STOD1317BTPUR [STMICROELECTRONICS]

Very high efficiency at light load thanks to pulse skipping operation;
STOD1317BTPUR
型号: STOD1317BTPUR
厂家: ST    ST
描述:

Very high efficiency at light load thanks to pulse skipping operation

文件: 总22页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STOD1317B  
170 mA 13 V, high efficiency  
boost converter + LDO  
Datasheet - production data  
Description  
The STOD1317B is a fixed frequency, high  
efficiency, boost DC-DC converter with cascaded  
LDO able to provide output voltages ranging from  
6 V to 13 V starting with an input voltage from  
2.6 V to 4.8 V. The device is designed to supply  
loads that are very sensitive to output ripple such  
as AMOLED display panels. A dedicated LDO is  
able to suppress any ripple and noise coming out  
from the DC-DC converter. The LDO works with a  
constant drop in order to maintain high efficiency  
DFN12L (3 x 3 mm)  
in the whole operating range. The low R  
N-  
DSon  
channel and P-channel MOSFET switches are  
integrated and contribute to achieving high  
efficiency. The true-shutdown feature allows  
physical disconnection of the battery from the  
load when the device is in shutdown mode. The  
control technique is able to maintain efficiency  
higher than 85% at light loads and higher than  
80% at full load. The device includes soft-start  
control, inrush current limiter, thermal shutdown  
and inductor peak current limit. The STOD1317B  
is packaged in DFN12L (3 x 3 x 0.8 mm) height.  
Features  
Operating input voltage range from 2.6 V to  
4.8 V  
±1% output voltage tolerance  
Low output ripple  
True-shutdown  
Short-circuit protection  
Digital low power function  
Very high efficiency at light load thanks to pulse  
skipping operation  
Very fast line and load transients  
1.2 MHz switching frequency  
1 µA max. quiescent current  
DFN12L (3 x 3 x 0.8 mm)  
Applications  
Single rail AMOLED display  
Cellular phones  
Battery powered equipment  
Table 1. Device summary  
Order code  
Marking  
1317B  
Package  
Packaging  
STOD1317BTPUR  
DFN12L (3 x 3 mm)  
3000 parts per reel  
April 2013  
DocID022607 Rev 2  
1/22  
This is information on a product in full production.  
www.st.com  
22  
Contents  
STOD1317B  
Contents  
1
2
3
4
5
6
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6.1  
BOOST multiple mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
6.1.1  
6.1.2  
6.1.3  
Pulse skipping operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Discontinuous conduction mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Continuous conduction mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.2  
6.3  
6.4  
6.5  
6.6  
Enable pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Soft-start and inrush current limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Digital low power function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1  
External passive components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1.1  
7.1.2  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input and output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.2  
Recommended PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/22  
DocID022607 Rev 2  
STOD1317B  
Schematic  
1
Schematic  
Figure 1. Application schematic  
Table 2. Typical external components  
Comp. Manufacturer  
Part number  
Value  
Ratings  
Size  
MURATA  
GRM219R61A106KE44  
LMK212BJ106KD-T  
C1608X5R0J106  
±10%, X5R, 10V  
±10%, X5R, 10V  
±10%, X5R, 6.3V  
0805  
0805  
0603  
CIN  
Taiyo Yuden  
TDK  
10µF  
MURATA  
TDK  
GRM219R61C475KE15  
C2012X5R1C475  
±10%, X5R, 16V  
±10%, X5R, 16V  
0805  
0805  
CMID  
4.7µF  
4.7µF  
MURATA  
TDK  
GRM219R61C475KE15  
C2012X5R1C475  
±10%, X5R, 16V  
±10%, X5R, 16V  
0805  
0805  
COUT  
CoilCraft  
TDK  
LPS4012-472ML  
±20%, curr. 1.7A, resist. 0.1754.0 x 4.0 x 1.2  
±20%, curr. 1.3A, resist. 0.3382.5 x 2.0 x 1.2  
±20%, curr. 0.9A, resist. 0.2803.1 x 3.1 x 0.8  
L (1)  
VLS252012T-4R7MR81 4.7µH  
PNL3008-4R7M  
DASTEK  
R1  
R2  
k  
k  
0402  
0402  
1. Inductor used for the typical application conditions. Inductance values ranging from 3.3 µH to 6.8 µH can be used together  
with the STOD1317B. A minimum saturation current of 1.2 A must be ensured to support 170 mA at 2.6 V in full range.  
Note:  
All the above components refer to a typical application. Operation of the device is not limited  
to the choice of these external components.  
DocID022607 Rev 2  
3/22  
Schematic  
STOD1317B  
Figure 2. Block schematic  
LX  
VMID  
SCP  
s
s
M1  
M2  
s
M3  
VOUT  
PGND  
GND  
VO_SET  
DMD  
M0  
s
OTA  
PGND  
+
-
FB  
PWM LOGIC CONTROL  
SOFT  
START  
OVP  
&
VREF  
DRIVER  
+
-
OCP  
RING  
EA  
KILLER  
COMP  
+
-
VIN  
+
SHUT  
DOWN  
OSC  
OTP  
NC  
EN  
4/22  
DocID022607 Rev 2  
STOD1317B  
Pin configuration  
2
Pin configuration  
Figure 3. Pin configuration (top view)  
VMID  
VOUT  
VO_SET  
GND  
FB  
LX  
LX  
PGND  
PGND  
VIN  
AGND  
EN  
NC  
Table 3. Pin description  
Pin name  
Pin number  
Description  
VMID  
VOUT  
VO_SET  
GND  
1
2
3
4
5
Step-up output voltage  
LDO output voltage  
LDO output voltage set  
Analog ground  
FB  
Feedback voltage  
Enable pin. Connect this pin to GND or a voltage lower than 0.4V  
to shut down the IC. A voltage higher than 1.2V is required to  
enable the IC  
EN  
6
NC  
VIN  
7
8
Not connected  
Supply voltage  
PGND  
LX  
9, 10  
11, 12  
Power ground  
Switch pin. Inductor connection to the internal switches  
Exposed  
PAD  
Internally connected to PGND  
DocID022607 Rev 2  
5/22  
Maximum ratings  
STOD1317B  
3
Maximum ratings  
Table 4. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
VIN  
LX  
Supply voltage  
-0.3 to +7.0  
-0.3 to +16  
16  
V
V
Switching node  
VOUT_SET  
VOUT  
EN  
LDO output voltage set  
Output voltage  
V
-0.3 to +16  
-0.3 to 4.6  
-0.3 to +2.5  
±200  
V
Logic pin  
V
FB  
Feedback pin  
V
Machine model  
V
ESD  
Human body model  
Operating ambient temperature  
Maximum operating junction temperature  
Storage temperature  
±2000  
V
TAMB  
TJ  
-40 to 85  
+150  
°C  
°C  
°C  
TSTG  
-65 to 150  
Note:  
Absolute maximum ratings are those values beyond which damage to the device may occur.  
Functional operation under these conditions is not implied.  
Table 5. Thermal data  
Symbol  
Parameter  
Value  
Unit  
RthJA  
RthJC  
Thermal resistance junction-ambient  
49.1  
°C/W  
°C/W  
Thermal resistance junction-case (FR-4 PCB)  
4.216  
6/22  
DocID022607 Rev 2  
STOD1317B  
Electrical characteristics  
4
Electrical characteristics  
T = 25 °C, V = 3.7 V, V  
= 10 V, C = 2 x 10 µF, C  
= 2 x 4.7 µF, C  
= 2 x 4.7 µF,  
OUT  
J
IN  
OUT  
IN  
MID  
L = 4.7 µH, V = 2 V, unless otherwise specified.  
EN  
Table 6. Electrical characteristics  
Test conditions Min.  
Symbol  
Parameter  
Typ.  
Max.  
Unit  
General section  
Operating power input  
voltage range  
VIN  
Iq  
2.6  
3.7  
0.5  
4.8  
1
V
Shutdown mode,  
EN=GND  
Shutdown mode  
No switching  
µA  
V
VEN=VIN=3.7V, VFB=1.3V  
VIN rising  
1
1.5  
2.5  
mA  
2.4  
2.2  
1.2  
2
Undervoltage lockout  
threshold  
VUVLO  
V
VIN falling  
2.1  
1
fSW  
IPK  
Switching frequency  
1.35  
2.4  
MHz  
A
Switch current limitation  
1.6  
Output voltage (VOUT  
)
VFB  
Feedback voltage  
Accuracy  
TA=25°C  
1.08  
1.02  
6
1.2  
1.32  
1.38  
13  
V
V
V
VFB  
VOUT  
-40°C<TA<85°C  
Output voltage range  
10  
30  
VLINE/LOA Total line/load static  
TA=25°C; VIN=2.6V to  
4.8V; IOUT=5mA to 170mA  
40  
30  
mV  
mV  
variation (1)  
D
VOUT  
VIN=3.7V, VOUT=10V,  
IOUT=10mA  
Output voltage ripple  
RIPPLE  
VOVP  
ILKFB  
Overvoltage protection  
FB pin leakage current  
VFB=0  
14  
15  
16  
1
V
VFB=5V to 13V  
µA  
Step-up output voltage  
regulation  
V
0.38  
OUT  
+
V
0.56  
OUT  
+
V
0.7  
OUT  
+
VMID  
V
Logic inputs  
VIL  
VIH  
ILK-I  
EN low-level input voltage  
EN high-level input voltage  
EN input leakage current  
0.4  
1
V
V
1.2  
VEN=VIN=4.8V  
µA  
Power switches  
P-Channel ON resistance  
ISW_P=100mA  
550  
250  
900  
400  
1
RDSON  
ILKG-LX  
mΩ  
N-Channel ON resistance  
LX leakage current  
ISW_N=100mA  
VIN=VLX=4.8V; VEN=0  
µA  
DocID022607 Rev 2  
7/22  
Electrical characteristics  
STOD1317B  
Table 6. Electrical characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
DLP function  
VIN=3.7V, VEN=0,  
Leakage current from load VOUT=6V (supplied by  
external power)  
IO_LEAK  
0.5  
2
µA  
1. Not tested in production. This value is guaranteed by correlation with RDSON, peak current limit and operating input voltage.  
2. Not tested in production.  
8/22  
DocID022607 Rev 2  
STOD1317B  
Typical performance characteristics  
5
Typical performance characteristics  
T = 25 °C, V = 3.7 V, V  
= 10 V, C = 2 x 10 µF, C  
= 2 x 4.7 µF, C  
= 2 x4.7 µF,  
J
IN  
OUT  
IN  
MID  
OUT  
L = 4.7 µH, V = 2 V, unless otherwise specified.  
EN  
Figure 4. Quiescent current vs. temperature  
Figure 5. Switching frequency vs. temperature  
1.35  
3
2.75  
2.5  
3.7V  
1.33  
1.31  
1.29  
1.27  
1.25  
2.9V  
4.8V  
2.25  
2
1.75  
1.5  
-25  
0
25  
50  
75  
100  
125  
-25  
0
25  
50  
75  
100  
125  
Temperature [C]  
Temperature [C]  
Figure 6. Efficiency vs. output current  
Figure 7. Switching frequency  
VI  
SW  
90  
85  
80  
75  
70  
65  
60  
55  
VMID  
VIN=4.2V  
VIN=3.2V  
VIN=3.7V  
VIN=2.9V  
VOUT  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
Output Current [mA]  
Frequency : 1.285 MHz  
VIN = 3.7 V, IOUT = 170 mA, TJ = 25 °C  
Figure 8. Soft-start inrush current  
Figure 9. Feedback voltage vs. temperature  
EN  
1.22  
1.21  
1.2  
1.19  
1.18  
1.17  
1.16  
1.15  
VOUT  
2.3 2.5 2.7  
2.9 3.1  
3.3  
3.5 3.7  
3.9 4.1  
4.3  
4.5 4.7 4.9  
IIN  
Input Voltage [V]  
VIN = 3.7 V, NO LOAD, TJ = 25°C, SS:1.265 ms, Inrush  
current: 260 mA  
DocID022607 Rev 2  
9/22  
Typical performance characteristics  
Figure 10. TDMA noise immunity  
STOD1317B  
VIN  
VOUT  
VIN = 2.6 V to 3.1 V, IOUT = 20 mA  
10/22  
DocID022607 Rev 2  
STOD1317B  
Detailed description  
6
Detailed description  
The STOD1317B is a high efficiency DC-DC converter which integrates a step-up and LDO  
power stage suitable for supplying AMOLED panels. Thanks to the high level of integration it  
needs only 6 external components to operate and it achieves very high efficiency using a  
synchronous rectification technique.  
The controller uses an average current mode technique in order to obtain good stability and  
precise voltage regulation in all possible conditions of input voltage, output voltage and  
output current. In addition, the peak inductor current is monitored in order to avoid saturation  
of the coils.  
The STOD1317B implements a power saving technique in order to maintain high efficiency  
at very light load and it switches to PWM operation as the load increases in order to  
guarantee the best dynamic performances and low noise operation.  
In order to guarantee very low ripple on the output voltage, the step-up output is filtered by  
the LDO. There are two control loops; the LDO control loop regulates V  
in order to  
OUT  
provide the right voltage to the output, while the boost control loop is internally set to provide  
and output voltage 380 mV higher than V  
the minimum possible drop.  
in order to maintain the LDO in regulation at  
OUT  
The STOD1317B avoids battery leakage thanks to the true-shutdown feature and it is self  
protected from overtemperature and short-circuit on the V  
soft-start guarantee proper operation during startup.  
pin. Undervoltage lockout and  
OUT  
6.1  
BOOST multiple mode of operation  
The boost DC-DC operates in three different modes: pulse skipping (PS), discontinuous  
conduction mode (DCM) and continuous conduction mode (CCM). It switches automatically  
between the three modes according to input voltage, output current and output voltage  
conditions.  
6.1.1  
6.1.2  
Pulse skipping operation  
The STOD1317B works in pulse skipping mode when the load current is below some tens of  
mA. The load current level at which this way of operation occurs depends on the input and  
output voltage.  
Discontinuous conduction mode  
When the load increases above some tens of mA, the STOD1317B enters DCM operation.  
In order to obtain this type of operation the controller must avoid the inductor current going  
negative. The discontinuous mode detector (DMD) block senses the voltage across the  
synchronous rectifier and turns off the switch when the voltage crosses a defined threshold  
which, in turn, represents a certain current in the inductor. This current can vary according to  
the slope of the inductor current which depends on input voltage, inductance value, and  
output voltage.  
6.1.3  
Continuous conduction mode  
At medium/high output loads the STOD1317B enters full CCM at constant switching  
frequency mode.  
DocID022607 Rev 2  
11/22  
Detailed description  
STOD1317B  
6.2  
Enable pin  
The device operates when the EN pin is set high. If the EN pin is set low, the device stops  
switching, all the internal blocks are turned off. In this condition the current drawn from V is  
IN  
below 1 µA in the whole temperature range. In addition, the internal switches are in OFF  
state so the load is electrically disconnected from the input, this avoids unwanted current  
leakage from the input to the load.  
6.3  
Soft-start and inrush current limiting  
After the EN pin is pulled high, or after a suitable voltage is applied to V and EN, the  
IN  
device initiates the startup phase.  
As a first step, the C  
capacitor is charged, the P1 switch implements a current limiting  
MID  
technique in order to keep the charge current below 400 mA. This avoids battery  
overloading during startup.  
After V  
reaches the V voltage level, the P1 switch is fully turned on and the soft-start  
IN  
MID  
procedure for the step-up is started. V  
regulation value.  
starts to softly increase until it reaches the  
OUT  
6.4  
Undervoltage lockout  
The undervoltage lockout function avoids improper operation of the STOD1317B when the  
input voltage is not high enough. When the input voltage is below the UVLO threshold the  
device is in shutdown mode. The hysteresis of 100 mV avoids unstable operation when the  
input voltage is close to the UVLO threshold.  
6.5  
6.6  
Overtemperature protection  
An internal temperature sensor continuously monitors the IC junction temperature. If the IC  
temperature exceeds 150 °C, typical, the device stops operating. As soon as the  
temperature falls below 135 °C, typical, normal operation is restored.  
Digital low power function  
The digital low power (DLP) function allows physical disconnection of the load from the  
device.  
12/22  
DocID022607 Rev 2  
STOD1317B  
Detailed description  
Figure 11. Digital low power function  
D-IC  
VPNL  
DDVDH(6V)  
Enable  
Charge Pump  
SW  
*
S/D  
GPIO2  
EN  
GPIO1  
Disable  
DCDC  
VDDEL  
Disable  
EN  
FB  
**  
Enable/Disable  
Refer to next page  
SW  
Leakage  
Pass  
Disable  
Operation  
– (*) When the power IC is disabled, in order to disconnect leakage current through the  
feedback node, the S/W function is active.  
– (**) A new EN transition from low to high and/or device power-up turn off the DLP  
function and allow IC to work under typical conditions.  
DocID022607 Rev 2  
13/22  
Application information  
STOD1317B  
7
Application information  
7.1  
External passive components  
7.1.1  
Inductor selection  
The inductor is the key passive component for switching converters.  
For the step-up converter an inductance between 3.3 µH and 6.8 µH is recommended.  
It is very important to select the right inductor according to the maximum current the inductor  
can handle in order to avoid saturation. The peak current for the step-up can be calculated  
as:  
Equation 1  
V
I  
VIN  
MIN  
(V  
MID  
- VIN )  
MIN  
MID OUT  
I
PEAK BOOST  
η VIN  
MIN  
2V fs L  
MID  
where  
: step-up output voltage, it is fixed internally to V  
V
+ 0.38 V;  
OUT  
MID  
I
: output current;  
OUT  
V : input voltage of the STOD1317B;  
IN  
fs: switching frequency. Use the minimum value of 1 MHz for worst case;  
: efficiency of the step-up converter (0.80 at maximum load).  
7.1.2  
Input and output capacitor selection  
It is recommended to use ceramic capacitors with low ESR as input and output capacitors in  
order to filter any disturbance present in the input line and to obtain stable operation of the  
step-up converter and LDO. A minimum real capacitance value of 3 µF must be guaranteed  
for C  
and C  
in all conditions.  
MID  
OUT  
7.2  
Recommended PCB layout  
The STOD1317B is a high frequency power switching device so it requires a proper PCB  
layout in order to obtain the necessary stability and optimize line/load regulation and output  
voltage ripple.  
The input capacitor must be as close as possible to the V pin.  
IN  
In order to minimize the ground noise, a common ground node for power ground (PGND)  
and a different one for analog ground (GND) must be used. The exposed pad is connected  
to PGND through vias.  
Grounding is fundamental to the operation of DC-DC converters; run separate ground paths  
for critical parts of the circuit (GND and Power GND), each connected back to a single  
ground point.  
Separate ground lines prevent the current and noise of one component from interfering with  
other components. If using a ground plane, utilize “split” plane techniques to give effective  
grounding. Use multiple vias to decrease the trace impedance to ground.  
14/22  
DocID022607 Rev 2  
STOD1317B  
Application information  
Figure 12. Ground schematic  
# V routing #:  
the incoming and the outgoing  
track are not connected to each  
other but only to the capacitor pad  
This track can be longer.  
In fact we add here an inductor  
that creates a second order filter  
with the CoHF  
Do not !!  
Via wich dives into  
the power supply plane  
Do !!  
Vout  
Vout  
L2  
We add here  
an impedance  
that lowers the  
resonating  
L1  
frequency of  
CoHF  
1/2 L3  
CoHF  
COUT  
Vout  
1/2 L3  
CoHF  
GND  
COUT  
Start from the  
component pad and not  
the incoming track  
CO HF  
100 nF  
L3  
f
Via wich dives into  
the ground plane  
30 nH  
(1via)  
3 MHz  
100nF  
100nF  
10 nH  
1 nH  
5 MHz  
16 MHz  
Co HF resonating frequency  
Such isolation is necessary to prevent high-level switching currents from returning to the  
battery, or other power supply, through the same ground-return path as the analog signals.  
If that happens, the ground path of those sensitive signals is disturbed; the high-level  
switching currents flowing through the ground's resistance and inductance cause the  
voltage along the return path to vary.  
In addition to the grounding scheme, proper placement of the regulator's components is  
important.  
Beginning a new layout, for the reasons above, it is necessary to firstly place the capacitors  
C , C  
and C  
as close as possible to the related device pins.  
IN  
OUT  
MID  
After that, it is possible to place the inductors and the Power GND routing. Next, we can  
trace the GND connected through vias to the PGND near to one of the main filter capacitors.  
The LDO needs a quiet ground signal in order to operate properly.  
It is important to pay close attention to the routing of traces from capacitor terminals in a  
DC-DC converter circuit.  
Large-valued low-ESR capacitors are expensive, and bad routings can cancel their  
performance.  
A good routing, on the other hand, can lower the output noise.  
Ripple is directly related to the inductor value, the capacitor ESR, the switching frequency,  
and so forth, but HF noise (spikes) depends on parasitic elements and the switching action.  
In a bad routing, parasitic inductance associated with trace lengths causes problems:  
In Figure 12, L1 brings about an increase in noise, and L2 limits the attenuation of an added  
HF capacitor. The solution is to bring the input trace in on one side of the capacitor pad, and  
the output trace out on the other side of the pad.  
DocID022607 Rev 2  
15/22  
 
Application information  
STOD1317B  
Figure 13. Top layer  
Figure 14. Bottom layer  
16/22  
DocID022607 Rev 2  
STOD1317B  
Package mechanical data  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Table 7. DFN12L (3 x 3 x 0.8 mm.) package mechanical data  
mm.  
Dim.  
Min.  
Typ.  
Max  
A
A1  
A3  
b
0.70  
0
0.75  
0.02  
0.20  
0.25  
3
0.80  
0.05  
0.18  
2.85  
1.87  
2.85  
1.06  
0.30  
3.15  
2.12  
3.15  
1.31  
D
D2  
E
2.02  
3
E2  
e
1.21  
0.45  
0.40  
L
0.30  
0.50  
DocID022607 Rev 2  
17/22  
 
Package mechanical data  
STOD1317B  
Figure 15. DFN12L package dimensions  
8065043_A  
18/22  
DocID022607 Rev 2  
 
STOD1317B  
Package mechanical data  
Tape & reel QFNxx/DFNxx (3x3) mechanical data  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
330  
MIN.  
MAX.  
12.992  
0.519  
A
C
12.8  
20.2  
99  
13.2  
0.504  
0.795  
3.898  
D
N
101  
3.976  
0.567  
T
14.4  
Ao  
Bo  
Ko  
Po  
P
3.3  
3.3  
1.1  
4
0.130  
0.130  
0.043  
0.157  
0.315  
8
DocID022607 Rev 2  
19/22  
Package mechanical data  
STOD1317B  
Figure 16. DFN12L (3 x 3 mm) footprint recommended data  
20/22  
DocID022607 Rev 2  
STOD1317B  
Revision history  
9
Revision history  
Table 8. Document revision history  
Changes  
Date  
Revision  
19-Dec-2011  
1
Initial release.  
Updated:  
11-Apr-2013  
2
– Package mechanical data Table 7 on page 17 and  
Figure 15 on page 18.  
DocID022607 Rev 2  
21/22  
STOD1317B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  
DocID022607 Rev 2  

相关型号:

STOD13AM

Step-up and inverter converters
STMICROELECTR

STOD13AMTPUR

Step-up and inverter converters
STMICROELECTR

STOD13AS

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ASTPUR

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ATPUR

250 mA dual DC-DC converter for powering AMOLED displays
STMICROELECTR

STOD13CM

250 mA dual DC-DC converter
STMICROELECTR

STOD13CMTPUR

250 mA dual DC-DC converter
STMICROELECTR

STOD14

700 mA dual DC-DC converter for powering AMOLED displays
ETC

STOD1412

Step-up and inverting DC-DC converter
STMICROELECTR

STOD1412PMR

SWITCHING CONTROLLER, 1300kHz SWITCHING FREQ-MAX, QCC16, 3 X 3 MM, ROHS COMPLIANT, QFN-16
STMICROELECTR

STOD1412PUR

Step-up and inverting DC-DC converter
STMICROELECTR

STOD14PUR

DUAL SWITCHING CONTROLLER, 1760kHz SWITCHING FREQ-MAX, PDSO12, 4 X 4 MM, 0.75 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, DFN-12
STMICROELECTR