STPA008 [STMICROELECTRONICS]

4 x 50 W MOSFET quad bridge power amplifier;
STPA008
型号: STPA008
厂家: ST    ST
描述:

4 x 50 W MOSFET quad bridge power amplifier

文件: 总29页 (文件大小:598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STPA008  
4 x 50 W MOSFET quad bridge power amplifier  
Datasheet - production data  
– Overrating chip temperature with soft  
thermal limiter  
– Output DC offset detection  
– Load dump  
)OH[LZDWWꢀꢁ  
)OH[LZDWWꢀꢂꢃ  
ꢄYHUWLFDOꢅ  
– Fortuitous open GND  
– Reversed battery  
– ESD  
Qualification in accordance to AEC Q100  
standard  
)OH[LZDWWꢀꢂ  
ꢄKRUL]RQWDOꢅ  
Description  
*$3*ꢀꢁꢂꢁꢃꢄꢃꢂꢄꢁ36  
STPA008 is a breakthrough MOSFET technology  
class AB audio power amplifier designed for high  
power car radio. The fully complementary  
Features  
P-Channel/N-Channel output structure allows a  
rail to rail output voltage swing which, combined  
with high output current and minimized saturation  
losses sets new power references in the car-radio  
field, with unparalleled distortion performances.  
High output power capability:  
– 4 x 50 W/4 Ω Max.  
– 4 x 28 W/4 Ω @ 14.4 V, 1 kHz, 10 %  
– 4 x 72 W/2 Ω Max.  
MOSFET output power stage  
2 Ω driving capability  
STPA008 can operate down to 6V and this makes  
the IC compliant to the most recent OEM  
specifications for low voltage operation (so called  
'start-stop' battery profile during engine stop),  
helping car manufacturers to reduce the overall  
emissions and thus contributing to environment  
protection.  
Capable to operate down to 6 V (suitable for  
start-stop car operation)  
Excellent GSM noise immunity  
Hi-Fi class distortion  
Low output noise  
Table 1. Device summary  
High immunity to RF noise injection  
Standby function  
Order code  
Package  
Packing  
Flexiwatt25  
(vertical)  
Mute function  
STPA008-4WX  
Tube  
Automute at min. supply voltage detection  
Low external component count  
Internally fixed gain (26 dB)  
Protections:  
Flexiwatt25  
(horizontal)  
STPA008-QIX  
STPA008-48X  
Tube  
Tube  
Flexiwatt27  
– Output short circuit to GND, to V , across  
s
the load  
– Very inductive loads  
July 2015  
DocID027887 Rev 2  
1/29  
This is information on a product in full production.  
www.st.com  
 
 
Contents  
STPA008  
Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
Block diagram and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
3.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1  
4.2  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Battery variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.2.1  
4.2.2  
4.2.3  
Low voltage operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Cranks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Advanced battery management (hybrid vehicles) . . . . . . . . . . . . . . . . . 18  
4.3  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.3.1  
4.3.2  
4.3.3  
Short circuits and open load operation . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Over-voltage and load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.4  
4.5  
Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.4.1  
4.4.2  
DC offset detection (OD pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clipping detection and diagnostics (CD-DIAG pin) . . . . . . . . . . . . . . . . 20  
Heat sink definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
5.2  
5.3  
Flexiwatt 27 (vertical) package information . . . . . . . . . . . . . . . . . . . . . . . 22  
Flexiwatt 25 (vertical) package information . . . . . . . . . . . . . . . . . . . . . . . 24  
Flexiwatt 25 (horizontal) package information . . . . . . . . . . . . . . . . . . . . . 26  
2/29  
DocID027887 Rev 2  
STPA008  
Contents  
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
DocID027887 Rev 2  
3/29  
3
List of tables  
STPA008  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Flexiwatt 27 (vertical) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Flexiwatt 25 (vertical) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Flexiwatt 25 (horizontal) package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4/29  
DocID027887 Rev 2  
STPA008  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Application circuit (STPA008-4WX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Application circuit (STPA008-48X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output power vs. supply voltage (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output power vs. supply voltage (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Distortion vs. output power (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Distortion vs. output power (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 10. Distortion vs. frequency (4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 11. Distortion vs. frequency (2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 12. Distortion vs. output power (4 Ω, V = 6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
S
Figure 13. Distortion vs. output power (2 Ω, V = 6 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
S
Figure 14. Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 15. Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 16. Total power dissipation & efficiency vs. P (4 Ω, Sine) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
o
Figure 17. Power dissipation vs. average Output Power (4 Ω, audio program simulation) . . . . . . . . . 15  
Figure 18. Power dissipation vs. average Output Power (2 Ω, audio program simulation) . . . . . . . . . 15  
Figure 19. ITU R-ARM frequency response, weighting filter for transient pop. . . . . . . . . . . . . . . . . . . 15  
Figure 20. SVR charge diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 21. Battery cranking curve example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 22. Battery cranking curve example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 23. Upwards fast battery transitions diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 24. Load dump protection diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 25. Thermal protection diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 26. Audio section waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 27. Flexiwatt 27 (vertical) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 28. Flexiwatt 25 (vertical) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 29. Flexiwatt 25 (horizontal) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DocID027887 Rev 2  
5/29  
5
Overview  
STPA008  
1
Overview  
STPA008 is a complementary quad audio power amplifier. It is available in two different  
packages, Flexiwatt25 and Flexiwatt27. It embeds four independent amplifiers working in  
class AB, a standby and a mute pin, an offset detector and, only for the Flexiwatt27  
package, a clipping detector and diagnostics output. The amplifier is fully operational down  
to a battery voltage of 6 V, without producing pop noise and continuing to play during battery  
transitions.  
STPA008 can drive 2 ohm loads and has a very high immunity to disturbs without need of  
external components or compensation. It is protected against any kind of short or open  
circuit, over-voltage and over-temperature.  
1.1  
Block diagram and application circuit  
Figure 1. Block diagram  
6CCꢀ  
6CCꢂ  
34"9  
-54%  
#$ꢁ$)!' ꢆꢇꢈ  
/54ꢀꢃ  
/54ꢀꢁ  
).ꢀ  
).ꢂ  
).ꢄ  
).ꢅ  
07ꢁ'.$  
/54ꢂꢃ  
/54ꢂꢁ  
07ꢁ'.$  
/54ꢄꢃ  
/54ꢄꢁ  
07ꢁ'.$  
/54ꢅꢃ  
/54ꢅꢁ  
07ꢁ'.$  
!#ꢁ'.$  
362  
4!"  
3ꢁ'.$  
/&&3%4  
$%4%#4/2  
ꢆꢇꢈ /NLY IN &7ꢂꢉ  
'!0'03ꢀꢀꢁꢂꢃ  
6/29  
DocID027887 Rev 2  
STPA008  
Overview  
Figure 2. Application circuit (STPA008-4WX)  
2))6(7ꢇ  
ꢇ'(7(&725ꢇ287ꢇ  
9%$7ꢇ  
&ꢃꢇ  
ꢁꢋꢀ—)  
&ꢂ  
ꢈꢈꢁꢁ—)ꢇ  
5ꢉꢇ  
9ꢇ  
ꢉꢂ.ꢇ  
9FFꢀꢆꢈ  
9FFꢊꢆꢉꢇ  
ꢌꢇꢈꢁꢇ  
ꢈꢍꢇ  
ꢇꢇꢄꢇ  
5ꢀꢇ  
ꢀꢁ.ꢇ  
5ꢈꢇ  
ꢅꢇ  
67ꢆ%<ꢇ  
087(ꢇ  
ꢉꢇ  
&ꢄꢇ  
ꢀ—)  
ꢃꢇ  
ꢂꢇ  
287ꢀꢇ  
ꢆꢇ  
ꢈꢈꢇ  
ꢀꢁ.ꢇ  
&ꢀꢇ  
&ꢀꢁꢇ  
ꢅꢇ  
ꢉꢋꢂ—)  
ꢍꢇ  
ꢈꢇꢇ  
ꢊꢇ  
287ꢈꢇ  
287ꢊꢇ  
287ꢉꢇ  
,1ꢀꢇ  
,1ꢈꢇ  
,1ꢊꢇ  
,1ꢉꢇ  
ꢀꢀꢇ  
ꢀꢈꢇ  
ꢀꢍꢇ  
ꢆꢇ  
ꢅꢇ  
ꢁꢋꢈꢈ—)ꢇ  
673$ꢁꢁꢃꢆꢉ:;ꢇꢇ  
ꢀꢂ  
&ꢈꢋꢈꢈ—)ꢇ  
&ꢊꢋꢈꢈ—)ꢇ  
ꢀꢃ  
ꢀꢄ  
ꢈꢀꢇ  
ꢈꢉꢇ  
ꢈꢊꢇ  
ꢀꢉꢇ  
ꢀꢊꢇ  
ꢁꢋꢈꢈ—)ꢇ  
&ꢉꢇ  
6ꢆ*1'ꢇ  
ꢆꢇ  
ꢀꢌꢇ  
$&ꢆ*1'ꢇ  
ꢀꢁ  
695  
7$%ꢇ  
&ꢍꢇ  
&ꢌꢇ  
ꢉꢂ—)ꢇꢇ  
ꢀ—)  
*$3*36ꢂꢀꢅꢆꢇ  
Figure 3. Application circuit (STPA008-48X)  
2))6(7  
'(7(&725ꢇ287  
9%$7  
&ꢃ  
ꢁꢋꢀ—)  
&ꢂ  
ꢈꢈꢁꢁ—)  
5ꢉ  
9
ꢉꢂ.  
9FFꢀꢆꢈ  
9FFꢊꢆꢉ  
ꢈꢀ  
5ꢀ  
ꢀꢁ.  
5ꢈ  
67ꢆ%<ꢍ  
ꢀꢁ  
&ꢄ  
ꢀ—)  
287ꢀ  
087(ꢈꢊ  
ꢀꢁ.  
&ꢀ  
&ꢀꢁ  
ꢉꢋꢂ—)  
287ꢈ  
287ꢊ  
287ꢉ  
,1ꢀꢀꢈ  
,1ꢈꢀꢊ  
,1ꢊꢀꢌ  
,1ꢉꢀꢍ  
ꢁꢋꢈꢈ—)  
673$ꢁꢁꢃꢆꢉꢃ;  
ꢀꢃ  
ꢀꢄ  
ꢈꢁ  
&ꢈꢇꢁꢋꢈꢈ—)  
&ꢊꢇꢁꢋꢈꢈ—)  
&ꢉꢇꢁꢋꢈꢈ—)  
ꢈꢈ  
ꢈꢍ  
ꢈꢉ  
6ꢆ*1'  
ꢀꢉ  
ꢀꢂ  
$&ꢆ*1'  
ꢀꢀ  
ꢈꢌ  
ꢀꢎꢇꢈꢂ  
695  
7$%  
&ꢍ  
ꢀ—)  
&ꢌ  
ꢉꢂ—)  
5ꢊ  
9
ꢉꢂ.  
&'ꢇ287  
*$3*36ꢂꢀꢅꢄꢂ  
DocID027887 Rev 2  
7/29  
28  
 
Pin description  
STPA008  
2
Pin description  
2.1  
Pin connection  
Figure 4. Pin connection (top view)  
&LEXIWATTꢀꢁ  
ꢂꢉ  
&LEXIWATTꢀꢂ  
ꢂꢊ  
'!0'03ꢀꢀꢂꢃꢄ  
8/29  
DocID027887 Rev 2  
STPA008  
Pin description  
2.2  
Pin functions  
Table 2. Pin functions  
Pin number Pin number  
Pin name  
Description  
FW27  
FW25  
1
1
25  
2
TAB  
OD  
Device slug connection  
2
Offset detector output  
Channel 2, power ground  
Channel 2, negative output  
Stand-by  
3
PW-GND2  
OUT2-  
ST-BY  
OUT2+  
VCC  
4
3
5
4
6
5
Channel 2, positive output  
Supply voltage  
7
6
8
7
OUT1-  
PW-GND1  
OUT1+  
SVR  
Channel 1, negative output  
Channel 1, power ground  
Channel 1, positive output  
Supply voltage rejection pin  
Channel 1, input  
9
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
n.a  
n.a  
IN1  
IN2  
Channel 2, input  
S-GND  
IN4  
Signal ground  
Channel 4, input  
IN3  
Channel 3, input  
AC-GND  
OUT3+  
PW-GND3  
OUT3-  
VCC  
AC ground  
Channel 3, positive output  
Channel 3, power ground  
Channel 3, negative output  
Supply voltage  
OUT4+  
MUTE  
OUT4-  
PW-GND4  
CD-DIAG  
TAB  
Channel 4, positive output  
Mute pin  
Channel 4, negative output  
Channel 4, power ground  
Clipping detector and diagnostics output  
Device slug connection  
DocID027887 Rev 2  
9/29  
28  
Electrical specifications  
STPA008  
3
Electrical specifications  
3.1  
Absolute maximum ratings  
Table 3. Absolute maximum ratings  
Symbol  
Parameter  
Operating supply voltage  
Value  
Unit  
VS  
18  
28  
50  
V
V
V
VS (DC) DC supply voltage  
VS (pk)  
Peak supply voltage (for t = 50 ms)  
Output peak current  
IO  
Non repetitive (t = 100 μs)  
Repetitive (duty cycle 10 % at f = 10 Hz)  
10  
9
A
A
Ptot  
Tj  
Power dissipation Tcase = 70 °C  
Junction temperature  
85  
W
°C  
°C  
V
150  
Tstg  
Storage temperature  
-55 to 150  
-0.3 to 0.3  
-0.3 to 8  
-0.3 to Vs (pk)  
-0.3 to 6  
GNDmax Ground pins voltage  
Vin max Input pin max voltage  
VSB max ST-BY pin max voltage  
Vmute max Mute pin max voltage  
V
V
V
3.2  
Thermal data  
Table 4. Thermal data  
Symbol  
Parameter  
Value  
Unit  
Rth j-case Thermal resistance junction-to-case  
Max  
1
°C/W  
10/29  
DocID027887 Rev 2  
 
STPA008  
Electrical specifications  
3.3  
Electrical characteristics  
Refer to the test and application diagram, VS = 14.4 V; RL = 4 Ω; Rg = 600 Ω; f = 1 kHz;  
Tamb = 25 °C; unless otherwise specified.  
Table 5. Electrical characteristics  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
General characteristics  
VS  
Iq1  
Supply voltage range  
-
6
-
18  
V
Quiescent current  
RL = ∞  
100  
-90  
-70  
190  
280  
+90  
+70  
mA  
mV  
mV  
Play mode  
Mute mode  
-
-
VOS  
Output offset voltage  
During standby ON/OFF output  
transient voltage  
-7.5  
-7.5  
-
-
+7.5  
+7.5  
mV  
mV  
ITU R-ARM weighted  
dVOS  
(see Figure 19)  
During mute ON/OFF output  
transient voltage  
Ri  
Input impedance  
-
45  
-
55  
-
65  
2
kΩ  
μA  
μA  
VSt-by = 1 V  
VSt-by = 0  
ISB  
Standby current consumption  
-
-
1
Audio performances  
THD = 10 %  
THD = 1 %  
26  
20  
29  
23  
-
-
W
W
Po  
Output power  
THD = 10 %, 2 Ω  
THD = 1 %, 2 Ω  
45  
37  
50  
40  
-
-
W
W
Square wave input (2 Vrms)  
RL = 4 Ω  
42  
71  
47  
45  
77  
50  
-
-
-
W
W
W
Po max. Max. output power  
RL = 2 Ω  
VS = 15.2 V; RL = 4 Ω  
THD  
Gv  
Distortion  
Po = 4 W, 30kHz LPF  
-
0.01  
26  
-
0.02  
27  
%
Voltage gain  
-
-
25  
dB  
dB  
dGv  
Channel gain unbalance  
-0.5  
+0.5  
"A" Weighted  
-
-
40  
50  
-
μV  
μV  
eNo  
Output Noise  
Bw = 20 Hz to 20 kHz  
70  
f = 100 kHz; Vr = 1 Vrms, play  
mode  
SVR  
fch  
Supply voltage rejection  
High cut-off frequency  
Cross talk  
60  
70  
-
-
dB  
PO = 0.5 W  
100  
300  
kHz  
f = 1 kHz PO = 4 W  
f = 10 kHz PO = 4 W  
65  
50  
75  
60  
-
-
dB  
dB  
CT  
AM  
Mute attenuation  
POref = 4 W  
90  
100  
-
dB  
DocID027887 Rev 2  
11/29  
28  
Electrical specifications  
STPA008  
Table 5. Electrical characteristics (continued)  
Test condition  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Control pin characteristics  
Ipin5  
Standby pin current  
VSt-by = 1 V to 2.2 V  
(Amp: ON)  
-
2.2  
-
-
-
-
-
-
0.5  
-
μA  
V
VSB out Standby out threshold voltage  
VSB in  
VM out  
VM in  
Standby in threshold voltage  
Mute out threshold voltage  
Mute in threshold voltage  
(Amp: OFF)  
1
V
(Amp: Play)  
2.2  
-
-
V
(Amp: Mute)  
0.8  
V
Attenuation = 6 dB;  
VAM in  
Ipin23  
VS automute threshold  
Muting pin current  
4.5  
5
5
8
5.5  
12  
V
POref = 4 W  
VMUTE = 0.8 V  
μA  
(Sourced current)  
Offset detector  
VOFF  
Detected differential output offset  
-
±1.3  
±2  
0.1  
0
±2.7  
0.2  
15  
V
V
Vo > VOFF max, Ioff Det = 1 mA  
0 V < Voff Det < 18 V  
VOFF_SAT Off detector saturation voltage  
-
-
VOFF_LK Off detector leakage current  
Vo < ±1 V  
μA  
Clipping detector  
CDLK  
Clip detector high leakage current CD Off  
-
-
-
0
0.1  
2
1
0.2  
3
μA  
V
CDSAT Clip detector saturation voltage  
CDTHD Clip detector THD level  
CD On; ICD = 1 mA  
-
%
12/29  
DocID027887 Rev 2  
STPA008  
Electrical specifications  
3.4  
Electrical characteristics curves  
Figure 5. Quiescent current vs. supply voltage Figure 6. Output power vs. supply voltage (4 Ω)  
,TꢇꢏP$ꢐ  
3Rꢇꢏ:ꢐ  
ꢈꢃꢁ  
ꢈꢌꢁ  
ꢈꢉꢁ  
ꢈꢈꢁ  
ꢈꢁꢁ  
ꢀꢃꢁ  
ꢀꢌꢁ  
ꢀꢉꢁ  
ꢀꢈꢁ  
ꢀꢁꢁ  
ꢃꢁ  
ꢃꢁ  
ꢂꢁ  
ꢌꢁ  
ꢍꢁ  
ꢉꢁ  
ꢊꢁ  
ꢈꢁ  
ꢀꢁ  
5/ꢇ ꢇꢉŸꢇ  
Iꢇ ꢇꢀꢇ.+]  
9LQꢇ ꢇꢇꢁ  
3RꢆPD[  
5/ꢇ ꢇꢉꢇȍꢇ  
7+'ꢇ ꢇꢀꢁꢑ  
7+'ꢇ ꢇꢀꢑ  
ꢀꢁ ꢀꢀ ꢀꢈ ꢀꢊ ꢀꢉ ꢀꢍ ꢀꢌ ꢀꢂ ꢀꢃ  
9Vꢇꢏ9ꢐ  
ꢀꢁ  
ꢀꢈ  
ꢀꢉ  
ꢀꢌ  
ꢀꢃ  
9Vꢇꢏ9ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢃꢆꢂ36  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢃꢆꢇ36  
Figure 7. Output power vs. supply voltage (2 Ω)  
Figure 8. Distortion vs. output power (4 Ω)  
3Rꢇꢏ:ꢐ  
ꢀꢀꢁ  
7+'ꢇꢏꢑꢐ  
ꢀꢁ  
ꢀꢁꢁ  
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
ꢄꢁ  
3RꢆPD[  
5/ꢇ ꢇꢉꢇŸ  
5/ꢇ ꢇꢈꢇŸ  
Iꢇ ꢇꢀꢇ.+]  
ꢃꢁ  
ꢂꢁ  
ꢌꢁ  
ꢍꢁ  
ꢉꢁ  
ꢊꢁ  
ꢈꢁ  
ꢀꢁ  
I ꢇꢀꢁꢇ.+]  
7+'ꢇ ꢇꢀꢁꢑ  
ꢁꢋꢀ  
I ꢇꢀꢇ.+]  
7+'ꢇ ꢇꢀꢑ  
ꢁꢋꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢁꢋꢀ  
ꢀꢁ  
ꢀꢁ ꢀꢀ  
9Vꢇꢏ9ꢐ  
ꢀꢈ ꢀꢊ ꢀꢉ ꢀꢍ ꢀꢌ  
3Rꢇꢏ:ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢉꢀꢂ36  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢀꢆꢁ36  
Figure 9. Distortion vs. output power (2 Ω)  
Figure 10. Distortion vs. frequency (4 Ω)  
7+'ꢇꢏꢑꢐ  
ꢀꢁ  
7+'ꢇꢏꢑꢐꢇ  
ꢀꢁ  
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
5/ꢇ ꢇꢉꢇŸ  
3Rꢇ ꢇꢉꢇ:  
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
5/ꢇ ꢇꢈꢇŸ  
ꢁꢋꢀ  
Iꢇ ꢇꢀꢁꢇ.+]ꢇ  
ꢁꢋꢀ  
ꢁꢋꢁꢀ  
Iꢇ ꢇꢀꢇ.+]ꢇ  
3Rꢇꢏ:ꢐꢇ  
ꢁꢋꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁꢁꢁ  
ꢁꢋꢀ  
ꢀꢁ  
Iꢇꢏ+]ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢃꢄ36  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢂꢆ36  
DocID027887 Rev 2  
13/29  
28  
Electrical specifications  
STPA008  
Figure 11. Distortion vs. frequency (2 Ω)  
Figure 12. Distortion vs. output power  
(4 Ω, V = 6 V)  
S
7+'ꢇꢏꢑꢐ  
ꢀꢁ  
7+'ꢇꢏꢑꢐ  
ꢀꢁ  
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
5/ꢇ ꢇꢈꢇŸ  
9Vꢇ ꢇꢌꢇ9  
5/ꢇ ꢇꢉꢇŸ  
3Rꢇ ꢇꢃꢇ:  
Iꢇ ꢇꢀꢁꢇ.+]  
Iꢇ ꢇꢀꢇ.+]  
ꢁꢋꢀ  
ꢁꢋꢁꢀ  
ꢁꢋꢀ  
ꢁꢋꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁꢁꢁ  
ꢁꢋꢀ  
Iꢇꢏ+]ꢐ  
3Rꢇꢏ:ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢀꢀ36  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢉꢁ36  
Figure 13. Distortion vs. output power  
Figure 14. Supply voltage rejection vs.  
frequency  
(2 Ω, V = 6 V)  
S
7+'ꢇꢏꢑꢐ  
695ꢇꢏG%ꢐ  
ꢀꢁ  
ꢆꢍꢁ  
9Vꢇ ꢇꢌꢇ9  
5/ꢇ ꢇꢈꢇŸ  
9ULSSOHꢇ ꢇꢀꢇ9UPV  
5Jꢇ ꢇꢌꢁꢁꢇŸ  
ꢆꢍꢍ  
ꢆꢌꢁ  
ꢆꢌꢍ  
ꢆꢂꢁ  
ꢆꢂꢍ  
ꢆꢃꢁ  
ꢆꢃꢍ  
ꢆꢄꢁ  
Iꢇ ꢇꢀꢁꢇ.+]  
Iꢇ ꢇꢀꢇ.+]  
ꢁꢋꢀ  
ꢁꢋꢁꢀ  
ꢁꢋꢁꢁꢀ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
Iꢇꢏ+]ꢐ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁꢁꢁ  
ꢁꢋꢀ  
ꢀꢁ  
3Rꢇꢏ:ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢆꢅ36  
*$3*ꢂꢇꢂꢆꢃꢄꢂꢈꢉꢁ36  
Figure 15. Crosstalk vs. frequency  
Figure 16. Total power dissipation & efficiency  
vs. P (4 Ω, Sine)  
o
3GLVVꢇꢏ:ꢐ  
Șꢏꢑꢐ  
ꢄꢁ  
&52667$/.ꢇꢏG%ꢐ  
ꢆꢊꢁ  
ꢆꢉꢁ  
ꢆꢍꢁ  
ꢆꢌꢁ  
ꢆꢂꢁ  
ꢆꢃꢁ  
ꢆꢄꢁ  
ꢆꢀꢁꢁ  
ꢄꢁ  
ꢃꢁ  
5/ꢇ ꢇꢉꢇŸ  
3Rꢇ ꢇꢉꢇ:  
5Jꢇ ꢇꢌꢁꢁꢇŸ  
Ș
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
5/ꢇ ꢇꢉꢇ[ꢇꢉꢇȍ  
Iꢇ ꢇꢀꢇ.+]  
ꢃꢁ  
ꢂꢁ  
ꢌꢁ  
ꢍꢁ  
ꢂꢁ  
ꢌꢁ  
ꢍꢁ  
3GLVV  
ꢉꢁ  
ꢊꢁ  
ꢉꢁ  
ꢊꢁ  
ꢈꢁ  
ꢈꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢈ ꢀꢉ ꢀꢌ ꢀꢃ ꢈꢁ ꢈꢈ ꢈꢉ ꢈꢌ ꢈꢃ  
3Rꢇꢏ:ꢐ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁꢁꢁ  
Iꢇꢏ+]ꢐ  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢄꢄꢈ36  
*$3*ꢂꢈꢂꢆꢃꢄꢃꢅꢂꢈ36  
14/29  
DocID027887 Rev 2  
STPA008  
Electrical specifications  
Figure 17. Power dissipation vs. average  
Figure 18. Power dissipation vs. average  
Output Power (4 Ω, audio program simulation) Output Power (2 Ω, audio program simulation)  
3GLVVꢇꢏ:ꢐ  
3GLVVꢇꢏ:ꢐ  
ꢄꢁ  
ꢃꢁ  
ꢂꢁ  
ꢌꢁ  
ꢍꢁ  
ꢉꢁ  
ꢊꢁ  
ꢈꢁ  
ꢀꢁ  
ꢌꢁ  
ꢍꢁ  
ꢉꢁ  
ꢊꢁ  
ꢈꢁ  
ꢀꢁ  
9Vꢇ ꢇꢀꢉꢇ9  
9Vꢇ ꢇꢀꢉꢋꢉꢇ9  
5/ꢇ ꢇꢉꢇ[ꢇꢈꢇȍ  
5/ꢇ ꢇꢉꢇ[ꢇꢉꢇȍ  
*$866,$1ꢇ12,6(  
*$866,$1ꢇ12,6(  
&/,3ꢇ67$57  
&/,3ꢇ67$57  
3RꢆDYJꢇꢏ:ꢐ  
3RꢆDYJꢇꢏ:ꢐ  
*$3*ꢂꢇꢂꢆꢃꢄꢂꢁꢆꢈ36  
*$3*ꢂꢇꢂꢆꢃꢄꢂꢈꢂꢃ36  
Figure 19. ITU R-ARM frequency response, weighting filter for transient pop  
/UTPUT ATTENUATION ꢆD"ꢈ  
ꢅꢋ  
ꢄꢋ  
ꢂꢋ  
ꢀꢋ  
ꢁꢀꢋ  
ꢁꢂꢋ  
ꢁꢄꢋ  
ꢁꢅꢋ  
ꢁꢊꢋ  
ꢀꢋ  
ꢀꢋꢋ  
ꢀꢋꢋꢋ  
(Z  
ꢀꢋꢋꢋꢋ  
ꢀꢋꢋꢋꢋꢋ  
'!0'03ꢀꢀꢃꢅꢄ  
DocID027887 Rev 2  
15/29  
28  
General information  
STPA008  
4
General information  
4.1  
Operation  
STPA008's inputs are ground-compatible. If the standard value for the input capacitors (0.22  
μF) is adopted, the low frequency cut-off is 16 Hz. The input capacitors should be 1/4 of the  
capacitor connected to AC-GND pin for optimum pop performances (see Figure 2:  
Application circuit (STPA008-4WX)).  
Standby and mute pins are both 3.3 V CMOS compatible.  
RC cells at both mute and stand-by pins have always to be used in order to smooth the  
transitions for preventing any audible transient noise.  
In case the stand-by function is not used, it could steadily be connected to V , but a 470  
S
kohm resistance should be present between the power supply and the pin.  
The capacitance on SVR sets the start-up and shut-down times and helps to have pop-noise  
free transitions. Its minimum recommended value is 10 μF. To have a fast start-up time, the  
internal resistor on SVR pin, used to set the time constant, is reduced from 50 kΩ to 3 kΩ till  
voltage on SVR reaches VCC/4 -2V and then released. In this way the capacitor on SVR  
BE  
is charged very quickly to VCC/4, as shown in the following figure.  
The time constant to be assigned to the standby pin in order to obtain a virtually pop-free  
transition has to be slower than 2.5 V/ms.  
Figure 20. SVR charge diagram  
6##ꢌꢅ  
6##ꢌꢅ n ꢂ6"%  
4IME  
'!0'03ꢀꢀꢁꢂꢄ  
SVR pin accomplishes multiple functions:  
it is used as a reference voltage for input pins (VCC/4)  
the capacitor connected to SVR improves the supply voltage ripple rejection  
it is used as a reference to generate the V /2 reference for the outputs  
CC  
When the amplifier goes in standby mode or goes out from this condition, it is recommended  
to put the amplifier in mute to ensure the absence of audible noise. Then the stand-by pin  
can be set to the appropriate value (ground or > 2.6 V) and the capacitor on SVR pin is  
discharged or charged consequently.  
4.2  
Battery variations  
4.2.1  
Low voltage operation  
The most recent OEM specifications require automatic stop of car engine at traffic lights, in  
order to reduce emissions of polluting substances. STPA008, thanks to its innovating  
16/29  
DocID027887 Rev 2  
 
STPA008  
General information  
design, allows a continuous operation when battery falls down. At 6 V it is still fully  
operational, only the maximum output power is reduced according to the available voltage  
supply.  
If the battery voltage drops below the minimum operating voltage of 6V the amplifier is fast  
muted, the capacitor on SVR is discharged and the amplifier restarts when the battery  
voltage returns to the correct voltage.  
4.2.2  
Cranks  
STPA008 can sustain worst case cranks from 16 V to 6 V, continuing to play and without  
producing any pop noise.  
Examples of battery cranking curves are shown below, indicating the shape and duration of  
allowed battery transitions.  
Figure 21. Battery cranking curve example 1  
9EDWWꢏ9ꢐ  
9  
9  
9  
9  
WꢇꢏVꢐ  
W  
W  
W  
W  
W  
W  
W  
*$3*36ꢂꢂꢅꢁꢆ  
V1 = 16 V; V2 = 6 V; V3 = 7 V; V4 = 8 V  
t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 =10 ms; t6 = 1 s; t7 = 2 ms  
Figure 22. Battery cranking curve example 2  
9EDWWꢏ9ꢐ  
9  
9
9
WꢇꢏVꢐ  
W  
W  
W  
W
W
*$3*36ꢂꢂꢅꢁꢄ  
V1 = 16 V; V2 = 6 V; V3 = 7 V  
t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms  
DocID027887 Rev 2  
17/29  
28  
General information  
STPA008  
4.2.3  
Advanced battery management (hybrid vehicles)  
In hybrid vehicles, the engine ignition causes a fast increase of battery voltage which can  
reach 16 V in less than 10 ms. In addition to compatibility with low Vbatt, STPA008 is able to  
sustain upwards fast battery transitions without causing unwanted audible effects, like pop  
noise, and without any sound interruption thanks to the innovative circuit topology.  
Figure 23. Upwards fast battery transitions diagram  
'!0'03ꢀꢀꢁꢂꢁ  
18/29  
DocID027887 Rev 2  
STPA008  
General information  
4.3  
Protections  
4.3.1  
Short circuits and open load operation  
When the IC detects a short circuit to ground, to Vbatt or across the load, the output of the  
amplifier is put in three-state (high impedance condition).  
In case of short circuit to ground or Vcc, the amplifier exits from the three-state condition  
only when the short-circuit is released and the output returns inside the limits imposed by an  
internal voltage comparator.  
When a short across the load is present, the power stage sees an over-current and is  
brought in protection mode for about 100 μs. After this time, if the short circuit condition is  
removed the amplifier returns to play, otherwise the high impedance state is maintained and  
the check is repeated every 100 μs.  
Disconnection of load (open load condition) doesn't affect the amplifier, which continues to  
play.  
4.3.2  
Over-voltage and load dump protection  
When the battery voltage is higher than 19 V, the amplifier put in tri-state. It stops playing till  
the supply voltage returns in the permitted range.  
The amplifier is protected against load dump surges having amplitude as high as 50 V and a  
rising time as low as 2 ms (see Figure 24).  
Figure 24. Load dump protection diagram  
ꢊꢋ6 6DUMP  
ꢀꢅꢍꢅ6 6CC  
MS  
ꢊꢋMS  
'!0'03ꢀꢀꢂꢃꢀ  
4.3.3  
Thermal protection  
If the junction temperature of the IC overcomes T = 150 °C, a smooth mute is applied to  
j
reduce output power and limit power dissipation. If this is not enough and the junction  
temperature continues to increase, the amplifier is switched off when it reaches the  
maximum temperature of 170 °C.  
Figure 25. Thermal protection diagram  
*UNCTION TEMPERATURE ꢆ #ꢈ  
ꢀꢊꢋ #  
ꢀꢉꢋ #  
'!0'03ꢀꢀꢂꢃꢃ  
DocID027887 Rev 2  
19/29  
28  
 
General information  
STPA008  
4.4  
Warnings  
4.4.1  
DC offset detection (OD pin)  
STPA008 integrates a DC offset detector to avoid that an anomalous input DC offset is  
multiplied by the amplifier gain producing a dangerous large offset at the output. In fact an  
output offset may lead to speakers damage for overheating. The detector works with the  
amplifier un-muted and no signal at the inputs.  
When the differential output voltage is out of a window comparator with thresholds ± 2V  
(typ), the OD pin is pulled down.  
4.4.2  
Clipping detection and diagnostics (CD-DIAG pin)  
When clipping occurs, the output signal is distorted. If the signal distortion on one of the  
output channels exceeds 1%, the CD-DIAG pin is pulled down. This information can be sent  
to an audio processor in order to reduce the input signal of the amplifier and reduce the  
clipping.  
A short to ground and short to Vcc is pointed out by CD-DIAG. This pin is pulled down to 0 V  
till these shorts are present to inform the user a protection occurred.  
CD-DIAG acts also as thermal warning. In fact every time T exceeds 140 °C, it is pulled  
j
down to notify this occurrence.  
Figure 26. Audio section waveforms  
34"9 0).  
6/,4!'%  
T
-54% 0).  
6/,4!'%  
T
6S  
/54054  
7!6%&/2-  
T
$)!' PIN  
7!6%&/2-  
T
#,)00).'  
3(/24 4/ '.$  
/2 4/ 6S  
4(%2-!,  
02/8)-)49  
'!0'03ꢀꢀꢂꢃꢆ  
20/29  
DocID027887 Rev 2  
STPA008  
General information  
4.5  
Heat sink definition  
Assuming a power dissipation of 26 W (e.g. in the worst case situation of frequent clipping  
occurrence), considering T max is 150°C and assuming ambient temperature is 70 °C, the  
j
available temperature gap for a correct dissipation is 80 °C.  
This means the thermal resistance of the system R has to be 80 °C/26 W = 3 °C/W.  
Th  
The junction to case thermal resistance is 1 °C/W. So the heat sink thermal resistance  
should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even  
after long-term and full-volume operation.  
DocID027887 Rev 2  
21/29  
28  
Package information  
STPA008  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
5.1  
Flexiwatt 27 (vertical) package information  
Figure 27. Flexiwatt 27 (vertical) package outline  
6
#
"
6
(
(ꢀ  
6ꢄ  
!
(ꢂ  
(ꢄ  
2ꢄ  
2ꢅ  
6ꢀ  
2ꢂ  
2
,
,ꢀ  
6ꢀ  
6ꢂ  
$
2ꢂ  
2ꢀ  
2ꢀ  
-
2ꢀ  
%
,ꢊ  
0IN ꢀ  
'
&
'ꢀ  
-ꢀ  
ꢂꢀꢊꢄꢁꢀꢀB)Bꢉꢃ  
*$3*36ꢂꢉꢆꢆꢅ  
Table 6. Flexiwatt 27 (vertical) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
B
C
D
4.45  
1.80  
-
4.50  
1.90  
1.40  
0.90  
4.65  
2.00  
-
0.1752  
0.0709  
-
0.1772  
0.0748  
0.0551  
0.0354  
0.1831  
0.0787  
-
0.75  
1.05  
0.0295  
0.0413  
22/29  
DocID027887 Rev 2  
 
STPA008  
Package information  
Table 6. Flexiwatt 27 (vertical) package mechanical data (continued)  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
E
F(2)  
G
0.37  
0.39  
-
0.42  
0.0146  
0.0154  
-
0.0165  
-
0.57  
-
0.0224  
0.80  
1.00  
26.00  
29.23  
17.00  
12.80  
0.80  
22.47  
18.97  
15.70  
7.85  
5
1.20  
0.0315  
0.0394  
1.0236  
1.1508  
0.6693  
0.5039  
0.0315  
0.8846  
0.7469  
0.6181  
0.3091  
0.1969  
0.1378  
0.1575  
0.1575  
0.0866  
0.0787  
0.0669  
0.0197  
0.0118  
0.0492  
0.0197  
5°  
0.0472  
G1  
H(3)  
H1  
H2  
H3  
L (3)  
L1  
25.75  
26.25  
1.0138  
1.0335  
28.90  
29.30  
1.1378  
1.1535  
-
-
-
-
-
-
-
-
-
-
-
-
22.07  
22.87  
0.8689  
0.9004  
18.57  
19.37  
0.7311  
0.7626  
L2 (3)  
15.50  
15.90  
0.6102  
0.6260  
L3  
7.70  
7.95  
0.3031  
0.3130  
L4  
-
-
-
-
L5  
3.35  
3.5  
3.65  
0.1319  
0.1437  
M
3.70  
4.00  
4.00  
2.20  
2
4.30  
0.1457  
0.1693  
M1  
N
3.60  
4.40  
0.1417  
0.1732  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
R
1.70  
0.5  
R1  
R2  
R3  
R4  
V
0.3  
1.25  
0.50  
5°  
V1  
V2  
V3  
3°  
3°  
20°  
20°  
45°  
45°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. dam-bar protusion not included.  
3. molding protusion included.  
DocID027887 Rev 2  
23/29  
28  
 
Package information  
STPA008  
5.2  
Flexiwatt 25 (vertical) package information  
Figure 28. Flexiwatt 25 (vertical) package outline  
9
&
%
9
+
+ꢀ  
9ꢊ  
$
+ꢈ  
5ꢊ  
+ꢊ  
5ꢉ  
9ꢀ  
5ꢈ  
5
/
/ꢀ  
9ꢀ  
9ꢈ  
'
5ꢈ  
5ꢀ  
5ꢀ  
0
5ꢀ  
(
/ꢍ  
3LQꢇꢀ  
*
)
*ꢀ  
0ꢀ  
ꢂꢁꢊꢉꢃꢌꢈB)Bꢉ:ꢇꢇꢇꢇꢇꢇꢇꢇ  
*$3*36ꢂꢉꢆꢄꢄ  
Table 7. Flexiwatt 25 (vertical) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
B
4.45  
4.50  
1.90  
1.40  
0.90  
0.39  
-
4.65  
2.00  
-
0.1752  
0.1772  
0.0748  
0.0551  
0.0354  
0.0154  
-
0.1831  
0.0787  
-
1.80  
0.0709  
C
-
-
D
0.75  
1.05  
0.42  
0.570  
1.20  
24.25  
29.30  
-
0.0295  
0.0413  
0.0165  
0.0224  
0.0472  
0.9547  
1.1535  
-
E
0.37  
0.0146  
F(2)  
-
-
G
0.80  
1.00  
24.00  
29.23  
17.00  
12.80  
0.80  
0.0315  
0.0394  
0.9449  
1.1508  
0.6693  
0.5039  
0.0315  
G1  
H(3)  
H1  
H2  
H3  
23.75  
0.9350  
28.90  
1.1378  
-
-
-
-
-
-
-
-
-
-
24/29  
DocID027887 Rev 2  
STPA008  
Package information  
Table 7. Flexiwatt 25 (vertical) package mechanical data (continued)  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
L(3)  
L1  
L2(3)  
L3  
L4  
L5  
M
22.07  
22.47  
18.97  
15.70  
7.85  
5.00  
3.50  
4.00  
4.00  
2.20  
2.00  
1.70  
0.50  
0.30  
1.25  
0.50  
5°  
22.87  
0.8689  
0.8846  
0.7469  
0.6181  
0.3091  
0.1969  
0.1378  
0.1575  
0.1575  
0.0866  
0.0787  
0.0669  
0.0197  
0.0118  
0.0492  
0.0197  
5°  
0.9004  
18.57  
19.37  
0.7311  
0.7626  
15.50  
15.90  
0.6102  
0.6260  
7.70  
7.95  
0.3031  
0.3130  
-
-
-
-
3.35  
3.65  
0.1319  
0.1437  
3.70  
4.30  
0.1457  
0.1693  
M1  
N
3.60  
4.40  
0.1417  
0.1732  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
O
R
R1  
R2  
R3  
R4  
V
V1  
V2  
V3  
3°  
3°  
20°  
20°  
45°  
45°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. dam-bar protusion not included.  
3. molding protusion included.  
DocID027887 Rev 2  
25/29  
28  
 
Package information  
STPA008  
5.3  
Flexiwatt 25 (horizontal) package information  
Figure 29. Flexiwatt 25 (horizontal) package outline  
9
+
+ꢈ  
$
+ꢀ  
+ꢊ  
0
0ꢀ  
)
*
*ꢀ  
0ꢈ  
ꢂꢊꢄꢄꢂꢊꢊB'B4,  
*$3*36ꢂꢉꢆꢄꢁ  
Table 8. Flexiwatt 25 (horizontal) package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
A
B
4.45  
4.50  
1.90  
1.40  
2.00  
0.39  
-
4.65  
2.00  
-
0.1752  
0.1772  
0.0748  
0.0551  
0.0787  
0.0154  
-
0.1831  
1.80  
0.0709  
0.0787  
C
-
-
-
D
-
-
-
-
E
0.37  
0.42  
0.57  
1.25  
24.30  
29.30  
-
0.0146  
0.0165  
0.0224  
0.0492  
0.9567  
1.1535  
-
F(2)  
-
0.75  
23.70  
28.90  
-
-
G
1.00  
24.00  
29.23  
17.00  
12.80  
0.80  
22.04  
0.0295  
0.0394  
0.9449  
1.1508  
0.6693  
0.5039  
0.0315  
0.8677  
G1  
H(3)  
H1  
H2  
H3  
L
0.9331  
1.1378  
-
-
-
-
-
-
-
-
-
21.64  
22.44  
0.8520  
0.8835  
26/29  
DocID027887 Rev 2  
STPA008  
Package information  
Table 8. Flexiwatt 25 (horizontal) package mechanical data (continued)  
Dimensions  
Ref  
Millimeters  
Typ.  
Inches(1)  
Typ.  
Min.  
Max.  
Min.  
Max.  
L1  
L2(3)  
L3  
L4  
L5  
L6  
M
10.15  
10.5  
15.70  
7.85  
5
10.85  
0.3996  
0.4134  
0.6181  
0.3091  
0.1969  
0.2146  
0.0768  
0.1181  
0.1862  
0.2209  
0.0866  
0.1378  
0.0669  
0.0197  
0.0118  
0.0492  
0.0197  
5°  
0.4272  
15.50  
15.90  
0.6102  
0.6260  
7.70  
7.95  
0.3031  
0.3130  
-
-
-
-
5.15  
5.45  
1.95  
3.00  
4.73  
5.61  
2.20  
3.50  
1.70  
0.50  
0.30  
1.25  
0.50  
5°  
5.85  
0.2028  
0.2303  
1.80  
2.10  
0.0709  
0.0827  
2.75  
3.50  
0.1083  
0.1378  
M1  
M2  
N
-
-
-
-
-
-
-
-
-
-
-
-
P
3.20  
3.80  
0.1260  
0.1496  
R
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R1  
R2  
R3  
R4  
V
V1  
V2  
V3  
3°  
3°  
20°  
20°  
45°  
45°  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
2. dam-bar protusion not included.  
3. molding protusion included.  
DocID027887 Rev 2  
27/29  
28  
 
Revision history  
STPA008  
6
Revision history  
Table 9. Document revision history  
Changes  
Date  
Revision  
18-May-2015  
1
Initial release.  
Updated:Table 1: Device summary on page 1; Table 4: Thermal data  
on page 10; Section 4: General information; Section 5: Package  
information.  
27-Jul-2015  
2
28/29  
DocID027887 Rev 2  
STPA008  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on  
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or  
the design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID027887 Rev 2  
29/29  
29  

相关型号:

STPA008-48X

4 x 50 W MOSFET quad bridge power amplifier
STMICROELECTR

STPA008-4WX

4 x 50 W MOSFET quad bridge power amplifier
STMICROELECTR

STPA008-QIX

4 x 50 W MOSFET quad bridge power amplifier
STMICROELECTR

STPA05FR

Rectifier Diode, 1 Phase, 2 Element, 14A, Silicon,
SENSITRON

STPA05HE

Rectifier Diode, 1 Phase, 2 Element, 20A, 50V V(RRM), Silicon, 436, 3 PIN
SENSITRON

STPA10

Rectifier Diode, 1 Phase, 2 Element, 17A, 1000V V(RRM), Silicon,
SENSITRON

STPA100

Rectifier Diode, 1 Phase, 2 Element, 17A, Silicon,
SENSITRON

STPA100FR

Rectifier Diode, 1 Phase, 2 Element, 12.6A, Silicon,
SENSITRON

STPA100FRS

Rectifier Diode, 1 Phase, 2 Element, 12.6A, Silicon,
SENSITRON

STPA100S

Rectifier Diode, 1 Phase, 2 Element, 17A, Silicon,
SENSITRON

STPA10FR

Rectifier Diode, 1 Phase, 2 Element, 12.6A, 1000V V(RRM), Silicon,
SENSITRON

STPA10FRL

Rectifier Diode, 1 Phase, 2 Element, 12.6A, Silicon,
SENSITRON