STM8T143AUMEI2TR [STMICROELECTRONICS]

Single-channel capacitive sensor for touch and proximity detection;
STM8T143AUMEI2TR
型号: STM8T143AUMEI2TR
厂家: ST    ST
描述:

Single-channel capacitive sensor for touch and proximity detection

输出元件 传感器 换能器
文件: 总65页 (文件大小:1158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8T143  
Single-channel capacitive sensor for touch and proximity detection  
Datasheet - production data  
Applications  
Ear-face proximity detection for smart phone  
devices  
Companion device for navigation  
joystick/optical track pad  
SO8  
(narrow)  
UFDFPN8  
(2 x 3 mm)  
User hand detection for Nomad equipment  
(tablet PC)  
Ear-head detection for MP3/walkman ear buds  
and Bluetooth headsets  
Features  
On/off touch sensing button such as GPS  
system home button  
Touch and short range proximity detection  
Internal sampling capacitor  
User hands detection for mouse/keyboards  
Wall switch backlight activation on user  
On-chip integrated voltage regulator  
Automatic electrode tuning (AET)  
approach and light controls on user touch  
Electrode parasitic capacitance compensation  
(EPCC)  
Dynamic calibration (DYCAL™)  
Environment control system (ECS)  
User programmable options include:  
Configurable output modes  
Configurable sensitivity levels  
Data streaming mode  
Low power management  
Operating supply voltage: 3 V to 5.5 V  
Supported interface:  
– Individual key state output  
– Single wire data interface  
Operating temperature: -40 to +85 °C  
ECOPACK® 8-pin SO and 8-pin UFDFPN  
packages  
October 2013  
DocID18315 Rev 6  
1/65  
This is information on a product in full production.  
www.st.com  
 
Contents  
STM8T143  
Contents  
1
2
3
4
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
STM8T ProxSense technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1  
4.2  
4.3  
4.4  
Capacitive sensing overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Charge-transfer acquisition principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Internal sampling capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Electrode parasitic capacitance compensation (EPCC) . . . . . . . . . . . . . . 13  
5
STM8T143 processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1  
5.2  
5.3  
5.4  
5.5  
Automatic electrode tuning (AET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Signal calculation and reference calibration . . . . . . . . . . . . . . . . . . . . . . . 15  
Detection and release thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Dynamic calibration (DYCAL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Environment control system (ECS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
ECS principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
ECS halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reference freeze and reference freeze timeout . . . . . . . . . . . . . . . . . . 23  
ECS filter constant adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5.6  
Debounce filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.1  
6.2  
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Device operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.2.1  
6.2.2  
6.2.3  
Dual output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Data streaming mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3  
6.4  
Output polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
2/65  
DocID18315 Rev 6  
STM8T143  
Contents  
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
8
8.1  
Sensitivity adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1.1  
PCB layout and construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.1.1  
9.1.2  
9.1.3  
9.1.4  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.2  
9.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
9.3.1  
9.3.2  
9.3.3  
General operating conditions and supply characteristics . . . . . . . . . . . 38  
Average current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
I/O pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.4  
9.5  
9.6  
9.7  
Regulator and reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Capacitive sensing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Streaming mode characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.7.1  
9.7.2  
9.7.3  
9.7.4  
9.7.5  
9.7.6  
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 45  
Prequalification trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 46  
Electrostatic discharge (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Static latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
10  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
10.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.1.1 SO8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
10.1.2 UFDFPN8 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.2 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
11  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
DocID18315 Rev 6  
3/65  
4
Contents  
STM8T143  
11.1 STM8T143 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . 53  
11.2 Orderable favorite device lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.2.1  
Part number option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.3 In-factory option byte programming service . . . . . . . . . . . . . . . . . . . . . . . 54  
11.4 Revision code on device markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
12  
13  
STM8T143 programming tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4/65  
DocID18315 Rev 6  
STM8T143  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
STM8T143 pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Option byte description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Pin 1 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Pin 8 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Data streaming frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Average current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
OUT/TOUT/DATA streaming pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
POUT/TOUT pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
CTRL pin characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Regulator and reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
General capacitive sensing characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Internal C value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
S
Implemented EPCC values (pF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
External sensing component characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Data streaming timing characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SO8-lead plastic small outline - package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . 48  
UFDFPN8-lead ultra thin fine pitch dual flat - package mechanical data . . . . . . . . . . . . . . 50  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Option byte values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Device identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DocID18315 Rev 6  
5/65  
5
List of figures  
STM8T143  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM8T143 block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
SO8 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
UFDFPN8 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Coupling with hand increases the capacitance of the sensing electrode . . . . . . . . . . . . . . 11  
STM8T143 measuring circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Signal monitored on C pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
X
Automatic electrode tuning (AET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Signal reference and detection threshold (not detailed) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DYCAL general operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. DYCAL operation with water residue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 11. No DYCAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 12. IIR filter formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13. ECS halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 14. Unwanted detection managed by the reference freeze timeout . . . . . . . . . . . . . . . . . . . . . 23  
Figure 15. ECS filter K constant management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 16. Data streaming frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 17. Typical application schematic for Control mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 18. Typical application schematic for Dual output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 19. Typical application schematic for Data streaming mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 20. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 21. Data streaming timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 22. SO8-lead plastic small outline - package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 23. SO8 narrow recommended footprint (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Figure 24. UFDFPN8-lead ultra thin fine pitch dual flat package (MLP) package outline . . . . . . . . . . 50  
Figure 25. UFDFPN 2 x 3 mm recommended footprint (dimensions in mm) . . . . . . . . . . . . . . . . . . . . 51  
Figure 26. STM8T143 ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 27. SO8 package marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 28. UFDFPN8 package marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 29. STM8T143 programming tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
6/65  
DocID18315 Rev 6  
STM8T143  
Description  
1
Description  
The STM8T143 is a single channel, fully integrated, touch sensing capacitive sensor. It uses  
a ProxSense™ charge transfer capacitive acquisition method that is capable of near range  
proximity detection. The STM8T143 offers a state of the art capacitive sensing engine with  
an embedded sampling capacitor and voltage regulator allowing the overall solution cost to  
be reduced and improving system immunity in noisy environments. It can target a detection  
range up to 20 cm thanks to the electrode parasitic capacitance compensation (EPCC)  
feature. The EPCC automatically compensates ground parasitic capacitance sources (such  
as ground planes, printed circuit board tacks, and large metal objects) which significantly  
reduce the proximity detection range.  
The application fields or typical functions with proximity features are various and include:  
on/off switches, replacement/enhancement, home buttons, backlighting feature on proximity  
for user interfaces, wakeup or control function on proximity, find-in-the-dark for lighting  
equipment, and companion device for battery saving in portable equipment.  
The device has been designed to be used in applications where proximity is required and  
touch conditions can prevail for an extended period of time which may result in  
uncompensated drift in conventional capacitive sensors. Therefore, a process called  
DYCAL is implemented.  
The STM8T143 is an ideal alternative, cost-effective, and extremely low power solution to  
replace conventional infrared optical proximity sensors. Capacitive sensing technology is  
not sensitive to sunlight or artificial light effects. The STM8T143 offers a much lower  
consumption (12 µA range versus 100 µA range) and a small form factor (DFN8 2*3*0.65  
mm). Lastly, there is no need for a clear opening on the bezel to let light pass through.  
The STM8T143 is offered in 8-pin packages and features both touch and proximity sensing  
outputs.  
The STM8T143 touch pad can sense through almost any dielectric and thereby allows the  
electronics to be contained in a sealed enclosure.  
Note:  
ProxSense™ is a trademark of Azoteq (Pty) Ltd.  
DocID18315 Rev 6  
7/65  
64  
Block diagram  
STM8T143  
2
Block diagram  
Figure 1. STM8T143 block diagram  
9ROWDJH  
9''  
95(*  
UHJXODWRU  
$QDORJ  
VZLWFK  
&RPSDUDWRU  
&XUUHQW  
PLUURU  
287ꢅ7287ꢅ'$7$  
&75/ꢅ3287  
0&8ꢆV\VWHP  
HQJLQH  
9
75,3  
&
6
2SWLRQ  
E\WH  
5&  
RVF  
&;  
9DULDEOH  
QHJDWLYH  
FDSDFLWDQFH  
&
(3&&  
$GYDQFHGꢆ3UR[6HQVHꢆHQJLQHꢆꢆꢆꢆ  
DLꢀꢁꢂꢃꢄF  
RC oscillator  
The 1-MHz RC oscillator is an internal fixed frequency oscillator used to supply the clock to  
the MCU system engine.  
Voltage regulator  
The voltage regulator has an internal comparison and feedback circuit that ensures the  
V
voltage is kept stable and constant. The regulator requires an external smoothing  
REG  
capacitor.  
MCU system engine  
The MCU system engine controls the capacitive sensing engine and processes touch and  
proximity detection signals.  
Advanced ProxSense engine  
The advanced ProxSense engine circuitry uses a charge-transfer method to detect  
capacitance changes. It features:  
An analog voltage comparator  
A programmable internal sampling capacitor  
A system that allows the ground parasitic capacitance to be compensated to improve  
the system sensitivity. This system is called electrode parasitic capacitance  
compensation (EPCC).  
8/65  
DocID18315 Rev 6  
 
 
STM8T143  
Pin descriptions  
3
Pin descriptions  
Figure 2. SO8 pinout  
287ꢉꢀꢊꢅ7287ꢉꢇꢊꢅ'$7$ꢉꢋꢊ  
&75/ꢉꢀꢊꢅ3287ꢉꢇꢊ  
966  
1&  
95(*  
1&  
&
9''  
;
DLꢀꢂꢇꢈꢁH  
Figure 3. UFDFPN8 pinout  
287ꢉꢀꢊꢅ7287ꢉꢇꢊꢅ'$7$ꢉꢋꢊ  
&75/ꢉꢀꢊꢅ3287ꢉꢇꢊ  
966  
1&  
95(*  
1&  
&
9''  
;
DLꢀꢁꢃꢁꢈH  
1. Control mode  
2. Dual output mode  
3. Data streaming mode  
DocID18315 Rev 6  
9/65  
64  
 
 
Pin descriptions  
STM8T143  
Table 1. STM8T143 pin descriptions  
Pin  
no.  
Mode  
Pin type(1)  
Pin name  
Pin function(2)  
Control mode  
OD/PP  
OUT  
TOUT  
DATA  
VSS  
Touch or proximity output  
Touch output  
1
Dual output mode  
OD/PP  
Data streaming mode  
OD  
Data streaming output  
Ground  
2
3
4
5
6
7
-
S
-
-
SNS  
S
NC  
Not connected  
-
CX  
Capacitive sensing channel pin to RX  
Supply voltage  
-
VDD  
-
-
NC  
Not connected  
-
S
VREG  
CTRL  
POUT  
Internal voltage regulator output(3)  
Control input  
Control mode  
Dual output mode  
I
8
PP  
Proximity output  
1. S: power supply, SNS: capacitive sensing, OD: output open drain, PP: output push-pull, and I: input  
2. Pin function depends on option byte configuration (please refer to Section 6: Device operation)  
3. Requires a low equivalent series resistance (ESR), 1µF capacitor to ground. This output must not be used  
to power other devices.  
10/65  
DocID18315 Rev 6  
 
STM8T143  
STM8T ProxSense technology  
4
STM8T ProxSense technology  
4.1  
Capacitive sensing overview  
A capacitance exists between any reference point and ground as long as they are  
electrically isolated. If this reference point is a sensing electrode, it can help to think of it as  
a capacitor. The positive electrode of the capacitor is the sensing electrode, and the  
negative electrode is formed by the surrounding area (virtual ground reference in Figure 4).  
Figure 4. Coupling with hand increases the capacitance of the sensing electrode  
Sensing electrode  
CT  
CX  
Lower capacitance  
Higher capacitance  
When a conductive object is brought into proximity of the sensing electrode, coupling  
appears between them, and the capacitance of the sensing electrode relative to ground  
increases. For example, a human hand raises the capacitance of the sensing electrode as it  
approaches it. Touching the dielectric panel that protects the electrode increases its  
capacitance significantly.  
4.2  
Charge-transfer acquisition principle  
To measure changes in the electrode capacitance, STM8T devices employ bursts of  
charge-transfer cycles.  
The measuring circuitry is connected to the C pin. It is composed of a serial resistor R  
X
X
plus the sensing electrode itself of equivalent capacitance C (see Figure 5). The sensing  
X
electrode can be made of any electrically conductive material, such as copper on PCBs, or  
transparent conductive material like Indium Tin Oxide (ITO) deposited on glass or Plexiglas.  
The dielectric panel usually provides a high degree of isolation to prevent electrostatic  
discharge (ESD) from reaching the STM8T touch sensing controller. Connecting the serial  
resistor (R ) to the C pin improves ESD immunity even more.  
X
X
DocID18315 Rev 6  
11/65  
64  
 
STM8T ProxSense technology  
STM8T143  
Figure 5. STM8T143 measuring circuitry  
& ꢆꢆꢉaꢍꢆS)ꢊ  
7
ꢉꢀꢊ  
6HULDOꢆUHVLVWRUꢆꢉ5;  
;
(DUWK  
&;  
'HYLFH  
&
;ꢆꢉaꢇꢈꢆS)ꢊ  
DLꢀꢍꢍꢀꢍF  
1. RX must be placed as close as possible to the device.  
The principle of charge transfer is to charge the electrode capacitance (C ) using a stable  
X
power supply. When C is fully charged, part of the accumulated charge is transferred from  
X
C to an internal sampling capacitance, referred to as C . The transfer cycle is repeated  
X
S
until the voltage across the sampling capacitor C reaches the end of acquisition reference  
S
voltage (V  
). The change in the electrode capacitance, caused by the presence or  
TRIP  
absence of the human body, is detected by measuring the number of transfer cycles  
composing a burst (see Figure 6).  
Throughout this document the following naming conventions apply:  
The charge transfer period (tTRANSFER) refers to the charging of C and the  
X
subsequent transfer of the charge to C .  
S
The burst cycle duration (t  
) is the time required to charge C to V  
. The burst  
TRIP  
BURST  
S
count is the number of charge transfer periods (t  
) during one t  
cycle.  
TRANSFER  
BURST  
The sampling period (t  
) is the acquisition rate.  
SAMPLING  
Figure 6. Signal monitored on C pin  
X
W
75$16)(5  
&
;
W
%8567  
W
7
%8567  
3&(  
9
W
&;/  
6$03/,1*  
W
$Lꢀꢂꢃꢄꢌ  
12/65  
DocID18315 Rev 6  
 
 
STM8T143  
STM8T ProxSense technology  
4.3  
Internal sampling capacitor  
To reduce the application cost and increase the device flexibility, the STM8T143 features  
several internal sampling capacitors to fit a wide range of applications.  
4.4  
Electrode parasitic capacitance compensation (EPCC)  
The implementation of an electrode pad in a system always induces parasitic capacitances  
through tracks and surrounding components.The electrode parasitic capacitance is the  
residual capacitance between electrode and ground when no finger is present.  
The EPCC is an internal hardware circuitry that compensates part of the electrode parasitic  
capacitance to improve the capacitive sensing channel sensitivity.  
DocID18315 Rev 6  
13/65  
64  
 
 
STM8T143 processing  
STM8T143  
5
STM8T143 processing  
The STM8T143 device is designed to ensure reliable operation whatever the environment  
and operating conditions. To achieve this high level of robustness, dedicated processing  
have been implemented:  
Automatic electrode tuning (AET)  
Signal and reference calibration  
Detection and release thresholds  
Dynamic calibration (DYCAL)  
Environment control system (ECS)  
Debounce filter  
Host control input  
5.1  
Automatic electrode tuning (AET)  
AET is a sophisticated technology implemented in the STM8T143 device. It optimizes the  
performance of the device in a wide range of applications and environmental conditions.  
AET algorithm automatically adjusts the internal C capacitor and EPCC parameters to  
S
optimize system performance. Please refer to:  
Table 17: Internal CS value for possible resulting values of this internal sampling  
capacitance  
Table 18: Implemented EPCC values (pF) for possible values of the EPCC  
capacitance.  
The principle is to select an internal C capacitor and EPCC to obtain a burst count in a  
S
predefined range of AET target value ± 256 burst counts.  
At device startup, C is selected to reach the nearest signal burst count value to a “gain  
S
target value”. Then, the EPCC hardware subtracts an increasing capacitance value until a  
“AET target value” is reached. During normal device operation, the EPCC hardware  
subtracts from the electrode capacitance (C ), the compensation capacitance value  
X
determined during the calibration phase.  
This automatic system adaptation allows the same burst count number to be reached  
regardless of the application electrode and surrounding.  
The AET gain can be adjusted by selecting the gain target value through the “Gain target”  
option bits.  
The AET algorithm is executed whenever the device starts-up and during device operation  
when the reference exits burst count range.  
During the AET processing (t  
), proximity and touch events cannot be detected (please  
AET  
refer to Table 6: Data streaming frame). In Data streaming mode, the AET activity is  
reported and the internal C and EPCC values can be monitored (see Section 6.2.3: Data  
S
streaming mode).  
14/65  
DocID18315 Rev 6  
 
 
STM8T143  
STM8T143 processing  
Figure 7. Automatic electrode tuning (AET)  
5HIHUHQFHꢆ  
ꢉEXUVWꢆFRXQWꢊ  
7KHQꢎꢆWKHꢆ(3&&ꢆYDOXHꢆLVꢆ  
VHOHFWHGꢆWKURXJKꢆDꢆGLFKRWRP\ꢆ  
DOJRULWKPꢆXQWLOꢆWKHꢆEXUVWꢆFRXQWꢆ  
UHDFKHVꢆWKHꢆ$(7ꢆWDUJHWꢆYDOXH  
$(7  
*DLQ  
)LUVWꢎꢆWKHꢆ&6ꢆYDOXHꢆLVꢆLQFUHDVHGꢆXQWLOꢆ  
WKHꢆEXUVWꢆFRXQWꢆUHDFKHVꢆWKHꢆJDLQꢆ  
WDUJHWꢆYDOXHꢆVHOHFWHGꢆE\ꢆRSWLRQꢆE\WHV  
ꢌꢆELWVꢆ  
(3&&  
VHOHFWLRQ  
W
ꢋꢆELWVꢆ&6ꢆVHOHFWLRQꢆ  
ꢉ&(3&&ꢆVHWꢆWRꢆꢈꢊ  
&
DLꢀꢁꢂꢁꢀE  
1. For the AET and gain target values, please refer to Table 16: General capacitive sensing characteristics.  
5.2  
Signal calculation and reference calibration  
The capacitance change, induced by the presence of a finger or a hand in the device  
detection area, is sensed by the variation in the number of charge transfer pulses  
composing the burst. The number of charge transfer pulses is called “burst count”. The burst  
count is filtered against the noise and compared to a “reference” to determine if there is a  
touch/proximity detection. Please refer to Section 5.5: Environment control system (ECS)  
for more details about the filtering process.  
The reference is calculated at device startup during the calibration phase by averaging the  
first 44 measurements before normal device operation.  
Then, the environment control system takes care of the reference slow evolution over time.  
DocID18315 Rev 6  
15/65  
64  
 
 
STM8T143 processing  
STM8T143  
5.3  
Detection and release thresholds  
During the detection operation, after calibration is over, the STM8T143 switches between  
three operating states: no detection, proximity detection, and touch detection. The switch  
between these states is driven by the difference between the signal and the reference.  
The system goes from no detection to proximity detection state when the (reference - signal)  
is higher than the proximity threshold (PTh). In this state, the ECS is halted and the  
reference is frozen.  
The system goes from no detection or proximity detection state to touch detection state  
when the (reference - signal) is higher than the touch threshold (TTh). When this happens,  
the reference value is changed to reflect the touch state after the delay t  
is called dynamic calibration (DYCAL).  
. This process  
DYCAL  
The system goes from the touch detection to no detection state when the (signal -  
reference) goes above the release threshold (RTh). At this point, another DYCAL occurs for  
the reference to represent the untouched state again.  
For higher flexibility, several proximity and touch detection thresholds are available and  
independently selectable through option byte: one PTh and one TTh.  
The touch thresholds allow the touch sensitivity to be adapted to the panel thickness  
and the electrode sensitivity.  
The proximity thresholds allow the STM8T143 device to adapt to various surroundings  
and to tune the detection distance.  
The release threshold is a ratio of the touch threshold noted (TTh). TTh is selected by the  
“touch detection threshold” option bits. The ratio is selected by the “release threshold ratio”  
option bits.  
A time filtering, similar to the debouncing of the mechanical switches, is applied to avoid  
noise induced detections.  
Please refer to Section 5.6: Debounce filter for operation details.  
Figure 8 simplifies the proximity and touch detection event according to the signal variation  
Δ (signal)”. The Δ (signal) is the absolute value of the reference minus the signal.  
16/65  
DocID18315 Rev 6  
 
'
                                              
ꢉVLJQDOꢊ  
ꢐꢆ77K  
STM8T143  
STM8T143 processing  
Figure 8. Signal reference and detection threshold (not detailed)  
5HIHUHQFH  
6LJQDO  
37K  
77K  
57K  
W
'<&$/  
W
$(7B+$/7  
3UR[LPLW\  
'HWHFWLRQ  
7RXFK  
'HWHFWLRQ  
'ꢉVLJQDOꢊꢆ ꢆ  
5HIꢏ6LJQDO  
37Kꢆꢐꢆꢆ  
'ꢉVLJQDOꢊ  
'
ꢉVLJQDOꢊꢆꢐꢆ77Kꢆ  
'
57Kꢆꢐꢆ ꢉVLJQDOꢊ  
'
ꢉVLJQDOꢊꢆ  
ꢐꢆ57K  
37Kꢆꢐꢆ  
DLꢀꢁꢂꢁꢈ  
1. tAET_HALT = AET halt period after end of detection.  
DocID18315 Rev 6  
17/65  
64  
 
STM8T143 processing  
STM8T143  
5.4  
Dynamic calibration (DYCAL)  
The STM8T143 DYCAL process is based on a dynamic threshold and reference  
management which allows tracking of slow environmental changes even when the sensor is  
in touch state. A low threshold is used to detect the proximity of an object, with a higher  
threshold for touch detection. DYCAL is performed when a touch condition is detected for  
longer than a certain period (t  
). When a release condition occurs, the DYCAL  
DYCAL  
operation is performed instantaneously. Figure 9 represents the DYCAL operation for the  
touch event (DYCAL_T) and for the release event (DYCAL_R).  
After the DYCAL_R event, the AET process is frozen for a t  
delay.  
AET_HALT  
Figure 9. DYCAL general operation  
'<&$/B7  
'<&$/B5  
5HIHUHQFH  
6LJQDO  
37K  
77K  
ꢉꢇꢊ  
7 7K  
)
57K  
ꢉꢋꢊ  
W
'<&$/  
W
ꢉꢀꢊ  
$(7B+$/7  
3UR[LPLW\ꢆ  
RXWSXW  
'HWHFWLRQ  
7RXFK  
RXWSXW  
'HWHFWLRQ  
DLꢀꢁꢂꢁꢇF  
1. tAET_HALT = AET halt period after end of detection.  
2. The release threshold (RTh) is a ratio of the touch threshold (TTh). TTh is selected by the “touch detection  
threshold” option bits (TTh). The ratio is selected by the “release threshold ratio” option bits.  
3. TFTh = Touch freeze threshold. Please refer to Table 16: General capacitive sensing characteristics and  
Figure 12: IIR filter formula for the TFTh description.  
4. In touch condition, the ECS allows the reference to adapt a slow signal variation change.  
18/65  
DocID18315 Rev 6  
 
 
STM8T143  
STM8T143 processing  
Figure 10 is an example of how the system behaves with a water residue when it is  
managed by DYCAL.  
Figure 10. DYCAL operation with water residue  
'<&$/B7  
'<&$/B5  
5HIHUHQFH  
6LJQDO  
37K  
77K  
37K  
77K  
57K  
7 7K  
ꢉꢇꢊ  
)
W
'<&$/  
W
ꢉꢀꢊ  
$(7B+$/7  
'HWHFWLRQ  
3UR[LPLW\ꢆ  
RXWSXW  
'HWHFWLRQ  
7RXFK  
RXWSXW  
DLꢀꢁꢂꢁꢋF  
1. tAET_HALT = AET halt period after end of detection.  
2. TFTh = Touch freeze threshold. Please refer to Table 16: General capacitive sensing characteristics and  
Figure 12: IIR filter formula for the TFTh description.  
DocID18315 Rev 6  
19/65  
64  
 
STM8T143 processing  
STM8T143  
Figure 11 is an example of how the system behaves with a water residue if the system is not  
managed by DYCAL.  
Figure 11. No DYCAL  
5HIHUHQFH  
6LJQDO  
37K  
77K  
3UR[LPLW\  
3UR[LPLW\ꢆGHWHFWLRQꢆLVꢆORFNHGꢆ21  
RXWSXW  
7RXFK  
RXWSXW  
'HWHFWLRQ  
DLꢀꢁꢂꢍꢇ  
20/65  
DocID18315 Rev 6  
 
STM8T143  
STM8T143 processing  
5.5  
Environment control system (ECS)  
5.5.1  
ECS principle  
The acquired signal value of the capacitive sensing channel increases or decreases  
according to environmental conditions such as temperature, power supply, moisture, and  
surrounding conductive objects. The STM8T143 includes a built-in digital infinite impulse  
response (IIR) filter capable of tracking slow changes in the environment. It is called the  
environment control system (ECS). This is a low pass filter with a gain of one. The filter  
makes the reference follow slow changes of the signal while fast changes are recognized as  
a touch or proximity.  
Figure 12. IIR filter formula  
;
<
6LJQDO  
Q
Q
5HIHUHQFH  
< ꢆ ꢆꢉꢀꢏ.ꢊ< ꢑ.ꢒ;  
Q Qꢏꢀ  
Q
'HOWD  
DLꢀꢁꢂꢁꢌ  
Note:  
If a touch or proximity is detected, the ECS is disabled for the duration of the reference  
freeze timeout. In this case, Y = Y . As soon as the reference freeze times out or the  
n
n_1  
detection ends, the filter is set as active again.  
DocID18315 Rev 6  
21/65  
64  
 
STM8T143 processing  
STM8T143  
5.5.2  
ECS halt  
As soon as a proximity detection is triggered, the ECS should be halted otherwise the ECS  
considers the signal variation due to the user action as an environment change. In such a  
case, the ECS adapts to the new conditions until the reference reaches the current signal  
level generated by the user. This leads to a detection loss as described in Figure 13.  
Figure 13. ECS halt  
5HIHUHQFH  
37K  
37K  
6LJQDO  
77K  
2XWSXW  
'HWHFWLRQ  
1RꢆGHWHFWLRQ  
3UR[  
HYHQW  
'HWHFWLRQ  
ORVW  
DLꢀꢁꢂꢍꢃ  
Note:  
1
The dashed lines in Figure 13 represent the reference and thresholds if ECS is not halted.  
In this case, detection is lost before the user exits the electrode detection area. The plain  
lines represent normal device processing with the ECS stop.  
22/65  
DocID18315 Rev 6  
 
 
STM8T143  
STM8T143 processing  
5.5.3  
Reference freeze and reference freeze timeout  
To prevent an object under detection from influencing the reference value, the ECS is halted  
as soon as a proximity detection happens: PTh < Δ(signal) < TTh. Consequently, the  
reference is frozen.  
In order to recover from a sudden environment change, the reference freeze ends after a  
maximum programmable delay called the “reference freeze timeout” (tRFT).  
When a detection lasts longer than the tRFT, a recalibration process occurs. The recalibration  
consists of setting the reference to the current burst count value minus 8. Then, ECS is re-  
enabled and the reference moves along the signal. After a period of time that depends on  
the signal variation speed, the difference between the signal and the reference becomes  
smaller than the detection threshold and the device reports no detection. The process delay  
after the timeout, to get the reference aligned with the current signal, is called the  
recalibration time (tRECAL).  
Figure 14 describes the situation where an unwanted detection is solved by the reference  
freeze timeout. The left-hand side of the image (Reference freeze timeout enabled) shows  
the reference freeze timeout configured to launch a calibration if water droplets are poured  
onto the electrode. The droplet capacitance is not sufficient to make the device enter into  
touch detection but it is enough to trigger a proximity detection. If the proximity detection  
caused by the droplets lasts longer than the reference freeze timeout delay, the device  
recalibrates to the new “wet” environment. Consequently, the detection output is cleared.  
The right-hand side of the image (Infinite reference freeze timeout) shows the device  
behavior when the reference freeze timeout is disabled. The device leaves proximity  
detection only after the droplets are removed.  
Figure 14. Unwanted detection managed by the reference freeze timeout  
5HIHUHQFHIUHH]HWLPHRXWHQDEOHG  
,QILQLWHUHIHUHQFHIUHH]HꢆWLPHRXW  
5HIHUHQFH  
37K  
5HIHUHQFH  
37K  
5HFDOLEUDWLRQ  
WLPHRXWꢆ  
HYHQW  
37K  
77K  
77K  
37K  
77K  
6LJQDO  
6LJQDO  
77K  
5HIHUHQFHIUHH]Hꢆ  
WLPHRXWꢆGHOD\  
,QILQLWHUHIHUHQFHꢆ  
IUHH]H  
2XWSXW  
2XWSXW  
'HWHFWLRQ  
'HWHFWLRQ  
DLꢀꢁꢂꢍꢌ  
DocID18315 Rev 6  
23/65  
64  
 
 
STM8T143 processing  
STM8T143  
5.5.4  
ECS filter constant adjustment  
To track the environmental changes more accurately and to manage the detection  
occurrence more efficiently, different ECS filter K co-efficient values are set according to the  
signal range and detection state. Figure 15: ECS filter K constant management provides the  
filter K co-efficient value in different situations.  
Figure 15. ECS filter K constant management  
'<&$/B7  
'<&$/B5ꢆ  
5HIHUHQFH  
5 7K  
)
5 7K  
)
6LJQDO  
37K  
77K  
57K  
7 7K  
)
3UR[  
GHWHFWꢏ  
LRQ  
1RꢆGHWHFWLRQ  
'HYLFHꢆVWDWH  
7RXFKꢆGHWHFWLRQ  
1RꢆGHWHFWLRQ  
7 7Kꢆꢐ  
)
ꢉ5HIꢏ  
6LJQDOꢆUDQJH  
¨ꢉVLJQDOꢊꢆ ꢆ  
'ꢉVLJQDOꢊꢆꢐꢆ  
'ꢉVLJQDOꢊꢐꢆ  
3UR[  
GHWHFWꢏ  
LRQ  
5 7Kꢐ  
ꢁꢐ  
ꢉ5HIꢏ  
6LJQDOꢊꢆ  
ꢐꢆ57K  
6LJQDOꢊꢆ  
)
6LJQDOꢆꢐꢆ5HI  
.ꢆ ꢆꢀꢅꢇ  
5 7K  
)
5 7K  
'ꢉVLJQDOꢊ  
'ꢉVLJQDOꢊꢆ  
)
ꢐꢆ7 7K  
)
5HIꢏ6LJQDO  
’
’
.ꢆ ꢆꢀꢅꢇ  
.ꢆ ꢆꢀꢅꢇ  
.ꢆ ꢆꢀꢅꢇꢀꢇ  
.ꢆ ꢆꢀꢅꢇ  
.ꢆ ꢆꢀꢅꢇ  
(&)ꢆFRQVWDQW  
.ꢆ ꢆf  
.ꢆ ꢆf  
$GDSWLQJ  
YHU\  
$GDSWLQJ  
VORZO\  
$GDSWLQJ  
TXLFNO\  
$GDSWLQJ  
TXLFNO\  
$GDSWLQJ  
TXLFNO\  
$GDSWLQJ  
VORZO\  
5HIHUHQFH  
)UR]HQ  
)UR]HQ  
VORZO\  
DLꢀꢁꢂꢁꢂ  
24/65  
DocID18315 Rev 6  
 
 
STM8T143  
STM8T143 processing  
5.6  
Debounce filter  
The purpose of the debounce filter mechanism is to reduce the effects of noise on the touch  
and proximity detection. Debouncing is applied to acquisition samples to filter undesired  
abrupt changes. The principle is to wait for several consecutive acquisitions with the signal  
on the same side of a threshold before reporting the change in detection state induced by  
this threshold crossing.  
The number of consecutive detection debounce counts (DDC) and end of detection  
debounce counts (EDDC) needed to identify a proximity/touch detection are defined in  
Section 9.5: Capacitive sensing characteristics on page 42.  
DocID18315 Rev 6  
25/65  
64  
 
Device operation  
STM8T143  
6
Device operation  
The STM8T143 can be configured through a set of user-selectable one-time programmable  
(OTP) option bytes. These options can be used in their default (unconfigured) state or set  
for specific applications. For large orders, preconfigured devices are available (please refer  
to Section 11: Ordering information).  
The available options include:  
Dual output, Control, or Data streaming mode  
Output polarity  
Touch and proximity detection thresholds  
Eight selectable detection thresholds for touch detection  
Four selectable detection thresholds for proximity detection  
Control type  
Halt conversion control  
Reference freeze control  
Reference freeze timeout  
6.1  
Option byte description  
A set of tools is supplied by STMicroelectronics to program the user OTP options for  
prototyping purposes. Please refer to Section 12: STM8T143 programming tool for more  
details.  
Note:  
Devices which are not yet programmed (also called blank devices) are delivered with all bits  
set to ‘0’.  
Table 2. Option bytes  
Option  
byte  
no.  
Option bits  
Bit 3  
Factory  
default  
setting  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 2  
Bit 1  
Bit 0  
Release  
threshold  
ratio  
Output  
type(1)  
OPT2  
Reserved  
Data  
Gain target  
Dynamic  
calibration Reserved  
delay  
Reserved  
0x00  
Low power  
mode  
Reference freeze  
timeout  
Dual output/  
Control mode  
OPT1 streaming  
mode  
0x00  
0x00  
Proximity detection  
threshold  
Output  
Reserved  
OPT0  
Touch detection threshold  
Control type  
polarity  
1. Used only in Control mode.  
26/65  
DocID18315 Rev 6  
 
 
STM8T143  
Device operation  
Table 3. Option byte description  
Description  
Option  
byte no.  
Bits [7:6]: Reserved, must be cleared  
Bit 5: Output type in Control mode (see Section 6.2.2: Control mode)  
0: Proximity output  
1: Touch output  
Bit 4: Release threshold ratio  
0: 75 %  
1: 87.5 %  
Bits [3:1]: Gain target  
000: 200  
OPT2  
001: 250  
010: 300  
011: 350  
100: 400  
101: 550  
110: 700  
111: 850  
Bit 0: Reserved, must be cleared  
Bit 7: Data streaming mode (see Section 6.2.3: Data streaming mode)  
0: Disabled  
1: Enabled  
Bits [6:5]: Low power mode (see Section 6.4: Power modes)  
00: Normal power mode  
01: Low power mode 1  
10: Low power mode 2  
11: Low power mode 3  
Bits [4:3]: Reference freeze timeout tRFT(see Section 5.6: Debounce filter)  
00: Infinite  
01: 18 s  
10: 60 s  
11: 3 s  
OPT1  
Bit 2: Dynamic calibration delay (tDYCAL)  
0: 250 ms  
1: 1 s  
Bit 1: Reserved, must be cleared  
Bit 0: Dual output/Control mode (see Section 6.2.1: Dual output mode)  
0: Pin 8 in Control input mode  
1: Pin 8 in Proximity output mode  
DocID18315 Rev 6  
27/65  
64  
 
Device operation  
STM8T143  
Table 3. Option byte description (continued)  
Description  
Option  
byte no.  
Bits [7:5]: Touch detection threshold (TTh)  
000: 40  
001: 60  
010: 100  
011: 200  
100: 360  
101: 500  
110: 700  
111: 900  
Bit [4:3]: Proximity detection threshold (PTh)  
00: 4  
01: 8  
OPT0  
10: 16  
11: 32  
Bit 2: Reserved, must be cleared  
Bit 1: Output polarity (see Section 6.3: Output polarity)(1)  
0: Active low  
1: Active high  
Bit 0: Control type (see Section 6.2.2: Control mode)  
0: Halt conversion control  
1: Reference freeze control  
1. Effective only when Data streaming mode is disabled  
28/65  
DocID18315 Rev 6  
STM8T143  
Device operation  
6.2  
Device operating modes  
The STM8T143 device provides three operating modes:  
Dual output mode  
Control mode  
Data streaming mode  
These modes are selected through the option bytes.  
6.2.1  
Dual output mode  
The device is configured by default in Control mode. The Dual output/Control mode bit  
allows the user to configure pin 8 of the device in Control input or Proximity output.  
When Dual output mode is selected, pin 8 becomes the proximity output while pin1 is the  
touch output.  
Table 4. Pin 1 configuration  
Data streaming  
mode  
Dual output/Control  
mode  
Output  
type  
Output  
polarity  
Pin 1 configuration  
OPT1 bit 7  
OPT1 bit 0  
OPT2 bit 5  
OPT0 bit 1  
DATA pin  
Open drain output  
1
x
x
x
Proximity output  
Open drain output, active low  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
x
x
0
1
0
1
0
1
Proximity output  
Push-pull output, active high  
Touch output  
Open drain output, active low  
Touch output  
Push-pull output, active high  
Proximity output  
Open drain output, active low  
Proximity output  
Push-pull output, active high  
Table 5. Pin 8 configuration  
Dual output/Control mode Control type  
Output polarity  
OPT0 bit 1  
Pin 8 configuration  
OPT1 bit 0  
OPT0 bit 0  
Halt control input  
ECS control input  
0
0
0
1
x
x
Proximity output  
Push-pull output, active low  
1
1
x
x
0
1
Touch output  
Push-pull output, active high  
DocID18315 Rev 6  
29/65  
64  
 
 
 
Device operation  
STM8T143  
6.2.2  
Control mode  
In Control mode, pin 8 can be used to halt the conversion or to freeze the reference (refer to  
Section 5.4: Dynamic calibration (DYCAL)).  
Halt conversion control mode  
When the conversion is halted, the device is in low power consumption state (see device  
electrical characteristics). In this state, the CTRL pin can be used to manage the power  
consumption and/or control the acquisition to synchronize the sampling burst with external  
events. This can be useful, for example, to halt acquisitions during noisy operations or to  
synchronize an acquisition with the noise period.  
When the CTRL pin is tied high for longer than t  
, the charge conversion cycle is halted,  
CTRL  
once the current conversion has been completed. The device remains in this halt mode until  
the CTRL line is tied low again. An automatic recalibration is performed directly after the  
CTRL pin is released to compensate for any environmental changes which might have  
occurred during the halt duration.  
Reference freeze control mode  
In this mode, the device reference evolution can be frozen according to the CTRL pin state.  
The CTRL pin has precedence over the configuration bits selected for the reference freeze  
timeout.  
This function can be used to implement user-dedicated ECS management.  
When the CTRL pin is tied high for longer than t  
low.  
, the filter is halted until this pin is tied  
CTRL  
If the host freezes the reference at device startup, the calibration starts after the reference  
freeze is released.  
Forced recalibration  
Generating a pulse of t  
duration on the CTRL pin recalibrates the reference. The  
recal_control  
ECS is reset, clearing the output state. Please refer to Table 16: General capacitive sensing  
characteristics for t constraints.  
recal_control  
If the signal value is outside its allowable range, the device forces an AET process event.  
(refer to Section 5.1: Automatic electrode tuning (AET))  
30/65  
DocID18315 Rev 6  
 
STM8T143  
Device operation  
6.2.3  
Data streaming mode  
The STM8T143 can stream data to allow designers fine tune the application and device  
settings. Data streaming may also be used by an MCU to control events or to further  
process the results obtained from STM8T143 devices. Data streaming is performed using a  
1-wire communication data protocol on the data streaming output pin. When Data streaming  
mode is enabled, the OUT function is no longer accessible.  
Data streaming protocol  
The data streaming output is open drain. Figure 16 illustrates the communication protocol  
for initializing and sending data using a 1-wire communication protocol.  
1. Communications is initiated by a START bit.  
2. Following the START bit, a synchronization byte (0xAA) is sent. This byte can be used  
by the MCU for clock synchronization.  
3. Following the synchronization byte, the data bytes are sent with the MSB first.  
4. Each byte sent is preceded by a START bit; a STOP bit follows every byte.  
5. The STOP bit does not have a defined period.  
Figure 16. Data streaming frame  
'$7$  
%\WHꢆꢈ  
%\WHꢆꢀ  
%\WHꢆꢇ  
%\WHꢆꢋ  
%\WHꢆꢃ  
%\WHꢆꢍ  
%\WHꢆꢌ  
%\WHꢆꢂ  
6WRS ±ꢆ6WDUW  
6<1&  
E\WH  
'$7$  
E\WH  
6723  
ELW  
6WDUW  
6WRS ±ꢆ6WDUW  
DLꢀꢁꢂꢈꢋ  
Data streaming is initiated by the STM8T143. When data streaming is enabled, a frame is  
sent after each charge cycle. Therefore, the acquisition is not disturbed by the  
communication itself.  
DocID18315 Rev 6  
31/65  
64  
 
 
Device operation  
STM8T143  
Frame format  
The content of the data frame is described in Table 6.  
Table 6. Data streaming frame  
Description  
Byte #  
Bit  
0
1
2
3
[7:0]  
Signal burst count (MSB)  
Signal burst count (LSB)  
[15:8]  
[23:16]  
[31:24]  
Reference burst count (MSB)  
Reference burst count (LSB)  
39  
38  
37  
36  
35  
34  
33  
32  
AET processing  
Proximity event detected  
Touch event detected  
OUT state indication  
Reserved  
4
Reserved  
Reserved  
Reserved  
47  
46  
45  
44  
43  
42  
41  
40  
ICS bit 2  
ICS bit 1  
ICS bit 0  
EPCC bit 4  
EPCC bit 3  
EPCC bit 2  
EPCC bit 1  
EPCC bit 0  
5
[55:54]  
53  
Reserved  
EPCC bit 5  
52  
Touch threshold bit 2  
Touch threshold bit 1  
Touch threshold bit 0  
Proximity threshold bit 1  
Proximity threshold bit 0  
6
7
51  
50  
49  
48  
[63:56]  
Frame counter  
6.3  
Output polarity  
The polarity can be chosen to define POUT and TOUT active state during a detection event  
such as high or low.  
When the device is configured in output active low, pin 8 is in open drain configuration.  
When the device is configured in output active high, pin 8 is in push-pull configuration.  
32/65  
DocID18315 Rev 6  
 
 
STM8T143  
Device operation  
6.4  
Power modes  
The STM8T143 device offers four power modes which are specifically designed for battery  
applications:  
Normal power mode  
Low power mode 1  
Low power mode 2  
Low power mode 3  
The difference between the four power modes is the t  
time (see Table 16: General  
SAMPLING  
capacitive sensing characteristics). By selecting low power modes, extra delays are  
interlaced between bursts resulting in a longer t period. This improves the device  
SAMPLING  
current consumption at the expense of a longer response time.  
DocID18315 Rev 6  
33/65  
64  
 
Typical application diagram  
STM8T143  
7
Typical application diagram  
Figure 17. Typical application schematic for Control mode  
s
ꢁꢁ  
^ƵƉƉůLJ  
ŝŶƉƵƚ  
;ϭͿ  
Z
y
sꢁꢁ  
s^ ^  
y
^ ĞŶƐĞꢃĞůĞĐƚƌŽĚĞ  
dZ > ŝŶƉƵƚ  
;ϰͿ  
dZ>  
s ꢁꢁ  
s
ꢁꢁ  
ϭϬꢃŬŽŚŵ ;ϮͿ  
;ϮͿ  
Khd  
ƚƉƵƚ  
;ϯͿ  
ϭꢃђ&͕ꢃϭϬϬꢃŶ&͕ꢃϭϬϬꢃƉ&  
sZꢂ'  
;ϯͿ  
sZꢂ'  
ĂŝϭϴϳϯϱĐ  
1. RX is optional for added ESD protection  
2. Active low open drain output pin or push-pull active high  
3. Keep track as short as possible  
4. CVDD is optional for added IC stability  
5. Please refer to Table 8: Current characteristics for the maximum output load drive current capability  
Figure 18. Typical application schematic for Dual output mode  
9
''  
ꢉꢀꢊ  
6XSSO\  
ꢆLQSXW  
5
;
&
9''  
966  
6HQVHꢆHOHFWURGH  
;
ꢉꢃꢊ  
&
3287  
3287  
9''  
9
''  
ꢀꢈꢆNRKP  
ꢉꢇꢊ  
7287ꢆ  
7287  
ꢉꢋꢊ  
ꢆꢀ—)ꢆꢀꢈꢈꢆQ)ꢆꢀꢈꢈꢆS)  
95(*  
ꢉꢋꢊ  
&
95(*  
DLꢀꢁꢂꢋꢌF  
1. RX is optional for added ESD protection  
2. Active low open drain output pin or push-pull active high.  
3. Keep track as short as possible  
4. CVDD is optional for added IC stability  
5. Please refer to Table 8: Current characteristics for the maximum output load drive current capability  
34/65  
DocID18315 Rev 6  
 
 
 
STM8T143  
Typical application diagram  
Figure 19. Typical application schematic for Data streaming mode  
9
''  
ꢉꢀꢊ  
6XSSO\  
ꢆLQSXW  
5
;
&
9''  
966  
6HQVHꢆHOHFWURGH  
;
ꢉꢃꢊ  
&
&75/ꢆL SXW  
&75/  
9''  
9
''  
ꢀꢈꢆNRKP  
ꢉꢇꢊ  
'$7$ꢆVWUHDPLQJꢆRXWSXW  
ꢉꢋꢊ  
'$7$  
95(*  
ꢉꢋꢊ  
&
ꢆꢀꢆ—)ꢆꢀꢈꢈꢆQ)ꢆꢀꢈꢈꢆS)  
95(*  
DLꢀꢁꢂꢋꢂF  
1. RX is optional for added ESD protection  
2. Open drain output pin  
3. Keep track as short as possible  
4. CVDD is optional for added IC stability  
5. Please refer to Table 8: Current characteristics for the maximum output load drive current capability  
DocID18315 Rev 6  
35/65  
64  
 
Design guidelines  
STM8T143  
8
Design guidelines  
8.1  
Sensitivity adjustment  
Several factors impact device sensitivity:  
The sensing electrode material and size  
The touch panel material and thickness  
The board layout and in particular the sensing signal tracks  
The ground coupling of the object (finger or hand) and sensor  
The touch or proximity detection threshold selected  
8.1.1  
PCB layout and construction  
The PCB traces, wiring, and components associated or in contact with C pins become  
X
touch sensitive and should be treated with caution to limit the touch area to the desired  
location.  
Even with AET it is important to limit the amount of stray capacitance on the C pin. This can  
X
be done by minimizing trace lengths and widths. To minimize cross-coupling, tracks from  
adjacent sensing channel should not run close to each other for long distances. For detailed  
information, refer to application note AN2869.  
36/65  
DocID18315 Rev 6  
STM8T143  
Electrical characteristics  
9
Electrical characteristics  
9.1  
Parameter conditions  
Unless otherwise specified, all voltages are in reference to V  
.
SS  
9.1.1  
Minimum and maximum values  
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature and supply voltage by tests in production on 100% of the  
devices with an ambient temperature at T = 25 °C.  
A
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production.  
9.1.2  
9.1.3  
9.1.4  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, and V = 5 V. They are  
given only as design guidelines and are not tested.  
A
DD  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 20.  
Figure 20. Pin loading conditions  
Output pin  
50 pF  
DocID18315 Rev 6  
37/65  
64  
 
Electrical characteristics  
STM8T143  
9.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 7. Voltage characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
VDD VSS Supply voltage  
6.8(1)  
V
1. Care must be taken as option bit could be modified if this voltage is higher than 5.5 V.  
Table 8. Current characteristics  
Symbol  
Ratings  
Maximum value  
Unit  
IVDD  
IVSS  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by output pin  
2
2
1
1
mA  
IIO  
Output current sourced by output pin  
1. All power (VDD) and ground (VSS) lines must always be connected to the external supply.  
Table 9. Thermal characteristics  
Symbol  
Ratings  
Storage temperature range  
Value  
Unit  
TSTG  
65 to +150  
°C  
Junction temperature range (SO8 narrow and UFDFPN8  
package)  
TJ  
90  
°C  
9.3  
Operating conditions  
9.3.1  
General operating conditions and supply characteristics  
Table 10. Operating characteristics  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VDD  
TA  
Supply voltage  
2.3  
-40  
5.5  
V
Operating temperature  
+85  
°C  
Turn-on slope  
(rise time rate)  
0
0
10  
tVDD  
mS/V  
Turn-off slope  
(fall time rate)  
10(1)  
1. The supply voltage must reach 0 V when it drops below the minimum operating voltage.  
38/65  
DocID18315 Rev 6  
 
 
 
STM8T143  
Electrical characteristics  
9.3.2  
Average current consumption  
Test conditions: T = 25 °C, C = 20 pF, and R = 2 kΩ  
A
X
X
Table 11. Average current consumption  
Symbol  
Parameter  
Conditions  
Typ.  
Max. Unit  
Normal power mode(1)  
Low power mode 1(2)  
Low power mode 2(2)  
Low power mode 3(2)  
Control halt mode(2)  
Normal power mode(1)  
Low power mode 1(2)  
Low power mode 2(2)  
Low power mode 3(2)  
Control halt mode(2)  
60  
30  
17  
11  
2
75  
-
3.05 VDD 5.5  
-
-
7
IDD  
µA  
60  
45  
-
-
-
VDD = 2.3 V  
-
-
-
2
7
1. Tested in production.  
2. Not applicable for Silicon revision 1, please refer to the STM8T143 errata sheet (STM8T143 device  
limitations).  
Note:  
Consumption does not depend on detection thresholds.  
9.3.3  
I/O pin characteristics  
Table 12. OUT/TOUT/DATA streaming pin characteristics  
Symbol  
Parameter  
VDD = 5 V  
DD = 3.3 V  
Conditions  
Min(1)  
Typ.  
Max.(1)  
Unit  
VDD-0.1 VDD-0.1  
-
-
V
VDD-0.1 VDD-0.1  
VDD-0.2 VDD-0.1  
VDD-0.2 VDD-0.1  
VOH  
VDD = 2.5 V  
VDD = 2.3 V  
VDD = 5 V  
-
-
ILOAD = 1 mA  
TA = @ 25 °C  
V
-
-
-
-
0.06  
0.06  
0.06  
0.07  
0.07  
0.08  
0.08  
0.09  
VDD = 3.3 V  
VDD = 2.5 V  
VOL  
VDD = 2.3 V  
Input leakage  
current(2)  
Ilkg  
-1  
-
1
µA  
1. Guaranteed by characterization, not tested in production.  
2. The maximum value may be exceeded if negative current is injected on adjacent pins.  
DocID18315 Rev 6  
39/65  
64  
 
 
Electrical characteristics  
Symbol  
STM8T143  
Table 13. POUT/TOUT pin characteristics  
Parameter  
VDD = 5 V  
Conditions  
Min(1)  
Typ.  
Max.(1)  
Unit  
VDD-0.1 VDD-0.1  
VDD-0.1 VDD-0.1  
-
-
VDD = 3.3 V  
VDD = 2.5 V  
VOH  
3.4  
2.4  
-
V
DD = 2.3 V  
VDD-0.1 VDD-0.1  
-
ILOAD = 1 mA  
TA = @ 25 °C  
V
VDD = 5 V  
-
-
-
-
0.03  
0.03  
0.05  
0.05  
0.04  
0.05  
0.07  
0.07  
VDD = 3.3 V  
VOL  
VDD = 2.5 V  
VDD = 2.3 V  
Input leakage  
current(2)  
Ilkg  
-
-1  
-
1
µA  
1. Guaranteed by characterization, not tested in production.  
2. The maximum value may be exceeded if negative current is injected on adjacent pins.  
Table 14. CTRL pin characteristics  
Symbol  
Parameter  
VDD = 5 V  
DD = 3.3 V  
VDD = 2.5 V  
DD = 2.3 V  
Conditions  
Min(1)  
Max.(1)  
Unit  
-
-
0.5  
V
0.3  
VIL  
-
0.25  
V
-
0.2  
TA = @ 25 °C  
V
VDD = 5 V  
4.5  
3.0  
2.25  
1.8  
-1  
-
-
VDD = 3.3 V  
VIH  
VDD = 2.5 V  
-
VDD = 2.3 V  
-
Ilkg  
Input leakage current(2)  
-
1
µA  
1. Guaranteed by characterization, not tested in production.  
2. The maximum value may be exceeded if negative current is injected on adjacent pins.  
40/65  
DocID18315 Rev 6  
 
 
STM8T143  
Electrical characteristics  
9.4  
Regulator and reference voltage  
Table 15. Regulator and reference voltage  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Voltage regulator decoupling  
capacitance(1)  
Cref  
-
1
-
10  
µF  
3.05 VDD 5.5  
2.3 VDD 2.65  
2.35  
-
2.5  
2.75  
-
Regulated voltage during  
acquisition(2)  
Vreg  
V
VDD-0.15  
1. Equivalent serial Rresistor 0.2 Ω at 1 MHz.  
2. Operating above 3.05 V improves the device noise rejection. Between 2.65 V and 3.05 V the regulated voltage evolves  
gradually between VDD - 0.15 V and the regulated voltage.  
DocID18315 Rev 6  
41/65  
64  
 
Electrical characteristics  
STM8T143  
9.5  
Capacitive sensing characteristics  
The values in Table 16: General capacitive sensing characteristics are guaranteed by  
design. They include the oscillator tolerance, the t  
influence.  
period, and the debouncing  
SAMPLING  
.
Table 16. General capacitive sensing characteristics  
Symbol  
fTRANSFER  
Parameter  
Charge-transfer frequency  
Min  
Typ  
Max  
Unit  
200(1)  
250  
9
300(1)  
kHz  
Normal power mode  
7
11  
Low power mode 1  
21  
27  
33  
(2)  
tSAMPLING  
Low power mode 2  
80  
100  
300  
59  
120  
Low power mode 3  
240  
360  
tAET  
tCTRL  
Automatic electrode tuning process time(3)  
Acquisition halt or reference freeze control  
CTRL pin pulse duration for recalibration  
Normal power mode  
-
-
40  
-
-
ms  
trecal_control  
24  
30  
36  
-
60  
-
Low power mode 1  
-
125  
315  
850  
3
-
Response time(4)  
Low power mode 2  
-
-
Low power mode 3  
-
-
tAET_HALT  
RFTh  
AET HALT period after end of detection  
ECS filter freeze threshold in release state  
ECS filter freeze threshold in touch state  
-
-
s
-
Ref ±8  
Ref +16  
1600  
200  
250  
300  
350  
400  
550  
700  
850  
-
TFTh  
-
-
AET target value AET target value  
Gain target value A  
1344  
1856  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Gain target value B  
Gain target value C  
Burst count  
Gain target value D  
Gain  
Gain target value E  
Gain target value F  
Gain target value G  
Gain target value H  
42/65  
DocID18315 Rev 6  
 
 
STM8T143  
Electrical characteristics  
Table 16. General capacitive sensing characteristics (continued)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Time after recalibration before optimal device  
sensitivity (see Section 6: Device operation).  
tRECAL  
-
354  
-
Note: this value depends on the signal variation  
including noise level  
tSU  
Device startup time(5)  
-
-
-
-
-
-
-
51  
2
-
-
-
-
-
-
-
tSAMPLING  
Detection debounce count (touch)  
Detection debounce count (proximity)  
End of detection debounce count (touch)  
End of detection debounce count (proximity)  
Low state voltage value on CX during burst  
Acquisition reference voltage  
DDC  
6
2
EDDC  
3
VCXL  
Vtrip  
0.6  
0.8  
V
1. Min and max values for fTRANSFER are given for a 3 V to 5.5 V operating range.  
2. If Data streaming mode is activated, tSAMPLING is increased by the data frame period. Please refer to Section 9.6:  
Streaming mode characteristics.  
3.  
tAET depends on the CX capacitance value. This typical value is given for an electrode of 18 pF  
4. Response time for detection depends on the event occurrence time during the acquisition period, the threshold settings,  
and the signal strength.  
5. The device startup time is the time after power-up before any possible actuation.  
Table 17. Internal C value  
S
Internal sampling capacitor selection bits (ICS)  
CS capacitance value (nF)  
Typ  
ICS2(1)  
ICS1  
ICS0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.5  
2
3
5
4.5  
6
11  
17.5  
1. This bit is also used for EPCC selection. Please refer to Table 18: Implemented EPCC values (pF).  
DocID18315 Rev 6  
43/65  
64  
 
Electrical characteristics  
STM8T143  
Table 18. Implemented EPCC values (pF)  
ICS bit 2  
General name  
EPCC name  
0
1
EPCC 0  
EPCC 1  
EPCC 2  
EPCC 3  
EPCC 4  
EPCC 5  
0.3  
0.6  
1.2  
2.4  
4.8  
9.6  
18.9  
0.6  
1.2  
2.4  
Implemented  
capacitance values  
4.8  
9.6  
19.2  
37.8  
Maximum PCC capacitance value  
Table 19. External sensing component characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
CX  
CT  
RX  
Equivalent electrode capacitance  
Equivalent touch capacitance  
Electrode serial resistance  
1
-
-
60  
-
pF  
5
2
-
22  
kOhm  
9.6  
Streaming mode characteristics  
Table 20. Data streaming timing characteristics  
Symbol  
Parameter  
Typ.  
Unit  
tSTART  
tBIT  
DATA low time  
Data bit time  
17  
17  
29  
µs  
tSTOP  
DATA high time  
Figure 21. Data streaming timing diagram  
'$7$  
W
W
W
%,7  
6723  
67$57  
DLꢀꢁꢂꢇꢋ  
44/65  
DocID18315 Rev 6  
 
STM8T143  
Electrical characteristics  
9.7  
EMC characteristics  
Susceptibility and emission tests are performed on a sample basis during product  
characterization.  
Both the sample and its applicative hardware environment are mounted on a dedicated  
specific EMC board defined in the IEC61967-1 standard.  
9.7.1  
Functional EMS (electromagnetic susceptibility)  
While running in the above described environment the product is stressed by two  
electromagnetic events until a failure occurs.  
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device  
until a functional disturbance occurs. This test complies with the IEC 1000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to V and V  
through a 100 pF capacitor, until a functional disturbance occurs. This test complies  
DD  
SS  
with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in  
Table 21 based on the EMS levels and classes defined in application note AN1709.  
9.7.2  
9.7.3  
Prequalification trials  
Table 21. EMS data  
Symbol  
Parameter  
Conditions  
Level/class  
Fast transient voltage burst limits to be  
VEFTB applied through 100pF on VDD and VSS pins UFDFPN8 package, complies  
VDD= 5 V, TA=+25 °C,  
4A  
to induce a functional disturbance  
with IEC 1000-4-4  
Electromagnetic interference (EMI)  
Emission tests conform to the IEC61967-2 standard for board layout and pin loading. Worse  
case EMI measurements are performed during maximum device activity.  
Table 22. EMI data  
Monitored  
frequency band  
RCOSC =  
1 MHz (1)  
Symbol  
Parameter  
General conditions  
Unit  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
-
-4  
-3  
-4  
1
VDD = 5 V, TA = +25 °C,  
UFDFPN8 package,  
Complies with SAE  
J1752/3, No finger on  
touch electrode  
Peak level  
SEMI  
dBµV  
SAE EMI level  
1. Data based on characterization results, not tested in production.  
DocID18315 Rev 6  
45/65  
64  
 
 
Electrical characteristics  
STM8T143  
9.7.4  
Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
9.7.5  
Electrostatic discharge (ESD)  
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test  
conforms to the JESD22-A114A/A115A standard. For more details, refer to the application  
note AN1181.  
M
Table 23. ESD absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Class  
Unit  
value(1)  
Electrostatic discharge voltage  
(Human body model)  
TA = +25°C, conforming  
VESD(HBM)  
3A  
IV  
4
to JESD22-A114  
kV  
Electrostatic discharge voltage  
(Charge device model)  
TA = +25°C, conforming  
to JESD22-C101  
VESD(CDM)  
1
1. Data based on characterization results, not tested in production  
9.7.6  
Static latchup  
Two complementary static tests are required on 10 parts to assess the latchup performance.  
A supply overvoltage (applied to each power supply pin) and  
A current injection (applied to each input, output and configurable I/O pin) are  
performed on each sample.  
This test conforms to the EIA/JESD 78 IC latchup standard. For more details, refer to  
application note AN1181.  
Table 24. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class(1)  
TA = +25 °C  
TA = +85 °C  
LU  
Static latchup  
A
1. Class description: A class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard.  
Class B strictly covers all the JEDEC criteria (international standard).  
46/65  
DocID18315 Rev 6  
 
 
STM8T143  
Package characteristics  
10  
Package characteristics  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at www.st.com.  
ECOPACK® is an ST trademark.  
DocID18315 Rev 6  
47/65  
64  
Package characteristics  
STM8T143  
10.1  
Package mechanical data  
10.1.1  
SO8 package mechanical data  
Figure 22. SO8-lead plastic small outline - package outline  
h x 45˚  
A2  
A
c
ccc  
b
e
0.25 mm  
D
GAUGE PLANE  
k
8
1
E1  
E
L
A1  
L1  
SO-A  
Table 25. SO8-lead plastic small outline - package mechanical data  
millimeters  
Typ  
inches (1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
-
-
1.750  
0.250  
-
-
-
0.0689  
0.0098  
-
A1  
A2  
b
0.100  
1.250  
0.280  
0.170  
-
-
0.0039  
0.0492  
0.0110  
0.0067  
-
-
-
-
-
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
-
-
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
-
-
ccc  
D(2)  
E
-
-
4.800  
5.800  
3.800  
-
4.900  
6.000  
3.900  
1.270  
-
0.1890  
0.2283  
0.1496  
-
0.1929  
0.2362  
0.1535  
0.0500  
-
E1(3)  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
-
-
L
0.400  
-
-
1.270  
-
0.0157  
-
-
0.0500  
-
L1  
1.040  
0.0409  
1. Values in inches are rounded to 4 decimal digits  
2. Dimension D does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs  
should not exceed 0.15mm in total (both side).  
3. Dimension E1 does not include interlead flash or protrusions. Interlead flash or protrusions should not  
exceed 0.25 mm per side.  
48/65  
DocID18315 Rev 6  
STM8T143  
Package characteristics  
Figure 23. SO8 narrow recommended footprint (dimensions in mm)  
ꢃꢒꢃꢁ  
ꢈꢒꢍꢃ  
ꢀꢒꢋꢍ  
ꢈꢒꢋꢁ  
ꢌꢒꢃꢃ  
ꢋꢒꢂꢃ  
(ꢀ  
(
ꢀꢒꢋꢍ  
ꢀꢒꢇꢂ  
ꢈꢒꢌꢁ  
H
06ꢀꢄꢃꢇꢈ9ꢀ  
1. Drawing is not to scale.  
DocID18315 Rev 6  
49/65  
64  
 
Package characteristics  
STM8T143  
10.1.2  
UFDFPN8 package mechanical data  
Figure 24. UFDFPN8-lead ultra thin fine pitch dual flat package (MLP) package outline  
e
b
D
L1  
L3  
E
E2  
L
A
D2  
ddd  
A1  
UFDFPN-01  
Table 26. UFDFPN8-lead ultra thin fine pitch dual flat - package mechanical data  
millimeters  
Typ  
inches (1)  
Symbol  
A(2)  
Min  
Max  
Min  
Typ  
Max  
0.450  
0.000  
0.200  
1.900  
1.500  
2.900  
0.100  
-
0.550  
0.020  
0.250  
2.000  
1.600  
3.000  
0.200  
0.500  
0.450  
-
0.600  
0.050  
0.300  
2.100  
1.700  
3.100  
0.300  
-
0.0177  
0.0000  
0.0079  
0.0748  
0.0591  
0.1142  
0.0039  
-
0.0217  
0.0008  
0.0098  
0.0787  
0.0630  
0.1181  
0.0079  
0.0197  
0.0177  
-
0.0236  
0.0020  
0.0118  
0.0827  
0.0669  
0.1220  
0.0118  
-
A1  
b
D
D2  
E
E2  
e
L
0.400  
-
0.500  
0.150  
-
0.0157  
-
0.0197  
0.0059  
-
L1  
L3  
0.300  
-
0.0118  
-
Tolerance  
ddd (3)  
millimeters  
0.080  
inches  
0.0031  
-
-
-
-
1. Values in inches are rounded to 4 decimal digits  
2. In order to prevent undesired effects such as spurious detections or modified sensitivity the UFDFPN8  
package should not be directly exposed to light sources (visible or invisible).  
3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from  
measuring.  
50/65  
DocID18315 Rev 6  
 
STM8T143  
Package characteristics  
Figure 25. UFDFPN 2 x 3 mm recommended footprint (dimensions in mm)  
ꢀꢒꢁꢇ  
ꢀꢒꢌꢈ  
ꢇꢒꢀꢈ  
ꢈꢒꢇꢄ  
ꢋꢒꢋꢈ  
ꢈꢒꢋꢇ  
ꢈꢒꢌꢈ  
ꢈꢒꢍꢈ  
ꢀꢒꢁꢇ  
06ꢀꢄꢃꢇꢀ9ꢀ  
1. Drawing is not to scale.  
DocID18315 Rev 6  
51/65  
64  
 
Package characteristics  
STM8T143  
10.2  
Package thermal characteristics  
The maximum chip junction temperature (T  
) must never exceed the values given in  
Jmax  
Table 10: Operating characteristics on page 38.  
The maximum chip-junction temperature, T  
using the following equation:  
, in degrees Celsius, may be calculated  
Jmax  
T
= T  
+ (P  
x Θ )  
Jmax  
Amax  
Dmax JA  
Where:  
T
is the maximum ambient temperature in °C  
is the package junction-to-ambient thermal resistance in ° C/W  
Amax  
Θ
P
JA  
is the sum of P  
and P  
(P  
= P  
+ P  
)
I/Omax  
Dmax  
INTmax  
I/Omax  
Dmax  
INTmax  
P
is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INTmax  
internal power.  
P
represents the maximum power dissipation on output pins  
I/Omax  
Where:  
P
= Σ (V *I ) + Σ((V -V *I ),  
I/Omax  
OL OL  
DD OH) OH  
taking into account the actual V /I  
V
/I  
OL OL and OH OH of the I/Os at low and high level in the  
application.  
Table 27. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
SO8 (narrow)  
ΘJA  
130  
°C/W  
Thermal resistance junction-ambient  
UFDFPN 8 (2 x 3 mm)  
ΘJA  
120  
°C/W  
Note:  
Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural  
convection environment.  
10.2.1  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural  
convection (still air). Available from www.jedec.org.  
52/65  
DocID18315 Rev 6  
STM8T143  
Ordering information  
11  
Ordering information  
11.1  
STM8T143 ordering information scheme  
Figure 26. STM8T143 ordering information scheme  
Example:  
STM8T 143  
A
U
XXXY TR  
Device type  
STM8T: ST touch sensing MCU  
Device sub-family  
143 = 1 proximity detection channel  
Pin count  
A: 8 pins  
Package  
M: SO8 (narrow outline)  
U: UFDFPN8 (dual flat no lead)  
Device configuration  
XXXY: device with specific configuration(1)  
61T: Revision 1/OTP blank device (all user bits set to 0)(2)  
62T: Revision 2/OTP blank device (all user bits set to 0)(2)  
Packing  
No character: tray or tube  
TR: tape and reel  
1. See explanation below of “in factory option byte programming service”  
2. The STM8T143 OTP devices are available for development and production. These parts are blank devices  
with unconfigured option bytes (all option bits are set to ‘0’).  
DocID18315 Rev 6  
53/65  
64  
 
Ordering information  
STM8T143  
11.2  
Orderable favorite device lists  
The STM8T143 OTP devices listed below are available for development and production.  
These parts are blank devices or configured with a specific configuration. See Table 28.  
Contact STMicroelectronics sales office for availability.  
11.2.1  
Part number option bytes  
Table 28. Option byte values  
Part number  
OPT0  
OPT1  
OPT2  
STM8T143AM61T  
0x00  
0x00  
0xC8  
0xF0  
0xE0  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x00  
0x10  
0x00  
0x10  
STM8T143AM62T  
STM8T143AUTAB2TR  
STM8T143AUMEI2TR  
STM8T143AULET2TR  
11.3  
In-factory option byte programming service  
For specific configurations, in-factory option byte programming is available on customer  
request and for large order quantities. Customers have to fill out the option list (see below)  
and send it back to STMicroelectronics. Customers are then informed by  
STMicroelectronics about the ordering part number corresponding to the customer  
configuration. The XXXY digits of the final ordering part number (e.g. STM8T143AUXXXY)  
depends on the device configuration and firmware revision number and is assigned by  
STMicroelectronics.  
54/65  
DocID18315 Rev 6  
 
 
 
STM8T143  
Ordering information  
11.4  
Revision code on device markings  
Table 29, Figure 27 and Figure 28 show the part numbers and standard marking  
composition for the UFDFPN8 and SO8 packages respectively.  
Table 29. Device identification  
Part no.  
SO8 package  
Part no.  
UFDFPN8 package  
Marking  
Marking  
Rev no.  
SO8 package(1) UFDFPN8 package(2)  
1
2
3
4
5
STM8T143AM61T  
STM8T143AU61T  
STM8T143AU62T  
8T143A61  
T143AM62  
N/A  
T143  
1432  
TAB  
MEI  
STM8T143AM62T  
N/A  
N/A  
N/A  
STM8T143AUTAB2TR  
STM8T143AUMEI2TR  
STM8T143AULET2TR  
N/A  
N/A  
LET  
1. See Figure 27: SO8 package marking.  
2. See Figure 28: UFDFPN8 package marking.  
Figure 27. SO8 package marking  
3$&.$*(ꢆ723ꢆ6,'(ꢆ  
0DUNLQJꢆDUHD  
67ꢆORJR  
'DWDꢆFRGH  
3LQꢆꢀꢆLGHQWLILFDWLRQꢆFRUQHU  
06ꢀꢄꢃꢀꢂ9ꢀ  
DocID18315 Rev 6  
55/65  
64  
 
 
 
Ordering information  
STM8T143  
Figure 28. UFDFPN8 package marking  
3$&.$*(ꢆ723ꢆ6,'(  
1JOꢀꢁꢀJEFOUJGJDBUJPOꢀBSFB  
0DUNLQJꢆDUHD  
'DWHꢆFRGH  
  ꢍꢇ  
DLꢀꢁꢂꢍꢁE  
56/65  
DocID18315 Rev 6  
 
STM8T143  
Ordering information  
STM8T143 programming service option list Rev 6 (last update: October 2013)  
Customer name:  
Address:  
Contact name:  
Phone number  
Customer settings (tick one box by option)  
Package type:  
DFN8: STM8T143AU  
SO8: STM8T143AM(1)  
Output type (used only in CTRL mode – see Section 6.2.2: Control mode)  
Proximity output(2)  
Touch output  
Release threshold ratio (see Section 5.3: Detection and release thresholds)  
75 %(2)  
87.5 %  
Gain target  
Gain target value A (200)(2)  
Gain target value B (250)  
Gain target value C (300)  
Gain target value D (350)  
Gain target value E (400)  
Gain target value F (550)  
Gain target value G (700)  
Gain target value H (850)  
Data streaming mode (see Section 6.2.3: Data streaming mode)  
Disabled(2)  
Enabled  
Low power mode (see Section 6.4: Power modes and Table 16: General capacitive sensing  
characteristics)  
Normal power mode(2)  
Low power mode 1  
Low power mode 2  
Low power mode 3  
Reference freeze timeout tRFT(see Section 5.5.3: Reference freeze and reference freeze timeout)  
Infinite(2)  
18 s  
60 s  
3 s  
Dynamic calibration delay tDYCAL (see Section 5.4: Dynamic calibration (DYCAL))  
250 ms(2)  
1 s  
DocID18315 Rev 6  
57/65  
64  
 
 
Ordering information  
STM8T143  
STM8T143 programming service option list Rev 6 (last update: October 2013)  
Customer name:  
Address:  
Contact name:  
Phone number  
Customer settings (tick one box by option)  
Dual/Control mode (see Section 6.2.1: Dual output mode and Section 6.2.2: Control mode)  
Pin 8 in control input(2)  
Pin 8 in proximity output mode  
Touch detection threshold (see Section 5.3: Detection and release thresholds)  
Touch detection (TTh) threshold value 40(2)  
Touch detection (TTh) threshold value 60  
Touch detection (TTh) threshold value 100  
Touch detection (TTh) threshold value 200  
Touch detection (TTh) threshold value 340  
Touch detection (TTh) threshold value 500  
Touch detection (TTh) threshold value 700  
Touch detection (TTh) threshold value 900  
Proximity detection threshold (see Section 5.3: Detection and release thresholds)  
Proximity detection (PTh) threshold value 4(2)  
Proximity detection (PTh) threshold value 8  
Proximity detection (PTh) threshold value 16  
Proximity detection (PTh) threshold value 32  
Output polarity (see Section 6.3: Output polarity)(3)  
Active low(2)  
Active high  
Control type (see Section 6.2.2: Control mode)  
Halts conversion control(2)  
Reference freeze control  
Packaging  
Tape and reel  
Tray or tube  
(1) Fastrom is not available in SO8 device.  
(2) Configuration by default in OTP devices.  
(3) Effective only when data streaming mode is disabled  
Comment:  
Signature:  
Date:  
58/65  
DocID18315 Rev 6  
 
STM8T143  
STM8T143 programming tool  
12  
STM8T143 programming tool  
Figure 29 shows the STM8T143 programming tool.  
To program the device option bytes the following materials are available:  
Programming socket board (STM8T14X-SB). When connected to the programming  
dongle, this board allows the programming of SO8 or UFDFPN8 devices.  
A programming dongle (ST-TSLINK) and its associated programming software, STVP.  
Figure 29. STM8T143 programming tool  
Programming socket board (STM8T14X-SB)  
Programming dongle (ST-TSLINK)  
Table 30. Ordering information  
Part number  
Order codes  
Description  
ST-TSLINK  
ST-TSLINK  
STM8T143 programming dongle  
STM8T143 socket board  
STM8T14X-SB  
STM8T14X-SB  
DocID18315 Rev 6  
59/65  
64  
 
 
Revision history  
STM8T143  
13  
Revision history  
Table 31. Document revision history  
Changes  
Date  
Revision  
17-May-2011  
1
Initial release  
Features: updated bullet about low power management.  
Block diagram: updated Figure 1: STM8T143 block diagram,  
removed Power-on-reset (POR), and updated Advanced ProxSense  
engine.  
Section 4.3: Internal sampling capacitor: added ‘to fit a wide range  
of applications’.  
Section 5: STM8T143 processing: realigned bullet points according  
to order of subsections.  
Section 5.2: Signal calculation and reference calibration: updated  
Section 5.3: Detection and release thresholds: updated  
Figure 7: Automatic electrode tuning (AET): replaced  
Figure 8: Signal reference and detection threshold (not detailed):  
replaced.  
Figure 9: DYCAL general operation: replaced  
Figure 10: DYCAL operation with water residue: replaced  
Figure 11: No DYCAL: updated  
Added Figure 12: IIR filter formula  
Section 5.5.2: ECS halt: in Figure 14: Unwanted detection managed  
by the reference freeze timeout: replaced ‘reference - DTh’ with  
‘Reference - PTh’; added note 5.5.4.  
31-Aug-2011  
2
Section 5.4: Dynamic calibration (DYCAL): updated  
Added Section 5.5.4: ECS filter constant adjustment and Figure 15:  
ECS filter K constant management.  
Removed Reference freeze timeout figure  
Section 5.7: Host control input: updated  
Table 3: Option byte description: updated OPT2 (bit 4), OPT0 (bits  
[7:5] and [4:3]).  
Table 6: Data streaming frame: updated description of bit 47 (byte 5).  
Table 8: Current characteristics: updated IVDD, IVSS, and IIO max  
values.  
Table 11: Average current consumption: updated all typ and max  
values; updated footnotes.  
Table 12: OUT/TOUT/DATA streaming pin characteristics: replaced  
all TBDs with values; added condition 25 °C; added footnote 1.  
Table 13: POUT/TOUT pin characteristics: replaced all TBDs with  
values; added condition 25 °C; added footnote 1.  
Table 14: CTRL pin characteristics: replaced all TBDs with values;  
added condition 25 °C; added footnote 1.  
60/65  
DocID18315 Rev 6  
STM8T143  
Revision history  
Table 31. Document revision history (continued)  
Revision Changes  
Date  
Table 16: General capacitive sensing characteristics: updated  
fTRANSFER, response time, and device startup time parameters;  
added min and max values for tSAMPLING,and AET target value  
parameter; added footnotes 1. and 5.; updated footnote 4.  
Table 17: Internal CS value: added ICS bit values.  
Table 18: Implemented EPCC values (pF): added EPCC6 and  
capacitance bit 6 values.  
Table 21: EMS data: removed VFESD parameter and added  
level/class for VEFTB parameter.  
2
31-Aug-2011  
cont’d  
Table 22: EMI data: added values for RCOSC = 1 MHz.  
Table 23: ESD absolute maximum ratings: updated class, max value  
and unit.  
Table 24: Electrical sensitivities: added class value.  
Table 26: UFDFPN8-lead ultra thin fine pitch dual flat - package  
mechanical data: added footnote 2.  
Updated programming service option list.  
Added SO8 package and updated all information relating to this  
package throughout document.  
Figure 3: UFDFPN8 pinout: updated pins 1 and 8.  
Table 1: STM8T143 pin descriptions: updated layout and content.  
Figure 5: STM8T143 measuring circuitry: changed “STM8T143” to  
“Device”.  
Section 4.4: Electrode parasitic capacitance compensation (EPCC):  
removed text concerning EPCC hardware and fixed compensation  
capacitance.  
Section 5: STM8T143 processing: updated title; updated second  
bullet point to “signal and reference calibration”.  
Section 5.1: Automatic electrode tuning (AET): text updated to  
improve technical clarity and readability, values replaced; updated  
and improved appearance of Figure 7: Automatic electrode tuning  
(AET).  
15-Nov-2011  
3
Section 5.2: Signal calculation and reference calibration: removed  
bullet points regarding AET; small text changes.  
Section 5.3: Detection and release thresholds: small text changes,  
corrections and clarifications; updated title, improved appearance,  
and removed ‘tDYCAL’ from Figure 8: Signal reference and detection  
threshold (not detailed).  
Section 5.4: Dynamic calibration (DYCAL): small text changes and  
corrections; updated titles and content of Figure 9: DYCAL general  
operation and Figure 10: DYCAL operation with water residue;  
improved appearance of all figures in this section.  
Section 5.5.2: ECS halt: updated appearance of Figure 13: ECS halt  
and removed note 2 underneath it.  
Section 5.5.3: Reference freeze and reference freeze timeout:  
moved section to current location; updated title and improved  
appearance of Figure 14: Unwanted detection managed by the  
reference freeze timeout.  
DocID18315 Rev 6  
61/65  
64  
Revision history  
STM8T143  
Table 31. Document revision history (continued)  
Revision Changes  
Date  
Section 5.5.4: ECS filter constant adjustment: updated title and  
added reference to Figure 15: ECS filter K constant management.  
Section 5.6: Debounce filter: removed last sentence of this section  
which concerned the HALT function.  
Section 5.7: Host control input and Section 5.7.1: CTRL pin  
management: removed.  
Section 6: Device operation: updated bullet points concerning  
Control, Dual output, and Data streaming modes.  
Table 2: Option bytes: updated abbreviations for touch and proximity  
detection thresholds.  
Table 3: Option byte description: small corrections to bit 5 (OPT2), bit  
0 (OPT 1) and bit 0 (OPT 0); added gain target values (instead of A,  
B, C etc.) for bits [3:1] of OPT 2.  
Section 6.2.1: Dual output mode: renamed section; added Table 4:  
Pin 1 configuration and Table 5: Pin 8 configuration.  
Section 6.2.2: Control mode: small text changes and corrections;  
added final explanatory sentence to Reference freeze control mode.  
Section 6.2.3: Data streaming mode: small text changes and  
corrections; updated bits 34, 47, 46, and 45 of Table 6: Data  
streaming frame.  
Section 6.4: Power modes: moved to the end of Section 6.  
Section 7: Typical application diagram: moved after Section 6:  
Device operation.  
Figure 17: Typical application schematic for Control mode: renamed  
figured and updated content and footnotes.  
3
15-Nov-2011  
cont’d  
Figure 18: Typical application schematic for Dual output mode:  
renamed figured and updated content and footnotes.  
Figure 19: Typical application schematic for Data streaming mode:  
renamed figured and updated content and footnotes.  
Table 7: Voltage characteristics: updated max value of supply  
voltage parameter and added footnote 1.  
Table 11: Average current consumption: updated with new typ and  
max values; updated first condition; replaced “Conversion” with  
“Control”; updated footnote 2.  
Table 12: OUT/TOUT/DATA streaming pin characteristics: removed  
footnote 1. from “Typ” column.  
Table 13: POUT/TOUT pin characteristics: added “TOUT” to table  
title; removed footnote 1. from “Typ” column.  
Table 15: Regulator and reference voltage: updated first condition.  
Section 9.5: Capacitive sensing characteristics: removed “Test  
conditions: TA = 25 °C”; placed note at the end of this table at the  
beginning.  
Table 16: General capacitive sensing characteristics: added typ  
value for parameter “CTRL pin pulse duration for recalibration”;  
added typ values for parameters “Low power modes 1, 2, and 3” and  
removed footnote associated with them; replaced “release” with  
“touch” in the parameter “ECS filter freeze threshold in touch state”;  
small corrections to footnotes 3. and 4.  
Table 17: Internal CS value: added typ value to “CS capacitance  
value (nF) parameter; added footnote 1.  
62/65  
DocID18315 Rev 6  
STM8T143  
Revision history  
Table 31. Document revision history (continued)  
Revision Changes  
Date  
Table 18: Implemented EPCC values (pF): updated title; replaced  
name of bit; removed EPCC 6 data, updated “Maximum PCC  
capacitance value”; added footnote 1.  
Figure 23: SO8 narrow recommended footprint (dimensions in mm):  
added.  
Figure 25: UFDFPN 2 x 3 mm recommended footprint (dimensions in  
mm): added.  
Figure 26: STM8T143 ordering information scheme: updated  
package and device configuration information; updated footnote 2.  
3
15-Nov-2011  
cont’d  
Section 11.2: Orderable favorite device lists: updated rev 1  
UFDFPN8 OTP device and added rev 2 UFDFPN8 OTP device.  
Figure 27: SO8 package marking: added.  
Figure 28: UFDFPN8 package marking: added.  
Updated programming service option list.  
Section 12: STM8T143 programming tool: updated first bullet point  
and replaced Figure 29: STM8T143 programming tool.  
Updated all information relating to Control mode.  
Figure 2: SO8 pinout, Figure 3: UFDFPN8 pinout and Table 1:  
STM8T143 pin descriptions:Updated Pin 1 name to “OUT”.  
Table 10: Operating characteristics: Updated Min. value of VDD  
.
Table 11: Average current consumption: Updated VDD conditions.  
Table 12: OUT/TOUT/DATA streaming pin characteristics and  
Table 13: POUT/TOUT pin characteristics: Updated Min. and Typ.  
values of VOH. Updated list of VDD parameter. Added Ilkg parameter.  
Table 14: CTRL pin characteristics: Updated list of VDD parameter.  
12-Sep-2012  
4
Added Ilkg parameter.  
Table 15: Regulator and reference voltage: Added note 2. Updated  
Vreg conditions, Min. and Max. values.  
Table 16: General capacitive sensing characteristics: Updated Min.  
and Max. values. Added Vtrip parameter.  
Table 18: Implemented EPCC values (pF): Moved note 1. on ICS bit  
2 definition.  
Updated programming service option list.  
Section 12: STM8T143 programming tool: updated part number of  
Programming socket board.  
DocID18315 Rev 6  
63/65  
64  
Revision history  
STM8T143  
Table 31. Document revision history (continued)  
Date  
Revision  
Changes  
Updated Table 7: Voltage characteristics.  
Replaced any occurrence of tDYCAL_T by tDYCAL  
In Table 2: Option bytes, replaced:  
.
– "tDYCAL" by "Dynamic calibration delay"  
– "Touch detection threshold (TTh)" by "Touch detection threshold“  
– “Proximity detection threshold (PTh)” by “Proximity detection  
threshold”.  
In Table 3: Option byte description  
– replaced the release threshold ratio of 90% by 87.5%.  
– renamed “Reference freeze timeout" by "Reference freeze timeout  
(tRFT) "  
17-Apr-2013  
5
– updated the value information for the Reference freeze timeout  
– renamed "tDYCAL" by "Dynamic calibration delay (tDYCAL)"  
– updated the value information for the Dynamic calibration delay  
Removed tRFT and tDYCAL rows in Table 16: General capacitive  
sensing characteristics  
Updated the “programming service option list” form in Section 11.4:  
Revision code on device markings  
Changed “Touch output” signal rising edge position in Figure 9:  
DYCAL general operation and Figure 10: DYCAL operation with  
water residue  
Modified note 2 below Table 15: Regulator and reference voltage on  
page 41.  
Removed note 1 in Table 18: Implemented EPCC values (pF) on  
page 44.  
Updated Section 11.2: Orderable favorite device lists on page 54  
Added Section 11.4: Revision code on device markings on page 55.  
Moved Section 11.4: Revision code on device markings on page 55  
to Section 11.2.1: Part number option bytes on page 54  
Added last two rows in Table 29: Device identification on page 55.  
18-Oct-2013  
6
Updated the “programming service option list” form in Section 11.4:  
Revision code on device markings on page 55.  
Added first row in Section : Customer settings (tick one box by  
option) on page 57 and insert note.  
Added note in Section : Proximity output(2) on page 57  
Updated Disclaimer content to Rev5-4  
Updated Section : (1) Fastrom is not available in SO8 device. on  
page 58  
Added new code Fastrom in Table 28: Option byte values on  
page 54 and Table 29: Device identification on page 55  
64/65  
DocID18315 Rev 6  
STM8T143  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID18315 Rev 6  
65/65  
65  

相关型号:

STM8T143AUTAB2TR

PROXIMITY SENSOR-CAPACITIVE
STMICROELECTR

STM8T14X-SB

STM8T14x device programming
STMICROELECTR

STM8TL52X4

Operating conditions
STMICROELECTR

STM8TL53x4

Operating conditions
STMICROELECTR

STM8XXLW16F

Reset circuit
STMICROELECTR

STM8XXLWX6F

Reset circuit
STMICROELECTR

STM8XXMW16F

Reset circuit
STMICROELECTR

STM8XXMWX6F

Reset circuit
STMICROELECTR

STM8XXRW16F

Reset circuit
STMICROELECTR

STM8XXRWX6F

Reset circuit
STMICROELECTR

STM8XXSW16F

Reset circuit
STMICROELECTR

STM8XXSWX6F

Reset circuit
STMICROELECTR