STM819MDS6F [STMICROELECTRONICS]

5 V supervisor with battery switchover; 5 V主管与电池切换
STM819MDS6F
型号: STM819MDS6F
厂家: ST    ST
描述:

5 V supervisor with battery switchover
5 V主管与电池切换

电池
文件: 总43页 (文件大小:1146K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM690A, STM692A, STM703  
STM704, STM802, STM805, STM817/8/9  
5 V supervisor with battery switchover  
Features  
5 V operating voltage  
NVRAM supervisor for external LPSRAM  
8
Chip-enable gating (STM818 only) for external  
LPSRAM (7 ns max prop delay)  
1
RST and RST outputs  
200 ms (typ) t  
rec  
Watchdog timer - 1.6 sec (typ)  
SO8 (M)  
Automatic battery switchover  
Low battery supply current - 0.4 µA (typ)  
Power-fail comparator (PFI/PFO)  
Low supply current - 40 µA (typ)  
Guaranteed RST (RST) assertion down to  
V
= 1.0 V  
CC  
Operating temperature:  
TSSOP8 3 x 3 (DS)(1)  
–40 °C to +85 °C (industrial grade)  
RoHS compliance  
– Lead-free components are compliant with  
the RoHS directive  
1. Contact local ST sales office for availability.  
Table 1.  
Device summary  
Manual Battery  
Chip-  
enable  
gating  
Battery  
freshness  
seal  
Watchdog Active-low Active-  
Power-fail  
comparator  
Part number  
reset  
switch-  
over  
input  
RST(1)  
high RST  
input(1)  
STM690A  
STM692A  
STM703  
STM704  
STM802L/M  
STM805L  
STM817L/M  
STM818L/M  
STM819L/M  
1. All RST and RST outputs are push-pull.  
August 2010  
Doc ID 10522 Rev 10  
1/43  
www.st.com  
1
Contents  
STM690A/692A/703/704/802/805/817/818/819  
Contents  
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
1.1.5  
1.1.6  
1.1.7  
1.1.8  
1.1.9  
MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
WDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
V
V
OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
BAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
E
CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
PFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
1.1.10 PFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Push-button reset input (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . 13  
Watchdog input (NOT available on STM703/704/819) . . . . . . . . . . . . . . . 13  
Backup battery switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Chip-enable gating (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Chip-enable input (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Chip-enable output (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power-fail input/output (NOT available on STM818) . . . . . . . . . . . . . . . . 16  
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2.10 Using a SuperCap™ as a backup power source . . . . . . . . . . . . . . . . . . . 17  
2.11 Negative-going VCC transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2.12 Battery freshness seal (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . 19  
3
4
5
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Contents  
6
7
8
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Doc ID 10522 Rev 10  
3/43  
List of tables  
STM690A/692A/703/704/802/805/817/818/819  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
I/O status in battery backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Operating and AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
SO8 - 8-lead plastic small outline, 150 mils body width, package mechanical data. . . . . . 38  
TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, mechanical data . . . . . . 39  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Marking description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram (STM690A/692/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Logic diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Logic diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
STM690A/692A/802/805/817 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
STM703/704/819 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
STM818 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Block diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 10. Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 11. Chip-enable gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 12. Chip-enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 13. Power-fail comparator waveform (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 14. Power-fail comparator waveform (STM690A/692A/703/704/802/805) . . . . . . . . . . . . . . . . 17  
Figure 15. Using a SuperCap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 16. Freshness seal enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 17.  
Figure 18.  
V
V
to V  
on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
OUT  
CC  
OUT  
to V  
BAT  
Figure 19. Supply current vs. temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20. Battery current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 21.  
Figure 22. Reset comparator propagation delay vs. temperature (other than STM817/818/819) . . . . 22  
Figure 23. Reset comparator propagation delay vs. temperature (V = 3.0 V; STM817/818/819) . 23  
V
threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PFI  
BAT  
Figure 24. Power-up t  
vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
REC  
Figure 25. Normalized reset threshold vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 26. Watchdog time-out period vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 27. E to E  
on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CON  
Figure 28. PFI to PFO propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 29. Output voltage vs. load current (V = 5 V; V  
= 2.8 V; T = 25 °C) . . . . . . . . . . . . . . . 26  
CC  
BAT  
A
Figure 30. Output voltage vs. load current (V = 0 V; V  
= 2.8 V; T = 25 °C) . . . . . . . . . . . . . . . 26  
A
CC  
BAT  
Figure 31. RST output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 32. RST output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 33. RST response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 34. RST response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 35. Power-fail comparator response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 36. Power-fail comparator response time (de-assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Figure 37. Maximum transient duration vs. reset threshold overdrive . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 38. E to E  
Figure 39. E to E  
propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
propagation delay test circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CON  
CON  
Figure 40. AC testing input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 41. MR timing waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 42. Watchdog timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 43. SO8 - 8-lead plastic small outline, 150 mils body width, package mechanical drawing . . . 38  
Figure 44. TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, outline . . . . . . . . . . . . . . 39  
Doc ID 10522 Rev 10  
5/43  
Description  
STM690A/692A/703/704/802/805/817/818/819  
1
Description  
The STM690A/692A/703/704/802/805/817/818/819 supervisors are self-contained devices  
which provide microprocessor supervisory functions with the ability to non-volatize and  
write-protect external LPSRAM. A precision voltage reference and comparator monitors the  
V
CC input for an out-of-tolerance condition. When an invalid V condition occurs, the reset  
CC  
output (RST) is forced low (or high in the case of RST). These devices also offer a watchdog  
timer (except for STM703/704/819) as well as a power-fail comparator (except for STM818)  
to provide the system with an early warning of impending power failure.  
These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin  
TSSOP package.  
Figure 1.  
Logic diagram (STM690A/692/802/805/817)  
V
V
BAT  
CC  
V
OUT  
WDI  
PFI  
STM690A/  
692A/802/  
805/817  
(1)  
RST(RST)  
PFO  
V
SS  
AI07894  
1. For STM805, reset output is active-high.  
Figure 2. Logic diagram (STM703/704/819)  
V
V
BAT  
CC  
V
OUT  
MR  
PFI  
STM703/  
704/819  
RST  
PFO  
V
SS  
AI07895  
6/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Description  
Figure 3.  
Logic diagram (STM818)  
V
V
BAT  
CC  
V
OUT  
WDI  
E
RST  
STM818  
E
CON  
V
SS  
AI07896  
Table 2.  
Signal names  
MR  
WDI  
RST  
RST  
E(1)  
Push-button reset input  
Watchdog input  
Active-low reset output  
Active-high reset outpu  
Chip-enable input  
(1)  
ECON  
VOUT  
VCC  
Conditioned chip-enable output  
Supply voltage output  
Supply voltage  
VBAT  
PFI  
Backup supply voltage  
Power-fail input  
PFO  
VSS  
Power-fail output  
Ground  
1. STM818  
Figure 4.  
STM690A/692A/802/805/817 connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
(1)  
V
RST(RST)  
WDI  
CC  
V
SS  
PFI  
PFO  
AI07889  
1. For STM805, reset output is active-high.  
Doc ID 10522 Rev 10  
7/43  
Description  
STM690A/692A/703/704/802/805/817/818/819  
Figure 5.  
STM703/704/819 connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
RST  
MR  
CC  
V
SS  
PFI  
PFO  
AI07890  
Figure 6.  
STM818 connections  
SO8/TSSOP8  
V
V
BAT  
OUT  
1
2
3
4
8
7
6
5
V
CC  
RST  
WDI  
E
V
SS  
E
CON  
AI07892  
1.1  
Pin descriptions  
1.1.1  
MR  
A logic low on MR asserts the reset output. Reset remains asserted as long as MR is low  
and for t after MR returns high. This active-low input has an internal pull-up. It can be  
rec  
driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if  
unused.  
1.1.2  
WDI  
If WDI remains high or low for 1.6 sec, the internal watchdog timer runs out and reset is  
triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a  
rising or falling edge.  
The watchdog function can be disabled by allowing the WDI pin to float.  
1.1.3  
1.1.4  
RST  
Pulses low for trec when triggered, and stays low whenever V is below the reset threshold  
or when MR is a logic low. It remains low for t after either V rises above the reset  
threshold, the watchdog triggers a reset, or MR goes from low to high.  
CC  
rec  
CC  
RST  
Pulses high for t when triggered, and stays high whenever V is above the reset  
rec  
CC  
threshold or when MR is a logic high. It remains high for t after either V falls below the  
rec  
CC  
reset threshold, the watchdog triggers a reset, or MR goes from high to low.  
8/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Description  
1.1.5  
V
OUT  
When V is above the switchover voltage (V ), V  
is connected to V through a P-  
CC  
SO  
OUT  
CC  
channel MOSFET switch. When V falls below V , V  
connects to V  
.
CC  
SO BAT  
OUT  
1.1.6  
V
BAT  
When V falls below V , V  
switches from V to V . When V rises above V +  
SO  
CC  
SO OUT  
CC  
BAT  
CC  
hysteresis, VOUT reconnects to V . V  
may exceed V . Connect to V if no battery is  
CC BAT  
CC CC  
used.  
1.1.7  
1.1.8  
E
The input to the chip-enable gating circuit. Connect to ground if unused.  
E
CON  
goes low only when E is low and reset is not asserted. If E  
E
is low when reset is  
CON  
CON  
asserted, E  
will remain low for 15 µs or until E goes high, whichever occurs first. In the  
CON  
disabled mode, E  
is pulled up to V  
.
CON  
OUT  
1.1.9  
PFI  
When PFI is less than V  
or when V falls below 2.4 V (or V ), PFO goes low;  
CC SO  
PFI  
otherwise, PFO remains high. Connect to ground if unused.  
1.1.10  
PFO  
When PFI is less than V , or V falls below 2.4 V (or V ), PFO goes low; otherwise,  
PFI  
CC  
SO  
PFO remains high. Leave open if unused. Output type is push-pull.  
Doc ID 10522 Rev 10  
9/43  
Description  
Table 3.  
STM690A/692A/703/704/802/805/817/818/819  
Pin description  
Pin  
STM690A  
STM692A  
STM802  
STM817  
STM703  
STM704  
STM819  
Name  
Function  
STM818  
STM805  
-
-
6
7
-
6
-
-
6
-
MR  
WDI  
RST  
RST  
Push-button reset input  
Watchdog input  
6
7
-
7
-
Active-low reset output  
Active-high reset output  
7
1
2
8
-
1
2
8
4
5
-
1
2
8
-
1
2
8
-
VOUT Supply output for external LPSRAM  
VCC  
VBAT  
E
Supply voltage  
Backup battery input  
Chip-enable input  
-
-
-
ECON Conditioned chip-enable output  
4
5
3
4
5
3
4
5
3
PFI  
PFO  
VSS  
Power-fail input  
-
Power-fail output (push-pull)  
Ground  
3
Figure 7.  
Block diagram (STM690A/692A/802/805/817)  
VCC  
VOUT  
VBAT  
VSO  
COMPARE  
COMPARE  
VRST  
trec  
Generator  
RST(RST)(1)  
WATCHDOG  
TIMER  
WDI  
PFI  
VPFI  
COMPARE  
PFO  
AI07897  
1. For STM805, reset output is active-high.  
10/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Figure 8. Block diagram (STM703/704/819)  
Description  
VCC  
VOUT  
VBAT  
VSO  
COMPARE  
COMPARE  
VRST  
trec  
Generator  
RST  
MR  
PFI  
VPFI  
COMPARE  
PFO  
AI07898  
Figure 9.  
Block diagram (STM818)  
VCC  
VOUT  
VBAT  
VSO  
COMPARE  
COMPARE  
VRST  
trec  
Generator  
WATCHDOG  
TIMER  
RST  
WDI  
E
CON OUTPUT  
CONTROL  
E
ECON  
AI07899a  
Doc ID 10522 Rev 10  
11/43  
Description  
STM690A/692A/703/704/802/805/817/818/819  
Figure 10. Hardware hookup  
Regulator  
VIN VCC  
Unregulated  
Voltage  
VCC  
VCC  
LPSRAM  
VCC  
VOUT  
STM690A/692A/  
703/704/802/805/  
817/818/819  
0.1 F  
E
E
0.1 F  
WDI(1)  
From Microprocessor  
E(2)  
(2)  
ECON  
R1  
R2  
PFI(3)  
MR(4)  
VBAT  
PFO(3)  
RST(5)  
To Microprocessor NMI  
To Microprocessor Reset  
Push-Button  
AI07893  
1. For STM690A/692A/802/805/817/818.  
2. For STM818 only.  
3. Not available on STM818.  
4. For STM703/704/819.  
5. Active high on STM805.  
12/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Operation  
2
Operation  
2.1  
Reset output  
The STM690A/692A/703/704/802/805/817/818/819 Supervisor asserts a reset signal to the  
MCU whenever V goes below the reset threshold (V , a watchdog time-out occurs, or  
CC  
RST)  
when the Push-button Reset Input (MR) is taken low. RST is guaranteed to be a logic low  
(logic high for STM805) for 0V < V < V if VBAT is greater than 1 V. Without a backup  
CC  
RST  
battery, RST is guaranteed valid down to V =1 V.  
CC  
During power-up, once V exceeds the reset threshold an internal timer keeps RST low for  
CC  
the reset time-out period, t . After this interval RST returns high.  
rec  
If V drops below the reset threshold, RST goes low. Each time RST is asserted, it stays  
CC  
low for at least the reset time-out period (t ). Any time V goes below the reset threshold  
rec  
CC  
the internal timer clears. The reset timer starts when V returns above the reset threshold.  
CC  
2.2  
Push-button reset input (STM703/704/819)  
A logic low on MR asserts reset. Reset remains asserted while MR is low, and for t (see  
rec  
Figure 41) after it returns high. The MR input has an internal 40 kΩ pull-up resistor, allowing  
it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with  
open-drain/collector outputs. Connect a normally open momentary switch from MR to GND  
to create a manual reset function; external debounce circuitry is not required. If MR is driven  
from long cables or the device is used in a noisy environment, connect a 0.1 µF capacitor  
from MR to GND to provide additional noise immunity. MR may float, or be tied to V when  
CC  
not used.  
2.3  
Watchdog input (NOT available on STM703/704/819)  
The watchdog timer can be used to detect an out-of-control MCU. If the MCU does not  
toggle the Watchdog Input (WDI) within t (1.6 sec typ), the reset is asserted. The internal  
WD  
watchdog timer is cleared by either:  
1. a reset pulse, or  
2. by toggling WDI (high-to-low or low-to-high), which can detect pulses as short as 50ns.  
If WDI is tied high or low, a reset pulse is triggered every 1.8 sec (t  
+ t ).  
WD  
rec  
The timer remains cleared and does not count for as long as reset is asserted. As soon as  
reset is released, the timer starts counting (see Figure 42).  
Note:  
1
2
The watchdog function may be disabled by floating WDI or tri-stating the driver connected to  
WDI. When tri-stated or disconnected, the maximum allowable leakage current is 10 µA and  
the maximum allowable load capacitance is 200 pF.  
Input pulses less than 20 ns will be ignored.  
Doc ID 10522 Rev 10  
13/43  
Operation  
STM690A/692A/703/704/802/805/817/818/819  
2.4  
Backup battery switchover  
In the event of a power failure, it may be necessary to preserve the contents of external  
SRAM through V . With a backup battery installed with voltage V , the devices  
OUT  
BAT  
automatically switch the SRAM to the backup supply when V falls.  
CC  
Note:  
When the battery is first connected without V power applied, the device does not  
CC  
immediately provide backup battery voltage on V  
. Only after V exceeds V  
will the  
OUT  
CC  
RST  
switchover operate as described below. This mode allows a battery to be attached during  
manufacturing but not used until after the system has been activated for the first time. As a  
result, no battery power is consumed by the device during storage and shipment. For the  
STM81x devices, the battery freshness seal can be initiated again by following the  
procedure outlined in Section 2.12. If the backup battery is not used, connect both V  
and  
BAT  
V
to V  
.
OUT  
CC  
Whenever V falls below the switchover voltage, V , V  
is connected to V  
through a  
BAT  
CC  
SO OUT  
100 Ω switch. V is the lesser of V  
and V . Choosing the lesser allows the device to  
be powered by V for as long as possible before switching over thereby maximizing the  
SO  
BAT  
RST  
CC  
battery life.  
Assuming V  
> 2.0 V, switchover at V ensures that battery backup mode is entered  
SO  
BAT  
before V  
gets too close to the 2.0 V minimum required to reliably retain data in most  
OUT  
external SRAMs. When V recovers, hysteresis is used to avoid oscillation around the V  
CC  
SO  
point. V  
is connected to V through a 3 Ω PMOS power switch.  
OUT  
CC  
Note:  
The backup battery may be removed while V is valid, assuming V  
is adequately  
BAT  
CC  
decoupled (0.1 µF typ), without danger of triggering a reset.  
Table 4.  
I/O status in battery backup  
VOUT Connected to VBAT through internal switch  
VCC  
PFI  
Disconnected from VOUT  
Disabled  
PFO  
E
Logic low  
High impedance  
Logic high  
ECON  
WDI  
MR  
Watchdog timer is disabled  
Disabled  
RST  
RST  
VBAT  
Logic low  
Logic high  
Connected to VOUT  
14/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Operation  
2.5  
Chip-enable gating (STM818 only)  
Internal gating of the chip-enable (E) signal prevents erroneous data from corrupting the  
external CMOS RAM in the event of an undervoltage condition. The STM818 uses a series  
transmission gate from E to E (see Figure 11). During normal operation (reset not  
CON  
asserted), the E transmission gate is enabled and passes all E transitions. When reset is  
asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS  
RAM. The short propagation delay from E to E  
enables the STM818 to be used with  
CON  
most µPs. If E is low when reset asserts, E  
remains low for typically 15 µs (or until E  
CON  
goes high) to permit the current WRITE cycle to complete. Connect E to V if unused.  
SS  
2.6  
Chip-enable input (STM818 only)  
The chip-enable transmission gate is disabled and E is high impedance (disabled mode)  
while reset is asserted. During a power-down sequence when V passes the reset  
CC  
threshold, the chip-enable transmission gate disables and E immediately becomes high  
impedance if the voltage at E is high. If E is low when reset asserts, the chip-enable  
transmission gate will disable 15 µs after reset asserts (see Figure 12). This permits the  
current WRITE cycle to complete during power-down.  
Any time a reset is generated, the chip-enable transmission gate remains disabled and E  
remains high impedance (regardless of E activity) for the reset time-out period. When the  
chip-enable transmission gate is enabled, the impedance of E appears as a 40 Ω resistor in  
series with the load at E  
. The propagation delay through the chip-enable transmission  
CON  
gate depends on V , the source impedance of the drive connected to E, and the loading  
CC  
on E  
. The chip-enable propagation delay is production tested from the 50% point on E to  
CON  
the 50% point on E  
For minimum propagation delay, minimize the capacitive load at E  
impedance driver.  
using a 50 Ω driver and a 50 pF load capacitance (see Figure 39).  
CON  
and use a low-output  
CON  
2.7  
Chip-enable output (STM818 only)  
When the chip-enable transmission gate is enabled, the impedance of E  
is equivalent to  
CON  
a 40 Ω resistor in series with the source driving E. In the disabled mode, the transmission  
gate is off and an active pull-up connects E  
off when the transmission gate is enabled.  
to V  
(see Figure 11). This pull-up turns  
CON  
OUT  
Figure 11. Chip-enable gating  
VCC  
trec  
Generator  
RST  
COMPARE  
E
VRST  
VOUT  
CON OUTPUT  
CONTROL  
E
ECON  
AI08802  
Doc ID 10522 Rev 10  
15/43  
Operation  
STM690A/692A/703/704/802/805/817/818/819  
Figure 12. Chip-enable waveform  
VCC  
VRST  
VBAT  
ECON  
t
t
rec  
rec  
15µs  
RST  
E
X X  
XX  
AI08803b  
2.8  
Power-fail input/output (NOT available on STM818)  
The Power-fail Input (PFI) is compared to an internal reference voltage (independent from  
the V  
comparator). If PFI is less than the power-fail threshold (V ), the Power-Fail  
RST  
PFI  
Output (PFO) will go low. This function is intended for use as an undervoltage detector to  
signal a failing power supply. Typically PFI is connected through an external voltage divider  
(see Figure 12) to either the unregulated DC input (if it is available) or the regulated output  
of the V regulator. The voltage divider can be set up such that the voltage at PFI falls  
CC  
below V several milliseconds before the regulated V input to the  
PFI  
CC  
STM690A/692A/703/704/802/805/817/818/819 Supervisor or before the microprocessor  
drops below the minimum operating voltage. This provides several milliseconds of advanced  
warning that power is about to fail.  
During battery backup, the power-fail comparator turns off and PFO goes (or remains) low  
(see Figure 13 below and Figure 14). This occurs after V drops below 2.4 V (or V ).  
CC  
SO  
When power returns, PFO is forced high (STM817/819 only), irrespective of V  
for the  
PFI  
WRITE protect time (t ). At the end of this time, the power-fail comparator is enabled and  
rec  
PFO follows PFI. If the comparator is unused, PFI should be connected to V and PFO left  
SS  
unconnected. PFO may be connected to MR on the STM703/704/818 so that a low voltage  
on PFI will generate a reset output.  
2.9  
Applications information  
These supervisor circuits are not short-circuit protected. Shorting V  
to ground -  
OUT  
excluding power-up transients such as charging a decoupling capacitor - destroys the  
device. Decouple both V and V  
pins to ground by placing 0.1 µF capacitors as close to  
CC  
BAT  
the device as possible.  
16/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Operation  
Figure 13. Power-fail comparator waveform (STM817/818/819)  
VCC  
VRST  
VSO (or 2.4V)  
t
rec  
PFO  
(STM817/819)  
PFO follows PFI  
PFO follows PFI  
RST to ECON Delay (STM818)  
RST  
ECON (STM818)  
AI08804a  
Figure 14. Power-fail comparator waveform (STM690A/692A/703/704/802/805)  
VCC  
VRST  
2.4V (or VSO  
PFO  
)
t
rec  
PFO follows PFI  
PFO follows PFI  
RST  
AI08832a  
2.10  
Using a SuperCap™ as a backup power source  
SuperCaps™ are capacitors with extremely high capacitance values (e.g., 0.47 F) for their  
size. Figure 15 shows how to use a SuperCap as a backup power source. The SuperCap  
may be connected through a diode to the 5 V supply. Since V  
can exceed V while V  
BAT  
CC CC  
is above the reset threshold, there are no special precautions for using these supervisors  
with a SuperCap.  
Doc ID 10522 Rev 10  
17/43  
Operation  
STM690A/692A/703/704/802/805/817/818/819  
2.11  
Negative-going VCC transients  
The STM690A/692A/703/704/802/805/817/818/819 Supervisors are relatively immune to  
negative-going V transients (glitches). Figure 37 shows typical transient duration versus  
CC  
reset comparator overdrive (for which the STM690A/692A/703/704/802/805/817/818/819  
will NOT generate a reset pulse). The graph was generated using a negative pulse applied  
to V , starting at V  
+ 0.3 V and ending below the reset threshold by the magnitude  
CC  
RST  
indicated (comparator overdrive). The graph indicates the maximum pulse width a negative  
transient can have without causing a reset pulse. As the magnitude of the transient  
V
CC  
increases (further below the threshold), the maximum allowable pulse width decreases. Any  
combination of duration and overdrive which lies under the curve will NOT generate a reset  
signal. Typically, a V transient that goes 100 mV below the reset threshold and lasts 40 µs  
CC  
or less will not cause a reset pulse. A 0.1 µF bypass capacitor mounted as close as possible  
to the V pin provides additional transient immunity.  
CC  
18/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Operation  
2.12  
Battery freshness seal (STM817/818/819)  
The battery freshness seal disconnects the backup battery from internal circuitry and V  
OUT  
until it is needed. This allows an OEM to ensure that the backup battery connected to V  
BAT  
will be fresh when the final product is put to use. To enable the freshness seal:  
1. Connect a battery to V  
2. Ground PFO  
BAT  
3. Bring V above the reset threshold and hold it there until reset is deasserted following  
CC  
the reset timeout period and  
4. Bring V down again (Figure 16)  
CC  
Use the same procedure for the STM818, but ground E  
instead of PFO. Once the  
CON  
battery freshness seal is enabled (disconnecting the backup battery from internal circuitry  
and anything connected to V ), it remains enabled until V is brought above V  
.
RST  
OUT  
CC  
Figure 15. Using a SuperCap™  
5V  
V
V
V
OUT  
To external SRAM  
CC  
STMXXX  
RST  
To µP  
BAT  
GND  
AI08805  
Figure 16. Freshness seal enable waveform  
VRST  
VCC  
t
rec  
RST  
ECON out state latched  
at 1/2 trec  
,
Freshness  
Seal enabled  
(Externally held at 0V)  
ECON  
(STM818)  
PFO out state latched  
at 1/2 trec  
,
Freshness  
Seal Enabled  
(Externally held at 0V)  
PFO  
(STM817/819)  
AI08806  
Doc ID 10522 Rev 10  
19/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
3
Typical operating characteristics  
Note:  
Typical values are at T = 25 °C.  
A
Figure 17. V to V  
on-resistance vs. temperature  
CC  
OUT  
5.0  
4.0  
3.0  
2.0  
1.0  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
0.0  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
Temperature (°C)  
AI10498  
Figure 18. V  
to V  
on-resistance vs. temperature  
BAT  
OUT  
160  
140  
120  
100  
80  
60  
V
V
V
V
= 2.0V  
BAT  
BAT  
BAT  
BAT  
= 3.0V  
= 3.3V  
= 3.6V  
40  
20  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09140b  
20/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Typical operating characteristics  
Figure 19. Supply current vs. temperature (no load)  
30  
25  
20  
15  
10  
5
V
V
V
V
V
= 2.7V  
= 3.0V  
= 3.6V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
CC  
CC  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09141b  
Figure 20. Battery current vs. temperature  
1000  
100  
10  
V
V
V
= 2.0V  
= 3.0V  
= 3.6V  
BAT  
BAT  
BAT  
1
0.1  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI10499  
Doc ID 10522 Rev 10  
21/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
Figure 21. V  
threshold vs. temperature  
PFI  
1.270  
1.265  
1.260  
1.255  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
V
V
V
V
= 3.0V  
= 4.5V  
= 4.75V  
= 5.5V  
CC  
CC  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09142c  
Figure 22. Reset comparator propagation delay vs. temperature (other than STM817/818/819)  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09143b  
22/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Typical operating characteristics  
= 3.0 V; STM817/818/819)  
Figure 23. Reset comparator propagation delay vs. temperature (V  
BAT  
350  
300  
250  
200  
150  
100  
50  
1v/ms  
10V/ms  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI11100  
Figure 24. Power-up t  
vs. temperature  
REC  
240  
235  
230  
225  
220  
215  
210  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09144b  
Doc ID 10522 Rev 10  
23/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
Figure 25. Normalized reset threshold vs. temperature  
1.004  
1.002  
1.000  
0.998  
0.996  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
AI09145b  
Temperature (°C)  
Figure 26. Watchdog time-out period vs. temperature  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09146b  
24/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Typical operating characteristics  
Figure 27. E to E  
on-resistance vs. temperature  
CON  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09147b  
Figure 28. PFI to PFO propagation delay vs. temperature  
4.0  
V
V
V
V
= 3.0V  
= 3.6V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
CC  
3.0  
2.0  
1.0  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09148b  
Doc ID 10522 Rev 10  
25/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
Figure 29. Output voltage vs. load current (V = 5 V; V  
= 2.8 V; T = 25 °C)  
CC  
BAT  
A
5.00  
4.98  
4.96  
4.94  
0
10  
20  
30  
40  
50  
I
(mA)  
AI10496  
OUT  
Figure 30. Output voltage vs. load current (V = 0 V; V  
= 2.8 V; T = 25 °C)  
CC  
BAT  
A
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.66  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
I
(mA)  
OUT  
AI10497  
26/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Typical operating characteristics  
Figure 31. RST output voltage vs. supply voltage  
5
5
4
V
V
RST  
CC  
4
3
2
3
2
1
0
1
0
500ms/div  
AI09149b  
Figure 32. RST output voltage vs. supply voltage  
5
5
4
3
2
1
0
V
V
RST  
CC  
4
3
2
1
0
500ms/div  
AI09150b  
Doc ID 10522 Rev 10  
27/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
Figure 33. RST response time (assertion)  
5V  
1V/div  
4V  
V
CC  
5V  
4V  
RST  
1V/div  
0V  
AI09151b  
5µs/div  
Figure 34. RST response time (assertion)  
5V  
4V  
V
CC  
1V/div  
4V  
RST  
1V/div  
0V  
5µs/div  
AI09152b  
28/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Typical operating characteristics  
Figure 35. Power-fail comparator response time (assertion)  
5V  
1V/div  
PFO  
0V  
1.3V  
PFI  
500mV/div  
0V  
AI09153b  
500ns/div  
Figure 36. Power-fail comparator response time (de-assertion)  
5V  
1V/div  
PFO  
0V  
1.3V  
PFI  
500mV/div  
0V  
AI09154b  
500ns/div  
Doc ID 10522 Rev 10  
29/43  
Typical operating characteristics  
STM690A/692A/703/704/802/805/817/818/819  
Figure 37. Maximum transient duration vs. reset threshold overdrive  
6000  
5000  
4000  
Reset occurs  
above the curve.  
3000  
2000  
1000  
0
0.001  
0.01  
0.1  
1
10  
Reset Comparator Overdrive, V  
V (V)  
RST  
CC  
AI09156b  
Figure 38. E to E  
propagation delay vs. temperature  
CON  
4.0  
3.0  
2.0  
1.0  
V
V
V
= 3.0V  
= 4.5V  
= 5.5V  
CC  
CC  
CC  
0.0  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
AI09157b  
30/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Maximum ratings  
4
Maximum ratings  
Stressing the device above the rating listed in the absolute maximum ratings table may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability.  
Table 5.  
Symbol  
TSTG  
Absolute maximum ratings  
Parameter  
Value  
Unit  
Storage temperature (VCC off)  
Lead solder temperature for 10 seconds  
Input or output voltage  
Supply voltage  
–55 to 150  
260  
°C  
°C  
V
(1)  
TSLD  
VIO  
–0.3 to VCC +0.3  
–0.3 to 6.0  
20  
VCC/VBAT  
V
IO  
Output current  
mA  
mW  
PD  
Power dissipation  
320  
1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.  
Doc ID 10522 Rev 10  
31/43  
DC and AC parameters  
STM690A/692A/703/704/802/805/817/818/819  
5
DC and AC parameters  
This section summarizes the operating measurement conditions, and the DC and AC  
characteristics of the device. The parameters in the DC and AC characteristics Tables that  
follow, are derived from tests performed under the measurement conditions summarized in  
Table 6: Operating and AC measurement conditions. Designers should check that the  
operating conditions in their circuit match the operating conditions when relying on the  
quoted parameters.  
Table 6.  
Operating and AC measurement conditions  
STM690A/692A/703/704/802/805/  
Parameter  
CC/VBAT supply voltage  
Unit  
817/818/819  
V
1.0 to 5.5  
–40 to 85  
5  
V
°C  
ns  
V
Ambient operating temperature (TA)  
Input rise and fall times  
Input pulse voltages  
0.2 to 0.8VCC  
0.3 to 0.7VCC  
Input and output timing ref. voltages  
V
Figure 39. E to E  
propagation delay test circuit  
CON  
VCC  
VCC  
VBAT  
3.6V  
STMXXX  
25 Equivalent  
Source Impedance  
E
ECON  
50  
50 Cable  
50  
(1)  
50pF CL  
GND  
AI08854  
1. CL includes load capacitance and scope probe capacitance.  
32/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Figure 40. AC testing input/output waveforms  
DC and AC parameters  
0.8V  
0.2V  
CC  
0.7V  
CC  
0.3V  
CC  
CC  
AI02568  
Figure 41. MR timing waveform  
MR  
t
MLRL  
RST (1)  
t
t
rec  
MLMH  
AI07837a  
1. RST for STM805.  
Figure 42. Watchdog timing  
VCC  
t
rec  
RST  
WDI  
t
WD  
AI07891  
Doc ID 10522 Rev 10  
33/43  
DC and AC parameters  
STM690A/692A/703/704/802/805/817/818/819  
Table 7.  
Sym  
DC and AC characteristics  
Alter-  
Description  
Test condition(1)  
Min  
Typ  
Max Unit  
native  
VCC  
VBAT  
,
Operating voltage  
VCC supply current  
TA = –40 to +85 °C  
1.2(3)  
5.5  
60  
35  
V
(2)  
Excluding IOUT (VCC < 5.5 V)  
Excluding IOUT (VBAT = 2.3 V,  
25  
25  
µA  
µA  
ICC  
VCC supply current in  
battery backup mode  
VCC = 2.0 V, MR = VCC  
)
VBAT supply current in  
battery backup mode  
Excluding IOUT  
(VBAT = 3.6 V)  
(4)  
IBAT  
0.4  
1.0  
µA  
V
VCC  
0.03  
IOUT1 = 5 mA(5)  
VCC – 0.015  
VCC  
0.3  
IOUT1 = 75 mA  
VCC – 0.15  
V
VOUT1  
VOUT voltage (active)  
IOUT1 = 250 µA,  
VCC > 2.5 V(5)  
VCC  
0.0015  
VCC  
0.0006  
V
VBAT  
0.1  
IOUT2 = 250 µA, VBAT = 2.3 V  
IOUT2 = 1 mA, VBAT = 2.3 V  
V
BAT – 0.034  
V
V
Ω
VOUT voltage (battery  
backup)  
VOUT2  
VBAT – 0.14  
3
VCC to VOUT  
on-resistance  
4
V
BAT to VOUT  
100  
125  
2
Ω
on-resistance  
Input leakage current  
(MR)  
4.5 V < VCC < 5.5 V  
0 V < VIN < VCC  
75  
300  
µA  
nA  
Input leakage current  
(PFI)  
–25  
+25  
160  
ILI  
WDI = VCC , time average  
WDI = GND, time average  
4.5 V < VCC < 5.5 V  
120  
–15  
µA  
µA  
V
Input leakage current  
(WDI)(6)  
–20  
2.0  
VIH  
VIH  
VIL  
VIL  
Input high voltage (MR)  
Input high voltage (WDI)  
Input low voltage (MR)  
Input low voltage (WDI)  
VRST (max) < VCC < 5.5 V  
4.5 V < VCC < 5.5 V  
0.7VCC  
V
0.8  
V
VRST (max) < VCC < 5.5 V  
0.3VCC  
V
VCC = VRST (max),  
ISINK = 3.2 mA  
Output low voltage (PFO,  
RST, RST)  
0.3  
0.2VCC  
0.3  
V
V
V
V
VOL  
VCC = VRST (max),  
Output low voltage  
(ECON  
)
IOUT = 1.6 mA, E = 0 V  
I
SINK = 50 µA, VCC = 1.0 V,  
VBAT = VCC , TA = 0°C to 85°C  
VOL  
Output low voltage (RST)  
I
SINK = 100 µA, VCC = 1.2 V,  
BAT = VCC  
0.3  
V
34/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
DC and AC parameters  
Table 7.  
Sym  
DC and AC characteristics (continued)  
Alter-  
native  
Description  
Test condition(1)  
Min  
2.4  
Typ  
Max Unit  
ISOURCE = 1 mA  
Output high voltage  
(RST, RST)  
V
V
V
VCC = VRST (max)  
VCC = VRST (max),  
Output high voltage  
VOH  
0.8VCC  
0.8VCC  
(ECON  
)
IOUT = 1.6 mA, E= VCC  
ISOURCE = 75 µA,  
VCC = VRST (max)  
Output high voltage  
(PFO)  
I
SOURCE = 4 µA, VCC = 1.1 V,  
0.8  
0.9  
V
V
V
V
VBAT = VCC , TA = 0°C to 85°C  
VOH  
Output high voltage  
ISOURCE = 4 µA, VCC = 1.2 V,  
VBAT = VCC  
ISOURCE = 100 µA,  
VOH battery backup  
(RST, RST)  
0.8VBAT  
0.8VBAT  
VCC = 0, VBAT = 2.8 V  
VOHB  
ISOURCE = 75 µA,  
VOH battery backup  
(ECON  
)
VCC = 0, VBAT = 2.8 V  
Power-fail comparator (NOT available on STM818)  
All other  
versions  
PFI falling  
(VCC = 5 V)  
1.20  
1.25  
1.30  
V
VPFI  
PFI input threshold  
STM802  
1.225  
1.250  
2
1.275  
V
PFI to PFO propagation  
delay  
tPFD  
ISC  
µs  
PFO output short to GND  
current  
VCC = 5 V, VPFO = 0 V  
0.1  
0.75  
2.0  
mA  
Battery switchover  
VRST > VBAT  
VRST < VBAT  
RST > VBAT  
VRST < VBAT  
VBAT  
VRST  
VBAT  
VRST  
40  
V
V
Battery backup  
switchover voltage(7)(8)  
(VCC < VBAT  
Power-down  
Power-up  
&
VSO  
V
V
VCC < VRST  
)
V
Hysteresis  
mV  
Reset thresholds  
STM690A/703, STM8XXL  
STM692A/704, STM8XXM  
4.50  
4.25  
4.65  
4.40  
4.75  
4.50  
V
V
VRST  
Reset threshold(9)  
Reset threshold  
hysteresis  
25  
mV  
µs  
VCC to RST delay (from  
VRST, VCC falling at  
10 V/ms)  
STM817/818/819  
100  
Doc ID 10522 Rev 10  
35/43  
DC and AC parameters  
STM690A/692A/703/704/802/805/817/818/819  
Table 7.  
Sym  
DC and AC characteristics (continued)  
Alter-  
Description  
Test condition(1)  
Min  
Typ  
Max Unit  
native  
tREC  
RST pulse width  
140  
200  
280  
ms  
Push-button reset input (STM703/704/819)  
tMLMH tMR MR pulse width  
STM703/704  
STM819  
150  
1
ns  
µs  
ns  
ns  
ns  
kΩ  
STM703/704  
STM819  
250  
tMLMR tMRD MR to RST output delay  
120  
100  
63  
MR glitch immunity  
MR pull-up resistor  
STM819  
MR = 0 V, VCC = 5 V  
45  
85  
Watchdog timer (NOT available on STM703/704/819)  
tWD Watchdog timeout period  
WDI pulse width  
VRST (max) < VCC < 5.5 V  
1.12  
50  
1.60  
2.24  
s
V
RST (max) < VCC < 5.5 V  
ns  
Chip-enable gating (STM818 only)  
E to ECON resistance  
VCC = VRST (max)  
4.5 V < VCC < 5.5 V  
(Power-down)  
40  
2
150  
7
Ω
ns  
E to ECON propagation  
delay  
Reset to ECON high delay  
15  
µs  
V
CC = 5 V, disable mode,  
ECON short circuit current  
0.1  
0.75  
2.0  
mA  
E = logic high, ECON = 0 V  
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 4.75 V to 5.5 V for “L” versions; VCC = 4.5 V to 5.5 V for  
“M” versions; and VBAT = 2.8 V (except where noted).  
2. VCC supply current, logic input leakage, watchdog functionality, push-button reset functionality, PFI functionality, state of  
RST and RST tested at VBAT = 3.6 V, and VCC = 5.5 V. The state of RST or RST and PFO is tested at VCC = VCC (min).  
Either VCC or VBAT can go to 0 V if the other is greater than 2.0 V.  
3. VCC (min) = 1.0 V for TA = 0 °C to +85 °C.  
4. Tested at VBAT = 3.6 V, VCC = 3.5 V and 0 V.  
5. Guaranteed by design.  
6. WDI input is designed to be driven by a three-state output device. To float WDI, the “high impedance mode” of the output  
device must have a maximum leakage current of 10 µA and a maximum output capacitance of 200 pF. The output device  
must also be able to source and sink at least 200 µA when active.  
7. When VBAT > VCC > VRST, VOUT remains connected to VCC until VCC drops below VRST  
.
8. When VRST > VCC > VBAT, VOUT remains connected to VCC until VCC drops below the battery voltage (VBAT) – 75 mV.  
9. For VCC falling.  
36/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Package mechanical data  
6
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 10522 Rev 10  
37/43  
Package mechanical data  
STM690A/692A/703/704/802/805/817/818/819  
Figure 43. SO8 - 8-lead plastic small outline, 150 mils body width, package  
mechanical drawing  
A2  
A
C
B
ddd  
e
D
8
1
E
H
A1  
L
SO-A  
Note:  
Drawing is not to scale.  
Table 8.  
Symbol  
SO8 - 8-lead plastic small outline, 150 mils body width, package  
mechanical data  
mm  
Min  
inches  
Min  
Typ  
Max  
Typ  
Max  
A
A1  
B
-
1.35  
0.10  
0.33  
0.19  
4.80  
-
1.75  
0.25  
0.51  
0.25  
5.00  
0.10  
4.00  
-
-
0.053  
0.004  
0.013  
0.007  
0.189  
-
0.069  
0.010  
0.020  
0.010  
0.197  
0.004  
0.157  
-
-
-
-
-
C
-
-
D
-
-
ddd  
E
-
-
-
3.80  
-
-
0.150  
-
e
1.27  
0.050  
H
-
-
-
-
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
-
-
-
-
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
h
L
α
N
8
8
38/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Package mechanical data  
Figure 44. TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, outline  
D
8
1
5
4
c
E1  
E
A1  
L
A
A2  
L1  
CP  
b
e
TSSOP8BM  
Note:  
Drawing is not to scale.  
Table 9.  
Symbol  
TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size,  
mechanical data  
mm  
Min  
inches  
Min  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
-
-
1.10  
0.15  
0.95  
0.40  
0.23  
0.10  
3.10  
-
-
-
0.043  
0.006  
0.037  
0.016  
0.009  
0.004  
0.122  
-
-
0.05  
0.75  
0.25  
0.13  
-
-
0.002  
0.030  
0.010  
0.005  
-
0.85  
-
0.034  
-
c
-
-
CP  
D
-
-
3.00  
0.65  
4.90  
3.00  
0.55  
0.95  
-
2.90  
-
0.118  
0.026  
0.193  
0.118  
0.022  
0.037  
-
0.114  
-
e
E
4.65  
2.90  
0.40  
-
5.15  
3.10  
0.70  
-
0.183  
0.114  
0.016  
-
0.203  
0.122  
0.030  
-
E1  
L
L1  
α
0°  
6°  
0°  
6°  
N
8
8
Doc ID 10522 Rev 10  
39/43  
Part numbering  
STM690A/692A/703/704/802/805/817/818/819  
7
Part numbering  
Table 10. Ordering information scheme  
Example:  
STM690A  
M
6
E
Device type  
STM690A/692A/703/704/802/805/817/818/819  
Threshold voltage  
STM690A, STM703: blank: VRST = 4.50 V to 4.75 V  
STM692A, STM704: blank: VRST = 4.25 V to 4.50 V  
STM8xx: L: VRST = 4.50 V to 4.75 V  
M: VRST = 4.25 V to 4.50 V  
Package  
M = SO8  
DS(1) = TSSOP8  
Temperature range  
6: –40 °C to 85 °C  
Shipping method  
E = ECOPACK® package, tubes  
F = ECOPACK® package, tape & reel  
1. Contact local ST sales office for availability.  
For other options or for more information on any aspect of this device, please contact the ST  
sales office nearest you.  
40/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Table 11. Marking description  
Part numbering  
Topside marking  
Part number  
Reset threshold  
Package  
STM690A  
STM692A  
STM703  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
4.65 V  
SO8  
SO8  
690A  
692A  
703  
SO8  
STM704  
SO8  
704  
STM802L  
STM802M  
STM805L  
SO8  
802L  
802M  
805L  
SO8  
SO8  
SO8  
STM817L  
STM817M  
STM818L  
STM818M  
STM819L  
STM819M  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
4.65 V  
4.40 V  
817L  
817M  
818L  
818M  
819L  
819M  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
SO8  
TSSOP8  
Doc ID 10522 Rev 10  
41/43  
Revision history  
STM690A/692A/703/704/802/805/817/818/819  
8
Revision history  
Table 12. Document revision history  
Date  
Revision  
Changes  
Oct-2003  
1
Initial release.  
31-Oct-2003  
1.1  
Update DC characteristics (Table 7).  
Reformatted; updated characteristics (cover page, Figure 2, 3, 6, 7, 8, 9,  
10, 11, 12, 13, 14, 16, Table 3, 4, 7, 9, 11).  
22-Dec-2003  
2
Add typical characteristics (Figure 18, 19, 21, 22, 24, 25, 26, 27, 28, 31,  
32, 33, 34, 35, 36, 37, 38).  
16-Jan-2004  
08-Apr-2004  
25-May-2004  
2.1  
2.2  
3
Update characteristics (Figure 12, 22, 28, 32, 33, 34, 37; Table 1, 7).  
Remove references to “open drain” (cover page, 4, 7; Table 2); update  
characteristics (Table 3, 7).  
Update package availability, pin description; promote document (cover  
page, Figure 13, 14; Table 3, 7, 10).  
05-Jul-2004  
29-Sep-2004  
01-Mar-2005  
20-Jan-2006  
21-Oct-2008  
4
5
6
7
8
Clarify root part numbers, pin descriptions (Figure 10, 12, 39; Table 7, 10).  
Update characteristics (Figure 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,  
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38)  
Correct marking, update lead-free text (Table 10, 11)  
Reformatted, minor text changes; updated Table 3, 4, 7, 10, Figure 9, 10,  
11, 12, 16, 39, Section 6: Package mechanical data.  
20-Nov-2009  
18-Aug-2010  
9
Updated text in Section 6, Table 5.  
10  
Updated Section 2.4: Backup battery switchover.  
42/43  
Doc ID 10522 Rev 10  
STM690A/692A/703/704/802/805/817/818/819  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 10522 Rev 10  
43/43  

相关型号:

STM819MM6E

5 V supervisor with battery switchover
STMICROELECTR

STM819MM6F

5 V supervisor with battery switchover
STMICROELECTR

STM820

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 2.5A I(D) | TO-220
ETC

STM8206

Dual N-Channel E nhancement Mode Field Effect Transistor
SAMHOP

STM821

TRANSISTOR | MOSFET | N-CHANNEL | 450V V(BR)DSS | 2.5A I(D) | TO-220AB
ETC

STM822

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 2A I(D) | TO-220AB
ETC

STM823

TRANSISTOR | MOSFET | N-CHANNEL | 450V V(BR)DSS | 2A I(D) | TO-220AB
ETC

STM830

TRANSISTOR | MOSFET | N-CHANNEL | 500V V(BR)DSS | 3A I(D) | TO-220
ETC

STM8300

Dual Enhancement Mode Field Effect Transistor ( N and P Channel )
SAMHOP

STM8301

Dual E nhancement Mode Field E ffect Transistor (N and P Channel)
SAMHOP

STM8303

Dual E nhancement Mode Field Effect Transistor (N and P Channel)
SAMHOP

STM8305

Dual E nhancement Mode Field Effect Transistor (N and P Channel)
SAMHOP