STM8S005K6T6CTR [STMICROELECTRONICS]

Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash, data EEPROM,10-bit ADC, timers, UART, SPI, IC; 价值线, 16兆赫STM8S 8位MCU , 32 KB闪存,数据EEPROM , 10位ADC ,定时器, UART , SPI , IC
STM8S005K6T6CTR
型号: STM8S005K6T6CTR
厂家: ST    ST
描述:

Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash, data EEPROM,10-bit ADC, timers, UART, SPI, IC
价值线, 16兆赫STM8S 8位MCU , 32 KB闪存,数据EEPROM , 10位ADC ,定时器, UART , SPI , IC

闪存 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总103页 (文件大小:1006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8S005K6 STM8S005C6  
Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash, data  
EEPROM,10-bit ADC, timers, UART, SPI, I²C  
Permanently active, low consumption power-on  
and power-down reset  
Interrupt management  
Nested interrupt controller with 32 interrupts  
Up to 37 external interrupts on 6 vectors  
LQFP48 7x7  
LQFP32 7x7  
Timers  
2x 16-bit general purpose timers, with 2+3  
CAPCOM channels (IC, OC or PWM)  
Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-time  
insertion and flexible synchronization  
Features  
Core  
8-bit basic timer with 8-bit prescaler  
Auto wake-up timer  
16 MHz advanced STM8 core with Harvard  
architecture and 3-stage pipeline  
Window and independent watchdog timers  
Extended instruction set  
Communications interfaces  
UART with clock output for synchronous  
operation, Smartcard, IrDA, LIN  
Memories  
Medium-density Flash/EEPROM:  
SPI interface up to 8 Mbit/s  
I2C interface up to 400 Kbit/s  
Program memory: 32 Kbytes of Flash  
memory; data retention 20 years at 55°C  
after 100 cycles  
-
Analog-to-digital converter (ADC)  
Data memory: 128 bytes of true data  
EEPROM; endurance up to 100 k write/erase  
cycles  
-
10-bit, ±1 LSB ADC with up to 10 multiplexed  
channels, scan mode and analog watchdog  
RAM: 2 Kbytes  
I/Os  
Up to 38 I/Os on a 48-pin package including 16  
high sink outputs  
Clock, reset and supply management  
2.95 V to 5.5 V operating voltage  
Highly robust I/O design, immune against current  
injection  
Flexible clock control, 4 master clock sources:  
Low power crystal resonator oscillator  
-
Development support  
External clock input  
-
Embedded single wire interface module (SWIM)  
for fast on-chip programming and non intrusive  
debugging  
Internal, user-trimmable 16 MHz RC  
-
Internal low power 128 kHz RC  
-
Clock security system with clock monitor  
Power management:  
Low power modes (wait, active-halt, halt)  
-
Switch-off peripheral clocks individually  
-
June 2012  
1/103  
DocID022186 Rev 3  
www.st.com  
Contents  
STM8S005K6 STM8S005C6  
Contents  
1 Introduction ..............................................................................................................7  
2 Description ...............................................................................................................8  
3 Block diagram ..........................................................................................................9  
4 Product overview ...................................................................................................10  
4.1 Central processing unit STM8 .....................................................................................10  
4.2 Single wire interface module (SWIM) and debug module (DM) ..................................10  
4.3 Interrupt controller .......................................................................................................11  
4.4 Flash program and data EEPROM memory ................................................................11  
4.5 Clock controller ............................................................................................................12  
4.6 Power management ....................................................................................................13  
4.7 Watchdog timers ..........................................................................................................14  
4.8 Auto wakeup counter ...................................................................................................14  
4.9 Beeper ........................................................................................................................14  
4.10 TIM1 - 16-bit advanced control timer .........................................................................15  
4.11 TIM2, TIM3 - 16-bit general purpose timers ..............................................................15  
4.12 TIM4 - 8-bit basic timer ..............................................................................................15  
4.13 Analog-to-digital converter (ADC1) ............................................................................16  
4.14 Communication interfaces .........................................................................................16  
4.14.1 UART2 ...............................................................................................16  
4.14.2 SPI .....................................................................................................17  
4.14.3 I²C ......................................................................................................18  
5 Pinout and pin description ...................................................................................19  
5.1 STM8S005 pinouts and pin description .......................................................................20  
5.1.1 Alternate function remapping ...............................................................24  
6 Memory and register map .....................................................................................25  
6.1 Memory map ................................................................................................................25  
6.2 Register map ...............................................................................................................26  
6.2.1 I/O port hardware register map ............................................................26  
6.2.2 General hardware register map ...........................................................29  
6.2.3 CPU/SWIM/debug module/interrupt controller registers ......................39  
7 Interrupt vector mapping ......................................................................................42  
8 Option bytes ...........................................................................................................44  
9 Electrical characteristics ......................................................................................49  
9.1 Parameter conditions ...................................................................................................49  
9.1.1 Minimum and maximum values ...........................................................49  
9.1.2 Typical values .......................................................................................49  
9.1.3 Typical curves ......................................................................................49  
2/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Contents  
9.1.4 Typical current consumption ................................................................49  
9.1.5 Loading capacitor .................................................................................50  
9.1.6 Pin input voltage ...................................................................................50  
9.2 Absolute maximum ratings ..........................................................................................50  
9.3 Operating conditions ...................................................................................................52  
9.3.1 VCAP external capacitor ......................................................................54  
9.3.2 Supply current characteristics ..............................................................55  
9.3.3 External clock sources and timing characteristics ...............................66  
9.3.4 Internal clock sources and timing characteristics .................................68  
9.3.5 Memory characteristics ........................................................................70  
9.3.6 I/O port pin characteristics ...................................................................72  
9.3.7 Typical output level curves ...................................................................75  
9.3.8 Reset pin characteristics ......................................................................79  
9.3.9 SPI serial peripheral interface ..............................................................81  
9.3.10 I2C interface characteristics ...............................................................84  
9.3.11 10-bit ADC characteristics ..................................................................86  
9.3.12 EMC characteristics ...........................................................................89  
10 Package information ...........................................................................................93  
10.1 48-pin LQFP package mechanical data ....................................................................93  
10.2 32-pin LQFP package mechanical data ....................................................................95  
11 Thermal characteristics .......................................................................................97  
11.1 Reference document .................................................................................................97  
11.2 Selecting the product temperature range ..................................................................97  
12 Ordering information ...........................................................................................99  
13 STM8 development tools ..................................................................................100  
13.1 Emulation and in-circuit debugging tools .................................................................100  
13.2 Software tools ..........................................................................................................100  
13.2.1 STM8 toolset ....................................................................................101  
13.2.2 C and assembly toolchains ..............................................................101  
13.3 Programming tools ..................................................................................................101  
14 Revision history .................................................................................................102  
DocID022186 Rev 3  
3/103  
List of tables  
STM8S005K6 STM8S005C6  
List of tables  
Table 1. STM8S005xx value line features ................................................................................................8  
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................13  
Table 3. TIM timer features ...................................................................................................................15  
Table 4. Legend/abbreviations for pinout tables ...................................................................................19  
Table 5. Pin description for STM8S005 microcontrollers .......................................................................21  
Table 6. Flash, Data EEPROM and RAM boundary addresses ............................................................26  
Table 7. I/O port hardware register map ................................................................................................26  
Table 8. General hardware register map ................................................................................................29  
Table 9. CPU/SWIM/debug module/interrupt controller registers ..........................................................39  
Table 10. Interrupt mapping ...................................................................................................................42  
Table 11. Option bytes ...........................................................................................................................44  
Table 12. Option byte description ...........................................................................................................45  
Table 13. Description of alternate function remapping bits [7:0] of OPT2 ..............................................47  
Table 14. Voltage characteristics ...........................................................................................................50  
Table 15. Current characteristics ...........................................................................................................51  
Table 16. Thermal characteristics ..........................................................................................................52  
Table 17. General operating conditions .................................................................................................53  
Table 18. Operating conditions at power-up/power-down ......................................................................54  
Table 19. Total current consumption with code execution in run mode at VDD = 5 V .............................55  
Table 20. Total current consumption with code execution in run mode at VDD = 3.3 V ..........................66  
Table 21. Total current consumption in wait mode at VDD = 5 V ............................................................58  
Table 22. Total current consumption in wait mode at VDD = 3.3 V .........................................................58  
Table 23. Total current consumption in active halt mode at VDD = 5 V ..................................................59  
Table 24. Total current consumption in active halt mode at VDD = 3.3 V ...............................................60  
Table 25. Total current consumption in halt mode at VDD = 5 V .............................................................61  
Table 26. Total current consumption in halt mode at VDD = 3.3 V ..........................................................61  
Table 27. Wakeup times .........................................................................................................................61  
Table 28. Total current consumption and timing in forced reset state ....................................................92  
Table 29. Peripheral current consumption .............................................................................................63  
Table 30. HSE user external clock characteristics .................................................................................66  
Table 31. HSE oscillator characteristics .................................................................................................67  
Table 32. HSI oscillator characteristics ..................................................................................................68  
Table 33. LSI oscillator characteristics ...................................................................................................70  
Table 34. RAM and hardware registers ..................................................................................................70  
Table 35. Flash program memory/data EEPROM memory ....................................................................71  
Table 36. I/O static characteristics .........................................................................................................72  
Table 37. Output driving current (standard ports) ..................................................................................74  
Table 38. Output driving current (true open drain ports) ........................................................................74  
Table 39. Output driving current (high sink ports) ..................................................................................74  
Table 40. NRST pin characteristics ........................................................................................................79  
Table 41. SPI characteristics ..................................................................................................................81  
Table 42. I2C characteristics ..................................................................................................................84  
Table 43. ADC characteristics ................................................................................................................86  
Table 44. ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V .......................................................................87  
Table 45. ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V ............................................................88  
Table 46. EMS data ................................................................................................................................90  
Table 47. EMI data .................................................................................................................................91  
4/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
List of tables  
Table 48. ESD absolute maximum ratings .............................................................................................92  
Table 49. Electrical sensitivities .............................................................................................................92  
Table 50. 48-pin low profile quad flat package mechanical data ............................................................93  
Table 51. 32-pin low profile quad flat package mechanical data .........................................................102  
Table 52. Thermal characteristics(1) ......................................................................................................97  
Table 53. Document revision history ...................................................................................................102  
DocID022186 Rev 3  
5/103  
List of figures  
STM8S005K6 STM8S005C6  
List of figures  
Figure 1. STM8S005xx value line block diagram .....................................................................................9  
Figure 2. Flash memory organization ....................................................................................................12  
Figure 3. LQFP 48-pin pinout .................................................................................................................20  
Figure 4. LQFP 32-pin pinout ................................................................................................................21  
Figure 5. Memory map ...........................................................................................................................25  
Figure 6. Supply current measurement conditions ................................................................................49  
Figure 7. Pin loading conditions .............................................................................................................50  
Figure 8. Pin input voltage .....................................................................................................................50  
Figure 9. fCPUmax versus VDD ................................................................................................................54  
Figure 10. External capacitor CEXT .......................................................................................................55  
Figure 11. Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz ...........................................64  
Figure 12. Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V ..................................................64  
Figure 13. Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz ..............................................................65  
Figure 14. Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz ............................................65  
Figure 15. Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V ....................................................65  
Figure 16. Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz ................................................................66  
Figure 17. HSE external clocksource .....................................................................................................67  
Figure 18. HSE oscillator circuit diagram ...............................................................................................68  
Figure 19. Typical HSI frequency variation vs VDD @ 3 temperatures ..................................................69  
Figure 20. Typical LSI frequency variation vs VDD @ 3 temperatures ...................................................70  
Figure 21. Typical VIL and VIH vs VDD @ 3 temperatures ......................................................................73  
Figure 22. Typical pull-up resistance vs VDD @ 3 temperatures ............................................................73  
Figure 23. Typical pull-up current vs VDD @ 3 temperatures .................................................................73  
Figure 24. Typ. VOL @ VDD = 5 V (standard ports) ................................................................................75  
Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports) .............................................................................76  
Figure 26. Typ. VOL @ VDD = 5 V (true open drain ports) ......................................................................76  
Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) ...................................................................76  
Figure 28. Typ. VOL @ VDD = 5 V (high sink ports) ................................................................................77  
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) .............................................................................77  
Figure 30. Typ. VDD - VOH @ VDD = 5 V (standard ports) .......................................................................77  
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) ....................................................................78  
Figure 32. Typ. VDD - VOH @ VDD = 5 V (high sink ports) ......................................................................78  
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) ...................................................................78  
Figure 34. Typical NRST VIL and VIH vs VDD @ 3 temperatures ...........................................................80  
Figure 35. Typical NRST pull-up resistance vs VDD @ 3 temperatures .................................................80  
Figure 36. Typical NRST pull-up current vs VDD @ 3 temperatures ......................................................80  
Figure 37. Recommended reset pin protection ......................................................................................81  
Figure 38. SPI timing diagram - slave mode and CPHA = 0 ..................................................................83  
Figure 39. SPI timing diagram - slave mode and CPHA = 1(1) .............................................................83  
Figure 40. SPI timing diagram - master mode(1) ...................................................................................84  
Figure 41. Typical application with I2C bus and timing diagram (1) .......................................................85  
Figure 42. ADC accuracy characteristics ...............................................................................................89  
Figure 43. Typical application with ADC ................................................................................................89  
Figure 44. 48-pin low profile quad flat package (7 x 7) ..........................................................................93  
Figure 45. 32-pin low profile quad flat package (7 x 7) ..........................................................................95  
Figure 46. STM8S005xx value line ordering information scheme .........................................................99  
6/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Introduction  
1
Introduction  
This datasheet contains the description of the device features, pinout, electrical characteristics,  
mechanical data and ordering information.  
For complete information on the STM8S microcontroller memory, registers and peripherals,  
please refer to the STM8S microcontroller family reference manual (RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM8S Flash programming manual (PM0051).  
For information on the debug and SWIM (single wire interface module) refer to the STM8  
SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
DocID022186 Rev 3  
7/103  
Description  
STM8S005K6 STM8S005C6  
2
Description  
The STM8S005xx value line 8-bit microcontrollers offer 32 Kbytes of Flash program memory,  
plus 128 bytes of data EEPROM. They are referred to as medium-density devices in the  
STM8S microcontroller family reference manual (RM0016). All devices of the STM8S005xx  
value line provide the following benefits: performance, robustness, reduced system cost, and  
short develoment cycles.  
Device performance and robustness are ensured by true data EEPROM supporting up to 100  
000 write/erase cycles, advanced core and peripherals made in a state-of-the art technology,  
a 16 MHz clock frequency, robust I/Os, independent watchdogs with separate clock source,  
and a clock security system.  
The system cost is reduced thanks to high system integration level with internal clock  
oscillators, watchdog and brown-out reset.  
Common family product architecture with compatible pinout, memory map and modular  
peripherals allow application scalability and reduced development cycles.  
All products operate from a 2.95 to 5.5 V supply voltage.  
Full documentation is offered as well as a wide choice of development tools.  
Table 1: STM8S005xx value line features  
Device  
STM8S005C6  
STM8S005K6  
Pin count  
48  
32  
Maximum number of GPIOs  
Ext. Interrupt pins  
38  
35  
9
25  
23  
8
Timer CAPCOM channels  
Timer complementary outputs  
A/D Converter channels  
High sink I/Os  
3
3
10  
16  
32K  
7
12  
32K  
Medium density Flash Program memory  
(bytes)  
Data EEPROM (bytes)  
RAM (bytes)  
128  
2K  
128  
2K  
Peripheral set  
Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic  
timer (TIM4) SPI, I C, UART, Window WDG, Independent WDG, ADC  
2
8/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Block diagram  
3
Block diagram  
Figure 1: STM8S005xx value line block diagram  
Reset block  
Reset  
XTAL 1-16 MHz  
RC int. 16 MHz  
RC int. 128 kHz  
Clock controller  
Detector  
Reset  
POR/  
PDR  
BOR  
Clock to peripherals and core  
Window WDG  
STM8 core  
Independent WDG  
Single wire  
debug interf.  
Debug/SWIM  
32 Kbytes  
program Flash  
Master/slave  
autosynchro  
LIN master  
SPI emul.  
UART2  
I2C  
128 bytes  
data EEPROM  
2 Kbytes  
RAM  
400 Kbit/s  
8 Mbit/s  
Boot ROM  
SPI  
Up to  
4 CAPCOM  
channels +3  
complementary  
outputs  
16-bit advanced control  
timer (TIM1)  
Up to  
5 CAPCOM  
channels  
16-bit general purpose  
timers (TIM2, TIM3)  
Up to 10 channels  
ADC1  
8-bit basic timer  
(TIM4)  
1/2/4 kHz  
beep  
Beeper  
AWU timer  
DocID022186 Rev 3  
9/103  
Product overview  
STM8S005K6 STM8S005C6  
4
Product overview  
The following section intends to give an overview of the basic features of the device functional  
modules and peripherals.  
For more detailed information please refer to the corresponding family reference manual  
(RM0016).  
4.1  
Central processing unit STM8  
The 8-bit STM8 core is designed for code efficiency and performance.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing and 80 instructions.  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching for most instructions  
X and Y 16-bit index registers - enabling indexed addressing modes with or without offset  
and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16-Mbyte linear memory space  
16-bit stack pointer - access to a 64 K-level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
4.2  
Single wire interface module (SWIM) and debug module (DM)  
The single wire interface module and debug module permits non-intrusive, real-time in-circuit  
debugging and fast memory programming.  
10/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
SWIM  
Product overview  
Single wire interface module for direct access to the debug module and memory programming.  
The interface can be activated in all device operation modes. The maximum data transmission  
speed is 145 bytes/ms.  
Debug module  
The non-intrusive debugging module features a performance close to a full-featured emulator.  
Beside memory and peripherals, also CPU operation can be monitored in real-time by means  
of shadow registers.  
R/W to RAM and peripheral registers in real-time  
R/W access to all resources by stalling the CPU  
Breakpoints on all program-memory instructions (software breakpoints)  
Two advanced breakpoints, 23 predefined configurations  
4.3  
4.4  
Interrupt controller  
Nested interrupts with three software priority levels  
32 interrupt vectors with hardware priority  
Up to 37 external interrupts on 6 vectors including TLI  
Trap and reset interrupts  
Flash program and data EEPROM memory  
32 Kbytes of Flash program single voltage Flash memory  
128 bytes true data EEPROM  
Read while write: Writing in data memory possible while executing code in program memory  
User option byte area  
Write protection (WP)  
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional  
overwriting of memory that could result from a user software malfunction.  
There are two levels of write protection. The first level is known as MASS (memory access  
security system). MASS is always enabled and protects the main Flash program memory,  
data EEPROM and option bytes.  
To perform in-application programming (IAP), this write protection can be removed by writing  
a MASS key sequence in a control register. This allows the application to write to data  
EEPROM, modify the contents of main program memory or the device option bytes.  
A second level of write protection, can be enabled to further protect a specific area of memory  
known as UBC (user boot code). Refer to the figure below.  
The size of the UBC is programmable through the UBC option byte, in increments of 1 page  
(512 bytes) by programming the UBC option byte in ICP mode.  
This divides the program memory into two areas:  
Main program memory: 32 Kbytes minus UBC  
User-specific boot code (UBC): Configurable up to 32 Kbytes  
DocID022186 Rev 3  
11/103  
Product overview  
STM8S005K6 STM8S005C6  
The UBC area remains write-protected during in-application programming. This means that  
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot  
program, specific code libraries, reset and interrupt vectors, the reset routine and usually the  
IAP and communication routines.  
Figure 2: Flash memory organization  
Data memory area ( 128 bytes)  
Option bytes  
Data  
EEPROM  
memory  
Programmable area  
from 1 Kbyte  
(2 first pages) up to  
UBC area  
Remains write protected during IAP  
32 Kbytes  
(1 page steps)  
Medium density  
Flash program memory  
(32 Kbytes)  
Program memory area  
Write access possible for IAP  
Read-out protection (ROP)  
The read-out protection blocks reading and writing the Flash program memory and data  
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated,  
any attempt to toggle its status triggers a global erase of the program and data memory. Even  
if no protection can be considered as totally unbreakable, the feature provides a very high  
level of protection for a general purpose microcontroller.  
4.5  
Clock controller  
The clock controller distributes the system clock (fMASTER) coming from different oscillators  
to the core and the peripherals. It also manages clock gating for low power modes and ensures  
clock robustness.  
Features  
Clock prescaler: To get the best compromise between speed and current consumption  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Safe clock switching: Clock sources can be changed safely on the fly in run mode  
through a configuration register. The clock signal is not switched until the new clock source  
is ready. The design guarantees glitch-free switching.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock sources: Four different clock sources can be used to drive the master  
clock:  
1-16 MHz high-speed external crystal (HSE)  
-
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
-
12/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
16 MHz high-speed internal RC oscillator (HSI)  
Product overview  
-
128 kHz low-speed internal RC (LSI)  
-
Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz  
clock (HSI/8). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If an HSE clock  
failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an  
interrupt can optionally be generated.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Bit  
Peripheral Bit  
clock  
Peripheral Bit  
clock  
Peripheral Bit  
clock  
Peripheral  
clock  
PCKEN1 7 TIM1  
PCKEN1 6 TIM3  
PCKEN1 5 TIM2  
PCKEN1 4 TIM4  
PCKEN1 3 UART2  
PCKEN2 7 Reserved PCKEN2 3 ADC  
PCKEN1 2 Reserved PCKEN2 6 Reserved PCKEN2 2 AWU  
PCKEN1 1 SPI  
PCKEN1 0 I2C  
PCKEN2 5 Reserved PCKEN2 1 Reserved  
PCKEN2 4 Reserved PCKEN2 0 Reserved  
4.6  
Power management  
For efficent power management, the application can be put in one of four different low-power  
modes. You can configure each mode to obtain the best compromise between lowest power  
consumption, fastest start-up time and available wakeup sources.  
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The  
wakeup is performed by an internal or external interrupt or reset.  
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are  
stopped. An internal wakeup is generated at programmable intervals by the auto wake up  
unit (AWU). The main voltage regulator is kept powered on, so current consumption is  
higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup  
is triggered by the internal AWU interrupt, external interrupt or reset.  
Active halt mode with regulator off: This mode is the same as active halt with regulator  
on, except that the main voltage regulator is powered off, so the wake up time is slower.  
Halt mode: In this mode the microcontroller uses the least power. The CPU and peripheral  
clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by  
external event or reset.  
DocID022186 Rev 3  
13/103  
Product overview  
STM8S005K6 STM8S005C6  
4.7  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
Activation of the watchdog timers is controlled by option bytes or by software. Once activated,  
the watchdogs cannot be disabled by the user program without performing a reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually generated  
by external interferences or by unexpected logical conditions, which cause the application  
program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
perfectly.  
The application software must refresh the counter before time-out and during a limited time  
window.  
A reset is generated in two situations:  
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to  
64 ms.  
2. Refresh out of window: The downcounter is refreshed before its value is lower than the  
one stored in the window register.  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve processor malfunctions due to  
hardware or software failures.  
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure  
The IWDG time base spans from 60 µs to 1 s.  
4.8  
4.9  
Auto wakeup counter  
Used for auto wakeup from active halt mode  
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock  
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
The beeper output port is only available through the alternate function remap option bit AFR7.  
14/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Product overview  
4.10  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
Four independent capture/compare channels (CAPCOM) configurable as input capture,  
output compare, PWM generation (edge and center aligned mode) and single pulse mode  
output  
Synchronization module to control the timer with external signals  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Encoder mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break  
4.11  
4.12  
TIM2, TIM3 - 16-bit general purpose timers  
16-bit autoreload (AR) up-counter  
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768  
Timers with 3 or 2 individually configurable capture/compare channels  
PWM mode  
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update  
TIM4 - 8-bit basic timer  
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128  
Clock source: CPU clock  
Interrupt source: 1 x overflow/update  
Table 3: TIM timer features  
Timer Counter Prescaler  
Counting CAPCOM Complem. Ext.  
Timer  
size  
(bits)  
mode  
channels outputs trigger synchronization/  
chaining  
TIM1 16  
TIM2 16  
TIM3 16  
Any integer from 1 to Up/  
4
3
2
3
0
0
Yes  
No  
No  
No  
65536  
down  
Any power of 2 from Up  
1 to 32768  
Any power of 2 from Up  
1 to 32768  
DocID022186 Rev 3  
15/103  
Product overview  
STM8S005K6 STM8S005C6  
Timer Counter Prescaler  
Counting CAPCOM Complem. Ext.  
mode  
Timer  
channels outputs trigger synchronization/  
chaining  
size  
(bits)  
TIM4  
8
Any power of 2 from Up  
1 to 128  
0
0
No  
4.13  
Analog-to-digital converter (ADC1)  
The STM8S105xx products contain a 10-bit successive approximation A/D converter (ADC1)  
with up to 10 multiplexed input channels and the following main features:  
Input voltage range: 0 to VDDA  
Conversion time: 14 clock cycles  
Single and continuous and buffered continuous conversion modes  
Buffer size (n x 10 bits) where n = number of input channels  
Scan mode for single and continuous conversion of a sequence of channels  
Analog watchdog capability with programmable upper and lower thresholds  
Analog watchdog interrupt  
External trigger input  
Trigger from TIM1 TRGO  
End of conversion (EOC) interrupt  
Note: Additional AIN12 analog input is not selectable in ADC scan mode or with analog  
watchdog. Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL  
registers.  
4.14  
Communication interfaces  
The following communication interfaces are implemented:  
UART2: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA  
mode, LIN2.1 master/slave capability  
SPI : Full and half-duplex, 8 Mbit/s  
I²C: Up to 400 Kbit/s  
4.14.1  
UART2  
Main features  
One Mbit/s full duplex SCI  
SPI emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
16/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
LIN master mode  
Product overview  
LIN slave mode  
Asynchronous communication (UART mode)  
Full duplex communication - NRZ standard format (mark/space)  
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of  
following any standard baud rate regardless of the input frequency  
Separate enable bits for transmitter and receiver  
Two receiver wakeup modes:  
Address bit (MSB)  
-
Idle line (interrupt)  
-
Transmission error detection with interrupt generation  
Parity control  
Synchronous communication  
Full duplex synchronous transfers  
SPI master operation  
8-bit data communication  
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)  
LIN master mode  
Emission: Generates 13-bit synch break frame  
Reception: Detects 11-bit break frame  
LIN slave mode  
Autonomous header handling - one single interrupt per valid message header  
Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15 %  
Synch delimiter checking  
11-bit LIN synch break detection - break detection always active  
Parity check on the LIN identifier field  
LIN error management  
Hot plugging support  
4.14.2  
SPI  
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave/master selection input pin  
DocID022186 Rev 3  
17/103  
Product overview  
STM8S005K6 STM8S005C6  
4.14.3  
I²C  
I²C master features:  
Clock generation  
-
Start and stop generation  
-
I²C slave features:  
Programmable I2C address detection  
-
Stop bit detection  
-
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds:  
Standard speed (up to 100 kHz)  
-
Fast speed (up to 400 kHz)  
-
18/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Pinout and pin description  
5
Pinout and pin description  
Table 4: Legend/abbreviations for pinout tables  
Type  
I= Input, O = Output, S = Power supply  
CM = CMOS  
Level  
Input  
Output  
HS = High sink  
Output speed  
O1 = Slow (up to 2 MHz)  
O2 = Fast (up to 10 MHz)  
O3 = Fast/slow programmability with slow as default state after reset  
O4 = Fast/slow programmability with fast as default state after reset  
Port and control  
configuration  
Input  
float = floating, wpu = weak pull-up  
Output  
T = True open drain, OD = Open drain, PP =  
Push pull  
Reset state  
Bold X (pin state after internal reset release).  
Unless otherwise specified, the pin state is the same during the reset  
phase and after the internal reset release.  
DocID022186 Rev 3  
19/103  
Pinout and pin description  
STM8S005K6 STM8S005C6  
5.1  
STM8S005 pinouts and pin description  
Figure 3: LQFP 48-pin pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
1
2
3
4
5
6
7
8
9
10  
NRST  
OSCIN/PA1  
PG1  
PG0  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
OSCOUT/PA2  
PC7 (HS)/SPI_MISO  
PC6 (HS)/SPI_MOSI  
V
SSIO_1  
V
SS  
V
DDIO_2  
VCAP  
V
SSIO_2  
V
PC5 (HS)/SPI_SCK  
PC4 (HS)/TIM1_CH4  
PC3 (HS)/TIM1_CH3  
PC2 (HS)/TIM1_CH2  
DD  
V
DDIO_1  
[TIM3_CH1] TIM2_CH3/PA3  
(HS) PA4  
11  
12  
(HS) PA5  
PC1 (HS)/TIM1_CH1/UART2_CK  
PE5/SPI_NSS  
(HS) PA6  
24  
13 14 15 16 17 18 19 20 21 22 23  
1. (HS) high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it  
indicates an exclusive choice not a duplication of the function).  
20/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Pinout and pin description  
Figure 4: LQFP 32-pin pinout  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
NRST  
OSCIN/PA1  
PC7 (HS)/SPI_MISO  
PC6 (HS)/SPI_MOSI  
PC5 (HS)/SPI_SCK  
OSCOUT/PA2  
V
PC4 (HS)/TIM1_CH4  
PC3 (HS)/TIM1_CH3  
PC2 (HS)/TIM1_CH2  
PC1 (HS)/TIM1_CH1/UART2_CK  
PE5/SPI_NSS  
SS  
VCAP  
V
DD  
V
DDIO  
AIN12/PF4  
9
10 11 12 13 14 15 16  
1. (HS) high sink capability.  
2. [ ] alternate function remapping option (If the same alternate function is shown twice, it  
indicates an exclusive choice not a duplication of the function).  
Table 5: Pin description for STM8S005 microcontrollers  
Pin number  
LQFP48  
Pin name Type  
Input  
Output  
Main function  
(after reset)  
Default alternate  
function  
Alternate  
function after  
remap [option  
bit]  
LQFP32  
floating wpu Ext.  
High  
interrupt sink  
Speed OD  
PP  
1
2
1
2
NRST  
I/O  
X
Reset  
PA1/ OSC I/O  
IN  
X
X
X
O1  
O1  
X
X
X
X
Port A1  
Resonator/  
crystal in  
3
3
PA2/ OSC I/O  
OUT  
X
X
Port A2  
Resonator/  
crystal out  
4
5
-
V
V
S
S
I/O ground  
SSIO_1  
4
Digital ground  
SS  
DocID022186 Rev 3  
21/103  
Pinout and pin description  
STM8S005K6 STM8S005C6  
Pin number  
LQFP48  
Pin name Type  
Input  
Output  
High  
Main function  
(after reset)  
Default alternate  
function  
Alternate  
function after  
remap [option  
bit]  
LQFP32  
floating wpu Ext.  
Speed OD  
PP  
interrupt sink  
6
7
8
9
5
6
7
-
VCAP  
S
S
S
1.8 V regulator capacitor  
Digital power supply  
I/O power supply  
V
V
DD  
DDIO_1  
PA3/ TIM2 I/O  
_CH3  
[TIM3  
X
X
X
O1  
X
X
Port A3  
Timer 2 -  
TIM3_ CH1  
[AFR1]  
channel 3  
_CH1]  
10  
11  
12  
-
-
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
O3  
O3  
O3  
O1  
X
X
X
X
X
X
X
X
Port A4  
Port A5  
Port A6  
Port F4  
-
X
X
-
(2)  
8
PF4/  
AIN12  
Analog input 12  
(1)  
13  
14  
15  
16  
17  
9
V
V
S
S
Analog power supply  
Analog ground  
Port B7  
DDA  
10  
-
SSA  
PB7/ AIN7 I/O  
PB6/ AIN6 I/O  
PB5/ AIN5 I/O  
X
X
X
X
X
X
X
X
X
O1  
O1  
O1  
X
X
X
X
X
X
Analog input 7  
Analog input 6  
Analog input 5  
-
Port B6  
2
11  
Port B5  
I
C_SDA  
2
[I C_  
[AFR6]  
SDA]  
2
18  
19  
20  
21  
22  
12  
13  
14  
15  
16  
PB4/ AIN4 I/O  
[I C_  
SCL]  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
O1  
O1  
O1  
O1  
O1  
X
X
X
X
X
X
X
X
X
X
Port B4  
Port B3  
Port B2  
Port B1  
Port B0  
Analog input 4  
Analog input 3  
Analog input 2  
Analog input 1  
Analog input 0  
I
C_SCL  
2
[AFR6]  
PB3/ AIN3 I/O  
[TIM1_  
ETR]  
TIM1_ ETR  
[AFR5]  
PB2/ AIN2 I/O  
[TIM1_  
CH3N]  
TIM1_ CH3N  
[AFR5]  
PB1/ AIN1 I/O  
[TIM1_  
CH2N]  
TIM1_ CH2N  
[AFR5]  
PB0/ AIN0 I/O  
[TIM1_  
TIM1_ CH1N  
[AFR5]  
CH1N]  
23  
24  
-
-
PE7/ AIN8 I/O  
PE6/ AIN9 I/O  
X
X
X
X
X
X
O1  
O1  
X
X
X
X
Port E7  
Port E6  
Analog input 8  
Analog input 9  
22/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Pinout and pin description  
Pin number  
LQFP48  
Pin name Type  
Input  
Output  
High  
Main function  
(after reset)  
Default alternate  
function  
Alternate  
function after  
remap [option  
bit]  
LQFP32  
floating wpu Ext.  
Speed OD  
PP  
interrupt sink  
25  
26  
17  
PE5/SPI_  
NSS  
I/O  
I/O  
X
X
X
X
X
O1  
O3  
X
X
X
Port E5  
Port C1  
SPI master/slave  
select  
18  
PC1/  
X
HS  
X
Timer 1 -  
TIM1_  
CH1/  
UART2_CK  
channel 1/ UART2  
synchronous clock  
27  
28  
29  
30  
19  
20  
21  
22  
PC2/  
TIM1_  
CH2  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
HS  
O3  
O3  
O3  
O3  
X
X
X
X
X
X
X
X
Port C2  
Port C3  
Port C4  
Port C5  
Timer 1-  
channel 2  
PC3/  
TIM1_  
CH3  
Timer 1 -  
channel 3  
PC4/  
TIM1_  
CH4  
Timer 1 -  
channel 4  
PC5/ SPI_ I/O  
SCK  
SPI clock  
31  
32  
33  
-
V
V
S
S
I/O ground  
SSIO_2  
-
I/O power supply  
Port C6  
DDIO_2  
23  
PC6/ SPI_ I/O  
MOSI  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
SPI master out/slave  
in  
34  
24  
PC7/ SPI_ I/O  
MISO  
Port C7  
SPI master in/ slave  
out  
35  
36  
37  
-
-
-
PG0  
PG1  
I/O  
I/O  
I/O  
X
X
X
X
X
X
O1  
O1  
O1  
X
X
X
X
X
X
Port G0  
Port G1  
Port E3  
PE3/  
X
Timer 1 - break input  
TIM1_  
BKIN  
2
(3)  
2
38  
39  
40  
-
-
-
PE2/ I C_ I/O  
SDA  
X
X
X
X
X
X
O1  
O1  
O3  
T
Port E2  
Port E1  
Port E0  
I
C data  
2
(3)  
2
PE1/ I C_ I/O  
T
I
C clock  
SCL  
PE0/  
CLK_  
CCO  
I/O  
I/O  
X
X
HS  
HS  
X
X
X
X
Configurable clock  
output  
41  
25  
PD0/  
X
X
O3  
Port D0  
Timer 3 -  
channel 2  
TIM1_ BKIN  
[AFR3]/ CLK_  
CCO [AFR2]  
TIM3_  
CH2  
[TIM1_  
BKIN]  
[CLK_  
CCO]  
DocID022186 Rev 3  
23/103  
Pinout and pin description  
STM8S005K6 STM8S005C6  
Pin number  
LQFP48  
Pin name Type  
Input  
Output  
High  
Main function  
(after reset)  
Default alternate  
function  
Alternate  
function after  
remap [option  
bit]  
LQFP32  
floating wpu Ext.  
Speed OD  
PP  
interrupt sink  
42  
43  
26  
PD1/  
SWIM  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O4  
O3  
X
X
X
Port D1  
Port D2  
SWIM data interface  
(4)  
27  
28  
29  
PD2/  
TIM3_  
CH1  
[TIM2_  
CH3]  
X
X
X
Timer 3 -  
channel 1  
TIM2_CH3  
[AFR1]  
44  
45  
PD3/  
TIM2_  
CH2  
[ADC_  
ETR]  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
Port D3  
Port D4  
Timer 2 -  
channel 2  
ADC_ ETR  
[AFR0]  
PD4/  
TIM2_  
CH1  
Timer 2 -  
channel 1  
BEEP output  
[AFR7]  
[BEEP]  
46  
47  
48  
30  
31  
32  
PD5/  
UART2_  
TX  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
O1  
O1  
O1  
X
X
X
X
X
X
Port D5  
Port D6  
Port D7  
UART2 data transmit  
UART2 data receive  
Top level interrupt  
PD6/  
UART2_  
RX  
PD7/ TLI  
[TIM1_  
CH4]  
TIM1_ CH4  
[AFR4]  
(1)  
A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.  
AIN12 is not selectable in ADC scan mode or with analog watchdog.  
(2)  
(3)  
(4)  
In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V  
The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
are not implemented).  
DD  
5.1.1  
Alternate function remapping  
As shown in the rightmost column of the pin description table, some alternate functions can  
be remapped at different I/O ports by programming one of eight AFR (alternate function  
remap) option bits. When the remapping option is active, the default alternate function is no  
longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO  
section of the family reference manual, RM0016).  
24/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Memory and register map  
6
Memory and register map  
6.1  
Memory map  
Figure 5: Memory map  
0x00 0000  
RAM  
(2 Kbytes)  
512 bytes stack  
Reserved  
0x00 07FF  
0x00 4000  
128-byte data EEPROM  
Reserved  
0x00 407F  
0x00 4080  
0x00 47FF  
0x00 4800  
Option bytes  
Reserved  
0x00 487F  
0x00 4900  
0x00 4FFF  
0x00 5000  
GPIO and periph. reg.  
Reserved  
0x00 57FF  
0x00 5800  
0x00 5FFF  
0x00 6000  
2 Kbytes boot ROM  
0x00 67FF  
0x00 6800  
Reserved  
0x00 7EFF  
0x00 7F00  
CPU/SWIM/debug/ITC  
registers  
0x00 7FFF  
0x00 8000  
32 interrupt vectors  
0x00 807F  
Flash program memory  
(32 Kbytes)  
0x00 FFFF  
0x01 0000  
Reserved  
0x02 7FFF  
The following table lists the boundary addresses for each memory size. The top of the stack  
is at the RAM end address in each case.  
DocID022186 Rev 3  
25/103  
Memory and register map  
Memory area  
STM8S005K6 STM8S005C6  
Table 6: Flash, Data EEPROM and RAM boundary addresses  
Size (bytes)  
Start address  
End address  
Flash program memory 32K  
0x00 8000  
0x00 FFFF  
RAM  
2K  
0x00 0000  
0x00 4000  
0x00 07FF  
0x00 407F  
Data EEPROM  
128  
6.2  
Register map  
6.2.1  
I/O port hardware register map  
Table 7: I/O port hardware register map  
Register label Register name  
Address  
Block  
Reset  
status  
0x00 5000 Port A  
0x00 5001  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX (1)  
0x00  
0x00 5002  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
0x00 5003  
0x00  
0x00 5004  
Port A control register 2  
0x00  
0x00 5005 Port B  
0x00 5006  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
0x00  
0xXX (1)  
0x00  
0x00 5007  
0x00 5008  
0x00  
0x00 5009  
Port B control register 2  
0x00  
0x00 500A Port C  
Port C data output latch register  
0x00  
26/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Address  
Block  
Register label Register name  
Reset  
status  
0x00 500B  
PC_IDR  
Port C input pin value register  
Port C data direction register  
0xXX (1)  
0x00  
0x00 500C  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
0x00 500D  
Port C control register 1  
0x00  
0x00 500E  
Port C control register 2  
0x00  
0x00 500F Port D  
0x00 5010  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX (1)  
0x00  
0x00 5011  
0x00 5012  
0x02  
0x00 5013  
Port D control register 2  
0x00  
0x00 5014 Port E  
0x00 5015  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
0x00  
0xXX (1)  
0x00  
0x00 5016  
0x00 5017  
0x00  
0x00 5018  
Port E control register 2  
0x00  
0x00 5019 Port F  
0x00 501A  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX (1)  
0x00  
0x00 501B  
PF_DDR  
PF_CR1  
PF_CR2  
0x00 501C  
0x00  
0x00 501D  
Port F control register 2  
0x00  
DocID022186 Rev 3  
27/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Address  
Block  
Register label Register name  
Reset  
status  
0x00 501E Port G  
0x00 501F  
PG_ODR  
Port G data output latch register  
Port G input pin value register  
0x00  
PG_IDR  
PG_DDR  
PG_CR1  
PG_CR2  
PH_ODR  
PH_IDR  
PH_DDR  
PH_CR1  
PH_CR2  
PI_ODR  
PI_IDR  
0xXX (1)  
0x00  
0x00 5020  
Port G data direction register  
Port G control register 1  
0x00 5021  
0x00  
0x00 5022  
Port G control register 2  
0x00  
0x00 5023 Port H  
0x00 5024  
Port H data output latch register  
Port H input pin value register  
Port H data direction register  
Port H control register 1  
0x00  
0xXX (1)  
0x00  
0x00 5025  
0x00 5026  
0x00  
0x00 5027  
Port H control register 2  
0x00  
0x00 5028 Port I  
0x00 5029  
Port I data output latch register  
Port I input pin value register  
Port I data direction register  
Port I control register 1  
0x00  
0xXX (1)  
0x00  
0x00 502A  
PI_DDR  
PI_CR1  
PI_CR2  
0x00 502B  
0x00  
0x00 502C  
Port I control register 2  
0x00  
(1) Depends on the external circuitry.  
28/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Memory and register map  
6.2.2  
General hardware register map  
Table 8: General hardware register map  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 5050 to  
0x00 5059  
Reserved area (10 bytes)  
FLASH_CR1  
FLASH_CR2  
FLASH_NCR2  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0xFF  
0x00 505A  
0x00 505B  
0x00 505C  
Flash  
Flash complementary control  
register 2  
0x00 505D  
0x00 505E  
0x00 505F  
FLASH _FPR  
Flash protection register  
0x00  
FLASH _NFPR  
Flash complementary protection register 0xFF  
FLASH _IAPSR Flash in-application programming status 0x00  
register  
0x00 5060 to  
0x00 5061  
Reserved area (2 bytes)  
0x00 5062  
Flash  
FLASH _PUKR  
Flash program memory unprotection  
register  
0x00  
0x00  
0x00 5063  
0x00 5064  
Reserved area (1 byte)  
Flash FLASH _DUKR Data EEPROM unprotection register  
Reserved area (59 bytes)  
0x00 5065 to  
0x00 509F  
0x00 50A0  
0x00 50A1  
ITC  
EXTI_CR1  
EXTI_CR2  
External interrupt control register 1  
External interrupt control register 2  
0x00  
0x00  
0x00 50A2 to  
0x00 50B2  
Reserved area (17 bytes)  
DocID022186 Rev 3  
29/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 50B3  
RST  
RST_SR  
Reset status register  
0xXX(1)  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 bytes)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
0x00 50CA  
0x00 50CC  
0x00 50CD  
CLK  
CLK_ICKR  
CLK_ECKR  
Internal clock control register  
External clock control register  
0x01  
0x00  
Reserved area (1 byte)  
CLK  
CLK_CMSR  
CLK_SWR  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
0xE1  
0xE1  
0xXX  
0x18  
0xFF  
0x00  
0x00  
0xFF  
CLK_SWCR  
CLK_CKDIVR  
CLK_PCKENR1 Peripheral clock gating register 1  
CLK_CSSR  
CLK_CCOR  
Clock security system register  
Configurable clock control register  
CLK_PCKENR2 Peripheral clock gating register 2  
CLK_HSITRIMR HSI clock calibration trimming register 0x00  
CLK_SWIMCCR SWIM clock control register 0bXXXX  
XXX0  
0x00 50CE to  
0x00 50D0  
Reserved area (3 bytes)  
0x00 50D1  
0x00 50D2  
WWDG WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
30/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 50D3 to  
0x00 50DF  
Reserved area (13 bytes)  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
0xXX(2)  
0x00  
IWDG prescaler register  
IWDG reload register  
0xFF  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 bytes)  
0x00 50F0  
0x00 50F1  
AWU  
AWU_CSR1  
AWU_APR  
AWU control/ status register 1  
0x00  
0x3F  
AWU asynchronous prescaler buffer  
register  
0x00 50F2  
0x00 50F3  
AWU_TBR  
BEEP_CSR  
AWU timebase selection register  
BEEP control/ status register  
0x00  
0x1F  
BEEP  
0x00 50F4 to  
0x00 50FF  
Reserved area (12 bytes)  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI  
SPI_CR1  
SPI control register 1  
SPI control register 2  
SPI interrupt control register  
SPI status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x07  
0xFF  
0xFF  
SPI_CR2  
SPI_ICR  
SPI_SR  
SPI_DR  
SPI data register  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register  
SPI Rx CRC register  
SPI Tx CRC register  
DocID022186 Rev 3  
31/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 5208 to  
0x00 520F  
Reserved area (8 bytes)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C  
I2C_CR1  
I2C control register 1  
I2C control register 2  
I2C frequency register  
0x00  
0x00  
0x00  
I2C_CR2  
I2C_FREQR  
I2C_OARL  
I2C_OARH  
Reserved  
I2C_DR  
I2C Own address register low  
I2C own address register high  
0x00  
0x00  
I2C data register  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C_SR1  
I2C status register 1  
I2C_SR2  
I2C status register 2  
I2C_SR3  
I2C status register 3  
I2C_ITR  
I2C interrupt control register  
I2C clock control register low  
I2C clock control register high  
I2C TRISE register  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
I2C_PECR  
I2C packet error checking register  
0x00 521F to  
0x00 522F  
Reserved area (17 bytes)  
Reserved area (6 bytes)  
0x00 5230 to  
0x00 523F  
32/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 5240  
UART2 UART2_SR  
UART2_DR  
UART2 status register  
0xC0  
0x00 5241  
0x00 5242  
0x00 5243  
0x00 5244  
0x00 5245  
0x00 5246  
0x00 5247  
0x00 5248  
0x00 5249  
0x00 524A  
0x00 524B  
UART2 data register  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UART2_BRR1  
UART2_BRR2  
UART2_CR1  
UART2 baud rate register 1  
UART2 baud rate register 2  
UART2 control register 1  
UART2 control register 2  
UART2 control register 3  
UART2 control register 4  
UART2 control register 5  
UART2 control register 6  
UART2 guard time register  
UART2 prescaler register  
UART2_CR2  
UART2_CR3  
UART2_CR4  
UART2_CR5  
UART2_CR6  
UART2_GTR  
UART2_PSCR  
Reserved area (4 bytes)  
0x00 524C to  
0x00 524F  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
TIM1  
TIM1_CR1  
TIM1_CR2  
TIM1_SMCR  
TIM1_ETR  
TIM1_IER  
TIM1_SR1  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
TIM1 slave mode control register  
TIM1 external trigger register  
TIM1 interrupt enable register  
TIM1 status register 1  
0x00  
0x00  
0x00  
0x00  
DocID022186 Rev 3  
33/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 5256  
TIM1_SR2  
TIM1 status register 2  
0x00  
0x00 5257  
0x00 5258  
TIM1_EGR  
TIM1 event generation register  
0x00  
0x00  
TIM1_CCMR1  
TIM1 capture/ compare mode  
register 1  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1 capture/compare mode  
register 2  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1 capture/ compare mode  
register 3  
TIM1 capture/compare mode  
register 4  
TIM1 capture/ compare enable  
register 1  
TIM1 capture/compare enable  
register 2  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter high  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
TIM1 counter low  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 auto-reload register high  
TIM1 auto-reload register low  
TIM1 repetition counter register  
TIM1_CCR1H  
TIM1 capture/ compare register 1 high 0x00  
34/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 5266  
TIM1_CCR1L  
TIM1 capture/ compare register 1 low 0x00  
TIM1 capture/ compare register 2 high 0x00  
TIM1 capture/ compare register 2 low 0x00  
TIM1 capture/ compare register 3 high 0x00  
TIM1 capture/ compare register 3 low 0x00  
TIM1 capture/ compare register 4 high 0x00  
TIM1 capture/ compare register 4 low 0x00  
0x00 5267  
0x00 5268  
0x00 5269  
0x00 526A  
0x00 526B  
0x00 526C  
0x00 526D  
0x00 526E  
0x00 526F  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1 break register  
0x00  
0x00  
0x00  
TIM1_DTR  
TIM1 dead-time register  
TIM1 output idle state register  
TIM1_OISR  
0x00 5270 to  
0x00 52FF  
Reserved area (147 bytes)  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
TIM2  
TIM2_CR1  
TIM2_IER  
TIM2 control register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2 interrupt enable register  
TIM2 status register 1  
TIM2_SR1  
TIM2_SR2  
TIM2_EGR  
TIM2_CCMR1  
TIM2 status register 2  
TIM2 event generation register  
TIM2 capture/ compare mode  
register 1  
0x00 5306  
TIM2_CCMR2  
TIM2 capture/ compare mode  
register 2  
0x00  
DocID022186 Rev 3  
35/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 5307  
TIM2_CCMR3  
TIM2 capture/ compare mode  
register 3  
0x00  
0x00 5308  
0x00 5309  
TIM2_CCER1  
TIM2_CCER2  
TIM2 capture/ compare enable register 0x00  
1
TIM2 capture/ compare enable register 0x00  
2
0x00 530A  
0x00 530B  
0x00 530C  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
0x00 5314  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_CCR3H  
TIM2_CCR3L  
TIM2 counter high  
0x00  
0x00  
0x00  
0xFF  
0xFF  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/ compare register 1 high 0x00  
TIM2 capture/ compare register 1 low 0x00  
TIM2 capture/ compare reg. 2 high  
0x00  
TIM2 capture/ compare register 2 low 0x00  
TIM2 capture/ compare register 3 high 0x00  
TIM2 capture/ compare register 3 low 0x00  
0x00 5315 to  
0x00 531F  
Reserved area (11 bytes)  
0x00 5320  
0x00 5321  
0x00 5322  
TIM3  
TIM3_CR1  
TIM3_IER  
TIM3_SR1  
TIM3 control register 1  
TIM3 interrupt enable register  
TIM3 status register 1  
0x00  
0x00  
0x00  
36/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 5323  
TIM3_SR2  
TIM3 status register 2  
0x00  
0x00 5324  
0x00 5325  
TIM3_EGR  
TIM3 event generation register  
0x00  
0x00  
TIM3_CCMR1  
TIM3 capture/ compare mode  
register 1  
0x00 5326  
0x00 5327  
TIM3_CCMR2  
TIM3_CCER1  
TIM3 capture/ compare mode  
register 2  
0x00  
TIM3 capture/ compare enable register 0x00  
1
0x00 5328  
0x00 5329  
0x00 532A  
0x00 532B  
0x00 532C  
0x00 532D  
0x00 532E  
0x00 532F  
0x00 5330  
TIM3_CNTRH  
TIM3_CNTRL  
TIM3_PSCR  
TIM3_ARRH  
TIM3_ARRL  
TIM3_CCR1H  
TIM3_CCR1L  
TIM3_CCR2H  
TIM3_CCR2L  
TIM3 counter high  
0x00  
0x00  
0x00  
0xFF  
0xFF  
TIM3 counter low  
TIM3 prescaler register  
TIM3 auto-reload register high  
TIM3 auto-reload register low  
TIM3 capture/ compare register 1 high 0x00  
TIM3 capture/ compare register 1 low 0x00  
TIM3 capture/ compare register 2 high 0x00  
TIM3 capture/ compare register 2 low 0x00  
0x00 5331 to  
0x00 533F  
Reserved area (15 bytes)  
0x00 5340  
0x00 5341  
0x00 5342  
TIM4  
TIM4_CR1  
TIM4_IER  
TIM4_SR  
TIM4 control register 1  
TIM4 interrupt enable register  
TIM4 status register  
0x00  
0x00  
0x00  
DocID022186 Rev 3  
37/103  
Memory and register map  
STM8S005K6 STM8S005C6  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 5343  
TIM4_EGR  
TIM4 event generation register  
TIM4 counter  
0x00  
0x00  
0x00  
0xFF  
0x00 5344  
0x00 5345  
0x00 5346  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 prescaler register  
TIM4 auto-reload register  
0x00 5347 to  
0x00 53DF  
Reserved area (153 bytes)  
0x00 53E0 to  
0x00 53F3  
ADC1  
ADC _DBxR  
ADC data buffer registers  
0x00  
0x00 53F4 to  
0x00 53FF  
Reserved area (12 bytes)  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
ADC1  
ADC _CSR  
ADC_CR1  
ADC_CR2  
ADC_CR3  
ADC_DRH  
ADC_DRL  
ADC_TDRH  
ADC control/ status register  
ADC configuration register 1  
ADC configuration register 2  
ADC configuration register 3  
ADC data register high  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
0x00  
ADC data register low  
ADC Schmitt trigger disable  
register high  
0x00 5407  
ADC_TDRL  
ADC Schmitt trigger disable  
register low  
0x00  
0x00 5408  
0x00 5409  
ADC_HTRH  
ADC_HTRL  
ADC high threshold register high  
ADC high threshold register low  
0x03  
0xFF  
38/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Memory and register map  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 540A  
ADC_LTRH  
ADC low threshold register high  
ADC low threshold register low  
0x00  
0x00  
0x00  
0x00 540B  
0x00 540C  
ADC_LTRL  
ADC_AWSRH  
ADC analog watchdog status  
register high  
0x00 540D  
0x00 540E  
0x00 540F  
ADC_AWSRL  
ADC _AWCRH  
ADC_AWCRL  
ADC analog watchdog status  
register low  
0x00  
0x00  
0x00  
ADC analog watchdog control  
register high  
ADC analog watchdog control  
register low  
0x00 5410 to  
0x00 57FF  
Reserved area (1008 bytes)  
(1) Depends on the previous reset source.  
(2) Write only register.  
6.2.3  
CPU/SWIM/debug module/interrupt controller registers  
Table 9: CPU/SWIM/debug module/interrupt controller registers  
Address  
Block Register label  
Register name  
Reset  
status  
0x00 7F00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
CPU(1)  
A
Accumulator  
0x00  
0x00  
0x00  
0x00  
0x00  
PCE  
PCH  
PCL  
XH  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
DocID022186 Rev 3  
39/103  
Memory and register map  
Address  
STM8S005K6 STM8S005C6  
Block Register label  
Register name  
Reset  
status  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
XL  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
Stack pointer low  
0x00  
0x00  
0x00  
0x07  
0xFF  
0x28  
YH  
YL  
SPH  
SPL  
CCR  
Condition code register  
0x00 7F0B to Reserved area (85 bytes)  
0x00 7F5F  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
0x00 7F77  
CPU  
ITC  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
Global configuration register  
0x00  
Interrupt software priority register 1 0xFF  
Interrupt software priority register 2 0xFF  
Interrupt software priority register 3 0xFF  
Interrupt software priority register 4 0xFF  
Interrupt software priority register 5 0xFF  
Interrupt software priority register 6 0xFF  
Interrupt software priority register 7 0xFF  
Interrupt software priority register 8 0xFF  
0x00 7F78 to Reserved area (2 bytes)  
0x00 7F79  
0x00 7F80  
SWIM SWIM_CSR  
SWIM control status register  
0x00  
40/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Address  
Memory and register map  
Block Register label  
Register name  
Reset  
status  
0x00 7F81 to Reserved area (15 bytes)  
0x00 7F8F  
0x00 7F90  
DM  
DM_BK1RE  
DM breakpoint 1 register extended 0xFF  
byte  
0x00 7F91  
0x00 7F92  
0x00 7F93  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM breakpoint 1 register high byte 0xFF  
DM breakpoint 1 register low byte  
0xFF  
DM breakpoint 2 register extended 0xFF  
byte  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 2 register high byte 0xFF  
DM breakpoint 2 register low byte  
0xFF  
DM debug module control register 1 0x00  
DM debug module control register 2 0x00  
DM_CR2  
DM_CSR1  
DM debug module control/status  
register 1  
0x10  
0x00  
0xFF  
0x00 7F99  
0x00 7F9A  
DM_CSR2  
DM debug module control/status  
register 2  
DM_ENFCTR  
DM enable function register  
0x00 7F9B to Reserved area (5 bytes)  
0x00 7F9F  
(1) Accessible by debug module only  
DocID022186 Rev 3  
41/103  
Interrupt vector mapping  
STM8S005K6 STM8S005C6  
7
Interrupt vector mapping  
Table 10: Interrupt mapping  
IRQ Source  
Description  
Wakeup  
from halt  
mode  
Wakeup from Vector  
no.  
block  
active-halt  
mode  
address  
RESET  
TRAP  
TLI  
Reset  
Yes  
Yes  
-
0x00 8000  
0x00 8004  
0x00 8008  
0x00 800C  
0x00 8010  
0x00 8014  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
0x00 8034  
Software interrupt  
-
0
External top level interrupt -  
-
1
AWU  
Auto wake up from halt  
Clock controller  
-
-
Yes  
-
2
CLK  
3
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
Port A external interrupts Yes(1)  
Port B external interrupts Yes  
Port C external interrupts Yes  
Port D external interrupts Yes  
Port E external interrupts Yes  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
4
5
6
7
8
9
Reserved  
-
-
10  
11  
SPI  
End of transfer  
Yes  
-
Yes  
-
TIM1  
TIM1 update/ overflow/  
underflow/ trigger/ break  
12  
13  
14  
TIM1  
TIM  
TIM1 capture/ compare  
TIM update/ overflow  
TIM capture/ compare  
-
-
-
-
-
-
0x00 8038  
0x00 803C  
0x00 8040  
TIM  
42/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
IRQ Source  
Interrupt vector mapping  
Wakeup from Vector  
Description  
Wakeup  
from halt  
mode  
no.  
block  
active-halt  
mode  
address  
15  
16  
17  
18  
19  
20  
21  
TIM3  
TIM3  
Update/ overflow  
Capture/ compare  
Reserved  
-
-
0x00 8044  
0x00 8048  
0x00 804C  
0x00 8050  
0x00 8054  
0x00 8058  
0x00 805C  
-
-
-
-
Reserved  
-
-
I2C  
I2C interrupt  
Tx complete  
Yes  
Yes  
UART2  
UART2  
-
-
-
-
Receive register DATA  
FULL  
22  
ADC1  
ADC1 end of conversion/  
analog watchdog interrupt  
-
-
0x00 8060  
23  
24  
TIM  
TIM update/ overflow  
EOP/ WR_PG_DIS  
-
-
-
-
0x00 8064  
0x00 8068  
Flash  
Reserved  
0x00 806C  
to 0x00  
807C  
(1) Except PA1  
DocID022186 Rev 3  
43/103  
Option bytes  
STM8S005K6 STM8S005C6  
8
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated block of the memory. Except for the  
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form  
(OPTx) and a complemented one (NOPTx) for redundancy.  
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in the table below.  
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP  
option that can only be modified in ICP mode (via SWIM).  
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication  
protocol and debug module user manual (UM0470) for information on SWIM programming  
procedures.  
Table 11: Option bytes  
Addr.  
Option  
name  
Option Option bits  
byte no.  
Factory  
default  
setting  
7
6
5
4
3
2
1
0
0x4800 Read-out  
protection  
OPT0  
ROP [7:0]  
00h  
(ROP)  
0x4801 User boot  
code(UBC)  
OPT1  
UBC [7:0]  
00h  
FFh  
00h  
0x4802  
NOPT1 NUBC [7:0]  
AFR5  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x4803 Alternate  
function  
OPT2  
AFR7  
AFR6  
remapping  
0x4804  
(AFR)  
NOPT2 NAFR7  
NAFR6 NAFR5 NAFR4  
NAFR3  
NAFR2 NAFR1  
NAFR0 FFh  
0x4805h Miscell.  
option  
OPT3  
Reserved  
HSI  
TRIM  
LSI_ EN  
IWDG  
_HW  
WWDG WWDG 00h  
_HW _HALT  
0x4806  
NOPT3 Reserved  
NHSI  
TRIM  
NLSI_  
EN  
NIWDG NWWDG NWW  
_HW _HW G_HALT  
FFh  
0x4807 Clock  
option  
OPT4  
Reserved  
EXT CLK CKAWU PRS C1 PRS C0 00h  
SEL  
0x4808  
NOPT4 Reserved  
NEXT  
CLK  
NCKA  
WUSEL  
NPRSC1 NPR  
SC0  
FFh  
0x4809 HSE clock OPT5  
startup  
HSECNT [7:0]  
00h  
FFh  
00h  
0x480A  
NOPT5 NHSECNT [7:0]  
OPT6  
0x480B Reserved  
Reserved  
44/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Option bytes  
Addr.  
Option  
name  
Option Option bits  
byte no.  
Factory  
default  
setting  
7
6
5
4
3
2
1
0
NOPT6  
OPT7  
0x480C  
Reserved  
FFh  
00h  
FFh  
00h  
FFh  
0x480D Reserved  
0x480E  
Reserved  
Reserved  
BL[7:0]  
NOPT7  
OPTBL  
NOPTBL  
0x487E Bootloader  
0x487F  
NBL[7:0]  
Table 12: Option byte description  
Description  
ROP[7:0] Memory readout protection (ROP)  
Option byte no.  
OPT0  
AAh: Enable readout protection (write access via SWIM protocol)  
Note: Refer to the family reference manual (RM0016) section on  
Flash/EEPROM memory readout protection for details.  
OPT1  
UBC[7:0] User boot code area  
0x00: no UBC, no write-protection  
0x01: Page 0 to 1 defined as UBC, memory write-protected  
0x02: Page 0 to 3 defined as UBC, memory write-protected  
0x03: Page 0 to 4 defined as UBC, memory write-protected  
...  
0x3E: Pages 0 to 63 defined as UBC, memory write-protected  
Other values: Reserved  
Note: Refer to the family reference manual (RM0016) section on  
Flash write protection for more details.  
OPT2  
OPT3  
AFR[7:0]  
Refer to following table for the alternate function remapping  
decriptions of bits [7:2].  
HSITRIM:High speed internal clock trimming register size  
0: 3-bit trimming supported in CLK_HSITRIMR register  
1: 4-bit trimming supported in CLK_HSITRIMR register  
DocID022186 Rev 3  
45/103  
Option bytes  
STM8S005K6 STM8S005C6  
Option byte no.  
Description  
LSI_EN:Low speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
0: IWDG Independent watchdog activated by software  
1: IWDG Independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on halt  
0: No reset generated on halt if WWDG active  
1: Reset generated on halt if WWDG active  
OPT4  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL:Auto wake-up unit/clock  
0: LSI clock source selected for AWU  
1: HSE clock with prescaler selected as clock source for for AWU  
PRSC[1:0] AWU clock prescaler  
0x: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
OPT5  
HSECNT[7:0]:HSE crystal oscillator stabilization time  
0x00: 2048 HSE cycles  
0xB4: 128 HSE cycles  
0xD2: 8 HSE cycles  
0xE1: 0.5 HSE cycles  
46/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Option bytes  
Option byte no.  
Description  
OPT6  
Reserved  
OPT7  
Reserved  
OPTBL  
BL[7:0] Bootloader option byte  
For STM8S products, this option is checked by the boot ROM code  
after reset. Depending on the content of addresses 0x487E, 0x487F,  
and 0x8000 (reset vector), the CPU jumps to the bootloader or to  
the reset vector. Refer to the UM0560 (STM8L/S bootloader manual)  
for more details.  
For STM8L products, the bootloader option bytes are on addresses  
0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control  
whether the bootloader is active or not. For more details, refer to the  
UM0560 (STM8L/S bootloader manual) for more details.  
Table 13: Description of alternate function remapping bits [7:0] of OPT2  
Option byte no.  
OPT2  
Description(1)  
AFR7 Alternate function remapping option 7  
0: AFR7 remapping option inactive: Default alternate function(2)  
1: Port D4 alternate function = BEEP.  
.
AFR6 Alternate function remapping option 6  
0: AFR6 remapping option inactive: Default alternate functions(2)  
.
1: Port B5 alternate function = I2C_SDA; port B4 alternate function  
= I2C_SCL.  
AFR5 Alternate function remapping option 5  
0: AFR5 remapping option inactive: Default alternate functions(2)  
.
1: Port B3 alternate function = TIM1_ETR; port B2 alternate function  
= TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0  
alternate function = TIM1_CH1N.  
AFR4 Alternate function remapping option 4  
0: AFR4 remapping option inactive: Default alternate function(2)  
.
1: Port D7 alternate function = TIM1_CH4.  
AFR3 Alternate function remapping option 3  
0: AFR3 remapping option inactive: Default alternate function(2)  
.
1: Port D0 alternate function = TIM1_BKIN.  
AFR2 Alternate function remapping option 2  
DocID022186 Rev 3  
47/103  
Option bytes  
STM8S005K6 STM8S005C6  
Option byte no.  
Description(1)  
0: AFR2 remapping option inactive: Default alternate function(2)  
.
1: Port D0 alternate function = CLK_CCO.Note: AFR2 option has  
priority over AFR3 if both are activated.  
AFR1 Alternate function remapping option 1  
0: AFR1 remapping option inactive: Default alternate functions(2)  
.
1: Port A3 alternate function = TIM3_CH1; port D2 alternate function  
TIM2_CH3.  
AFR0 Alternate function remapping option 0  
0: AFR0 remapping option inactive: Default alternate function(2)  
.
1: Port D3 alternate function = ADC_ETR.  
(1) Do not use more than one remapping option in the same port.  
(2) Refer to pinout description.  
48/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
9
Electrical characteristics  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to VSS  
.
9.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100 % of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by  
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on characterization,  
the minimum and maximum values refer to sample tests and represent the mean value plus  
or minus three times the standard deviation (mean ± 3 Σ).  
9.1.2  
Typical values  
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given  
only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2 Σ).  
9.1.3  
9.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are not  
tested.  
Typical current consumption  
For typical current consumption measurements, VDD, VDDIO and VDDA are connected together  
in the configuration shown in the following figure.  
Figure 6: Supply current measurement conditions  
5 V or 3.3 V  
A
V
DD  
V
V
V
V
DDA  
DDIO  
SS  
SSA  
V
SSIO  
DocID022186 Rev 3  
49/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in the following figure.  
Figure 7: Pin loading conditions  
STM8 PIN  
50 pF  
9.1.6  
Pin input voltage  
The input voltage measurement on a pin of the device is described in the following figure.  
Figure 8: Pin input voltage  
STM8 PIN  
V
IN  
9.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 14: Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
(1)  
VDDx - VSS Supply voltage (including VDDA and VDDIO  
)
-0.3  
6.5  
V
VIN  
Input voltage on true open drain pins (PE1,  
PE2)(2)  
VSS - 0.3 6.5  
50/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Symbol  
Ratings  
Min  
VSS - 0.3 VDD + 0.3  
50  
Max  
Unit  
Input voltage on any other pin(2)  
|VDDx  
VDD  
-
Variations between different power pins  
mV  
|
|VSSx - VSS| Variations between all the different ground pins  
VESD Electrostatic discharge voltage  
50  
see Absolute maximum  
ratings (electrical sensitivity)  
(1) All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be  
connected to the external power supply  
(2)  
I
must never be exceeded. This is implicitly insured if VIN maximum is respected.  
INJ(PIN)  
If VIN maximum cannot be respected, the injection current must be limited externally to the  
IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced  
by VIN<VSS. For true open-drain pads, there is no positive injection current, and the  
corresponding VIN maximum must always be respected  
Table 15: Current characteristics  
Symbol  
Ratings  
Max.(1)  
Unit  
IVDD  
Total current into VDD power lines (source)(2)  
60  
mA  
IVSS  
IIO  
Total current out of VSS ground lines (sink)(2)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
60  
20  
20  
ΣIIO  
Total output current sourced (sum of all I/O and control 200  
pins) for devices with two VDDIO pins(3)  
Total output current sourced (sum of all I/O and control 100  
pins) for devices with one VDDIO pin(3)  
Total output current sunk (sum of all I/O and control  
pins) for devices with two VSSIO pins(3)  
160  
80  
Total output current sunk (sum of all I/O and control  
pins) for devices with one VSSIO pin(3)  
DocID022186 Rev 3  
51/103  
 
Electrical characteristics  
Symbol  
STM8S005K6 STM8S005C6  
Ratings  
Max.(1)  
Unit  
(4) (5)  
IINJ(PIN)  
Injected current on NRST pin  
±4  
Injected current on OSCIN pin  
±4  
±4  
Injected current on any other pin(6)  
(4)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(6) ±20  
(1) Data based on characterization results, not tested in production.  
(2) All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be  
connected to the external supply.  
(3) I/O pins used simultaneously for high current source/sink must be uniformly spaced  
around the package between the VDDIO/VSSIO pins.  
(4)  
I
must never be exceeded. This is implicitly insured if VIN maximum is respected.  
INJ(PIN)  
If VIN maximum cannot be respected, the injection current must be limited externally to the  
IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced  
by VIN<VSS. For true open-drain pads, there is no positive injection current, and the  
corresponding VIN maximum must always be respected  
(5) Negative injection disturbs the analog performance of the device. See note in I2C interface  
characteristics.  
(6) When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the  
absolute sum of the positive and negative injected currents (instantaneous values). These  
results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O  
port pins of the device.  
Table 16: Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
Storage temperature range  
-65 to 150  
°C  
TJ  
Maximum junction temperature  
150  
9.3  
Operating conditions  
The device must be used in operating conditions that respect the parameters in the table  
below. In addition, full account must be taken of all physical capacitor characteristics and  
tolerances.  
52/103  
DocID022186 Rev 3  
 
 
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Table 17: General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fCPU  
Internal CPU clock  
frequency  
0
16  
MHz  
VDD/ VDD_IO  
Standard operating  
voltage  
2.95 5.5  
V
VCAP (1)  
CEXT: capacitance of  
external capacitor  
470  
3300 nF  
ESR of external  
capacitor  
at 1 MHz (4)  
0.3  
15  
Ohm  
nH  
ESL of external  
capacitor  
(2)  
PD  
Power dissipation at  
48-pin devices, with  
443  
mW  
TA = 85 °C for suffix 6 output on eight standard  
ports, two high sink ports  
and two open drain ports  
simultaneously(3)  
32-pin package, with  
360  
output on eight standard  
ports and two high sink  
ports simultaneously (3)  
TA  
TJ  
Ambient temperature Maximum power  
-40  
-40  
85  
°C  
for 6 suffix version  
dissipation  
Junction temperature 6 suffix version  
range  
105  
(1)Care should be taken when selecting the capacitor, due to its tolerance, as well as the  
parameter dependency on temperature, DC bias and frequency in addition to other factors.  
The parameter maximum value must be respected for the full application range.  
(2) To calculate PDmax(TA), use the formula PDmax = (TJmax - TA)/ΘJA (see Thermal  
characteristics ) with the value for TJmax given in the current table and the value for ΘJA  
given in Thermal characteristics.  
(3) Refer to Thermal characteristics.  
(4)This frequency of 1 MHz as a condition for VCAP parameters is given by design of the  
internal regulator.  
DocID022186 Rev 3  
53/103  
 
 
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 9: fCPUmax versus VDD  
f
(MHz)  
CPU  
Functionality  
not  
16  
12  
8
guaranteed  
in this area  
Functionality guaranteed  
@T -40 to 85 °C  
A
4
0
4.0  
Supply voltage  
2.95  
5.0  
5.5  
Table 18: Operating conditions at power-up/power-down  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tVDD  
VDD rise time rate  
2.0 (1)  
µs/V  
VDD fall time rate  
2.0 (1)  
tTEMP  
VIT+  
Reset releasedelay VDD rising  
1.7 (1) ms  
Power-on reset  
threshold  
2.65  
2.58  
2.8  
2.7  
70  
2.95  
2.88  
V
VIT-  
Brown-out reset  
threshold  
VHYS(BOR) Brown-out reset  
hysteresis  
mV  
(1) Guaranteed by design, not tested in production.  
9.3.1  
VCAP external capacitor  
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the  
VCAP pin. CEXT is specified in the Operating conditions section. Care should be taken to limit  
the series inductance to less than 15 nH.  
54/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 10: External capacitor CEXT  
ESL  
C
ESR  
R
Leak  
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.  
9.3.2  
Supply current characteristics  
The current consumption is measured as described in Pin input voltage.  
9.3.2.1  
Total current consumption in run mode  
Table 19: Total current consumption with code execution in run mode at VDD = 5 V  
Symbol Parameter  
Conditions  
Typ Max(1) Unit  
IDD(RUN) Supply  
current in run  
mode, code  
executed  
fCPU = fMASTER  
= 16 MHz  
HSE crystal osc.  
(16 MHz)  
3.2  
mA  
from RAM  
HSE user ext. clock  
(16 MHz)  
2.6 3.2  
2.5 3.2  
1.6 2.2  
1.3 2.0  
0.75  
HSI RC osc.  
(16 MHz)  
fCPU = fMASTER/128 = HSE user ext. clock  
125 kHz  
(16 MHz)  
HSI RC osc.  
(16 MHz)  
fCPU = fMASTER/128 = HSI RC osc.  
15.625 kHz  
(16 MH3z/8)  
fCPU = fMASTER  
= 128 kHz  
LSI RC osc.  
(128 kHz)  
0.55  
DocID022186 Rev 3  
55/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
Typ Max(1) Unit  
Symbol Parameter  
Conditions  
IDD(RUN)  
Supply  
fCPU = fMASTER  
= 16 MHz  
HSE crystal osc.  
7.7  
current in run  
mode, code  
executed  
(16 MHz)  
fromFlash  
HSE user ext. clock  
(16 MHz)  
7.0 8.0  
7.0 8.0  
1.5  
HSI RC osc.  
(16 MHz)  
fCPU = fMASTER  
= 2 MHz  
HSI RC osc.  
(16 MHz/8)(2)  
fCPU = fMASTER/128 = HSI RC osc.  
1.35 2.0  
0.75  
125 kHz  
(16 MHz)  
fCPU = fMASTER/128 = HSI RC osc.  
15.625 kHz  
(16 MHz/8)  
fCPU = fMASTER  
= 128 kHz  
LSI RC osc.  
(128 kHz)  
0.6  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
Table 20: Total current consumption with code execution in run mode at VDD = 3.3 V  
Typ Max(1) Unit  
Symbol Parameter Conditions  
IDD(RUN) Supply  
current  
in run  
fCPU = fMASTER = 16 MHz HSE crystal osc.  
2.8  
mA  
(16 MHz)  
mode,  
code  
executed  
from  
HSE user ext. clock  
(16 MHz)  
2.6 3.2  
2.5 3.2  
RAM  
HSI RC osc.  
(16 MHz)  
56/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Typ Max(1) Unit  
Symbol Parameter Conditions  
fCPU = fMASTER/128  
HSE user ext. clock  
1.6 2.2  
= 125 kHz  
(16 MHz)  
HSI RC osc.  
(16 MHz)  
1.3 2.0  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8) 0.75  
fCPU = fMASTER = 128 kHz LSI RC osc.  
(128 kHz)  
0.55  
Supply  
current  
in run  
mode,  
code  
executed  
from  
Flash  
fCPU = fMASTER = 16 MHz HSE crystal osc.  
(16 MHz)  
7.3  
HSE user ext. clock  
(16 MHz)  
7.0 8.0  
7.0 8.0  
1.5  
HSI RC osc.  
(16 MHz)  
fCPU = fMASTER = 2 MHz  
HSI RC osc.  
(16 MHz/8)(2)  
fCPU = fMASTER/128  
= 125 kHz  
HSI RC osc.  
(16 MHz)  
1.35 2.0  
0.75  
fCPU = fMASTER/128 =  
15.625 kHz  
HSI RC osc.  
(16 MHz/8)  
fCPU = fMASTER = 128 kHz LSI RC osc.  
(128 kHz)  
0.6  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
DocID022186 Rev 3  
57/103  
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.3.2.2  
Total current consumption in wait mode  
Table 21: Total current consumption in wait mode at VDD = 5 V  
Symbol Parameter  
Conditions  
Typ Max(1) Unit  
IDD(WFI) Supply  
current in  
fCPU = fMASTER = 16 HSE crystal osc.  
2.15  
mA  
MHz  
(16 MHz)  
wait mode  
HSE user ext. clock  
(16 MHz)  
1.55 2.0  
1.5 1.9  
1.3  
HSI RC osc.  
(16 MHz)  
fCPU = fMASTER/128 HSI RC osc.  
= 125 kHz  
(16 MHz)  
fCPU = fMASTER/128 HSI RC osc.  
0.7  
= 15.625 kHz  
(16 MHz/8)(2)  
fCPU = fMASTER = 128 LSI RC osc.  
0.5  
kHz  
(128 kHz)  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
Table 22: Total current consumption in wait mode at VDD = 3.3 V  
Symbol Parameter  
Conditions  
Typ Max(1) Unit  
IDD(WFI) Supply  
current in  
fCPU = fMASTER = 16 HSE crystal osc.  
1.75  
mA  
MHz  
(16 MHz)  
wait mode  
HSE user ext. clock  
(16 MHz)  
1.55 2.0  
1.5 1.9  
HSI RC osc.  
(16 MHz)  
58/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Symbol Parameter  
Electrical characteristics  
Conditions  
Typ Max(1) Unit  
fCPU = fMASTER/128 HSI RC osc.  
1.3  
= 125 kHz  
(16 MHz)  
fCPU = fMASTER/128 HSI RC osc.  
= 15.625 kHz  
(16 MHz/8)(2)  
0.7  
0.5  
fCPU = fMASTER  
128 kHz  
=
LSI RC osc.  
(128 kHz)  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
9.3.2.3  
Total current consumption in active halt mode  
Table 23: Total current consumption in active halt mode at VDD = 5 V  
Symbol Parameter Conditions  
Typ  
Max at Unit  
85  
°C(1)  
Main  
Flash mode (3) Clock source  
voltage  
regulator  
(MVR) (2)  
IDD(AH) Supply  
current in  
On  
Operating mode HSE crystal  
osc.  
1080  
µA  
active halt  
mode  
(16 MHz)  
LSI RC osc.  
(128 kHz)  
200  
320  
Power-down  
mode  
HSE crystal  
osc.  
1030  
(16 MHz)  
LSI RC osc.  
(128 kHz)  
140  
270  
DocID022186 Rev 3  
59/103  
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Symbol Parameter Conditions  
Typ  
Max at Unit  
85  
°C(1)  
Main  
Flash mode (3) Clock source  
voltage  
regulator  
(MVR) (2)  
Off  
Operating mode LSI RC osc.  
68  
12  
120  
60  
(128 kHz)  
Power-down  
mode  
(1) Data based on characterization results, not tested in production.  
(2) Configured by the REGAH bit in the CLK_ICKR register.  
(3) Configured by the AHALT bit in the FLASH_CR1 register.  
Table 24: Total current consumption in active halt mode at VDD = 3.3 V  
Symbol Parameter  
Conditions  
Typ Max at Unit  
85  
°C(1)  
Main  
Flash mode (3) Clock source  
voltage  
regulator  
(MVR)(2)  
IDD(AH) Supply  
current in  
On  
Operating  
mode  
HSE crystal osc. 680  
µA  
(16 MHz)  
active halt  
mode  
LSI RC osc.  
(128 kHz)  
200 320  
Power-down  
mode  
HSE crystal osc. 630  
(16 MHz)  
LSI RC osc.  
(128 kHz)  
140 270  
Off  
Operating  
mode  
LSI RC osc.  
(128 kHz)  
66  
10  
120  
60  
Power-down  
mode  
60/103  
DocID022186 Rev 3  
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
(1) Data based on characterization results, not tested in production.  
(2) Configured by the REGAH bit in the CLK_ICKR register.  
(3) Configured by the AHALT bit in the FLASH_CR1 register.  
9.3.2.4  
Total current consumption in halt mode  
Table 25: Total current consumption in halt mode at VDD = 5 V  
Symbol  
Parameter  
Conditions  
Typ  
Max at Unit  
85 °C(1)  
IDD(H)  
Supply current in Flash in operating mode, HSI  
62  
90  
25  
µA  
halt mode  
clock after wakeup  
Flash in powerdown mode, HSI  
clock after wakeup  
6.5  
(1) Data based on characterization results, not tested in production.  
Table 26: Total current consumption in halt mode at VDD = 3.3 V  
Symbol  
Parameter  
Conditions  
Typ  
Max at Unit  
85 °C(1)  
IDD(H)  
Supply current in Flash in operating mode, HSI  
60  
90  
20  
µA  
halt mode  
clock after wakeup  
Flash in powerdown mode, HSI  
clock after wakeup  
4.5  
(1) Data based on characterization results, not tested in production.  
9.3.2.5  
Low power mode wakeup times  
Table 27: Wakeup times  
Max(1)  
Symbol Parameter  
Wakeup time from  
Conditions  
Typ  
Unit  
See  
0 to 16 MHz  
note(2)  
wait mode to run  
mode(3)  
tWU(WFI)  
μs  
fCPU = fMASTER = 16 MHz  
0.56  
DocID022186 Rev 3  
61/103  
 
 
Electrical characteristics  
Symbol Parameter  
STM8S005K6 STM8S005C6  
Max(1)  
Conditions  
Typ  
Unit  
Wakeup time active MVR voltage  
HSI  
Flash in operating  
mode(5)  
2(6)  
1(6)  
halt mode to run  
mode(3)  
regulator  
on(4)  
(after  
wakeup)  
Wakeup time active MVR voltage Flash in  
HSI  
3(6)  
halt mode to run  
mode(3)  
regulator  
on(4)  
power-down  
mode(5)  
(after  
wakeup)  
tWU(AH)  
Wakeup time active MVR voltage  
HSI  
Flash in operating  
mode(5)  
48(6)  
halt mode to run  
mode(3)  
regulator  
off(4)  
(after  
wakeup)  
Wakeup time active MVR voltage Flash in  
HSI  
50(6)  
halt mode to run  
mode(3)  
regulator  
off(4)  
power-down  
mode(5)  
(after  
wakeup)  
Wakeup time from  
halt mode to run  
mode(3)  
Flash in operating mode(5)  
52  
54  
tWU(H)  
Flash in power-down mode(5)  
(1) Data guaranteed by design, not tested in production.  
(2)  
t
= 2 x 1/fmaster + x 1/fCPU.  
WU(WFI)  
(3) Measured from interrupt event to interrupt vector fetch.  
(4) Configured by the REGAH bit in the CLK_ICKR register.  
(5) Configured by the AHALT bit in the FLASH_CR1 register.  
(6) Plus 1 LSI clock depending on synchronization.  
9.3.2.6  
Total current consumption and timing in forced reset state  
Table 28: Total current consumption and timing in forced reset state  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
IDD(R)  
Supply current in reset  
state(2)  
VDD = 5 V  
500  
μA  
VDD = 3.3 V  
400  
62/103  
DocID022186 Rev 3  
 
 
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
tRESETBL  
Reset pin release to  
vector fetch  
150  
μs  
(1) Data guaranteed by design, not tested in production.  
(2) Characterized with all I/Os tied to VSS  
.
9.3.2.7  
Current consumption of on-chip peripherals  
Subject to general operating conditions for VDD and TA.  
HSI internal RC/fCPU = fMASTER = 16 MHz.  
Table 29: Peripheral current consumption  
Symbol  
Parameter  
Typ.  
Unit  
IDD(TIM1)  
TIM1 supply current(1)  
230  
IDD(TIM2)  
IDD(TIM3)  
IDD(TIM4)  
IDD(UART2)  
TIM2 supply current (1)  
115  
90  
TIM3 timer supply current (1)  
TIM4 timer supply current (1)  
UART2 supply current(2)  
SPI supply current (2)  
30  
µA  
110  
45  
IDD(SPI)  
2
IDD(I  
I2C supply current (2)  
65  
C)  
IDD(ADC1)  
ADC1 supply current when converting(3)  
955  
(1) Data based on a differential IDD measurement between reset configuration and timer  
counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in  
production.  
(2) Data based on a differential IDD measurement between the on-chip peripheral when kept  
under reset and not clocked and the on-chip peripheral when clocked and not kept under  
reset. No I/O pads toggling. Not tested in production.  
(3) Data based on a differential IDD measurement between reset configuration and continuous  
A/D conversions. Not tested in production.  
DocID022186 Rev 3  
63/103  
 
 
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.3.2.8  
Current consumption curves  
The following figures show typical current consumption measured with code executing in  
RAM.  
Figure 11: Typ. IDD(RUN) vs. VDD , HSE user external clock, fCPU = 16 MHz  
-40°C  
3
25°C  
2.95  
85°C  
2.9  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10235  
Figure 12: Typ. IDD(RUN) vs. fCPU , HSE user external clock, VDD= 5 V  
-40°C  
5
25°C  
4.5  
85°C  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
fcpu [MHz]  
IID10236  
64/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 13: Typ. IDD(RUN) vs. VDD , HSI RC osc, fCPU = 16 MHz  
-40°C  
25°C  
85°C  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10237  
Figure 14: Typ. IDD(WFI) vs. VDD , HSE user external clock, fCPU = 16 MHz  
-40°C  
2.4  
25°C  
2.2  
85°C  
2
1.8  
1.6  
1.4  
1.2  
1
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10238  
Figure 15: Typ. IDD(WFI) vs. fCPU, HSE user external clock VDD = 5 V  
-40°C  
3
25°C  
85°C  
2.5  
2
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
fcpu [MHz]  
IID10239  
DocID022186 Rev 3  
65/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 16: Typ. IDD(WFI) vs. VDD, HSI RC osc, fCPU = 16 MHz  
-40°C  
25°C  
85°C  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10240  
9.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for VDD and TA.  
Table 30: HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHSE_ext  
User external clock source  
frequency  
0
16  
MHz  
(1)  
VHSEH  
OSCIN input pin high level  
voltage  
0.7 x VDD  
VDD + 0.3 V  
V
(1)  
VHSEL  
ILEAK_HSE  
OSCIN input pin low level  
voltage  
VSS  
-1  
0.3 x VDD  
+1  
OSCIN input leakage current VSS < VIN < VDD  
μA  
(1) Data based on characterization results, not tested in production.  
66/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 17: HSE external clocksource  
V
HSEH  
V
HSEL  
f
HSE  
External clock  
source  
OSCIN  
STM8  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 31: HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
fHSE  
External high speed  
oscillator frequency  
1
16  
20  
MHz  
RF  
Feedback resistor  
220  
kΩ  
pF  
C(1)  
Recommended load  
capacitance(2)  
IDD(HSE)  
HSE oscillator power  
consumption  
C = 20 pF,  
6 (startup)  
1.6 (stabilized)(3)  
fOSC = 16 MHz  
mA  
C = 10 pF,  
6 (startup)  
fOSC =16 MHz  
1.2 (stabilized)(3)  
gm  
Oscillator  
5
mA/V  
ms  
transconductance  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
1
(1) C is approximately equivalent to 2 x crystal Cload.  
DocID022186 Rev 3  
67/103  
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
(2) The oscillator selection can be optimized in terms of supply current using a high quality resonator with  
small Rm value. Refer to crystal manufacturer for more details  
(3) Data based on characterization results, not tested in production.  
(4)  
t
is the start-up time measured from the moment it is enabled (by software) to a stabilized 16  
SU(HSE)  
MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer.  
Figure 18: HSE oscillator circuit diagram  
R
m
f
to core  
HSE  
C
O
R
g
L
m
F
C
L1  
C
m
OSCIN  
m
Resonator  
Consumption  
control  
Resonator  
OSCOUT  
C
L2  
STM8  
HSE oscillator critical g m equation  
gmcrit= (2 × Π × fHSE)2 × Rm(2Co + C)2  
Rm: Notional resistance (see crystal specification)  
Lm: Notional inductance (see crystal specification)  
Cm: Notional capacitance (see crystal specification)  
Co: Shunt capacitance (see crystal specification)  
CL1= CL2 = C: Grounded external capacitance  
gm >> gmcrit  
9.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for VDD and TA.  
High speed internal RC oscillator (HSI)  
Table 32: HSI oscillator characteristics  
Symbol Parameter  
fHSI Frequency  
Conditions  
Min  
Typ Max  
Unit  
16  
MHz  
68/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Symbol Parameter  
Electrical characteristics  
Conditions  
Min  
Typ Max  
Unit  
ACCHSI Accuracy of HSI  
oscillator  
User-trimmed with  
CLK_HSITRIMR register  
for given VDD and TA  
conditions(1)  
1.0(2)  
%
Accuracy of HSI  
oscillator (factory  
calibrated)  
VDD = 5 V, TA = 25°C(3)  
5.0  
-5.0  
5.0  
VDD = 5 V,  
-40 °C ≤ TA ≤ 85 °C  
tsu(HSI) HSI oscillator  
wakeup time  
1.0(2) µs  
including calibration  
IDD(HSI) HSI oscillator power  
consumption  
170 250(3) µA  
(1) Refer to application note.  
(2) Guaranteed by design, not tested in production.  
(3) Data based on characterization results, not tested in production.  
Figure 19: Typical HSI frequency variation vs VDD @ 3 temperatures  
-40°C  
16.5  
25°C  
16.4  
85°C  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
15.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10241  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for VDD and TA.  
DocID022186 Rev 3  
69/103  
 
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Table 33: LSI oscillator characteristics  
Symbol Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
128  
kHz  
tsu(LSI)  
IDD(LSI)  
LSI oscillator wakeup time  
LSI oscillator power consumption  
7(1)  
µs  
5
µA  
(1) Guaranteeed by design, not tested in production.  
Figure 20: Typical LSI frequency variation vs VDD @ 3 temperatures  
-40°C  
25°C  
85°C  
150  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10242  
9.3.5  
Memory characteristics  
RAM and hardware registers  
Table 34: RAM and hardware registers  
Conditions  
Symbol  
Parameter  
Min  
VIT-max  
Unit  
(2)  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
V
(1) Minimum supply voltage without losing data stored in RAM (in halt mode or under reset)  
or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.  
refer to Operating conditions for the value of VIT-max  
(2)Refer to the Operating conditions section for the value of VIT-max  
Flash program memory/data EEPROM memory  
General conditions: TA = -40 to 85°C.  
70/103  
DocID022186 Rev 3  
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Table 35: Flash program memory/data EEPROM memory  
Min(1) Typ Max  
Symbol Parameter  
Conditions  
Unit  
VDD  
Operating voltage (all modes,  
execution/write/erase)  
fCPU ≤ 16 MHz 2.95  
5.5  
6.6  
V
tprog  
Standard programming time  
(including erase) for  
byte/word/block (1 byte/4  
bytes/128 bytes)  
6.0  
ms  
ms  
Fast programming time for 1 block  
(128 bytes)  
3.0  
3.0  
3.3  
3.3  
terase  
NRW  
Erase time for 1 block (128 bytes)  
ms  
Erase/write cycles(2)(program  
memory)  
TA = 85 °C  
100  
cycles  
Erase/write cycles(data memory)(2) TA = 85 ° C  
100 k  
20  
tRET  
Data retention (program memory) TRET = 55° C  
after 100 erase/write cycles at TA  
= 85 °C  
years  
Data retention (data memory) after  
10 k erase/write cycles at TA = 85  
°C  
20  
1
Data retention (data memory) after TRET = 85° C  
100 k erase/write cyclesat TA = 85  
°C  
IDD  
Supply current (Flash  
programming or erasing for 1 to  
128 bytes)  
2.0  
mA  
(1) Data based on characterization results, not tested in production.  
(2) The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes  
even when a write/erase operation addresses a single byte.  
DocID022186 Rev 3  
71/103  
 
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused  
pins must be kept at a fixed voltage: using the output mode of the I/O for example or an  
external pull-up or pull-down resistor.  
Table 36: I/O static characteristics  
Symbol Parameter  
Conditions  
Min Typ  
Max  
Unit  
VIL  
VIH  
Input low level  
voltage  
VDD = 5 V  
-0.3  
0.3 x VDD  
V
Input high level  
voltage  
0.7 x  
VDD  
VDD + 0.3  
V
V
Vhys  
Rpu  
Hysteresis(1)  
700  
mV  
kΩ  
ns  
Pull-up resistor  
VDD = 5 V, VIN = VSS  
30  
55  
80  
tR, tF  
Rise and fall  
time(10 % - 90 %)  
Fast I/Os load = 50 pF  
35 (3)  
125 (3)  
Standard and high sink  
I/OsLoad = 50 pF  
ns  
Ilkg  
Input leakage  
current, analog  
and digital  
VSS ≤ VIN ≤ VDD  
±1.0 (2)  
µA  
Ilkg ana Analog input  
leakage current  
VSS ≤ VIN ≤ VDD  
±250 (2)  
±1.0(2)  
nA  
µA  
Ilkg(inj) Leakage current in Injection current ±4 mA  
adjacent I/O(2)  
(1) Hysteresis voltage between Schmitt trigger switching levels. Based on characterization  
results, not tested in production.  
(2) Data based on characterization results, not tested in production.  
(3)Data guaranteed by design, not tested in production.  
72/103  
DocID022186 Rev 3  
 
 
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 21: Typical VIL and VIH vs VDD @ 3 temperatures  
-40°C  
25°C  
85°C  
6
5
4
3
2
1
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10243  
Figure 22: Typical pull-up resistance vs VDD @ 3 temperatures  
-40°C  
60  
25°C  
55  
50  
45  
40  
35  
30  
85°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10244  
Figure 23: Typical pull-up current vs VDD @ 3 temperatures  
140  
120  
100  
80  
-40°C  
25°C  
85°C  
60  
40  
20  
0
0
1
2
3
4
5
6
VDD [V]  
IID10245  
1. The pull-up is a pure resistor (slope goes through 0).  
DocID022186 Rev 3  
73/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
Table 37: Output driving current (standard ports)  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VOL  
Output low level with four pins IIO = 4 mA,  
1.0 (1)  
V
sunk  
VDD = 3.3 V  
Output low level with eight  
pins sunk  
IIO= 10 mA,  
VDD = 5 V  
2.0  
VOH  
Output high level with four  
pins sourced  
IIO = 4 mA,  
VDD = 3.3 V  
2.0(1)  
2.4  
V
Output high level with eight  
pins sourced  
IIO = 10 mA,  
VDD = 5 V  
(1) Data based on characterization results, not tested in production  
Table 38: Output driving current (true open drain ports)  
Symbol Parameter Conditions Max  
IIO = 10 mA, VDD = 3.3 V 1.5(1)  
Unit  
VOL  
Output low level with two pins  
sunk  
V
IIO = 10 mA, VDD = 5 V  
IIO = 20 mA, VDD = 5 V  
1.0  
2.0(1)  
(1) Data based on characterization results, not tested in production  
Table 39: Output driving current (high sink ports)  
Symbol Parameter Conditions Min  
Max  
Unit  
VOL  
Output low level with four pins IIO = 10 mA,  
1.1(1)  
V
sunk  
VDD = 3.3 V  
Output low level with eight pins IIO = 10 mA,  
0.9  
sunk  
VDD = 5 V  
74/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Symbol Parameter  
Electrical characteristics  
Conditions  
Min  
Max  
Unit  
Output low level with four pins IIO = 20 mA,  
1.6(1)  
sunk  
VDD = 5 V  
VOH  
Output high level with four pins IIO = 10 mA,  
1.9(1)  
3.8  
sourced  
VDD = 3.3 V  
Output high level with eight pins IIO = 10 mA,  
sourced  
VDD = 5 V  
Output high level with four pins IIO = 20 mA,  
2.9(1)  
sourced  
VDD = 5 V  
(1) Data based on characterization results, not tested in production  
9.3.7  
Typical output level curves  
The following figures show typical output level curves measured with output on a single pin.  
Figure 24: Typ. VOL @ VDD = 5 V (standard ports)  
-40°C  
1.5  
25°C  
1.25  
85°C  
1
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
IOL [mA]  
IID10224  
DocID022186 Rev 3  
75/103  
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 25: Typ. VOL @ VDD = 3.3 V (standard ports)  
-40°C  
25°C  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
IOL [mA]  
IID10225  
Figure 26: Typ. VOL @ VDD = 5 V (true open drain ports)  
-40°C  
2
25°C  
1.75  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
5
10  
15  
20  
25  
IOL [mA]  
IID10226  
Figure 27: Typ. VOL @ VDD = 3.3 V (true open drain ports)  
-40°C  
2
25°C  
1.75  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
IOL [mA]  
IID10227  
76/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 28: Typ. VOL @ VDD = 5 V (high sink ports)  
-40°C  
25°C  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
5
10  
15  
20  
25  
IOL [mA]  
IID10228  
Figure 29: Typ. VOL @ VDD = 3.3 V (high sink ports)  
-40°C  
1.5  
25°C  
1.25  
85°C  
1
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
IOL [mA]  
IID10229  
Figure 30: Typ. VDD - VOH @ VDD = 5 V (standard ports)  
-40°C  
2
25°C  
1.75  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
IOH [mA]  
IID10230  
DocID022186 Rev 3  
77/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 31: Typ. VDD - VOH @ VDD = 3.3 V (standard ports)  
-40°C  
25°C  
85°C  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
IOH [mA]  
IID10231  
Figure 32: Typ. VDD - VOH @ VDD = 5 V (high sink ports)  
-40°C  
2
25°C  
1.75  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
5
10  
15  
20  
25  
IOH [mA]  
IID10232  
Figure 33: Typ. VDD - VOH @ VDD = 3.3 V (high sink ports)  
-40°C  
2
25°C  
1.75  
85°C  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
2
4
6
8
10  
12  
14  
IOH [mA]  
IID10233  
78/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Electrical characteristics  
9.3.8  
Reset pin characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified.  
Table 40: NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST)  
NRST input low  
level voltage(1)  
-0.3  
0.3 x VDD  
VIH(NRST)  
VOL(NRST)  
RPU(NRST)  
tI FP(NRST)  
tIN FP(NRST)  
tOP(NRST)  
NRST input high  
level voltage (1)  
IOL=2 mA  
0.7 x VDD  
VDD + 0.3  
V
NRST output low  
level voltage (1)  
0.5  
80  
75  
NRST pull-up  
resistor(2)  
30  
55  
kΩ  
ns  
μs  
NRST input filtered  
pulse(3)  
NRST input not  
filtered pulse(3)  
500  
15  
NRST output  
pulse (3)  
(1) Data based on characterization results, not tested in production.  
(2) The RPU pull-up equivalent resistor is based on a resistive transistor  
(3) Data guaranteed by design, not tested in production.  
DocID022186 Rev 3  
79/103  
 
 
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 34: Typical NRST VIL and VIH vs VDD @ 3 temperatures  
-40°C  
25°C  
85°C  
6
5.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10248  
Figure 35: Typical NRST pull-up resistance vs VDD @ 3 temperatures  
-40°C  
60  
25°C  
55  
50  
45  
40  
35  
30  
85°C  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10234  
Figure 36: Typical NRST pull-up current vs VDD @ 3 temperatures  
140  
120  
100  
80  
-40°C  
25°C  
85°C  
60  
40  
20  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VDD [V]  
IID10246  
80/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Electrical characteristics  
The reset network shown in the following figure protects the device against parasitic resets.  
The user must ensure that the level on the NRST pin can go below VIL(NRST) max. (see Table  
40: NRST pin characteristics ), otherwise the reset is not taken into account internally.  
For power consumption sensitive applications, the external reset capacitor value can be  
reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry,  
attention must be taken to the charge/discharge time of the external capacitor to fulfill the  
external devices reset timing conditions. Minimum recommended capacity is 100 nF.  
Figure 37: Recommended reset pin protection  
STM8  
VDD  
RPU  
External  
reset  
Internal reset  
NRST  
Filter  
circuit  
0.1 μF  
(optional)  
9.3.9  
SPI serial peripheral interface  
Unless otherwise specified, the parameters given in the following table are derived from tests  
performed under ambient temperature, fMASTER frequency and VDD supply voltage conditions.  
tMASTER = 1/fMASTER  
.
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
Table 41: SPI characteristics  
Symbol  
fSCK  
Parameter  
Conditions  
Min  
Max  
Unit  
1
SPI clock  
frequency  
Master mode  
0
8
MHz  
tc(SCK)  
Slave mode  
0
6
tr(SCK)  
tf(SCK)  
SPI clock rise  
and fall time  
Capacitive load: C = 30 pF  
25  
ns  
(1)  
tsu(NSS)  
NSS setup time Slave mode  
NSS hold time Slave mode  
4 x  
tMASTER  
ns  
ns  
(1)  
th(NSS)  
70  
DocID022186 Rev 3  
81/103  
Electrical characteristics  
Symbol  
STM8S005K6 STM8S005C6  
Parameter  
Conditions  
Min  
Max  
Unit  
(1)  
tw(SCKH)  
SCK high and  
low time  
Master mode  
tSCK/2 -  
15  
tSCK/2 +  
15  
ns  
(1)  
tw(SCKL)  
(1)  
tsu(MI)  
Data input  
setup time  
Master mode  
Slave mode  
5
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
tsu(SI)  
Data input  
setup time  
5
(1)  
th(MI)  
Data input hold Master mode  
time  
7
(1)  
th(SI)  
Data input hold Slave mode  
time  
10  
(1) (2)  
ta(SO)  
Data output  
access time  
Slave mode  
Slave mode  
3 x  
tMASTER  
(1) (3)  
tdis(SO)  
Data output  
disable time  
25  
(1)  
tv(SO)  
Data output  
valid time  
Slave mode  
73  
36  
ns  
ns  
ns  
ns  
(after enable edge)  
(1)  
tv(MO)  
Data output  
valid time  
Master mode  
(after enable edge)  
(1)  
th(SO)  
Data output  
hold time  
Slave mode  
28  
12  
(after enable edge)  
(1)  
th(MO)  
Master mode  
(after enable edge)  
(1) Values based on design simulation and/or characterization results, and not tested in  
production.  
(2) Min time is for the minimum time to drive the output and the max time is for the maximum  
time to validate the data.  
(3) Min time is for the minimum time to invalidate the output and the max time is for the  
maximum time to put the data in Hi-Z.  
82/103  
DocID022186 Rev 3  
 
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 38: SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
t
t
SU(NSS)  
c(SCK)  
h(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
MSB O UT  
BIT6 OUT  
BIT1 IN  
LSB OUT  
OUT PUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
Figure 39: SPI timing diagram - slave mode and CPHA = 1(1)  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
MSB O UT  
BIT6 OUT  
LSB OUT  
OUT PUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DocID022186 Rev 3  
83/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
Figure 40: SPI timing diagram - master mode(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
MSBIN  
t
BIT6 IN  
LSB IN  
INPUT  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136b  
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD  
.
9.3.10  
I2C interface characteristics  
Table 42: I2C characteristics  
Symbol Parameter  
Standard mode I2C Fast mode I2C(1) Unit  
Min(2)  
Max(2)  
Min(2)  
Max(2)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
4.7  
1.3  
μs  
μs  
ns  
SCL clock high time  
SDA setup time  
4.0  
250  
0(3)  
0.6  
100  
0(4)  
SDA data hold time  
900(3) ns  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
SDA and SCL fall time  
1000  
300  
300  
300  
ns  
ns  
tf(SDA)  
tf(SCL)  
84/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Symbol Parameter  
Electrical characteristics  
Standard mode I2C Fast mode I2C(1) Unit  
Min(2)  
Max(2)  
Min(2)  
Max(2)  
th(STA)  
START condition hold time  
4.0  
0.6  
μs  
μs  
μs  
μs  
pF  
tsu(STA)  
Repeated START condition  
setup time  
4.7  
4.0  
4.7  
0.6  
0.6  
1.3  
tsu(STO)  
STOP condition setup time  
tw(STO:STA) STOP to START condition time  
(bus free)  
Cb  
Capacitive load for each bus line  
400  
400  
(1)  
f
, must be at least 8 MHz to achieve max fast I2C speed (400kHz).  
MASTER  
(2) Data based on standard I2C protocol requirement, not tested in production.  
(3) The maximum hold time of the start condition has only to be met if the interface does not stretch the  
low time.  
(4) The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge  
the undefined region of the falling edge of SCL.  
Figure 41: Typical application with I2C bus and timing diagram (1)  
V
V
DD  
DD  
STM8Sx05xx  
SDA  
SCL  
I²C bus  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCLL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCL)  
t
f(SCL)  
w(SCLH)  
ai15385b  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD  
DocID022186 Rev 3  
85/103  
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.3.11  
10-bit ADC characteristics  
Subject to general operating conditions for VDDA, fMASTER, and TA unless otherwise specified.  
Table 43: ADC characteristics  
Symbol Parameter  
Conditions  
Min  
Typ Max  
Unit  
fADC  
ADC clock frequency  
VDDA =2.95 to 5.5 V 1.0  
VDDA =4.5 to 5.5 V 1.0  
3.0  
4.0  
MHz  
6.0  
VDDA  
VREF+  
VREF-  
VAIN  
Analog supply  
5.5  
V
V
V
V
V
Positive reference voltage  
Negative reference voltage  
Conversion voltage range(2)  
2.75(1)  
VDDA  
0.5(1)  
V SSA  
V SSA  
V DDA  
Devices with  
external  
VREF-  
VREF+  
VREF+/VREF- pins  
CADC  
Internal sample and hold  
capacitor  
3.0  
pF  
µs  
(2)  
tS  
Sampling time  
fADC = 4 MHz  
fADC = 6 MHz  
0.75  
0.5  
tSTAB  
Wakeup time from standby  
7.0  
µs  
tCONV  
Total conversion time  
(including sampling time,  
10-bit resolution)  
fADC = 4 MHz  
fADC = 6 MHz  
3.5  
2.33  
14  
µs  
µs  
1/fADC  
(1) Data guaranteed by design, not tested in production..  
(2) During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged  
by the external source. The internal resistance of the analog source must allow the  
capacitance to reach its final voltage level within tS. After the end of the sample time tS,  
86/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tS depend on programming.  
Table 44: ADC accuracy with RAIN < 10 kΩ , VDDA= 5 V  
Symbol Parameter  
Total unadjusted error(2)  
Conditions  
Typ  
Max(1) Unit  
LSB  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
fADC = 2 MHz  
1.0  
2.5  
3.0  
3.5  
2.0  
2.5  
2.5  
2.0  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
1.4  
1.6  
0.6  
1.1  
1.2  
0.2  
0.6  
0.8  
0.7  
0.7  
0.8  
0.6  
0.6  
0.6  
Offset error(2)  
Gain error(2)  
Differential linearity error(2)  
Integral linearity error(2)  
(1) Data based on characterisation results, not tested in production.  
(2) ADC accuracy vs. negative injection current: Injecting negative current on any of the  
analog input pins should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky  
diode (pin to ground) to standard analog pins which may potentially inject negative current.  
DocID022186 Rev 3  
87/103  
 
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in the I/O  
port pin characteristics section does not affect the ADC accuracy.  
Table 45: ADC accuracy with RAIN < 10 kΩ RAIN, VDDA = 3.3 V  
Symbol Parameter  
Total unadjusted error(2)  
Conditions  
Typ  
Max(1) Unit  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
fADC = 2 MHz  
1.1  
2.0  
2.5  
1.5  
2.0  
1.5  
2.0  
1.0  
1.0  
1.5  
1.5  
LSB  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
1.6  
0.7  
1.3  
0.2  
0.5  
0.7  
0.7  
0.6  
0.6  
Offset error(2)  
Gain error (2)  
Differential linearity error(2)  
Integral linearity error(2)  
(1) Data based on characterisation results, not tested in production.  
(2) ADC accuracy vs. negative injection current: Injecting negative current on any of the  
analog input pins should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky  
diode (pin to ground) to standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in I/O port  
pin characteristics does not affect the ADC accuracy.  
88/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Electrical characteristics  
Figure 42: ADC accuracy characteristics  
1. Example of an actual transfer curve.  
2. The ideal transfer curve  
3. End point correlation line  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer  
curves.  
EO = Offset error: deviation between the first actual transition and the first ideal one.  
EG = Gain error: deviation between the last ideal transition and the last actual one.  
ED = Differential linearity error: maximum deviation between actual steps and the ideal  
one.  
EL = Integral linearity error: maximum deviation between any actual transition and the end  
point correlation line.  
Figure 43: Typical application with ADC  
V
STM8  
DD  
V
T
V
0.6 V  
R
AIN  
AIN  
AINx  
10-bit A/D  
conversion  
V
T
0.6 V  
I
L
± 1 µA  
C
C
AIN  
ADC  
9.3.12  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
DocID022186 Rev 3  
89/103  
Electrical characteristics  
STM8S005K6 STM8S005C6  
9.3.12.1 Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of  
the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with  
the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the table  
below based on the EMS levels and classes defined in application note AN1709 (EMC design  
guide for STMicrocontrollers).  
9.3.12.2 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques  
for improving microcontroller EMC performance).  
Table 46: EMS data  
Symbol  
Parameter  
Conditions  
Level/ class  
V
Voltage limits to be applied on  
any I/O pin to induce a  
functional disturbance  
FESD  
(1)  
V
= 5 V, T = 25 °C, f  
MASTER  
= 16 MHz,  
DD  
A
2/B  
conforming to IEC 1000-4-2  
V
Fast transient voltage burst  
limits to be applied through 100  
EFTB  
(1)  
V
= 5 V, T = 25 °C ,f = 16 MHz,conforming  
MASTER  
DD  
A
4/A  
pF on V  
and V  
pins to  
induce a functional disturbance  
to IEC 1000-4-4  
DD  
SS  
90/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Electrical characteristics  
(1)  
Data obtained with HSI clock configuration, after applying HW recommendations described in AN2860 (EMC  
guidelines for STM8S microcontrollers).  
9.3.12.3 Electromagnetic interference (EMI)  
Emission tests conform to the IEC61967-2 standard for test software, board layout and pin  
loading.  
Table 47: EMI data  
Symbol Parameter Conditions  
Unit  
(1)  
General  
conditions  
Monitored  
frequency  
band  
Max fHSE/fCPU  
8 MHz/ 8  
MHz  
8 MHz/ 16  
MHz  
SEMI  
Peak level VDD = 5 V,  
TA = +25 °C,  
0.1 MHz to  
30 MHz  
13  
23  
14  
dBµV  
LQFP48  
package  
conforming to  
IEC61967-2  
30 MHz to  
130 MHz  
19  
130 MHz to 1 -4.0  
GHz  
-4.0  
1.5  
SAE EMI  
level  
2.0  
(1) Data based on characterization results, not tested in production.  
9.3.12.4 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product  
is stressed in order to determine its performance in terms of electrical sensitivity. For more  
details, refer to the application note AN1181.  
9.3.12.5 Electrostatic discharge (ESD)  
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied  
to the pins of each sample according to each pin combination. The sample size depends on  
the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the  
JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.  
DocID022186 Rev 3  
91/103  
 
Electrical characteristics  
STM8S005K6 STM8S005C6  
Table 48: ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum Unit  
value(1)  
VESD(HBM) Electrostatic discharge  
TA = +25°C,  
A
2000  
V
voltage (Human body model) conforming to  
JESD22-A114  
VESD(CDM) Electrostatic discharge  
voltage (Charge device  
model)  
TA=+25°C, conforming IV  
to JESD22-C101  
1000  
V
(1) Data based on characterization results, not tested in production  
9.3.12.6 Static latch-up  
Two complementary static tests are required on 10 parts to assess the latch-up performance:  
A supply overvoltage (applied to each power supply pin)  
A current injection (applied to each input, output and configurable I/O pin) are performed  
on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 49: Electrical sensitivities  
Symbol Parameter  
LU Static latch-up class  
Conditions  
Class(1)  
TA = +25 °C  
A
TA = +85 °C  
A
(1) Class description: A Class is an STMicroelectronics internal specification. All its limits  
are higher than the JEDEC specifications, that means when a device belongs to class A it  
exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international  
standard).  
92/103  
DocID022186 Rev 3  
 
 
STM8S005K6 STM8S005C6  
Package information  
10  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com. ECOPACK®  
is an ST trademark.  
10.1  
48-pin LQFP package mechanical data  
Figure 44: 48-pin low profile quad flat package (7 x 7)  
D
ccc  
C
D1  
D3  
A
A2  
25  
36  
24  
37  
L1  
b
E3 E1  
E
48  
L
13  
A1  
K
Pin 1  
identification  
1
12  
c
5B_ME  
Table 50: 48-pin low profile quad flat package mechanical data  
Dim.  
mm  
Min  
inches(1)  
Min  
Typ  
Max  
Typ  
Max  
A
1.600  
0.0630  
A1  
A2  
b
0.050  
1.350  
0.170  
0.090  
8.800  
0.150  
1.450  
0.270  
0.200  
9.200  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
0.3543  
DocID022186 Rev 3  
93/103  
Package information  
Dim.  
STM8S005K6 STM8S005C6  
mm  
Min  
inches(1)  
Typ  
Max  
Min  
Typ  
Max  
D1  
D3  
E
6.800  
7.000  
7.200  
0.2677  
0.2756  
0.2835  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
0.0177  
0°  
0.0295  
L1  
k
7.0°  
7.0°  
ccc  
0.080  
0.0031  
(1) Values in inches are converted from mm and rounded to 4 decimal digits  
94/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Package information  
10.2  
32-pin LQFP package mechanical data  
Figure 45: 32-pin low profile quad flat package (7 x 7)  
ccc  
C
D
D1  
D3  
A
A2  
24  
17  
16  
25  
32  
L1  
b
E3  
E1 E  
9
L
Pin 1  
identification  
A1  
K
1
8
c
5V_ME  
Table 51: 32-pin low profile quad flat package mechanical data  
Dim.  
mm  
Min  
inches(1)  
Min  
Typ  
Max  
Typ  
Max  
A
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
A1  
A2  
b
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
DocID022186 Rev 3  
95/103  
Package information  
Dim.  
STM8S005K6 STM8S005C6  
mm  
Min  
inches(1)  
Typ  
Max  
Min  
Typ  
Max  
E3  
e
5.600  
0.800  
0.600  
1.000  
3.5°  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
L
0.450  
0°  
0.750  
0.0177  
0°  
0.0295  
L1  
k
7.0°  
7.0°  
ccc  
0.100  
0.0039  
(1) Values in inches are converted from mm and rounded to 4 decimal digits  
96/103  
DocID022186 Rev 3  
 
STM8S005K6 STM8S005C6  
Thermal characteristics  
11  
Thermal characteristics  
The maximum chip junction temperature (TJ max) must never exceed the values given in  
Operating conditions  
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using  
the following equation:  
TJmax = TAmax + (PDmax x ΘJA)  
Where:  
TAmax is the maximum ambient temperature in °C  
ΘJA is the package junction-to-ambient thermal resistance in ° C/W  
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax  
)
PINTmax is the product of IDD andVDD, expressed in Watts. This is the maximum chip internal  
power.  
PI/Omax represents the maximum power dissipation on output pinsWhere:PI/Omax =Σ (VOL*IOL  
+ Σ((VDD-VOH)*IOH), taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low  
and high level in the application.  
)
Table 52: Thermal characteristics(1)  
Symbol  
ΘJA  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 48 - 7 x 7 mm  
57  
°C/W  
ΘJA  
Thermal resistance junction-ambient  
LQFP 32 - 7 x 7 mm  
60  
°C/W  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural  
convection environment.  
11.1  
11.2  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural convection  
(still air). Available from www.jedec.org.  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code.  
The following example shows how to calculate the temperature range needed for a given  
application.  
Assuming the following application conditions:  
Maximum ambient temperature TAmaz = 82 °C (measured according to JESD51-2)  
IDDmax = 15 mA, VDD = 5.5 V  
DocID022186 Rev 3  
97/103  
Thermal characteristics  
STM8S005K6 STM8S005C6  
Maximum 8 standard I/Os used at the same time in output at low level with IOL = 10 mA,  
VOL= 2 V  
Maximum 4 high sink I/Os used at the same time in output at low level with IOL = 20 mA,  
VOL= 1.5 V  
Maximum 2 true open drain I/Os used at the same time in output at low level with IOL  
20 mA, VOL= 2 V  
=
PINTmax = 15 mA x 5.5 V = 82.5 mW  
PIOmax = (10 mA x 2 V x 8 )+(20 mA x 2 V x 2)+(20 mA x 1.5 V x 4) = 360 mW  
This gives: PINTmax = 82.5 mW and PIOmax 360 mW:  
PDmax = 82.5 mW + 360 mW  
Thus: PDmax = 443 mW  
TJmax for LQFP32 can be calculated as follows, using the thermal resistance ΘJA  
TJmax = 75° C + (59° C/W x 464 mW) = 75°C + 27°C = 102° C  
:
This is within the range of the suffix 6 version parts (-40 < TJ < 106° C). In this case, parts  
must be ordered at least with the temperature range suffix 6.  
98/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Ordering information  
12  
Ordering information  
Figure 46: STM8S005xx value line ordering information scheme  
Example:  
C
K
6
T
TR  
S
6
STM8  
005  
Product class  
Family type  
S = Standard  
Sub-family type  
005 = Value line STM8S005x  
Pin count  
K = 32 pins  
C = 48 pins  
Program memory size  
6 = 32 Kbytes  
Package type  
T = LQFP  
Temperature range  
6 = -40 °C to 85 °C  
Package pitch  
No character = 0.5 mm  
C = 0.8 mm  
Packing  
No character = Tray or tube  
TR = Tape and reel  
1. For a list of available options (e.g. memory size, package) and orderable part numbers or  
for further information on any aspect of this device, please go to www.st.com or contact  
the ST sales office nearest to you.  
DocID022186 Rev 3  
99/103  
STM8 development tools  
STM8S005K6 STM8S005C6  
13  
STM8 development tools  
Development tools for the STM8 microcontrollers include the full-featured STice emulation  
system supported by a complete software tool package including C compiler, assembler and  
integrated development environment with high-level language debugger. In addition, the  
STM8 is to be supported by a complete range of tools including starter kits, evaluation boards  
and a low-cost in-circuit debugger/programmer.  
13.1  
Emulation and in-circuit debugging tools  
The STice emulation system offers a complete range of emulation and in-circuit debugging  
features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8  
application development is supported by a low-cost in-circuit debugger/programmer.  
The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers  
new advanced debugging capabilities including profiling and coverage to help detect and  
eliminate bottlenecks in application execution and dead code when fine tuning an application.  
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via  
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an  
application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows you to order  
exactly what you need to meet your development requirements and to adapt your emulation  
system to support existing and future ST microcontrollers.  
STice key features  
Occurrence and time profiling and code coverage (new features)  
Advanced breakpoints with up to 4 levels of conditions  
Data breakpoints  
Program and data trace recording up to 128 KB records  
Read/write on the fly of memory during emulation  
In-circuit debugging/programming via SWIM protocol  
8-bit probe analyzer  
1 input and 2 output triggers  
Power supply follower managing application voltages between 1.62 to 5.5 V  
Modularity that allows you to specify the components you need to meet your development  
requirements and adapt to future requirements  
Supported by free software tools that include integrated development environment (IDE),  
programming software interface and assembler for STM8.  
13.2  
Software tools  
STM8 development tools are supported by a complete, free software package from  
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual  
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8, which are available in a free version that outputs up  
to 16 Kbytes of code.  
100/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
STM8 development tools  
13.2.1  
STM8 toolset  
STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com/mcu. This package includes:  
ST Visual Develop – Full-featured integrated development environment from ST, featuring  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,  
write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and  
option bytes. STVP also offers project mode for saving programming configurations and  
automating programming sequences.  
13.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of your  
application directly from an easy-to-use graphical interface.  
Available toolchains include:  
Cosmic C compiler for STM8 – Available in a free version that outputs up to 16 Kbytes  
of code. For more information, see www.cosmic-software.com.  
Raisonance C compiler for STM8 – Available in a free version that outputs up to  
16 Kbytes of code. For more information, see www.raisonance.com.  
STM8 assembler linker – Free assembly toolchain included in the STVD toolset, which  
allows you to assemble and link your application source code.  
13.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8 Flash  
microcontroller on your application board via the SWIM protocol. Additional tools are to include  
a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated  
programming platforms with sockets for programming your STM8.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
DocID022186 Rev 3  
101/103  
Revision history  
STM8S005K6 STM8S005C6  
14  
Revision history  
Table 53: Document revision history  
Date  
Revision  
Changes  
14-Oct-2011  
1
Initial release.  
09-Jan-2012  
2
Updated tRET in Table 35: Flash program memory/data  
EEPROM memory.  
Updated RPU in Table 40: NRST pin characteristics and Table  
36: I/O static characteristics.  
Updated notes related to VCAP in Operating conditions.  
13-Jun-2012  
3
Updated temperature condition for factory calibrated ACCHSI  
in Table 32: HSI oscillator characteristics.  
Changed SCK input to SCK output in Figure 40: SPI timing  
diagram - master mode(1) .  
102/103  
DocID022186 Rev 3  
STM8S005K6 STM8S005C6  
Please Read Carefully  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries  
(“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products  
and services described herein at anytime, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein,  
and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described  
herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document.  
If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for  
the use of such third party products or services, or any intellectual property contained therein or considered as a warranty  
covering the use in any manner whatsoever of such third party products or services or any intellectual property contained  
therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS  
OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT  
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND  
THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT,  
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS  
ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE  
SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR  
MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL  
DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN  
AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document  
shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or  
extend in any manner whatsoever, any liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
©
2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel  
- Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom -  
United States of America  
www.st.com  
DocID022186 Rev 3  
103/103  

相关型号:

STM8S005K6T6TR

Value line, 16 MHz STM8S 8-bit MCU, 32 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3P6

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3P6C

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3P6CTR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3P6TR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3T6

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3T6C

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3T6CTR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3T6TR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3U6

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3U6C

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S00XF3U6CTR

Value line, 16 MHz STM8S 8-bit MCU, 8 Kbytes Flash, 128 bytes data EEPROM, 10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR