising (V < 3.6V)  
PFI Hysteresis  
mV  
µs  
CC  
PFI to PFO Propagation  
Delay  
t
2
PFD  
PFO Output Short to  
GND Current  
I
V
= 3.6V, PFO = 0V  
CC  
0.1  
0.75  
2.0  
mA  
SC  
Battery Switchover  
V
BAT  
V
BAT  
V
BAT  
V
BAT  
> V  
< V  
> V  
< V  
V
V
V
SW  
SW  
SW  
SW  
SW  
Power-down  
Power-up  
V
BAT  
Battery Back-up  
(8,9)  
Switchover Voltage  
V
SW  
V
V
SO  
V
BAT  
V
V
2.4  
40  
V
SW  
Hysteresis  
mV  
24/31  
STM690/704/795/802/804/805/806  
Alter-  
native  
(1)  
Sym  
Description  
Min  
Typ  
Max  
Unit  
Test Condition  
Reset Thresholds  
STM690T/  
704T/795T/  
805T  
V
Falling  
Rising  
Falling  
Rising  
Falling  
Rising  
3.00  
3.00  
3.075  
3.085  
3.15  
3.17  
V
V
CC  
V
V
CC  
3.00  
3.00  
2.85  
3.075  
3.085  
2.925  
3.12  
3.14  
3.00  
V
V
V
CC  
STM802T/  
804T/806T  
V
CC  
CC  
STM690S/  
704S/795S/  
805S  
V
V
V
2.85  
2.88  
2.88  
2.55  
2.55  
2.59  
2.59  
140  
2.935  
2.925  
2.935  
2.625  
2.635  
2.625  
2.635  
200  
3.02  
3.00  
3.02  
2.70  
2.72  
2.70  
2.72  
280  
V
V
CC  
(10)  
Reset Threshold  
V
RST  
Falling  
Rising  
Falling  
CC  
STM802S/  
804S/806S  
V
V
CC  
STM690R/  
704R/795R/  
805R  
V
CC  
V
V
Rising  
V
CC  
V
CC  
Falling  
Rising  
V
STM802R/  
804R/806R  
V
V
CC  
t
V
CC  
< 3.6V  
RST Pulse Width  
ms  
rec  
Push-button Reset Input (STM704/806)  
t
t
MR  
MR Pulse Width  
100  
20  
60  
ns  
ns  
MLMH  
t
t
MRD  
MR to RST Output Delay  
500  
MLRL  
Watchdog Timer (NOT available on STM704/795/806)  
t
V
(max) < V < 3.6V  
Watchdog Timeout Period  
WDI Pulse Width  
1.12  
100  
1.60  
20  
2.24  
s
WD  
RST  
RST  
CC  
V
(max) < V < 3.6V  
ns  
CC  
Chip-Enable Gating (STM795 only)  
E-to-E Resistance  
V
V
= V  
= V  
(max)  
(max)  
46  
2
CON  
CC  
CC  
RST  
E-to-E  
Propagation Delay  
7
ns  
µs  
CON  
RST  
Reset-to-E  
High Delay  
10  
CON  
V
CC  
= 3.6V, Disable Mode,  
I
E
CON  
Short Circuit Current  
0.1  
0.75  
2.0  
mA  
SC  
E
CON  
= 0V  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = V  
(max) to 5.5V; and V  
= 2.8V (except where noted).  
BAT  
A
CC  
RST  
2. V supply current, logic input leakage, Watchdog functionality, Push-button Reset functionality, PFI functionality, state of RST and  
CC  
RST tested at V  
= 3.6V, and V = 5.5V. The state of RST or RST and PFO is tested at V = V (min). Either V or V  
BAT  
CC CC CC CC BAT  
can go to 0V if the other is greater than 2.0V.  
3. V (min) = 1.0V for T = 0°C to +85°C.  
CC  
A
4. Tested at V  
= 3.6V, V = 3.5V and 0V.  
BAT  
CC  
5. Guaranteed by design.  
6. The leakage current measured on the RST pin (STM804/805) or RST pin (STM795) is tested with the reset output not asserted  
(output high impedance).  
7. Not valid for STM795/804/805 (open drain).  
8. When V  
9. When V  
> V > V , V  
remains connected to V until V drops below V  
.
SW  
BAT  
CC  
SW  
OUT  
CC  
CC  
> V > V  
, V  
BAT  
remains connected to V until V drops below the battery voltage (V  
) – 75mV.  
BAT  
SW  
CC  
OUT  
CC  
CC  
10. The reset threshold tolerance is wider for V rising than for V falling due to the 10mV (typ) hysteresis, which prevents internal  
CC  
CC  
oscillation.  
25/31  
STM690/704/795/802/804/805/806  
PACKAGE MECHANICAL  
Figure 38. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mech. Drawing  
h x 45˚  
A2  
A
C
B
ddd  
e
D
8
1
E
H
A1  
α
L
SO-A  
Note: Drawing is not to scale.  
Table 8. SO8 – 8-lead Plastic Small Outline, 150 mils body width, Package Mechanical Data  
mm  
Min  
1.35  
0.10  
0.33  
0.19  
4.80  
inches  
Min  
Symb  
Typ  
Max  
1.75  
0.25  
0.51  
0.25  
5.00  
0.10  
4.00  
Typ  
Max  
0.069  
0.010  
0.020  
0.010  
0.197  
0.004  
0.157  
A
A1  
B
0.053  
0.004  
0.013  
0.007  
0.189  
C
D
ddd  
E
3.80  
0.150  
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
h
L
α
N
8
8
26/31  
STM690/704/795/802/804/805/806  
Figure 39. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Outline  
D
8
1
5
4
c
E1  
E
α
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note: Drawing is not to scale.  
Table 9. TSSOP8 – 8-lead, Thin Shrink Small Outline, 3x3mm body size, Mechanical Data  
mm  
Min  
inches  
Min  
Symb  
Typ  
Max  
1.10  
0.15  
0.95  
0.40  
0.23  
0.10  
3.10  
Typ  
Max  
0.043  
0.006  
0.037  
0.016  
0.009  
0.004  
0.122  
A
A1  
A2  
b
0.05  
0.75  
0.25  
0.13  
0.002  
0.030  
0.010  
0.005  
0.85  
0.034  
c
CP  
D
3.00  
0.65  
4.90  
3.00  
0.55  
0.95  
2.90  
0.118  
0.026  
0.193  
0.118  
0.022  
0.037  
0.114  
e
E
4.65  
2.90  
0.40  
5.15  
3.10  
0.70  
0.183  
0.114  
0.016  
0.203  
0.122  
0.030  
E1  
L
L1  
α
0°  
6°  
0°  
6°  
N
8
8
27/31  
STM690/704/795/802/804/805/806  
PART NUMBERING  
Table 10. Ordering Information Scheme  
Example:  
STM690  
T
M
6
E
Device Type  
STM690/704/795/802/804/805/806  
Reset Threshold Voltage  
T = STM690/704/795/805 = V  
= 3.00V to 3.15V  
RST  
STM802/804/806 = V  
= 3.00V to 3.12V  
RST  
S = STM690/704/795/805 = V  
= 2.85V to 3.00V  
RST  
STM802/804/806 = V  
= 2.88V to 3.00V  
RST  
R = STM690/704/795/805 = V  
= 2.55V to 2.70V  
RST  
STM802/804/806 = V  
= 2.59V to 2.70V  
RST  
Package  
M = SO8  
(1)  
DS = TSSOP8  
Temperature Range  
6 = –40 to 85°C  
Shipping Method  
®
E = Tubes (Pb-Free - ECO PACK )  
®
F = Tape & Reel (Pb-Free - ECO PACK )  
Note: 1. Contact local ST sales office for availability.  
For other options, or for more information on any aspect of this device, please contact the ST Sales Office  
nearest you.  
28/31  
STM690/704/795/802/804/805/806  
Table 11. Marking Description  
Part Number  
Reset Threshold  
Package  
Topside Marking  
SO8  
TSSOP8  
SO8  
STM690T  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
3.075  
2.925  
2.625  
690T  
STM690S  
STM690R  
STM704T  
STM704S  
STM704R  
STM795T  
STM795S  
STM795R  
STM802T  
STM802S  
STM802R  
STM804T  
STM804S  
STM804R  
STM805T  
STM805S  
STM805R  
STM806T  
STM806S  
STM806R  
690S  
690R  
704T  
704S  
704R  
795T  
795S  
795R  
802T  
802S  
802R  
804T  
804S  
804R  
805T  
805S  
805R  
806T  
806S  
806R  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
29/31  
STM690/704/795/802/804/805/806  
REVISION HISTORY  
Table 12. Document Revision History  
Date  
Version  
Revision Details  
October 31, 2003  
1.0  
First Issue  
Reformatted; update characteristics (Figure 1, 3, 4, 11, 13, 14, 36; Table 1, 3, 4, 7,  
9, 11)  
22-Dec-03  
16-Jan-04  
2.0  
2.1  
Add Typical Operating Characteristics (Figure 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,  
26, 27, 28, 29, 30, 31, 32, 33)  
07-Apr-04  
25-May-04  
2.2  
3.0  
Update characteristics (Figure 13, 25, 26, 27, 28, 31; Table 1, 3, 7)  
Update characteristics (Table 3, 7)  
Update package availability, pin description; promote document (Figure 1, 14;  
Table 3, 10)  
02-Jul-04  
4.0  
5.0  
Clarify root part numbers, pin descriptions, update characteristics (Figure 2, 3, 4, 5,  
6, 7, 8, 9, 10, 11, 13, 14, 34; Table 1, 3, 6, 7, 10)  
29-Sep-04  
30/31  
STM690/704/795/802/804/805/806  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
31/31  

相关型号:

STM802T

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM802TDS6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM802TDS6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM802TM6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM802TM6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804R

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804RDS6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804RDS6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804RM6E

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804RM6F

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM804S

3V Supervisor with Battery Switchover

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR