STM8S105C4 [STMICROELECTRONICS]

Extended instruction set;
STM8S105C4
型号: STM8S105C4
厂家: ST    ST
描述:

Extended instruction set

文件: 总121页 (文件大小:1984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8S105C4/6 STM8S105K4/6  
STM8S105S4/6  
Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbyte Flash,  
integrated EEPROM, 10-bit ADC, timers, UART, SPI, I²C  
Datasheet - production data  
Features  
Core  
16 MHz advanced STM8 core with Harvard  
architecture and 3-stage pipeline  
LQFP48 (7x7 mm)  
LQFP44 (10x10 mm) LQFP32 (7x7 mm)  
Extended instruction set  
Memories  
ꢀꢁ  
Program memory: up to 32 Kbyte Flash; data  
retention 20 years at 55 °C after 10 kcycle  
UFQFPN32 (5x5 mm)  
SDIP32 400ml  
Data memory: up to 1 Kbyte true data  
2x16-bit general purpose timer, with 2+3  
EEPROM; endurance 300 kcycle  
CAPCOM channels (IC, OC or PWM)  
RAM: up to 2 Kbyte  
8-bit basic timer with 8-bit prescaler  
Auto wake-up timer  
Clock, reset and supply management  
2.95 to 5.5 V operating voltage  
Window watchdog and independent watchdog  
timers  
Flexible clock control, 4 master clock sources  
– Low power crystal resonator oscillator  
– External clock input  
Communication interfaces  
UART with clock output for synchronous  
– Internal, user-trimmable 16 MHz RC  
– Internal low-power 128 kHz RC  
operation, SmartCard, IrDA, LIN master mode  
SPI interface up to 8 Mbit/s  
I2C interface up to 400 kbit/s  
Clock security system with clock monitor  
Power management:  
– Low-power modes (wait, active-halt, halt)  
– Switch-off peripheral clocks individually  
Analog to digital converter (ADC)  
10-bit, ±1 LSB ADC with up to 10 multiplexed  
Permanently active, low-consumption power-  
channels, scan mode and analog watchdog  
on and power-down reset  
I/Os  
Interrupt management  
Up to 38 I/Os on a 48-pin package including   
Nested interrupt controller with 32 interrupts  
Up to 37 external interrupts on 6 vectors  
16 high sink outputs  
Highly robust I/O design, immune against  
current injection  
Timers  
Unique ID  
Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-time  
insertion and flexible synchronization  
96-bit unique key for each device  
September 2015  
DocID14771 Rev 15  
1/121  
This is information on a product in full production.  
www.st.com  
Contents  
STM8S105x4/6  
Contents  
1
2
3
4
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 14  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . 14  
Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Auto wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.10 TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.11 TIM2, TIM3 - 16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . 18  
4.12 TIM4 - 8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.13 Analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.14 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.14.1 UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.14.2 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2
4.14.3 I C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5
6
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.1  
6.2  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.2.1  
6.2.2  
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2/121  
DocID14771 Rev 15  
STM8S105x4/6  
Contents  
6.2.3  
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . 42  
7
8
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
8.1  
Alternate function remapping bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10  
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1.4 Typical current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1.5 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.1.6 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 66  
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 69  
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
10.3.7 Typical output level curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
10.3.8 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
10.3.9 SPI serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
2
10.3.10 I C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
11  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.1 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
11.2 LQFP44 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.3 LQFP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.4 UFQFPN32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
DocID14771 Rev 15  
3/121  
4
Contents  
STM8S105x4/6  
11.5 SDIP32 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
12  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 107  
13  
14  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
13.1 STM8S105 FASTROM microcontroller option list . . . . . . . . . . . . . . . . . 109  
STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
14.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . .113  
14.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
14.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
14.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
14.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
15  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
4/121  
DocID14771 Rev 15  
STM8S105x4/6  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
STM8S105x4/6 access line features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers. . . . . . . . . . . . . . . 16  
TIM timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Legend/abbreviations for pin description tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
STM8S105x4/6 pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Flash, data EEPROM and RAM boundary address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
CPU/SWIM/debug module/interrupt controller registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Option byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Alternate function remapping bits [7:0] of OPT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
Total current consumption with code execution in run mode at V = 5 V. . . . . . . . . . . . . 57  
DD  
Total current consumption with code execution in run mode at V = 3.3 V . . . . . . . . . . . 58  
DD  
Total current consumption in wait mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
DD  
Total current consumption in wait mode at V = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
DD  
Total current consumption in active halt mode at V = 5 V . . . . . . . . . . . . . . . . . . . . . . . 59  
DD  
Total current consumption in active halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . 60  
DD  
Total current consumption in halt mode at V = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DD  
Total current consumption in halt mode at V = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DD  
Wakeup times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Total current consumption and timing in forced reset state . . . . . . . . . . . . . . . . . . . . . . . . 61  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
HSE user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Output driving current (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Output driving current (high sink ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
ADC accuracy with R < 10 k, V  
= 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
= 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
AIN  
DDA  
ADC accuracy with R < 10 k, V  
AIN  
DDA  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
DocID14771 Rev 15  
5/121  
6
List of tables  
STM8S105x4/6  
Table 49.  
Table 50.  
Table 51.  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package   
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table 52.  
Table 53.  
Table 54.  
LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package   
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package   
mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat   
package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
SDIP32 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Table 55.  
Table 56.  
Table 57.  
6/121  
DocID14771 Rev 15  
STM8S105x4/6  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8S105x4/6 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LQFP44 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
UFQFPN32/LQFP32 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SDIP32 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Supply current measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 10. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 11. versus V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 12. External capacitor C  
f
CPUmax  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
EXT  
Figure 13. Typ I  
Figure 14. Typ I  
Figure 15. Typ I  
Figure 16. Typ I  
Figure 17. Typ I  
Figure 18. Typ I  
vs. V HSE user external clock, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . 62  
DD(RUN)  
DD(RUN)  
DD(RUN)  
DD(WFI)  
DD(WFI)  
DD(WFI)  
DD  
CPU  
vs. f  
HSE user external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . 63  
CPU  
DD  
vs. V HSI RC osc, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
CPU  
DD  
vs. V HSE external clock, f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DD  
CPU  
vs. f  
HSE external clock, V = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
CPU  
DD  
vs. V HSI RC osc., f  
= 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
CPU  
DD  
Figure 19. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 20. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Figure 21. Typical HSI accuracy @ V = 5 V vs 5 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
DD  
Figure 22. Typical HSI frequency variation vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . 70  
DD  
Figure 23. Typical LSI frequency variation vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 71  
DD  
Figure 24. Typical V and V vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
IL  
IH  
DD  
Figure 25. Typical pull-up current vs V @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DD  
Figure 26. Typical pull-up resistance vs VDD @ 4 temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 27. Typ. V @ V = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
OL  
DD  
Figure 28. Typ. V @ V = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
OL  
DD  
Figure 29. Typ. V @ V = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 30. Typ. V @ V = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 31. Typ. V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 32. Typ. V @ V = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
OL  
DD  
Figure 33. Typ. V - V @ V = 3.3 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 34. Typ. V - V @ V = 5.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 35. Typ. V - V @ V = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 36. Typ. V - V @ V = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
DD  
OH  
DD  
Figure 37. Typical NRST V and V vs V @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
IL  
IH  
DD  
Figure 38. Typical NRST pull-up resistance R vs V @ 4 temperatures. . . . . . . . . . . . . . . . . . . . 79  
PU  
DD  
Figure 39. Typical NRST pull-up current I vs V @ 4 temperatures. . . . . . . . . . . . . . . . . . . . . . . . 79  
pu  
DD  
Figure 40. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Figure 41. SPI timing diagram where slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 42. SPI timing diagram where slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 43. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
2
Figure 44. Typical application with I C bus and timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Figure 45. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 46. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 91  
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package   
DocID14771 Rev 15  
7/121  
8
List of figures  
STM8S105x4/6  
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 49. LQFP48 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 50. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . 94  
Figure 51. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package   
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Figure 52. LQFP44 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 98  
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package   
recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 55. LQFP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Figure 56. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat   
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Figure 57. UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat   
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Figure 58. UFQFPN32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Figure 59. SDIP32 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 60. SDIP32 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
(1)  
Figure 61. STM8S105x4/6 access line ordering information scheme . . . . . . . . . . . . . . . . . . . . . . 108  
8/121  
DocID14771 Rev 15  
STM8S105x4/6  
Introduction  
1
Introduction  
This datasheet contains the description of the device features, pinout, electrical  
characteristics, mechanical data and ordering information.  
For complete information on the STM8S microcontroller memory, registers and  
peripherals, please refer to the STM8S microcontroller family reference manual  
(RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM8S Flash programming manual (PM0051).  
For information on the debug and SWIM (single wire interface module) refer to the  
STM8 SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
DocID14771 Rev 15  
9/121  
21  
 
Description  
STM8S105x4/6  
2
Description  
The STM8S105x4/6 access line 8-bit microcontrollers offer from 16 to 32 Kbyte Flash  
program memory, plus integrated true data EEPROM. The STM8S microcontroller family  
reference manual (RM0016) refers to devices in this family as medium-density. All devices  
of the STM8S105x4/6 access line provide the following benefits: reduced system cost,  
performance and robustness, short development cycles, and product longevity.  
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k  
write/erase cycles and a high system integration level with internal clock oscillators,  
watchdog and brown-out reset.  
Device performance is ensured by a 16 MHz CPU clock frequency and enhanced  
characteristics which include robust I/O, independent watchdogs (with a separate clock  
source), and a clock security system.  
Short development cycles are guaranteed due to application scalability across common  
family product architecture with compatible pinout, memory map and modular peripherals.  
Product longevity is ensured in the STM8S family thanks to their advanced core which is  
made in a state-of-the-art technology for applications with 2.95 V to 5.5 V operating supply.  
Full documentation is offered as well as a wide choice of development tools.  
10/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Description  
Table 1. STM8S105x4/6 access line features  
STM8S105C6 STM8S105C4 STM8S105S6 STM8S105S4 STM8S105K6 STM8S105K4  
Device  
Pin count  
48  
48  
44  
44  
32  
32  
Maximum  
number of  
GPIOs  
38  
38  
34  
34  
25  
25  
Ext. Interrupt  
pins  
35  
9
35  
9
31  
8
31  
8
23  
8
23  
8
Timer  
CAPCOM  
channels  
Timer  
complementar  
y outputs  
3
3
3
3
3
3
A/D Converter  
channels  
10  
16  
10  
16  
9
9
7
7
High sink I/Os  
15  
15  
12  
12  
Medium  
density Flash  
Program  
32K  
16K  
32K  
16K  
32K  
16K  
memory (byte)  
Data  
EEPROM  
(bytes)  
1024  
2K  
1024  
2K  
1024  
2K  
1024  
2K  
1024  
2K  
1024  
2K  
RAM (bytes)  
Advanced control timer (TIM1), General-purpose timers (TIM2 and TIM3), Basic timer (TIM4) SPI,  
I2C, UART, Window WDG, Independent WDG, ADC  
Peripheral set  
DocID14771 Rev 15  
11/121  
21  
 
Block diagram  
STM8S105x4/6  
3
Block diagram  
Figure 1. STM8S105x4/6 block diagram  
5HVHWꢅEORFN  
5HVHW  
;7$/ꢅꢂꢆꢂꢇꢅ0+]  
&ORFNꢅFRQWUROOHU  
5HVHW  
5&ꢅLQWꢈꢅꢂꢇꢅ0+]  
'HWHFWRU  
325  
%25  
5&ꢅLQWꢈꢅꢂꢁꢃꢅN+]  
&ORFNꢅWRꢅSHULSKHUDOVꢅDQGꢅFRUH  
:LQGRZ  
:'*  
670ꢃꢅ  
FRUH  
,QGHSHQGHQWꢅ:'*  
6LQJOHꢅZLUH  
GHEXJꢅLQWHUIꢈ  
8SꢅWRꢅꢀꢁꢅ.E\WH  
3URJUDP  
'HEXJꢉ6:,0  
)ODVK  
ꢂꢅ.E\WH  
GDWDꢅ((3520  
ꢍꢄꢄꢅ.ELWꢉV  
ꢃꢅ0ELWꢉV  
,ꢁ&  
63,  
8SꢅWRꢅꢁꢅ.E\WH  
5$0  
%RRWꢅ520  
8SꢅWRꢅꢍꢅ&$3&20ꢅ  
0DVWHUꢉVODYHꢅ  
DXWRV\QFKUR  
/,1ꢅPDVWHU  
63,ꢅHPXOꢈ  
FKDQQHOVꢅꢎꢅꢀꢅ  
FRPSOHPHQWDU\ꢅ  
RXWSXWV  
ꢂꢇꢆELWꢅDGYDQFHG  
FRQWUROꢅWLPHUꢅꢊ70ꢂꢌꢅꢅ  
8$57ꢁ  
8SꢅWRꢅꢏꢅ&$3&20  
FKDQQHOV  
ꢂꢇꢆELWꢅJHQHUDOꢅSXUSRVH  
WLPHUꢅꢊ7,0ꢁꢋꢅ7,0ꢀꢌ  
ꢃꢆELWꢅEDVLFꢅWLPHU  
ꢊ7,0ꢍꢌ  
8SꢅWRꢅꢂꢄ  
FKDQQHOV  
$'&ꢂ  
$:8ꢅWLPHU  
ꢂꢉꢁꢉꢍꢅN+]  
EHHS  
%HHSHU  
06Yꢀꢃꢀꢄꢀ9ꢂ  
12/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Product overview  
4
Product overview  
The following section provides an overview of the basic features of the device functional  
modules and peripherals.  
For more detailed information please refer to the corresponding family reference manual  
(RM0016).  
4.1  
Central processing unit STM8  
The 8-bit STM8 core is designed for code efficiency and performance.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing and 80 instructions.  
Architecture and registers  
Harvard architecture,  
3-stage pipeline,  
32-bit wide program memory bus - single cycle fetching for most instructions,  
X and Y 16-bit index registers - enabling indexed addressing modes with or without  
offset and read-modify-write type data manipulations,  
8-bit accumulator,  
24-bit program counter - 16-Mbyte linear memory space,  
16-bit stack pointer - access to a 64 K-level stack,  
8-bit condition code register - 7 condition flags for the result of the last instruction.  
Addressing  
20 addressing modes,  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space,  
Stack pointer relative addressing mode for local variables and parameter passing.  
Instruction set  
80 instructions with 2-byte average instruction size,  
Standard data movement and logic/arithmetic functions,  
8-bit by 8-bit multiplication,  
16-bit by 8-bit and 16-bit by 16-bit division,  
Bit manipulation,  
Data transfer between stack and accumulator (push/pop) with direct stack access,  
Data transfer using the X and Y registers or direct memory-to-memory transfers.  
DocID14771 Rev 15  
13/121  
21  
 
 
Product overview  
STM8S105x4/6  
4.2  
Single wire interface module (SWIM) and debug module (DM)  
The single wire interface module and debug module permits non-intrusive, real-time in-  
circuit debugging and fast memory programming.  
SWIM  
Single wire interface module for direct access to the debug module and memory  
programming. The interface can be activated in all device operation modes. The maximum  
data transmission speed is 145 bytes/ms.  
Debug module  
The non-intrusive debugging module features a performance close to a full-featured  
emulator. Beside memory and peripherals, also CPU operation can be monitored in real-  
time by means of shadow registers.  
R/W to RAM and peripheral registers in real-time  
R/W access to all resources by stalling the CPU  
Breakpoints on all program-memory instructions (software breakpoints)  
Two advanced breakpoints, 23 predefined configurations  
4.3  
4.4  
Interrupt controller  
Nested interrupts with three software priority levels,  
32 interrupt vectors with hardware priority,  
Up to 37 external interrupts on 6 vectors including TLI,  
Trap and reset interrupts  
Flash program and data EEPROM memory  
Up to 32 Kbyte of Flash program single voltage Flash memory,  
Up to 1 Kbyte true data EEPROM,  
Read while write: writing in data memory possible while executing code in program  
memory,  
User option byte area.  
Write protection (WP)  
Write protection of Flash program memory and data EEPROM is provided to avoid  
unintentional overwriting of memory that could result from a user software malfunction.  
There are two levels of write protection. The first level is known as MASS (memory access  
security system). MASS is always enabled and protects the main Flash program memory,  
data EEPROM and option bytes.  
To perform in-application programming (IAP), this write protection can be removed by  
writing a MASS key sequence in a control register. This allows the application to write to  
data EEPROM, modify the contents of main program memory or the device option bytes.  
A second level of write protection, can be enabled to further protect a specific area of  
memory known as UBC (user boot code). Refer to the figure below.  
14/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Product overview  
The size of the UBC is programmable through the UBC option byte, in increments of 1 page  
(512 byte) by programming the UBC option byte in ICP mode.  
This divides the program memory into two areas:  
Main program memory: up to 32 Kbyte minus UBC  
User-specific boot code (UBC): Configurable up to 32 Kbyte  
The UBC area remains write-protected during in-application programming. This means that  
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot  
program, specific code libraries, reset and interrupt vectors, the reset routine and usually  
the IAP and communication routines.  
Figure 2. Flash memory organization  
'DWDꢅPHPRU\ꢅDUHDꢅꢊꢅꢂ.E\WHꢌ  
'DWD  
((3520  
PHPRU\  
2SWLRQꢅE\WHV  
3URJUDPPDEOHꢅDUHDꢅ  
IURPꢅꢂꢅ.E\WHꢅ  
ꢊꢁꢅILUVWꢅSDJHVꢌꢅXSꢅWRꢅ  
ꢀꢁꢅ.E\WHꢅꢊꢂꢅSDJHꢅVWHSꢌ  
8%&ꢅDUHD  
5HPDLQVꢅZULWHꢅSURWHFWHGꢅGXULQJꢅ,$3  
0HGLXPꢆꢅGHQVLW\ꢅ  
)ODVKꢅSURJUDPꢅ  
PHPRU\ꢅ  
ꢊXSꢅWRꢅꢀꢁꢅ.E\WHꢌ  
3URJUDPꢅPHPRU\ꢅDUHDꢅ  
:ULWHꢅDFFHVVꢅSRVVLEOHꢅIRUꢅ,$3  
06Yꢀꢃꢀꢄꢍ9ꢂ  
Read-out protection (ROP)  
The read-out protection blocks reading and writing the Flash program memory and data  
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is  
activated, any attempt to toggle its status triggers a global erase of the program and data  
memory. Even if no protection can be considered as totally unbreakable, the feature  
provides a very high level of protection for a general purpose microcontroller.  
DocID14771 Rev 15  
15/121  
21  
 
Product overview  
STM8S105x4/6  
4.5  
Clock controller  
The clock controller distributes the system clock (fMASTER) coming from different  
oscillators to the core and the peripherals. It also manages clock gating for low power  
modes and ensures clock robustness.  
Features  
Clock prescaler: to get the best compromise between speed and current consumption  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register. The clock signal is not switched until the new clock  
source is ready. The design guarantees glitch-free switching.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock sources: four different clock sources can be used to drive the master  
clock:  
1-16 MHz high-speed external crystal (HSE)  
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
16 MHz high-speed internal RC oscillator (HSI)  
128 kHz low-speed internal RC (LSI)  
Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz  
clock (HSI/8). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If an HSE  
clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS  
and an interrupt can optionally be generated.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Peripheral  
clock  
Bit  
Bit  
Bit  
Bit  
PCKEN17  
PCKEN16  
PCKEN15  
PCKEN14  
TIM1  
TIM3  
TIM2  
TIM4  
PCKEN13  
PCKEN12  
PCKEN11  
PCKEN10  
UART2  
Reserved  
SPI  
PCKEN27  
PCKEN26  
PCKEN25  
PCKEN24  
Reserved  
Reserved  
Reserved  
Reserved  
PCKEN23  
PCKEN22  
PCKEN21  
PCKEN20  
ADC  
AWU  
Reserved  
Reserved  
I2C  
16/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Product overview  
4.6  
Power management  
For efficient power management, the application can be put in one of four different low-  
power modes. You can configure each mode to obtain the best compromise between lowest  
power consumption, fastest start-up time and available wakeup sources.  
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The  
wakeup is performed by an internal or external interrupt or reset.  
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are  
stopped. An internal wakeup is generated at programmable intervals by the auto wake  
up unit (AWU). The main voltage regulator is kept powered on, so current consumption  
is higher than in active halt mode with regulator off, but the wakeup time is faster.  
Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.  
Active halt mode with regulator off: This mode is the same as active halt with  
regulator on, except that the main voltage regulator is powered off, so the wake up time  
is slower.  
Halt mode: In this mode the microcontroller uses the least power. The CPU and  
peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is  
triggered by external event or reset.  
4.7  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
Activation of the watchdog timers is controlled by option bytes or by software. Once  
activated, the watchdogs cannot be disabled by the user program without performing a  
reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually  
generated by external interferences or by unexpected logical conditions, which cause the  
application program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
perfectly.  
The application software must refresh the counter before time-out and during a limited time  
window.  
A reset is generated in two situations:  
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up  
to 64 ms.  
2. Refresh out of window: The downcounter is refreshed before its value is lower than the  
one stored in the window register.  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve processor malfunctions due to  
hardware or software failures.  
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure  
DocID14771 Rev 15  
17/121  
21  
 
 
Product overview  
STM8S105x4/6  
The IWDG time base spans from 60 µs to 1 s.  
4.8  
4.9  
Auto wakeup counter  
Used for auto wakeup from active halt mode,  
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock,  
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration.  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
The beeper output port is only available through the alternate function remap option bit  
AFR7.  
4.10  
4.11  
18/121  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
Four independent capture/compare channels (CAPCOM) configurable as input  
capture, output compare, PWM generation (edge and center aligned mode) and single  
pulse mode output  
Synchronization module to control the timer with external signals  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Encoder mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break  
TIM2, TIM3 - 16-bit general purpose timers  
16-bit auto reload (AR) up-counter  
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768  
Timers with 3 or 2 individually configurable capture/compare channels  
PWM mode  
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Product overview  
4.12  
TIM4 - 8-bit basic timer  
8-bit auto reload, adjustable prescaler ratio to any power of 2 from 1 to 128  
Clock source: CPU clock  
Interrupt source: 1 x overflow/update  
Table 3. TIM timer features  
Timer  
synchronization/  
chaining  
Counter  
size (bits)  
Counting CAPCOM Complementary  
Ext.  
trigger  
Timer  
Prescaler  
mode  
channels  
outputs  
Any integer  
from 1 to  
65536  
TIM1  
TIM2  
TIM3  
TIM4  
16  
16  
16  
8
Up/down  
4
3
Yes  
No  
No  
No  
Any power  
of 2 from 1  
to 32768  
Up  
Up  
Up  
3
2
0
0
0
0
No  
Any power  
of 2 from 1  
to 32768  
Any power  
of 2 from 1  
to 128  
4.13  
Analog-to-digital converter (ADC1)  
The STM8S105x4/6 products contain a 10-bit successive approximation A/D converter  
(ADC1) with up to 10 multiplexed input channels and the following main features:  
Input voltage range: 0 to VDD  
Conversion time: 14 clock cycles  
Single and continuous and buffered continuous conversion modes  
Buffer size (n x 10 bits) where n = number of input channels  
Scan mode for single and continuous conversion of a sequence of channels  
Analog watchdog capability with programmable upper and lower thresholds  
Analog watchdog interrupt  
External trigger input  
Trigger from TIM1 TRGO  
End of conversion (EOC) interrupt  
Note:  
Additional AIN12 analog input is not selectable in ADC scan mode or with analog watchdog.  
Values converted from AIN12 are stored only into the ADC_DRH/ADC_DRL registers.  
DocID14771 Rev 15  
19/121  
21  
 
 
 
Product overview  
STM8S105x4/6  
4.14  
Communication interfaces  
The following communication interfaces are implemented:  
UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode,  
IrDA mode, single wire mode, LIN2.1 master capability  
SPI: Full and half-duplex, 8 Mbit/s  
I²C: Up to 400 kbit/s  
4.14.1  
UART2  
Main features  
1 Mbit/s full duplex SCI  
SPI emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
LIN master mode  
LIN slave mode  
Asynchronous communication (UART mode)  
Full duplex communication - NRZ standard format (mark/space)  
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable  
of following any standard baud rate regardless of the input frequency  
Separate enable bits for transmitter and receiver  
Two receiver wakeup modes:  
Address bit (MSB)  
Idle line (interrupt)  
Transmission error detection with interrupt generation  
Parity control  
Synchronous communication  
Full duplex synchronous transfers  
SPI master operation  
8-bit data communication  
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)  
LIN master mode  
Emission: Generates 13-bit synch. break frame  
Reception: Detects 11-bit break frame  
20/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Product overview  
LIN slave mode  
Autonomous header handling - one single interrupt per valid message header  
Automatic baud rate synchronization - maximum tolerated initial clock deviation ±15%  
Synch delimiter checking  
11-bit LIN synch break detection - break detection always active  
Parity check on the LIN identifier field  
LIN error management  
Hot plugging support  
4.14.2  
SPI  
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave/master selection input pin  
2
4.14.3  
I C  
I²C master features:  
Clock generation  
Start and stop generation  
I²C slave features:  
Programmable I2C address detection  
Stop bit detection  
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds:  
Standard speed (up to 100 kHz)  
Fast speed (up to 400 kHz)  
DocID14771 Rev 15  
21/121  
21  
 
 
Pinout and pin description  
STM8S105x4/6  
5
Pinout and pin description  
Table 4. Legend/abbreviations for pin description tables  
Type  
I= Input, O = Output, S = Power supply  
Input  
CM = CMOS  
Level  
Output  
HS = High sink  
O1 = Slow (up to 2 MHz)  
O2 = Fast (up to 10 MHz)  
Output speed  
O3 = Fast/slow programmability with slow as default state after reset  
O4 = Fast/slow programmability with fast as default state after reset  
float = floating,  
Input  
wpu = weak pull-up  
Port and control  
configuration  
T = True open drain,  
Output  
OD = Open drain,  
PP = Push pull  
Bold X (pin state after internal reset release).  
Reset state  
Unless otherwise specified, the pin state is the same during the reset  
phase and after the internal reset release.  
22/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Pinout and pin description  
Figure 3. LQFP48 pinout  
ꢍꢃ ꢍꢑ ꢍꢇ ꢍꢏ ꢍꢍ ꢍꢀ ꢍꢁ ꢍꢂ ꢍꢄ ꢀꢐ ꢀꢃ ꢀꢑ  
3*ꢂ  
3*ꢄ  
ꢀꢇ  
1567  
26&,1ꢉ3$ꢂ  
26&287ꢉ3$ꢁ  
966,2Bꢂ  
ꢀꢏ  
ꢀꢍ  
ꢀꢀ  
ꢀꢁ  
3&ꢑꢅꢊ+6ꢌꢉ63,B0,62  
3&ꢇꢅꢊ+6ꢌꢉ63,B026,ꢅ  
9'',2Bꢁ  
966  
9&$3  
9''  
9'',2Bꢂ  
ꢀꢂ 966,2Bꢁ  
3&ꢏꢅꢊ+6ꢌꢉ63,B6&.  
3&ꢍꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢍꢅ  
3&ꢀꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢀꢅ  
ꢀꢄ  
ꢁꢐ  
ꢁꢃ  
>7,0ꢀB&+ꢂ@ꢅ7,0ꢁB&+ꢀꢉ3$ꢀ  
ꢊ+6ꢌꢅ3$ꢍ  
ꢁꢑ 3&ꢁꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢁꢅ  
ꢂꢄ  
3&ꢂꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢂꢉ8$57ꢁB&.ꢅ  
3(ꢏꢉ63,B166  
ꢁꢇ  
ꢂꢂ  
ꢂꢁ  
ꢊ+6ꢌꢅ3$ꢏꢅ  
ꢊ+6ꢌꢅ3$ꢇ  
ꢁꢏ  
ꢁꢍ  
ꢂꢀ ꢂꢍ ꢂꢏ ꢂꢇ ꢂꢑ ꢂꢃ ꢂꢐ ꢁꢄ ꢁꢂ ꢁꢁ ꢁꢀ  
06ꢀꢃꢀꢄꢏ9ꢂ  
1. (HS) high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
DocID14771 Rev 15  
23/121  
30  
 
Pinout and pin description  
STM8S105x4/6  
Figure 4. LQFP44 pinout  
ꢍꢍ ꢍꢀ ꢍꢁ ꢍꢂ ꢍꢄ ꢀꢐ ꢀꢃ ꢀꢑ ꢀꢇ ꢀꢏ ꢀꢍ  
ꢀꢀ  
1567  
26&,1ꢉ3$ꢂ  
26&287ꢉ3$ꢁ  
966,2Bꢂ  
3*ꢂ  
3*ꢄ  
ꢀꢁ  
ꢀꢂ  
ꢀꢄ  
ꢁꢐ  
ꢁꢃ  
ꢁꢑ  
ꢁꢇ  
ꢁꢏ  
ꢁꢍ  
ꢁꢀ  
3&ꢑꢅꢊ+6ꢌꢉ63,B0,62  
3&ꢇꢅꢊ+6ꢌꢉ63,B026,  
9'',2Bꢁ  
966  
9&$3  
9''  
9'',2Bꢂ  
ꢊ+6ꢌꢅ3$ꢍ  
ꢊ+6ꢌꢅ3$ꢏ  
ꢊ+6ꢌꢅ3$ꢇ  
966,2Bꢁ  
3&ꢏꢅꢊ+6ꢌꢉ63,B6&.  
3&ꢀꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢀ  
3&ꢁꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢁ  
3&ꢂꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢂꢉ8$57ꢁB&.  
3(ꢏꢉ63,B166  
ꢂꢄ  
ꢂꢂ  
ꢂꢁ ꢂꢀ ꢂꢍ ꢂꢏ ꢂꢇ ꢂꢑ ꢂꢃ ꢂꢐ ꢁꢄ ꢁꢂ ꢁꢁ  
06ꢀꢃꢀꢄꢇ9ꢂ  
1. (HS) high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
24/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Pinout and pin description  
Figure 5. UFQFPN32/LQFP32 pinout  
ꢀꢁ ꢀꢂ ꢀꢄ ꢁꢐ ꢁꢃ ꢁꢑ ꢁꢇ ꢁꢏ  
ꢁꢍ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢄ  
ꢂꢐ  
ꢂꢃ  
ꢂꢑ  
1567  
26&,1ꢉ3$ꢂ  
26&287ꢉ3$ꢁ  
966  
9&$3  
9''  
9'',2  
$,1ꢂꢁꢉ3)ꢍ  
3&ꢑꢅꢊ+6ꢌꢉ63,B0,62  
3&ꢇꢅꢊ+6ꢌꢉ63,B026,  
3&ꢏꢅꢊ+6ꢌꢉ63,B6&.  
3&ꢍꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢍꢅ  
3&ꢀꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢀꢅ  
3&ꢁꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢁꢅ  
3&ꢂꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢂꢉ8$57ꢁB&.ꢅ  
3(ꢏꢉ63,B166  
ꢂꢄ ꢂꢂ ꢂꢁ ꢂꢀ ꢂꢍ ꢂꢏ ꢂꢇ  
06ꢀꢃꢀꢄꢑ9ꢂ  
1. (HS) high sink capability.  
2. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
DocID14771 Rev 15  
25/121  
30  
 
Pinout and pin description  
STM8S105x4/6  
Figure 6. SDIP32 pinout  
$'&B(75ꢉ7,0ꢁB&+ꢁꢉꢊ+6ꢌꢅ3'ꢀ  
3'ꢁꢅꢊ+6ꢌꢉ7,0ꢀB&+ꢂꢅ>7,0ꢁB&+ꢀ@  
ꢀꢁ  
>%((3@ꢅ7,0ꢁB&+ꢂꢉꢊ+6ꢌꢅ3'ꢍ  
ꢀꢂ 3'ꢂꢅꢊ+6ꢌꢉ6:,0  
ꢀꢄ  
8$57ꢁB7;ꢉ3'ꢏ  
8$57ꢁB5;ꢉ3'ꢇ  
3'ꢄꢅꢊ+6ꢌꢉ7,0ꢀB&+ꢁꢅ>7,0ꢂB%.,1@ꢅ>&/.B&&2@  
ꢁꢐ 3&ꢑꢅꢊ+6ꢌꢉ63,B0,62  
>7,0ꢂB&+ꢍ@ꢅ7/,ꢉ3'ꢑ  
ꢁꢃ  
3&ꢇꢅꢊ+6ꢌꢉ63,B026,  
1567  
ꢁꢑ 3&ꢏꢅꢊ+6ꢌꢉ63,B6&.  
26&,1ꢉ3$ꢂ  
ꢁꢇ  
3&ꢍꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢍ  
26&287ꢉ3$ꢁ  
966  
ꢁꢏ 3&ꢀꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢀ  
ꢁꢍ  
3&ꢁꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢁ  
9&$3 ꢂꢄ  
ꢁꢀ 3&ꢂꢅꢊ+6ꢌꢉ7,0ꢂB&+ꢂꢉ8$57ꢁB&.  
9''  
ꢂꢂ  
ꢁꢁ  
3(ꢏꢉ63,B166  
9'',2  
ꢂꢁ  
ꢁꢂ 3%ꢄꢉ$,1ꢄꢅ>7,0ꢂB&+ꢂ1@  
$,1ꢂꢁꢉ3)ꢍ  
ꢂꢀ  
ꢂꢍ  
ꢂꢏ  
ꢁꢄ  
3%ꢂꢉ$,1ꢂꢅ>7,0ꢂB&+ꢁ1@  
ꢂꢐ 3%ꢁꢉ$,1ꢁꢅ>7,0ꢂB&+ꢀ1@  
ꢂꢃ  
9''$  
966$  
3%ꢀꢉ$,1ꢀꢅ>7,0ꢂB(75@  
>,ꢁ&B6'$@ꢅ$,1ꢏꢉ3%ꢏ ꢂꢇ  
ꢂꢑ 3%ꢍꢉ$,1ꢍ>ꢅ,ꢁ&B6&/@  
06ꢀꢃꢀꢄꢃ9ꢂ  
1. (HS) high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it indicates an  
exclusive choice not a duplication of the function).  
Table 5. STM8S105x4/6 pin description  
Pin number  
Input  
Output  
Alternate  
function  
after  
remap  
[option  
bit]  
Main  
function  
(after  
Default  
alternate  
function  
Pin name  
Type  
reset)  
1
2
1
2
1
2
6
7
NRST  
I/O  
I/O  
-
X
-
-
-
-
-
-
Reset  
Resonato  
Port A1 r/ crystal  
in  
-
PA1/ OSC IN  
X
X
O1  
O1  
X
X
X
Resonato  
Port A1 r/ crystal  
in  
PA2/ OSC  
OUT  
3
3
3
8
I/O  
X
X
-
-
X
4
5
4
5
-
-
VSSIO_1  
VSS  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I/O ground  
-
-
4
9
Digital ground  
1.8 V regulator  
capacitor  
6
6
5
10  
VCAP  
S
-
-
-
-
-
-
-
-
26/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Pin number  
Pinout and pin description  
Table 5. STM8S105x4/6 pin description (continued)  
Input  
Output  
Alternate  
Main  
function  
(after  
function  
after  
remap  
[option  
bit]  
Default  
alternate  
function  
Pin name  
Type  
reset)  
7
8
7
8
6
7
11  
12  
VDD  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Digital power supply  
I/O power supply  
-
-
VDDIO_1  
TIM3_  
CH1  
[AFR1]  
PA3/TIM2_CH3  
[TIM3_CH1]  
Timer 2 -  
Port A3  
9
-
-
-
I/O  
X
X
X
-
O1  
X
X
channel 3  
10  
9
-
-
-
-
-
-
PA4  
PA5  
PA6  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
HS O3  
X
X
X
X
X
X
Port A4  
Port A5  
Port A6  
-
-
-
-
-
-
11 10  
12 11  
Analog  
input  
-
-
8
9
13 PF4/ AIN12(1)  
I/O  
X
X
-
-
O1  
X
X
Port F4  
-
12(2)  
13 12  
14  
VDDA  
VSSA  
S
S
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Analog power supply  
Analog ground  
-
-
14 13 10 15  
Analog  
Port B7  
15 14  
16 15  
-
-
-
-
PB7/ AIN7  
PB6/ AIN6  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
-
-
input 7  
Analog  
Port B6  
input 6  
I
PB5/ AIN5  
[I2C_ SDA]  
Analog  
Port B5  
17 16 11 16  
I/O  
X
X
X
-
O1  
X
X
2C_SDA  
[AFR6]  
input 5  
PB4/ AIN4  
[I2C_SCL]  
Analog I2C_SCL  
input 4 [AFR6]  
18 17 12 17  
19 18 13 18  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
Port B4  
Port B3  
PB3/ AIN3  
[TIM1_ETR]  
Analog TIM1_ET  
input 3 R [AFR5]  
TIM1_CH  
PB2/ AIN2  
[TIM1_CH3N]  
Analog  
3N  
20 19 14 19  
21 20 15 20  
22 21 16 21  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
Port B2  
Port B1  
input 2  
[AFR5]  
TIM1_CH  
PB1/ AIN1  
[TIM1_CH2N]  
Analog  
2N  
input 1  
[AFR5]  
TIM1_CH  
PB0/ AIN0  
[TIM1_CH1N]  
Analog  
1N  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
Port B0  
Port E7  
input 0  
[AFR5]  
Analog  
-
23  
-
-
-
PE7/ AIN8  
input 8  
DocID14771 Rev 15  
27/121  
30  
Pinout and pin description  
STM8S105x4/6  
Table 5. STM8S105x4/6 pin description (continued)  
Pin number  
Input  
Output  
Alternate  
function  
after  
remap  
[option  
bit]  
Main  
function  
(after  
Default  
alternate  
function  
Pin name  
Type  
reset)  
Analog  
24 22  
-
-
PE6/ AIN9  
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
Port E6  
Port E5  
-
-
input 9(3)  
SPI  
master/  
slave  
25 23 17 22 PE5/ SPI_NSS  
select  
Timer 1 -  
channel  
PC1/  
26 24 18 23  
TIM1_CH1/  
UART2_CK  
I/O  
X
X
X
HS O3  
X
X
Port C1 1/UART2  
synchron  
-
ous clock  
PC2/  
TIM1_CH2  
Timer 1-  
Port C2  
27 25 19 24  
28 26 20 25  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
X
X
-
-
-
channel 2  
PC3/  
TIM1_CH3  
Timer 1 -  
Port C3  
channel 3  
PC4/  
TIM1_CH4  
Timer 1 -  
Port C4  
29  
-
21 26  
HS O3  
HS O3  
channel 4  
30 27 22 27 PC5/ SPI_SCK  
I/O  
S
X
-
X
-
X
-
X
-
Port C5 SPI clock  
I/O ground  
-
-
-
31 28  
32 29  
-
-
-
-
VSSIO_2  
VDDIO_2  
-
-
-
-
-
-
S
-
-
-
-
I/O power supply  
SPI  
master  
out/slave  
33 30 23 28 PC6/ SPI_MOSI I/O  
X
X
X
X
X
X
HS O3  
HS O3  
X
X
X
X
Port C6  
-
-
in  
SPI  
Port C7 masterin/  
slave out  
PC7/ SPI_  
34 31 24 29  
I/O  
MISO  
35 32  
36 33  
-
-
-
-
PG0  
PG1  
I/O  
I/O  
X
X
X
X
-
-
-
-
O1  
O1  
X
X
X
X
Port G0  
Port G1  
-
-
-
-
Timer 1 -  
break  
input  
PE3/  
TIM1_BKIN  
37  
-
-
-
I/O  
X
X
X
-
O1  
X
X
Port E3  
-
T
38 34  
39 35  
-
-
-
-
PE2/ I 2C_ SDA I/O  
PE1/ I2C_ SCL I/O  
X
X
-
-
X
X
-
-
O1  
O1  
-
-
Port E2 I 2C data  
Port E1 I 2C clock  
-
-
(4)  
T
(4)  
28/121  
DocID14771 Rev 15  
STM8S105x4/6  
Pin number  
Pinout and pin description  
Table 5. STM8S105x4/6 pin description (continued)  
Input  
Output  
Alternate  
Main  
function  
(after  
function  
after  
remap  
[option  
bit]  
Default  
alternate  
function  
Pin name  
Type  
reset)  
Configura  
40 36  
-
-
PE0/ CLK_CCO I/O  
PD0/  
X
X
X
X
X
X
HS O3  
X
X
X
X
Port E0 ble clock  
output  
-
TIM1_BK  
IN  
[AFR3]/  
CLK_CC  
O [AFR2]  
TIM3_CH2  
[TIM1_BKIN]  
Timer 3 -  
Port D0  
41 37 25 30  
I/O  
HS O3  
channel 2  
[CLK_CCO]  
SWIM  
data  
interface  
42 38 26 31 PD1/ SWIM(5)  
PD2/  
I/O  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HS O4  
X
X
X
X
X
Port D1  
Port D2  
Port D3  
Port D4  
Port D5  
-
Timer 3 - TIM2_CH  
channel 1 3 [AFR1]  
43 39 27 32  
TIM3_CH1  
HS O3  
HS O3  
HS O3  
X
X
X
X
[TIM2_CH3]  
PD3/  
Timer 2 - ADC_ET  
channel 2 R [AFR0]  
44 40 28  
45 41 29  
46 42 30  
1
2
3
TIM2_CH2  
[ADC_ETR]  
PD4/  
TIM2_CH1  
[BEEP]  
BEEP  
Timer 2 -  
channel 1  
output  
[AFR7]  
UART2  
data  
transmit  
PD5/  
UART2_TX  
-
O1  
-
-
UART2  
data  
receive  
PD6/  
UART2_RX  
47 43 31  
48 44 32  
4
5
I/O  
I/O  
X
X
X
X
X
X
-
-
O1  
O1  
X
X
X
X
Port D6  
Port D7  
PD7/ TLI  
[TIM1_CH4  
Top level TIM1_CH  
interrupt 4 [AFR4]  
1. A pull-up is applied to PF4 during the reset phase. This pin is input floating after reset release.  
2. AIN12 is not selectable in ADC scan mode or with analog watchdog.  
3. In 44-pin package, AIN9 cannot be used by ADC scan mode.  
4. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, weak pull-up and protection diode to VDD are  
not implemented).  
5. The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
DocID14771 Rev 15  
29/121  
30  
Pinout and pin description  
STM8S105x4/6  
5.1  
Alternate function remapping  
As shown in the rightmost column of the pin description table, some alternate functions can  
be remapped at different I/O ports by programming one of eight AFR (alternate function  
remap) option bits. When the remapping option is active, the default alternate function is no  
longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the  
GPIO section of the family reference manual, RM0016).  
30/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Memory and register map  
6
Memory and register map  
6.1  
Memory map  
Figure 7. Memory map  
ꢄ[ꢄꢄꢅꢄꢄꢄꢄ  
5$0  
ꢊꢁꢅ.E\WHꢌ  
ꢏꢂꢁꢅE\WHꢅVWDFN  
5HVHUYHG  
ꢄ[ꢄꢄꢅꢄꢑ))  
ꢄ[ꢄꢄꢅꢍꢄꢄꢄ  
ꢂꢅ.E\WHꢅGDWDꢅ((3520  
5HVHUYHG  
ꢄ[ꢄꢄꢅꢍꢀ))  
ꢄ[ꢄꢄꢅꢍꢍꢄꢄ  
ꢄ[ꢄꢄꢅꢍꢑ))  
ꢄ[ꢄꢄꢅꢍꢃꢄꢄ  
2SWLRQꢅE\WHV  
ꢄ[ꢄꢄꢅꢍꢃꢑ)  
ꢄ[ꢄꢄꢅꢍꢐꢄꢄ  
5HVHUYHG  
ꢄ[ꢄꢄꢅꢍ)))  
ꢄ[ꢄꢄꢅꢏꢄꢄꢄ  
*3,2ꢅDQGꢅSHULSKꢈꢅUHJꢈ  
5HVHUYHG  
ꢄ[ꢄꢄꢅꢏꢑ))  
ꢄ[ꢄꢄꢅꢏꢃꢄꢄ  
ꢄ[ꢄꢄꢅꢏ)))  
ꢄ[ꢄꢄꢅꢇꢄꢄꢄ  
ꢁꢅ.E\WHꢅERRWꢅ520  
5HVHUYHG  
ꢄ[ꢄꢄꢅꢇꢑ))  
ꢄ[ꢄꢄꢅꢇꢃꢄꢄ  
ꢄ[ꢄꢄꢅꢑ())  
ꢄ[ꢄꢄꢅꢑ)ꢄꢄ  
&38ꢉ6:,0ꢉGHEXJꢉ,7&  
UHJLVWHUV  
ꢄ[ꢄꢄꢅꢑ)))  
ꢄ[ꢄꢄꢅꢃꢄꢄꢄ  
ꢀꢁꢅLQWHUUXSWꢅYHFWRUV  
ꢄ[ꢄꢄꢅꢃꢄꢑ)  
)ODVKꢅSURJUDPꢅPHPRU\  
ꢊꢂꢇꢅWRꢅꢀꢁꢅ.E\WHꢌ  
ꢄ[ꢄꢄꢅ))))  
ꢄ[ꢄꢂꢅꢄꢄꢄꢄ  
5HVHUYHG  
ꢄ[ꢄꢁꢅꢑ)))  
06Yꢀꢃꢀꢄꢃ9ꢂ  
The following table lists the boundary addresses for each memory size. The top of the stack  
is at the RAM end address in each case.  
DocID14771 Rev 15  
31/121  
50  
 
 
 
Memory and register map  
STM8S105x4/6  
Table 6. Flash, data EEPROM and RAM boundary address  
Memory area  
Size (byte)  
Start address  
End address  
32 K  
16 K  
2 K  
0x00 8000  
0x00 8000  
0x00 0000  
0x00 4000  
0x00 FFFF  
0x00 BFFF  
0x00 07FF  
0x00 43FF  
Flash program memory  
RAM  
Data EEPROM  
1024  
6.2  
Register map  
6.2.1  
I/O port hardware register map  
Table 7. I/O port hardware register map  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX(1)  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
0x00  
Port A control register 2  
0x00  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
0x00  
0xXX(1)  
Port B  
Port C  
Port D  
0x00  
0x00  
Port B control register 2  
0x00  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port C control register 2  
0x00  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
0x00  
0xXX(1)  
0x00  
0x02  
Port D control register 2  
0x00  
32/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Address  
Memory and register map  
Table 7. I/O port hardware register map (continued)  
Block  
Register label  
Register name  
Reset status  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
0x00 501E  
0x00 501F  
0x00 5020  
0x00 5021  
0x00 5022  
0x00 5023  
0x00 5024  
0x00 5025  
0x00 5026  
0x00 5027  
0x00 5028  
0x00 5029  
0x00 502A  
0x00 502B  
0x00 502C  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
PG_ODR  
PG_IDR  
PG_DDR  
PG_CR1  
PG_CR2  
PH_ODR  
PH_IDR  
PH_DDR  
PH_CR1  
PH_CR2  
PI_ODR  
PI_IDR  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
0x00  
0xXX(1)  
Port E  
0x00  
0x00  
Port E control register 2  
0x00  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX(1)  
Port F  
Port G  
Port H  
Port I  
0x00  
0x00  
Port F control register 2  
0x00  
Port G data output latch register  
Port G input pin value register  
Port G data direction register  
Port G control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port G control register 2  
0x00  
Port H data output latch register  
Port H input pin value register  
Port H data direction register  
Port H control register 1  
0x00  
0xXX(1)  
0x00  
0x00  
Port H control register 2  
0x00  
Port I data output latch register  
Port I input pin value register  
Port I data direction register  
Port I control register 1  
0x00  
0xXX(1)  
PI_DDR  
PI_CR1  
0x00  
0x00  
PI_CR2  
Port I control register 2  
0x00  
1. Depends on the external circuitry.  
DocID14771 Rev 15  
33/121  
50  
 
Memory and register map  
STM8S105x4/6  
Reset status  
6.2.2  
General hardware register map  
Table 8. General hardware register map  
Address  
Block  
Register label  
Register name  
0x00 5050 to 0x00 5059  
0x00 505A  
Reserved area (10 byte)  
FLASH_CR1  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0x00 505B  
FLASH_CR2  
Flash complementary control  
register 2  
0x00 505C  
0x00 505D  
0x00 505E  
FLASH_NCR2  
0xFF  
0x00  
0xFF  
Flash  
FLASH _FPR  
Flash protection register  
Flash complementary  
protection register  
FLASH _NFPR  
Flash in-application  
programming status register  
0x00 505F  
FLASH _IAPSR  
0x00  
0x00  
0x00  
0x00 5060 to 0x00 5061  
0x00 5062  
Reserved area (2 byte)  
Flash program memory  
unprotection register  
Flash  
FLASH _PUKR  
0x00 5063  
Reserved area (1 byte)  
Data EEPROM unprotection  
register  
0x00 5064  
Flash  
FLASH _DUKR  
0x00 5065 to 0x00 509F  
0x00 50A0  
Reserved area (59 byte)  
External interrupt control  
register 1  
EXTI_CR1  
0x00  
0x00  
ITC  
External interrupt control  
register 2  
0x00 50A1  
EXTI_CR2  
0x00 50A2 to 0x00 50B2  
0x00 50B3  
Reserved area (17 byte)  
RST  
RST_SR  
Reset status register  
0xXX(1)  
0x00 50B4 to 0x00 50BF  
0x00 50C0  
Reserved area (12 byte)  
CLK_ICKR  
CLK  
Internal clock control register 0x01  
External clock control register 0x00  
0x00 50C1  
CLK_ECKR  
0x00 50C2  
Reserved area (1 byte)  
34/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Address  
Memory and register map  
Table 8. General hardware register map (continued)  
Block  
Register label  
CLK_CMSR  
Register name  
Reset status  
0xE1  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
CLK_SWR  
0xE1  
0xXX  
0x18  
CLK_SWCR  
CLK_CKDIVR  
Peripheral clock gating  
register 1  
0x00 50C7  
0x00 50C8  
0x00 50C9  
CLK_PCKENR1  
CLK_CSSR  
0xFF  
Clock security system register 0x00  
CLK  
Configurable clock control  
register  
CLK_CCOR  
0x00  
Peripheral clock gating  
0xFF  
0x00 50CA  
CLK_PCKENR2  
register 2  
HSI clock calibration trimming  
register  
0x00 50CC  
0x00 50CD  
CLK_HSITRIMR  
CLK_SWIMCCR  
0x00  
SWIM clock control register  
0bXXXX XXX0  
0x00 50CE to 0x00 50D0 Reserved area (3 byte)  
0x00 50D1  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
WWDG  
0x00 50D2  
0x00 50D3 to 00 50DF  
0x00 50E0  
Reserved area (13 byte)  
IWDG_KR  
IWDG key register  
0xXX(2)  
0x00  
0x00 50E1  
IWDG  
IWDG_PR  
IWDG prescaler register  
IWDG reload register  
0x00 50E2  
IWDG_RLR  
0xFF  
0x00 50E3 to 0x00 50EF  
0x00 50F0  
Reserved area (13 byte)  
AWU_CSR1  
AWU control/status register 1 0x00  
AWU asynchronous prescaler  
0x3F  
0x00 50F1  
0x00 50F2  
AWU_APR  
AWU  
buffer register  
AWU timebase selection  
AWU_TBR  
0x00  
register  
0x00 50F3  
BEEP  
BEEP_CSR  
BEEP control/status register  
0x1F  
0x00 50F4 to 0x00 50FF  
0x00 5200  
Reserved area (12 byte)  
SPI_CR1  
SPI control register 1  
SPI control register 2  
SPI interrupt control register  
SPI status register  
0x00  
0x00  
0x00  
0x02  
0x00  
0x00 5201  
SPI_CR2  
0x00 5202  
SPI_ICR  
0x00 5203  
SPI_SR  
SPI  
0x00 5204  
SPI_DR  
SPI data register  
0x00 5205  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register 0x07  
0x00 5206  
SPI Rx CRC register  
SPI Tx CRC register  
0xFF  
0xFF  
0x00 5207  
DocID14771 Rev 15  
35/121  
50  
Memory and register map  
STM8S105x4/6  
Reset status  
Table 8. General hardware register map (continued)  
Address  
Block  
Register label  
Register name  
0x00 5208 to 0x00 520F  
0x00 5210  
Reserved area (8 byte)  
I2C_CR1  
I2C control register 1  
I2C control register 2  
I2C frequency register  
0x00  
0x00  
0x00  
0x00 5211  
I2C_CR2  
0x00 5212  
I2C_FREQR  
I2C_OARL  
0x00 5213  
I2C Own address register low 0x00  
I2C Own address register  
high  
0x00 5214  
I2C_OARH  
0x00  
0x00 5215  
0x00 5216  
0x00 5217  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
Reserved  
I2C_DR  
I2C data register  
0x00  
0x00  
0x00  
0x0X  
0x00  
I2C  
I2C_SR1  
I2C status register 1  
I2C status register 2  
I2C status register 3  
I2C interrupt control register  
I2C_SR2  
I2C_SR3  
I2C_ITR  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
I2C Clock control register low 0x00  
I2C Clock control register high 0x00  
I2C TRISE register  
0x02  
0x00  
I2C packet error checking  
register  
0x00 521E  
I2C_PECR  
0x00 521F to 0x00 522F  
0x00 5230 to 0x00 523F  
0x00 5240  
Reserved area (17 byte)  
Reserved area (6 byte)  
UART2_SR  
UART2 status register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00 5241  
UART2_DR  
UART2 data register  
0x00 5242  
UART2_BRR1  
UART2 baud rate register 1  
UART2 baud rate register 2  
UART2 control register 1  
UART2 control register 2  
UART2 control register 3  
UART2 control register 4  
UART2 control register 5  
UART2 control register 6  
UART2 guard time register  
UART2 prescaler register  
0x00 5243  
UART2_BRR2  
0x00 5244  
UART2_CR1  
0x00 5245  
UART2_CR2  
UART2  
0x00 5246  
UART2_CR3  
0x00 5247  
UART2_CR4  
UART2_CR5  
0x00 5248  
0x00 5249  
UART2_CR6  
0x00 524A  
UART2_GTR  
0x00 524B  
UART2_PSCR  
0x00 524C to 0x00 524F  
Reserved area (4 byte)  
36/121  
DocID14771 Rev 15  
STM8S105x4/6  
Address  
Memory and register map  
Table 8. General hardware register map (continued)  
Block  
Register label  
TIM1_CR1  
Register name  
Reset status  
0x00  
0x00 5250  
0x00 5251  
TIM1 control register 1  
TIM1 control register 2  
TIM1_CR2  
0x00  
0x00  
TIM1 slave mode control  
register  
0x00 5252  
TIM1_SMCR  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
TIM1_ETR  
TIM1_IER  
TIM1_SR1  
TIM1_SR2  
TIM1 external trigger register 0x00  
TIM1 interrupt enable register 0x00  
TIM1 status register 1  
TIM1 status register 2  
0x00  
0x00  
TIM1 event generation  
register  
0x00 5257  
0x00 5258  
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
TIM1_EGR  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1 capture/compare mode  
register 1  
TIM1_CCMR1  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1 capture/compare mode  
register 2  
TIM1 capture/compare mode  
register 3  
TIM1 capture/compare mode  
register 4  
TIM1 capture/compare enable  
register 1  
TIM1  
TIM1 capture/compare enable  
register 2  
0x00 525E  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
TIM1_CNTRH  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1 counter high  
TIM1 counter low  
0x00  
0x00  
TIM1 prescaler register high 0x00  
TIM1 prescaler register low 0x00  
TIM1 auto-reload register high 0xFF  
TIM1 auto-reload register low 0xFF  
TIM1 repetition counter  
register  
0x00 5264  
0x00 5265  
0x00 5266  
0x00 5267  
0x00 5268  
0x00 5269  
TIM1_RCR  
0x00  
TIM1 capture/compare  
0x00  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
register 1 high  
TIM1 capture/compare  
0x00  
register 1 low  
TIM1 capture/compare  
0x00  
register 2 high  
TIM1 capture/compare  
0x00  
register 2 low  
TIM1 capture/compare  
0x00  
register 3 high  
DocID14771 Rev 15  
37/121  
50  
Memory and register map  
STM8S105x4/6  
Table 8. General hardware register map (continued)  
Address  
0x00 526A  
Block  
Register label  
Register name  
Reset status  
TIM1 capture/compare  
register 3 low  
TIM1_CCR3L  
0x00  
TIM1 capture/compare  
register 4 high  
0x00 526B  
0x00 526C  
TIM1_CCR4H  
TIM1_CCR4L  
0x00  
0x00  
TIM1 capture/compare  
register 4 low  
TIM1  
0x00 526D  
TIM1_BKR  
TIM1_DTR  
TIM1_OISR  
TIM1 break register  
0x00  
0x00  
0x00 526E  
TIM1 dead-time register  
0x00 526F  
TIM1 output idle state register 0x00  
0x00 5270 to 0x00 52FF  
Reserved area (147 byte)  
38/121  
DocID14771 Rev 15  
STM8S105x4/6  
Address  
Memory and register map  
Table 8. General hardware register map (continued)  
Block  
Register label  
TIM2_CR1  
Register name  
Reset status  
0x00  
0x00 5300  
0x00 5301  
0x00 5302  
0x00 5303  
TIM2 control register 1  
TIM2_IER  
TIM2_SR1  
TIM2_SR2  
TIM2 Interrupt enable register 0x00  
TIM2 status register 1  
TIM2 status register 2  
0x00  
0x00  
TIM2 event generation  
register  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
0x00 5308  
0x00 5309  
TIM2_EGR  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM2 capture/compare mode  
register 1  
TIM2_CCMR1  
TIM2_CCMR2  
TIM2_CCMR3  
TIM2_CCER1  
TIM2_CCER2  
TIM2 capture/compare mode  
register 2  
TIM2 capture/compare mode  
register 3  
TIM2 capture/compare enable  
register 1  
TIM2 capture/compare enable  
register 2  
0x00 530A  
0x00 530B  
0x00 530C  
0x00 530D  
0x00 530E  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2 counter high  
TIM2 counter low  
0x00  
0x00  
0x00  
TIM2  
IM2 prescaler register  
TIM2 auto-reload register high 0xFF  
TIM2 auto-reload register low 0xFF  
TIM2 capture/compare  
0x00  
0x00 530F  
0x00 5310  
0x00 5311  
0x00 5312  
0x00 5313  
TIM2_CCR1H  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_CCR3H  
TIM2_CCR3L  
register 1 high  
TIM2 capture/compare  
0x00  
register 1 low  
TIM2 capture/compare reg. 2  
high  
0x00  
TIM2 capture/compare  
0x00  
register 2 low  
TIM2 capture/compare  
0x00  
register 3 high  
TIM2 capture/compare  
0x00  
0x00 5314  
register 3 low  
0x00 5315 to 0x00 531F  
Reserved area (11 byte)  
DocID14771 Rev 15  
39/121  
50  
Memory and register map  
STM8S105x4/6  
Table 8. General hardware register map (continued)  
Address  
0x00 5320  
Block  
Register label  
TIM3_CR1  
Register name  
Reset status  
TIM3 control register 1  
0x00  
0x00 5321  
0x00 5322  
0x00 5323  
TIM3_IER  
TIM3_SR1  
TIM3_SR2  
TIM3 Interrupt enable register 0x00  
TIM3 status register 1  
TIM3 status register 2  
0x00  
0x00  
TIM3 event generation  
register  
0x00 5324  
0x00 5325  
0x00 5326  
0x00 5327  
TIM3_EGR  
0x00  
0x00  
0x00  
0x00  
TIM3 capture/compare mode  
register 1  
TIM3_CCMR1  
TIM3_CCMR2  
TIM3_CCER1  
TIM3 capture/compare mode  
register 2  
TIM3 capture/compare enable  
register 1  
0x00 5328  
0x00 5329  
0x00 532A  
0x00 532B  
0x00 532C  
TIM3  
TIM3_CNTRH  
TIM3_CNTRL  
TIM3_PSCR  
TIM3_ARRH  
TIM3_ARRL  
TIM3 counter high  
TIM3 counter low  
0x00  
0x00  
0x00  
TIM3 prescaler register  
TIM3 auto-reload register high 0xFF  
TIM3 auto-reload register low 0xFF  
TIM3 capture/compare  
0x00  
0x00 532D  
0x00 532E  
0x00 532F  
0x00 5330  
TIM3_CCR1H  
TIM3_CCR1L  
TIM3_CCR2H  
TIM3_CCR2L  
register 1 high  
TIM3 capture/compare  
0x00  
register 1 low  
TIM3 capture/compare reg. 2  
high  
0x00  
TIM3 capture/compare  
0x00  
register 2 low  
0x00 5331 to 0x00 533F  
0x00 5340  
Reserved area (15 byte)  
TIM4_CR1  
TIM4 control register 1  
0x00  
0x00 5341  
TIM4_IER  
TIM4 interrupt enable register 0x00  
0x00 5342  
TIM4_SR  
TIM4 status register  
0x00  
0x00  
TIM4 event generation  
register  
0x00 5343  
TIM4  
TIM4_EGR  
0x00 5344  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 counter  
0x00  
0x00  
0xFF  
0x00 5345  
TIM4 prescaler register  
TIM4 auto-reload register  
0x00 5346  
0x00 5347 to 0x00 53DF  
0x00 53E0 to 0x00 53F3  
0x00 53F4 to 0x00 53FF  
Reserved area (153 byte)  
ADC1 ADC_DBxR  
Reserved area (12 byte)  
ADC data buffer registers  
0x00  
40/121  
DocID14771 Rev 15  
STM8S105x4/6  
Address  
Memory and register map  
Table 8. General hardware register map (continued)  
Block  
Register label  
ADC_CSR  
Register name  
Reset status  
0x00  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
ADC control/status register  
ADC_CR1  
ADC_CR2  
ADC_CR3  
ADC_DRH  
ADC_DRL  
ADC configuration register 1 0x00  
ADC configuration register 2 0x00  
ADC configuration register 3 0x00  
ADC data register high  
ADC data register low  
0xXX  
0xXX  
ADC Schmitt trigger disable  
register high  
0x00 5406  
0x00 5407  
0x00 5408  
0x00 5409  
0x00 540A  
0x00 540B  
0x00 540C  
0x00 540D  
0x00 540E  
ADC_TDRH  
ADC_TDRL  
ADC_HTRH  
ADC_HTRL  
ADC_LTRH  
ADC_LTRL  
0x00  
0x00  
0x03  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
ADC Schmitt trigger disable  
register low  
ADC high threshold register  
high  
ADC1  
cont’d  
ADC high threshold register  
low  
ADC low threshold register  
high  
ADC low threshold register  
low  
ADC analog watchdog status  
register high  
ADC_AWSRH  
ADC_AWSRL  
ADC _AWCRH  
ADC_AWCRL  
ADC analog watchdog status  
register low  
ADC analog watchdog control  
register high  
ADC analog watchdog control  
register low  
0x00 540F  
0x00 5410 to 0x00 57FF  
Reserved area (1008 byte)  
1. Depends on the previous reset source.  
2. Write-only register.  
DocID14771 Rev 15  
41/121  
50  
Memory and register map  
STM8S105x4/6  
6.2.3  
CPU/SWIM/debug module/interrupt controller registers  
Table 9. CPU/SWIM/debug module/interrupt controller registers  
Block Register label Register name  
Accumulator  
Reset  
status  
Address  
0x00 7F00  
A
0x00  
0x00 7F01  
PCE  
PCH  
PCL  
XH  
Program counter extended 0x00  
0x00 7F02  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
0x00 7F03  
0x00 7F04  
0x00 7F05  
CPU(1)  
XL  
0x00 7F06  
YH  
0x00 7F07  
YL  
0x00 7F08  
SPH  
SPL  
CCR  
0x00 7F09  
Stack pointer low  
0x00 7F0A  
0x00 7F0B to 0x00 7F5F  
Condition code register  
Reserved area (85 byte)  
CPU  
Global configuration  
register  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
0x00 7F75  
0x00 7F76  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
ITC_SPR6  
ITC_SPR7  
ITC_SPR8  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
Interrupt software priority  
register 1  
Interrupt software priority  
register 2  
Interrupt software priority  
register 3  
Interrupt software priority  
register 4  
ITC  
Interrupt software priority  
register 5  
Interrupt software priority  
register 6  
Interrupt software priority  
register 7  
Interrupt software priority  
register 8  
0x00 7F77  
0x00 7F78 to 0x00 7F79  
0x00 7F80  
Reserved area (2 byte)  
SWIM control status  
register  
SWIM  
SWIM_CSR  
0x00  
0x00 7F81 to 0x00 7F8F  
Reserved area (15 byte)  
42/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Address  
Memory and register map  
Table 9. CPU/SWIM/debug module/interrupt controller registers (continued)  
Reset  
status  
Block  
Register label  
Register name  
DM breakpoint 1 register  
extended byte  
0x00 7F90  
0x00 7F91  
0x00 7F92  
0x00 7F93  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
0x00 7F99  
DM_BK1RE  
0xFF  
DM breakpoint 1 register  
high byte  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x10  
0x00  
DM breakpoint 1 register  
low byte  
DM breakpoint 2 register  
extended byte  
DM breakpoint 2 register  
high byte  
DM  
DM breakpoint 2 register  
low byte  
DM debug module control  
register 1  
DM debug module control  
register 2  
DM_CR2  
DM debug module  
control/status register 1  
DM_CSR1  
DM debug module  
control/status register 2  
DM_CSR2  
0x00 7F9A  
DM_ENFCTR  
DM enable function register 0xFF  
0x00 7F9B to 0x00 7F9F  
Reserved area (5 byte)  
1. Accessible by debug module only.  
DocID14771 Rev 15  
43/121  
50  
Interrupt vector mapping  
STM8S105x4/6  
7
Interrupt vector mapping  
Table 10. Interrupt mapping  
Wakeup from  
Description  
Wakeup from  
active-halt mode  
IRQ no.  
Source block  
Vector address  
halt mode  
-
-
RESET  
TRAP  
Reset  
Yes  
-
Yes  
-
0x00 8000  
0x00 8004  
Software interrupt  
External top level  
interrupt  
0
TLI  
-
-
0x00 8008  
Auto wake up from  
halt  
1
2
3
AWU  
CLK  
-
Yes  
-
0x00 800C  
0x00 8010  
0x00 8014  
Clock controller  
-
Port A external  
interrupts  
EXTI0  
Yes(1)  
Yes(1)  
Port B external  
interrupts  
4
5
6
7
EXTI1  
EXTI2  
EXTI3  
EXTI4  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
Port C external  
interrupts  
Port D external  
interrupts  
Port E external  
interrupts  
8
9
Reserved  
Reserved  
SPI  
-
-
-
0x00 8028  
0x00 802C  
0x00 8030  
-
-
-
10  
End of transfer  
Yes  
Yes  
TIM1 update/  
overflow/  
underflow/ trigger/  
break  
11  
TIM1  
-
-
0x00 8034  
TIM1 capture/  
compare  
12  
13  
14  
15  
16  
TIM1  
TIM2  
TIM2  
TIM3  
TIM3  
-
-
-
-
-
-
-
-
-
-
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
TIM2 update/  
overflow  
TIM2 capture/  
compare  
TIM3 update/  
overflow  
TIM3 capture/  
compare  
17  
18  
19  
Reserved  
Reserved  
I2C  
-
-
-
0x00 804C  
0x00 8050  
0x00 8054  
-
-
-
I2C interrupt  
Yes  
Yes  
44/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
IRQ no.  
Interrupt vector mapping  
Vector address  
Table 10. Interrupt mapping (continued)  
Wakeup from  
halt mode  
Wakeup from  
active-halt mode  
Source block  
Description  
20  
21  
UART2  
UART2  
Tx complete  
-
-
-
-
0x00 8058  
0x00 805C  
Receive register  
DATA FULL  
ADC1 end of  
22  
ADC1  
conversion/ analog -  
watchdog interrupt  
-
0x00 8060  
TIM4 update/  
overflow  
23  
TIM4  
Flash  
-
-
-
0x00 8064  
0x00 8068  
24  
EOP/WR_PG_DIS -  
0x00 806C to  
0x00 807C  
Reserved  
1. Except PA1.  
DocID14771 Rev 15  
45/121  
50  
Option byte  
STM8S105x4/6  
8
Option byte  
Option byte contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated block of the memory. Except for the  
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form  
(OPTx) and a complemented one (NOPTx) for redundancy.  
Option byte can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in the table below.  
Option byte can also be modified ‘on the fly’ by the application in IAP mode, except the ROP  
option that can only be modified in ICP mode (via SWIM).  
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM  
communication protocol and debug module user manual (UM0470) for information on SWIM  
programming procedures.  
Table 11. Option byte  
Option  
byte  
no.  
Option bits  
3
Factory  
default  
setting  
Option  
name  
Addr.  
7
6
5
4
2
1
0
Read-out  
protection  
(ROP)  
0x4800  
OPT0  
ROP [7:0]  
0x00  
0x4801  
0x4802  
0x4803  
OPT1  
NOPT1  
OPT2  
UBC [7:0]  
0x00  
0xFF  
0x00  
User boot  
code (UBC)  
NUBC [7:0]  
Alternate  
function  
remapping  
(AFR)  
AFR7  
AFR6  
AFR5  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x4804  
NOPT2  
NAFR7  
NAFR6  
NAFR5  
NAFR4  
NAFR3  
NAFR2  
NAFR1  
NAFR0  
0xFF  
HSI  
IWDG  
_HW  
WWDG  
_HW  
WWDG  
_HALT  
0x4805h  
0x4806  
0x4807  
0x4808  
OPT3  
NOPT3  
OPT4  
Reserved  
Reserved  
LSI _ EN  
0x00  
0xFF  
0x00  
0xFF  
TRIM  
Misc. option  
Clock option  
NHSI  
TRIM  
NLSI  
_ EN  
NIWDG  
_HW  
NWWDG  
_HW  
NWWG  
_HALT  
CKAWU  
SEL  
Reserved  
EXT CLK  
PRS C1  
PRS C0  
NEXT  
CLK  
NCKA  
NOPT4  
Reserved  
NPRSC1  
NPR SC0  
WUSEL  
0x4809  
0x480A  
0x480B  
0x480C  
0x480D  
0x480E  
0x480F  
0x48FD  
OPT5  
NOPT5  
OPT6  
NOPT6  
OPT7  
NOPT7  
-
HSECNT [7:0]  
NHSECNT [7:0]  
Reserved  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
-
HSE clock  
startup  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
-
Reserved  
-
46/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Option byte  
Table 11. Option byte (continued)  
Option bits  
Option  
byte  
no.  
Factory  
default  
setting  
Option  
Addr.  
name  
7
6
5
4
3
2
1
0
0x487E  
Bootloader  
0x487F  
OPTBL  
BL[7:0]  
0x00  
0xFF  
NOPTBL  
NBL[7:0]  
Table 12. Option byte description  
Description  
Option byte no.  
ROP[7:0] Memory readout protection (ROP)  
0xAA: Enable readout protection (write access via SWIM protocol)  
OPT0  
Note: Refer to the family reference manual (RM0016) section on  
Flash/EEPROM memory readout protection for details.  
UBC[7:0] User boot code area  
0x00: no UBC, no write-protection  
0x01: Page 0 to 1 defined as UBC, memory write-protected  
0x02: Page 0 to 3 defined as UBC, memory write-protected  
0x03: Page 0 to 4 defined as UBC, memory write-protected  
...  
OPT1  
0x3E: Pages 0 to 63 defined as UBC, memory write-protected  
Other values: Reserved  
Note: Refer to the family reference manual (RM0016) section on Flash write  
protection for more details.  
AFR[7:0]  
Refer to the following table for the description of the alternate function  
remapping description of bits [7:2].  
OPT2  
HSITRIM: High speed internal clock trimming register size  
0: 3-bit trimming supported in CLK_HSITRIMR register  
1: 4-bit trimming supported in CLK_HSITRIMR register  
LSI_EN: Low speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
OPT3  
0: IWDG Independent watchdog activated by software  
1: IWDG Independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on halt  
0: No reset generated on halt if WWDG active  
1: Reset generated on halt if WWDG active  
DocID14771 Rev 15  
47/121  
50  
 
Option byte  
STM8S105x4/6  
Table 12. Option byte description (continued)  
Description  
Option byte no.  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL: Auto wake-up unit/clock  
0: LSI clock source selected for AWU  
OPT4  
1: HSE clock with prescaler selected as clock source for AWU  
PRSC[1:0] AWU clock prescaler  
0x: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
HSECNT[7:0]: HSE crystal oscillator stabilization time  
0x00: 2048 HSE cycles  
OPT5  
0xB4: 128 HSE cycles  
0xD2: 8 HSE cycles  
0xE1: 0.5 HSE cycles  
OPT6  
OPT7  
Reserved  
Reserved  
BL[7:0]: Bootloader option byte  
For STM8S products, this option is checked by the boot ROM code after  
reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000  
(reset vector), the CPU jumps to the bootloader or to the reset vector. Refer  
to the UM0560 (STM8L/S bootloader manual) for more details.  
OPTBL  
For STM8L products, the bootloader option bytes are on addresses 0xXXXX  
and 0xXXXX+1 (2 byte). These option bytes control whether the bootloader is  
active or not. For more details, refer to the UM0560 (STM8L/S bootloader  
manual) for more details.  
48/121  
DocID14771 Rev 15  
STM8S105x4/6  
Option byte  
8.1  
Alternate function remapping bits  
Table 13. Alternate function remapping bits [7:0] of OPT2  
Option byte no.  
Description(1)  
AFR7 Alternate function remapping option 7  
0: AFR7 remapping option inactive: Default alternate functions.(2)  
1: Port D4 alternate function = BEEP.  
AFR6 Alternate function remapping option 6  
0: AFR6 remapping option inactive: Default alternate function.(2)  
1: Port B5 alternate function = I2C_SDA; port B4 alternate function =  
I2C_SCL.  
AFR5 Alternate function remapping option 5  
0: AFR5 remapping option inactive: Default alternate function.(2)  
1: Port B3 alternate function = TIM1_ETR; port B2 alternate function =  
TIM1_NCC3; port B1 alternate function = TIM1_CH2N; port B0 alternate  
function = TIM1_CH1N.  
AFR4 Alternate function remapping option 4  
0: AFR4 remapping option inactive: Default alternate functions.(2)  
1: Port D7 alternate function = TIM1_CH4.  
OPT2  
AFR3 Alternate function remapping option 3  
0: AFR3 remapping option inactive: Default alternate function.(2)  
1: Port D0 alternate function = TIM1_BKIN.  
AFR2 Alternate function remapping option 2  
0: AFR2 remapping option inactive: Default alternate functions.(2)  
1: Port D0 alternate function = CLK_CCO. Note: AFR2 option has priority  
over AFR3 if both are activated.  
AFR1 Alternate function remapping option 1  
0: AFR1 remapping option inactive: Default alternate functions.(2)  
1: Port A3 alternate function = TIM3_CH1; port D2 alternate function  
TIM2_CH3  
AFR0 Alternate function remapping option 0  
0: AFR0 remapping option inactive: Default alternate functions.(2)  
1: Port D3 alternate function = ADC_ETR.  
1. Do not use more than one remapping option in the same port.  
2. Refer to STM8S105x4/6 pin descriptions.  
DocID14771 Rev 15  
49/121  
50  
 
 
 
Unique ID  
STM8S105x4/6  
9
Unique ID  
The devices feature a 96-bit unique device identifier which provides a reference number that  
is unique for any device and in any context. The 96 bits of the identifier can never be altered  
by the user.  
The unique device identifier can be read in single byte and may then be concatenated using  
a custom algorithm.  
The unique device identifier is ideally suited:  
For use as serial numbers  
For use as security keys to increase the code security in the program memory while  
using and combining this unique ID with software cryptographic primitives and  
protocols before programming the internal memory.  
To activate secure boot processes  
Table 14. Unique ID registers (96 bits)  
Content  
Address  
Unique ID bits  
description  
7
6
5
4
3
2
1
0
0x48CD  
U_ID[7:0]  
U_ID[15:8]  
U_ID[23:16]  
U_ID[31:24]  
U_ID[39:32]  
U_ID[47:40]  
U_ID[55:48]  
U_ID[63:56]  
U_ID[71:64]  
U_ID[79:72]  
U_ID[87:80]  
U_ID[95:88]  
X co-ordinate on  
the wafer  
0x48CE  
0x48CF  
0x48D0  
0x48D1  
0x48D2  
0x48D3  
0x48D4  
0x48D5  
0x48D6  
0x48D7  
0x48D8  
Y co-ordinate on  
the wafer  
Wafer number  
Lot number  
50/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Electrical characteristics  
10  
Electrical characteristics  
10.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
10.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C, and T = T (given by  
A
A
Amax  
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean ± 3 Σ).  
10.1.2  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 5.0 V. They are  
A
DD  
given only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2 Σ).  
10.1.3  
10.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Typical current consumption  
For typical current consumption measurements, VDD, VDDIO and VDDA are connected  
together in the configuration shown in the following figure.  
Figure 8. Supply current measurement conditions  
ꢏꢅ9ꢅRUꢅꢀꢈꢀꢅ9  
$
9''  
9''$  
9'',2  
966  
966$  
966,2  
06Yꢀꢃꢀꢄꢐ9ꢂ  
DocID14771 Rev 15  
51/121  
90  
 
 
 
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
10.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 9.  
Figure 9. Pin loading conditions  
670ꢃ6ꢅ3,1  
ꢏꢄꢅS)  
06Yꢀꢇꢍꢃꢄ9ꢂ  
10.1.6  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 10.  
Figure 10. Pin input voltage  
670ꢃ6ꢅ3,1  
9,1  
06Yꢀꢇꢍꢃꢂ9ꢂ  
52/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
10.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 15. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
6.5  
Unit  
(1)  
V
DDx - VSS  
Supply voltage (including VDDA and VDDIO  
)
-0.3  
V
Input voltage on true open drain pins (PE1, PE2)(2)  
6.5  
VSS - 0.3  
VIN  
V
Input voltage on any other pin(2)  
VSS - 0.3 VDD + 0.3  
|VDDx - VDD  
|
Variations between different power pins  
Variations between all the different ground pins  
-
-
50  
50  
mV  
|VSSx - VSS  
|
see Absolute maximum ratings  
(electrical sensitivity) on  
page 89  
VESD  
Electrostatic discharge voltage  
1. All power (VDD) and ground (VSS) pins must always be connected to the external power supply  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
Table 16. Current characteristics  
Max.(1)  
Symbol  
Ratings  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(2)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
100  
80  
mA  
20  
IIO  
-20  
Total output current sourced (sum of all I/O and control pins)  
for devices with two VDDIO pins(3)  
200  
100  
160  
80  
Total output current sourced (sum of all I/O and control pins)  
for devices with one VDDIO pin(3)  
ΣIIO  
Total output current sunk (sum of all I/O and control pins) for  
devices with two VSSIO pins(3)  
Total output current sunk (sum of all I/O and control pins) for  
devices with one VSSIO pin(3)  
Injected current on NRST pin  
±4  
±4  
(4) (5)  
(4)  
IINJ(PIN)  
Injected current on OSCIN pin  
Injected current on any other pin(6)  
Total injected current (sum of all I/O and control pins)(6)  
±4  
ΣIINJ(PIN)  
±20  
1. Data based on characterization results, not tested in production.  
2. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the external  
supply.  
DocID14771 Rev 15  
53/121  
90  
 
 
 
Electrical characteristics  
STM8S105x4/6  
3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package  
between the VDDIO/VSSIO pins.  
4. IINJ(PIN) must never be exceeded. This condition is implicitly insured if VIN maximum is respected. If VIN  
maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A  
positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-  
drain pads, there is no positive injection current allowed and the corresponding VIN maximum must always  
be respected.  
5. Negative injection disturbs the analog performance of the device. See note in Section: TIM2, TIM3 - 16-bit  
general purpose timers.  
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on characterization  
with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 17. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
65 to 150  
°C  
Maximum junction temperature  
150  
10.3  
Operating conditions  
The device must be used in operating conditions that respect the parameters described in  
the table below. In addition, full account must be taken of all physical capacitor  
characteristics and tolerances.  
Table 18. General operating conditions  
Symbol  
fCPU  
Parameter  
Conditions  
Min  
Max  
Unit  
Internal CPU clock frequency  
Standard operating voltage  
-
-
0
16  
MHz  
V
VDD/VDDIO  
2.95  
5.5  
CEXT: capacitance of external  
capacitor  
-
470  
3300  
nF  
(1)  
VCAP  
ESR of external capacitor  
ESL of external capacitor  
-
-
0.3  
15  
Ω
at 1 MHz(2)  
nH  
44- and 48-pin  
devices, with output  
on eight standard  
ports, two high sink  
ports and two open  
drain ports  
-
-
443  
360  
Power dissipation at TA = 85 °C  
for suffix 6 or TA= 125° C for  
suffix 3  
(3)  
simultaneously(4)  
PD  
mW  
32-pin package, with  
output on eight  
standard ports and  
two high sink ports  
simultaneously(4)  
54/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
Table 18. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Ambient temperature for suffix  
6 version  
Maximum power  
dissipation  
TA  
-40  
85  
Ambient temperature for suffix  
3 version  
Maximum power  
dissipation  
TA  
TJ  
-40  
125  
°C  
Suffix 6 version  
Suffix 3 version  
-40  
-40  
105  
130  
Junction temperature range  
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter  
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum  
value must be respected for the full application range.  
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.  
3. To calculate PDmax(TA), use the formula PDmax=(TJmax- TA)/JA (see Section 12: Thermal characteristics)  
with the value for TJmax given in the previous table and the value for JA given in Section 12: Thermal  
characteristics.  
4. See Section 12: Thermal characteristics.  
Figure 11. f  
versus V  
DD  
CPUmax  
I&38ꢅꢊ0+]ꢌ  
)XQFWLRQDOLW\ꢅ  
QRWꢅ  
JXDUDQWHHGꢅLQꢅ  
WKLVꢅDUHD  
ϭϲ  
ϭϮ  
)XQFWLRQDOLW\ꢅJXDUDQWHHG  
#7$ꢅꢆꢍꢄꢅWRꢅꢂꢁꢏꢅƒ&ꢅꢅ  
ϴ
ϰ
Ϭ
ꢍꢈꢄ  
ꢁꢈꢐꢏ  
ꢏꢈꢄ  
ꢏꢈꢏ  
6XSSO\ꢅYROWDJH  
06Yꢀꢇꢍꢇꢐ9ꢂ  
Table 19. Operating conditions at power-up/power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
2(1)  
VDD rise time rate  
-
-
-
-
tVDD  
tTEMP  
µs/V  
ms  
2(1)  
-
VDD fall time rate  
-
Reset release delay  
VDD rising  
1.7(1)  
DocID14771 Rev 15  
55/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
Table 19. Operating conditions at power-up/power-down (continued)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Power-on reset  
threshold  
VIT+  
-
2.65  
2.8  
2.95  
V
Brown-out reset  
threshold  
VIT-  
-
-
2.58  
-
2.65  
70  
2.88  
-
Brown-out reset  
hysteresis  
VHYS(BOR)  
mV  
1. Guaranteed by design, not tested in production.  
56/121  
DocID14771 Rev 15  
STM8S105x4/6  
Electrical characteristics  
10.3.1  
VCAP external capacitor  
The stabilization for the main regulator is achieved by connecting an external capacitor  
C
to the V  
pin. C  
is specified in Table 18. Care should be taken to limit the series  
EXT  
CAP  
EXT  
inductance to less than 15 nH.  
Figure 12. External capacitor C  
EXT  
(6/  
&
(65  
5/HDN  
06Yꢀꢇꢍꢃꢃ9ꢂ  
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.  
10.3.2  
Supply current characteristics  
The current consumption is measured as illustrated in Figure 10: Pin input voltage.  
Total current consumption in run mode  
Table 20. Total current consumption with code execution in run mode at V = 5 V  
DD  
Max(1)  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Unit  
3.2  
-
HSE user ext. clock  
(16 MHz)  
fCPU = fMASTER = 16 MHz  
2.6  
2.5  
3.2  
3.2  
2.2  
2.0  
-
Supply  
HSI RC osc. (16 MHz)  
current in  
Run mode,  
code  
HSE user ext. clock  
(16 MHz)  
1.6  
IDD(RUN)  
mA  
fCPU = fMASTER /128 = 125 kHz  
executed  
from RAM  
HSI RC osc. (16 MHz)  
HSI RC osc. (16 MHz/8)  
1.3  
fCPU = fMASTER /128 =  
15.625 kHz  
0.75  
f
CPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
0.55  
7.7  
-
-
HSE crystal osc. (16 MHz)  
HSE user ext. clock  
(16 MHz)  
fCPU = fMASTER = 16 MHz  
7.0  
8.0  
Supply  
HSI RC osc. (16 MHz)  
7.0  
1.5  
8.0  
-
current in  
Run mode,  
code  
HSI RC osc. (16 MHz/8)(2)  
fCPU = fMASTER = 2 MHz  
IDD(RUN)  
mA  
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz)  
1.35  
2.0  
executed  
from Flash  
fCPU = fMASTER /128 =  
HSI RC osc. (16 MHz/8)  
15.625 kHz  
0.75  
0.6  
-
-
fCPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
DocID14771 Rev 15  
57/121  
90  
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
Table 21. Total current consumption with code execution in run mode at V = 3.3 V  
DD  
Max(1)  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Unit  
2.8  
-
HSE user ext. clock  
(16 MHz)  
fCPU = fMASTER = 16 MHz  
2.6  
2.5  
3.2  
3.2  
2.2  
2.0  
-
Supply  
HSI RC osc. (16 MHz)  
current in  
Run mode,  
code  
HSE user ext. clock  
(16 MHz)  
1.6  
IDD(RUN)  
mA  
f
CPU = fMASTER /128 = 125 kHz  
executed  
from RAM  
HSI RC osc. (16 MHz)  
HSI RC osc. (16 MHz/8)  
1.3  
fCPU = fMASTER /128 =  
15.625 kHz  
0.75  
fCPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
0.55  
7.3  
-
-
HSE crystal osc. (16 MHz)  
HSE user ext. clock  
(16 MHz)  
fCPU = fMASTER = 16 MHz  
7.0  
8.0  
Supply  
HSI RC osc. (16 MHz)  
7.0  
1.5  
8.0  
-
current in  
Run mode,  
code  
HSI RC osc. (16 MHz/8)(2)  
fCPU = fMASTER = 2 MHz  
IDD(RUN)  
mA  
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz)  
1.35  
2.0  
executed  
from Flash  
f
CPU = fMASTER /128 =  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.75  
0.6  
-
-
15.625 kHz  
f
CPU = fMASTER = 128 kHz  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
Total current consumption in wait mode  
Table 22. Total current consumption in wait mode at V = 5 V  
DD  
Max(1)  
Symbol  
Parameter  
Conditions  
HSE crystal osc. (16 MHz)  
Typ  
Unit  
2.15  
-
HSE user ext. clock  
(16 MHz)  
fCPU = fMASTER = 16 MHz  
1.55  
2.0  
Supply  
current in  
wait mode  
HSI RC osc. (16 MHz)  
1.5  
1.3  
1.9  
-
IDD(WFI)  
mA  
f
CPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz)  
fCPU = fMASTER /s128 =  
15.625 kHz  
HSI RC osc. (16 MHz/8)(2)  
LSI RC osc. (128 kHz)  
0.7  
0.5  
-
-
fCPU = fMASTER = 128 kHz  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
58/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Electrical characteristics  
Table 23. Total current consumption in wait mode at V = 3.3 V  
DD  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
HSE crystal osc. (16 MHz)  
1.75  
-
HSE user ext. clock  
(16 MHz)  
f
CPU = fMASTER = 16 MHz  
1.55  
2.0  
Supply  
current in  
wait mode  
HSI RC osc. (16 MHz)  
1.5  
1.3  
1.9  
-
IDD(WFI)  
mA  
fCPU = fMASTER /128 = 125 kHz HSI RC osc. (16 MHz)  
fCPU = fMASTER /s128 =  
HSI RC osc. (16 MHz/8)(2)  
15.625 kHz  
0.7  
0.5  
-
-
f
CPU = fMASTER = 128 kHz  
LSI RC osc. (128 kHz)  
1. Data based on characterization results, not tested in production.  
2. Default clock configuration measured with all peripherals off.  
Total current consumption in active halt mode  
Table 24. Total current consumption in active halt mode at V = 5 V  
DD  
Conditions  
Main  
voltage  
regulator  
Max at Max at  
85 °C(1) 85 °C(1)  
Symbol Parameter  
Typ  
Unit  
Flash mode(3)  
Clock source  
(MVR)(2)  
HSE crystal osc.  
(16 MHz)  
Operating mode  
Operating mode  
1080  
200  
-
320  
-
-
400  
-
LSI RC osc. (128 kHz)  
On  
Power down  
mode  
HSE crystal osc.  
(16 MHz)  
Supply  
1030  
current in  
active halt  
mode  
IDD(AH)  
µA  
Power down  
mode  
LSI RC osc. (128 kHz)  
LSI RC osc. (128 kHz)  
LSI RC osc. (128 kHz)  
140  
68  
270  
120  
60  
350  
220  
150  
Operating mode  
Off  
Power down  
mode  
12  
1. Data based on characterization results, not tested in production.  
2. Configured by the REGAH bit in the CLK_ICKR register.  
3. Configured by the AHALT bit in the FLASH_CR1 register.  
DocID14771 Rev 15  
59/121  
90  
 
 
 
Electrical characteristics  
STM8S105x4/6  
Table 25. Total current consumption in active halt mode at V = 3.3 V  
DD  
Conditions  
Main  
voltage  
regulator  
Max at Max at  
85 °C(1) 85 °C(1)  
Symbol Parameter  
Typ  
Unit  
Flash mode(3)  
Clock source  
(MVR)(2)  
HSE crystal osc.  
(16 MHz)  
Operating mode  
Operating mode  
680  
200  
630  
-
320  
-
-
400  
-
LSI RC osc. (128 kHz)  
On  
Power down  
mode  
HSE crystal osc.  
(16 MHz)  
Supply  
current in  
active halt  
mode  
IDD(AH)  
µA  
Power down  
mode  
LSI RC osc. (128 kHz)  
LSI RC osc. (128 kHz)  
LSI RC osc. (128 kHz)  
140  
66  
270  
120  
60  
350  
220  
150  
Operating mode  
Off  
Power down  
mode  
10  
1. Data based on characterization results, not tested in production.  
2. Configured by the REGAH bit in the CLK_ICKR register.  
3. Configured by the AHALT bit in the FLASH_CR1 register.  
Total current consumption in halt mode  
Table 26. Total current consumption in halt mode at V = 5 V  
DD  
Max at Max at  
85 °C(1) 85 °C(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Flash in operating mode, HSI  
clock after wakeup  
62  
90  
25  
150  
80  
Supply current in halt  
mode  
IDD(H)  
µA  
Flash in power-down mode,  
HSI clock after wakeup  
6.5  
1. Data based on characterization results, not tested in production.  
Table 27. Total current consumption in halt mode at V = 3.3 V  
DD  
Max at Max at  
85 °C(1) 85 °C(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Flash in operating mode, HSI  
clock after wakeup  
60  
90  
20  
150  
80  
Supply current in halt  
mode  
IDD(H)  
µA  
Flash in power-down mode,  
HSI clock after wakeup  
4.5  
1. Data based on characterization results, not tested in production.  
60/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Electrical characteristics  
Low power mode wakeup times  
Table 28. Wakeup times  
Conditions  
Max(1)  
Symbol  
Parameter  
Typ  
Unit  
Wakeup time from wait  
mode to run mode(2)  
See note(3)  
tWU(WFI)  
0 to 16 MHz  
-
Wakeup time from run  
mode(2)  
tWU(WFI)  
fCPU= fMASTER= 16 MHz  
0.56  
1(6)  
-
Flash in  
MVR voltage  
operating  
Wakeup time active halt  
mode to run mode(2)  
HSI (after  
wakeup)  
2(6)  
tWU(AH)  
regulator on(4)  
mode(5)  
Flash in  
MVR voltage  
operating  
Wakeup time active halt  
mode to run mode(2)  
HSI (after  
wakeup)  
3(6)  
tWU(AH)  
tWU(AH)  
tWU(AH)  
-
-
-
regulator off(4)  
mode(5)  
µs  
Flash in  
MVR voltage  
operating  
Wakeup time active halt  
mode to run mode(2)  
HSI (after  
wakeup)  
48(6)  
50(6)  
regulator off(4)  
mode(5)  
Flash in  
MVR voltage  
Wakeup time active halt  
mode to run mode(2)  
HSI (after  
wakeup)  
power-down  
regulator off(4)  
mode(5)  
Wakeup time from halt  
mode to run mode(2)  
tWU(H)  
Flash in operating mode(5)  
52  
54  
-
-
Wakeup time from halt  
mode to run mode(2)  
tWU(H)  
Flash in power-down mode(5)  
1. Data based on characterization results, not tested in production.  
2. Measured from interrupt event to interrupt vector fetch  
3. tWU(WFI) = 2 x 1/fmaster + 67 x 1/fCPU  
4. Configured by the REGAH bit in the CLK_ICKR register.  
5. Configured by the AHALT bit in the FLASH_CR1 register.  
6. Plus 1 LSI clock depending on synchronization.  
Total current consumption and timing in forced reset state  
Table 29. Total current consumption and timing in forced reset state  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
VDD = 5 V  
500  
400  
-
-
Supply current in reset  
state(2)  
IDD(R)  
µA  
VDD = 3.3 V  
Reset pin release to  
vector fetch  
tRESETBL  
-
-
150  
µs  
1. Data guaranteed by design, not tested in production.  
2. Characterized with all I/Os tied to VSS  
.
Current consumption of on-chip peripherals  
Subject to general operating conditions for V and T .  
DD  
A
DocID14771 Rev 15  
61/121  
90  
 
 
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
HSI internal RC/f  
= f  
= 16 MHz, V = 5 V  
CPU MASTER DD  
Table 30. Peripheral current consumption  
Parameter  
Symbol  
Typ  
Unit  
IDD(TIM1)  
IDD(TIM2)  
IDD(TIM3)  
IDD(TIM4)  
TIM1 supply current(1)  
TIM2 supply current(1)  
230  
115  
90  
TIM3 supply current(1)  
TIM4 supply current(1)  
30  
µA  
IDD(UART2) UART2 supply current (2)  
110  
45  
IDD(SPI)  
IDD(I2C)  
IDD(ADC1)  
SPI supply current (2)  
I2C supply current(2)  
65  
ADC1 supply current when converting(3)  
955  
1. Data based on a differential IDD measurement between reset configuration and timer counter running at  
16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.  
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and  
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not  
tested in production.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions. Not tested in production.  
Current consumption curves  
The following figures show typical current consumption measured with code executing in  
RAM.  
Figure 13. Typ I  
vs. V HSE user external clock, f  
= 16 MHz  
CPU  
DD(RUN)  
DD  
62/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
Figure 14. Typ I  
vs. f  
HSE user external clock, V = 5 V  
CPU DD  
DD(RUN)  
Figure 15. Typ I  
vs. V HSI RC osc, f = 16 MHz  
CPU  
DD(RUN)  
DD  
DocID14771 Rev 15  
63/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 16. Typ I  
vs. V HSE external clock, f  
= 16 MHz  
CPU  
DD(WFI)  
DD  
Figure 17. Typ I  
vs. f  
HSE external clock, V = 5 V  
CPU DD  
DD(WFI)  
64/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Electrical characteristics  
Figure 18. Typ I  
vs. V HSI RC osc., f  
= 16 MHz  
CPU  
DD(WFI)  
DD  
DocID14771 Rev 15  
65/121  
90  
 
Electrical characteristics  
STM8S105x4/6  
10.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for V and T .  
DD  
A
Table 31. HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
User external clock  
source frequency  
fHSE_ext  
-
0
16  
MHz  
OSCIN input pin high  
level voltage  
(1)  
VHSEH  
-
0.7 x VDD  
VSS  
VDD + 0.3 V  
0.3 x VDD  
+1  
V
OSCIN input pin low  
level voltage  
(1)  
VHSEL  
-
OSCIN input leakage  
current  
ILEAK_HSE  
VSS < VIN < VDD  
-1  
µA  
1. Data based on characterization results, not tested in production.  
Figure 19. HSE external clock source  
+6(+  
+6(/  
I
+6(  
([WHUQDOꢅFORFN  
VRXUFH  
26&,1  
670ꢃ  
06ꢀꢇꢍꢃꢐ9ꢁ  
66/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and startup stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 32. HSE oscillator characteristics  
Symbol  
fHSE  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External high speed  
oscillator frequency  
-
-
-
1
-
-
220  
-
16  
-
MHz  
k  
RF  
Feedback resistor  
Recommended load  
capacitance(2)  
C(1)  
-
20  
pF  
C = 20 pF  
6 (start up)  
-
-
-
-
fOSC = 16 MHz  
1.6 (stabilized)(3)  
HSE oscillator power  
consumption  
IDD(HSE)  
mA  
C = 10 pF  
6 (start up)  
1.2 (stabilized)(3)  
fOSC = 16 MHz  
Oscillator  
transconductance  
gm  
tSU(HSE)  
-
5
-
-
-
-
mA/V  
ms  
(4)  
Startup time  
VDD is stabilized  
1
1. C is approximately equivalent to 2 x crystal Cload.  
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.  
Refer to crystal manufacturer for more details  
3. Data based on characterization results, not tested in production.  
4. tSU(HSE) is the start-up time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.  
DocID14771 Rev 15  
67/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 20. HSE oscillator circuit diagram  
5
P
I+6(ꢅWRꢅꢅFRUH  
&
2
5)  
/
P
P
&
/ꢂ  
&
26&,1  
J
P
5HVRQDWRU  
&RQVXPSWLRQ  
FRQWURO  
5HVRQDWRU  
26&287  
&
/ꢁ  
670ꢃ  
06ꢀꢇꢍꢐꢄ9ꢀ  
HSE oscillator critical gm equation  
gmcrit = 2    fHSE2 Rm2Co + C2  
R : Notional resistance (see crystal specification)  
m
L : Notional inductance (see crystal specification)  
m
C : Notional capacitance (see crystal specification)  
m
Co: Shunt capacitance (see crystal specification)  
C
= C = C: Grounded external capacitance  
L1  
L2  
g
m » gmcrit  
68/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Electrical characteristics  
10.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for V and T .  
DD  
A
High speed internal RC oscillator (HSI)  
Table 33. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
-
-
16  
-
MHz  
User-trimmed with  
CLK_HSITRIMR register for  
given VDD and TA  
conditions(1)  
Accuracy of HSI oscillator  
-
-
1(2)  
VDD V,  
-1.0  
-
1.0  
2.0  
TA 25 °C(3)  
ACCHS  
%
HSI oscillator accuracy  
(factory calibrated)  
VDD= 5 V,   
-25°C TA 85 °C  
-2.0  
-
2.95 V VDD 5.5 V,   
-40°C TA 125 °C  
-3.0(3)  
-
-
3.0(3)  
1.0(2)  
250(3)  
HSI oscillator wakeup  
time including calibration  
tsu(HSI)  
-
-
-
-
µs  
HSI oscillator power  
consumption  
IDD(HSI)  
170  
µA  
1. Refer to application note.  
2. Guaranteed by design, not tested in production.  
3. Data based on characterization results, not tested in production.  
Figure 21. Typical HSI accuracy @ V = 5 V vs 5 temperatures  
DD  
DocID14771 Rev 15  
69/121  
90  
 
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 22. Typical HSI frequency variation vs V @ 4 temperatures  
DD  
70/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Electrical characteristics  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for V and T .  
DD  
A
Table 34. LSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
LSI oscillator wakeup time  
-
-
-
110  
128  
150  
7(1)  
-
kHz  
µs  
tsu(LSI)  
-
-
-
IDD(LSI) LSI oscillator power consumption  
1. Guaranteed by design, not tested in production.  
5
µA  
Figure 23. Typical LSI frequency variation vs V @ 4 temperatures  
DD  
DocID14771 Rev 15  
71/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
10.3.5  
Memory characteristics  
RAM and hardware registers  
Table 35. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Unit  
(2)  
VRM  
Data retention mode(1)  
Halt mode (or reset)  
VIT-max  
V
1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware  
registers (only in halt mode). Guaranteed by design, not tested in production.  
2. Refer to Section 10.3: Operating conditions for the value of VIT-max  
.
Flash program memory/data EEPROM memory  
Table 36. Flash program memory/data EEPROM memory  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max  
Unit  
Operating voltage   
(all modes, execution/write/erase)  
VDD  
fCPU16 MHz  
2.95  
-
-
5.5  
6.6  
V
Standard programming time (including  
erase) for byte/word/block   
(1 byte/4 byte/128 byte)  
-
6
tprog  
ms  
Fast programming time for 1 block   
(128 byte)  
-
-
-
3
3
-
3.33  
terase  
Erase time for 1 block (128 byte)  
-
3.33  
Erase/write cycles   
TA = +85 °C  
TA = +125 °C  
10k  
-
-
(program memory)(2)  
NRW  
cycle  
Erase/write cycles (data memory)(2)  
300k 1M  
Data retention (program and data  
memory) after 10k erase/write cycles  
at TA= +55 °C  
T
T
RET = 55 °C  
20  
-
-
tRET  
year  
mA  
Data retention (data memory) after  
300k erase/write cycles at   
TA= +125°C  
RET = 85 °C  
1
-
-
-
-
Supply current (Flash programming or  
erasing for 1 to 128 byte)  
IDD  
-
2
1. Data based on characterization results, not tested in production.  
2. The physical granularity of the memory is 4 byte, so cycling is performed on 4 byte even when a  
write/erase operation addresses a single byte.  
72/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
10.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
DD  
A
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 37. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage  
Input high level voltage  
Hysteresis(1)  
-0.3 V  
-
-
0.3 x VDD  
V
VIH  
Vhys  
Rpu  
VDD = 5 V  
0.7 x VDD  
VDD + 0.3 V  
-
700  
55  
-
mV  
Pull-up resistor  
VDD = 5 V, VIN = VSS  
30  
80  
k  
Fast I/Os  
Load = 50 pF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
35(2)  
125(2)  
20(2)  
Rise and fall time  
(10% - 90%)  
tR, tF  
ns  
ns  
Standard and high sink I/Os  
Load = 50 pF  
Fast I/Os  
Load = 20 pF  
Rise and fall time  
(10% - 90%)  
tR, tF  
Standard and high sink I/Os  
Load = 20 pF  
50(2)  
Digital input leakage  
current  
Ilkg  
VSS VIN VDD  
VSS VIN VDD  
±1(3)  
µA  
nA  
µA  
Analog input leakage  
current  
Ilkg ana  
Ilkg(inj)  
±250(3)  
±1(3)  
Leakage current in  
adjacent I/O  
Injection current ±4 mA  
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.  
2. Data guaranteed by design.  
3. Data based on characterization results, not tested in production  
DocID14771 Rev 15  
73/121  
90  
 
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 24. Typical V and V vs V @ 4  
Figure 25. Typical pull-up current vs V @ 4  
IL  
IH  
DD  
DD  
temperatures  
temperatures  
Figure 26. Typical pull-up resistance vs VDD @ 4 temperatures  
Û&  
&
ꢁꢏÛ  
ꢃꢏÛ&  
ꢂꢁꢏÛ  
ꢇꢄ  
ꢏꢏ  
ꢏꢄ  
ꢍꢏ  
ꢍꢄ  
ꢀꢏ  
ꢀꢄ  
&
ꢁꢈꢏ  
ꢀꢈꢏ  
ꢍꢈꢏ  
ꢏꢈꢏ  
9''ꢅ>9@  
06ꢀꢑꢍꢀꢍ9ꢂ  
Table 38. Output driving current (standard ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
IIO= 10 mA,  
VDD = 5 V  
Output low level with 8  
pins sunk  
-
2.0  
VOL  
IIO= 4 mA,  
Output low level with 4  
pins sunk  
-
1.0(1)  
VDD = 3.3 V  
V
IIO= 10 mA,  
VDD = 5 V  
Output high level with 8  
pins sourced  
2.4  
-
-
VOH  
IIO= 4 mA,  
Output high level with 4  
pins sourced  
2.0(1)  
VDD = 3.3 V  
1. Data based on characterization results, not tested in production  
74/121  
DocID14771 Rev 15  
 
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
Table 39. Output driving current (true open drain ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
IIO= 10 mA,  
VDD = 5 V  
Output low level with 2  
pins sunk  
-
1.0  
VOL  
IIO= 10 mA,  
VDD = 3.3 V  
Output low level with 2  
pins sunk  
-
-
1.5(1)  
2.0(1)  
V
IIO= 10 mA,  
VDD = 5 V  
Output high level with 2  
pins sourced  
VOH  
1. Data based on characterization results, not tested in production  
Table 40. Output driving current (high sink ports)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
IIO= 10 mA,  
Output low level with 8  
pins sunk  
-
0.9  
V
DD = 5 V  
IIO= 10 mA,  
DD = 3.3 V  
VOL  
-
1.1(1)  
V
Output low level with 4  
pins sunk  
IIO= 20 mA,  
VDD = 5 V  
-
1.6(1)  
V
IIO= 10 mA,  
VDD = 5 V  
Output high level with 8  
pins sourced  
3.8  
-
-
-
IIO= 10 mA,  
VDD = 3.3 V  
VOH  
1.9(1)  
2.9(1)  
Output high level with 4  
pins sourced  
IIO= 20 mA,  
VDD = 5 V  
1. Data based on characterization results, not tested in production.  
10.3.7  
Typical output level curves  
The following figures show the typical output level curves measured with the output on a  
single pin.  
Figure 27. Typ. V @ V = 3.3 V (standard  
Figure 28. Typ. V @ V = 5.0 V (standard  
OL DD  
OL  
DD  
ports)  
ports)  
DocID14771 Rev 15  
75/121  
90  
 
 
 
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 29. Typ. V @ V = 3.3 V (true open  
Figure 30. Typ. V @ V = 5.0 V (true open  
OL DD  
OL  
DD  
drain ports)  
drain ports)  
Figure 31. Typ. V @ V = 3.3 V (high sink  
Figure 32. Typ. V @ V = 5.0 V (high sink  
OL DD  
OL  
DD  
ports)  
ports)  
76/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Electrical characteristics  
Figure 33. Typ. V  
V
@ V = 3.3 V  
Figure 34. Typ. V  
V
@ V = 5.0 V  
DD - OH  
DD  
DD - OH DD  
(standard ports)  
(standard ports)  
Figure 35. Typ. V  
V
@ V = 3.3 V (high  
Figure 36. Typ. V  
V
@ V = 5.0 V (high  
DD - OH  
DD  
DD - OH DD  
sink ports)  
sink ports)  
DocID14771 Rev 15  
77/121  
90  
 
 
 
 
Electrical characteristics  
STM8S105x4/6  
10.3.8  
Reset pin characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 41. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
-
Min  
Typ  
Max  
Unit  
NRST input low level voltage(1)  
NRST input high level voltage(1)  
-0.3  
-
0.3 x VDD  
VDD+ 0.3  
VIL(NRST)  
0.7 x VDD  
V
VIH(NRST)  
VOL(NRST)  
RPU(NRST)  
IOL= 2 mA  
-
-
NRST output low level voltage(1) IOL= 3 mA  
-
30  
-
0.5  
80  
75  
-
NRST pull-up resistor(2)  
-
-
-
-
55  
-
k  
ns  
µs  
tIFP(NRST) NRST input filtered pulse(3)  
tINFP(NRST) NRST Input not filtered pulse(3)  
tOP(NRST) NRST output pulse(3)  
500  
20  
-
-
-
1. Data based on characterization results, not tested in production.  
2. The RPU pull-up equivalent resistor is based on a resistive transistor.  
3. Data guaranteed by design, not tested in production.  
Figure 37. Typical NRST V and V vs V @ 4 temperatures  
IL  
IH  
DD  
78/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Electrical characteristics  
Figure 38. Typical NRST pull-up resistance R vs V @ 4 temperatures  
PU  
DD  
Figure 39. Typical NRST pull-up current I vs V @ 4 temperatures  
pu  
DD  
The reset network shown in Figure 40 protects the device against parasitic resets. The user  
must ensure that the level on the NRST pin can go below V max (see Table 41:  
IL(NRST)  
NRST pin characteristics), otherwise the reset is not taken into account internally.  
For power consumption sensitive applications, the external reset capacitor value can be  
reduced to limit the charge/discharge current. If NRST signal is used to reset external  
circuitry, attention must be taken to the charge/discharge time of the external capacitor to  
fulfill the external devices reset timing conditions. Minimum recommended capacity is  
100 nF.  
DocID14771 Rev 15  
79/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
Figure 40. Recommended reset pin protection  
670ꢃ  
9''  
538  
([WHUQDOꢅ  
UHVHWꢅ  
FLUFXLWꢅꢅ  
1567  
)LOWHU  
ꢄꢈꢂꢅȝ)  
ꢊ2SWLRQDOꢌ  
06Yꢀꢇꢍꢐꢂ9ꢂ  
SPI serial peripheral interface  
10.3.9  
Unless otherwise specified, the parameters given in Table 42 are derived from tests  
performed under ambient temperature, f frequency and V supply voltage  
MASTER  
DD  
conditions. t  
= 1/f  
.
MASTER  
MASTER  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
Table 42. SPI characteristics  
Symbol  
Parameter  
Conditions(1)  
Min  
Max  
Unit  
Master mode  
0
0
8
6
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
Slave mode  
80/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Electrical characteristics  
Table 42. SPI characteristics (continued)  
Symbol  
tr(SCK  
Parameter  
Conditions(1)  
Min  
Max  
Unit  
)
SPI clock rise and fall  
time  
Capacitive load:   
C = 30 pF  
-
25  
tf(SCK)  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4 * tMASTER  
70  
-
-
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
SCK high and low time  
Data input setup time  
Master mode  
tSCK/2 - 15 tSCK/2 + 15  
(2)  
(2)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
5
-
tsu(MI)  
tsu(SI)  
(2)  
-
(2)  
7
-
th(MI)  
th(SI)  
Data input hold time  
(2)  
10  
-
-
ns  
(2)(3)  
ta(SO)  
Data output access time Slave mode  
Data output disable time Slave mode  
3* tMASTER  
-
(2)(4)  
tdis(SO)  
25  
Slave mode  
(after enable edge)  
(2)  
(2)  
tv(SO)  
Data output valid time  
-
73  
36  
-
Master mode (after  
enable edge)  
tv(MO)  
Data output valid time  
Data output hold time  
-
Slave mode (after  
enable edge)  
(2)  
(2)  
th(SO)  
28  
12  
Master mode (after  
enable edge)  
th(MO)  
-
1. Parameters are given by selecting 10 MHz I/O output frequency.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z.  
DocID14771 Rev 15  
81/121  
90  
Electrical characteristics  
STM8S105x4/6  
Figure 41. SPI timing diagram where slave mode and CPHA = 0  
166ꢅLQSXW  
W68ꢊ166ꢌ  
WKꢊ166ꢌ  
WFꢊ6&.ꢌ  
&3+$ ꢄ  
&32/ ꢄ  
WZꢊ6&.+ꢌ  
WZꢊ6&./ꢌ  
&3+$ ꢄ  
&32/ ꢂ  
WUꢊ6&.ꢌ  
W9ꢊ62ꢌ  
WKꢊ62ꢌ  
WGLVꢊ62ꢌ  
WIꢊ6&.ꢌ  
WDꢊ62ꢌ  
0,62  
287387  
06%ꢅ287  
%,7ꢇꢅ287  
/6%ꢅ287  
WVXꢊ6,ꢌ  
026,  
,1387  
06%ꢅ,1  
%,7ꢂꢅ,1  
/6%ꢅ,1  
WKꢊ6,ꢌ  
DLꢂꢍꢂꢀꢍF  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
Figure 42. SPI timing diagram where slave mode and CPHA = 1  
166ꢅLQSXW  
W68ꢊ166ꢌ  
WKꢊ166ꢌ  
WFꢊ6&.ꢌ  
&3+$ ꢂ  
&32/ ꢄ  
&3+$ ꢂ  
&32/ ꢂ  
WZꢊ6&.+ꢌ  
WZꢊ6&./ꢌ  
WUꢊ6&.ꢌ  
WIꢊ6&.ꢌ  
WKꢊ62ꢌ  
WGLVꢊ62ꢌ  
WYꢊ62ꢌ  
WDꢊ62ꢌ  
0,62  
06%ꢅ287  
06%ꢅ,1  
%,7ꢇꢅ287  
/6%ꢅ287  
287387  
WKꢊ6,ꢌ  
WVXꢊ6,ꢌ  
026,  
,1387  
/6%ꢅ,1  
%,7ꢅꢂꢅ,1  
DLꢂꢍꢂꢀꢏE  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
82/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Electrical characteristics  
Figure 43. SPI timing diagram - master mode  
+LJK  
166ꢅLQSXW  
W
Fꢊ6&.ꢌ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢂ  
&3+$   
&32/ ꢄ  
&3+$   
&32/ ꢂ  
W
W
W
W
Zꢊ6&.+ꢌ  
Zꢊ6&./ꢌ  
Uꢊ6&.ꢌ  
W
VXꢊ0,ꢌ  
Iꢊ6&.ꢌ  
0,62  
,1387  
%,7ꢇꢅ,1  
/6%ꢅ,1  
06%ꢅ,1  
W
Kꢊ0,ꢌ  
026,  
287387  
%,7ꢂꢅ287  
/6%ꢅ287  
06%ꢅ287  
W
W
Kꢊ02ꢌ  
Yꢊ02ꢌ  
DLꢂꢍꢂꢀꢇF  
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD  
.
DocID14771 Rev 15  
83/121  
90  
 
Electrical characteristics  
STM8S105x4/6  
2
10.3.10 I C interface characteristics  
2
Table 43. I C characteristics  
Standard mode I2C Fast mode I2C(1)  
Symbol  
Parameter  
Unit  
Min(2)  
Max(2)  
Min(2) Max(2)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
-
-
-
-
1.3  
0.6  
-
-
-
µs  
250  
100  
0(3)  
0(4)  
900(3)  
SDA data hold time  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
(VDD = 3 to 5.5 V)  
ns  
-
1000  
300  
-
300  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
(VDD = 3 to 5.5 V)  
-
-
300  
th(STA)  
START condition hold time  
4.0  
4.7  
4.0  
-
-
-
0.6  
0.6  
0.6  
-
-
-
tsu(STA)  
tsu(STO)  
Repeated START condition setup time  
STOP condition setup time  
µs  
pF  
STOP to START condition time   
(bus free)  
tw(STO:STA)  
4.7  
-
1.3  
-
-
Cb  
Capacitive load for each bus line  
-
400  
400  
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)  
Data based on standard I2C protocol requirement, not tested in production  
2.  
The maximum hold time of the start condition has only to be met if the interface does not stretch the low  
time  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL  
2
Figure 44. Typical application with I C bus and timing diagram  
9''  
9''  
670ꢃ  
ꢍꢈꢑꢅNŸꢅ  
ꢍꢈꢑꢅNŸꢅ  
ꢂꢄꢄꢅŸꢅ  
ꢂꢄꢄꢅŸꢅ  
6'$  
6&/  
,&ꢅEXV  
5HSHDWHG  
VWDUW  
67$57  
WVXꢊ67$ꢌ  
WZꢊ672ꢒ67$ꢌ  
67$57  
6'$  
WIꢊ6'$ꢌ  
WUꢊ6'$ꢌ  
WVXꢊ6'$ꢌ  
WKꢊ6'$ꢌ  
6723  
6&/  
WKꢊ67$ꢌ WZꢊ6&/+ꢌ  
WZꢊ6&//ꢌ  
WUꢊ6&/ꢌ  
WIꢊ6&/ꢌ  
WVXꢊ672ꢌ  
06Yꢀꢇꢍꢐꢁ9ꢂ  
84/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Electrical characteristics  
10.3.11 10-bit ADC characteristics  
Subject to general operating conditions for V  
specified.  
, f  
, and T unless otherwise  
DDA MASTER A  
Table 44. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
4
Unit  
Typ  
V
DD= 2.95 to 5.5 V  
1
1
-
-
fADC  
ADC clock frequency  
MHz  
VDD= 4.5 to 5.5 V  
6
VDDA  
VREF+  
VREF-  
Analog supply  
-
-
-
3.0  
-
-
-
5.5  
Positive reference voltage  
Negative reference voltage  
2.75(1)  
VSSA  
VSSA  
VDDA  
V
V
0.5(1)  
VDDA  
-
-
-
Conversion voltage range(2)  
Devices with  
external  
VAIN  
VREF-  
VREF+  
V
REF+/VREF-  
-
ADC = 4 MHz  
Internal sample and hold  
capacitor  
CADC  
-
3
-
pF  
µs  
f
-
-
-
0.75  
0.5  
-
-
-
(2)  
tS  
Minimum sampling time  
fADC = 6 MHz  
-
tSTAB  
Wakeup time from standby  
7.0  
µs  
µs  
fADC = 4 MHz  
3.5  
Minimum total conversion time  
(including sampling time, 10-  
bit resolution)  
tCONV  
f
ADC = 6 MHz  
-
2.33  
14  
µs  
1/fADC  
1. Data guaranteed by design, not tested in production.  
2. During the sample time, the sampling capacitance, CAIN (3 pF max), can be charged/discharged by the  
external source. The internal resistance of the analog source must allow the capacitance to reach its final  
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no  
effect on the conversion result. Values for the sample clock tS depend on programming.  
DocID14771 Rev 15  
85/121  
90  
 
 
 
 
Electrical characteristics  
Symbol  
STM8S105x4/6  
Table 45. ADC accuracy with R < 10 k, V  
= 5 V  
AIN  
DDA  
Typ  
Max(1)  
Unit  
Parameter  
Conditions  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
1.0  
1.4  
1.6  
0.6  
1.1  
1.2  
0.2  
0.6  
0.8  
0.7  
0.7  
0.8  
0.6  
0.6  
0.6  
2.5  
3.0  
3.5  
2.0  
2.5  
2.5  
2.0  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error(2)  
Offset error(2)  
f
f
ADC = 4 MHz  
ADC = 6 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
Gain error(2)  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
LSB  
f
fADC = 6 MHz  
fADC = 2 MHz  
Differential linearity error(2)  
Integral linearity error(2)  
f
f
ADC = 4 MHz  
ADC = 6 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
fADC = 6 MHz  
f
1. Data based on characterization results, not tested in production.  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.  
Table 46. ADC accuracy with R < 10 k, V  
= 3.3 V  
AIN  
DDA  
Max(1)  
2.0  
2.5  
1.5  
2.0  
1.5  
2.0  
1.0  
1.0  
1.5  
1.5  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
fADC = 2 MHz  
1.1  
1.6  
0.7  
1.3  
0.2  
0.5  
0.7  
0.7  
0.6  
0.6  
|ET|  
Total unadjusted error(2)  
f
ADC = 4 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
fADC = 2 MHz  
ADC = 4 MHz  
|EO|  
|EG|  
|ED|  
|EL|  
Offset error(2)  
f
Gain error(2)  
LSB  
f
Differential linearity error(2)  
Integral linearity error(2)  
f
f
1. Data based on characterization results, not tested in production.  
DocID14771 Rev 15  
86/121  
 
 
 
STM8S105x4/6  
Electrical characteristics  
2. ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on another  
analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may  
potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and  
IINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.  
Figure 45. ADC accuracy characteristics  
E
G
1023  
1022  
1021  
V
V  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E
T
(3)  
7
6
5
4
3
2
1
(1)  
E
O
E
L
E
D
1 LSB  
IDEAL  
7
0
V
1
2
3
4
5
6
1021102210231024  
V
DDA  
SSA  
1. Example of an actual transfer curve  
2. The ideal transfer curve  
3. End point correlation line  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.  
EO = Offset error: deviation between the first actual transition and the first ideal one.  
EG = Gain error: deviation between the last ideal transition and the last actual one.  
E
D = Differential linearity error: maximum deviation between actual steps and the ideal one.  
EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation  
line.  
Figure 46. Typical application with ADC  
sꢁꢁ  
^dDϴ  
97  
ꢄꢈꢇꢅ9  
9$,1  
5$,1  
ꢀ/Edž  
ꢂꢄꢆELWꢅ$ꢉ'  
FRQYHUVLRQ  
97  
ꢄꢈꢇꢅ9  
,
&
/
$,1  
&
$'&  
цϭꢂђꢀ  
06Yꢀꢃꢀꢄꢄ9ꢂ  
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.  
DocID14771 Rev 15  
87/121  
90  
 
 
Electrical characteristics  
STM8S105x4/6  
10.3.12 EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test conforms with the IEC 61000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms  
with the IEC 61000-4-4 standard.  
DD  
SS  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709 (EMC  
design guide for STM microcontrollers).  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring. See application note AN1015 (Software  
techniques for improving microcontroller EMC performance).  
Table 47. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
VDD 5 V, TA25 °C,   
fMASTER 16 MHz (HSI clock),  
Conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
2/B(1)  
VFESD  
VDD 5 V, TA25 °C,   
fMASTER 16 MHz (HSI clock),  
Conforms to IEC 1000-4-4  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
4/A(1)  
VEFTB  
88/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Electrical characteristics  
1. Data obtained with HSI clock configuration, after applying the hardware recommendations described in  
AN2860 (EMC guidelines for STM8S microcontrollers).  
Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm IEC 61967-2 which specifies the board and the loading of each pin.  
Table 48. EMI data  
Conditions  
(1)  
Max fHSE/fCPU  
Symbol  
Parameter  
Unit  
Monitored  
frequency band  
General conditions  
8 MHz/ 8 MHz/  
8 MHz 16 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
EMI level  
13  
23  
14  
19  
VDD 5 V,   
TA 25 °C,   
LQFP48 package.  
Conforming to   
IEC 61967-2  
Peak level  
EMI level  
dBµV  
-
SEMI  
-4.0  
2.0  
-4.0  
1.5  
1. Data based on characterization results, not tested in production.  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD, DLU and LU) using specific measurement methods, the  
product is stressed to determine its performance in terms of electrical sensitivity. For more  
details, refer to the application note AN1181.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts x (n+1) supply pin). One model  
can be simulated: Human body model. This test conforms to the JESD22-A114A/A115A  
standard. For more details, refer to the application note AN1181.  
Table 49. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge voltageTA 25°C, conforming to  
VESD(HBM)  
VESD(CDM)  
A
2000  
(Human body model)  
JESD22-A114  
V
Electrostatic discharge voltage  
(Charge device model)  
TA25°C, conforming to  
IV  
1000  
SD22-C101  
1. Data based on characterization results, not tested in production  
DocID14771 Rev 15  
89/121  
90  
 
 
 
Electrical characteristics  
Static latch-up  
STM8S105x4/6  
Two complementary static tests are required on 10 parts to assess the latch-up  
performance.  
A supply overvoltage (applied to each power supply pin), and  
A current injection (applied to each input, output and configurable I/O pin) are  
performed on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 50. Electrical sensitivities  
Class(1)  
Symbol  
Parameter  
Conditions  
TA 25 °C  
TA 85 °C  
TA 125 °C  
LU  
Static latch-up class  
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B  
class strictly covers all the JEDEC criteria (international standard).  
90/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Package information  
11  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
11.1  
LQFP48 package information  
Figure 47. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢅꢁꢀ MM  
'!5'% 0,!.%  
CCC  
#
$
,
$ꢂ  
$ꢃ  
,ꢂ  
ꢃꢇ  
ꢁꢀ  
ꢃꢈ  
ꢁꢆ  
B
ꢆꢉ  
ꢂꢃ  
0). ꢂ  
)$%.4)&)#!4)/.  
ꢂꢁ  
E
ꢀ"?-%?6ꢁ  
1. Drawing is not to scale.  
DocID14771 Rev 15  
91/121  
107  
 
 
 
Package information  
STM8S105x4/6  
Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.220  
-
0.0551  
0.0087  
-
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.080  
-
-
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
92/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Package information  
Figure 48. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package  
recommended footprint  
ꢄꢅꢀꢄ  
ꢂꢅꢁꢄ  
ꢄꢅꢃꢄ  
ꢃꢇ  
ꢁꢀ  
ꢃꢈ  
ꢁꢆ  
ꢄꢅꢁꢄ  
ꢈꢅꢃꢄ  
ꢊꢅꢈꢄ ꢀꢅꢉꢄ  
ꢈꢅꢃꢄ  
ꢆꢉ  
ꢂꢃ  
ꢂꢁ  
ꢂꢅꢁꢄ  
ꢀꢅꢉꢄ  
ꢊꢅꢈꢄ  
AIꢂꢆꢊꢂꢂD  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 49. LQFP48 marking example (package top view)  
3URGXFWꢅ  
LGHQWLILFDWLRQꢊꢂꢌ  
45.ꢀ4ꢁꢂꢃ  
$ꢄ5ꢅ  
'DWHꢅFRGH  
6WDQGDUGꢅ67ꢅORJR  
:
88  
5HYLVLRQꢅFRGH  
3LQꢅꢂꢅLGHQWLILHU  
3
06ꢀꢃꢀꢁꢃ9ꢂ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
DocID14771 Rev 15  
93/121  
107  
 
 
 
Package information  
STM8S105x4/6  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
11.2  
LQFP44 package information  
Figure 50. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢅꢁꢀ MM  
'!5'% 0,!.%  
#
CCC  
+
,
$
,ꢂ  
$ꢂ  
$ꢃ  
ꢁꢃ  
ꢃꢃ  
ꢁꢁ  
ꢃꢆ  
ꢆꢆ  
ꢂꢁ  
ꢂꢂ  
0). ꢂ  
E
)$%.4)&)#!4)/.  
ꢀ:@.&  
1. Drawing is not to scale.  
94/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Package information  
Table 52. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.300  
0.090  
11.800  
9.800  
-
-
1.600  
0.150  
1.450  
0.450  
0.200  
12.200  
10.200  
-
-
0.0020  
0.0531  
0.0118  
0.0035  
0.4646  
0.3858  
-
-
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.4803  
0.4016  
-
-
-
1.400  
0.370  
-
0.0551  
0.0146  
-
c
D
12.000  
10.000  
8.000  
12.000  
10.000  
8.000  
0.800  
0.600  
1.000  
3.5°  
0.4724  
0.3937  
0.3150  
0.4724  
0.3937  
0.3150  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
11.800  
9.800  
-
12.200  
10.200  
-
0.4646  
0.3858  
-
0.4803  
0.4016  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID14771 Rev 15  
95/121  
107  
 
Package information  
STM8S105x4/6  
Figure 51. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package  
recommended footprint  
ꢍꢍ  
ꢀꢍ  
ꢄꢈꢃ  
ꢀꢀ  
ꢂꢄꢈꢀ  
ꢁꢀ  
ꢂꢂ  
ꢂꢁ  
ꢁꢁ  
ꢂꢈꢁ  
ꢃꢈꢏ  
ꢂꢁꢈꢑ  
ꢍ<B)3  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
96/121  
DocID14771 Rev 15  
 
STM8S105x4/6  
Package information  
Figure 52. LQFP44 marking example (package top view)  
3URGXFWꢅ  
LGHQWLILFDWLRQꢊꢂꢌ  
45.ꢀ4ꢁꢂꢃ  
4ꢆ5ꢄ$  
'DWHꢅFRGH  
6WDQGDUGꢅ67ꢅORJR  
3LQꢅꢂꢅLGHQWLILHU  
:
88  
5HYLVLRQꢅFRGH  
3
06ꢀꢃꢀꢁꢐ9ꢂ  
1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
Samples to run qualification activity.  
DocID14771 Rev 15  
97/121  
107  
 
 
Package information  
STM8S105x4/6  
11.3  
LQFP32 package information  
Figure 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline  
3%!4).'  
0,!.%  
#
ꢄꢅꢁꢀ MM  
'!5'% 0,!.%  
CCC  
#
+
$
$ꢂ  
$ꢃ  
,
,ꢂ  
ꢁꢆ  
ꢂꢈ  
ꢂꢇ  
ꢁꢀ  
ꢃꢁ  
0). ꢂ  
)$%.4)&)#!4)/.  
E
ꢁ7@.&@7ꢂ  
1. Drawing is not to scale.  
98/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Package information  
Table 53. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package  
mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
-
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
-
-
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
-
-
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
-
-
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
-
-
-
1.400  
0.370  
-
0.0551  
0.0146  
-
c
D
9.000  
7.000  
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
-
9.200  
7.200  
-
0.3465  
0.2677  
-
0.3622  
0.2835  
-
E1  
E3  
e
-
-
-
-
L
0.450  
-
0.750  
-
0.0177  
-
0.0295  
-
L1  
k
0°  
7°  
0°  
7°  
ccc  
-
-
0.100  
-
-
0.0039  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID14771 Rev 15  
99/121  
107  
 
Package information  
STM8S105x4/6  
Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package  
recommended footprint  
ꢄꢅꢉꢄ  
ꢂꢅꢁꢄ  
ꢂꢀ  
ꢃꢇ  
ꢂꢁ  
ꢃꢆ  
ꢄꢅꢀꢄ  
ꢄꢈꢀꢄ  
ꢈꢅꢃꢄ  
ꢇꢅꢂꢄ  
ꢊꢅꢈꢄ  
ꢈꢅꢃꢄ  
ꢈꢂ  
ꢂꢅꢁꢄ  
ꢇꢅꢂꢄ  
ꢊꢅꢈꢄ  
ꢀ6?&0?6ꢁ  
1. Dimensions are expressed in millimeters.  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 55. LQFP32 marking example (package top view)  
3URGXFWꢅ  
LGHQWLILFDWLRQꢊꢂꢌ  
45.ꢀ4ꢁꢂ  
ꢃ,ꢆ5ꢅ$  
'DWHꢅFRGH  
6WDQGDUGꢅ67ꢅORJR  
:
88  
5HYLVLRQꢅFRGH  
3LQꢅꢂꢅLGHQWLILHU  
3
06ꢀꢃꢀꢀꢄ9ꢂ  
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
100/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Package information  
11.4  
UFQFPN32 package information  
Figure 56. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat  
package outline  
'
$
GGG  
&
$ꢂ  
$ꢁ  
H
&
6($7,1*  
3/$1(  
'ꢂ  
E
H
E
(ꢁ  
(ꢂ  
(
/
ꢀꢁ  
'ꢁ  
/
3,1ꢅꢂꢅ,GHQWLILHU  
!ꢄ"ꢉ?-%?6ꢁ  
1. Drawing is not to scale.  
2. All leads/pads should be soldered to the PCB to improve the lead/pad solder joint life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this backside pad to PCB ground.  
4. Dimensions are in millimeters.  
DocID14771 Rev 15  
101/121  
107  
 
 
 
Package information  
STM8S105x4/6  
Table 54. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat  
package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.500  
0.000  
-
0.550  
0.020  
0.152  
0.230  
5.000  
3.500  
3.500  
5.000  
3.500  
3.500  
0.500  
0.400  
-
0.600  
0.050  
-
0.0197  
0.0000  
-
0.0217  
0.0008  
0.0060  
0.0091  
0.1969  
0.1378  
0.1378  
0.1969  
0.1378  
0.1378  
0.0197  
0.0157  
-
0.0236  
0.0020  
-
0.180  
4.900  
3.400  
3.400  
4.900  
3.400  
3.400  
-
0.280  
5.100  
3.600  
3.600  
5.100  
3.600  
3.600  
-
0.0071  
0.1929  
0.1339  
0.1339  
0.1929  
0.1339  
0.1339  
-
0.0110  
0.2008  
0.1417  
0.1417  
0.2008  
0.1417  
0.1417  
-
D
D1  
D2  
E
E1  
E2  
e
L
0.300  
-
0.500  
0.080  
0.0118  
-
0.0197  
0.0031  
ddd  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 57. UFQFPN32 - 32-pin, 5 x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat  
package recommended footprint  
ꢏꢈꢀꢄ  
ꢀꢈꢃꢄ  
ꢄꢈꢇꢄ  
ꢂꢁ  
ꢈꢂ  
ꢂꢀ  
ꢀꢈꢍꢏ  
ꢀꢈꢃꢄ  
ꢏꢈꢀꢄ  
ꢀꢈꢍꢏ  
ꢄꢈꢏꢄ  
ꢃꢇ  
ꢄꢈꢀꢄ  
ꢃꢆ  
ꢄꢈꢑꢏ  
ꢀꢈꢃꢄ  
$ꢄ%ꢃB)3B9ꢁ  
1. Dimensions are expressed in millimeters.  
102/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Package information  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 58. UFQFPN32 marking example (package top view)  
3URGXFWꢅ  
LGHQWLILFDWLRQꢊꢂꢌ  
ꢀ4ꢁꢂꢃ,ꢄ  
'DWHꢅFRGH  
:
88  
5HYLVLRQꢅFRGH  
6WDQGDUGꢅ67ꢅORJR  
3LQꢅꢂꢅLGHQWLILHU  
3
06ꢀꢃꢀꢀꢂ9ꢂ  
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID14771 Rev 15  
103/121  
107  
 
 
Package information  
STM8S105x4/6  
11.5  
SDIP32 package information  
Figure 59. SDIP32 package outline  
%
%ꢂ  
!ꢁ  
!ꢂ  
!
,
"ꢂ  
"
E
E!  
E"  
#
$
ꢃꢁ  
ꢂꢈ  
ꢂꢇ  
ꢈꢇ?-%  
Table 55. SDIP32 package mechanical data  
mm  
inches(1)  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
B
3.556  
0.508  
3.048  
0.356  
0.762  
0.203  
27.430  
9.906  
7.620  
-
3.759  
-
5.080  
-
0.1400  
0.0200  
0.1200  
0.0140  
0.0300  
0.0079  
1.0799  
0.3900  
0.3000  
-
0.1480  
-
0.2000  
-
3.556  
0.457  
1.016  
0.254  
27.940  
10.410  
8.890  
1.778  
10.160  
4.572  
0.584  
1.397  
0.356  
28.450  
11.050  
9.398  
-
0.1400  
0.0180  
0.0400  
0.0100  
1.1000  
0.4098  
0.3500  
0.0700  
0.4000  
0.1800  
0.0230  
0.0550  
0.0140  
1.1201  
0.4350  
0.3700  
-
B1  
C
D
E
E1  
e
eA  
-
-
-
-
104/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
Package information  
Table 55. SDIP32 package mechanical data (continued)  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
eB  
L
-
-
12.700  
3.810  
-
-
0.5000  
0.1500  
2.540  
3.048  
0.1000  
0.1200  
1. Values in inches are converted from mm and rounded to 4 decimal digits  
Device marking  
The following figure gives an example of topside marking orientation versus pin 1 identifier  
location.  
Figure 60. SDIP32 marking example (package top view)  
3URGXFWꢅ  
LGHQWLILFDWLRQ ꢊꢂꢌ  
5HYLVLRQꢅFRGH  
3LQꢅꢂꢅLGHQWLILHU  
45.ꢀ4ꢁꢂꢃ,ꢆ#ꢄ  
'DWHꢅFRGH  
3
6WDQGDUGꢅ67ꢅORJR  
:88  
06ꢀꢃꢀꢀꢁ9ꢂ  
1. Parts marked as “ES”,”E” or accompanied by an Engineering Sample notification letter, are not yet  
qualified and therefore not yet ready to be used in production and any consequences deriving from such  
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering  
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering  
samples to run qualification activity.  
DocID14771 Rev 15  
105/121  
107  
 
 
Thermal characteristics  
STM8S105x4/6  
12  
Thermal characteristics  
The maximum junction temperature (T  
) of the device must never exceed the values  
Jmax  
specified in Table 18: General operating conditions, otherwise the functionality of the device  
cannot be guaranteed.  
The maximum junction temperature T  
following equation:  
, in degrees Celsius, may be calculated using the  
Jmax  
T
= T  
+ (P  
x )  
Dmax JA  
Jmax  
Amax  
Where:  
T
is the maximum ambient temperature in C  
Amax  
P
is the package junction-to-ambient thermal resistance in C/W  
JA  
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INTmax  
internal power.  
P
represents the maximum power dissipation on output pins  
I/Omax  
Where:  
P
= (V *I ) + ((V -V )*I ),   
I/Omax  
OL OL  
DD OH OH  
taking into account the actual V /I and V /I of the I/Os at low and high level in  
OL OL  
OH OH  
the application.  
(1)  
Table 56. Thermal characteristics  
Parameter  
Symbol  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP48 - 7x7 mm  
Thermal resistance junction-ambient  
LQFP44 - 10x10 mm  
Thermal resistance junction-ambient  
LQFP32 - 7x7 mm  
JA  
°C/W  
Thermal resistance junction-ambient  
UFQFPN32 - 5x5 mm  
Thermal resistance junction-ambient  
SDIP32 - 400 ml  
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection  
environment.  
12.1  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
106/121  
DocID14771 Rev 15  
 
 
 
 
STM8S105x4/6  
Thermal characteristics  
12.2  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code (see  
Section 13: Ordering information).  
The following example shows how to calculate the temperature range needed for a given  
application.  
Assuming the following application conditions:  
Maximum ambient temperature T  
= 82°C (measured according to JESD51-2),  
Amax  
I
= 15 mA, V = 5.5 V  
DDmax  
DD  
Maximum 8 standard I/Os used at the same time in output at low level with  
= 10 mA, V = 2 V  
I
OL  
OL  
Maximum 4 high sink I/Os used at the same time in output at low level with  
= 20 mA, V = 1.5 V  
I
OL  
OL  
Maximum 2 true open drain I/Os used at the same time in output at low level with  
= 20 mA, V = 2 V  
I
OL  
OL  
P
P
= 15 mA x 5.5 V= 82.5 mW  
INTmax  
= (10 mA x 2 V x 8) + (20 mA x 2 V x 2) + (20 mA x 1.5 V x 4) = 360 mW  
IOmax  
This gives: P  
= 82.5 mW and P  
= 360 mW:  
INTmax  
IOmax  
P
= 82.5 mW + 360 mW  
Dmax  
Thus: P  
= 443 mW.  
Dmax  
Using the values obtained in Table 56: Thermal characteristics T  
is calculated as  
Jmax  
follows:  
For LQFP32 60°C/W  
T
= 82°C + (60°C/W x 443 mW) = 82°C + 27°C = 109 °C  
Jmax  
This is within the range of the suffix 6 version parts (-40 < T < 131°C).  
J
Parts must be ordered at least with the temperature range suffix 3.  
DocID14771 Rev 15  
107/121  
107  
 
Ordering information  
STM8S105x4/6  
13  
Ordering information  
(1)  
Figure 61. STM8S105x4/6 access line ordering information scheme  
Example:  
STM8  
S
105  
K
4
T
6
TR  
Product class  
STM8 microcontroller  
Family type  
S = Standard  
Sub-family type  
10x = Access line  
105 sub-family  
Pin count  
K = 32 pins  
S = 44 pins  
C = 48 pins  
Program memory size  
4 = 16 Kbyte  
6 = 32 Kbyte  
Package type  
B = SDIP  
T = LQFP  
U = UFQFPN  
Temperature range  
3 = -40 to 125 °C  
6 = -40 to 85 °C  
Package pitch/thickness  
Blank = 0.5 mm  
C = 0.8 mm  
A = 0.55 mm thickness for UFQFPN32  
Packing  
No character = Tray or tube  
TR = Tape and reel  
1. A dedicated ordering information scheme will be released if, in the future, memory programming service  
(FastROM) is required The letter “P” will be added after STM8S. Three unique letters identifying the  
customer application code will also be visible in the codification. Example: STM8SP103K3MACTR.  
For a list of available options (for example memory size, package) and orderable part  
numbers or for further information on any aspect of this device, please go to www.st.com or  
contact the nearest ST Sales Office.  
108/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Ordering information  
13.1  
STM8S105 FASTROM microcontroller option list  
(last update: September 2010)  
Customer  
...............................................................................  
Address  
...............................................................................  
...............................................................................  
...............................................................................  
...............................................................................  
Contact  
Phone number  
FASTROM code reference(1)  
1. The FASTROM code name is assigned by STMicroelectronics.  
The preferable format for programing code is .Hex (.s19 is accepted)  
If data EEPROM programing is required, a separate file must be sent with the requested  
data.  
Note:  
See the option byte section in the datasheet for authorized option byte combinations and a  
detailed explanation.  
Device type/memory size/package (check only one option)  
FASTROM device  
LQFP32  
16 Kbyte  
32 Kbyte  
[ ] STM8S105K4  
[ ] STM8S105S4  
[ ] STM8S105C4  
[ ] STM8S105K6  
[ ] STM8S105S6  
[ ] STM8S105C6  
LQFP44  
LQFP48  
Conditioning (check only one option)  
[ ] Tape and reel or [ ] Tray  
Special marking (check only one option)  
[ ] No [ ] Yes  
Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character  
counts are:  
LQFP32: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”  
LQFP44: 2 lines of 7 characters max: “_ _ _ _ _ _ _” and “_ _ _ _ _ _ _”  
LQFP48: 2 lines of 8 characters max: “_ _ _ _ _ _ _ _” and “_ _ _ _ _ _ _ _”  
Temperature range  
[ ] -40°C to +85°C or [ ] -40°C to +125°C  
DocID14771 Rev 15  
109/121  
115  
 
Ordering information  
STM8S105x4/6  
Padding value for unused program memory (check only one option)  
[ ] 0xFF  
[ ] 0x83  
[ ] 0x75  
Fixed value  
TRAP instruction code  
Illegal opcode (causes a reset when executed)  
OTP0 memory readout protection (check only one option)  
[ ] Disable or [ ] Enable  
OTP1 user boot code area (UBC)  
0x(_ _) fill in the hexadecimal value, referring to the datasheet and the binary format below:  
[ ] 0: Reset  
UBC, bit0  
[ ] 1: Set  
[ ] 0: Reset  
UBC, bit1  
[ ] 1: Set  
[ ] 0: Reset  
UBC, bit2  
[ ] 1: Set  
[ ] 0: Reset  
UBC, bit3  
[ ] 1: Set  
[ ] 0: Reset  
UBC, bit4  
[ ] 1: Set  
[ ] 0: Reset  
UBC, bit5  
[ ] 1: Set  
OTP2 alternate function remapping  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR0  
(check only one option)  
[ ] 1: Port D3 alternate function = ADC_ETR  
[ ] 0: Remapping option inactive. Default alternate functions  
AFR1  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port A3 alternate function = TIM3_CH1, port D2 alternate  
function = TIM2_CH3  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR2  
[ ] 1: Port D0 alternate function = CLK_CCO  
(check only one option)  
Note: if both AFR2 and AFR3 are activated, AFR2 option has  
priority over AFR3.  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR3  
(check only one option)  
[ ] 1: Port D0 alternate function = TIM1_BKIN  
110/121  
DocID14771 Rev 15  
STM8S105x4/6  
Ordering information  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR4  
(check only one option)  
[ ] 1: Port D7 alternate function = TIM1_CH4  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR5  
[ ] 1: Port B3 alternate function = TIM1_ETR, port B2 alternate  
function = TIM1_NCC3, port B1 alternate function =  
TIM1_CH2N, port B0 alternate function = TIM1_CH1N.  
(check only one option)  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR6  
(check only one option)  
[ ] 1: Port B5 alternate function = I2C_SDA, port B4 alternate  
function = I2C_SCL  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
AFR6  
(check only one option)  
[ ] 1: Port D4 alternate function = BEEP.  
OPT3 watchdog  
WWDG_HALT  
[ ] 0: No reset generated on halt if WWDG active[  
[ ] 1: Reset generated on halt if WWDG active  
(check only one option)  
WWDG_HW  
[ ] 0: WWDG activated by software  
[ ] 1: WWDG activated by hardware  
(check only one option)  
IWDG_HW  
[ ] 0: IWDG activated by software  
[ ] 1: IWDG activated by hardware  
(check only one option)  
LSI_EN  
[ ] 0: LSI clock is not available as CPU clock source  
[ ] 1: LSI clock is available as CPU clock source  
(check only one option)  
HSITRIM  
[ ] 0: 3-bit trimming supported in CLK_HSITRIMR register  
[ ] 1: 4-bit trimming supported in CLK_HSITRIMR register  
(check only one option)  
OPT4 watchdog  
[ ] for 16 MHz to 128 kHz prescaler  
[ ] for 8 MHz to 128 kHz prescaler  
[ ] for 4 MHz to 128 kHz prescaler  
PRSC  
(check only one option)  
CKAWUSEL  
[ ] LSI clock source selected for AWU  
(check only one option)  
[ ] HSE clock with prescaler selected as clock source for AWU  
EXTCLK  
[ ] External crystal connected to OSCIN/OSCOUT  
[ ] External signal on OSCIN  
(check only one option)  
DocID14771 Rev 15  
111/121  
115  
Ordering information  
STM8S105x4/6  
OPT5 crystal oscillator stabilization HSECNT (check only one option)  
[ ] 2048 HSE cycles  
[ ] 128 HSE cycles  
[ ] 8 HSE cycles  
[ ] 0.5 HSE cycles  
OTP6 is reserved  
OTP7 is reserved  
OTPBL bootloader option byte (check only one option)  
Refer to the UM0560 (STM8L/S bootloader manual) for more details.  
[ ] Disable (00h)  
[ ] Enable (55h)  
Comments:  
.........................................................................................  
Supply operating range in the application: .........................................................................................  
Notes:  
.........................................................................................  
.........................................................................................  
.........................................................................................  
Date:  
Signature:  
112/121  
DocID14771 Rev 15  
STM8S105x4/6  
STM8 development tools  
14  
STM8 development tools  
Development tools for the STM8 microcontrollers include the full-featured STice emulation  
system supported by a complete software tool package including C compiler, assembler and  
integrated development environment with high-level language debugger. In addition, the  
STM8 is to be supported by a complete range of tools including starter kits, evaluation  
boards and a low-cost in-circuit debugger/programmer.  
14.1  
Emulation and in-circuit debugging tools  
The STice emulation system offers a complete range of emulation and in-circuit debugging  
features on a platform that is designed for versatility and cost-effectiveness. In addition,  
STM8 application development is supported by a low-cost in-circuit debugger/programmer.  
The STice is the fourth generation of full featured emulators from STMicroelectronics. It  
offers new advanced debugging capabilities including profiling and coverage to help detect  
and eliminate bottlenecks in application execution and dead code when fine tuning an  
application.  
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via  
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an  
application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows you to  
order exactly what you need to meet your development requirements and to adapt your  
emulation system to support existing and future ST microcontrollers.  
14.1.1  
STice key features  
Occurrence and time profiling and code coverage (new features),  
Advanced breakpoints with up to 4 levels of conditions,  
Data breakpoints,  
Program and data trace recording up to 128 KB records,  
Read/write on the fly of memory during emulation,  
In-circuit debugging/programming via SWIM protocol,  
8-bit probe analyzer,  
1 input and 2 output triggers,  
Power supply follower managing application voltages between 1.62 to 5.5 V,  
Modularity that allows you to specify the components you need to meet your  
development requirements and adapt to future requirements.  
Supported by free software tools that include integrated development environment  
(IDE), programming software interface and assembler for STM8.  
DocID14771 Rev 15  
113/121  
115  
 
 
 
STM8 development tools  
STM8S105x4/6  
14.2  
Software tools  
STM8 development tools are supported by a complete, free software package from  
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual  
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8, which are available in a free version that outputs up  
to 16 Kbytes of code.  
14.2.1  
STM8 toolset  
The STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com. This package includes:  
ST visual develop  
Full-featured integrated development environment from STMicroelectronics, featuring:  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST visual programmer (STVP)  
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8  
Flash program memory, data EEPROM and option bytes. STVP also offers project mode for  
the saving of programming configurations and the automation of programming sequences.  
14.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of user  
applications directly from an easy-to-use graphical interface.  
Available toolchains include:  
C compiler for STM8  
Available in a free version that outputs up to 16 Kbytes of code. For more information, see  
www.cosmic-software.com.  
STM8 assembler linker  
Free assembly toolchain included in the STVD toolset, used to assemble and link the user  
application source code.  
114/121  
DocID14771 Rev 15  
 
 
 
STM8S105x4/6  
STM8 development tools  
14.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8 Flash  
microcontroller on the application board via the SWIM protocol. Additional tools include a  
low-cost in-circuit programmer as well as ST socket boards, which provide dedicated  
programming platforms with sockets for the STM8 programming.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
DocID14771 Rev 15  
115/121  
115  
 
Revision history  
STM8S105x4/6  
15  
Revision history  
Table 57. Document revision history  
Date  
Revision  
Changes  
05-Jun-2018  
1
Initial release.  
Corrected the number of high sink outputs to 9 in I/Os in  
Features.  
23-Jun-2018  
12-Aug-2008  
2
3
Updated part numbers in STM8S105xx access line  
features.  
Updated the part numbers in STM8S105xx access line  
features.  
USART renamed UART1, LINUART renamed UART2.  
Added Table: Pin-to-pin comparison of pin 7 to 12 in 32-  
pin access line devices.  
Removed STM8S102xx and STM8S104xx root part  
numbers corresponding to devices without data  
EEPROM.  
Updated STM8S103 pinout section  
17-Sep-2008  
4
Added low and medium density Flash memory  
categories.  
Added Note 1 in Section: Current characteristics.  
Updated Section: Option bytes.  
Updated STM8S103 pinout.  
Updated number of High Sink I/Os in the pinout section.  
TSSOP20 pinout modified (PD4 moved to pin 1 etc.)  
Added WFQFN20 package  
05-Feb-2009  
27-Feb-2009  
5
6
Updated Section: Option bytes.  
Added Section: Memory and register map.  
Removed STM8S103x products (separate STM8S103  
datasheet created).  
Updated Section: Electrical characteristics.  
116/121  
DocID14771 Rev 15  
 
 
STM8S105x4/6  
Revision history  
Table 57. Document revision history (continued)  
Date  
Revision  
Changes  
Added SDIP32 silhouette and package to Features and  
Section: SDIP32 package mechanical data; updated  
Section: Pinout and pin description.  
Updated VDD range (2.95 V to 5.5 V) on Features.  
Amended name of package VQFPN32.  
Added Table 5 on page 22.  
Updated Section: Auto wakeup counter.  
Updated pins 25, 30, and 31 in Section: Pinout and pin  
description.  
Removed Table 7: Pin-to-pin comparison of pin 7 to 12  
in 32-pin access line devices.  
Added Table: Description of alternate function  
remapping bits [7:0] of OPT2.  
Section: Electrical characteristics: Updated VCAP  
specifications; updated Table 15, Table 18, Table 20,  
Table 21, Table 22, Table 23, Table 24, Table 25, Table  
26, Table 27, Table 29, Table 35, and Table 42; added  
current consumption curves; removed Figure 20: typical  
HSE frequency vs fcpu @ 4 temperatures; updated  
Figure 13, Figure 14, Figure 15, Figure 16 and Figure  
17; modified HSI accuracy in Table 33 ; added Figure  
44; modified fSCK, tV(SO) and tV(MO) in Table 42; updated  
figures and tables of High speed internal RC oscillator  
(HSI); replaced Figure 23, Figure 24, Figure 26, and  
Figure 39.  
12-May-2009  
7
Section Package information: updated Section: Thermal  
characteristics and removed Table 57: Junction  
temperature range. Updated Section: STM8S105xx  
access line ordering information scheme.  
Document status changed from “preliminary data” to  
“datasheet”.  
10-Jun-2009  
8
Standardized the name of the VFQFPN package.  
Removed ‘wpu’ from I2C pins Section: Pinout and pin  
description  
DocID14771 Rev 15  
117/121  
120  
Revision history  
STM8S105x4/6  
Table 57. Document revision history (continued)  
Date  
Revision  
Changes  
Added UFQFPN32 package silhouette to the title page.  
In Features: added unique ID.  
Section: Clock controller: updated bit positions for TIM2  
and TIM3.  
Section: Beeper: added information about availability of  
the beeper output port through option bit AFR7.  
Section: Analog-to-digital converter (ADC1): added a  
note concerning additional AIN12 analog input.  
Section: STM8S105 pinouts and pin description: added  
UFQFPN32 package details; updated default alternate  
function of PB2/AIN2[TIM1_CH3N] pin in the "Pin  
description for STM8S105 microcontrollers" table.  
Section: Option bytes: added description of STM8L  
bootloader option bytes to the option byte description  
table.  
Added Section: Unique ID  
Section: Operating conditions: added introductory text;  
removed low power dissipation condition for TA,  
replaced "CEXT" by "VCAP", and added ESR and ESL  
data in table "general operating conditions".  
Section: Total current consumption in halt mode:  
replaced max value of IDD(H) at 85 °C from 20 µA to 25  
µA for the condition "Flash in powerdown mode, HSI  
clock after wakeup in the table "total current  
consumption in halt mode at VDD = 5 V.  
21-Apr-2010  
9
Section: Low power mode wakeup times: added first  
condition (0 to 16 MHz) for the tWU(WFI) parameter in the  
table "wakeup times".  
Section: Internal clock sources and timing  
characteristics: In the table: HSI oscillator  
characteristics, replaced min and max values of  
ACCHSI factory calibrated parameter and removed  
footnote 4 concerning further characterization of results.  
Section: Functional EMS (electromagnetic  
susceptibility): IEC 1000 replaced with IEC 61000.  
Section: Designing hardened software to avoid noise  
problems: IEC 1000 replaced with IEC 61000.  
Section: Electromagnetic interference (EMI): SAE J  
1752/3 replaced with IEC61967-2.  
Section: Thermal characteristics: Replaced the thermal  
resistance junction ambient temperature of LQFP32 7X7  
mm from 59 °C to 60 °C in the thermal characteristics  
table.  
Added Section: 32-lead UFQFPN package mechanical  
data.  
Added Section STM8S105 FASTROM microcontroller  
option list.  
118/121  
DocID14771 Rev 15  
STM8S105x4/6  
Revision history  
Table 57. Document revision history (continued)  
Date  
Revision  
Changes  
Table: Legend/Abbreviations for pinout tables: updated  
"reset state"; removed "HS", (T), and "[ ]".  
Section: Pin description for STM8S105 microcontrollers:  
added footnotes to the PF4 and PD1 pins.  
Table: I/O port hardware register map: changed reset  
status of Px_IDR from 0x00 to 0xXX.  
Table: General hardware register map: Standardized all  
address and reset state values; updated the reset state  
values of the RST_SR, CLK_SWCR, CLK_HSITRIMR,  
CLK_SWIMCCR, IWDG_KR, UART2_DR, and  
ADC_DRx registers; replaced reserved address "0x00  
5248" with the UART2_CR5.  
21-Sep-2010  
10  
Section: Recommended reset pin protection: replaced  
0.01 µF with 0.1 µF  
Updated Figure: Typical application with I2C bus and  
timing diagram.  
Updated Table: ADC accuracy with RAIN < 10 kohm ,  
VDDA = 5 V footnote 1 in and Table: ADC accuracy with  
RAIN < 10 kohm RAIN, VDDA = 3.3 V.  
Section: STM8S105 FASTROM microcontroller option  
list: removed bits 6 and 7 from OPT1 user boot code  
area (UBC); added "disable" to 00h and "enable" to 55h  
of OPTBL bootloader option byte.  
Section: VFQFPN Package Mechanical data: replaced  
note 1 and added note 2.  
Removed VFQFPN32 package.  
Modified Section: Description.  
Remove weak pull-up input for PE1 and PE2 in Table:  
Pin description for STM8S105 microcontrollers  
Updated Table: Interrupt mapping for TIM2 and TIM4.  
Updated notes related to VCAP in xm-replace_text  
General operating conditions.  
Added values of tR/tF for 50 pF load capacitance, and  
updated note in Section: I/O static characteristics.  
04-Apr-2012  
11  
Updated typical and maximum values of RPU in Table:  
I/O static characteristics and Table: RST pin  
characteristics.  
Changed SCK input to SCK output in Table: SPI serial  
peripheral interface.  
Added JA for UFQFPN32 and SDIP32 in Table:  
Thermal characteristics, and updated Section: Selecting  
the product temperature range  
Added UFQFPN package thickness in Figure:  
STM8S105xx access line ordering information scheme  
28-Jun-2012  
12  
DocID14771 Rev 15  
119/121  
120  
Revision history  
STM8S105x4/6  
Table 57. Document revision history (continued)  
Date  
Revision  
Changes  
UART2_CK mapped to correct pin (pin 24) in Figure:  
LQFP 44-pin pinout.  
07-Feb-2014  
13  
Reserved area updated in Table: Option bytes.  
Package Information updated in Table: 32-lead ultra thin  
fine pitch quad flat no-lead package mechanical data.  
Added:  
Figure 49: LQFP48 marking example (package top  
view),  
Figure 52: LQFP44 marking example (package top  
view),  
Figure 55: LQFP32 marking example (package top  
view),  
01-Jul-2015  
14  
Figure 58: UFQFPN32 marking example (package top  
view),  
Figure 60: SDIP32 marking example (package top  
view).  
Updated:  
Figure 41: SPI timing diagram where slave mode and  
CPHA = 0,  
– the standard for EMI data in Table 48: EMI data.  
Added the footnotes related to Figure 56: UFQFPN32 -  
32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad  
flat package outline.  
23-Sep-2015  
15  
120/121  
DocID14771 Rev 15  
STM8S105x4/6  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID14771 Rev 15  
121/121  
121  
 

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX