STM8S003F3 [STMICROELECTRONICS]

Value line, 16-MHz STM8S 8-bit MCU, 8-Kbyte Flash memory, 128-byte data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C;
STM8S003F3
型号: STM8S003F3
厂家: ST    ST
描述:

Value line, 16-MHz STM8S 8-bit MCU, 8-Kbyte Flash memory, 128-byte data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总103页 (文件大小:1512K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8S003F3 STM8S003K3  
Value line, 16-MHz STM8S 8-bit MCU, 8-Kbyte Flash memory,  
128-byte data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C  
Datasheet - production data  
Features  
Core  
16 MHz advanced STM8 core with Harvard  
TSSOP20  
6.5x6.4 mm  
UFQFPN20  
3x3 mm  
LQFP32  
7x7 mm  
architecture and 3-stage pipeline  
Extended instruction set  
Timers  
Memories  
Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-time  
insertion and flexible synchronization  
Program memory: 8 Kbyte Flash memory; data  
retention 20 years at 55 °C after 100 cycles  
RAM: 1 Kbyte  
16-bit general purpose timer, with 3 CAPCOM  
channels (IC, OC or PWM)  
Data memory: 128 bytes true data EEPROM;  
endurance up to 100 k write/erase cycles  
8-bit basic timer with 8-bit prescaler  
Auto wakeup timer  
Clock, reset and supply management  
Window and independent watchdog timers  
2.95 V to 5.5 V operating voltage  
Flexible clock control, 4 master clock sources  
– Low-power crystal resonator oscillator  
– External clock input  
Communications interfaces  
UART with clock output for synchronous  
operation, SmartCard, IrDA, LIN master mode  
– Internal, user-trimmable 16 MHz RC  
– Internal low-power 128 kHz RC  
SPI interface up to 8 Mbit/s  
2
I C interface up to 400 Kbit/s  
Clock security system with clock monitor  
Analog to digital converter (ADC)  
Power management  
– Low-power modes (wait, active-halt, halt)  
– Switch-off peripheral clocks individually  
– Permanently active, low-consumption  
power-on and power-down reset  
10-bit ADC, ± 1 LSB ADC with up to 5  
multiplexed channels, scan mode and analog  
watchdog  
I/Os  
Interrupt management  
Up to 28 I/Os on a 32-pin package including 21  
Nested interrupt controller with 32 interrupts  
Up to 27 external interrupts on 6 vectors  
high-sink outputs  
Highly robust I/O design, immune against  
current injection  
Development support  
Embedded single-wire interface module  
(SWIM) for fast on-chip programming and non-  
intrusive debugging  
August 2018  
DS7147 Rev 10  
1/103  
This is information on a product in full production.  
www.st.com  
Contents  
STM8S003F3 STM8S003K3  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 13  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . 13  
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.11 TIM2 - 16-bit general purpose timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.14.1 UART1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.14.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
4.14.3 I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.1  
5.2  
5.3  
STM8S003K3 LQFP32 pinout and pin description . . . . . . . . . . . . . . . . . . 22  
STM8S003F3 TSSOP20/UFQFPN20 pinout and pin description . . . . . . 25  
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.1  
6.2  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Contents  
6.2.1  
6.2.2  
6.2.3  
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 39  
7
8
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
8.1  
Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
9.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.2  
9.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
9.3.7  
9.3.8  
9.3.9  
VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 61  
Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 63  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
2
I C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
9.3.10 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10.1 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
10.2 TSSOP20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
10.3 UFQFPN20 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 97  
DS7147 Rev 10  
3/103  
4
Contents  
11  
STM8S003F3 STM8S003K3  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
12  
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 99  
12.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
12.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
12.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
12.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
13  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
4/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
STM8S003F3/K3 value line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 15  
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Legend/abbreviations for STM8S003F3/K3 pin description tables. . . . . . . . . . . . . . . . . . . 21  
STM8S003K3 descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM8S003F3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Flash, Data EEPROM and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
STM8S003K3 alternate function remapping bits for 32-pin devices. . . . . . . . . . . . . . . . . . 44  
STM8S003F3 alternate function remapping bits for 20-pin devices . . . . . . . . . . . . . . . . . . 45  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Total current consumption with code execution in run mode at V = 5 V . . . . . . . . . . . . 52  
DD  
Total current consumption with code execution in run mode at V = 3.3 V . . . . . . . . . . . 53  
DD  
Total current consumption in wait mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
DD  
Total current consumption in wait mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
DD  
Total current consumption in active halt mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . 55  
DD  
Total current consumption in active halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . 55  
DD  
Total current consumption in halt mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DD  
Total current consumption in halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
DD  
Wakeup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 57  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Flash program memory and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
ADC accuracy with R  
ADC accuracy with R  
< 10 kΩ , V = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
AIN  
DD  
< 10 kΩ R , V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
AIN  
AIN  
DD  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
DS7147 Rev 10  
5/103  
6
List of tables  
STM8S003F3 STM8S003K3  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . . 89  
TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
Table 54.  
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 55.  
Table 56.  
6/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8S003F3/K3 value line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
STM8S003K3 LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM8S003F3 TSSOP20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
STM8S003F3 UFQFPN20 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
f
versus V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
CPUmax  
DD  
Figure 10. External capacitor C  
EXT  
Figure 11. Typ. I  
Figure 12. Typ. I  
Figure 13. Typ. I  
Figure 14. Typ. I  
Figure 15. Typ. I  
Figure 16. Typ. I  
vs V , HSE user external clock, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . 58  
DD(RUN)  
DD(RUN)  
DD(RUN)  
DD(WFI)  
DD(WFI)  
DD(WFI)  
DD  
CPU  
vs f  
, HSE user external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 58  
CPU  
DD  
vs V , HSI RC osc, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
CPU  
DD  
vs. V HSE user external clock, f  
= 16MHz . . . . . . . . . . . . . . . . . . . . . 59  
DD  
CPU  
vs. f  
, HSE user external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 60  
CPU  
DD  
vs V , HSI RC osc, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
CPU  
DD  
Figure 17. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Figure 18. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Figure 19. Typical HSI frequency variation vs V at 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . 64  
DD  
Figure 20. Typical LSI frequency variation vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 64  
DD  
Figure 21. Typical V and V vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
IL  
IH  
DD  
Figure 22. Typical pull-up resistance vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
DD  
Figure 23. Typical pull-up current vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
DD  
Figure 24. Typ. V @ V = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
OL  
DD  
Figure 25. Typ. V @ V = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
OL  
DD  
Figure 26. Typ. V @ V = 5 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
OL  
DD  
Figure 27. Typ. V @ V = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
OL  
DD  
Figure 28. Typ. V @ V = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
OL  
DD  
Figure 29. Typ. V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
OL  
DD  
Figure 30. Typ. V - V @ V = 5 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DD  
OH  
DD  
Figure 31. Typ. V - V @ V = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
DD  
OH  
DD  
Figure 32. Typ. V - V @ V = 5 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
DD  
OH  
DD  
Figure 33. Typ. V - V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DD  
OH  
DD  
Figure 34. Typical NRST V and V vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
IL  
IH  
DD  
Figure 35. Typical NRST pull-up resistance vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . 76  
DD  
Figure 36. Typical NRST pull-up current vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
DD  
Figure 37. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Figure 38. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
(1)  
Figure 39. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
(1)  
Figure 40. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
2
Figure 41. Typical application with I C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 42. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 43. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 88  
Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . 89  
Figure 46. LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Figure 47. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
DS7147 Rev 10  
7/103  
8
List of figures  
STM8S003F3 STM8S003K3  
Figure 48. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 49. TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Figure 50. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 51. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 52. UFQFPN20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
(1)  
Figure 53. STM8S003F3/K3 value line ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . 98  
8/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Introduction  
1
Introduction  
This datasheet contains the description of the STM8S003F3/K3 value line features, pinout,  
electrical characteristics, mechanical data and ordering information.  
For complete information on the STM8S microcontroller memory, registers and  
peripherals, please refer to the STM8S and STM8A microcontroller families reference  
manual (RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the PM0051 (How to program STM8S and STM8A Flash program  
memory and data EEPROM).  
For information on the debug and SWIM (single wire interface module) refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
DS7147 Rev 10  
9/103  
29  
 
Description  
STM8S003F3 STM8S003K3  
2
Description  
The STM8S003F3/K3 value line 8-bit microcontrollers offer 8 Kbytes of Flash program  
memory, plus integrated true data EEPROM. They are referred to as low-density devices in  
the STM8S microcontroller family reference manual (RM0016).  
The STM8S003F3/K3 value line devices provide the following benefits: performance,  
robustness and reduced system cost.  
Device performance and robustness are ensured by true data EEPROM supporting up to  
100000 write/erase cycles, advanced core and peripherals made in a state-of-the-art  
technology at 16 MHz clock frequency, robust I/Os, independent watchdogs with separate  
clock source, and a clock security system.  
The system cost is reduced thanks to a high system integration level with internal clock  
oscillators, watchdog, and brown-out reset.  
Full documentation is offered as well as a wide choice of development tools.  
Table 1. STM8S003F3/K3 value line features  
Features  
STM8S003K3  
STM8S003F3  
Pin count  
32  
28  
27  
7
20  
16  
16  
7
Max. number of GPIOs (I/O)  
External interrupt pins  
Timer CAPCOM channels  
Timer complementary outputs  
A/D converter channels  
High-sink I/Os  
3
2
4
5
21  
12  
Low-density Flash program  
memory (byte)  
8 K  
8 K  
RAM (byte)  
1 K  
1 K  
True data EEPROM (byte)  
128(1)  
128(1)  
Multi purpose timer (TIM1), SPI, I2C, UART, Window WDG,  
independent WDG, ADC, PWM timer (TIM2), 8-bit timer (TIM4)  
Peripheral set  
1. Without read-while-write capability.  
10/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Block diagram  
3
Block diagram  
Figure 1. STM8S003F3/K3 value line block diagram  
Reset block  
Reset  
XTAL 1-16 MHz  
RC int. 16 MHz  
RC int. 128 kHz  
Clock controller  
Detector  
Reset  
POR  
BOR  
Clock to peripherals and core  
Window WDG  
STM8 core  
Independent WDG  
Single wire  
debug interface  
Debug/SWIM  
8 Kbyte  
program Flash  
128 byte  
data EEPROM  
400 Kbit/s  
8 Mbit/s  
I2C  
1 Kbyte RAM  
Up to  
4 CAPCOM  
channels  
SPI  
16-bit advanced control  
timer (TIM1)  
+ 3 complementary  
outputs  
LIN master  
SPI emul.  
UART1  
Up to  
3 CAPCOM  
channels  
16-bit general purpose  
timer (TIM2)  
up to 5  
channels  
ADC1  
8-bit basic timer  
(TIM4)  
1/2/4 kHz beep  
Beeper  
AWU timer  
DS7147 Rev 10  
11/103  
29  
 
 
 
Product overview  
STM8S003F3 STM8S003K3  
4
Product overview  
The following section intends to give an overview of the basic features of the  
STM8S003F3/K3 value line functional modules and peripherals.  
For more detailed information please refer to the corresponding family reference manual  
(RM0016).  
4.1  
Central processing unit STM8  
The 8-bit STM8 core is designed for code efficiency and performance.  
It contains six internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing and 80 instructions.  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching for most instructions  
X and Y 16-bit index registers - enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16-Mbyte linear memory space  
16-bit stack pointer - access to a 64 K-level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
12/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Product overview  
4.2  
Single wire interface module (SWIM) and debug module (DM)  
The single wire interface module and debug module permits non-intrusive, real-time in-  
circuit debugging and fast memory programming.  
SWIM  
Single wire interface module for direct access to the debug module and memory  
programming. The interface can be activated in all device operation modes. The maximum  
data transmission speed is 145 byte/ms.  
Debug module  
The non-intrusive debugging module features a performance close to a full-featured  
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-  
time by means of shadow registers.  
R/W to RAM and peripheral registers in real-time  
R/W access to all resources by stalling the CPU  
Breakpoints on all program-memory instructions (software breakpoints)  
Two advanced breakpoints, 23 predefined configurations  
4.3  
4.4  
Interrupt controller  
Nested interrupts with three software priority levels  
32 interrupt vectors with hardware priority  
Up to 27 external interrupts on six vectors including TLI  
Trap and reset interrupts  
Flash program memory and data EEPROM  
8 Kbyte of Flash program single voltage Flash memory  
128 byte true data EEPROM  
User option byte area  
Write protection (WP)  
Write protection of Flash program memory and data EEPROM is provided to avoid  
unintentional overwriting of memory that could result from a user software malfunction.  
There are two levels of write protection. The first level is known as MASS (memory access  
security system). MASS is always enabled and protects the main Flash program memory,  
data EEPROM and option bytes.  
To perform in-application programming (IAP), this write protection can be removed by  
writing a MASS key sequence in a control register. This allows the application to modify the  
content of main program memory and data EEPROM, or to reprogram the device option  
bytes.  
A second level of write protection, can be enabled to further protect a specific area of  
memory known as UBC (user boot code). Refer to Figure 2.  
DS7147 Rev 10  
13/103  
29  
 
 
 
Product overview  
STM8S003F3 STM8S003K3  
The size of the UBC is programmable through the UBC option byte (Table 13), in increments  
of 1 page (64-byte block) by programming the UBC option byte in ICP mode.  
This divides the program memory into two areas:  
Main program memory: 8 Kbyte minus UBC  
User-specific boot code (UBC): Configurable up to 8 Kbyte  
The UBC area remains write-protected during in-application programming. This means that  
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot  
program, specific code libraries, reset and interrupt vectors, the reset routine and usually  
the IAP and communication routines.  
Figure 2. Flash memory organization  
Option bytes  
Data EEPROM (128 bytes)  
Programmable  
area from 64 bytes  
UBC area  
Remains write protected during IAP  
(1 page) up to  
8 Kbytes  
(in 1 page steps)  
Low density  
Flash program  
memory  
(8 Kbytes)  
Program memory area  
Write access possible for IAP  
MS36408V1  
Read-out protection (ROP)  
The read-out protection blocks reading and writing from/to the Flash program memory and  
data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is  
activated, any attempt to toggle its status triggers a global erase of the program memory.  
Even if no protection can be considered as totally unbreakable, the feature provides a very  
high level of protection for a general purpose microcontroller.  
14/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Product overview  
4.5  
Clock controller  
The clock controller distributes the system clock (f  
coming from different oscillators  
MASTER)  
to the core and the peripherals. It also manages clock gating for low power modes and  
ensures clock robustness.  
Features  
Clock prescaler: To get the best compromise between speed and current  
consumption the clock frequency to the CPU and peripherals can be adjusted by a  
programmable prescaler.  
Safe clock switching: Clock sources can be changed safely on the fly in run mode  
through a configuration register. The clock signal is not switched until the new clock  
source is ready. The design guarantees glitch-free switching.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock sources: Four different clock sources can be used to drive the master  
clock:  
1-16 MHz high-speed external crystal (HSE)  
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
16 MHz high-speed internal RC oscillator (HSI)  
128 kHz low-speed internal RC (LSI)  
Startup clock: After reset, the microcontroller restarts by default with an internal  
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the  
application program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If an HSE  
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS  
and an interrupt can optionally be generated.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Bit  
Bit  
Bit  
Bit  
PCKEN17  
TIM1  
PCKEN13  
UART1  
PCKEN27 Reserved PCKEN23  
ADC  
AWU  
PCKEN16 Reserved PCKEN12 Reserved PCKEN26 Reserved PCKEN22  
PCKEN15  
PCKEN14  
TIM2  
TIM4  
PCKEN11  
PCKEN10  
SPI  
I2C  
PCKEN25 Reserved PCKEN21 Reserved  
PCKEN24 Reserved PCKEN20 Reserved  
DS7147 Rev 10  
15/103  
29  
 
 
Product overview  
STM8S003F3 STM8S003K3  
4.6  
Power management  
For efficient power management, the application can be put in one of four different low-  
power modes. You can configure each mode to obtain the best compromise between the  
lowest power consumption, the fastest start-up time and available wakeup sources.  
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The  
wakeup is performed by an internal or external interrupt or reset.  
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are  
stopped. An internal wakeup is generated at programmable intervals by the auto wake  
up unit (AWU). The main voltage regulator is kept powered on, so current consumption  
is higher than in active halt mode with regulator off, but the wakeup time is faster.  
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.  
Active halt mode with regulator off: This mode is the same as active halt with  
regulator on, except that the main voltage regulator is powered off, so the wake up time  
is slower.  
Halt mode: In this mode the microcontroller uses the least power. The CPU and  
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is  
triggered by external event or reset.  
4.7  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
Activation of the watchdog timers is controlled by option bytes or by software. Once  
activated, the watchdogs cannot be disabled by the user program without performing a  
reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
perfectly.  
The application software must refresh the counter before time-out and during a limited time  
window.  
A reset is generated in two situations:  
1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 µs up  
to 64 ms.  
2. Refresh out of window: the down-counter is refreshed before its value is lower than the  
one stored in the window register.  
16/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Product overview  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve processor malfunctions due to  
hardware or software failures.  
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure  
The IWDG time base spans from 60 µs to 1 s.  
4.8  
4.9  
Auto wakeup counter  
Used for auto wakeup from active halt mode  
Clock source: internal 128 kHz internal low frequency RC oscillator or external clock  
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
The beeper output port is only available through the alternate function remap option bit  
AFR7.  
4.10  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver.  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
Four independent capture/compare channels (CAPCOM) configurable as input  
capture, output compare, PWM generation (edge and center aligned mode) and single  
pulse mode output  
Synchronization module to control the timer with external signals  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Encoder mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break  
4.11  
TIM2 - 16-bit general purpose timer  
16-bit autoreload (AR) up-counter  
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768  
3 individually configurable capture/compare channels  
PWM mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update  
DS7147 Rev 10  
17/103  
29  
 
 
 
 
Product overview  
STM8S003F3 STM8S003K3  
4.12  
TIM4 - 8-bit basic timer  
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128  
Clock source: CPU clock  
Interrupt source: 1 x overflow/update  
Table 3. TIM timer features  
Timer  
synchr-  
onization/  
chaining  
Counter  
size  
(bits)  
CAPCOM  
Counting  
mode  
Complem.  
outputs  
Ext.  
trigger  
Timer  
Prescaler  
channels  
TIM1  
TIM2  
TIM4  
16  
16  
8
Any integer from 1 to 65536  
Any power of 2 from 1 to 32768  
Any power of 2 from 1 to 128  
Up/down  
Up  
4
3
0
3
0
0
Yes  
No  
No  
No  
Up  
4.13  
Analog-to-digital converter (ADC1)  
STM8S003F3/K3 value line products contain a 10-bit successive approximation A/D  
converter (ADC1) with up to 5 external multiplexed input channels and the following main  
features:  
Input voltage range: 0 to V  
DDA  
Conversion time: 14 clock cycles  
Single and continuous, buffered continuous conversion modes  
Buffer size (10 x 10 bits)  
Scan mode for single and continuous conversion of a sequence of channels  
Analog watchdog capability with programmable upper and lower thresholds  
Analog watchdog interrupt  
External trigger input  
Trigger from TIM1 TRGO  
End of conversion (EOC) interrupt  
Note:  
Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.  
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.  
4.14  
Communication interfaces  
The following communication interfaces are implemented:  
UART1: full feature UART, synchronous mode, SPI master mode, SmartCard mode,  
IrDA mode, LIN2.1 master capability  
SPI: full and half-duplex, 8 Mbit/s  
I²C: up to 400 Kbit/s  
18/103  
DS7147 Rev 10  
 
 
 
 
STM8S003F3 STM8S003K3  
Product overview  
4.14.1  
UART1  
Main features  
1 Mbit/s full duplex SCI  
SPI emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
LIN master mode  
Single wire half duplex mode  
Asynchronous communication (UART mode)  
Full duplex communication - NRZ standard format (mark/space)  
Programmable transmit and receive baud rates up to 1 Mbit/s (f  
following any standard baud rate regardless of the input frequency  
Separate enable bits for transmitter and receiver  
Two receiver wakeup modes:  
/16) and capable of  
CPU  
Address bit (MSB)  
Idle line (interrupt)  
Transmission error detection with interrupt generation  
Parity control  
Synchronous communication  
Full duplex synchronous transfers  
SPI master operation  
8-bit data communication  
Maximum speed: 1 Mbit/s at 16 MHz (f  
/16)  
CPU  
LIN master mode  
Emission: generates 13-bit synch. break frame  
Reception: detects 11-bit break frame  
4.14.2  
SPI  
Maximum speed: 8 Mbit/s (f  
/2) both for master and slave  
MASTER  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave/master selection input pin  
DS7147 Rev 10  
19/103  
29  
 
 
Product overview  
2
STM8S003F3 STM8S003K3  
4.14.3  
I C  
I2C master features  
Clock generation  
Start and stop generation  
I2C slave features  
Programmable I2C address detection  
Stop bit detection  
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds  
Standard speed (up to 100 kHz)  
Fast speed (up to 400 kHz)  
20/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Pinouts and pin descriptions  
5
Pinouts and pin descriptions  
Table 4. Legend/abbreviations for STM8S003F3/K3 pin description tables  
Type  
I = input, O = output, S = power supply  
Input  
CM = CMOS  
Level  
Output  
HS = high sink  
O1 = slow (up to 2 MHz)  
O2 = fast (up to 10 MHz)  
Output speed  
O3 = fast/slow programmability with slow as default state after reset  
O4 = fast/slow programmability with fast as default state after reset  
Input  
float = floating, wpu = weak pull-up  
Port and control  
configuration  
Output  
T = true open drain, OD = open drain, PP = push pull  
Bold x (pin state after internal reset release)  
Reset state  
Unless otherwise specified, the pin state is the same during the reset phase  
and after the internal reset release.  
DS7147 Rev 10  
21/103  
29  
 
 
Pinouts and pin descriptions  
STM8S003F3 STM8S003K3  
5.1  
STM8S003K3 LQFP32 pinout and pin description  
Figure 3. STM8S003K3 LQFP32 pinout  
32 31 30 29 28 27 26 25  
24  
NRST  
OSCIN/PA1  
OSCOUT/PA2  
VSS  
1
2
3
4
5
6
7
8
PC7 (HS)/SPI_MISO  
PC6 (HS)/SPI_MOSI  
23  
22  
21  
20  
19  
18  
17  
PC5 (HS)/SPI_SCK  
PC4 (HS)/TIM1_CH4/CLK_CCO  
VCAP  
PC3 (HS)/TIM1_CH3  
PC2 (HS)/TIM1_CH2  
PC1 (HS)/TIM1_CH1/UART1_CK  
VDD  
[SPI_NSS] TIM2_CH3/(HS)PA3  
PF4  
PE5 (HS)/SPI_NSS  
9 10 11 12 13 14 15 16  
MS37740V1  
Table 5. STM8S003K3 descriptions  
Input  
Output  
Alternate  
function  
after remap  
[option bit]  
Default  
alternate  
function  
Pin name  
1
2
NRST  
PA1/OSCIN(2)  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
-
-
Resonator/  
crystal in  
X
X
X
O1  
X
X
Port A1  
22/103  
DS7147 Rev 10  
 
 
 
 
STM8S003F3 STM8S003K3  
Pinouts and pin descriptions  
Table 5. STM8S003K3 descriptions (continued)  
Input  
Output  
Alternate  
Default  
function  
Pin name  
alternate  
after remap  
function  
[option bit]  
Resonator/  
crystal out  
3
PA2/OSCOUT  
I/O  
X
X
X
-
O1  
X
X
Port A2  
-
4
5
6
VSS  
S
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Digital ground  
-
-
-
VCAP  
VDD  
1.8 V regulator capacitor  
Digital power supply  
SPI master/  
slave select  
[AFR1]  
PA3/TIM2_CH3  
[SPI_NSS]  
Timer 2  
7
I/O  
X
X
X
HS O3  
X
X Port A3  
channel 3  
8
9
PF4  
PB7  
I/O  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
-
-
-
-
-
-
-
-
O1  
O1  
O1  
X
X
X
X Port F4  
X Port B7  
X Port B6  
-
-
-
-
-
-
-
-
10 PB6  
-
11 PB5/I2C_SDA  
12 PB4/I2C_SCL  
X
X
O1 T(3)  
O1 T(3)  
-
-
Port B5 I2C data  
Port B4 I2C clock  
-
Analog  
Port B3 input 3/Timer 1  
external trigger  
PB3/AIN3  
13  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
[TIM1_ETR]  
Analog  
input 2/Timer 1  
- inverted  
PB2/AIN2  
14  
Port B2  
[TIM1_CH3N]  
channel 3  
Analog  
PB1/AIN1  
15  
input 1/Timer 1  
Port B1  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
[TIM1_CH2N]  
- inverted  
channel 2  
Analog  
PB0/AIN0  
16  
input 0/Timer 1  
Port B0  
[TIM1_CH1N]  
- inverted  
channel 1  
SPI  
Port E5 master/slave  
select  
17 PE5/SPI_NSS  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
Timer 1 -  
Port C1 channel 1  
UART1 clock  
PC1/TIM1_CH1/  
18  
UART1_CK  
Timer 1-  
Port C2  
19 PC2/TIM1_CH2  
20 PC3/TIM1_CH3  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
channel 2  
Timer 1 -  
Port C3  
channel 3  
DS7147 Rev 10  
23/103  
29  
Pinouts and pin descriptions  
STM8S003F3 STM8S003K3  
Table 5. STM8S003K3 descriptions (continued)  
Input  
Output  
Alternate  
Default  
function  
Pin name  
alternate  
after remap  
function  
[option bit]  
Timer 1 -  
channel  
4/configurable  
clock output  
PC4/TIM1_CH4/C  
LK_CCO  
21  
I/O  
X
X
X
HS O3  
X
X
Port C4  
-
22 PC5/SPI_SCK  
23 PC6/SPI_MOSI  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
Port C5 SPI clock  
-
-
SPI master  
out/slave in  
Port C6  
Port C7  
SPI master in/  
slave out  
24 PC7/SPI_MISO  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
HS O4  
HS O3  
X
X
X
X
X
X
X
X
-
Configurable  
clock output  
[AFR5]  
PD0/[TIM1_BKIN  
[CLK_CCO]  
Timer 1 - break  
input  
25  
Port D0  
Port D1  
Port D2  
SWIM data  
interface  
26 PD1/SWIM(4)  
-
Timer 2 -  
channel 3  
[AFR1]  
PD2  
27  
-
[TIM2_CH3]  
Timer 2 -  
Port D3 channel2/ADC  
PD3/TIM2_CH2  
28  
I/O  
I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
[ADC_ETR]  
external trigger  
Timer 2 -  
Port D4 channel  
1/BEEP output  
PD4/BEEP/  
29  
TIM2_CH1  
UART1 data  
Port D5  
30 PD5/ UART1_TX I/O  
31 PD6/ UART1_RX I/O  
PD7/TLI  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
-
-
transmit  
UART1 data  
Port D6  
receive  
Timer 1 -  
channel 4  
[AFR6]  
Top level  
Port D7  
32  
I/O  
X
X
X
HS O3  
X
X
[TIM1_CH4]  
interrupt  
1. I/O pins used simultaneously for high-current source/sink must be uniformly spaced around the package. In  
addition, the total driven current must respect the absolute maximum ratings given in Section 9: Electrical  
characteristics.  
2. When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull-up and  
cannot be used for waking up the device. In this mode, the output state of PA1 is not driven. It is  
recommended to use PA1 only in input mode if Halt/Active-halt is used in the application.  
3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection  
diode to VDD are not implemented).  
4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.  
24/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Pinouts and pin descriptions  
5.2  
STM8S003F3 TSSOP20/UFQFPN20 pinout and pin  
description  
Figure 4. STM8S003F3 TSSOP20 pinout  
1
2
UART1_CK/TIM2_CH1/BEEP/(HS)PD4  
UART1_TX/AIN5/(HS) PD5  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR  
PD2(HS)/AIN3/[TIM2_CH3]  
PD1(HS)/SWIM  
3
UART1_RX/AIN6/(HS) PD6  
NRST  
4
PC7(HS)/SPI_MISO [TIM1_CH2]  
PC6(HS)/SPI_MOSI [TIM1_CH1]  
PC5 (HS)/SPI_SCK [TIM2_CH1]  
OSCIN/PA1  
5
6
OSCOUT/PA2  
V
SS  
VCAP  
PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]  
PC3(HS)/TIM1_CH3 [TLI] [TIM1_CH1N]  
PB4(T)/I2C_SCL [ADC_ETR]  
7
8
V
DD  
9
[SPI_NSS] TIM2_CH3/(HS) PA3  
10  
PB5(T)/I2C_SDA [TIM1_BKIN]  
MS37741V1  
1. HS high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
DS7147 Rev 10  
25/103  
29  
 
 
Pinouts and pin descriptions  
STM8S003F3 STM8S003K3  
Figure 5. STM8S003F3 UFQFPN20 pinout  
20 19 18 17 16  
15  
14  
13  
1
2
3
4
5
NRST  
PD1(HS)/SWIM  
OSCIN/PA1  
PC7(HS)/SPI_MISO[TIM1_CH2]  
PC6(HS)/SPI_MOSI [TIM1_CH1]  
PC5 (HS)/SPI_SCK [TIM2_CH1]  
PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]  
OSCOUT/PA2  
V
SS  
12  
11  
VCAP  
6
7
8
9
10  
MS36409V1  
1. HS high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
26/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Pinouts and pin descriptions  
Table 6. STM8S003F3 pin description  
Pin  
no.  
Input  
Output  
Main  
function  
(after  
Alternate  
function  
after remap  
[option bit]  
Default  
alternate  
function  
Pin name  
Type  
High  
OD PP  
reset)  
sink(1)  
Timer 2 -  
channel  
Port D4 1/BEEP  
output/  
PD4/ BEEP/  
18 TIM2_ CH1/  
UART1 _CK  
1
I/O  
X
X
X
HS  
O3  
X
X
-
UART1clock  
Analog input  
Port D5 5/ UART1  
datatransmit  
PD5/ AIN5/  
19  
2
3
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
-
-
UART1 _TX  
Analog input  
Port D6 6/ UART1  
data receive  
PD6/ AIN6/  
20  
UART1 _RX  
4
5
1
2
NRST  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
-
-
Resonator/  
Port A1  
PA1/ OSCIN(2)  
X
X
X
O1  
X
X
crystal in  
Resonator/  
Port A2  
6
7
8
9
3
4
5
6
PA2/ OSCOUT  
VSS  
I/O  
S
X
-
X
-
X
-
-
-
-
-
O1  
X
-
X
-
-
-
-
-
crystal out  
-
-
-
Digital ground  
1.8 V regulator  
capacitor  
VCAP  
S
-
-
-
-
-
VDD  
S
-
-
-
-
-
Digital power supply  
SPI master/  
slave select  
[AFR1]  
PA3/ TIM2_ CH3  
[SPI_ NSS]  
Timer 2  
Port A3  
7
8
I/O  
I/O  
X
X
X
-
X
X
HS  
-
O3  
X
X
-
10  
11  
channel 3  
Timer 1 -  
break input  
[AFR4]  
PB5/ I2C_ SDA  
[TIM1_ BKIN]  
O1 T(3)  
Port B5 I2C data  
ADC  
external  
trigger  
[AFR4]  
9
PB4/ I2C_ SCL  
I/O  
I/O  
X
X
-
X
X
-
O1 T(3)  
-
Port B4  
Port C3  
I2C clock  
12  
13  
Top level  
interrupt  
[AFR3]  
Timer 1 -  
inverted  
channel 1  
[AFR7]  
PC3/ TIM1_CH3  
Timer 1 -  
channel 3  
10 [TLI]  
[TIM1_ CH1N]  
X
HS  
O3  
X
X
DS7147 Rev 10  
27/103  
29  
 
 
Pinouts and pin descriptions  
STM8S003F3 STM8S003K3  
Table 6. STM8S003F3 pin description (continued)  
Pin  
no.  
Input  
Output  
Main  
function  
(after  
Alternate  
function  
after remap  
[option bit]  
Default  
alternate  
function  
Pin name  
Type  
High  
OD PP  
reset)  
sink(1)  
Configurable  
clock  
output/Timer inverted  
1 - channel  
4/Analog  
input 2  
PC4/CLK_CCO/  
TIM1_  
CH4/AIN2/  
Timer 1 -  
11  
I/O  
X
X
X
HS  
O3  
X
X
Port C4  
14  
channel 2  
[AFR7]  
[TIM1_ CH2N]  
Timer 2 -  
channel 1  
[AFR0]  
PC5/ SPI_SCK  
[TIM2_ CH1]  
12  
13  
14  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port C5 SPI clock  
15  
16  
Timer 1 -  
channel 1  
[AFR0]  
PC6/ SPI_MOSI  
[TIM1_ CH1]  
SPI master  
Port C6  
out/slave in  
Timer 1 -  
channel 2  
[AFR0]  
PC7/ SPI_MISO  
[TIM1_ CH2]  
SPI master  
Port C7  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
O3  
O4  
O3  
X
X
X
X
X
X
17  
18  
19  
in/ slave out  
SWIM data  
Port D1  
15 PD1/ SWIM(4)  
-
interface  
Timer 2 -  
channel 3  
[AFR1]  
PD2/AIN3/  
16  
Analog input  
I/O  
Port D2  
3
[TIM2_ CH3]  
Analog input  
4/ Timer 2 -  
channel  
2/ADC  
external  
trigger  
PD3/ AIN4/  
17 TIM2_ CH2/  
ADC_ ETR  
I/O  
X
X
X
HS  
O3  
X
X
Port D3  
-
20  
1. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the  
total driven current must respect the absolute maximum ratings.  
2. When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull-up and cannot be used for  
waking up the device. In this mode, the output state of PA1 is not driven. It is recommended d to use PA1 only in input mode  
if halt/active-halt is used in the application.  
3. In the open-drain output column, "T" defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to VDD are  
not implemented).  
4. The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
28/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Pinouts and pin descriptions  
5.3  
Alternate function remapping  
As shown in the rightmost column of the pin description table, some alternate functions can  
be remapped at different I/O ports by programming one of eight AFR (alternate function  
remap) option bits. Refer to Section 8: Option bytes. When the remapping option is active,  
the default alternate function is no longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the  
GPIO section of the family reference manual, RM0016).  
DS7147 Rev 10  
29/103  
29  
 
Memory and register map  
STM8S003F3 STM8S003K3  
6
Memory and register map  
6.1  
Memory map  
Figure 6. Memory map  
0x00 0000  
RAM  
(1 Kbyte)  
513 byte stack  
Reserved  
0x00 03FF  
0x00 0800  
0x00 4000  
0x00 407F  
Data EEPROM  
Reserved  
0x00 47FF  
0x00 4800  
0x00 480A  
0x00 480B  
Option bytes  
Reserved  
0x00 4FFF  
0x00 5000  
GPIO and periph. reg.  
0x00 57FF  
0x00 5800  
Reserved  
0x00 7EFF  
0x00 7F00  
CPU/SWIM/debug/ITC  
registers  
0x00 7FFF  
0x00 8000  
32 interrupt vectors  
0x00 807F  
0x00 8080  
Flash program memory  
(8 Kbyte)  
0x00 9FFF  
0x00 A000  
Reserved  
0x02 7FFF  
MS36410V1  
30/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Memory and register map  
Table 7 lists the boundary addresses for each memory size. The top of the stack is at the  
RAM end address in each case.  
Table 7. Flash, Data EEPROM and RAM boundary addresses  
Memory area  
Flash program memory  
RAM  
Size (byte)  
8 K  
Start address  
0x00 8000  
End address  
0x00 9FFF  
0x00 03FF  
1 K  
0x00 0000  
Data EEPROM  
128  
0x00 4000  
0x00 407F  
6.2  
Register map  
6.2.1  
I/O port hardware register map  
Table 8. I/O port hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX(1)  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
0x00  
Port A control register 2  
0x00  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
0x00  
0xXX(1)  
Port B  
Port C  
Port D  
0x00  
0x00  
Port B control register 2  
0x00  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port C control register 2  
0x00  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX(1)  
0x00  
0x02  
Port D control register 2  
0x00  
DS7147 Rev 10  
31/103  
41  
 
 
 
 
Memory and register map  
Address  
STM8S003F3 STM8S003K3  
Table 8. I/O port hardware register map (continued)  
Reset  
status  
Block  
Register label  
Register name  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
0x00  
0xXX(1)  
0x00  
Port E  
0x00  
Port E control register 2  
0x00  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX(1)  
Port F  
0x00  
0x00  
Port F control register 2  
0x00  
1. Depends on the external circuitry.  
6.2.2  
General hardware register map  
32/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Memory and register map  
Table 9. General hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 501E to  
0x00 5059  
Reserved area (60 byte)  
0x00 505A  
0x00 505B  
0x00 505C  
0x00 505D  
0x00 505E  
FLASH_CR1  
FLASH_CR2  
FLASH_NCR2  
FLASH _FPR  
FLASH _NFPR  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0xFF  
0x00  
0xFF  
Flash complementary control register 2  
Flash protection register  
Flash  
Flash complementary protection register  
Flash in-application programming status  
register  
0x00 505F  
FLASH _IAPSR  
0x00  
0x00 5060 to  
0x00 5061  
Reserved area (2 byte)  
Flash Program memory unprotection  
register  
0x00 5062  
Flash  
Flash  
FLASH _PUKR  
FLASH _DUKR  
0x00  
0x00  
0x00 5063  
0x00 5064  
Reserved area (1 byte)  
Data EEPROM unprotection register  
0x00 5065 to  
0x00 509F  
Reserved area (59 byte)  
0x00 50A0  
0x00 50A1  
EXTI_CR1  
EXTI_CR2  
External interrupt control register 1  
External interrupt control register 2  
0x00  
0x00  
ITC  
RST  
CLK  
0x00 50A2 to  
0x00 50B2  
Reserved area (17 byte)  
Reset status register  
0x00 50B3  
RST_SR  
0xXX(1)  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 byte)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CB  
CLK_ICKR  
CLK_ECKR  
Internal clock control register  
External clock control register  
Reserved area (1 byte)  
0x01  
0x00  
CLK_CMSR  
CLK_SWR  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
0xE1  
0xE1  
0xXX  
0x18  
0xFF  
0x00  
0x00  
0xFF  
CLK_SWCR  
CLK_CKDIVR  
CLK_PCKENR1  
CLK_CSSR  
CLK  
Peripheral clock gating register 1  
Clock security system register  
Configurable clock control register  
Peripheral clock gating register 2  
Reserved area (1 byte)  
CLK_CCOR  
CLK_PCKENR2  
DS7147 Rev 10  
33/103  
41  
 
 
Memory and register map  
STM8S003F3 STM8S003K3  
Table 9. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 50CC  
0x00 50CD  
CLK_HSITRIMR  
CLK_SWIMCCR  
HSI clock calibration trimming register  
SWIM clock control register  
0x00  
CLK  
0bXXXX  
XXX0  
0x00 50CE to  
0x00 50D0  
Reserved area (3 byte)  
0x00 50D1  
0x00 50D2  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
0x00 50D3 to  
0x00 50DF  
Reserved area (13 byte)  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
IWDG prescaler register  
IWDG reload register  
0xXX(2)  
0x00  
IWDG  
0xFF  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 byte)  
0x00 50F0  
0x00 50F1  
0x00 50F2  
0x00 50F3  
AWU_CSR1  
AWU_APR  
AWU_TBR  
BEEP_CSR  
AWU control/status register 1  
AWU asynchronous prescaler buffer register  
AWU timebase selection register  
BEEP control/status register  
0x00  
0x3F  
0x00  
0x1F  
AWU  
BEEP  
0x00 50F4 to  
0x00 50FF  
Reserved area (12 byte)  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI_CR1  
SPI_CR2  
SPI control register 1  
SPI control register 2  
SPI interrupt control register  
SPI status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0x00  
0x00  
SPI_ICR  
SPI_SR  
SPI  
SPI_DR  
SPI data register  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register  
SPI Rx CRC register  
SPI Tx CRC register  
0x00 5208 to  
0x00 520F  
Reserved area (8 byte)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
I2C_CR1  
I2C_CR2  
I2C control register 1  
I2C control register 2  
I2C frequency register  
I2C own address register low  
I2C own address register high  
Reserved  
0x00  
0x00  
0x00  
0x00  
0x00  
I2C_FREQR  
I2C_OARL  
I2C_OARH  
I2C  
34/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Memory and register map  
Table 9. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C_DR  
I2C_SR1  
I2C data register  
I2C status register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C_SR2  
I2C status register 2  
I2C_SR3  
I2C status register 3  
I2C  
I2C_ITR  
I2C interrupt control register  
I2C clock control register low  
I2C clock control register high  
I2C TRISE register  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
I2C_PECR  
I2C packet error checking register  
0x00 521F to  
0x00 522F  
Reserved area (17 byte)  
0x00 5230  
0x00 5231  
0x00 5232  
0x00 5233  
0x00 5234  
0x00 5235  
0x00 5236  
0x00 5237  
0x00 5238  
0x00 5239  
0x00 523A  
UART1_SR  
UART1_DR  
UART1 status register  
UART1 data register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UART1_BRR1  
UART1_BRR2  
UART1_CR1  
UART1_CR2  
UART1_CR3  
UART1_CR4  
UART1_CR5  
UART1_GTR  
UART1_PSCR  
UART1 baud rate register 1  
UART1 baud rate register 2  
UART1 control register 1  
UART1 control register 2  
UART1 control register 3  
UART1 control register 4  
UART1 control register 5  
UART1 guard time register  
UART1 prescaler register  
UART1  
0x00 523B to  
0x00523F  
Reserved area (21 byte)  
DS7147 Rev 10  
35/103  
41  
Memory and register map  
STM8S003F3 STM8S003K3  
Table 9. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
0x00 5266  
0x00 5267  
0x00 5268  
0x00 5269  
0x00 526A  
0x00 526B  
0x00 526C  
0x00 526D  
0x00 526E  
0x00 526F  
TIM1_CR1  
TIM1_CR2  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1_SMCR  
TIM1_ETR  
TIM1 slave mode control register  
TIM1 external trigger register  
TIM1 Interrupt enable register  
TIM1 status register 1  
TIM1_IER  
TIM1_SR1  
TIM1_SR2  
TIM1 status register 2  
TIM1_EGR  
TIM1 event generation register  
TIM1 capture/compare mode register 1  
TIM1 capture/compare mode register 2  
TIM1 capture/compare mode register 3  
TIM1 capture/compare mode register 4  
TIM1 capture/compare enable register 1  
TIM1 capture/compare enable register 2  
TIM1 counter high  
TIM1_CCMR1  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter low  
TIM1  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 auto-reload register high  
TIM1 auto-reload register low  
TIM1 repetition counter register  
TIM1 capture/compare register 1 high  
TIM1 capture/compare register 1 low  
TIM1 capture/compare register 2 high  
TIM1 capture/compare register 2 low  
TIM1 capture/compare register 3 high  
TIM1 capture/compare register 3 low  
TIM1 capture/compare register 4 high  
TIM1 capture/compare register 4 low  
TIM1 break register  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1_DTR  
TIM1 dead-time register  
TIM1_OISR  
TIM1 output idle state register  
0x00 5270 to  
0x00 52FF  
Reserved area (147 byte)  
36/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Memory and register map  
Table 9. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
0x00 5308  
0x00 5309  
0x00 530A  
0x00 530B  
0x00 530C  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
0x00 5314  
0x00 5315  
0x00 5316  
TIM2_CR1  
TIM2 control register 1  
Reserved  
0x00  
Reserved  
TIM2_IER  
TIM2_SR1  
TIM2 interrupt enable register  
TIM2 status register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2_SR2  
TIM2 status register 2  
TIM2_EGR  
TIM2 event generation register  
TIM2 capture/compare mode register 1  
TIM2 capture/compare mode register 2  
TIM2 capture/compare mode register 3  
TIM2 capture/compare enable register 1  
TIM2 capture/compare enable register 2  
TIM2 counter high  
TIM2_CCMR1  
TIM2_CCMR2  
TIM2_CCMR3  
TIM2_CCER1  
TIM2_CCER2  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_CCR3H  
TIM2_CCR3L  
TIM2  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/compare register 1 high  
TIM2 capture/compare register 1 low  
TIM2 capture/compare reg. 2 high  
TIM2 capture/compare register 2 low  
TIM2 capture/compare register 3 high  
TIM2 capture/compare register 3 low  
0x00 5317 to  
0x00 533F  
Reserved area (43 byte)  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
0x00 5347  
0x00 5348  
TIM4_CR1  
TIM4 control register 1  
Reserved  
0x00  
Reserved  
TIM4_IER  
TIM4_SR  
TIM4 interrupt enable register  
TIM4 status register  
TIM4 event generation register  
TIM4 counter  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
TIM4  
TIM4_EGR  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 prescaler register  
TIM4 auto-reload register  
DS7147 Rev 10  
37/103  
41  
Memory and register map  
STM8S003F3 STM8S003K3  
Table 9. General hardware register map (continued)  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5349 to  
0x00 53DF  
Reserved area (153 byte)  
ADC data buffer registers  
Reserved area (12 byte)  
0x00 53E0 to  
0x00 53F3  
ADC1  
ADC_DBxR  
0x00  
0x00 53F4 to  
0x00 53FF  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
0x00 5407  
0x00 5408  
0x00 5409  
0x00 540A  
0x00 540B  
0x00 540C  
0x00 540D  
0x00 540E  
0x00 540F  
ADC _CSR  
ADC_CR1  
ADC control/status register  
ADC configuration register 1  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0x00  
0x00  
0x03  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC_CR2  
ADC configuration register 2  
ADC_CR3  
ADC configuration register 3  
ADC_DRH  
ADC data register high  
ADC_DRL  
ADC data register low  
ADC_TDRH  
ADC_TDRL  
ADC_HTRH  
ADC_HTRL  
ADC_LTRH  
ADC_LTRL  
ADC_AWSRH  
ADC_AWSRL  
ADC_AWCRH  
ADC_AWCRL  
ADC Schmitt trigger disable register high  
ADC Schmitt trigger disable register low  
ADC high threshold register high  
ADC high threshold register low  
ADC low threshold register high  
ADC low threshold register low  
ADC analog watchdog status register high  
ADC analog watchdog status register low  
ADC analog watchdog control register high  
ADC analog watchdog control register low  
ADC1  
0x00 5410 to  
0x00 57FF  
Reserved area (1008 byte)  
1. Depends on the previous reset source.  
2. Write only register.  
38/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Memory and register map  
6.2.3  
CPU/SWIM/debug module/interrupt controller registers  
Table 10. CPU/SWIM/debug module/interrupt controller registers  
Reset  
Status  
Address  
Block  
Register Label  
Register Name  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
A
Accumulator  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
PCE  
PCH  
PCL  
XH  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CCR  
Stack pointer low  
Condition code register  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 byte)  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
0x00 7F77  
CPU  
ITC  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
Global configuration register  
Interrupt software priority register 1  
Interrupt software priority register 2  
Interrupt software priority register 3  
Interrupt software priority register 4  
Interrupt software priority register 5  
Interrupt software priority register 6  
Interrupt software priority register 7  
Interrupt software priority register 8  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00 7F78 to  
0x00 7F79  
Reserved area (2 byte)  
SWIM control status register  
Reserved area (15 byte)  
0x00 7F80  
SWIM  
SWIM_CSR  
0x00  
0x00 7F81 to  
0x00 7F8F  
DS7147 Rev 10  
39/103  
41  
 
 
Memory and register map  
STM8S003F3 STM8S003K3  
Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)  
Reset  
Status  
Address  
Block  
Register Label  
Register Name  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
0x00 7F9A  
DM_BK1RE  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 1 register extended byte  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
DM breakpoint 2 register extended byte  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
DM debug module control register 1  
DM debug module control register 2  
DM debug module control/status register 1  
DM debug module control/status register 2  
DM enable function register  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
0xFF  
DM  
DM_CR2  
DM_CSR1  
DM_CSR2  
DM_ENFCTR  
0x00 7F9B to  
0x00 7F9F  
Reserved area (5 byte)  
1. Accessible by debug module only  
40/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
Interrupt vector mapping  
7
Interrupt vector mapping  
Table 11. Interrupt mapping  
Wakeup from Wakeup from  
IRQ  
no.  
Source  
block  
Description  
Vector address  
Halt mode  
Active-halt mode  
-
-
RESET  
TRAP  
TLI  
Reset  
Yes  
-
Yes  
-
0x00 8000  
0x00 8004  
0x00 8008  
0x00 800C  
0x00 8010  
0x00 8014  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
Software interrupt  
0
1
2
3
4
5
6
7
8
9
10  
External top level interrupt  
Auto wake up from halt  
Clock controller  
-
-
AWU  
CLK  
-
Yes  
-
-
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
-
Port A external interrupts  
Port B external interrupts  
Port C external interrupts  
Port D external interrupts  
Port E external interrupts  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
Reserved  
Reserved  
-
SPI  
End of transfer  
Yes  
-
Yes  
-
TIM1 update/overflow/underflow/  
trigger/break  
11  
TIM1  
0x00 8034  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
TIM1  
TIM1 capture/compare  
TIM2 update /overflow  
TIM2 capture/compare  
-
-
-
-
-
-
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
0x00 804C  
0x00 8050  
0x00 8054  
0x00 8058  
0x00 805C  
TIM2  
TIM2  
-
Reserved  
-
Reserved  
UART1  
Tx complete  
-
-
-
-
UART1  
Receive register DATA FULL  
I2C interrupt  
I2C  
Yes  
Yes  
-
-
Reserved  
Reserved  
ADC1 end of conversion/analog  
watchdog interrupt  
22  
ADC1  
-
-
0x00 8060  
23  
24  
TIM4  
Flash  
TIM4 update/overflow  
EOP/WR_PG_DIS  
-
-
-
-
0x00 8064  
0x00 8068  
0x00 806C to  
0x00 807C  
Reserved  
1. Except PA1  
DS7147 Rev 10  
41/103  
41  
 
 
Option bytes  
STM8S003F3 STM8S003K3  
8
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated block of the memory. Except for the  
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form  
(OPTx) and a complemented one (NOPTx) for redundancy.  
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in Table 12: Option bytes below. Option bytes can also be modified ‘on the fly’ by the  
application in IAP mode, except the ROP option that can only be modified in ICP mode (via  
SWIM).  
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM  
communication protocol and debug module user manual (UM0470) for information on SWIM  
programming procedures.  
Table 12. Option bytes  
Option bits  
Factory  
default  
setting  
Option  
name  
Option  
byte no.  
Addr.  
7
6
5
4
3
2
1
0
Read-out  
0x4800  
protection  
(ROP)  
OPT0  
ROP[7:0]  
UBC[7:0]  
0x00  
0x4801  
0x4802  
0x4803  
OPT1  
NOPT1  
OPT2  
0x00  
0xFF  
0x00  
User boot code  
(UBC)  
NUBC[7:0]  
Alternate  
function  
remapping  
(AFR)  
AFR7  
AFR6  
AFR5  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x4804  
0x4805  
0x4806  
0x4807  
0x4808  
NOPT2  
OPT3  
NAFR7  
NAFR6  
NAFR5  
NAFR4  
NAFR3  
NAFR2  
NAFR1  
NAFR0  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
LSI  
_EN  
IWDG  
_HW  
WWDG  
_HW  
WWDG  
_HALT  
Reserved  
Reserved  
HSITRIM  
Misc. option  
Clock option  
NHSI  
TRIM  
NLSI  
_EN  
NIWDG NWWDG NWWDG  
_HW  
NOPT3  
OPT4  
_HW  
_HALT  
EXT  
CLK  
CKAWU  
SEL  
PRS  
C1  
PRS  
C0  
Reserved  
NEXT  
CLK  
NCKAW  
USEL  
NPR  
SC1  
NPR  
SC0  
NOPT4  
Reserved  
0x4809  
0x480A  
OPT5  
HSECNT[7:0]  
NHSECNT[7:0]  
0x00  
0xFF  
HSE clock  
startup  
NOPT5  
Table 13. Option byte description  
Description  
Option byte no.  
ROP[7:0] Memory readout protection (ROP)  
0xAA: Enable readout protection (write access via SWIM protocol)  
Note: Refer to the family reference manual (RM0016) section on  
Flash/EEPROM memory readout protection for details.  
OPT0  
42/103  
DS7147 Rev 10  
 
 
 
 
 
STM8S003F3 STM8S003K3  
Option byte no.  
Option bytes  
Table 13. Option byte description (continued)  
Description  
UBC[7:0] User boot code area  
0x00: no UBC, no write-protection  
0x01: Pages 0 defined as UBC, memory write-protected  
0x02: Pages 0 to 1 defined as UBC, memory write-protected  
Page 0 and page 1 contain the interrupt vectors.  
...  
0x7F: Pages 0 to 126 defined as UBC, memory write-protected  
Other values: Pages 0 to 127 defined as UBC, memory-write protected.  
Note: Refer to the family reference manual (RM0016) section on  
Flash/EEPROM write protection for more details.  
OPT1  
OPT2  
AFR[7:0]  
Refer to the following section for alternate function remapping descriptions  
of bits [7:2] and [1:0] respectively.  
HSITRIM: high-speed internal clock trimming register size  
0: 3-bit trimming supported in CLK_HSITRIMR register  
1: 4-bit trimming supported in CLK_HSITRIMR register  
LSI_EN: Low speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
OPT3  
0: IWDG Independent watchdog activated by software  
1: IWDG Independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on halt  
0: No reset generated on halt if WWDG active  
1: Reset generated on halt if WWDG active  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL: Auto wakeup unit/clock  
0: LSI clock source selected for AWU  
1: HSE clock with prescaler selected as clock source for for AWU  
OPT4  
PRSC[1:0] AWU clock prescaler  
0x: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
HSECNT[7:0]: HSE crystal oscillator stabilization time  
This configures the stabilization time.  
0x00: 2048 HSE cycles  
OPT5  
0xB4: 128 HSE cycles  
0xD2: 8 HSE cycles  
0xE1: 0.5 HSE cycles  
DS7147 Rev 10  
43/103  
45  
Option bytes  
STM8S003F3 STM8S003K3  
8.1  
Alternate function remapping bits  
Table 14. STM8S003K3 alternate function remapping bits for 32-pin devices  
Option byte number  
Description(1)  
AFR7Alternate function remapping option 7  
Reserved.  
AFR6 Alternate function remapping option 6  
0: AFR6 remapping option inactive: default alternate function(2)  
1: Port D7 alternate function = TIM1_CH4.  
AFR5 Alternate function remapping option 5  
0: AFR5 remapping option inactive: default alternate function(2)  
1: Port D0 alternate function = CLK_CCO.  
OPT2  
AFR[4:2] Alternate function remapping option 4:2  
Reserved.  
AFR1 Alternate function remapping option 1  
0: AFR1 remapping option inactive: default alternate function(2)  
1: Port A3 alternate function = SPI_NSS; port D2 alternate function  
TIM2_CH3  
AFR0 Alternate function remapping option 0  
Reserved.  
1. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and  
AFR0  
2. Refer to the pinout description.  
44/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Option bytes  
Table 15. STM8S003F3 alternate function remapping bits for 20-pin devices  
Option byte number  
Description  
AFR7Alternate function remapping option 7  
0: AFR7 remapping option inactive: default alternate function(1)  
1: Port C3 alternate function = TIM1_CH1N; port C4 alternate function =  
TIM1_CH2N.  
AFR6 Alternate function remapping option 6  
Reserved.  
AFR5 Alternate function remapping option 5  
Reserved.  
AFR4 Alternate function remapping option 4  
0: AFR4 remapping option inactive: default alternate function(1)  
.
1: Port B4 alternate function = ADC_ETR; port B5 alternate function =  
TIM1_BKIN.  
OPT2  
AFR3 Alternate function remapping option 3  
0: AFR3 remapping option inactive: default alternate function(1)  
1: Port C3 alternate function = TLI.  
AFR2 Alternate function remapping option 2  
Reserved.  
AFR1 Alternate function remapping option 1 (2)  
0: AFR1 remapping option inactive: default alternate function(1)  
1: Port A3 alternate function = SPI_NSS; port D2 alternate function =  
TIM2_CH3.  
AFR0 Alternate function remapping option 0(2)  
0: AFR0 remapping option inactive: Default alternate functions(1)  
1: Port C5 alternate function = TIM2_CH1; port C6 alternate function =  
TIM1_CH1; port C7 alternate function = TIM1_CH2.  
1. Refer to the pinout description.  
2. Do not use more than one remapping option in the same port. It is forbidden to enable both AFR1 and  
AFR0.  
DS7147 Rev 10  
45/103  
45  
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
9
Electrical characteristics  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
9.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T (given by  
A
A
Amax  
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ± 3 Σ).  
9.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5 V. They are given  
A
DD  
only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2 Σ).  
9.1.3  
9.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 7.  
Figure 7. Pin loading conditions  
STM8 pin  
50 pF  
9.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 8.  
46/103  
DS7147 Rev 10  
 
 
 
 
 
 
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 8. Pin input voltage  
STM8 pin  
V
IN  
9.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 16: Voltage characteristics,  
Table 17: Current characteristics and Table 18: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect the device’s reliability.  
The device’s mission profile (application conditions) is compliant with JEDEC JESD47  
Qualification Standard, extended mission profiles are available on demand.  
Table 16. Voltage characteristics  
Symbol  
DDx - VSS Supply voltage(1)  
Ratings  
Min  
Max  
Unit  
V
-0.3  
6.5  
6.5  
Input voltage on true open drain pins(2)  
Input voltage on any other pin(2)  
VSS - 0.3  
V
VIN  
VSS - 0.3 VDD + 0.3  
|VDDx - VDD| Variations between different power pins  
-
-
50  
50  
mV  
-
|VSSx - VSS| Variations between all the different ground pins  
see Absolute maximum  
ratings (electrical  
VESD  
Electrostatic discharge voltage  
sensitivity) on page 86  
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected  
DS7147 Rev 10  
47/103  
87  
 
 
 
 
Electrical characteristics  
Symbol  
STM8S003F3 STM8S003K3  
Table 17. Current characteristics  
Ratings  
Max.(1)  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(2)  
Total current out of VSS ground lines (sink)(2)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
100  
80  
20  
IIO  
-20  
±4  
(3)(4)  
IINJ(PIN)  
Injected current on OSCIN pin  
±4  
Injected current on any other pin(5)  
±4  
(3)  
mA  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
±20  
1. Data based on characterization results.  
2. All power (VDD) and ground (VSS) pins must always be connected to the external supply.  
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected  
4. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on characterization  
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 18. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
-65 to 150  
150  
°C  
Maximum junction temperature  
48/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3  
Operating conditions  
The device must be used in operating conditions that respect the parameters in Table 19. In  
addition, full account must be taken of all physical capacitor characteristics and tolerances.  
Table 19. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fCPU  
VDD  
Internal CPU clock frequency  
Standard operating voltage  
-
-
0
16  
MHz  
V
2.95  
5.5  
CEXT: capacitance of external  
capacitor  
-
470  
3300  
nF  
(1)  
VCAP  
ESR of external capacitor  
ESL of external capacitor  
-
-
-
-
-
0.3  
15  
ohm  
nH  
At 1 MHz(2)  
TSSOP20  
UFQFPN20  
LQFP32  
238  
220  
330  
Power dissipation at  
TA = 85° C for suffix 6  
(3)  
PD  
mW  
°C  
Ambient temperature for 6  
suffix version  
TA  
TJ  
Maximum power dissipation  
-
-40  
-40  
85  
Junction temperature range  
for 6 suffix version  
105  
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter  
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum  
values must be respected for the full application range.  
2. This frequency of 1 MHz as a condition for VCAP parameters is given by the design of the internal regulator.  
3. To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/ΘJA (see Section 10.4: Thermal  
characteristics on page 96) with the value for TJmax given in Table 19 above and the value for ΘJA given in  
Table 55: Thermal characteristics.  
Figure 9. f  
versus V  
DD  
CPUmax  
fCPU (MHz)  
Functionality  
not guaranteed  
in this area  
16  
12  
8
Functionality guaranteed  
@TA -40 to 85 °C  
4
0
4.0  
Supply voltage  
2.95  
5.0  
5.5  
MS36411V1  
DS7147 Rev 10  
49/103  
87  
 
 
 
 
Electrical characteristics  
Symbol  
STM8S003F3 STM8S003K3  
Table 20. Operating conditions at power-up/power-down  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD rise time rate  
VDD fall time rate(1)  
-
-
2
2
-
-
tVDD  
µs/V  
Reset release  
delay  
tTEMP  
VIT+  
VDD rising  
-
-
1.7  
2.85  
2.8  
-
ms  
V
Power-on reset  
threshold  
-
-
-
2.6  
2.5  
-
2.7  
2.65  
70  
Brown-out reset  
threshold  
VIT-  
V
Brown-out reset  
hysteresis  
VHYS(BOR)  
mV  
1. Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the  
minimum operating voltage (VDD min) when the tTEMP delay has elapsed.  
50/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3.1  
VCAP external capacitor  
Stabilization for the main regulator is achieved connecting an external capacitor C  
to the  
EXT  
V
pin. C  
is specified in Table 19. Care should be taken to limit the series inductance  
CAP  
EXT  
to less than 15 nH.  
Figure 10. External capacitor C  
EXT  
ESL  
C
ESR  
RLeak  
MSv36488V1  
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.  
9.3.2  
Supply current characteristics  
The current consumption is measured as described in Section 9.1.5: Pin input voltage.  
Total current consumption in run mode  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled (clock stopped by Peripheral Clock Gating registers)  
except if explicitly mentioned.  
Subject to general operating conditions for V and T .  
DD  
A
DS7147 Rev 10  
51/103  
87  
 
 
 
 
Electrical characteristics  
Symbol Parameter  
STM8S003F3 STM8S003K3  
Table 21. Total current consumption with code execution in run mode at V = 5 V  
DD  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max (1) Unit  
2.3  
2
-
2.35  
2
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
Supply  
1.7  
current in  
run mode,  
code  
HSE user ext. clock (16 MHz) 0.86  
-
fCPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
HSI RC osc. (16 MHz/8)  
0.7  
0.87  
executed  
from RAM  
fCPU = fMASTER/128 =  
15.625 kHz  
0.46  
0.58  
fCPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
0.41  
4.5  
0.55  
-
IDD(RUN)  
mA  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc.(16 MHz)  
fCPU = fMASTER = 16 MHz  
4.3  
4.75  
4.5  
1.05  
0.9  
Supply  
3.7  
current in  
run mode,  
code  
executed  
from Flash  
fCPU = fMASTER = 2 MHz  
HSI RC osc. (16 MHz/8)(2)  
0.84  
0.72  
fCPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.46  
0.42  
0.58  
0.57  
fCPU = fMASTER = 128 kHz  
1. Data based on characterization results.  
2. Default clock configuration measured with all peripherals off.  
52/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Table 22. Total current consumption with code execution in run mode at V = 3.3 V  
DD  
Symbol Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max(1) Unit  
1.8  
2
-
2.3  
2
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
Supply  
1.5  
current in  
run mode,  
code  
executed  
from RAM  
HSE user ext. clock (16 MHz) 0.81  
-
fCPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
HSI RC osc. (16MHz/8)  
0.7  
0.87  
fCPU = fMASTER/128 =  
0.46  
0.58  
15.625 kHz  
f
CPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
0.41  
4
0.55  
-
IDD(RUN)  
mA  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
fCPU = fMASTER = 16 MHz  
3.9  
4.7  
4.5  
1.05  
0.9  
Supply  
3.7  
current in  
run mode,  
code  
executed  
from Flash  
fCPU = fMASTER = 2 MHz  
HSI RC osc. (16 MHz/8)(2)  
0.84  
0.72  
fCPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.46  
0.42  
0.58  
0.57  
fCPU = fMASTER = 128 kHz  
1. Data based on characterization results.  
2. Default clock configuration, measured with all peripherals off.  
DS7147 Rev 10  
53/103  
87  
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Total current consumption in wait mode  
Table 23. Total current consumption in wait mode at V = 5 V  
DD  
Symbol Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max(1) Unit  
1.6  
1.1  
-
f
CPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.3  
1.1  
0.88  
0.89  
0.7  
Supply  
IDD(WFI) current in  
wait mode  
mA  
f
CPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)(2)  
LSI RC osc. (128 kHz)  
0.45  
0.4  
0.57  
0.54  
fCPU = fMASTER = 128 kHz  
1. Data based on characterization results.  
2. Default clock configuration measured with all peripherals off.  
Table 24. Total current consumption in wait mode at V = 3.3 V  
DD  
Symbol Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ Max(1) Unit  
1.1  
1.1  
-
fCPU = fMASTER = 16 MHz  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.3  
1.1  
0.88  
0.89  
0.7  
Supply  
IDD(WFI) current in  
wait mode  
fCPU = fMASTER/128 = 125 kHz  
HSI RC osc. (16 MHz)  
mA  
fCPU = fMASTER/128 =  
HSI RC osc. (16 MHz/8)(2)  
0.45  
0.4  
0.57  
0.54  
15.625 kHz  
fCPU = fMASTER/128 =  
15.625 kHz  
LSI RC osc. (128 kHz)  
1. Data based on characterization results.  
2. Default clock configuration measured with all peripherals off.  
54/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Total current consumption in active halt mode  
Table 25. Total current consumption in active halt mode at V = 5 V  
DD  
Conditions  
Max at  
Mainvoltage  
regulator  
(MVR)(2)  
Symbol  
Parameter  
Typ  
85° C  
Unit  
Flash mode(3)  
Clock source  
(1)  
HSE crystal oscillator  
(16 MHz)  
1030  
200  
970  
150  
-
Operating mode  
LSI RC oscillator  
(128 kHz)  
260  
-
On  
HSE crystal oscillator  
(16 MHz)  
Supply current in  
active halt mode  
IDD(AH)  
µA  
Power-down mode  
LSI RC oscillator  
(128 kHz)  
200  
Operating mode  
66  
10  
85  
20  
LSI RC oscillator  
(128 kHz)  
Off  
Power-down mode  
1. Data based on characterization results.  
2. Configured by the REGAH bit in the CLK_ICKR register.  
3. Configured by the AHALT bit in the FLASH_CR1 register.  
Table 26. Total current consumption in active halt mode at V = 3.3 V  
DD  
Conditions  
Max  
at  
Main voltage  
regulator  
(MVR)(2)  
Symbol  
Parameter  
Typ  
Unit  
85° C  
Flash mode(3)  
Clock source  
(1)  
HSE crystal osc. (16 MHz)  
LSI RC osc. (128 kHz)  
HSE crystal osc. (16 MHz)  
LSI RC osc. (128 kHz)  
550  
-
Operating mode  
200 260  
970  
150 200  
On  
Off  
Supply current  
in active halt  
mode  
-
IDD(AH)  
Power-down mode  
µA  
Operating mode  
66  
10  
80  
18  
LSI RC osc. (128 kHz)  
Power-down mode  
1. Data based on characterization results.  
2. Configured by the REGAH bit in the CLK_ICKR register.  
3. Configured by the AHALT bit in the FLASH_CR1 register.  
DS7147 Rev 10  
55/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Total current consumption in halt mode  
Table 27. Total current consumption in halt mode at V = 5 V  
DD  
Max at  
85°C(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Flash in operating mode, HSI  
clock after wakeup  
63  
75  
20  
IDD(H)  
Supply current in halt mode  
µA  
Flash in power-down mode, HSI  
clock after wakeup  
6.0  
1. Data based on characterization results.  
Table 28. Total current consumption in halt mode at V = 3.3 V  
DD  
Max at  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
85° C(1)  
Flash in operating mode, HSI clock  
after wakeup  
60  
75  
17  
IDD(H)  
Supply current in halt mode  
µA  
Flash in power-down mode, HSI  
clock after wakeup  
4.5  
1. Data based on characterization results.  
Low-power mode wakeup times  
Table 29. Wakeup times  
Conditions  
Symbol  
Parameter  
Typ  
Max(1) Unit  
(2)  
0 to 16 MHz  
CPU = fMASTER = 16 MHz.  
Flash in operating  
-
-
Wakeup time from wait  
mode to run mode(3)  
tWU(WFI)  
f
0.56  
-
1(6)  
3(6)  
2(6)  
mode(5)  
MVR voltage  
regulator on(4)  
Flash in power-down  
-
mode(5)  
Wakeup time active halt  
mode to run mode.(3)  
HSI (after  
wakeup)  
tWU(AH)  
µs  
Flash in operating  
48(6)  
50(6)  
-
mode(5)  
MVR voltage  
regulator off(4)  
Flash in power-down  
-
mode(5)  
Flash in operating mode(5)  
52  
54  
-
-
Wakeup time from halt  
mode to run mode(3)  
tWU(H)  
Flash in power-down mode(5)  
1. Data guaranteed by design.  
2. tWU(WFI) = 2 x 1/fmaster + 7 x 1/fCPU  
3. Measured from interrupt event to interrupt vector fetch.  
4. Configured by the REGAH bit in the CLK_ICKR register.  
5. Configured by the AHALT bit in the FLASH_CR1 register.  
6. Plus 1 LSI clock depending on synchronization.  
56/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Total current consumption and timing in forced reset state  
Table 30. Total current consumption and timing in forced reset state  
Symbol  
IDD(R)  
tRESETBL  
Parameter  
Conditions  
VDD = 5 V  
VDD = 3.3 V  
Typ  
Max(1)  
Unit  
400  
300  
-
-
-
Supply current in reset state (2)  
µA  
µs  
Reset pin release to vector fetch  
-
150  
1. Data guaranteed by design.  
2. Characterized with all I/Os tied to VSS  
.
Current consumption of on-chip peripherals  
Subject to general operating conditions for V and T .  
DD  
A
HSI internal RC/f  
= f  
= 16 MHz, VDD = 5 V.  
MASTER  
CPU  
Table 31. Peripheral current consumption  
Parameter  
Symbol  
Typ.  
Unit  
IDD(TIM1)  
IDD(TIM2)  
IDD(TIM4)  
IDD(UART1)  
IDD(SPI)  
TIM1 supply current (1)  
210  
130  
50  
TIM2 supply current (1)  
TIM4 timer supply current (1)  
UART1 supply current(1)  
SPI supply current(1)  
120  
45  
µA  
IDD(I2C)  
I2C supply current (1)  
65  
IDD(ADC1)  
ADC1 supply current when converting(1)  
1000  
1. Data based on a differential IDD measurement between reset configuration and timer counter running at  
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.  
DS7147 Rev 10  
57/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Current consumption curves  
The following figures show the typical current consumption measured with code executing in  
RAM.  
Figure 11. Typ. I  
vs V , HSE user external clock, f  
= 16 MHz  
CPU  
DD(RUN)  
DD  
Figure 12. Typ. I  
vs f  
, HSE user external clock, V = 5 V  
CPU DD  
DD(RUN)  
58/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 13. Typ. I  
vs V , HSI RC osc, f  
= 16 MHz  
DD(RUN)  
DD  
CPU  
Figure 14. Typ. I  
vs. V HSE user external clock, f  
= 16MHz  
CPU  
DD(WFI)  
DD  
DS7147 Rev 10  
59/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 15. Typ. I  
vs. f  
, HSE user external clock, V = 5 V  
CPU DD  
DD(WFI)  
Figure 16. Typ. I  
vs V , HSI RC osc, f = 16 MHz  
CPU  
DD(WFI)  
DD  
60/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for V and T .  
DD  
A
Table 32. HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fHSE_ext  
0
-
16  
MHz  
OSCIN input pin high level  
voltage  
(1)  
VHSEH  
-
0.7 x VDD  
VSS  
-
-
-
VDD + 0.3 V  
0.3 x VDD  
+1  
V
OSCIN input pin low level  
voltage  
(1)  
VHSEL  
OSCIN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
-1  
µA  
1. Data based on characterization results.  
Figure 17. HSE external clock source  
V
V
HSEH  
HSEL  
f
HSE  
External clock  
source  
OSCIN  
STM8  
MS36489V2  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
DS7147 Rev 10  
61/103  
87  
 
 
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Table 33. HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External high speed oscillator  
frequency  
fHSE  
-
1
-
16  
MHz  
RF  
Feedback resistor  
-
-
-
-
220  
-
-
kΩ  
C(1)  
Recommended load capacitance (2)  
20  
pF  
C = 20 pF,  
OSC = 16 MHz  
6 (startup)  
-
-
-
-
f
1.6 (stabilized)(3)  
IDD(HSE) HSE oscillator power consumption  
mA  
C = 10 pF,  
fOSC = 16 MHz  
6 (startup)  
1.2 (stabilized)(3)  
gm  
Oscillator transconductance  
Startup time  
-
5
-
-
-
-
mA/V  
ms  
(4)  
tSU(HSE)  
VDD is stabilized  
1
1. C is approximately equivalent to 2 x crystal Cload.  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.  
Refer to crystal manufacturer for more details  
3. Data based on characterization results.  
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
Figure 18. HSE oscillator circuit diagram  
R
m
fHSE to core  
CO  
RF  
L
m
m
CL1  
C
OSCIN  
g
m
Resonator  
Consumption  
control  
Resonator  
OSCOUT  
CL2  
STM8  
MS36490V3  
62/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
HSE oscillator critical g formula  
m
gmcrit = (2 × Π × fHSE)2 × Rm(2Co + C)2  
R : Notional resistance (see crystal specification)  
m
L : Notional inductance (see crystal specification)  
m
C : Notional capacitance (see crystal specification)  
m
Co: Shunt capacitance (see crystal specification)  
C =C =C: Grounded external capacitance  
L1  
L2  
g >> g  
m
mcrit  
9.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for V and T .  
DD  
A
High speed internal RC oscillator (HSI)  
Table 34. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
16  
-
MHz  
User-trimmed with the  
CLK_HSITRIMR register  
for given VDD and TA  
conditions(1)  
Accuracy of HSI oscillator  
-
-
1.0(2)  
ACCHSI  
%
Accuracy of HSI oscillator VDD = 5 V,  
-5  
-
-
-
5
(factory calibrated)  
-40 °C TA 85 °C  
HSI oscillator wakeup  
time including calibration  
tsu(HSI)  
-
-
1.0(2)  
250(3)  
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
-
170  
µA  
1. See the application note.  
2. Guaranteed by design.  
3. Data based on characterization results.  
DS7147 Rev 10  
63/103  
87  
 
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 19. Typical HSI frequency variation vs V at 4 temperatures  
DD  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for V and T .  
DD  
A
Table 35. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
-
-
-
-
-
-
128  
-
7(1)  
-
kHz  
µs  
tsu(LSI) LSI oscillator wakeup time  
IDD(LSI) LSI oscillator power consumption  
1. Guaranteed by design.  
-
5
µA  
Figure 20. Typical LSI frequency variation vs V @ 4 temperatures  
DD  
64/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3.5  
Memory characteristics  
RAM and hardware registers  
Table 36. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Unit  
(2)  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
VIT-max  
V
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware  
registers (only in halt mode). Guaranteed by design.  
2. Refer to Table 20 on page 50 for the value of VIT-max  
.
Flash program memory and data EEPROM  
General conditions: T = -40 to 85 °C.  
A
Table 37. Flash program memory and data EEPROM  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max  
Unit  
Operating voltage  
(all modes, execution/write/erase)  
VDD  
fCPU 16 MHz  
2.95  
-
-
5.5  
6.6  
V
Standard programming time (including  
erase) for byte/word/block  
-
6.0  
ms  
(1 byte/4 bytes/64 bytes)  
tprog  
Fast programming time for 1 block (64  
bytes)  
-
-
-
-
3.0  
3.0  
-
3.3  
3.3  
-
ms  
ms  
Erase time for 1 block (64 bytes)  
terase  
Erase/write cycles(2)  
(program memory)  
100  
NRW  
TA = 85 °C  
cycles  
Erase/write cycles(2)  
(data memory)  
100 k  
20  
-
-
-
-
Data retention (program memory)  
after 100 erase/write cycles at  
TA = 85 °C  
T
RET = 55° C  
tRET  
Data retention (data memory) after  
10 k erase/write cycles at TA = 85 °C  
years  
mA  
20  
1.0  
-
-
-
-
-
-
Data retention (data memory) after  
100 k erase/write cycles at TA = 85 °C  
TRET = 85° C  
-
Supply current (Flash programming or  
erasing for 1 to 128 bytes)  
IDD  
2.0  
1. Data based on characterization results.  
2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a  
write/erase operation addresses a single byte.  
DS7147 Rev 10  
65/103  
87  
 
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
9.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
DD  
A
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 38. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input low level  
voltage  
VIL  
-0.3  
-
0.3 x VDD  
V
Input high level  
voltage  
VDD = 5 V  
VIH  
0.7 x VDD  
-
VDD + 0.3 V  
V
Vhys  
Rpu  
Hysteresis(1)  
-
700  
55  
-
mV  
Pull-up resistor  
VDD = 5 V, VIN = VSS  
30  
80  
kΩ  
Fast I/Os  
Load = 50 pF  
-
-
-
-
20(2)  
ns  
ns  
Rise and fall time  
(10% - 90%)  
tR, tF  
Standard and high sink I/Os  
Load = 50 pF  
125(2)  
Input leakage  
current,  
analog and digital  
Ilkg  
VSS VIN VDD  
-
-
±1  
µA  
Analog input  
leakage current  
Ilkg ana  
Ilkg(inj)  
VSS VIN VDD  
-
-
-
-
±250 (3)  
±1(3)  
nA  
µA  
Leakage current in  
adjacent I/O  
Injection current ±4 mA  
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results.  
2. Data guaranteed by design.  
3. Data based on characterization results.  
66/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 21. Typical V and V vs V @ 4 temperatures  
IL  
IH  
DD  
Figure 22. Typical pull-up resistance vs V @ 4 temperatures  
DD  
DS7147 Rev 10  
67/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 23. Typical pull-up current vs V @ 4 temperatures  
DD  
1. The pull-up is a pure resistor (slope goes through 0).  
Table 39. Output driving current (standard ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level with 8 pins sunk  
Output low level with 4 pins sunk  
IIO = 10 mA, VDD = 5 V  
IIO = 4 mA, VDD = 3.3 V  
-
-
2
1(1)  
-
VOL  
V
Output high level with 8 pins sourced IIO = 10 mA, VDD = 5 V  
Output high level with 4 pins sourced IIO = 4 mA, VDD = 3.3 V  
2.8  
2.1(1)  
VOH  
V
-
1. Data based on characterization results.  
Table 40. Output driving current (true open drain ports)  
Symbol  
Parameter  
Conditions  
Max  
Unit  
I
IO = 10 mA, VDD = 5 V  
1
VOL  
Output low level with 2 pins sunk  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
1.5(1)  
2(1)  
V
1. Data based on characterization results.  
68/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Table 41. Output driving current (high sink ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output low level with 8 pins sunk  
Output low level with 4 pins sunk  
Output low level with 4 pins sunk  
Output high level with 8 pins sourced  
Output high level with 4 pins sourced  
Output high level with 4 pins sourced  
IIO = 10 mA, VDD = 5 V  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
IIO = 10 mA, VDD = 5 V  
IIO = 10 mA, VDD = 3.3 V  
IIO = 20 mA, VDD = 5 V  
-
-
0.8  
VOL  
1.0(1)  
-
1.5(1)  
V
4.0  
2.1(1)  
3.3(1)  
-
-
-
VOH  
1. Data based on characterization results.  
Typical output level curves  
Figure 25 to Figure 32 show typical output level curves measured with output on a single  
pin.  
Figure 24. Typ. V @ V = 5 V (standard ports)  
OL  
DD  
DS7147 Rev 10  
69/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 25. Typ. V @ V = 3.3 V (standard ports)  
OL  
DD  
Figure 26. Typ. V @ V = 5 V (true open drain ports)  
OL  
DD  
70/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 27. Typ. V @ V = 3.3 V (true open drain ports)  
OL  
DD  
Figure 28. Typ. V @ V = 5 V (high sink ports)  
OL  
DD  
DS7147 Rev 10  
71/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 29. Typ. V @ V = 3.3 V (high sink ports)  
OL  
DD  
Figure 30. Typ. V  
V
@ V = 5 V (standard ports)  
DD - OH DD  
72/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 31. Typ. V  
V
@ V = 3.3 V (standard ports)  
DD - OH DD  
Figure 32. Typ. V  
V
@ V = 5 V (high sink ports)  
DD - OH DD  
DS7147 Rev 10  
73/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 33. Typ. V  
V
@ V = 3.3 V (high sink ports)  
DD - OH DD  
74/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3.7  
Reset pin characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 42. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ 1)  
Max  
Unit  
VIL(NRST)  
VIH(NRST)  
VOL(NRST)  
RPU(NRST)  
tIFP(NRST)  
NRST input low level voltage (1)  
NRST input high level voltage (1)  
NRST output low level voltage (1)  
NRST pull-up resistor (2)  
-
-0.3 V  
-
-
0.3 x VDD  
-
0.7 x VDD  
VDD + 0.3  
V
IOL= 2 mA  
-
30  
-
-
0.5  
80  
75  
-
-
-
-
-
55  
-
kΩ  
ns  
ns  
µs  
NRST input filtered pulse (3)  
tINFP(NRST) NRST Input not filtered pulse (3)  
tOP(NRST)  
NRST output pulse (1)  
500  
20  
-
-
-
1. Data based on characterization results.  
2. The RPU pull-up equivalent resistor is based on a resistive transistor.  
3. Data guaranteed by design.  
Figure 34. Typical NRST V and V vs V @ 4 temperatures  
IL  
IH  
DD  
DS7147 Rev 10  
75/103  
87  
 
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 35. Typical NRST pull-up resistance vs V @ 4 temperatures  
DD  
Figure 36. Typical NRST pull-up current vs V @ 4 temperatures  
DD  
The reset network shown in Figure 37 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below the V max. level specified in  
IL  
Table 38. Otherwise the reset is not taken into account internally. For power consumption  
sensitive applications, the capacity of the external reset capacitor can be reduced to limit  
charge/discharge current. If the NRST signal is used to reset the external circuitry, care  
must be taken of the charge/discharge time of the external capacitor to fulfill the external  
device’s reset timing conditions. The minimum recommended capacity is 10 nF.  
76/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Figure 37. Recommended reset pin protection  
STM8  
VDD  
RPU  
External  
reset  
circuit  
NRST  
Filter  
0.1 μF  
(Optional)  
MSv36491V1  
SPI serial peripheral interface  
9.3.8  
Unless otherwise specified, the parameters given in Table 43 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage  
MASTER  
DD  
conditions. t  
= 1/f  
.
MASTER  
MASTER  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
Table 43. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Slave mode  
Min  
Max  
Unit  
0
0
8
7
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time Capacitive load: C = 30 pF  
-
25  
(1)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 x tMASTER  
70  
-
-
(1)  
th(NSS)  
(1)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Data input setup time  
Master mode  
tSCK/2 - 15  
tSCK/2 + 15  
(1)  
(1)  
Master mode  
5
5
-
tsu(MI)  
tsu(SI)  
(1)  
Slave mode  
-
ns  
(1)  
Master mode  
7
-
th(MI)  
th(SI)  
Data input hold time  
(1)  
Slave mode  
10  
-
-
(1)(2)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Data output valid time  
Slave mode  
3 x tMASTER  
(1)(3)  
tdis(SO)  
tv(SO)  
tv(MO)  
th(SO)  
Slave mode  
25  
-
-
65  
30  
-
(1)  
(1)  
(1)  
(1)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
Slave mode (after enable edge)  
Master mode (after enable edge)  
-
27  
11  
Data output hold time  
th(MO)  
-
1. Values based on design simulation and/or characterization results, and not tested in production.  
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.  
DS7147 Rev 10  
77/103  
87  
 
 
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.  
Figure 38. SPI timing diagram - slave mode and CPHA = 0  
(1)  
Figure 39. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
tSU(NSS)  
th(NSS)  
tc(SCK)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
tw(SCKH)  
tw(SCKL)  
tr(SCK)  
tf(SCK)  
th(SO)  
tdis(SO)  
tv(SO)  
ta(SO)  
MISO  
MSB OUT  
MSB IN  
BIT6 OUT  
LSB OUT  
OUTPUT  
th(SI)  
tsu(SI)  
MOSI  
INPUT  
LSB IN  
BIT 1 IN  
ai14135b  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.  
78/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
(1)  
Figure 40. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
t
su(MI)  
f(SCK)  
MISO  
INPUT  
BIT6 IN  
LSB IN  
MSB IN  
t
h(MI)  
MOSI  
OUTPUT  
BIT1 OUT  
LSB OUT  
MSB OUT  
t
t
h(MO)  
v(MO)  
ai14136c  
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.  
DS7147 Rev 10  
79/103  
87  
 
Electrical characteristics  
2
STM8S003F3 STM8S003K3  
9.3.9  
I C interface characteristics  
2
Table 44. I C characteristics  
Standard mode I2C Fast mode I2C(1)  
Symbol  
Parameter  
Unit  
Min(2)  
Max(2)  
Min(2) Max(2)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
-
-
-
-
1.3  
0.6  
-
µs  
-
250  
0(3)  
100  
0(4)  
-
th(SDA)  
SDA data hold time  
900(3)  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
-
-
1000  
300  
-
-
300  
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
-
-
-
0.6  
0.6  
0.6  
-
-
-
µs  
tsu(STA) Repeated START condition setup time  
tsu(STO) STOP condition setup time  
µs  
µs  
pF  
STOP to START condition time  
tw(STO:STA)  
(bus free)  
4.7  
-
1.3  
-
-
Cb  
Capacitive load for each bus line  
-
400  
400  
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400kHz)  
Data based on standard I2C protocol requirement, not tested in production  
2.  
The maximum hold time of the start condition has only to be met if the interface does not stretch the low  
time  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL  
80/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
Typical application with I C bus and timing diagram  
2
Figure 41.  
V
V
DD  
DD  
4.7 kΩ  
STM8  
4.7 kΩ  
100 Ω  
100 Ω  
SDA  
SCL  
I²C bus  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
r(SDA)  
t
t
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
h(STA)  
t
w(SCLL)  
h(SDA)  
SCL  
t
t
t
su(STO)  
r(SCL)  
t
f(SCL)  
w(SCLH)  
ai17490V2  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD  
DS7147 Rev 10  
81/103  
87  
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
9.3.10  
10-bit ADC characteristics  
Subject to general operating conditions for V  
specified.  
, f  
, and T unless otherwise  
DDA MASTER A  
Table 45. ADC characteristics  
Conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VDDA = 3 to 5.5 V  
1
-
4
fADC  
ADC clock frequency  
MHz  
VDDA = 4.5 to 5.5 V  
-
1
-
-
6
VAIN  
Conversion voltage range(1)  
VSS  
VDD  
V
Internal sample and hold  
capacitor  
CADC  
-
-
3
-
pF  
f
ADC = 4 MHz  
-
-
-
0.75  
0.5  
7
-
-
-
(1)  
tS  
Sampling time  
µs  
fADC = 6 MHz  
tSTAB Wakeup time from standby  
-
µs  
µs  
fADC = 4 MHz  
fADC = 6 MHz  
-
3.5  
2.33  
14  
Total conversion time (including  
tCONV  
µs  
sampling time, 10-bit resolution)  
1/fADC  
1. During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged by the external  
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage  
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on  
the conversion result. Values for the sample clock tS depend on programming.  
Table 46. ADC accuracy with R  
< 10 kΩ , V = 5 V  
DD  
AIN  
Symbol  
Parameter  
Conditions  
Typ  
Max(1)  
Unit  
fADC = 2 MHz  
fADC = 4 MHz  
1.6  
2.2  
2.4  
1.1  
1.5  
1.8  
1.5  
2.1  
2.2  
0.7  
0.7  
0.7  
0.6  
0.8  
0.8  
3.5  
4
|ET|  
Total unadjusted error (2)  
f
ADC = 6 MHz  
4.5  
2.5  
3
fADC = 2 MHz  
fADC = 4 MHz  
|EO|  
|EG|  
|ED|  
|EL|  
Offset error (2)  
f
ADC = 6 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
3
3
Gain error (2)  
f
3
LSB  
fADC = 6 MHz  
fADC = 2 MHz  
4
1.5  
1.5  
1.5  
1.5  
2
Differential linearity error (2)  
Integral linearity error (2)  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
f
ADC = 4 MHz  
fADC = 6 MHz  
2
82/103  
DS7147 Rev 10  
 
 
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
1. Data based on characterization results.  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.  
Table 47. ADC accuracy with R  
Parameter  
< 10 kΩ R , V = 3.3 V  
AIN DD  
AIN  
Symbol  
Conditions  
Typ  
Max(1)  
Unit  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
1.6  
1.9  
1
3.5  
4
|ET|  
Total unadjusted error(2)  
Offset error(2)  
2.5  
2.5  
3
|EO|  
|EG|  
|ED|  
|EL|  
1.5  
1.3  
2
Gain error(2)  
LSB  
f
ADC = 4 MHz  
3
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
0.7  
0.7  
0.6  
0.8  
1.0  
1.5  
1.5  
2
Differential linearity error(2)  
Integral linearity error(2)  
1. Data based on characterization results.  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
ΣIINJ(PIN) in Section 9.3.6 does not affect the ADC accuracy.  
DS7147 Rev 10  
83/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Figure 42. ADC accuracy characteristics  
E
G
1023  
1022  
1021  
V
V  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
0
1
2
3
4
5
6
7
1021102210231024  
V
V
DDA  
SSA  
1. Example of an actual transfer curve.  
2. The ideal transfer curve  
3. End point correlation line  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.  
E
O = Offset error: deviation between the first actual transition and the first ideal one.  
EG = Gain error: deviation between the last ideal transition and the last actual one.  
ED = Differential linearity error: maximum deviation between actual steps and the ideal one.  
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation  
line.  
Figure 43. Typical application with ADC  
V
DD  
STM8  
V
T
0.6V  
R
AIN  
AINx  
10-bit A/D  
conversion  
V
AIN  
C
V
T
0.6V  
AIN  
I
C
ADC  
L
±1µA  
84/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Electrical characteristics  
9.3.11  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 48. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
VDD = 3.3 V, TA = 25 °C,  
fMASTER = 16 MHz,  
conforming to IEC 61000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B(1)  
Fast transient voltage burst limits to be  
VDD = 3.3 V, TA = 25 °C,  
VEFTB applied through 100pF on VDD and VSS pins fMASTER = 16 MHz,  
4A(1)  
to induce a functional disturbance  
conforming to IEC 61000-4-4  
1. Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 -  
EMC guidelines for STM8Smicrocontrollers.  
DS7147 Rev 10  
85/103  
87  
 
 
Electrical characteristics  
STM8S003F3 STM8S003K3  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling two LEDs through the I/O  
ports), the product is monitored in terms of emission. Emission tests conform to the IEC  
61967-2 standard for test software, board layout and pin loading.  
Table 49. EMI data  
Conditions  
(1)  
Max fHSE/fCPU  
Symbol Parameter  
Unit  
Monitored  
frequency band  
General conditions  
16 MHz/ 16 MHz/  
8 MHz 16 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
-
5
4
5
5
VDD = 5 V  
TA = 25 °C  
Peak level  
SEMI  
dBµV  
-
LQFP32 package  
conforming to IEC  
61967-2  
5
5
EMI level  
2.5  
2.5  
1. Data based on characterization results.  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, DLU and LU) using specific measurement methods,  
the product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (one positive then one negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). One model  
can be simulated: the Human Body Model (HBM). This test conforms to the JESD22-  
A114A/A115A standard. For more details, refer to the application note AN1181.  
Table 50. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge voltage  
(Human body model)  
TA = 25°C, conforming to  
VESD(HBM)  
A
4000  
V
V
JESD22-A114  
Electrostatic discharge voltage  
(Charge device model)  
TA= 25°C, conforming to  
JESD22-C101  
VESD(CDM)  
IV  
1000  
1. Data based on characterization results.  
86/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Static latch-up  
Electrical characteristics  
Two complementary static tests are required on 10 parts to assess the latch-up  
performance:  
A supply overvoltage (applied to each power supply pin)  
A current injection (applied to each input, output and configurable I/O pin) is performed  
on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 51. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class(1)  
TA = 25 °C  
TA = 85 °C  
A
A
LU  
Static latch-up class  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B  
class strictly covers all the JEDEC criteria (international standard).  
DS7147 Rev 10  
87/103  
87  
 
Package information  
STM8S003F3 STM8S003K3  
10  
Package information  
To meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at www.st.com.  
ECOPACK® is an ST trademark.  
10.1  
LQFP32 package information  
Figure 44. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
K
D
D1  
D3  
L
L1  
24  
17  
16  
25  
32  
9
PIN 1  
IDENTIFICATION  
1
8
e
5V_ME_V2  
1. Drawing is not to scale.  
88/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Package information  
Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.370  
-
0.0551  
0.0146  
-
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 45. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint  
0.80  
1.20  
24  
17  
25  
16  
0.50  
0.30  
7.30  
6.10  
9.70  
7.30  
32  
9
8
1
1.20  
6.10  
9.70  
5V_FP_V2  
1. Dimensions are expressed in millimeters.  
DS7147 Rev 10  
89/103  
97  
 
 
Package information  
STM8S003F3 STM8S003K3  
Device marking for LQFP32  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 46. LQFP32 marking example (package top view)  
Product  
identification(1)  
STM8S003  
K6T6C  
Date code  
Standard ST logo  
Y
WW  
Revision code  
Pin 1 identifier  
R
MS37767V1  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
90/103  
DS7147 Rev 10  
 
 
STM8S003F3 STM8S003K3  
Package information  
10.2  
TSSOP20 package information  
Figure 47. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package outline  
D
20  
11  
10  
c
E1  
E
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
1
PIN 1  
IDENTIFICATION  
k
aaa  
C
A1  
L
A
A2  
L1  
b
e
YA_ME_V3  
1. Drawing is not to scale.  
Table 53. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package mechanical data  
millimeters  
Typ.  
inches(1)  
Symbol  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
6.600  
6.600  
4.500  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.2598  
0.2598  
0.1772  
-
0.050  
0.800  
0.190  
0.090  
6.400  
6.200  
4.300  
-
-
0.0020  
0.0315  
0.0075  
0.0035  
0.2520  
0.2441  
0.1693  
-
-
1.000  
-
0.0394  
-
c
-
-
D(2)  
6.500  
6.400  
4.400  
0.650  
0.600  
1.000  
-
0.2559  
0.2520  
0.1732  
0.0256  
0.0236  
0.0394  
-
E
E1(3)  
e
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
8°  
0°  
8°  
aaa  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to four decimal digits.  
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
shall not exceed 0.15mm per side.  
3. Dimension "E1" does not include interlead Flash or protrusions. Interlead Flash or protrusions shall not  
exceed 0.25mm per side.  
DS7147 Rev 10  
91/103  
97  
 
 
 
 
Package information  
STM8S003F3 STM8S003K3  
Figure 48. TSSOP20 – 20-lead thin shrink small outline, 6.5 x 4.4 mm, 0.65 mm pitch,  
package footprint  
0.25  
6.25  
20  
11  
1.35  
0.25  
7.10 4.40  
1.35  
1
10  
0.40  
0.65  
YA_FP_V1  
1. Dimensions are expressed in millimeters.  
Device marking for TSSOP20  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location. Other optional marking or inset/upset marks, which identify the parts throughout  
supply chain operations, are not indicated below.  
Figure 49. TSSOP20 marking example (package top view)  
Standard ST logo  
Product  
identification(1)  
8S003F3P6  
Date code  
Revision code  
Pin 1 identifier  
R
Y
WW  
MS37768V1  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
92/103  
DS7147 Rev 10  
 
 
 
STM8S003F3 STM8S003K3  
Package information  
10.3  
UFQFPN20 package information  
Figure 50. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package outline  
D
E
Pin 1  
TOP VIEW  
L1  
D
D1  
e
ddd  
L3  
10  
L2  
A3  
A1  
5
e
b
E
E1  
1
15  
20  
16  
L5  
A
BOTTOM VIEW  
SIDE VIEW  
A0A5_ME_V4  
1. Drawing is not to scale.  
Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.500  
0.550  
0.020  
0.152  
3.000  
2.000  
3.000  
2.000  
0.550  
0.350  
0.200  
0.150  
0.600  
0.0197  
0.0217  
0.0008  
0.060  
0.0236  
A1  
A3  
D
0.000  
0.050  
0.0000  
0.0020  
-
-
-
-
2.900  
3.100  
0.1142  
0.1181  
0.0790  
0.1181  
0.07905  
0.0217  
0.0138  
0.0079  
0.0059  
0.1220  
D1  
E
-
-
-
-
2.900  
3.100  
0.1142  
0.1220  
E1  
L1  
L2  
L3  
L5  
-
-
-
-
0.500  
0.600  
0.0197  
0.0236  
0.300  
0.400  
0.0118  
0.0157  
-
-
-
-
-
-
-
-
DS7147 Rev 10  
93/103  
97  
 
 
 
 
 
Package information  
STM8S003F3 STM8S003K3  
Table 54. UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package mechanical data (continued)  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
b
e
0.180  
0.250  
0.500  
-
0.300  
-
0.0071  
0.0098  
0.0197  
-
0.0118  
-
-
-
-
-
ddd  
0.050  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 51. UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm pitch, ultra thin fine pitch quad flat  
package recommended footprint  
A0A5_FP_V2  
1. Dimensions are expressed in millimeters.  
94/103  
DS7147 Rev 10  
 
STM8S003F3 STM8S003K3  
Package information  
Device marking for UFQFPN20  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Other optional marking or inset/upset marks, which identify the parts throughout supply  
chain operations, are not indicated below.  
Figure 52. UFQFPN20 marking example (package top view)  
Product  
identification(1)  
S033  
Date code  
Revision code  
Y
WW  
R
Dot (pin 1)  
MS37769V1  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DS7147 Rev 10  
95/103  
97  
 
 
Package information  
STM8S003F3 STM8S003K3  
10.4  
Thermal characteristics  
The maximum chip junction temperature (T  
Table 19: General operating conditions.  
) must never exceed the values given in  
, in degrees Celsius, may be calculated  
Jmax  
The maximum chip-junction temperature, T  
using the following equation:  
Jmax  
T
= T  
+ (P  
x Θ )  
Jmax  
Amax  
Dmax JA  
Where:  
T
is the maximum ambient temperature in °C  
is the package junction-to-ambient thermal resistance in ° C/W  
Amax  
Θ
JA  
P
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
INTmax  
DD  
DD  
internal power.  
P
P
V
represents the maximum power dissipation on output pins, where:  
I/Omax  
I/Omax  
= Σ (V *I ) + Σ((V -V *I ), and taking account of the actual V /I and  
OL OL  
DD OH) OH  
OL OL  
/I of the I/Os at low and high level in the application.  
OH OH  
(1)  
Table 55. Thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 32 - 7 x 7 mm  
60  
Thermal resistance junction-ambient  
TSSOP20 - 4.4 mm  
Θ
84  
90  
°C/W  
JA  
Thermal resistance junction-ambient  
UFQFPN20 -3 x 3 mm  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
10.4.1  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
96/103  
DS7147 Rev 10  
 
 
 
 
 
STM8S003F3 STM8S003K3  
Package information  
10.4.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code (see  
(1)  
Figure 53: STM8S003F3/K3 value line ordering information scheme ).  
The following example shows how to calculate the temperature range needed for a given  
application.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 75 °C (measured according to JESD51-2)  
Amax  
I
= 8 mA, V = 5.0 V  
DD  
DDmax  
Maximum 20 I/Os used at the same time in output at low level with  
= 8 mA, V = 0.4 V  
I
OL  
OL  
P
P
8 mA x 5.0 V = 400 mW  
INTmax =  
= 400 mW + 64 mW  
Dmax  
Thus: P  
= 464 mW  
Dmax  
Using the values obtained in Section Table 55.: Thermal characteristics T  
is calculated  
Jmax  
as follows for LQFP32 7 x 7 mm = 60 °C/W:  
T
= 75 °C + (60 °C/W x 464 mW) = 75 °C + 27.8 °C = 102.8 °C  
Jmax  
This is within the range of the suffix 6 version parts (-40 < T < 105 °C).  
J
In this case, parts must be ordered at least with the temperature range suffix 6.  
DS7147 Rev 10  
97/103  
97  
 
Ordering information  
STM8S003F3 STM8S003K3  
11  
Ordering information  
(1)  
Figure 53. STM8S003F3/K3 value line ordering information scheme  
Example:  
STM8  
S
003  
K
3
T
6
TR  
Product class  
STM8 microcontroller  
Family type  
S = standard  
Sub-family type(2)  
00x = Value line sub-family  
003 = low density  
Pin count  
F = 20 pins  
K = 32 pins  
Program memory size  
3 = 8 Kbyte  
Package type  
T = LQFP  
P = TSSOP  
U = UFQFPN  
Temperature range  
6 = -40 °C to 85 °C  
Package pitch  
No character = 0.5 mm or 0.65 mm(3)  
C = 0.8 mm(4)  
Packing  
No character = Tray or tube  
TR = Tape and reel  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further  
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest  
to you.  
2. Refer to Table 1: STM8S003F3/K3 value line features for detailed description.  
3. TSSOP and UFQFPN packages.  
4. LQFP package.  
98/103  
DS7147 Rev 10  
 
 
 
 
STM8S003F3 STM8S003K3  
STM8 development tools  
12  
STM8 development tools  
Development tools for the STM8 microcontrollers include the full-featured STice emulation  
system supported by a complete software tool package including C compiler, assembler and  
integrated development environment with high-level language debugger. In addition, the  
STM8 is to be supported by a complete range of tools including starter kits, evaluation  
boards and a low-cost in-circuit debugger/programmer.  
12.1  
Emulation and in-circuit debugging tools  
The STice emulation system offers a complete range of emulation and in-circuit debugging  
features on a platform that is designed for versatility and cost-effectiveness. In addition,  
STM8 application development is supported by a low-cost in-circuit debugger/programmer.  
The STice is the fourth generation of full featured emulators from STMicroelectronics. It  
offers new advanced debugging capabilities including profiling and coverage to help detect  
and eliminate bottlenecks in application execution and dead code when fine tuning an  
application.  
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via  
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an  
application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows users to  
order exactly what they need to meet their development requirements and to adapt their  
emulation system to support existing and future ST microcontrollers.  
STice key features  
Occurrence and time profiling and code coverage (new features)  
Advanced breakpoints with up to 4 levels of conditions  
Data breakpoints  
Program and data trace recording up to 128 KB records  
Read/write on the fly of memory during emulation  
In-circuit debugging/programming via SWIM protocol  
8-bit probe analyzer  
1 input and 2 output triggers  
Power supply follower managing application voltages between 1.62 to 5.5 V  
Modularity that allows users to specify the components users need to meet their  
development requirements and adapt to future requirements  
Supported by free software tools that include integrated development environment  
(IDE), programming software interface and assembler for STM8.  
DS7147 Rev 10  
99/103  
100  
 
 
STM8 development tools  
STM8S003F3 STM8S003K3  
12.2  
Software tools  
STM8 development tools are supported by a complete, free software package from  
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual  
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8. A free version that outputs up to 16 Kbytes of code  
is available.  
12.2.1  
STM8 toolset  
STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com. This package includes:  
ST Visual Develop – Full-featured integrated development environment from ST, featuring  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,  
write and verify the user STM8 microcontroller Flash program memory, data EEPROM and  
option bytes. STVP also offers project mode for saving programming configurations and  
automating programming sequences.  
12.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of user  
application directly from an easy-to-use graphical interface.  
Available toolchains include:  
Cosmic C compiler for STM8 – One free version that outputs up to 16 Kbytes of code  
is available. For more information, see www.cosmic-software.com.  
Raisonance C compiler for STM8 – One free version that outputs up to 16 Kbytes of  
code. For more information, see www.raisonance.com.  
STM8 assembler linker – Free assembly toolchain included in the STVD toolset,  
which allows users to assemble and link the user application source code.  
12.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8 Flash  
microcontroller on user application board via the SWIM protocol. Additional tools are to  
include a low-cost in-circuit programmer as well as ST socket boards, which provide  
dedicated programming platforms with sockets for programming the user STM8.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
100/103  
DS7147 Rev 10  
 
 
 
 
STM8S003F3 STM8S003K3  
Revision history  
13  
Revision history  
Table 56. Document revision history  
Date  
Revision  
Changes  
12-Jul-2011  
1
Initial release.  
Added NRW and tRET for data EEPROM in Table:  
Flash program memory and data EEPROM.  
Updated RPU in Table: NRST pin characteristics  
and Table: I/O static characteristics.  
09-Jan-2012  
2
Updated notes related to VCAP in Table: General  
operating conditions.  
Updated temperature condition for factory calibrated  
ACCHSI in Table: HSI oscillator characteristics.  
Changed SCK input to SCK output in Figure: SPI timing  
12-Jun-2012  
18-Dec-2014  
21-Apr-2015  
3
4
5
diagram - master mode.  
Modified Figure: 20-lead, ultra thin, fine pitch quad flat  
no-lead package outline (3 x 3) to add the package top  
view.  
Updated the package information for the 20-pin TSSOP  
and the 20-pin UFQFPN.  
Added package marking examples in Section: Package  
information:  
Figure: LQFP32 marking example (package top view),  
– Figure: TSSOP20 marking example (package top  
view),  
Figure: UFQFPN20 marking example (package top  
view).  
Addition of the footnotes about D and E1 dimensions to  
Table 53: TSSOP20 – 20-lead thin shrink small outline,  
6.5 x 4.4 mm, 0.65 mm pitch, package mechanical data.  
26-Jun-2015  
23-Sep-2015  
6
7
Update of the standard for EMI characteristics in  
Section : Electromagnetic interference (EMI).  
Correction of UART peripheral in Figure 1:  
STM8S003F3/K3 value line block diagram.  
Corrected text strings in Figure 10: External capacitor  
CEXT and Figure 37: Recommended reset pin protection  
PB4 line PP column value corrected in Table 5:  
STM8S003K3 descriptions  
20-Apr-2016  
8
PD1 line “floating” and “wpu” column values corrected in  
Table 6: STM8S003F3 pin description  
SPI_RXCRCR and SPI_TXCRCR reset values  
corrected in Table 9: General hardware register map  
DS7147 Rev 10  
101/103  
102  
 
 
Revision history  
STM8S003F3 STM8S003K3  
Table 56. Document revision history (continued)  
Date  
Revision  
Changes  
Updated:  
– All table footnotes from “Guaranteed by design, not  
tested in production” to “Guaranteed by design” and  
“Data based on characterization results, not tested in  
production” to “Data based on characterization  
results”  
Section 9.2: Absolute maximum ratings  
Section : Device marking for LQFP32 on page 90  
Section : Device marking for TSSOP20 on page 92  
Section : Device marking for UFQFPN20 on page 95  
03-May-2017  
9
Table 54: UFQFPN20 - 20-lead, 3 x3 mm, 0.5 mm  
pitch, ultra thin fine pitch quad flat package  
mechanical data  
Figure 50: UFQFPN20 - 20-lead, 3 x 3 mm, 0.5 mm  
pitch, ultra thin fine pitch quad flat package outline  
Figure 17: HSE external clock source was centered  
into the frame.  
Updated:  
30-Aug-2018  
10  
Table 34: HSI oscillator characteristics  
102/103  
DS7147 Rev 10  
STM8S003F3 STM8S003K3  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2018 STMicroelectronics – All rights reserved  
DS7147 Rev 10  
103/103  
103  
 

相关型号:

STM8S003F3P6

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR

STM8S003F3P6C

MICROCONTROLLER
STMICROELECTR

STM8S003F3P6CTR

MICROCONTROLLER
STMICROELECTR

STM8S003F3P6TR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI
STMICROELECTR

STM8S003F3T6

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR

STM8S003F3T6C

MICROCONTROLLER
STMICROELECTR

STM8S003F3T6CTR

MICROCONTROLLER
STMICROELECTR

STM8S003F3T6TR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR

STM8S003F3U6

8-BIT, FLASH, 16MHz, MICROCONTROLLER, QCC20, 3 X 3 MM, 0.50 MM PITCH, ROHS COMPLIANT, UFQFPN-20
STMICROELECTR

STM8S003F3U6C

MICROCONTROLLER
STMICROELECTR

STM8S003F3U6CTR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR

STM8S003F3U6TR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C
STMICROELECTR