STPMIC1APQR [STMICROELECTRONICS]

Highly integrated power management IC for micro processor units;
STPMIC1APQR
型号: STPMIC1APQR
厂家: ST    ST
描述:

Highly integrated power management IC for micro processor units

文件: 总140页 (文件大小:8810K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STPMIC1  
Datasheet  
Highly integrated power management IC for micro processor units  
Features  
Input voltage range from 2.8 V to 5.5 V  
4 adjustable general purpose LDOs  
1 LDO for DDR3 termination (sink-source), bypass mode for low power DDR or  
as general purpose LDO  
1 LDO for USB PHY supply with automatic power source detection  
1 reference voltage LDO for DDR memory  
4 adjustable adaptive constant on-time (COT) buck SMPS converters  
5.2 V / 1.1 A boost SMPS with bypass mode for 5 V input or battery input  
1 power switch 500 mA USB OTG compliant  
1 power switch 500 mA/1000 mA general purpose  
User programmable non-volatile memory (NVM), enabling scalability to support  
a wide range of applications  
I²C and digital IO control interface  
WFQFN 44L (5x6x0.8)  
Applications  
Power management for embedded micro processor units  
Wearable and IoT  
Portable devices  
Man-machine interfaces  
Product status link  
Smart home  
STPMIC1  
Power management unit companion chip of the STM32MP1 MPU  
Device summary  
Description  
STPMIC1APQR  
The STPMIC1 is a fully integrated power management IC designed for products  
based on high integrated application processor designs requiring low power and high  
efficiency.  
STPMIC1BPQR  
STPMIC1CPQR  
STPMIC1DPQR  
STPMIC1EPQR  
Order code  
Packing  
The device integrates advanced low power features controlled by a host processor  
via I²C and IO interface.  
The STPMIC1 regulators are designed to supply power to the application processor  
as well as to the external system peripherals such as: DDR, Flash memories and  
other system devices.  
WFQFN 44L  
(5x6x0.8)  
The boost converter can power up to 3 USB ports (two 500 mA host USB and one  
100 mA USB OTG). Its advanced bypass architecture allows the smooth regulation  
of VBUS for USB ports from a battery as well as low-cost consumer 5 V AC-DC  
adapters.  
4 buck SMPS are optimized to provide an excellent transient response and an output  
voltage precision for a wide range of operating conditions, high full range efficiency (η  
up to 90%) by implementing a low power mode with a smooth transition from PFM to  
PWM and also an advanced PWM synchronization technique with an integrated PLL  
for a better noise (EMI performance).  
DS12792 - Rev 7 - December 2020  
For further information contact your local STMicroelectronics sales office.  
www.st.com  
STPMIC1  
Device configuration  
1
Device configuration  
The STPMIC1 has a non-volatile memory (NVM) that enables scalability to support a wide range of applications:  
Default output voltage, POWER_UP/POWER_DOWN sequence, protection behavior, auto turn-on  
functionality, I2C slave address  
The STPMIC1A, STPMIC1B, STPMIC1D and STPMIC1E are pre-programmed devices to support the  
STM32MP1 series application processor versions  
The STPMIC1C is not a programmed device to support custom applications  
Straightforward NVM (re)programming via I2C to facilitate mass production directly in target applications  
Table 1. Default NVM configuration vs part number  
Default configuration table  
STPMIC1A  
Default  
STPMIC1B  
STPMIC1C  
STPMIC1D  
STPMIC1E  
Default  
Default  
Default  
Default  
output  
Rank  
output  
Rank  
output  
Rank  
output  
Rank  
output  
Rank  
voltage  
voltage  
voltage  
voltage  
voltage  
LDO1  
LDO2  
1.8 V  
1.8 V  
1.8 V  
3.3 V  
2.9 V  
1.0 V  
0.55 V  
5.2 V  
1.2 V  
1.1 V  
3.3 V  
3.3 V  
0
0
1.8 V  
2.9 V  
1.8 V  
3.3 V  
2.9 V  
1.0 V  
0.55 V  
5.2 V  
1.2 V  
1.1 V  
1.8 V  
3.3 V  
0
2
1.8 V  
1.8 V  
1.8 V  
3.3 V  
1.8 V  
1.0 V  
0.55 V  
5.2 V  
1.1 V  
1.1 V  
1.2 V  
1.15 V  
0
0
1.8 V  
1.8 V  
1.8 V  
3.3 V  
3.3 V  
1.0 V  
0.55 V  
5.2 V  
1.2 V  
1.1 V  
3.3 V  
1.2 V  
0
0
1.8 V  
1.8 V  
1.8 V  
3.3 V  
2.9 V  
1.0 V  
0.55 V  
5.2 V  
1.2 V  
1.1 V  
1.8 V  
1.2 V  
0
0
LDO3  
0
0
0
0
0
LDO4  
3
3
0
3
3
LDO5  
2
2
0
2
2
LDO6  
0
0
0
0
0
REFDDR  
BOOST  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
0
0
0
0
0
N/A  
2
N/A  
2
N/A  
0
N/A  
3
N/A  
3
0
0
0
0
0
1
1
0
1
1
2
2
0
2
2
Default value  
3.5 V  
VINOK_Rise  
3.5 V  
3.3 V  
4.0 V  
3.3 V  
The start-up sequence is split into four steps (Rank0 to Rank3).  
Each BUCK converter or LDO regulator can be programmed to be automatically turned ON in one of these  
phases:  
Rank= 0: rail not turned ON automatically, no output voltage appears after POWER-UP  
Rank= 1: rail automatically turned ON after 7 ms following a Turn_ON condition  
Rank= 2: rail automatically turned ON after further 3 ms  
Rank= 3: rail automatically turned ON after further 3 ms  
Whatever the STPMIC1 version:  
AUTO_TURN_ON option is set  
Boost and switches cannot be turned ON automatically  
DS12792 - Rev 7  
page 2/140  
 
 
STPMIC1  
Typical application schematic  
2
Typical application schematic  
Figure 1. Typical application schematic  
(VIN from 2.8V to 5.5V DC)  
BUCK1IN  
PGND1  
LX1  
LX2  
LX3  
LX4  
VIN  
VLX1  
VDD_CORE  
CVOUT1  
BUCK1  
(SMPS)  
CBUCK1IN  
VOUT1  
BUCK2IN  
PGND2  
VLX2  
VDD_DDR  
(DDR3, DDR3L,  
BUCK2  
(SMPS)  
CBUCK2IN  
CBUCK3IN  
VOUT2  
CVOUT2 lpDDR2, lpDDR3,  
DDR4)  
BUCK3IN  
PGND3  
VLX3  
VDD  
(VIO: 1V8 or 3V3)  
CVOUT3  
BUCK3  
(SMPS)  
VOUT3  
BUCK4IN  
PGND4  
VLX4  
VDD_AUX  
(to system devices  
CVOUT4 or CPU voltage)  
BUCK4  
(SMPS)  
CBUCK4IN  
LXB  
VOUT4  
VLXBST  
BOOST  
BYPASS  
BSTOUT  
CVLXBST  
VIN  
PGND5  
CBSTOUT  
VBUSOTG  
PWR_USB_SW  
PWR_SW  
VBUS_OTG  
CVBUSOTG  
(close to USB  
connector)  
SWIN  
VIN  
SWOUT  
BSTOUT  
VBUS_HOST  
CSWOUT  
close to USB  
connector)  
BSTOUT  
VBUSOTG  
LDO4OUT  
SUPPLY  
MUX  
VDD_USB  
(fixed 3.3V to  
LDO4  
CLDO4OUT AP USB PHY  
)
CVIN  
INTLDO  
AGND  
INTLDO  
CINTLDO  
LDO3IN  
VIO  
VDD_DDR  
CLDO3IN  
LDO3  
(normal,  
bypass,  
LDO3OUT  
VTT_DDR3  
NVM  
I2C  
(to DDR3/3L  
VDD  
CLDO3OUTterminations or to  
DDRVTT)  
lpDDR2/3 VDD1)  
SCL  
SDA  
BUCK2IN  
DDR_REF  
(VOUT2/2)  
VREFDDR  
LDO1OUT  
VREF_DDR  
CVREF  
INTn  
to / from  
host AP  
REGISTER  
PWRCTRL  
RSTn  
STATE  
MACHINE  
VOUT_LDO1  
(to system device)  
LDO1  
LDO6  
LDO2  
LDO5  
CLDO1OUT  
POWER  
SUPPLIES  
CONTROL  
WAKEUP  
LDO6OUT  
LDO2OUT  
user push button  
VOUT_LDO6  
PONKEYn  
CLDO6OUT (to system device)  
LOGIC  
SYSTEM  
CONTROL  
LDO16IN  
VOUT_LDO2  
(to Flash Memory  
VIN  
CLDO16IN  
CLDO2OUT or system device)  
LDO5OUT  
EPGND  
LDO25IN  
GNDLDO  
VOUT_LDO5  
(to SD-Card or  
system device)  
CLDO25IN  
CLDO5OUT  
Note: BUCK1IN and BUCK2IN must always be connected to VIN  
DS12792 - Rev 7  
page 3/140  
 
 
STPMIC1  
Recommended external components  
2.1  
Recommended external components  
Table 2. Passive components  
Component  
Manufacturer  
Part number  
Value Size  
CVIN, CLDO1OUT, CLDO2OUT, CLDO4OUT, CLDO5OUT,  
CLDO6OUT, CINTLDO  
GRM155R60J475ME47#(1)  
4.7 µF 0402  
CVLXBST, CBUCK1IN, CBUCK2IN, CBUCK3IN, CBUCK4IN,  
CLDO3IN, CLDO3OUT(2)  
GRM188R61A106KE69D 10 µF 0603  
CLDO16IN, CLDO25IN, CVREF  
CVBUSOTG  
GRM155R61E105KA12  
GRM188R61C475KE11# 4.7 µF 0603  
GRM188R60J226MEA0 22 µF 0603  
GRM31CR60J227ME11L 220 µF 1206  
DFE252012P-1R0M=P2 1 µH 1008  
1 µF 0402  
Murata  
CBSTOUT, CVOUT1, CVOUT2, CVOUT3, CVOUT4  
CSWOUT  
LX1, LX2, LX3, LX4, LXB  
1. # is the last P/N digit; it indicates a package specification code.  
2. 4.7 µF normal mode - 10 µF sink/source mode - no cap bypass mode.  
Note:  
All the components above refer to a typical application. Operation of the device is not limited to the choice of  
these external components.  
DS12792 - Rev 7  
page 4/140  
 
 
 
 
STPMIC1  
Pinout and pin description  
2.2  
Pinout and pin description  
Figure 2. Pin configuration WFQFN 44L top view  
34 BOUT  
RSTn  
WAKEUP  
SDA  
1
2
3
4
5
6
7
8
9
33 VLXBST  
32 PGBOOST  
31 VOUT3  
30 PGND3  
29 VLX3  
SCL  
VOUT1  
PGND1  
VLX1  
EPGND  
28 BUCK3IN  
27 VOUT4  
26 PGND4  
25 VLX4  
BUCK1IN  
VOUT2  
PGND2 10  
VLX2 11  
24 BUCK4IN  
23 LDO1OUT  
BUCK2IN 12  
Table 3. Pin description  
A/D(1)  
Pin name  
RSTn  
I/O Location  
Description (default configuration)  
Bi-directional reset (active low with internal pull-up)  
D
D
D
I/O  
I
1
2
3
WAKEUP  
SDA  
Power-ON from host processor (active high with internal pull-down)  
2
I/O  
I C serial data  
2
SCL  
D
A
A
A
A
A
A
A
A
A
A
A
A
D
I
I
4
5
I C serial clock  
VOUT1  
Input feedback signal buck converter 1  
Power ground buck converter 1  
PGND1  
VLX1  
-
6
O
I
7
LX node buck converter 1  
BUCK1IN  
VOUT2  
8
Power input buck converter 1 must be connected to the same value of VIN pin  
Input feedback signal buck converter 2  
Power ground buck converter 2  
I
9
PGND2  
VLX2  
-
10  
11  
12  
13  
14  
15  
16  
17  
O
I
LX node buck converter 2  
BUCK2IN  
LDO3IN  
LDO3OUT  
GNDLDO  
VREFDDR  
PONKEYn  
Power input buck converter 2 must be connected to the same value of VIN pin  
Power input LDO3  
I
O
-
Output voltage LDO3  
LDO GND  
O
I
DDR VREF output voltage  
User power ON key (active low with internal pullup)  
DS12792 - Rev 7  
page 5/140  
 
 
 
STPMIC1  
Pinout and pin description  
A/D(1)  
A
Pin name  
LDO2OUT  
LDO25IN  
LDO5OUT  
LDO6OUT  
LDO16IN  
LDO1OUT  
BUCK4IN  
VLX4  
I/O Location  
Description (default configuration)  
O
I
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
ePad  
Output voltage LDO2  
A
Power input LDO2 and LDO5  
Output voltage LDO5  
A
O
O
I
A
Output voltage LDO6  
A
Power input LDO1 and LDO6  
Output voltage LDO1  
A
O
I
A
Power input buck converter 4 must be connected to the same value of VIN pin  
LX node buck converter 4  
A
O
-
PGND4  
VOUT4  
A
Power ground buck converter 4  
A
I
Input feedback signal buck converter 4  
Power input buck converter 3 must be connected to the same value of VIN pin  
LX node buck converter 3  
BUCK3IN  
VLX3  
A
I
A
O
-
PGND3  
VOUT3  
A
Power ground buck converter 3  
A
I
Input feedback signal buck converter 3  
Power ground boost converter  
PGND5  
VLXBST  
BSTOUT  
VBUSOTG  
VIN  
A
-
A
I
LX Node boost converter  
A
O
O
I
Output voltage boost converter  
A
Power output switch powered by boost converter  
Main power input - power input LDO4, VREF  
Power input switch  
A
SWIN  
A
I
SWOUT  
LDO4OUT  
INTLDO  
AGND  
A
O
O
O
-
Power output switch  
A
Output voltage LDO4  
A
Internal LDO  
A
Main analog ground  
VIO  
A
I
I/O voltage (for all digital signals except WAKEUP and PONKEYn)  
Interrupt (active low with internal pull-up)  
Power control mode (pull-up and pull-down inactive by default)  
Exposed pad to be connected to ground  
INTn  
D
D
A
O
I
PWRCTRL  
EPGND  
-
1. A: analog; D: digital  
DS12792 - Rev 7  
page 6/140  
 
STPMIC1  
Electrical and timing characteristics  
3
Electrical and timing characteristics  
3.1  
Absolute maximum ratings  
Table 4. Absolute maximum ratings  
Parameter  
VIN, BUCKxIN, SWIN, LDO3IN, LDOxxIN, PONKEYn  
VIO, SDA, SCL, RSTn, PWRCTRL, INTn, WAKEUP  
INTLDO  
Min.  
Unit  
V
-0.5 to 7  
-0.5 to 4.2  
-0.5 to 2  
-0.5 to 7  
-0.5 to 3  
-0.5 to 5  
-0.5 to 7  
-0.5 to 5  
-65 to 150  
±1000  
V
V
VLXx  
V
VOUT1, VOUT2  
V
VOUT3, VOUT4  
V
BSTOUT, VBUSOTG, VLXBST, SWOUT  
LDOxOUT, VREFDDR  
V
V
T
storage temperature  
°C  
V
STO  
ESD human body model  
ESD charge device model  
±500  
V
Note:  
Once the normal operating conditions are exceeded, the performance of the device may suffer. Stresses beyond  
those listed under absolute maximum ratings may cause permanent damage to the device.  
3.2  
Thermal characteristics  
Table 5. Thermal characteristics  
Symbol  
Parameter  
Operating junction temperature  
Absolute maximum junction temperature  
Operating ambient temperature  
Min.  
-40  
-40  
-40  
Max.  
125  
160  
105  
Unit  
°C  
T
J
T
°C  
JAMR  
T
A
°C  
Junction-case package thermal resistance JEDEC  
reference (JESD51-12.01)  
Ѳ
7
JC  
°C/W  
Junction-ambient package thermal resistance on  
2s2p std JEDEC board (JESD51-7)  
Ѳ
29  
JA  
DS12792 - Rev 7  
page 7/140  
 
 
 
 
 
STPMIC1  
Consumption in typical application scenarios  
3.3  
Consumption in typical application scenarios  
Table 6. Consumption in typical application scenarios  
Application  
mode  
Application description  
Conditions  
Min. Typ. Max. Unit  
), T =  
STPMIC1 VIN input current consumption (all supply pins connected to VIN, V = 3.6 V, V = 1.8 V(from V  
IN  
IO  
OUT3  
A
+25 °C)  
STPMIC1 in OFF-state  
Turn-on from PONKEYn, WAKEUP and  
VBUSOTG/SWOUT active  
Application is OFF, waiting  
for turn-on event to start  
OFF  
50  
µA  
2
No activity on I C  
VIO=0 V (BUCK3 is OFF)  
STPMIC1 in POWER_ON state  
IRQ from PONKEYn, WAKEUP and VBUSOTG/  
SWOUT  
Application is in  
STANDBY,AP always ON  
power domain is present  
BUCK3 active in LP mode, V  
=1.8 V  
OUT3  
STANDBY  
110  
µA  
All other regulators OFF  
All outputs without load  
2
No activity on I C  
STPMIC1 in POWER_ON state  
IRQ from PONKEYn WAKEUP and VBUSOTG/  
SWOUT  
BUCK1 active in LP mode, V  
BUCK2 active in LP mode, V  
BUCK3 active in LP mode, V  
=1.2 V  
=1.2 V  
=1.8 V  
OUT  
OUT  
OUT  
Application is in STOP  
mode, AP core voltages  
are supplied, and DDR  
memory in self refresh  
STOP  
370  
µA  
REF_DDR active  
LDO3 active  
All other regulators OFF  
All outputs without load  
2
No activity on I C  
STPMIC1 in POWER_ON state  
IRQ from PONKEYn WAKEUP and VBUSOTG/  
SWOUT  
BUCK1 active in HP mode, V  
BUCK2 active in HP mode, V  
BUCK3 active in HP mode, V  
REF_DDR active  
=1.2 V  
=1.2 V  
=1.8 V  
OUT  
OUT  
OUT  
RUN  
Application is running  
1.2  
mA  
LDO3 active, V  
=1.8 V  
OUT  
All other regulators OFF  
All outputs without load  
2
No activity on I C  
DS12792 - Rev 7  
page 8/140  
 
 
STPMIC1  
Electrical and timing parameters  
3.4  
Electrical and timing parameters  
Table 7. Electrical and timing parameters  
Symbol  
General section  
= 3.6 V, V  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
=
V
= 1.2 V, V  
= 1.2 V, V  
= 1.8 V, V  
= 3.3 V, V  
/V  
= 1.8 V, V /V /V  
LDO2OUT LDO5OUT LDO6OUT  
IN  
OUT1  
OUT2  
OUT3  
OUT4  
LDO1OUT LDO3OUT  
2.9 V, V = 1.8 V, recommended BOM, T = -40 °C to +125 °C, unless otherwise specified.  
IO  
j
Input voltage  
range  
V
2.8  
2.2  
2
3.6  
2.3  
2.1  
5.5  
2.4  
2.2  
V
V
V
IN  
VIN POR rising  
threshold  
V
IN_POR_Rise  
VIN POR falling  
threshold  
V
IN_POR_Fall  
3
3.1  
3.3  
3.5  
4
3.2  
3.4  
3.6  
4.1  
3.2  
3.4  
3.9  
VINOK rising  
threshold  
Programmable value, defined in NVM register  
Table 65. NVM_MAIN_CTRL_SHR  
V
V
INOK_Rise  
200  
300  
400  
500  
Programmable value, defined in NVM register  
Table 65. NVM_MAIN_CTRL_SHR  
V
VINOK hysteresis  
mV  
INOK_HYST  
V
INOK_Rise  
Defined indirectly by V  
and V  
INOK_HYST  
VINOK falling  
threshold  
INOK_Rise  
V
INOK_Fall  
-
settings  
V
INOK_HYST  
V
+50  
INOK_Fall  
+30  
+80  
VINLOW rising  
threshold  
Programmable value, defined in register  
Table 30. SW_VIN_CR  
V
mV  
mV  
mV  
INLOW_Rise  
to  
+300  
+500  
V
+400  
INOK_Fall  
90  
100  
110  
220  
330  
440  
180  
270  
360  
200  
VINLOW  
hysteresis  
Programmable value, defined in register  
Table 30. SW_VIN_CR  
V
INLOW_HYST  
300  
400  
V
INLOW_Rise  
Defined indirectly by V  
and  
VINLOW falling  
threshold  
INLOW_Rise  
V
INLOW_Fall  
+
V
settings  
INLOW_HYST  
V
INLOW_HYST  
Warning  
temperature  
rising  
T
115  
95  
125  
140  
120  
160  
135  
°C  
°C  
°C  
WRN_Rise  
Warning  
temperature  
falling  
T
105  
150  
WRN_Fall  
Shutdown  
temperature  
rising  
T
140  
115  
SHDN_Rise  
Shutdown  
temperature  
falling  
T
125  
30  
°C  
SHDN_Fall  
LDO OCP turn-off  
delay  
t
ms  
OCPDB_LDO  
DS12792 - Rev 7  
page 9/140  
 
 
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
BUCK OCP turn-  
off delay  
t
5
µs  
OCPDB_BUCK  
BOOST OVP  
turn-off delay  
t
1
2
ms  
µs  
OVPDB_BST  
BOOST OCP  
turn-off delay  
t
OCPDB_BST  
Switches OCP  
turn-off delay  
t
30  
ms  
OCPDB_SW  
Programmable value, defined in register  
Table 34. WDG_CR  
1 to 256  
1
t
Watchdog timer  
s
WD  
Timer programming step  
NVM write cycles  
endurance  
NVM  
1000  
Cycle  
END  
LDO1, LDO2, LDO5  
V
= 3.6 V, V = 3.6 V, V  
= 3.6 V, V  
= 1.8 V, recommended BOM, T = -40 °C to +125 °C, unless otherwise  
LDOOUT j  
LDOIN  
IN  
BUCK2IN  
specified,V  
and V  
must always be connected to V  
BUCK2IN  
BUCK1IN  
IN  
Main input  
voltage range  
V
2.8  
5.5  
V
V
LDOIN  
V
>V  
+V  
LDO1 LDO2  
LDO5  
1.7 to 3.3  
1.7 to 3.9  
100  
LDOIN  
LDOOUT  
LDODROP  
Programmable value. Refer to  
Table 9. LDO output voltage  
settings  
V
Output voltage  
V
LDOOUT  
Voltage programming step  
mV  
%
V
>V  
+V  
1 mA<I  
<350  
LDOOUT  
Output voltage  
accuracy  
LDOIN  
LDOOUT  
LDODROP  
V
-2  
2
LDOOUT-ACC  
mA  
Continuous  
output current  
I
V
= 2.8 V to 5.5 V  
= 2.8 V to 5.5 V  
350  
360  
mA  
mA  
µA  
LDOOUT  
LDOIN  
LDOIN  
Load current  
limitation  
I
V
450  
4
800  
20  
LDOLIM  
I
= 0 mA, T = +105 °C total current from  
J
Total quiescent  
current  
LDOOUT  
I
LDOQ  
all LDO supply pins (VIN, LDOIN, BUCK2IN)  
Input leakage  
current  
I
LDO OFF  
0.5  
180  
45  
2.5  
300  
µA  
LDOIN_LKG  
Dropout voltage  
V
V
= 2.8 V, I = 350 mA  
LDOOUT  
mV  
mV  
mV  
LDODROP  
LDOOUT  
(1)  
Load transient  
regulation  
V
I
= 5 to 180 mA, ΔV  
= 0, t = t ~1 µs  
LDOOUT-LO  
LDOOUT  
LDOIN  
R
F
V
= 3.6 V to 3.0 V, ΔI  
= 0, t = t  
LDO1OUT R  
Line transient  
regulation  
LDOIN  
F
V
10  
LDOOUT-LI  
~10 μs  
ΔV  
ΔV  
= 300 mVPP, f=[0.1:20] kHz  
= 300 mVPP, f=[20:100] kHz  
43  
37  
LDOIN  
Power supply  
rejection ratio  
PSRR  
t
dB  
LDO  
LDOIN  
2.8 V<V  
<5.5 V, 0<I  
<1 mA C =4.7  
OUT  
LDOIN  
LDOOUT  
Soft-start duration  
160  
µs  
SSLDO  
µF  
Pull-down enabled, V  
=1.8 V to  
= no load  
Shutdown  
duration  
LDOOUT  
t
3
ms  
SDLDO  
V
=0.2 V, I  
LDOOUT  
LDOOUT  
LDO3 normal mode  
= 3.6 V, V = 3.6 V, V  
V
= 3.6 V, V = 1.8 V, recommended BOM, T = -40 °C to +12 5 °C, unless otherwise  
LDO3OUT j  
LDO3IN  
IN  
BUCK2IN  
specified  
DS12792 - Rev 7  
page 10/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Main input  
voltage range  
V
2.8  
5.5  
V
LDO3IN  
V
>V  
+V  
programmable  
LDO3DROP  
LDO3IN  
LDO3OUT  
1.8 to 3.3  
100  
V
value. Refer to Table 9. LDO output voltage  
settings  
V
Output voltage  
LDO3OUT  
Voltage programming step  
mV  
%
V
>V  
+V  
1
LDO3DROP  
Output voltage  
accuracy  
LDO3IN  
LDO3OUT  
V
-2  
2
LDO3OUT-ACC  
mA<I  
<50 mA  
LDO3OUT  
Continuous  
output current  
I
V
= 2.8 V to 5.5 V  
= 2.8 V to 5.5 V  
100  
120  
mA  
mA  
µA  
LDO3OUT  
LDO3IN  
LDO3IN  
Load current  
limitation  
I
V
150  
20  
LDO3LIM  
I
= 0 mA, T = +105 °C total current from  
J
Total quiescent  
current  
LDO3OUT  
I
QLDO3  
all LDO supply pins (VIN, LDOIN, BUCK2IN)  
Input leakage  
current  
I
LDO OFF  
1
3
µA  
mV  
mV  
LDO3IN_LKG  
V
V
= 2.8 V, I  
= 100 mA  
Dropout voltage  
120  
30  
200  
LDO3DROP  
LDO3OUT  
LDO3OUT  
ΔI  
= 5 mA to 55 mA, ΔV  
~10 µs  
= 0, t = t  
LDO3IN R F  
Load transient  
regulation  
LDO3OUT  
V
LDO3OUT-LO  
V
= 3.6 V to 3.0 V, ΔI  
= 0, t = t  
LDO3OUT R F  
Line transient  
regulation  
LDOIN  
V
5
mV  
LDO3OUT-LI  
~10 µs  
ΔV  
ΔV  
= 300 mVPP, f=[0.1:20] kHz  
= 300 mVPP, f=[20:100] kHz  
45  
40  
LDO3IN  
Power supply  
rejection ratio  
PSRR  
t
dB  
µs  
LDO3  
LDO3IN  
2.8 V<V  
<5.5 V, 0<I  
LDO3IN  
<1 mA  
LDO3OUT  
Soft-start duration  
200  
SSLDO3  
Pull-down enabled, V  
=1.8 V to V  
LDO3OUT  
Shutdown  
duration (all  
modes)  
LDO3OUT  
t
= 0.2 V, I  
= no load, V =3.6 V, C  
=4.7  
3
ms  
SDLDO3  
LDO3OUT  
IN  
OUT  
µF  
LDO3 sink-source mode  
= V = 1.35 V, V = 5.0 V, V  
V
= 5.0 V, V  
= V  
= V  
, T = -40 °C to +125 °C, recommended BOM,  
OUT2/2 j  
LDO3IN  
OUT2  
IN  
BUCK2IN  
LDO3OUT  
REFDDR  
unless otherwise specified  
Input voltage  
range  
V
1.1  
1.35  
1.6  
V
LDO3IN-SS  
Continuous  
output current  
I
mA  
RMS  
120  
LDO3OUT-SS  
I
Overcurrent limit  
±200  
mA  
µA  
LDO3LIM-SS  
I
= 0 mA, T = +105 °C total current from  
J
Total quiescent  
current  
LDO3OUT  
I
2
20  
QLDO3_SS  
all LDO supply pins (VIN, LDOIN, BUCK2IN)  
ΔI  
= +/- [0:50] mA, ΔV  
~250 ns  
= 0, t = t  
LDO3IN R F  
Load transient  
regulation  
LDO3OUT  
V
30  
mV  
LDO3OUT-LO-SS  
V
= V  
= 1.35 V, ΔI  
~1 μs  
= 0, t = t  
Line transient  
regulation  
LDO3IN  
OUT2  
LDO3OUT  
R
F
V
5
mV  
µs  
LDO3OUT-LI-SS  
t
2.8 V <V  
<5.5 V, 0< I < 1 mA  
LDO3OUT  
Soft-start duration  
21  
40  
3
SSLDO3-SS  
LDO3IN  
Pull-down enabled, V  
= V  
to  
OUT2/2  
LDO3OUT  
Shutdown  
duration  
t
V
< 0.2 V, I  
= no load, V  
=
IN  
ms  
SDLDO3-SS  
LDO3OUT  
LDO3OUT  
V
, C  
=4.7 µF  
OUT2  
OUT  
LDO3 bypass mode  
= 1.8 V, V  
V
= ~1.8 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
j
LDO3IN  
LDO3OUT  
DS12792 - Rev 7  
page 11/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Input voltage  
range  
V
1.7  
2
V
LDO3IN-BP  
1.7 V<V  
<2 V no overcurrent protection in  
bypass mode  
Continuous  
output current  
LDO3IN  
I
50  
mA  
LDO3OUT-BP  
Bypass transistor  
R
I
=40 mA,T = 25 °C  
0.45  
100  
0.6  
3
Ω
DSONLDO3-BP  
LDO3OUT  
j
R
DS(on)  
t
1.7 V < V  
< 2 V, 0 < I  
< 1 mA  
Soft-start duration  
µs  
SSLDO3-BP  
LDO3IN  
LDO3OUT  
Pull-down enabled, V  
=1.8 V to V  
LDO3OUT  
LDO3OUT  
Shutdown  
duration  
t
= 0.2 V, I  
= no load, V =3.6 V, C  
=4.7  
ms  
SDLDO3-BP  
LDO3OUT  
IN  
OUT  
µF  
LDO4  
VLDO4OUT = 3.3 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
j
Input voltage  
2.8(2)  
3.23  
50  
V
V
= Max.(VIN; VBUSOTG; BSTOUT)  
LDO4IN  
5.5  
V
V
LDO4IN  
range  
Output voltage  
accuracy  
V
3.6 V<V  
<5.5 V, 1 mA<I  
LDO4IN  
<30 mA  
LDO4OUT  
3.3  
3.34  
LDO4OUT-ACC  
Continuous  
output current  
I
V
= 3.6 V to 5.5 V  
LDO4IN  
mA  
LDO4OUT  
Load current  
limitation  
I
V
= 3.6 V to 5.5 V  
LDO4IN  
50  
75  
20  
45  
200  
25  
mA  
µA  
LDO4LIM  
I
I
= 0 mA, T = +105 °C  
Quiescent current  
LDO4Q  
LDO4OUT  
J
Dropout voltage  
from VIN  
V
I
= 30 mA  
LDO4OUT  
90  
mV  
LDO4DROP  
ΔI  
= 1 to 30 mA, ΔV  
µs  
= 0, t = t ~1  
LDO4IN R F  
Load transient  
regulation VIN  
LDO4OUT  
V
40  
10  
mV  
mV  
LDO4OUT-LO  
Line transient  
regulation VIN  
V
ΔV  
= 600 mV, ΔI  
= 0, t = t ~10 μs  
LDO4OUT R F  
LDO4OUT-LI  
LDO4IN  
Power supply  
rejection ratio  
PSRR  
ΔV  
= 300 mVPP, f=[0.1:10] kHz  
LDO4IN  
40  
dB  
µs  
LDO4  
t
3.5 V<V  
<5.5 V, 0<I  
<1 mA  
Soft-start duration  
100  
SSLDO4  
LDO4IN  
LDO4OUT  
Pull-down enabled, V  
<0.2 V, I = no load, V =3.6 V,  
LDO4OUT IN  
=3.3 V to  
LDO4OUT  
Shutdown  
duration  
t
V
3
ms  
SDLDO4  
LDO4OUT  
C
OUT  
=4.7 µF  
LDO6  
V
=3.6 V, V = 1.0 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
LDO6OUT j  
LDO6IN  
Main input  
voltage range  
V
V
LDO6IN  
2.8  
5.5  
V
V
IN  
V
>V  
+V  
Programmable  
LDO6DROP  
LDO6IN  
LDO6OUT  
0.9 to 3.3  
100  
value. Refer to Table 9. LDO output voltage  
settings  
V
Output voltage  
LDO6OUT  
Voltage programming step  
mV  
%
V
>V  
0<I  
+V  
,
LDO6DROP  
Output voltage  
accuracy  
LDO6IN  
LDO6OUT  
V
-2  
2
LDO6OUT-ACC  
<150 mA  
<5.5 V  
LDO6IN  
LDO6OUT  
Continuous  
output current  
I
2.8 V<V  
2.8 V<V  
150  
160  
mA  
LDO6OUT  
Load current  
limitation  
I
<5.5 V  
LDO6IN  
200  
4
350  
20  
mA  
µA  
LDO6LIM  
I
I
= 0 mA, T = +105 °C  
LDO6OUT J  
Quiescent current  
LDO6Q  
DS12792 - Rev 7  
page 12/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
0.5  
Max.  
1
Unit  
µA  
Input leakage  
current  
I
LDO OFF  
LDO6IN_LKG  
V
V
= 2.9 V, I  
=150 mA  
Dropout voltage  
160  
30  
300  
mV  
mV  
LDO6DROP  
LDO6OUT  
LDO6OUT  
Load transient  
regulation  
V
ΔI  
= 75 mA, ΔV  
= 0, t = t ~1 µs  
LDO6IN R F  
LDO6OUT-LO  
LDO6OUT  
Line transient  
regulation  
V
ΔV  
= 600 mV, ΔI  
= 0, t = t ~10 μs  
LDO6OUT R F  
5
mV  
dB  
LDO6OUT-LI  
LDO6IN  
ΔV  
ΔV  
= 300 mVPP, f=[0.1:20] kHz  
= 300 mVPP, f=[20:100] kHz  
55  
40  
LDO6IN  
Power supply  
rejection ratio  
PSRR  
t
LDO6  
LDO6IN  
2.8 V<V  
<5.5 V, 0<I  
LDO6IN LDO6OUT  
<1 mA  
<0.2 V,  
Soft-start duration  
100  
µs  
SSLDO6  
PD on, V  
=1.8 V to V  
LDO6OUT  
Shutdown  
duration  
LDO6OUT  
t
3
ms  
SDLDO6  
I
<1 mA, V =3.6 V, C  
=4.7 µF  
LDO6OUT  
IN  
OUT  
REFDDR  
V
= V  
= 0.675 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
OUT2/2 j  
REFOUT  
V
0.1 mA<I  
<5 mA  
V
/2  
OUT2  
Output voltage  
V
REFOUT  
REF-ACC  
REFOUT  
Output voltage  
accuracy  
V
I
= 0.1 mA  
-1  
5
1
%
REF  
Output current  
capability  
I
mA  
REFOUT  
RMS  
Load current  
limitation  
I
±10  
±25  
±50  
mA  
REFLIM  
I
I
= 0 mA, T = +25 °C  
REFOUT J  
Quiescent current  
Soft-start duration  
30  
µA  
µs  
REFQ  
t
0.1 mA<I  
<1 mA  
REF  
100  
SSREF  
PD on, V  
=0.6 V to V  
<0.2 V,  
=1 µF  
Shutdown  
duration  
REFOUT  
REFOUT  
t
3
ms  
SDREF  
I
<0.1 mA, V =3.6 V, C  
IN OUT  
REFOUT  
Buck converter 1  
V
= 3.6 V, V = 1.2 V, recommended BOM, T = -40 °C to +125 °C , unless otherwise specified  
OUT1 j  
BUCK1IN  
Main input  
voltage range  
V
2.8  
5.5  
V
BUCK1IN  
Programmable value, refer to Table 10. BUCK  
output settings  
0.725 to 1.5  
25  
V
V
Output voltage  
OUT1  
Voltage programming step  
mV  
V
= 2.8 V to 5.5 V, V = 0.725 V to 1.5  
BUCK1IN OUT1  
V
Output voltage  
accuracy  
V
V
%
OUT1-ACC  
HP mode I  
= 0 to 1.5 A  
-2  
-4  
2
4
BK1OUT  
LP mode I  
= 0 to 50 mA  
BK1OUT  
I
= 0 mA, HP mode, T = +25 °C  
10  
5
BK1OUT  
A
Output voltage  
ripple  
mV  
OUT1-RIPP  
I
= 1500 mA, HP mode, T = +25 °C  
BK1OUT  
A
2.8<V  
<5.5 V, HP mode  
<5.5 V, LP mode  
1500  
50  
BUCK1IN  
Continuous  
output current  
I
OUT1  
2.8< V  
BUCK1IN  
mA  
A
Peak output  
current in LP  
mode  
I
2.8< V  
<5.5 V, t  
BUCK1IN  
< 10 us  
PEAK  
200  
OUT1_LP_PEAK  
Inductor peak  
current limit  
I
2
BK1LIM  
DS12792 - Rev 7  
page 13/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Reference  
switching  
frequency  
f
2
MHz  
REFCLK  
I
= 0 mA, HP mode  
220  
50  
300  
80  
BUCK1OUT  
Total quiescent  
current  
I
µA  
µA  
Q_BK1  
I
= 0 mA, LP mode  
BUCK1OUT  
Input leakage  
current  
I
BUCK OFF  
1
BUCK1IN_LKG  
I
=150 mA, T = +25 °C  
86  
83  
70  
BK1OUT  
A
EFF  
I
=750 mA,T = +25 °C  
Efficiency  
%
BK1  
BK1OUT  
A
I
=1500 mA,T = +25 °C  
A
BK1OUT  
HP mode; 0<I  
<1.5 A, ΔI  
= 450 mA,  
BK1OUT  
BK1OUT  
15  
30  
5
t
= t ~250 ns  
F
R
Load transient  
regulation  
V
mV  
OUT1-LO  
LP mode; 0<I  
<50 mA, ΔI  
= 50 mA  
BK1OUT  
BK1OUT  
t
R
= t ~250 ns  
F
ΔV  
= 600 mV, ΔI  
= 0, t = t ~10 μs,  
BK1OUT R F  
Line transient  
regulation  
BK1IN  
V
1.5  
5
mV  
mV  
OUT1-LI  
HP mode  
2.8 V<V  
<5.5 V, I ~1 mA, T = +25 °C,  
Power-up  
overshoot  
BK1IN  
BK1OUT  
A
V
40  
OUT1-OVR  
0.725 V<V  
<1.5 V  
OUT1  
Recovery time  
from LP to HP  
mode  
t
V
20  
1
µs  
LP-HP-BK1  
OUT1_LP = VOUT1_HP  
Start-up delay  
(delay before  
voltage starts to  
rise)  
2.8 V<V  
<5.5 V, refer toFigure 46. BUCKx  
BUCK1IN  
t
0.05  
0.5  
ms  
SU_BK1  
start-up/shutdown timings  
2.8 V<V  
<5.5 V, 1 mA<I <100 mA,  
BK1OUT  
BUCK1IN  
t
Soft-start duration  
V
=1.2 V, refer to Figure 16. Buck4 load  
transient in LP mode.  
235  
400  
µs  
SS_BK1  
OUT1  
Slew rate during start-up  
5.5  
3.1  
mV/µs  
mV/µs  
Output voltage  
slew rate  
S
RBK1  
DVS slew rate of a voltage programmed change  
low to high or high to low, from 0.8 V to 1.2 V  
2.3  
From V =1.2 V to V  
OUT1  
<0.2 V, V =3.6 V,  
OUT1 IN  
C
=22 µF  
OUT  
Shutdown  
duration  
t
ms  
SD_BK1  
Slow PD, I  
<1 mA  
1.5  
BK1OUT  
BK1OUT  
Fast PD, I  
<1 mA  
0.15  
Buck converter 2  
V
= 3.6 V, V = 1.2 V, recommended BOM, T = -40 °C to +125 °C, unless otherwise specified  
OUT2 j  
BUCK2IN  
Main input  
voltage range  
V
2.8  
5.5  
V
BUCK2IN  
Programmable value, refer to Table 10. BUCK  
output settings  
1.0 to 1.5  
50  
V
V
Output voltage  
OUT2  
Voltage programming step  
mV  
V
= 2.8 V to 5.5 V, V  
= 1.0 V to 1.5 V  
BUCK2IN  
OUT2  
Output voltage  
accuracy  
V
V
HP mode I  
= 0 to 1.0 A  
BK2OUT  
-2  
-4  
2
4
%
OUT2-ACC  
LP mode I  
= 0 to 50 mA  
BK2OUT  
Output voltage  
ripple  
I
= 0 mA, HP mode, T = +25 °C  
A
10  
BK2OUT  
mV  
OUT2-RIPP  
DS12792 - Rev 7  
page 14/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Output voltage  
ripple  
V
mV  
I
= 1000 mA, HP mode, T = +25 °C  
OUT2-RIPP  
5
BK2OUT  
A
2.8<V  
<5.5 V, HP mode  
<5.5 V, LP mode  
1000  
50  
BUCK2IN  
Continuous  
output current  
I
OUT2  
2.8< V  
BUCK2IN  
mA  
Peak output  
current in LP  
mode  
I
2.8< V  
<5.5 V, LP mode, t  
BUCK2IN  
< 10 us  
PEAK  
200  
OUT2_LP_PEAK  
Inductor peak  
current limit  
I
1.6  
2
A
BK2LIM  
Reference  
switching  
frequency  
f
MHz  
REFCLK  
I
= 0 mA, HP mode  
= 0 mA, LP mode  
220  
50  
300  
80  
BUCK2OUT  
Total quiescent  
current  
I
µA  
µA  
Q_BK2  
I
BUCK2OUT  
Input leakage  
current  
I
BUCK OFF  
1
BUCK2IN_LKG  
I
I
=150 mA, T = +25 °C  
87  
86  
84  
BK2OUT  
A
EFF  
=750 mA, T = +25 °C  
Efficiency  
%
BK2  
BK2OUT  
A
I
=1000 mA, T = +25 °C  
A
BK2OUT  
HP mode; 0<I  
<1.0 A, ΔI  
= 450 mA,  
= 50 mA,  
BK2OUT  
BK2OUT  
BK2OUT  
15  
30  
5
t
= t ~250 ns  
F
R
Load transient  
regulation  
V
mV  
OUT2-LO  
LP mode; 0<I  
<50 mA ΔI  
BK2OUT  
t
= t ~250 ns  
F
R
ΔV  
= 600 mV, ΔI  
= 0, t = t ~10 μs,  
BK2OUT R F  
Line transient  
regulation  
BK2IN  
V
1.5  
5
mV  
mV  
OUT2-LI  
HP mode  
2.8 V<V  
<5.5 V, I ~1 mA, T = +25 °C,  
Power-up  
overshoot  
BK2IN  
BK2OUT  
A
V
40  
OUT2-OVR  
0.725 V<V  
<1.5 V  
OUT2  
Recovery time  
from LP to HP  
mode  
t
V
= V  
OUT2_LP OUT2_HP  
20  
1
µs  
LP-HP-BK2  
Start-up delay  
(delay before  
voltage starts to  
rise)  
2.8 V<V  
2.8 V<V  
<5.5 V, refer to Figure 46. BUCKx  
BUCK2IN  
t
0.05  
0.5  
ms  
SU_BK2  
start-up/shutdown timings.  
<5.5 V, 1 mA<I  
<100 mA,  
BK2OUT  
BUCK2IN  
t
Soft-start duration  
V
=1.2 V, refer to Figure 16. Buck4 load  
transient in LP mode  
235  
400  
µs  
SS_BK2  
OUT2  
Slew rate during start-up  
5.5  
3.1  
mV/µs  
mV/µs  
Output voltage  
slew rate  
S
RBK2  
DVS slew rate of a voltage programmed change  
low to high or high to low  
From V  
= 1.2 V to V <0.2 V, V =3.6 V,  
OUT2 IN  
OUT2  
C
=22 µF  
OUT  
Shutdown  
duration  
t
ms  
SD_BK2  
Slow PD, I  
Fast PD, I  
<1 mA  
1.5  
BK2OUT  
BK2OUT  
<1 mA  
0.15  
Buck converter 3  
V
= 3.6 V, V = 1.8 V, recommended BOM, T = -40 °C to +125 °C, unless otherwise specified  
OUT3 j  
BUCK3IN  
Main input  
voltage range  
2.8(2)  
V
5.5  
V
BUCK3IN  
DS12792 - Rev 7  
page 15/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
1.0 to 3.4  
100  
Max.  
Unit  
V
Programmable value, refer to Table 10. BUCK  
output settings  
V
Output voltage  
OUT3  
Voltage programming step  
mV  
V
= 2.8 V to 5.5 V  
BUCK3IN  
HP mode I  
HP mode I  
= 0 to 500 mA, V  
to 3.3 V  
= 1.8 V  
= 1.0 V  
BK3OUT  
OUT3  
OUT3  
-2.5  
2.5  
Output voltage  
accuracy  
V
%
OUT3-ACC  
= 0 to 500 mA, V  
to 3.4 V  
BK3OUT  
-3  
-4  
3
4
LP mode I  
I
= 0 to 50 mA, V = 1.0 V to  
OUT3  
BK3OUT  
3.4 V  
= 0 mA, HP mode, T = +25 °C  
10  
5
BK3OUT  
A
Output voltage  
ripple  
V
mV  
mA  
OUT3-RIPP  
I
= 500 mA, HP mode, T = +25 °C  
BK3OUT  
A
2.8<V  
<5.5 V, HP mode  
<5.5 V, LP mode  
500  
50  
BUCK3IN  
Continuous  
output current  
I
OUT3  
2.8< V  
BUCK3IN  
Peak output  
current in LP  
mode  
I
2.8< V  
<5.5 V, LP mode, t  
< 10 µs  
PEAK  
200  
OUT3_LP_PEAK  
BUCK3IN  
Inductor peak  
current limit  
I
1
2
A
BK3LIM  
Reference  
switching  
frequency  
f
MHz  
REFCLK  
I
= 0 mA, HP mode  
= 0 mA, LP mode  
220  
50  
300  
80  
BUCK3OUT  
Total quiescent  
current  
I
µA  
µA  
Q_BK3  
I
BUCK3OUT  
Input leakage  
current  
I
BUCK OFF  
1
BUCK3IN_LKG  
I
=150 mA, T = +25 °C  
90  
88  
91  
BK3OUT  
A
EFF  
I
=350 mA,T = +25 °C  
Efficiency  
%
BK3  
BK3OUT  
BK3OUT  
A
I
=500 mA,T = +2 5°C  
A
HP mode; 0<I  
<0.5 A, ΔI  
= 100 mA,  
= 50 mA,  
IBK3OUT  
BK3OUT  
BK3OUT  
15  
30  
5
t
= t ~250 ns  
F
R
Load transient  
regulation  
V
mV  
OUT3-LO  
LP mode; 0<I  
<50 mA Δ  
BK3OUT  
t
= t ~250 ns  
F
R
Δ
= 600 mV, Δ  
= 0, t = t ~10 μs,  
Line transient  
regulation  
VBK3IN  
IBK3OUT R F  
V
1.5  
5
mV  
mV  
OUT3-LI  
HP mode  
2.8 V<V  
<5.5 V, I ~1 mA, T = +25 °C,  
BK3IN  
Power-up  
overshoot  
BK3OUT  
A
V
40  
OUT3-OVR  
0.725 V<V  
<1.5 V  
OUT3  
Recovery time  
from LP to HP  
mode  
t
V
= V  
OUT3_LP OUT3_HP  
20  
1
µs  
LP-HP-BK3  
Start-up delay  
(delay before  
voltage starts to  
rise)  
2.8 V<V  
2.8 V<V  
<5.5 V, refer to Figure 46. BUCKx  
BUCK3IN  
t
0.05  
0.5  
ms  
SU_BK3  
start-up/shutdown timings.  
<5.5 V, 1 mA<I <100 mA,  
BK3OUT  
BUCK3IN  
t
Soft-start duration  
V
=1.2 V, refer to Figure 16. Buck4 load  
transient in LP mode  
235  
400  
µs  
SS_BK3  
OUT3  
DS12792 - Rev 7  
page 16/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Slew rate during start-up  
5.5  
mV/µs  
Output voltage  
slew rate  
S
RBK3  
DVS slew rate of a voltage programmed change  
low to high or high to low  
3.1  
mV/µs  
ms  
From V  
= 1.2 V to V <0.2 V, V =3.6 V,  
OUT3 IN  
OUT3  
C
OUT  
=22 µF  
Shutdown  
duration  
t
SD_BK3  
Slow PD, I  
Fast PD, I  
<1 mA  
1.5  
BK3OUT  
BK3OUT  
<1 mA  
0.15  
Buck converter 4  
V
= 5.0 V, V = 3.3 V, recommended BOM, T = -40 °C to +125 °C, unless otherwise specified  
OUT4 j  
BUCK4IN  
Main input  
voltage range  
2.8 (2)  
V
5.5  
V
V
BUCK4IN  
Programmable value, refer to Table 10. BUCK  
output settings  
0.6 to 3.9  
Voltage programming step  
V
Output voltage  
OUT4  
0.6 V ≤ V  
1.3 V≤ V  
1.5 V ≤ V  
<1.3 V  
<1.5 V  
<3.9 V  
25  
50  
BK4OUT  
BK4OUT  
BK4OUT  
mV  
100  
V
= 2.8 V to 5.5 V  
BUCK4IN  
HP mode I  
HP mode I  
= 0 to 2.0 A, V  
1.4 V  
= 0.8 V to  
= 0.6 V to  
= 0.6 V to  
BK4OUT  
OUT4  
-2.5  
-3.5  
-4  
2.5  
3.5  
4
Output voltage  
accuracy  
V
V
%
OUT4-ACC  
= 0 to 2.0 A, V  
3.9 V  
BK4OUT  
BK4OUT  
OUT4  
LP mode I  
I
= 0 to 50 mA, V  
3.9 V  
OUT4  
= 0 mA, HP mode, T = +25 °C  
10  
10  
BK4OUT  
A
Output voltage  
ripple  
mV  
mA  
OUT4-RIPP  
I
= 2000 mA, HP mode, T = +25 °C  
BK4OUT  
A
2.8<V  
<5.5 V, HP mode  
<5.5V, LP Mode  
2000  
50  
BUCK4IN  
Continuous  
output current  
I
OUT4  
2.8< V  
BUCK4IN  
Peak output  
current in LP  
mode  
I
2.8< V  
<5.5 V, LP mode, t  
< 10 µs  
PEAK  
200  
OUT4_LP_PEAK  
BUCK4IN  
Inductor peak  
current limit  
I
3
2
A
BK4LIM  
Reference  
switching  
frequency  
f
MHz  
REFCLK  
I
= 0 mA, HP mode  
= 0mA, LP mode  
220  
50  
300  
80  
BUCK4OUT  
Total quiescent  
current  
I
µA  
µA  
Q_BK4  
I
BUCK4OUT  
Input leakage  
current  
I
BUCK OFF  
1
BUCK4IN_LKG  
I
=250 mA, T = +25 °C  
90  
85  
79  
BK4OUT  
A
EFF  
I
I
=1300 mA,T = +25 °C  
Efficiency  
%
BK4  
BK4OUT  
BK4OUT  
A
=2000 mA,T = +25 °C  
A
DS12792 - Rev 7  
page 17/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
<2.0 A, ΔI  
Min.  
Typ.  
Max.  
Unit  
HP mode; 0<I  
LP mode; 0<I  
= 500 mA,  
= 50 mA,  
BK4OUT  
BK4OUT  
BK4OUT  
15  
30  
t
= t ~250 ns  
F
R
Load transient  
regulation  
V
mV  
OUT4-LO  
<50 mA ΔI  
BK4OUT  
5
5
tR = tF ~250 ns  
Δ
= 600 mV, Δ  
= 0, t = t ~10 μs,  
IBK4OUT R F  
Line transient  
regulation  
VBK4IN  
V
1.5  
mV  
mV  
OUT4-LI  
HP mode  
2.8 V<V  
<5.5 V, I  
~1 mA, T = +25 °C,  
BK4OUT A  
Power-up  
overshoot  
BK4IN  
V
40  
OUT4-OVR  
0.725 V<V  
<1.5 V  
OUT4  
Recovery time  
from LP to HP  
mode  
t
V
= V  
OUT4_HP  
20  
1
µs  
LP-HP-BK4  
OUT4_LP  
Startup delay  
(delay before  
voltage starts to  
rise)  
2.8 V<V  
2.8 V<V  
<5.5 V, refer to Figure 16. Buck4  
BUCK4IN  
t
0.05  
0.5  
ms  
SU_BK4  
load transient in LP mode.  
<5.5 V, 1 mA<I  
<100 mA,  
BK4OUT  
BUCK4IN  
t
Soft-start duration  
V
= 1.2 V, refer to Figure 46. BUCKx start-up/  
shutdown timings  
235  
400  
µs  
SS_BK4  
OUT4  
Slew rate during start-up  
5.5  
3.1  
mV/µs  
mV/µs  
Output voltage  
slew rate  
SR  
BK4  
DVS slew rate of a voltage programmed change  
low to high or high to low, from 0.8 V to 1.2 V  
1.9  
From V  
= 1.2 V to V <0.2 V, V =3.6 V,  
OUT4 IN  
OUT4  
C
= 22 µF  
OUT  
Shutdown  
duration  
t
ms  
SD_BK4  
Slow PD, I  
<1 mA  
1.5  
BK4OUT  
BK4OUT  
Fast PD, I  
<1 mA  
0.15  
Boost converter  
V
= 3.6 V, V  
= 5.2 V, T = 25 °C, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
IN  
BSTOUT  
A
j
Main input  
voltage range  
V
2.8  
5.5  
V
V
IN  
2.8 V<V  
5.2 V<V  
<5.2 V, boost mode  
5.2  
BSTOUT  
Output voltage  
range  
V
OUT  
<5.5 V, bypass mode  
~VBOOSTIN  
BSTOUT  
2.8 V<V  
<3.3 V, 0<I  
<0.5 A or 3.3  
Output voltage  
accuracy  
BSTIN  
BSTOUT  
V
-3.5  
3.5  
%
BST-ACC  
V<V  
<5.5 V, 0<I  
BSTIN  
<1.1 A  
BSTOUT  
Overvoltage  
threshold  
V
5.5  
1.1  
0.5  
5.7  
5.85  
V
A
BSTOVP  
Continuous  
output current  
I
3.3 V<V  
<5.5 V  
<3.3 V  
BSTOUT_HI  
BSTOUT_LO  
BSTOUT_LKG  
BSTIN  
Continuous  
output current  
I
2.8 V<V  
A
BSTIN  
Output leakage  
current  
I
B
, boost OFF, pull-down disabled  
STOUT  
1
µA  
A
Inductor peak  
current limit LS  
I
3.3  
4
BSTLIM  
Short-circuit  
threshold HS  
I
A
BSTSH  
I
I
=0 mA  
BSTOUT  
Quiescent current  
Efficiency  
600  
76  
900  
µA  
%
Q
I
=2.5 mA, T = 25 °C  
A
EFF  
BSTOUT  
BST  
DS12792 - Rev 7  
page 18/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
89  
Max.  
Unit  
I
I
=100 mA, T = 25 °C  
BSTOUT  
A
EFF  
Efficiency  
%
=500 mA, T = 25 °C  
BST  
89  
BSTOUT  
A
I
=1100 mA, T = 25 °C  
A
82  
BSTOUT  
I
= 0 A to 0.5 A, Δ  
= 0, t = t ~5 µs  
BSTOUT  
VIN R F  
300  
200  
V
={3.6 V;5 V}  
IN  
Load transient  
regulation  
V
mV  
BST-LO  
I
= 0.5 A to 1.0 A, ΔVIN = 0, t = t ~5 µs  
R F  
BSTOUT  
130  
40  
VIN={3.6 V;5 V}  
Δ
= 5 V+/-250 mV, I  
= 500 mA, t = t  
Line transient  
regulation  
VIN  
BSTOUT  
R
F
V
mV  
mV  
mA  
BST-LI  
~1 μs  
<5.2 V, I =0 mA  
BSTOUT  
Power-up  
overshoot  
V
3.0 V<V  
300  
BST-OVR  
BSTIN  
Precharge  
current  
I
t
220  
1
PRECH_BST  
Maximum  
precharge  
duration  
I
=0 mA  
=0 mA  
ms  
PRECH_BST  
BSTOUT  
t
I
BSTOUT  
Soft-start duration  
500  
115  
µs  
SS_BST  
Bypass switch  
ON-resistance  
R
I
=300 mA, V = 5.3 V  
BSTOUT IN  
mΩ  
DSON-BYP  
PWR_USB_SW switch  
VBSTOUT=5.2 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
j
Switch ON-  
resistance  
R
I
=300 mA  
VBUSOTG  
145  
250  
mΩ  
DSON-VBUSOTG  
Continuous  
output current  
I
0.5  
mA  
A
VBUSOTG  
I
Overcurrent limit  
0.55  
VBUSOTGOCP  
Short-circuit  
threshold  
I
1.1  
3
A
VBUSOTG_SH  
Soft-on/off  
duration  
t
ms  
ms  
V
SS_VBUSOTG  
V
det.  
BUSOTG  
t
30  
VBUSOTGDB  
debounce time  
V
rise  
BUSOTG  
V
3.6  
2.0  
3.8  
2.2  
4.0  
2.4  
VBUSOTG_Rise  
threshold  
V
fall  
BUSOTG  
V
V
VBUSOTG_Fall  
threshold  
PWR_SW switch  
VSWIN = 5.2 V, T = -40 °C to +125 °C, recommended BOM, unless otherwise specified  
j
Switch ON-  
resistance  
R
I
=300 mA  
100  
200  
mΩ  
A
DSON-SWOUT  
SWOUT  
Continuous  
output current  
I
1
SWOUT  
OCP_SWOUT_LIM = 0  
OCP_SWOUT_LIM = 1  
0.6  
1.1  
A
A
I
Overcurrent limit  
SWOUTOCP  
Short-circuit  
threshold  
I
1.1  
A
SWOUT_SH  
DS12792 - Rev 7  
page 19/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Soft-on/off  
duration  
t
3
ms  
SS_SWOUT  
SWOUT rise  
threshold  
V
40  
30  
50  
40  
60  
50  
% VIN  
% VIN  
ms  
SWOUT_Rise  
SWOUT fall  
threshold  
V
SWOUT_Fall  
SWOUT det.  
debounce time  
t
30  
SWOUTDB  
SWIN rise  
threshold  
V
2.75  
2.5  
2.92  
2.65  
30  
3.00  
2.8  
V
SWIN_Rise  
SWIN fall  
threshold  
V
V
SWIN_Fall  
SWIN det.  
debounce time  
t
ms  
SWINDB  
SWIN OCP  
debounce time  
t
2
µs  
OCPDBSW  
Digital interface  
VIO input voltage  
for IO signal  
V
1.7  
0
1.8  
0.8  
3.6  
V
IO  
PONKEYn input  
low voltage  
0.3x  
VIN  
internal VIN pull-up on pin  
internal VIO pull-down on pin  
internal VIO pull-up on pin  
internal VIO pull-down on pin  
internal VIO pull-up on pin  
WAKEUP input  
low voltage  
0.3  
0
0.3x  
VIO  
PWRCTRL input  
low voltage  
V
V
IL  
0.3x  
VIO  
0
RSTn input low  
voltage  
0.3x  
VIO  
0
2
SDA, SCL input  
low voltage  
I C NXP UM10204 revision 5 compliant (October  
2012)  
PONKEYn input  
high voltage  
0.7 x  
VIN  
internal VIN pull-up on pin  
Internal VIO pull-down on pin  
Internal VIO pull-up pin  
VIN  
1.2  
WAKEUP input  
high voltage  
1
0.7 x  
VIO  
VIO  
VIO  
VIO  
PWRCTRL input  
high voltage  
V
V
IH  
0.7 x  
VIO  
Internal VIO pull-down pin  
Internal VIO pull-up on pin  
RSTn input high  
voltage  
0.7 x  
VIO  
2
SDA, SCL input  
high voltage  
I C NXP UM10204 revision 5 compliant (October  
2012)  
INTn output low  
voltage  
0.3 x  
VIO  
80 kΩ internal VIO pull-up on pin  
0
V
V
V
OL  
2
SDA, SCL output  
low voltage  
I C NXP UM10204 revision 5 compliant (October  
2012)  
INTn output high  
voltage  
80 kΩ internal VIO pull-up on pin  
VIO  
V
OH  
DS12792 - Rev 7  
page 20/140  
STPMIC1  
Electrical and timing parameters  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
2
SDA, SCL output  
high voltage  
I C NXP UM10204 revision 5 compliant (October  
2012)  
V
V
OH  
WAKEUP pin  
pull-down resistor  
Internally connected to GND  
Internally connected to GND  
45  
60  
90  
50  
50  
50  
60  
90  
120  
80  
80  
80  
30  
2
80  
R
PD  
PWRCTRL pin  
pull-down resistor  
140  
140  
120  
120  
120  
PONKEYn pin  
pull-up resistor  
Internally connected to V  
IN  
kΩ  
PWRCTRL pin  
pull-up resistor  
Internally connected to V  
io  
R
PU  
RSTn pin pull-up  
resistor  
Internally connected to V  
io  
INTn pin pull-up  
resistor  
Internally connected to V  
io  
PONKEYn  
debounce time  
PONKEYn  
WAKEUP  
ms  
µs  
µs  
DB  
WAKEUP  
debounce time  
DB  
RSTn assertion  
time  
RSTn  
20  
DB  
1. Dropout is the smallest difference between a regulator’s input and its output voltage, which is required to  
maintain regulation and enable the regulator to provide rated voltage and current  
2.  
V
is intended to be higher than VOUT  
IN  
DS12792 - Rev 7  
page 21/140  
 
 
STPMIC1  
Application board curves  
3.5  
Application board curves  
Unless otherwise specified, all typical curves are given as design guidelines.  
Figure 3. BUCK1 efficiency  
Figure 4. BUCK2 efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
Load [A]  
Load [A]  
1.2Vout 5Vin LP  
1.2Vout 3.6Vin LP  
1.35Vout 5Vin LP  
1.2Vout 3.6Vin HP  
1.2Vout 5Vin HP  
1.35Vout 5Vin HP  
1.2Vout 5Vin LP  
1.2Vout 3.6Vin LP  
1.2Vout 3.6Vin HP  
1.2Vout 5Vin HP  
Figure 6. BUCK4 efficiency  
Figure 5. BUCK3 efficiency  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.00001  
0.0001  
1.2Vout 3.6Vin LP  
0.001  
1.8Vout 3.6Vin LP  
0.01  
0.1  
1
Load [A]  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
1.2Vout 5Vin LP  
3.3Vout 5Vin LP  
1.2Vout 3.6Vin HP  
1.8Vout 3.6Vin HP  
1.2Vout 5Vin HP  
3.3V 5Vin HP  
Load [A]  
1.8Vout 5Vin LP  
1.8Vout 3.6Vin LP  
3.3Vout 5Vin LP  
1.8Vout 5Vin HP  
3.3Vout 5Vin HP  
1.8Vout 3.6Vin HP  
Figure 8. Boost powered by 5 V supply having poor  
performance  
Figure 7. Boost efficiency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
VIN  
VIN  
VIN  
VIN  
=
=
=
=
3V  
3.6V  
5V  
5.5V  
1
10  
Load [mA]  
100  
1000  
DS12792 - Rev 7  
page 22/140  
 
 
 
 
 
 
 
STPMIC1  
Application board curves  
Figure 9. BUCK1 load transient in HP mode  
Figure 11. BUCK2 load transient in HP mode  
Figure 13. Buck3 load transient in HP mode  
Figure 15. Buck4 load transient in HP mode  
Figure 10. Buck1 load transient in LP mode  
Figure 12. Buck2 load transient in LP mode  
Figure 14. Buck3 load transient in LP mode  
Figure 16. Buck4 load transient in LP mode  
DS12792 - Rev 7  
page 23/140  
 
 
 
 
 
 
 
 
STPMIC1  
Application board curves  
Figure 17. LDO1 load transient  
Figure 19. LDO3 load transient  
Figure 21. LDO5 load transient  
Figure 23. LDO4 line transient  
Figure 18. LDO2 load transient  
Figure 20. LDO4 load transient  
Figure 22. LDO6 load transient  
Figure 24. Boost output vs. input voltage  
DS12792 - Rev 7  
page 24/140  
 
 
 
 
 
 
STPMIC1  
Application board curves  
Figure 25. Boost load regulation 5 VIN  
Figure 27. LDO1 line transient, no load  
Figure 29. LDO3 line transient, no load  
Figure 26. Boost load regulation 3.6 VIN  
Figure 28. LDO2 line transient, no load  
Figure 30. LDO5 line transient, no load  
Figure 32. LDO3 sink/source mode load transient  
response  
Figure 31. LDO6 line transient, no load  
DS12792 - Rev 7  
page 25/140  
 
 
 
 
 
 
 
 
STPMIC1  
Application board curves  
Figure 34. STPMIC1A POWER_UP sequencing  
Figure 33. Buck1 turn-ON waveform  
Figure 36. STPMIC1A POWER_DOWN sequencing  
Figure 35. STPMIC1A POWER_UP sequencing PONKEYn  
Figure 37. STPMIC1A reset sequencing  
DS12792 - Rev 7  
page 26/140  
 
 
 
 
 
STPMIC1  
Power regulators and switch description  
4
Power regulators and switch description  
4.1  
Overview  
The STPMIC1 has a large input voltage range from 2.8 V to 5.5 V to supply applications from typically 5 V DC  
wall-adaptor or from 1-cell 3.6 V Li-Ion / Li-PO battery or from USB port (bus-powered).  
The STPMIC1 provides all regulators needed to power supply a complete application:  
6 LDOs + 1 reference voltage LDO for DDR memories  
4 step-down (buck) converters  
1 step-up (boost) converter with a bypass to supply USB sub-system  
2 power switches to supply USB sub-system  
Table 8. General description  
Rated output  
current (mA)  
Regulator  
Output voltage (V) Programming step(mV)  
Application use (example)  
LDO1  
LDO2  
1.7 to 3.3  
1.7 to 3.3  
1.7 to 3.3  
100  
100  
100  
350  
350  
100  
GP  
SD-card or GP  
lpDDR_1V8 or GP  
LDO3 normal mode  
+/-120  
LDO3 sink/source mode VOUT2 / 2 (BUCK2)  
-
DDR3 VTT (termination)  
(+/-200 peak)  
LDO3IN-V  
LDO3 bypass mode  
LDO4  
-
50  
50  
lpDDR_1V8  
USB PHY  
DROP_LDO3  
3.3 (fixed)  
-
LDO5  
1.7 to 3.9  
0.9 to 3.3  
100  
100  
-
350  
150  
+/-5  
1500  
1000  
500  
Application FlashMem or GP  
GP  
LDO6  
REFDDR  
BUCK1  
VOUT2 / 2 (BUCK2)  
0.725 to 1.5  
1 to 1.5  
Vref DDR  
25  
50  
100  
Application CORE  
lpDDR2/3/4, DDR3/L, DDR4  
Application VIO  
BUCK2  
BUCK3  
1 to 3.4  
25 (0.6 V to 1.3 V)  
50 (1.3 V to 1.5 V)  
100 (1.5 to 3.9 V)  
BUCK4  
0.6 to 3.9  
2000  
Application CPU or GP  
BOOST  
PWR_USB_SW  
PWR_SW  
5.2 V (fixed)  
~BSTOUT  
~SWIN  
-
-
-
1100  
500  
USB ports  
USB OTG/DRD  
USB or GP  
1000  
LDO1, LDO2, LDO5, LDO6 are general purpose (GP) LDO (low-dropout) linear regulators and can be used to  
supply application peripherals.  
LDO3 is a multipurpose linear regulator that supports 3 modes:  
Normal mode: operates as standard LDO with 1.7 to 3.3 V output voltage range (for general purpose use)  
Sink/source mode: LDO3 operates in sink/source regulation mode to supply termination resistors of DDR3/  
DDR3L memory interface (VTT voltage)  
Bypass mode: LDO3 operates as a simple power switch to supply lpDDR2/3 VDD1 (1.8 V) power domain.  
In that case, LDO3IN is supplied by 1.8 V. This is a preferred mode versus normal mode in term of power  
efficiency to power supply lpDDR2/3 VDD1  
DS12792 - Rev 7  
page 27/140  
 
 
 
STPMIC1  
LDO regulators  
LDO4 is a fixed output voltage (3.3 V) LDO and it is dedicated to power supply host processor USB PHY. It is able  
to automatically switch among 3 power inputs (VIN, VBUSOTG and BSTOUT) to provide a valid output voltage in  
all application use cases, for example to support a discharged battery for Li-Ion/Li-PO battery-powered device.  
DDR REF is sink/source reference voltage LDO dedicated to power VREF of lpDDR/DDR.  
BUCK1 to BUCK4 are 2 MHz synchronous step-down converters optimized for high efficiency. To improve  
transient response, converters use an adaptive constant on-time (COT) controller with a nominal switching  
frequency of 2 MHz.  
In low power (LP) mode, converters operate in hysteretic mode to minimize quiescent current and improve  
efficiency while an excellent transient response is being kept.  
Buck controller also supports a dynamic voltage scaling (DVS) capability with an active discharge (voltage  
tracking) and a switching phase shifting pi/2 mutual synchronization between converters to reduce switching EMI  
radiations.  
BOOST is a fixed output voltage 5.2 V synchronous step-up converter dedicated to power supply USB ports  
(PWR_USB_SW and/or PWR_SW power switches). In addition to support a step-up conversion for battery  
applications (to convert VBAT=3.6 V to VBUS= 5.2 V), this boost converter has been enhanced with a special  
bypass circuitry with smooth output voltage transitions to comply USB VBUS tolerance when the application is  
powered by a 5 V wall adaptors. This is to compensate voltage tolerance of the voltage source (wall adaptor) and  
voltage drop through the PCB from input supply of device to USB port.  
PWR_USB_SW is a 500 mA power switch suitable for USB OTG port or USB Type-C DRD. Input is internally  
connected to BOOST output. It supports VBUS detection, OCP and the reverse current protection.  
PWR_SW is a 1000 mA power switch, that can supply max. 2 USB STD HOST port.  
4.2  
LDO regulators  
4.2.1  
LDO regulators - common features  
The STPMIC1 has 7 LDO regulators with the following meaning:  
LDO1, LDO2, LDO5 and LDO6 are general purpose LDOs  
LDO3 serves for DDR2, DDR3 memory termination (sink-source mode) or for lpDDR2 or lpDDR3 memory  
(bypass mode) or for general purpose. For more details refer to Section 4.3 DDR memory sub-system  
examples.  
LDO4 is LDO dedicated to supply 3V3 USB PHY circuit of AP  
REFDDR – sink/source LDO dedicated to provide a voltage reference for lpDDR/DDR memory  
Enable/Disable - LDO can be enabled or disabled:  
1.  
Automatically during POWER_UP/POWER_DOWN state as described in Section 5.3 POWER_UP,  
POWER_DOWN sequence  
2.  
Manually by setting ENA bit in corresponding Table 40. LDOx_MAIN_CR or Table 45. LDOx_ALT_CR  
registers.  
VOUT setting – LDO output voltage can be set:  
1.  
Automatically during POWER_UP/POWER_DOWN state as described in section Section 5.3 POWER_UP,  
POWER_DOWN sequence. Default voltage is selected in LDOx_VOUT[1:0] bits of  
Table 70. NVM_LDOS_VOUT_SHR1 and Table 71. NVM_LDOS_VOUT_SHR2 registers.  
2.  
3.  
Automatically during MAIN/ALTERNATE mode change by toggling PWRCTRL pin as defined in VOUT[4:0]  
field in corresponding Table 40. LDOx_MAIN_CR or Table 45. LDOx_ALT_CR registers.  
Manually by setting VOUT[4:0] field of Table 38. BUCKx_MAIN_CR or Table 43. BUCKx_ALT_CR registers.  
Refer to Table 9. LDO output voltage settings  
DS12792 - Rev 7  
page 28/140  
 
 
STPMIC1  
LDO regulators  
LDOs contain the following functions:  
1.  
Soft-start circuit is implemented to limit input inrush current when LDO starts. LDO soft-start duration is  
defined by tSSLDO parameter. For more details, Figure 38. LDO start-up/shutdown timings  
2.  
Overcurrent limit circuit - When the load on the output of the LDO exceeds overcurrent limit threshold  
ILDOLIM, LDO starts decreasing the output voltage limiting the output current. When the overcurrent condition  
on LDO lasts for more than tOCPDB_LDO, LDOx_OCP interrupt is generated. For a detailed behavior of the  
device on OCP event refer to Section 5.4.7 Overcurrent protection (OCP)  
3.  
Output discharge circuit (passive), to discharge LDO output decoupling capacitor energy. In power down  
sequence, it allows LDO voltage to be down before disabling next regulators in next ranking slot.  
Output discharge is by default active when LDO is disabled.  
Different behavior can be programmed in Table 28. LDO14_PD_CR and Table 29. LDO56_VREF_PD_CR  
registers.  
Note:  
To ensure the LDO functionality, BUCK2IN input must be always connected to VIN power supply.  
Figure 38. LDO start-up/shutdown timings  
4.2.2  
LDO regulators - special features  
LDO3  
DS12792 - Rev 7  
page 29/140  
 
 
STPMIC1  
LDO regulators  
LDO3 is a multipurpose LDO with 3 operating modes:  
1.  
Normal mode – LDO works as general purpose LDOs to regulate VOUT only, such as the common  
LDO1,2,5 and 6.  
2.  
Bypass mode – LDO operates as a power switch providing output without any regulation. Note, that in this  
mode there is no overcurrent limitation available, and LDO is only protected by its input source capability;  
that is typically BUCK3 powering application processor VIO domain at 1.8 V.  
This mode can be set by writing to bit BYPASS in Table 41. LDO3_MAIN_CR or Table 46. LDO3_ALT_CR  
register. Bypass mode can be activated by default at startup by setting LDO3_BYPASS bit in  
Table 68. NVM_LDOS_RANK_SHR2.  
Important : enabling BYPASS bit in Table 41. LDO3_MAIN_CR or Table 46. LDO3_ALT_CR overrides  
normal and sink/source mode  
3.  
Sink/source mode – LDO is able to regulate voltage in source and sink mode allowing current to flow  
to/from output; up to maximum rated current. This mode is dedicated to supply termination of DDR3/DDR3L  
memories with fixed output voltage. If LDO3 is used in this mode, LDO3IN should be powered from the  
output of BUCK2.  
When LDO3 is enabled in this mode, output voltage is fixed and follows VOUT2/2; even during BUCK2  
ramp-up and ramp-down phase. Overcurrent limitation works the same way as for the other LDOs, and it is  
active for both load current polarities.  
This mode can be enabled by setting VOUT[6:2] of Table 41. LDO3_MAIN_CR or Table 46. LDO3_ALT_CR  
to 0x1F.  
Note:  
LDO requires the output capacitor with a low value of ESR and care must be taken during PCB design to  
minimize parasitic inductance of the track between this capacitor and the device.  
LDO4  
It is primarily dedicated to supply 3.3 V circuit of USB analog PHY in AP.  
VOUT setting – VOUT is fixed to 3.3 V  
Automatic input switching - To guarantee the output voltage for various application scenarios (for example to  
support discharged battery for Li-Ion/Li-PO battery powered device) LDO4 can be supplied from 3 power sources:  
VIN, VBUSOTG and BSTOUT. The selection among these 3 power inputs is fully automatic, no user intervention  
is needed. Internal circuit continuously monitors voltage levels on these pins and selects the input source having  
the highest input voltage.  
Active input source of LDO4 can be read out from LDO4_SRC[1:0] in Section 6.2.5 Restart status register  
(RESTART_SR) status register.  
REFDDR LDO (DDR reference voltage)  
DDR_REF is sink/source LDO similar to LDO3 sink/source mode LDO but with lower current capability primarily  
dedicated to supply VREF pin of lpDDR/DDR memories.  
VOUT setting - Output voltage is fixed at VOUT2/2 at any time. Input of REFDDR is internally connected to  
BUCK2IN.  
In case BUCK2 is enabled/disabled when REFDDR is enabled, output of the REFDDR follows BUCK2 startup/  
shutdown waveforms always keeping VOUT2/2.  
Overcurrent limit circuit - When short-circuit event occurs, output of the LDO is current-limited and output  
voltage decreases, however this LDO cannot trigger interrupt or shutdown the device.  
4.2.3  
LDO output voltage settings  
Table 9. LDO output voltage settings  
VOUT[4:0]  
V
OUT  
[V]  
V
OUT  
[V]  
V
LDO3  
[V]  
V
LDO5  
[V]  
V
LDO6  
[V]  
OUT  
OUT  
OUT  
LDOx_MAIN/  
ALT_CR[6:2]  
LDO1  
LDO2  
0
1
2
3
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
0.9  
1
1.1  
1.2  
DS12792 - Rev 7  
page 30/140  
 
 
STPMIC1  
LDO regulators  
VOUT[4:0]  
LDOx_MAIN/  
ALT_CR[6:2]  
V
LDO1  
[V]  
V
LDO2  
[V]  
V
LDO3  
[V]  
V
LDO5  
[V]  
V
LDO6  
[V]  
OUT  
OUT  
OUT  
OUT  
OUT  
4
1.7  
1.7  
1.7  
1.7  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.7  
1.7  
1.7  
1.7  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.7  
1.7  
1.7  
1.7  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.7  
1.7  
1.7  
1.7  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VOUT2/2  
(sink/source)  
31  
3.3  
3.3  
3.9  
3.3  
DS12792 - Rev 7  
page 31/140  
STPMIC1  
DDR memory sub-system examples  
4.3  
DDR memory sub-system examples  
BUCK2, LDO3 and REFDDR regulators can be used in several possible configurations, to supply various types of  
DDR memories.  
4.3.1  
Powering lpDDR2/lpDDR3 memory  
Figure 39. Powering lpDDR2/lpDDR3 memory (LDO3 in bypass mode)  
The example in Figure 39. Powering lpDDR2/lpDDR3 memory (LDO3 in bypass mode) shows how to use LDO3  
in bypass mode to power supply lpDDR2/3 VDD1 (1.8 V) power domain. LDO3IN is supplied by 1.8 V power  
source that is usually from BUCK3 output when BUCK3 is set at 1.8 V to power supply the application processor  
VIO power domain. This topology reaches better power efficiency than next example in Figure 40. Powering  
lpDDR2/lpDDR3 memory (LDO3 normal mode supplied from VIN).  
Figure 40. Powering lpDDR2/lpDDR3 memory (LDO3 normal mode supplied from VIN)  
The example in Figure 40. Powering lpDDR2/lpDDR3 memory (LDO3 normal mode supplied from VIN) shows  
how to use LDO3 in normal mode to power supply lpDDR2/3 VDD1 (1.8V) power domain. LDO3IN is supplied by  
a power source having higher voltage than LDO3OUT (VIN in this example). This topology is suitable for those  
applications which do not have 1.8 V power source available from a buck converter.  
DS12792 - Rev 7  
page 32/140  
 
 
 
 
STPMIC1  
Buck converters  
4.3.2  
Powering DDR3/DDR3L memory  
Figure 41. Powering DDR3/DDR3L memory (LDO3 in sink/source mode)  
The example in Figure 41. Powering DDR3/DDR3L memory (LDO3 in sink/source mode) shows how to use LDO3  
in sink/source mode to power supply termination resistor network of DDR3/DDR3L memory (aka VTT). LDO3IN is  
a power supply from BUCK2 output (VOUT2) and LDO3 output regulate at Vout2/2 voltage.  
4.4  
Buck converters  
4.4.1  
BUCK general description  
There are 4 buck converters in the STPMIC1 optimised to supply circuits with high current consumption and fast  
transient response requirement.  
BUCK1 is primarily dedicated to power supply CORE power domain of application processors.  
BUCK2 is primarily dedicated to power supply DDR memory.  
BUCK3 is primarily dedicated to VIO domain and analog subsystem.  
BUCK4 is for general purpose, it can be used to supply CPU power domain of application processors having  
CORE and CPU power domain splitted.  
All converters are based on an adaptive constant-on-time controller (COT), that guarantees an excellent transient  
response and high efficiency across a wide range of operating conditions.  
Each converter can work in 2 power modes – HP mode, and LP mode. These modes differ both in performance  
and quiescent current consumption. In HP mode the highest performance can be reached, while in LP mode the  
performance is lower with a much lower consumption.  
Switching frequency of converter is 2 MHz in steady-state CCM condition. During load transient, switching  
frequency can be temporarily increased/decreased to provide accurate amount of energy needed and minimize  
voltage error. Refer to the figure below.  
DS12792 - Rev 7  
page 33/140  
 
 
 
 
STPMIC1  
Buck converters  
Figure 42. PWM clock generation  
Clock synchronization (HP mode)– buck controller integrates phase locked loop (PLL) circuit, that maintains  
steady-state frequency in CCM phase-locked to reference 2 MHz clock generated by internal oscillator. Each  
buck has its own reference clock that is shifted from master clock by 90 degree, which minimizes the chance of  
multiple controllers switching at the same time, and improving EMI performance. Refer to Figure 43. PWM clock  
synchronisation .  
Figure 43. PWM clock synchronisation  
Voltage accuracy (HP mode)- COT controllers are well-known for their excellent transient response but standard  
implementations usually suffer from a high output load regulation error. To cope with this problem, the STPMIC1  
adaptive COT controller also integrates an ACCU loop circuit that fixes the parameters of controller in order to  
reach the maximum possible accuracy of output voltage for all operating conditions. Refer to Figure 44. Buck  
block diagram.  
DS12792 - Rev 7  
page 34/140  
 
 
STPMIC1  
Buck converters  
Figure 44. Buck block diagram  
Light low power consumption (HP mode)– To minimize power consumption in low load conditions PFM mode  
is implemented. Switching between PFM and PWM mode is smooth, fully automatic, and requires no user  
intervention.  
Low power mode (LP mode) – If the application remains in low load conditions for longer time, the converter can  
be switched to LP mode and minimize quiescent consumption to IQ_ BK_LP. In LP mode, the controller works in  
hysteretic PFM mode, and has the following features:  
1.  
Maximum DC current capability is lower, specified by IOUT. However, also in LP mode, converter is able to  
handle peak current load of up to IOUT_LP_PEAK but transient response and accuracy are not guaranteed.  
2.  
3.  
ACCU loop is disabled, which results in a lower VOUT accuracy specified by VOUT1-ACC  
PLL is disabled. Converter is in PFM mode, which means pulses are not synced to reference clock  
To guarantee the best performance, it is recommended LP mode to be entered only when output load is  
below IOUTMAX_LP, LP mode can be entered by setting PREG_MODE bit Table 38. BUCKx_MAIN_CR or  
Table 43. BUCKx_ALT_CR registers.  
Exit from LP mode - It is recommended that application processor switches from LP mode to HP mode before  
it applies full rated load exceeding maximum LP current IOUT_LP. This time is defined as minimum LP to HP  
recovery time tLP-HP-BKIf load is increased before this time, buck converter stays in regulation but transient or  
accuracy specification may not be guaranteed. Refer to Figure 45. BUCKx LP to HP mode recovery time.  
Note:  
During POWER_UP sequence, buck is always started in HP mode, with default VOUT configuration defined in  
NVM_BUCKx_VOUT[1:0] bits of Table 69. NVM_BUCKS_VOUT_SHR register.  
Enable/disable - BUCK can be enabled or disabled:  
1.  
Automatically during POWER_UP/POWER_DOWN state as described in Section 5.3 POWER_UP,  
POWER_DOWN sequence  
2.  
Manually by setting ENA bit in corresponding Table 38. BUCKx_MAIN_CR or Table 43. BUCKx_ALT_CR  
registers  
VOUT setting – BUCK output voltage can be set:  
1.  
Automatically during POWER_UP/POWER_DOWN state as described in Section 5.3 POWER_UP,  
POWER_DOWN sequence  
Default voltage is selected in BUCKx_VOUT[1:0] bits of Table 69. NVM_BUCKS_VOUT_SHR register.  
2.  
3.  
Automatically during MAIN/ALTERNATE mode change by toggling PWRCTRL pin as defined in VOUT[5:0]  
field in corresponding Table 38. BUCKx_MAIN_CR or Table 43. BUCKx_ALT_CR registers.  
Manually by setting VOUT[5:0] field of Table 38. BUCKx_MAIN_CR or Table 43. BUCKx_ALT_CR registers.  
DS12792 - Rev 7  
page 35/140  
 
STPMIC1  
Buck converters  
Refer to Section 4.2.3 LDO output voltage settings.  
Dynamic voltage scaling (DVS) – When Buck voltage is changed by writing to VOUT[5:0] bits in POWER_ON  
state, Buck reference is digitally stepped up/down in order to keep VOUT slew rate defined by parameter SRBK.  
When a lower VOUT is requested, Buck operates in “boost reverse” mode to discharge the output capacitor with  
the same slew rate SRBK, providing current back to the input supply capacitor. This improves efficiency because  
energy stored in the output capacitor is not lost but “recycled” into input capacitor. For more details refer to  
Figure 47. BUCKx dynamic voltage scaling (DVS) .  
Bypass capability – BUCK3 and BUCK4 switch to bypass mode with 100% duty cycle when VIN voltage is below  
target VOUT setting. Transition to bypass mode is fully automatic and requires no user intervention.  
Overcurrent protection – When inductor current exceeds peak current limit threshold IBK1_LIM, PWM pulse is  
immediately stopped, and buck starts to decrease output voltage limiting the output current. When this condition  
lasts for more than tOCPDB_BUCK, BUCKx_OCP interrupt is generated.  
For a detailed behavior of the device on OCP event refer to Section 5.4.7 Overcurrent protection (OCP).  
VOUT Protection – BUCK4 VOUT value digital setting can be limited to 1.3 V by writing BUCK4_CLAMP bit in  
Table 68. NVM_LDOS_RANK_SHR2 register.  
This feature can be used to prevent destruction of low-voltage circuit connected to VOUT4, in case of erroneous/  
unwanted software access to Table 38. BUCKx_MAIN_CR or Table 43. BUCKx_ALT_CR.  
Start-up sequence – After the Buck is enabled, variable calibration delay is present before the output voltage  
starts rising. This delay is specified as start-up delay tSU_BUCKx. For details about start-up/shutdown timings refer  
to Figure 46. BUCKx start-up/shutdown timings.  
Output discharge – Buck has configurable passive output discharge circuit to guarantee that shutdown time is  
shorter than single ranking slot in POWER_DOWN sequence.  
Discharge circuit can be configured to Slow PD (pull-down) for longer discharge time or Fast PD for faster  
discharge time. Discharge duration is defined accordingly by tSD_BKx  
.
Slow output discharge circuit is active by default when buck is disabled.  
Different behavior can be programmed in BUCKx_PD[1:0] bits of BUCKS_PD_CR register.  
Figure 45. BUCKx LP to HP mode recovery time  
DS12792 - Rev 7  
page 36/140  
 
STPMIC1  
Buck converters  
Figure 46. BUCKx start-up/shutdown timings  
Figure 47. BUCKx dynamic voltage scaling (DVS)  
DS12792 - Rev 7  
page 37/140  
 
 
STPMIC1  
Buck converters  
4.4.2  
BUCK output voltage settings  
Table 10. BUCK output settings  
V
[V]  
V
[V]  
V
[V]  
V
OUT  
[V]  
VOUT[5:0]  
OUT  
OUT  
OUT  
BUCKx_MAIN/ALT_CR[7:2]  
BUCK1  
0.725  
BUCK2  
1
BUCK3  
1
BUCK4  
0.6(1)  
0
0.625(1)  
0.65(1)  
0.675(1)  
0.7(1)  
1
0.725  
1
1
2
0.725  
1
1
3
0.725  
1
1
4
0.725  
1
1
0.725(1)  
0.75(1)  
0.775(1)  
0.8(1)  
0.725(1)  
0.75(1)  
0.775(1)  
0.8(1)  
5
1
1
6
1
1
7
1
1
8
1
1
0.825(1)  
0.85(1)  
0.875(1)  
0.9(1)  
0.825(1)  
0.85(1)  
0.875(1)  
0.9(1)  
9
1
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
1
1
1
1
1
1
0.925(1)  
0.95(1)  
0.975(1)  
1(1)  
0.925(1)  
0.95(1)  
0.975(1)  
1(1)  
1
1
1
1
1
1
1
1
1.025(1)  
1.05(1)  
1.075(1)  
1.1(1)  
1 (2)  
1.05(2)  
1.05(2)  
1.1(2)  
1.1(2)  
1.15(2)  
1.15(2)  
1.2(2)  
1.2(2)  
1.25(2)  
1.25(2)  
1.3(2)  
1.3(2)  
1.35(2)  
1.35(2)  
1.4(2)  
1.4(2)  
1.45(2)  
1.025(1)  
1.05(1)  
1.075(1)  
1.1(1)  
1
1
1 (3)  
1.1(3)  
1.1(3)  
1.1(3)  
1.1(3)  
1.2(3)  
1.2(3)  
1.2(3)  
1.2(3)  
1.3(3)  
1.3(3)  
1.3(3)  
1.3(3)  
1.4(3)  
1.4(3)  
1.4(3)  
1.125(1)  
1.15(1)  
1.175(1)  
1.2(1)  
1.125(1)  
1.15(1)  
1.175(1)  
1.2(1)  
1.225(1)  
1.25(1)  
1.275(1)  
1.3(1)  
1.225(1)  
1.25(1)  
1.275(1)  
1.3(1)  
1.325(1)  
1.35(1)  
1.375(1)  
1.4(1)  
1.3(2)  
1.35(2)  
1.35(2)  
1.4(2)  
1.425(1)  
1.45(1)  
1.4(2)  
1.45(2)  
DS12792 - Rev 7  
page 38/140  
 
 
STPMIC1  
Buck converters  
V
[V]  
V
[V]  
V
[V]  
V
OUT  
[V]  
VOUT[5:0]  
OUT  
OUT  
OUT  
BUCKx_MAIN/ALT_CR[7:2]  
BUCK1  
1.475(1)  
1.5(1)  
1.5  
BUCK2  
1.45(2)  
1.5(2)  
1.5  
BUCK3  
1.4(3)  
1.5(3)  
1.6(3)  
1.7(3)  
1.8(3)  
1.9(3)  
2(3)  
BUCK4  
1.45(2)  
1.5(2)  
1.6(3)  
1.7(3)  
1.8(3)  
1.9(3)  
2(3)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
2.1(3)  
2.2(3)  
2.3(3)  
2.4(3)  
2.5(3)  
2.6(3)  
2.7(3)  
2.8(3)  
2.9(3)  
3(3)  
2.1(3)  
2.2(3)  
2.3(3)  
2.4(3)  
2.5(3)  
2.6(3)  
2.7(3)  
2.8(3)  
2.9(3)  
3(3)  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
3.1(3)  
3.2(3)  
3.3(3)  
3.4(3)  
3.4  
3.1(3)  
3.2(3)  
3.3(3)  
3.4(3)  
3.5(3)  
3.6(3)  
3.7(3)  
3.8(3)  
3.9(3)  
3.9  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
3.4  
1.5  
1.5  
3.4  
1.5  
1.5  
3.4  
1.5  
1.5  
3.4  
1.5  
1.5  
3.4  
1.5  
1.5  
3.4  
3.9  
1.5  
1.5  
3.4  
3.9  
1. Step 25 mV  
2. Step 50 mV  
3. Step 100 mV  
DS12792 - Rev 7  
page 39/140  
 
 
 
STPMIC1  
Boost converter and power switches  
4.5  
Boost converter and power switches  
The STPMIC1 integrates boost converter and two power switches, primarily dedicated to supply USB sub-system:  
PWR_USB_SW with 500 mA capability PWR_SW with 1 A capability.  
For application examples refer to USB sub-system examples.  
Figure 48. Boost and switch block diagram  
4.5.1  
Boost converter  
Boost is a synchronous constant on-time step-up converter with fixed 5.2 V output. It is dedicated to power supply  
USB sub-system (VBUS) with 1.1 A rated output current to supply up to 3 USB ports: x2 USB host port @500 mA  
+ 1 USB OTG port @100 mA.  
Boost requires 3 small external components only to operate (1 coil LXB, 2 capacitors CVLXBST and CBSTOUT) –  
there is no external diode required. Refer to: Table 2. Passive components.  
Input voltage range Converter is capable to supply 0.5 A starting from as low as 2.8 V input, and full rated  
current from 3.3 V input. This allows a wide range of applications to be supported embedding USB host port like  
Li-Ion/Li-Po battery powered applications or 5 V DC wall adaptor applications.  
Bypass feature Boost integrates an advanced bypass circuitry that allows fast and smooth transition to be  
performed from boost to bypass operation and reciprocally to keep VBUS in USB compliant tolerance [4.75 V;5.5  
V]. This allows USB subsystems to be supplied with standard 5 V DC wall adaptors.  
When the wall adaptor voltage is below ~5.2 V (due to its nominal tolerance, load regulation or voltage loss  
between adaptor and device), the converter works in boost mode  
When the wall adaptor voltage is between ~5.2 V to 5.5 V (due to its nominal tolerance or light device load),  
the converter works in bypass mode  
Switching frequency of converter is 2 MHz in steady-state CCM condition for VIN below ~5 V. During load  
transient, switching frequency can be temporarily increased/decreased to provide accurate amount of energy  
needed and minimize the voltage error. For VIN above ~5.2 V or for low load conditions, 2 MHz frequency  
decreases to optimum.  
Clock synchronization - The controller integrates PLL circuit, that maintains steady-state frequency in CCM  
locked in phase to reference 2 MHz clock generated by the internal oscillator. Boost clock is shifted in phase  
to Buck reference clocks, which minimizes the chance of multiple controllers switching at the same time, and  
improving EMI performance.  
DS12792 - Rev 7  
page 40/140  
 
 
 
STPMIC1  
Boost converter and power switches  
Enable/disable – Boost can be enabled in POWER_ON state only by I2C setting of BST_ON bit in BST_SW_CR  
register.  
Boost can be disabled by I2C clearing BST_ON bit.  
Boost is also disabled during POWER_DOWN sequence in RANK0 slot and when overcurrent or overvoltage  
condition is present for defined time.  
Output discharge – When boost is switched off (BST_ON bit = ‘0’), switching stops immediately and a passive  
discharge, enabled on BSTOUT by default, occurs.  
Output discharge can be disabled by setting BST_PDbit in Table 29. LDO56_VREF_PD_CR register.  
Overvoltage protection – Boost converter has an overvoltage protection. If voltage on BSTOUT pin exceeds  
VBSTOVP threshold, LXB pin stops switching immediately, and remains in high impedance state. If the overvoltage  
condition lasts for more than tOVPDB_BST, boost is disabled, and BST_OVP interrupt is generated.  
OVP event on BSTOUT also disables switches PWR_USB_SW and PWR_SW (if NVM_SWOUT_BOOST_OVP  
is set in Table 70. NVM_LDOS_VOUT_SHR1).  
Overcurrent protection – Boost implements low-side current sensor with peak current detector (IBSTLIM), and  
high-side current sensor with short-circuit detector, (IBSTSH). If the overcurrent condition during HS phase lasts for  
more than tOCPDB_BST, boost is disabled, and BST_OCP interrupt is generated.  
Start-up sequence Boost start-up sequence consists of 2 phases:  
Precharge phase - in this phase, bypass switch operates in “constant current source” mode and charges  
boost output capacitor with constant IPRECH_BST current for tPRECH_BST duration. After this time, boost  
output voltage is checked. If VBSTOUT > VPRECH =~ (VIN – 0.7 V), boost starts switching and proceeds to  
soft-start phase, besides boost is immediately turned off and BST_OCP interrupt is generated  
Note:  
Boost load during precharge phase must be minimized, from this reason it is necessary to enable  
PWR_USB_SW and PWR_SW after the boost soft-start is finished.  
Soft-start phase – in this phase boost switches, the inrush current minimizes. Soft-start duration is tSS_BST  
Figure 49. Boost start-up sequence  
4.5.2  
PWR_USB_SW and PWR_SW power switches  
PWR_USB_SW is a 500 mA power switch dedicated to supply a USB port (VBUS voltage) and it is compatible  
with USB OTG specifications. PWR_USB_SW input is internally connected to boost converter output (BSTOUT).  
See Figure 48. Boost and switch block diagram.  
Reverse current protection - VBUSOTG pin is a switch with a reverse current protection to prevent leakage  
from VBUSOTG pin to BSTOUT or VIN when switch is OFF.  
DS12792 - Rev 7  
page 41/140  
 
 
STPMIC1  
Boost converter and power switches  
Enable/disable – PWR_USB_SW can be enabled in POWER_ON state by I2C setting of VBUSOTG_ON bit  
in Table 48. BST_SW_CR register. PWR_USB_SW switch cannot be enabled automatically during power-up  
sequence. During power-down sequence, switch is turned OFF in RANK0 phase.  
It is recommended that PWR_USB_SW is enabled only after boost converter works in steady-state (after boost  
start-up sequence). This is typically ~2 ms after boost is enabled. Nevertheless, if PWR_USB_SW is enabled  
earlier than Boost, it turns ON only when both boost is enabled by BST_ON bit and BSTOUT voltage is higher  
than ~VIN.  
Boost OVP – When boost OVP is detected PWR_USB_SW is disabled automatically.  
VBUSOTG pin monitoring – When PWR_USB_SW is OFF, VBUSOTG voltage is monitored by VBUSOTG det.  
to detect VBUS voltage rising/falling from USB OTG connector due to USB cable insertion/removal.  
When voltage on VVBUSOTG pin goes higher than VVBUSOTG_Rise threshold, the interrupt and/or turn-ON condition  
is generated. When voltage on VBUSOTG pin goes below than VVBUSOTG_Fall threshold, the interrupt is  
generated. VBUSOTG pin monitoring is filtered by tVBUSOTGDB debounce timer for both rising and falling  
voltage. VBUSOTG detector is enabled by default and can be disabled by setting VBUSOTG_DET_DIS bit  
Table 48. BST_SW_CR register.  
Soft-on/off –Switch implements soft-on, soft-off circuit. After the switch is enabled, switch starts operating in  
“current limiting” mode, gradually increasing the output current limit until the switch is fully turned ON. This soft-on  
phase has a duration defined by tSS_VBUSOTG  
.
The same mechanism is also applied during switch soft-off phase during turn-off to prevent quick unloading of  
BSTOUT and excessive voltage overshoot.  
Overcurrent limitation – Switch implements 2 levels of overcurrent protection:  
1.  
When load on the output exceeds overcurrent limit threshold IVBUSOTGOCP, switch starts limiting the output  
voltage to decrease output current. If the switch stays in this condition for more than tOCPDBSW, switch is  
automatically turned OFF, and VBUSOTG_OCP interrupt generated.  
2.  
In case the output load exceeds IVBUSOTG_SH threshold, switch turns OFF immediately to prevent  
boost overload, and VBUSOTG_SH interrupt is generated. Shortly after this action, switch is re-enabled  
automatically with standard soft-on current limiting procedure. In case the overload condition is still present,  
the switch continues operation in current limiting mode, and is finally switched OFF after tOCPDBSW. In case  
overload condition is removed before tOCPDBSW, switch continues its normal operation.  
For detailed behavior of the device on OCP event refer to Section 5.4.7 Overcurrent protection (OCP).  
Output discharge – Switch implements passive discharge circuit (by default disabled) that can be enabled by  
setting VBUSOTG_PD bit in Table 48. BST_SW_CR.  
PWR_SW is a configurable 500 mA/1000 mA power switch that can be used to power supply one or two USB  
host ports or for general purpose.  
It has dedicated the input SWIN and the output SWOUT pin.  
Minimum SWIN voltage to enable the switch is VSWIN_Rise  
.
PWR_SW pin is a switch without reverse current protection. If voltage on SWOUT is higher than SWIN-0.7 V, a  
leakage from SWOUT to SWIN occurs even if the switch is OFF.  
Enable/disable – PWR_SW can be enabled in POWER_ON state by I2C setting of SWOUT_ON bit in  
Table 48. BST_SW_CR. PWR_SW switch cannot be enabled automatically during power-up sequence. During  
power-down sequence, switch is automatically turned OFF in RANK0 phase.  
PWR_SW turns ON only when SWIN voltage is higher than VSWIN_Rise threshold.  
If the switch is supplied by boost, it is recommended to enable the switch after boost is already in steady-state  
with 5.2 V output. This is typically ~2 ms after boost is enabled.  
Boost OVP – When boost OVP is detected, switch is ON by default. It is disabled automatically only if  
NVM_SWOUT_BOOST_OVP bit is set.  
SWOUT pin monitoring – When PWR_SW is OFF, SWOUT voltage is monitored by SWOUT detector.  
When VSWOUT > VSWOUT_Rise, interrupt and turn-ON condition is generated. SWOUT detector is enabled by  
default and can be disabled by setting SWOUT_DET_DIS bit in Table 30. SW_VIN_CR.  
tSWOUTDB debounce timer is on SWOUT detector output.  
SWIN pin monitoring – SWIN detector is disabled by default and can be enabled to monitor the voltage on SWIN  
pin by setting SWIN_DET_EN bit in Table 48. BST_SW_CR.  
When VSWIN > VSWIN_Rise, interrupt is generated.  
DS12792 - Rev 7  
page 42/140  
STPMIC1  
Boost converter and power switches  
tSWINDB debounce timer is on SWIN detector output.  
Regardless SWIN detector is enabled or not, PWR_SW is enabled only if VSWIN > VSWIN_Rise  
Note:  
.
Soft-on/off – Switch implements soft-on, soft-off circuit. After the switch is enabled, switch starts operating in  
“current limiting” mode, gradually increasing the output current limit until the switch is fully turned ON. This soft-on  
phase has a duration defined by tSS_SWOUT  
.
The same mechanism is also applied during switch soft-off phase during turn-off to prevent quick unloading of  
SWIN and excessive voltage overshoot.  
Overcurrent limitation – Switch implements 2 levelsof overcurrent protection:  
1.  
When load on the output exceeds overcurrent limit threshold ISWOUTOCP, switch starts limiting the output  
voltage to decrease the output current. If the switch is in this condition for more than tOCPDBSW, switch is  
automatically turned OFF, and SWOUT_OCP interrupt is generated.  
2.  
In case output load exceeds ISWOUT_SH threshold, switch turns OFF immediately to prevent boost overload,  
and SWOUT_SH interrupt is generated. Shortly after this action switch is re-enabled automatically with  
standard soft-on current limiting procedure. In case overload condition is still present, switch continues the  
operation in current limiting mode, and is finally switched OFF after tOCPDBSW. In case overload condition is  
removed before tOCPDBSW switch continues its normal operation.  
For a detailed behavior of the device on OCP event refer to Section 5.4.7 Overcurrent protection (OCP).  
Output discharge – Switch implements a passive discharge circuit (by default disabled) that can be enabled by  
setting SWOUT_PD bit in Table 48. BST_SW_CR register.  
SWOUT pin is bidirectional but does not support reverse current protection:  
Output: PWR_SW is turned ON (using SW_ON bit = ‘1’) only if SWIN voltage is higher than SWIN_Rise  
threshold; else, PWR_SW keeps OFF. The SWIN rising and falling edge voltage (respectively VSWIN_Rise  
VSWIN_Fall thresholds) can be monitored by sending interrupt to host processor.  
/
Input:  
When PWR_SW is turned OFF (SW_ON bit = ‘0’), SWOUT pin monitors output voltage rising/falling by  
sending interrupts to host processor. See VSWOUT_Rise / VSWOUT_Fall thresholds  
When the STPMIC1 is in OFF (PWR_SW is implicitely turned OFF), SWOUT pin monitors a rising  
voltage (SWOUT_Rise threshold) to generate power-up event. Refer to Section 5.4.2 Turn-ON  
conditions.  
PWR_SW has no reverse current protection voltage: SWIN should always be higher or equal to SWOUT  
voltage to avoid reverse current flowing from SWOUT to SWIN  
If PWR_SW switch is used to supply USB port from Boost converter (SWIN pin connected to BSTOUT  
pin), then SWOUT_BOOST_OVP bit should be set in Table 70. NVM_LDOS_VOUT_SHR1 in order to  
automatically turn OFF PWR_SW and clear SW_ON bit in case of boost OVP event occur. Reciprocally,  
if PWR_SW is used as general-purpose power switch, SWOUT_BOOST_OVP bit should be clear in  
Table 70. NVM_LDOS_VOUT_SHR1 in order to ignore boost OVP event. Reference to Section 5.4.8 BOOST  
overvoltage protection.  
Both of switches are controlled by VBUSOTG_ON / SWOUT_ON bit in Table 48. BST_SW_CR only. They  
are always turned OFF when the STPMIC1 goes to POWER_ON (no NVM bit option to turn ON switches at  
power-up) and are automatically turned OFF if the STPMIC1 POWER_DOWN.  
Both of switches have a Pull_Down (PD) discharge resistor that is automatically enabled when switches are  
turned OFF. PD discharge resistor can be disabled on PWR_USB_SW and PWR_SW by setting respectively  
VBUSOTG_PD and SWOUT_PD bit in Table 48. BST_SW_CR register.  
Both switches have overcurrent protection:  
Safety features, see Section 5.4.7 Overcurrent protection (OCP).  
An overcurrent detection can also be set as a turn-off condition – Section 5.4.7 Overcurrent protection  
(OCP).  
PWR_SW is selectable 500 mA/1000 mA power switch: overcurrent protection threshold is set by SW_OCP  
bit in Table 48. BST_SW_CR.  
PWR_USB_SW and PWR_SW switches (if SW_BOOST_OVP bit in Table 70. NVM_LDOS_VOUT_SHR1 is set)  
are also disabled and their enable bits are cleared in case of boost OVP event.  
DS12792 - Rev 7  
page 43/140  
STPMIC1  
USB sub-system examples  
4.6  
USB sub-system examples  
The following Figure 50. Battery powered application with a USB OTG port and a USB host port,  
Figure 51. Battery powered application with a single USB OTG port , and Figure 52. 5 V DC powered application  
with a USB OTG port and two USB host ports show some typical USB sub-system configuration examples:  
Figure 50. Battery powered application with a USB OTG port and a USB host port  
On this example, a battery supplies the boost converter. When enabled, the boost converter generates a 5.2 V on  
BSTOUT.  
PWR_USB_SW output (VBUSOTG) is connected, in this example, to a USB Type-μAB connector (OTG). It can  
alternatively be connected to a USB Type-C connector.  
PWR_SW output (SWOUT) is connected, in this example, to a USB Type-A connector (USB host only). PWR_SW  
input (SWIN) is connected to the output of boost converter (BSTOUT).  
DS12792 - Rev 7  
page 44/140  
 
 
STPMIC1  
USB sub-system examples  
Figure 51. Battery powered application with a single USB OTG port  
On this example, a battery supplies a boost converter. When enabled, the boost converter generates a 5.2 V on  
BSTOUT.  
PWR_USB_SW output (VBUSOTG) is connected, in this example, to a USB Type-μAB connector (OTG). It can  
alternatively be connected to a USB Type-C connector.  
PWR_SW can be used as general purpose power switch in the application. Note that PWR_SW is functional  
when SWIN is powered by VSWIN_Rise to 5.5 V.  
DS12792 - Rev 7  
page 45/140  
 
STPMIC1  
USB sub-system examples  
Figure 52. 5 V DC powered application with a USB OTG port and two USB host ports  
In this example, the application is powered by a 5 V DC power source (eg: from 5 V AC/DC wall adaptor) and it  
supplies a boost converter. When enabled, the boost converter generates a 5.2 V on BSTOUT.  
PWR_USB_SW output (VBUSOTG) is connected, in this example, to a USB Type-μAB connector (OTG). It can  
alternatively be connected to a USB Type-C connector.  
PWR_SW output (SWOUT) is connected, in this example, to one or two USB Type-A connectors (USB host only).  
PWR_SW input (SWIN) is connected to the output of the boost converter (BSTOUT).  
In this example, the boost is used to regulate VBUS voltage at 5.2 V (to be compatible with USB specification  
voltage range [4.75 V;5.5 V]) to compensate the power supply voltage losses (power supply voltage tolerance and  
load regulation lose on the printed circuit board).  
DS12792 - Rev 7  
page 46/140  
 
STPMIC1  
Functional description  
5
Functional description  
5.1  
Overview  
The STPMIC1 integrates advanced low power features controlled by the application processor through I²C, 4  
digital control pins (PONKEYn, WAKEUP, PWRCTRL and RSTn) and one interrupt output line (INTn).  
The main parameter settings can be programmed in a non-volatile memory (NVM) as default values at start-up  
time.  
See Section 5.5.2 Non-volatile memory (NVM)  
The STPMIC1 offers 2 independent POWER_ON modes called MAIN and ALTERNATE. Switching between these  
modes is driven by the application processor through PWRCTRL pin.  
This allow a flexible configuration and fast transition between two different power strategies at application level,  
typically RUN and STANDBY (LowPower).  
Other features are provided to fulfill high-end application processors and advanced operating system needs:  
Multiple turn-on/turn-off conditions  
mask_default and restart_request options  
Overcurrent and overvoltage protection  
Thermal protection  
Watchdog  
Interrupt controller  
5.2  
Functional state machine  
The behavior of the STPMIC1 circuit is controlled by a state machine described in this section.  
DS12792 - Rev 7  
page 47/140  
 
 
 
STPMIC1  
Functional state machine  
5.2.1  
Main state machine diagram  
Figure 53. STPMIC1 state machine  
DS12792 - Rev 7  
page 48/140  
 
 
STPMIC1  
Functional state machine  
5.2.2  
State explanations  
NO_SUPPLY  
VIN is below VIN_POR_Fall - see Section 5.4.1 VIN conditions and monitoring. No output state can be guaranteed  
in this state.  
PRELOAD_NVM  
State is immediately reached after VIN transition above VIN_POR_Rise  
.
NVM download is performed in this state. (see Section 5.5.2 Non-volatile memory (NVM))  
If automatic turn-on condition is set in NVM, AUTO_TURN_ON bit in Table 65. NVM_MAIN_CTRL_SHR,  
transition is made to CHECK&LOAD, else to OFF-state. Refer to Section 5.4.2 Turn-ON conditions.  
RSTn is asserted by the STPMIC1 and all regulators are off.  
OFF  
State is entered after PRELOAD_NVM from POR_VIN, or when a turn-OFF condition occurs from POWER_ON.  
Transition to CHECK&LOAD state is made of any turn-ON condition. Refer to Section 5.4.3 Turn-OFF conditions  
and restart_request.  
RSTn is asserted by the STPMIC1 and all regulators are OFF.  
LOCK_OCP  
This state is an alternative to OFF-state in the context of overcurrent protection safety feature.  
This state occurs if an overcurrent has been detected and LOCK_OCP bit has been set in  
Table 65. NVM_MAIN_CTRL_SHR register.  
As soon as an overcurrent is detected from any regulator, the STPMIC1 immediately performs a POWER_DOWN  
sequence and goes permanently to LOCK_OCP state (passing through OFF-state). LOCK_OCP_FLAG internal  
bit is set to prevent state machine from leaving LOCK_OCP state.  
LOCK_OCP_FLAG bit can only been reset by VIN_POR_Fall (removing application power supply source)  
and optionally by a PONKEYn long key press if PKEY_CLEAR_OCP_FLAG bit has been set in  
Table 31. PKEY_TURNOFF_CR.  
Refer to Section 5.4.7 Overcurrent protection (OCP) for further details.  
RSTn is assert by the STPMIC1 and all regulators are off.  
CHECK&LOAD  
This state is a combination of three initialization steps in this order:  
CHECK_TEMP: The STPMIC1 starts a thermal monitoring and control that junction temperature (Tj) is in  
functional range before going to next state. Refer to Section 5.4.6 Thermal protection.  
LOAD_NVM: The STPMIC1 performs a load of the NVM, initializing related registers to their default state.  
CHECK_VIN: The STPMIC1 starts VIN monitoring and control that the applied VIN is in functional range  
before going to next state. Refer to Section 5.4.1 VIN conditions and monitoring for details. RSTn is  
asserted by the STPMIC1 and all regulators are off.  
POWER_UP  
The STPMIC1 sequentially starts regulators following a rank procedure. Refer to Section 5.3 POWER_UP,  
POWER_DOWN sequence for detailed description. RSTn is asserted by the STPMIC1.  
POWER_ON  
RSTn is released and monitored (digital input) by the STPMIC1. RSTn signal can be driven externally by the  
application processor or a reset push-button.  
The STPMIC1 delivers by default the power as per configuration in main mode, through Section 6.3.1 Main  
control register (MAIN_CR) registers of each regulator.  
The STPMIC1 can optionally switch to ALTERNATE mode, controlled by the application processor through  
PWRCTRL pin. As described in Section 5.4.5 Power control modes (MAIN / ALTERNATE) for details.  
The STPMIC1 exits POWER_ON state if:  
A turn-OFF condition occurs. See Section 5.4.3 Turn-OFF conditions and restart_request  
RSTn is asserted by the application processor. See Section 5.4.4 Reset and mask_reset option  
POWER_DOWN  
The STPMIC1 sequentially stops regulators following the rank procedure in reverse order than POWER_UP.  
Refer to Section 5.3 POWER_UP, POWER_DOWN sequence for a more detailed description.  
DS12792 - Rev 7  
page 49/140  
 
STPMIC1  
POWER_UP, POWER_DOWN sequence  
5.3  
POWER_UP, POWER_DOWN sequence  
The STPMIC1 starts and stops regulators following sequential rank procedures called respectively POWER_UP  
and POWER_DOWN.  
During POWER_UP each regulator is started at one of the 4-rank phase programmed in NVM.  
RANK0 means that the regulator is not started.  
Default rank is defined:  
For BUCKs: Section 6.7.2 NVM BUCK rank shadow register (NVM_BUCKS_RANK_SHR)  
For LDO1, 2, 3, 4: Section 6.7.3 NVM LDOs rank shadow register 1 (NVM_LDOS_RANK_SHR1)  
For LDO5, 6, REFDDR: Section 6.7.4 NVM LDOs rank shadow register 2 (NVM_LDOS_RANK_SHR2)  
Default voltage is defined:  
For BUCKs: Section 6.7.5 NVM BUCKs voltage output shadow register (NVM_BUCKS_VOUT_SHR)  
For LDO1, 2, 3, 4: Section 6.7.6 NVM LDOs voltage output shadow register 1 (NVM_LDOS_VOUT_SHR1  
For LDO5, 6, REFDDR: Section 6.7.7 NVM LDOs voltage output shadow register 2 (NVM_LDOS_VOUT_SHR2)  
During POWER_DOWN regulators are shutdown in reverse order than POWER_UP.  
Figure 54. STPMIC1 POWER_UP and POWER_DOWN sequence example shows an example of power cycle.  
Figure 54. STPMIC1 POWER_UP and POWER_DOWN sequence example  
Enable Buck2  
Turn_ON condition  
Turn_OFF condition  
by I²C  
CHECK&  
LOAD  
POWER_UP  
RANK1 RANK2 RANK3  
POWER_DOWN  
rst RANK0 RANK3 RANK2 RANK1  
STPMIC1 State OFF  
POWER_ON  
OFF  
100 µs  
6.7ms  
3 ms  
3 ms  
3 ms  
3 ms  
3 ms  
3 ms  
3 ms  
RSTn  
BUCK3 (Rank1)  
ENA bit  
BUCK1 (Rank2)  
ENA bit  
LDO4 (Rank3)  
ENA bit  
BUCK2 (Rank0)  
ENA bit  
POWER_UP  
The STPMIC1 enables regulators sequentially by 3 ms slots:  
RANK1 (BUCK3) -> RANK2 (BUCK1) -> RANK3 (LDO4) regulators, this sequence example is related to the  
STPMIC1.  
RANK0 regulators (eg BUCK2) are not started.  
RSTn is asserted by the STPMIC1 until all regulators on. Then it deasserts RSTn and switches to POWER_ON  
as soon as RSTn is deasserted by the application processor (RSTn signal goes high).  
POWER_ON:  
Regulator state and output voltage are driven by settings to registers MAIN or ALTERNATE control registers.  
Those registers are by default initialized with values programmed in NVM and can then be changed through I²C.  
In the example, BUCK2 (RANK0) is enabled by I²C.  
POWER_DOWN:  
The STPMIC1 asserts RSTn and immediately shutdowns RANK0 regulators which may have been started by  
software. (BUCK2 in upon example).  
Then it disables regulators sequentially in rank reverse order by 3 ms slots:  
RANK3 (LDO4) -> RANK2 (BUCK1) -> RANK1 (BUCK3)  
DS12792 - Rev 7  
page 50/140  
 
 
STPMIC1  
Feature description  
The example above shows POWER_UP and POWER_DOWN procedure from digital point of view (ENA bit of  
each regulators); but not their respective output voltage (analog).  
Regarding to analog behavior of each regulator, please refer to Section 4 Power regulators and switch  
description.  
5.4  
Feature description  
5.4.1  
VIN conditions and monitoring  
Main input supply named VIN is monitored permanently by the STPMIC1 state machine. There are different  
threshold triggers on VIN. The lowest to the highest thresholds are: POR_VIN, VINOK, VINLOW as presented in  
the Figure 55. VIN monitoring thresholds.  
Figure 55. VIN monitoring thresholds  
VINLOW_Fall  
VINLOW_HYST  
VINLOW_Rise  
VINOK_Rise  
NVM  
(
)
VINOK_HYST(NVM)  
VINLOW_TRESH  
VINOK_Fall  
VIN_POR_Rise  
200mv  
VIN_POR_Fall  
VIN  
VINLOW_RI Interrupt  
VINLOW_FA Interrupt  
POR_VIN  
POR_VIN is the minimum voltage required to supply the STPMIC1 internal circuitry. It is specified by two  
hardcoded thresholds with 200 mv hysteresis:  
Below VIN_POR_Fall STPMIC1 is considered as not supplied  
Above VIN_POR_Rise STPMIC1 internal circuitry is functional  
Refer to Section 3.4 Electrical and timing parameters for threshold value.  
VIN_OK  
VIN_OK is the minimal voltage required to allow the STPMIC1 to work in POWER_ON state.  
It is specified by VINOK_Rise threshold and VINOK_HYST hysteresis values that can be adjusted in NVM,  
respectively by VINOK_TRESH[1:0] and VINOK_HYS[1:0] bits in Table 65. NVM_MAIN_CTRL_SHR.  
If VIN falls below VINOK_Fall (VINOK_Fall = VINOK_Rise – VINOK_HYST) then it is considered as a turn-OFF  
condition and the STPMIC1 immediately starts POWER_DOWN sequence. Refer to Section 5.4.3 Turn-  
OFF conditions and restart_request.  
If VIN rises above VINOK_Rise then the STPMIC1 is allowed to go to POWER_ON state after a turn-ON  
condition has occurred. Refer to Section 5.4.2 Turn-ON conditions  
VINLOW  
VINLOW is an optional and configurable software threshold that can be setup to notify the application processor  
through interrupt, that a power shutdown, due to VIN going low, is a possible risk.  
VINLOW can be enabled and configured by programming register Section 6.3.6 PWR_SWOUT and VIN control  
register (SW_VIN_CR).  
VINLOW rising and falling thresholds are defined by a logical signal point of view. VINLOW signal goes to ‘1’  
(rising edge) when VIN decreases VINLOW_Rise threshold. VINLOW falling edge occurs when VIN goes above  
VINLOW_Fall threshold.  
DS12792 - Rev 7  
page 51/140  
 
 
 
STPMIC1  
Feature description  
VINLOW_Rise and VINLOW_Fall detection generate respectively VINLOW_RI and VINLOW_FA interrupt in  
INT_PENDING_R4, allowing application processor to take relevant actions. They can be unmasked  
independently.  
Refer to Section 6.5 Interrupt registers.  
5.4.2  
Turn-ON conditions  
Turn-ON means the STPMIC1 reaches POWER_ON state from NO_SUPPLY or OFF-state.  
The STPMIC1 is turned ON on four conditions.  
Three conditions are triggered by an external stimulation:  
PONKEYn pin detection  
VBUS detection (voltage rising on VBUSOTG or SWOUT pins)  
WAKEUP pin detection  
Last condition is triggered by AUTO turn-ON feature (see below).  
When in POWER_ON, the last turn-ON condition is stored and can be read in Section 6.2.1 Turn-ON status  
register (TURN_ON_SR) register.  
AUTO turn-ON  
AUTO turn-ON feature allows the STPMIC1 to be turned ON automatically as soon as VIN rises above a valid  
voltage. See Section 5.4.1 VIN conditions and monitoring .  
After VIN rises above VINOK_Rise, the STPMIC1 goes to PRELOAD_NVM state and load AUTO_TURN_ON bit  
from NVM. If AUTO_TURN_ON is set, the STPMIC1 goes directly into CHECK&LOAD then goes to POWER_UP  
and to POWER_ON.  
AUTO turn-ON event is triggered only by NO_SUPPLY state transition.  
AUTO turn-ON is enabled by default in NVM and can be disabled by resetting AUTO_TURN_ON bit in  
Table 65. NVM_MAIN_CTRL_SHR register.  
Details of the sequence are described in the Figure 56. Auto turn-on condition sequence.  
Figure 56. Auto turn-on condition sequence  
VINOK_Rise  
VIN_POR_Rise  
PRE CHECK&  
LOAD LOAD  
NO_SUPPLY  
POWER_UP  
POWER_ON  
ms  
>7  
RSTn  
AUTO_TURN_ON=1  
PONKEY/VBUS/WAKEUP detection  
Those 3 conditions depend on stimulation on the specific STPMIC1 pins. The source and electrical characteristics  
of each condition are described in Table 11. Turn-on description.  
DS12792 - Rev 7  
page 52/140  
 
 
STPMIC1  
Feature description  
Table 11. Turn-on description  
Turn-ON  
condition  
source  
Active condition  
description  
Name  
Configuration  
Debounce  
30 ms  
Interrupt  
PONKEYn  
pin  
PKEY_RI/PKEY_FA in  
INT_PENDING_R1  
PONKEY  
N/A  
Active low  
Can be disable by  
settingVBUSOTG_DET_DIS bit  
in Table 48. BST_SW_CR  
VBUSOTG_RI/  
VBUSOTG_FA in  
INT_PENDING_R1  
VBUS  
(VBUSOTG)  
VBUSOTG  
pin  
VBUSOTG >  
VBUSOTG_Rise  
30 ms  
Can be disable by setting  
SWOUT_RI/  
SWOUT_FA in  
INT_PENDING_R1  
VBUS  
(SWOUT)  
SWOUT >  
SWOUT_Rise  
SWOUT pin  
30 ms  
SWOUT_DET_DIS bit in  
Table 30. SW_VIN_CR  
WKP_RI/WKP_FA  
in  
No  
debounce  
WAKEUP  
WAKEUP pin  
N/A  
Active high  
INT_PENDING_R1  
The STPMIC1 manages 2 different scenarios depending if the turn-ON condition is active before or after VIN rises  
above VIN_POR_Rise  
.
Active Turn-ON condition after VIN rises above VIN_POR_Rise sequence is presented in Figure 57. Turn-on  
condition after VIN_POR_RISE  
.
Figure 57. Turn-on condition after VIN_POR_RISE  
t1: VIN rises above VIN_POR_Rise while no turn-ON condition is detected active. The STPMIC1 performs the  
PRELOAD_NVM and swiches to OFF-state.  
t2: the STPMIC1 starts detecting the activity on turn-ON condition but the detection threshold above is not stable.  
t3: turn-ON signal has been detected stable longer than debounce time. Turn-ON event triggered. Switch to  
CHECK&LOAD then POWER_UP as VIN > VINOK_Rise  
.
t3 to t4: turn-ON conditions are ignored from CHECK&LOAD to POWER_ON.  
t4: turn-ON condition is ignored and does not affect the usual STPMIC1 behavior in POWER_ON. (Except  
PONKEY long key press. See Section 5.4.3 Turn-OFF conditions and restart_request). Active turn-ON signal  
does not prevent from POWER_DOWN.  
t5: active turn-OFF condition event occurs from a valid source. Switch to POWER_DOWN.  
t5 to t6: active turn-ON during POWER_DOWN is ignored.  
t7: New turn-ON signal rising edge has been detected after debounce time. A valid turn-ON condition is detected.  
The STPMIC1 switches to POWER_UP.  
DS12792 - Rev 7  
page 53/140  
 
 
STPMIC1  
Feature description  
Active turn-ON condition before VIN rises above VIN_POR_Rise sequence is presented in Figure 58. Turn-on  
condition before VIN_POR_Rise  
.
Figure 58. Turn-on condition before VIN_POR_Rise  
t1: VIN rises above VIN_POR_RISE while a turn-ON condition is detected active. The STPMIC1 performs the  
PRELOAD_NVM and swiches to OFF-state.  
t2: the STPMIC1 starts debounce as soon as it is entered OFF-state.  
t3: turn-ON condition is confirmed after debounce time. Switch to CHECK&LOAD then POWER_UP as VIN >  
VINOK_Rise  
.
t3 to t4: turn-ON conditions are ignored from CHECK&LOAD to POWER_ON.  
t4: turn-ON condition is ignored and does not affect usual STPMIC1 behavior in POWER_ON. (Except PONKEY  
long key press. See Section 5.4.3 Turn-OFF conditions and restart_request)  
Active turn-ON signal does not prevent from POWER_DOWN.  
t5: active turn-OFF condition event occurs from a valid source. Switch to POWER_DOWN.  
t5 to t6: Active turn-ON during POWER_DOWN is ignored.  
t7: New turn-ON signal rising edge has been detected after debounce time. Valid turn-ON condition detected. The  
STPMIC1 switches to POWER_UP.  
5.4.3  
Turn-OFF conditions and restart_request  
Turn-OFF conditions are events or stimulus leading the STPMIC1 to go to OFF-state from a POWER_ON state,  
by switching through a POWER_DOWN sequence.  
The STPMIC1 is turned OFF by six conditions presented in Table 12. Turn-off conditions.  
Some turn-OFF conditions support restart_request option that allows the STPMIC1 to perform a power cycle back  
to POWER_ON instead of going to off-state (POWER_DOWN/CHECK&LOAD/POWER_UP) without waiting for a  
valid turn-ON condition restarts.  
Turn-OFF condition with restart_request option has a similar behavior as a reset power cycle except that  
mask_reset option is ignored. Refer to Section 5.4.4 Reset and mask_reset option  
restart_request option can be enabled by setting RREQ_EN bit in Table 25. MAIN_CR register, prior to turn-OFF  
condition occurrence.  
Table 12. Turn-off conditions  
Power cycle if  
Name  
Conditions  
RREQ_EN=1  
Software switch-  
OFF  
Writing 1 to SWOFF bit in Table 25. MAIN_CR register  
PKEYLKP bit set in Table 31. PKEY_TURNOFF_CR  
YES  
PONKEYn long  
key press  
YES  
DS12792 - Rev 7  
page 54/140  
 
 
 
STPMIC1  
Feature description  
Power cycle if  
RREQ_EN=1  
Name  
Conditions  
Default value loaded by PKEYLKP_OFF bit in  
Table 65. NVM_MAIN_CTRL_SHR  
Request duration for the long key press defined in PKEY_LKP_TMR[3:0] in  
Table 31. PKEY_TURNOFF_CR  
PONKEYn signal is asserted for a duration > PKEY_LKP_TMR[3:0]  
STPMIC1 always restart  
automatically whatever  
restart_request option.  
STPMIC1 functional temperature is exceeded. Refer to  
Section 5.4.6 Thermal protection  
Thermal shutdown  
Overcurrent  
protection  
STPMIC1 detects overcurrent on a regulator. Refer to  
Section 5.4.7 Overcurrent protection (OCP)  
NO  
Watchdog feature active and downcounter reach 0. Refer to  
Section 5.4.9 Watchdog feature  
Watchdog  
YES  
VIN falls down under VIN_OK_Fall threshold.  
YES only if VIN remains  
above POR_VIN_Fall  
VIN_OK_Fall  
Depending on VIN decrease speed, proper execution of POWER_DOWN  
operation is not guaranteed  
Last turn-OFF condition is stored in Table 20. TURN_OFF_SR.  
If restart_request is set, power cycle source is stored in Table 23. RESTART_SR register.  
5.4.4  
Reset and mask_reset option  
RSTn is bidirectional reset pin both for the STPMIC1 and the application processor. It is digital input / open drain  
output topology with internal pull-up resistor.  
When the STPMIC1 asserts RSTn, it drives RSTn signal low (open drain internal transistor). Application  
processor is forced in reset state  
When the STPMIC1 does not assert RSTn, RSTn pin is in high impedance and RSTn signal goes high  
(thanks to pull-up resistor) if RSTn signal is not asserted low externally (eg: by a reset push button or from  
application processor asserting the reset signal low). In that case, the STPMIC1 RSTn pin becomes digital  
input and it monitors RSTn signal  
In POWER_ON state, RSTn pin can be driven by the application processor or a reset push-button.  
If the application processor asserts RSTn low more than RSTnDB duration, it triggers immediately a reset  
sequence of the STPMIC1 by performing a non-interruptible power cycle:  
1.  
2.  
3.  
4.  
5.  
6.  
The STPMIC1 asserts RSTn low (forcing AP to keep it in case reset is deasserted by AP)  
POWER_DOWN sequence  
LOAD&CHECK  
POWER_UP sequence  
STPMIC1 deasserts RSTn and monitor RSTn  
STPMIC1 waits for RSTn signal going high before entering POWER_ON. (To prevent infinite loop of reset  
sequence)  
LDOs and Bucks follow POWER_DOWN / POWER_UP power cycle from leave state to default one, except if  
mask_reset option is specified.  
mask_reset option can be defined for each regulator by setting the corresponding MRST bit in corresponding  
MRST_CR register.  
Eg for BUCK3 : MRST_BUCK3 in Table 32. BUCKS_MRST_CR.  
When mask_reset option is set by a regulator, it means that MAIN and ALTERNATE related register do not  
change during and after the reset power cycle:  
POWER_DOWN is not performed  
MAIN and ALTERNATE register values are not reloaded by NVM and are not reset  
The STPMIC1 always ends the power cycle in POWER_ON MAIN mode. (PWRCTRL pin configuration reset).  
If reset happens in MAIN mode, the regulator is not impacted at all, keeping VOUT, ENA and PREG_MODE  
unchanged.  
DS12792 - Rev 7  
page 55/140  
 
STPMIC1  
Feature description  
In case reset happens in ALTERNATE mode, VOUT, ENA and PREG_MODE switch to content of the  
[regulator]_MAIN_CR register values.  
Figure 59. Reset power-cycle sequence below shows an example of a reset power-cycle on the STPMIC1.  
Figure 59. Reset power-cycle sequence  
Enable Buck2  
RSTn Low by AP  
by I²C  
CHECK&  
LOAD  
POWER_DOWN  
rst RANK0 RANK3 RANK2 RANK1  
POWER_UP  
RANK1 RANK2 RANK3  
POWER_ON  
POWER_ON  
STPMIC1 State  
RSTn  
BUCK3 (Rank1)  
mask_reset  
BUCK1 (Rank2)  
LDO4 (Rank3)  
BUCK2 (Rank0)  
27,8ms  
mask_reset is a single shot option, cleared by Turn-OFF, POR_VIN and reset.  
BUCK3 with mask_reset option set, is not impacted by reset power-cycle.  
BUCK1 and LDO4 are powered down and up at their respective rank defined in NVM.  
BUCK2, enabled by I2C is power down but not restarted.  
5.4.5  
Power control modes (MAIN / ALTERNATE)  
In order to address implementation of low power platform, the STPMIC1 supports two independent and  
configurable modes for POWER_ON state. For all regulators, settings enable (ENA), output voltage (VOUT)  
and regulation mode (PREG_MODE) can be defined for each mode. With the following exceptions due to some  
regulator specificities:  
REFDDR provides ENA only  
LDO3 also provides BYPASS mode bit  
LDO4 also provides input source selector bits  
Default MAIN mode has to be applied to full load applications, typically RUN mode of application processor.  
ALTERNATE mode has to be used when the application processor enters low power mode, typically STANDBY  
mode. Switch between MAIN and ALTERNATE, can be controlled by the application processor through  
PWRCTRL pin.  
MAIN mode corresponds to “inactive state” of PWRCTRL pin  
ALTERNATE mode corresponds to “active state” of PWRCTRL pin  
PWRCTRL pin detection can be enabled and its polarity configured through respectively PWRCTRL_EN and  
PWRCTRL_POL bits in Table 25. MAIN_CR register.  
PWRCTRL pin detection is always disabled by default (PWRCTRL_EN bit clear by turn-OFF and reset), as a  
consequence POWER_ON mode is always MAIN by default.  
In each mode, MAIN or ALTERNATE, the STPMIC1 applies the settings indicated in the regulator (Rx) related  
register, [Rx]_MAIN_CR for MAIN and [Rx]_ALT_CR, for ALTERNATE.  
If Buck converter has different output voltage settings between MAIN and ALTERNATE register, a smooth voltage  
transition is applied during MAIN to ALTERNATE (and reciprocally) as described in Figure 47. BUCKx dynamic  
voltage scaling (DVS).  
Please refer to Section 4 Power regulators and switch description for details on voltage scale up and down  
procedure for each regulator and switche.  
Figure 60. Power mode switch sequence example is an example of the STPMIC1 transition with settings available  
in Table 13. MAIN/ALTERNATE switch example configuration and where PWRCTRL is set as active low.  
DS12792 - Rev 7  
page 56/140  
 
 
STPMIC1  
Feature description  
Table 13. MAIN/ALTERNATE switch example configuration  
Regulator  
MAIN setting  
ALTERNATE setting  
Register value  
ENA=1  
ENA=1  
BUCKx_MAIN_CR=0x61  
BUCKx_ALT_CR=0x33  
BUCKz(z=1..4)  
VOUT=1.2 V,  
VOUT=0.9 V  
PREG_MODE=HP  
PREG_MODE=LP  
ENA=1  
ENA=0,  
BUCKy_MAIN_CR=0xD9  
BUCKy(y=1..4)  
LDOx(x=1,2,5,6)  
VOUT=3.3 V  
VOUT=3.3 V  
BUCKy_ALT_CR=0xD8(or 0x00)  
PREG_MODE=HP  
PREG_MODE=HP  
ENA=1  
ENA=0  
LDOx_MAIN_CR=0x27  
VOUT=1.8  
VOUT=1.8  
LDOx_ALT_CR=0x26 (or 0x00)  
Figure 60. Power mode switch sequence example  
POWER_ON  
MAIN MODE  
ALTERNATE MODE  
MAIN MODE  
PWRCTRL  
ΔVOUTz x SR(BUCK  
ΔVOUTz x SR(BUCK  
Z)  
Z)  
1.2 V  
0.9 V  
VOUTz (Buck z)  
VOUTy (Buck y)  
tSD (BUCK  
tSS = ΔVOUTy x SR(BUCK  
Y)  
y)  
3.3 V  
tSU (BUCK  
y)  
0.2 V  
0 V  
tSD (LDO x)  
tSS = ΔVLDOxOUT x SR(LDO  
X)  
1.8 V  
VLDOxOUT (LDO x)  
0.2 V  
0 V  
5.4.6  
Thermal protection  
The STPMIC1 implements a thermal protection to prevent over heating damage.  
Junction temperature is permanently monitored thanks to an embed cell.  
Protection consists of 2 thresholds :  
Thermal shutdown threshold (TSHDN), which turns off the STPMIC1  
Thermal warning threshold (TWRN), which generates an interrupt to be handled by the application processor  
Figure 61. Thermal protection thresholds represents the distribution of those thresholds along the temperature  
curve.  
When the temperature rises above TSHDN_Rise, the STPMIC1 starts a rank down and goes to CHECK&LOAD  
state.  
If temperature decreases and comes back lower than TSHDN_Fall, the STPMIC1 restarts automatically with  
POWER_UP sequence.  
In order to allow the application processor to anticipate TSHDN_Rise shutdown and take relevant actions, interrupts  
THW_RI and THW_FA are generated when the temperature rises above TWRN_Rise and falls down TWRN_Fall.  
Refer to Section 6.5 Interrupt registers about the interruption management.  
DS12792 - Rev 7  
page 57/140  
 
 
 
STPMIC1  
Feature description  
Figure 61. Thermal protection thresholds  
TSHDN_Rise  
TSHDN_Fall  
TWRN_Rise  
TWRN_Fall  
T°  
THW_RI Interrupt  
THW_FA Interrupt  
5.4.7  
Overcurrent protection (OCP)  
The STPMIC1 implements protection against short-circuit (SC) or overcurrent (OC) on all regulators output.  
The STPMIC1 supports 3 levels of protection described in Table 14. OCP levels below.  
Table 14. OCP levels  
LOCK_OCP OCPOFF  
Protection  
STPMIC1 behavior  
level  
(NVM)  
[Rx] bit  
This is the default mode.  
When SC/OC occurs on regulator Rx :  
For LDOs and bucks: if current rises above defined tresholds, an automatic  
current limitation is activated. Refer to Section 4.2 LDO regulators and  
Section 4.4.1 BUCK general description for details  
For BOOST refer to Section 4.5.1 Boost converter  
Level 0  
0
0
For switches: Refer to PWR_USB_SW and PWR_SW power switches  
Note: In case of a sharp increase of the current, the boost overcurrent protection may  
react earlier than switch.  
For all: all interrupts are generated by setting corresponding [Rx]_OCP bit of  
INT_PENDING_R2 or INT_PENDING_R3.  
(see Section 6.5 Interrupt registers)  
The STPMIC1 is in POWER_ON state.  
By setting OCPOFF[Rx] bit Section 6.3.12 Bucks OCP turn-OFF control register  
(BUCKS_OCPOFF_CR) or Section 6.3.13 LDO OCP turn-OFF control register  
(LDOS_OCPOFF_CR) registers, an OC on related Rx becomes a turn-OFF condition.  
(see Section 5.4.3 Turn-OFF conditions and restart_request  
The STPMIC1 starts a POWER_DOWN sequence.  
RREQ_EN bit is ignored in case OCP turn-OFF.  
Level 1  
0
1
The STPMIC1 is in OFF-state until a valid turn-ON condition.  
Regulator that caused the OCP turn-OFF can be identified with a  
corresponding bit set in overcurrent protection LDO turn-OFF status register  
(Section 6.2.3 Overcurrent protection LDO turn-OFF status register  
(OCP_LDOS_SR)) or Section 6.2.4 Overcurrent protection buck turn-OFF status  
register (OCP_BUCKS_BSW_SR)  
NVM_LOCK_OCP (Section 6.7.1 NVM main control shadow register  
(NVM_MAIN_CTRL_SHR) bit 0) is set.  
Level 2  
1
x
This level 2 concerns all regulators. OCPOFF[Rx] bits are ignored.  
If SC/OC occurs on any regulators, the STPMIC1 enters POWER_DOWN to finally  
goes into LOCK_OCP state  
DS12792 - Rev 7  
page 58/140  
 
 
 
STPMIC1  
Programming  
LOCK_OCP OCPOFF  
(NVM) [Rx] bit  
Protection  
level  
STPMIC1 behavior  
The STPMIC1 is kept forced in LOCK_OCP state (see Figure 53. STPMIC1 state  
machine) until internal LOCK_OCP_FLAG is released by V or optionally  
IN_POR_Fall  
by PONKEYn long key press, if enabled by setting PKEY_CLEAR_OCP_FLAG bit in  
Table 31. PKEY_TURNOFF_CR register  
5.4.8  
5.4.9  
BOOST overvoltage protection  
See Section 4.5.1 Boost converter.  
Watchdog feature  
The STPMIC1 offers a watchdog mechanism that triggers a turn-OFF condition when the watchdog down counter  
elapses.  
Watchdog is disabled by default and it is enabled if WDG_ENA bit is set in Section 6.3.10 Watchdog control  
register (WDG_CR).  
The watchdog timer downcounter can be set in a range from 1 s to 256 s by 1 s step in Section 6.3.11 Watchdog  
timer control register (WDG_TMR_CR).  
Watchdog counter is reset by setting WDG_RST bit in Section 6.3.10 Watchdog control register (WDG_CR) and  
when setting WDG_ENA from 0 to 1.  
When enabled the watchdog timer remains active regardless MAIN or ALTERNATE mode. Watchdog is disabled  
by reset, VIN_POR_Fall and turn-OFF.  
5.5  
Programming  
2
5.5.1  
I C interface  
I2C interface works in slave mode. It supports both standard and fast mode with data rate up to 400Kb/s. It  
supports also fast mode plus (FM+) with data rate up to 1Mb/s that is suitable frequency for DVS operations.  
Please refer to NXP UM10204 revision 5 for specifications.  
SCL pin is the input clock used to shift data. SDA pin is the input/output bi-directional data.  
Device ID  
There is a device ID system to address the STPMIC1.  
The address is stored into NVM_I2C_ADDR[6:0] bits in Section 6.7.8 NVM device address shadow register  
(I2C_ADDR_SHR). Default address is 0x33.  
Table 15. Device ID format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
AdrID6  
AdrID5  
AdrID4  
AdrID3  
AdrID2  
AdrID1  
AdrID0  
R/W  
Read/write operation  
Each transaction is composed of a start condition followed by a number of packet number (8-bit long)  
representing either a device ID plus R/W command or register address or register data coming to/from slave  
Table 15. Device ID format. An acknowledgment is needed after each packet. This acknowledgment is given  
by the receiver of the packet. Transaction examples are given in Table 16. Register address format and  
Table 17. Register data format. Multi read and multi write operations are supported.  
Table 16. Register address format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
RegADR7  
RegADR6  
RegADR5  
RegADR4  
RegADR3  
RegADR2  
RegADR1  
RegADR0  
DS12792 - Rev 7  
page 59/140  
 
 
 
 
 
 
STPMIC1  
Programming  
Table 17. Register data format  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
Figure 62. I2C read operation  
Figure 63. I2C write operation  
5.5.2  
Non-volatile memory (NVM)  
General description  
The STPMIC1 built-in non-volatile memory provides a high flexibility to support a wide range of applications:  
Its straightforward write management through I2C allows customizing the STPMIC1 directly in final applications  
during the product development and mass production.  
The NVM is composed of 64 bits customizable parameters (accessible from shadow registers):  
BUCKs and LDOs regulators:  
Output voltage: to set the default output voltage at POWER-UP  
POWER-UP sequence order: RANK regulator starts  
General:  
AUTO_TURN_ON: to power up the STPMIC1 automatically when the input voltage rises  
VINOK_RISE threshold voltage: to select right power-up voltage  
VINOK_HYST hysteresis voltage: to trigger power-down in case of VIN drop  
LOCK_OCP: overcurrent protection bit that blocks the STPMIC1 in LOCK_OCP state in case of  
short-circuit or overload detection  
PONKEY long key press functionality – can be configured to reset device  
I²C slave address  
NVM read operation is performed automatically before each POWER_UP sequence to set control registers with  
default values and configure POWER_UP and POWER_DOWN sequence.  
NVM write operation can be performed several times at product level to:  
1.  
Customize a pre-programmed device directly from application host processor via I²C interface  
(STPMIC1A,STPMIC1B, STPMIC1D and STPMIC1E)  
2.  
To program a non-programmed device (STPMIC1C) into a final application by connecting a I2C host  
programmer to the product via JIG tester  
NVM macrocell is designed to provide high reliability: it is composed of complementary memory approach with  
two cells per bit (one direct cell and one complementary cell) and during each read operation, NVM controller  
check NVM content integrity. If integrity check fails, the STPMIC1 does not start up.  
DS12792 - Rev 7  
page 60/140  
 
 
 
 
STPMIC1  
Programming  
NVM read operation  
NVM read operation is fully managed by the STPMIC1.  
For each read operation, the STPMIC1 automatically loads the 64-bit NVM content into NVM shadow registers  
(see Table 64. NVM shadow register map ). It means that shadow register content is a copy of NVM content.  
When the STPMIC1 power supply is connected (VIN > VPOR_VIN_Rise), the STPMIC1 state machine goes to  
PRELOAD_NVM state (see Section 5.2 Functional state machine). In this state, a NVM read operation is  
performed to check if the STPMIC1 should start up automatically depending on AUTO_TURN_ON NVM bit value.  
If AUTO_TURN_ON bit is not set, the STPMIC1 goes to OFF-state; else the STPMIC1 continues automatically by  
power-up procedure.  
Before each POWER_UP procedure, NVM read operation is performed in CHECK&LOAD state. NVM content is  
loaded into shadow registers. Additionally, the STPMIC1 initializes BUCK and LDO control registers with values  
pre-defined in NVM (see Table 64. NVM shadow register map ) and configure POWER_UP and POWER_DOWN  
sequence of regulators.  
NVM write operation (STPMIC1 customization)  
NVM write operation can be performed multiple times (see NVMEND) by I2C interface.  
NVM write operation generic sequence:  
1.  
2.  
3.  
Apply VIN to the application: STPMIC1 goes to POWER_ON state(1)  
Write NVM shadow registers with expected customization values  
Initiate a “NVM program operation” command - write NVM_CMD[1:0] = ‘01’ in Section 6.6.2 NVM control  
register (NVM_CR)  
4.  
5.  
Wait for NVM write operation to be completed: wait for NVM_BUSY becomes 0 in Table 62. NVM_SR  
(Optional): check new NVM content by initiating a NVM read operation: write NVM_CMD[1:0] = ‘10’ and wait  
for NVM_BUSY becomes 0  
1. The STPMIC1 has AUTO_TURN_ON bit set by default to power up automatically. This is to allow NVM write operation  
without generating turn-ON conditions.  
The following conditions should be fulfilled to allow NVM write operation:  
VIN must be minimum 3.8 V  
The STPMIC1 must be in POWER_ON state (NVM write operation is ignored in OFF-state)  
Writing into NVM shadow registers does not affect NVM content until NVM write operation is executed.  
WARNING: If VIN goes below 3.8 V during write operation, NVM content integrity may be corrupted and the  
STPMIC1 may not start up anymore.  
Change of I2C address  
Special attention must be given when new I2C address needs to be programmed.  
When different I2C address is written in Section 6.7.8 NVM device address shadow register (I2C_ADDR_SHR),  
this new address becomes effective immediately and next I2C transaction must already use this new device  
address.  
If a “NVM write operation” is not performed following I2C address change in shadow register, previously  
programmed I2C address is loaded from NVM during next POWER_UP sequence.  
DS12792 - Rev 7  
page 61/140  
 
STPMIC1  
Register description  
6
Register description  
6.1  
User register map  
Registers are all default down to 0 at VIN_POR_Fall  
.
Default value in the table below represents values at POWER_ON when application processor can access I2C  
registers.  
Value ‘x’ represents:  
Read/write bits loaded by NVM  
Read bit status depending on previous operation or event  
It is important to highlight that all bits marked "reserved" (-) must be written 0 (reset value). So a read / modify /  
write operation into a register is allowed if "reserved" bits are not modified.  
DS12792 - Rev 7  
page 62/140  
 
 
STPMIC1  
User register map  
DS12792 - Rev 7  
page 63/140  
 
STPMIC1  
User register map  
DS12792 - Rev 7  
page 64/140  
STPMIC1  
User register map  
DS12792 - Rev 7  
page 65/140  
STPMIC1  
User register map  
DS12792 - Rev 7  
page 66/140  
STPMIC1  
User register map  
DS12792 - Rev 7  
page 67/140  
STPMIC1  
User register map  
DS12792 - Rev 7  
page 68/140  
STPMIC1  
Status registers  
6.2  
Status registers  
6.2.1  
Turn-ON status register (TURN_ON_SR)  
Table 19. TURN_ON_SR  
7
reserved  
R
6
reserved  
R
5
reserved  
R
4
AUTO  
R
3
SWOUT  
R
2
VBUS  
R
1
WKUP  
R
0
PKEY  
R
Address: 0x01  
Type: read register only  
Default: b000x_xxxx where x depends on turn-ON condition  
Description: turn-ON status register. This register stores last condition, which has turned ON the STPMIC1.  
Register is set during CHECK&LOAD state following the turn-ON condition.  
It is not refreshed or default by restart and default power cycle.  
[7 :5]  
[4]  
Reserved  
AUTO: STPMIC1 has automatically turned ON on VIN rising.  
0: False  
1: True  
SWOUT: last Turn-ON condition was VBUS detection on SWOUT pin.  
[3]  
[2]  
[1]  
[0]  
0: False  
1: True  
VBUS: last Turn-ON condition was VBUS detection on VBUSOTG pin  
0: False  
1: True  
WKUP: last Turn-ON condition was WAKEUP pin detection  
0: False  
1: True  
PKEY: last Turn-ON condition was PONKEYn detection  
0: False  
1: True  
DS12792 - Rev 7  
page 69/140  
 
 
 
STPMIC1  
Status registers  
6.2.2  
Turn-OFF status register (TURN_OFF_SR)  
Table 20. TURN_OFF_SR  
7
reserved  
R
6
reserved  
R
5
PKEYLKP  
R
4
WDG  
R
3
OCP  
R
2
THSD  
R
1
VINOK_FA  
R
0
SWOFF  
R
Address: 0x02  
Type: read register only  
Default : b000x_xxxx where x depends on previous turn-OFF condition  
Description: Turn-OFF status register. This register stores the last condition, which turns OFF the STPMIC1.  
It is set during POWER_DOWN state following turn-OFF condition.  
[7 :6]  
[5]  
Reserved  
PKEYLKP: Last turn-OFF condition was due to PONKEYn long key  
0: False  
1: True  
WDG: Last turn-OFF condition was due to watchdog  
[4]  
[3]  
[2]  
0: False  
1: True  
OCP: Last turn-ON condition was due to overcurrent protection  
0: False  
1: True  
THSD: Last turn-OFF condition was due to thermal shutdown  
0: False  
1: True  
VINOK_FA: Last turn-OFF condition was due to VIN below V  
INOK_Fall  
(when VIN is crossing VIN_POR_Rise threshold, this bit value is not valid)  
[1]  
[0]  
0: False  
1: True  
SWOFF: Last turn-OFF condition was due to software switch OFF  
0: False  
1: True  
DS12792 - Rev 7  
page 70/140  
 
 
STPMIC1  
Status registers  
6.2.3  
Overcurrent protection LDO turn-OFF status register (OCP_LDOS_SR)  
Table 21. OCP_LDOS_SR  
7
reserved  
R
6
reserved  
R
5
OCP_LDO6  
R
4
OCP_LDO5  
R
3
OCP_LDO4  
R
2
OCP_LDO3  
R
1
OCP_LDO2  
R
0
OCP_LDO1  
R
Address: 0x03  
Type: read register only  
Default: b00xx_xxxx where x depends on possible OCP event during previous POWER_ON  
Description: OCP LDO turn-OFF status register. This register stores the identification of the LDO source of the  
last OCP turn-OFF.  
It is set during POWER_DOWN state.  
[7 :6]  
[5]  
Reserved  
OCP_LDO6: Last turn-OFF was due to overcurrent protection on LDO6  
0: False  
1: True  
OCP_LDO5: Last turn-OFF was due to overcurrent protection on LDO5  
[4]  
[3]  
[2]  
[1]  
[0]  
0: False  
1: True  
OCP_LDO4: Last turn-OFF was due to overcurrent protection on LDO4  
0: False  
1: True  
OCP_LDO3: Last turn-OFF was due to overcurrent protection on LDO3  
0: False  
1: True  
OCP_LDO2: Last turn-OFF was due to overcurrent protection on LDO2  
0: False  
1: True  
OCP_LDO1: Last turn-OFF was due to overcurrent protection on LDO1  
0: False  
1: True  
DS12792 - Rev 7  
page 71/140  
 
 
STPMIC1  
Status registers  
6.2.4  
Overcurrent protection buck turn-OFF status register (OCP_BUCKS_BSW_SR)  
Table 22. OCP_BUCKS_BSW_SR  
7
6
5
4
3
2
1
0
reserved OCP_BOOST OCP_SWOUT OCP_VBUSOTG OCP_BUCK4 OCP_BUCK3 OCP_BUCK2 OCP_BUCK1  
R
R
R
R
R
R
R
R
Address: 0x04  
Type: read register only  
Default: b00xx_xxxx where x depends on possible OCP event during previous POWER_ON  
Description: OCP buck turn-OFF status register. This register stores the identification of the BUCK, BOOST or  
power switch source of the last OCP turn-OFF.  
It is set during POWER_DOWN state.  
[7]  
Reserved  
OCP_BOOST: Last turn-OFF was due to overcurrent protection on BOOST  
[6] 0: False  
1: True  
OCP_SWOUT: Last turn-OFF was due to overcurrent protection on SWOUT pin (PWR_SW out)  
[5] 0: False  
1: True  
OCP_VBUSOTG: Last turn-OFF was due to overcurrent protection on VBUSTOTG pin (PWR_USB_SW out)  
[4] 0: False  
1: True  
OCP_BUCK4: Last turn-OFF was due to overcurrent protection on BUCK4  
[3] 0: False  
1: True  
OCP_BUCK3: Last turn-OFF was due to overcurrent protection on BUCK3  
[2] 0: False  
1: True  
OCP_BUCK2: Last turn-OFF was due to overcurrent protection on BUCK2  
[1] 0: False  
1: True  
OCP_BUCK1: Last turn-OFF was due to overcurrent protection on BUCK1  
[0] 0: False  
1: True  
DS12792 - Rev 7  
page 72/140  
 
 
STPMIC1  
Status registers  
6.2.5  
Restart status register (RESTART_SR)  
Table 23. RESTART_SR  
7
OP_MODE  
R
6
5
4
3
R_PKEYLKP  
R
2
R_WDG  
R
1
0
LDO4_SRC[1:0]  
R_VINOK_FA  
R
R_SWOFF  
R
R_RST  
R
R
R
Address: 0x05  
Type: read register only  
Default: b000x_xxxx where x depends on last restart condition  
Description: Restart status register. This register mainly contains identification of the last restart condition. Either  
turn-OFF condition with restart_request option set, or from RSTn assertion from application processor. (Refer to  
Section 5.4.3 Turn-OFF conditions and restart_request) and Section 5.4.4 Reset and mask_reset option.  
Bits prefixed with R_ are set during transition from POWER_DOWN to CHECK&LOAD.  
This register also contains active operating mode (MAIN or ALTERNATE) and current LDO4 input source. (Refer  
to Section 4.2.2 LDO regulators - special features).  
OP_MODE: Operating mode. Signal if the STPMIC1 is in MAIN mode or ALTERNATE mode.  
[7]  
0: STPMIC1 is in MAIN mode  
1: STPMIC1 is in ALTERNATE mode  
LDO4_SRC[1:0]: LDO4 input source. Provides status of LDO4 input switch selection.  
00: LDO4 is OFF  
[6 :5] 01: VIN supply selected  
10: VBUSOTG supply selected  
11: BSTOUT supply selected  
R_VINOK_FA: Restart is due to VINOK_Fall turn-OFF condition while RREQ_EN bit is set  
[4]  
[3]  
[2]  
[1]  
[0]  
0: False  
1: True  
R_PKEYLKP: Restart is due to PONKEYn long key press turn- OFF condition while RREQ_EN bit is set  
0: False  
1: True  
R_WDG: Restart is due to watchdog turn-OFF condition while RREQ_EN bit is set  
0: False  
1: True  
R_SWOFF: Restart is due to SWOFF turn-OFF condition while RREQ_EN bit is set  
0: False  
1: True  
R_RST: Restart is due to RSTn signal asserted by application processor  
0: False  
1: True  
DS12792 - Rev 7  
page 73/140  
 
 
STPMIC1  
Status registers  
6.2.6  
Version status register (VERSION_SR)  
Table 24. VERSION_SR  
7
6
5
4
3
2
1
0
MAJOR_VERSION[3:0]  
MINOR_VERSION[3:0]  
R
R
R
R
R
R
R
R
Address: 0x06  
Type: read register only  
Default: 0x21  
Description: version status register. Chip ID version.  
[7 :4]  
[3 :0]  
MAJOR_VERSION[3:0]  
MINOR_VERSION[3:0]  
Reading x21 means that the STPMIC1 has a silicon version 2.1; regardless the STPMIC1A, STPMIC1B,  
STPMIC1C, STPMIC1D and STPMIC1E.  
DS12792 - Rev 7  
page 74/140  
 
 
STPMIC1  
Control registers  
6.3  
Control registers  
6.3.1  
Main control register (MAIN_CR)  
Table 25. MAIN_CR  
3
7
6
5
4
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
OCP_OFF_DBG  
R/W  
PWRCTRL_POL  
R/W  
PWRCTRL_EN  
R/W  
RREQ_EN  
R/W  
SWOFF  
R/W  
Address: 0x10  
Type: read/write register  
Default: 0x00  
Description: main control register. This register is initialized to default values during CHECK&LOAD state.  
[7 :5]  
[4]  
Reserved  
OCP_OFF_DBG: Used as software debug bit to emulate OCP turn-OFF event generation. OCP flags coming from any  
regulators are bypassed when this bit is set.  
0: OCP event is generated based on flags from regulators.  
1: OCP turn-OFF event is generated.  
PWRCTRL_POL: specifies PWRCTRL pin polarity  
[3] 0: PWRCTRL active low  
1: PWRCTRL active high  
PWRCTRL_EN: enable PWRCTRL functionality  
[2] 0: PWRCTRL enable  
1: PWRCTRL disable  
RREQ_EN: allows power cycling on turn-OFF condition  
[1] 0: power cycling is performed only on RSTn assertion by the application processor  
1: Power cycling is performed on turn-OFF condition and on RSTn assertion by the application processor  
SWOFF: Software switch OFF bit  
[0] 0: no effect  
1: switch-OFF requested (POWER_DOWN starts immediately)  
DS12792 - Rev 7  
page 75/140  
 
 
 
STPMIC1  
Control registers  
6.3.2  
Pads pull control register (PADS_PULL_CR)  
Table 26. PADS_PULL_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
WKUP_EN  
R/W  
PWRCTRL_PD  
R/W  
PWRCTRL_PU  
R/W  
WKUP_PD  
R/W  
PKEY_PU  
R/W  
Address: 0x11  
Type: read/write register  
Default: 0x00  
Description: pads pull control register. This register is initialized to default values upon entering CHECK&LOAD  
state.  
[7 :5]  
[4]  
Reserved  
WKUP_EN: Enable WAKEUP detector  
0: WAKEUP detector is enabled  
1: WAKEUP detector is disabled  
PWRCTRL_PD: PWRCTRL pull-down control  
0: PD inactive  
[3]  
1: PD active  
Note: this bit has higher priority than PWRCTRL_PU.  
PWRCTRL_PU: PWRCTRL pull-up control  
0: PU inactive  
[2]  
[1]  
[0]  
1: PU active  
WKUP_PD: WAKEUP pull-down control (reverse logic)  
0: PD active  
1: PD not active  
PKEY_PU: PONKEY pull-up control (reverse logic)  
0: PU active  
1: PU not active  
DS12792 - Rev 7  
page 76/140  
 
 
STPMIC1  
Control registers  
6.3.3  
Bucks pull-down control register (BUCKS_PD_CR)  
Table 27. BUCKS_PD_CR  
7
6
5
4
3
2
1
0
BUCK4_PD[1:0]  
BUCK3_PD[1:0]  
BUCK2_PD[1:0]  
BUCK1_PD[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x12  
Type: read/write register  
Default: 0x00  
Description: Bucks pull-down control register. This register is initialized to default values upon entering to  
CHECK&LOAD state  
BUCK4_PD[1:0]:  
00: light PD active when ENA of Buck4 = 0  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
01: high PD active when ENA of Buck4 = 0  
10: light and high PD forced inactive  
11: light PD forced active  
BUCK3_PD[1:0]:  
00: light PD active when ENA of Buck3 = 0  
01: high PD active when ENA of Buck3 = 0  
10: light and high PD forced inactive  
11: light PD forced active  
BUCK2_PD[1:0]:  
00: light PD active when ENA of Buck2 = 0  
01: high PD active when ENA of Buck2 = 0  
10: light and high PD forced inactive  
11: light PD forced active  
BUCK1_PD[1:0]:  
00: light PD active when ENA of Buck1 = 0  
01: high PD active when ENA of Buck1 = 0  
10: light and high PD forced inactive  
11: light PD forced active  
DS12792 - Rev 7  
page 77/140  
 
 
STPMIC1  
Control registers  
6.3.4  
LDO1-4 pull-down control register (LDO14_PD_CR)  
Table 28. LDO14_PD_CR  
7
6
5
4
3
2
1
0
LDO4_PD[1:0]  
LDO3_PD[1:0]  
LDO2_PD[1:0]  
LDO1_PD[1:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x13  
Type: read/write register  
Default: 0x00  
Description: LDO1-4 pull-down control register. This register is initialized to default values upon entering to  
CHECK&LOAD state.  
LDO4_PD[1:0]:  
00: PD active when ENA of LDO4 = 0  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
LDO3_PD[1:0]:  
00: PD active when ENA of LDO3 = 0  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
LDO2_PD[1:0]:  
00: PD active when ENA of LDO2 = 0  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
LDO1_PD[1:0]:  
00: PD active when ENA of LDO1 = 0  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
DS12792 - Rev 7  
page 78/140  
 
 
STPMIC1  
Control registers  
6.3.5  
LDO5/6 pull-down control register (LDO56_VREF_PD_CR)  
Table 29. LDO56_VREF_PD_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
BST_PD  
R/W  
REFDDR_PD[1:0]  
R/W R/W  
LDO6_PD[1:0]  
LDO5_PD[1:0]  
R/W R/W  
R/W  
R/W  
Address: 0x14  
Type: read/write register  
Default: 0x00  
Description: LDO5 and LDO6 pull-down control register. This register is initialized to default values upon entering  
to CHECK&LOAD state.  
[7]  
[6]  
Reserved  
BST_PD: Boost pull-down activation (reverse logic)  
0: PD active when BST_ON = 0  
1: PD inactive when BST_ON = 0  
REFDDR_PD[1:0]:  
00: PD active only when REFDDR disabled  
01: PD forced inactive  
[5:4]  
[3:2]  
[1:0]  
10: PD forced inactive  
11: PD forced active  
LDO6_PD[1:0]:  
00: PD active only when LDO6 disabled  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
LDO5_PD[1:0]:  
00: PD active only when LDO5 disabled  
01: PD forced inactive  
10: PD forced inactive  
11: PD forced active  
DS12792 - Rev 7  
page 79/140  
 
 
STPMIC1  
Control registers  
6.3.6  
PWR_SWOUT and VIN control register (SW_VIN_CR)  
Table 30. SW_VIN_CR  
7
6
5
4
3
2
1
0
SWIN_DET_EN  
R/W  
SWOUT_DET_DIS  
R/W  
VINLOW_HYST[1:0]  
R/W R/W  
VINLOW_TRESH[2:0]  
R/W R/W R/W  
VINLOW_MON  
R/W  
Address: 0x15  
Type: read/write register  
Default: 0x00  
Description: switch and VIN control register. This register is initialized to default values upon entering to  
CHECK&LOAD state.  
SWIN_DET_EN: SWIN detection enable control bit  
[7]  
[6]  
0: SW_IN detector is enabled only when SW_OUT switch is enabled else SW_IN detector is off  
1: SW_IN detector is enabled  
SWOUT_DET_DIS: SWOUT detection disable control bit  
0: SWOUT detector is enabled  
1 : SWOUT detector is disabled  
VINLOW_HYST[1:0]: VINLOW threshold hysteresis  
00: 100 mV  
[5 :4] 01 : 200 mV  
10 : 300 mV  
11: 400 mV  
VINLOW_TRESH[2:0]: VINLOW threshold offset  
000 : VINOK_Fall + 50 mV  
001 : VINOK_Fall + 100 mV  
010 : VINOK_Fall + 150 mV  
[3 :1] 011 : VINOK_Fall + 200 mV  
100 : VINOK_Fall + 250 mV  
101 : VINOK_Fall + 300 mV  
110 : VINOK_Fall + 350 mV  
111 : VINOK_Fall + 400 mV  
VINLOW_MON: VINLOW monitoring enable bit  
[0]  
0: VINLOW monitoring is disabled  
1: VINLOW monitoring is enabled  
DS12792 - Rev 7  
page 80/140  
 
 
STPMIC1  
Control registers  
6.3.7  
PONKEYn turn-OFF control register (PKEY_TURNOFF_CR)  
Table 31. PKEY_TURNOFF_CR  
7
6
PKEY_CLEAR_OCP_FLAG  
R/W  
5
4
3
2
1
0
PKEY_LKP_OFF  
R/W  
reserved  
R/W  
reserved  
R/W  
PKEY_LKP_TMR[3:0]  
R/W R/W R/W R/W  
Address: 0x16  
Type: read/write register  
Default: 0bX0000000 where X depends on the value programmed in NVM  
Description: PONKEYn turn-OFF control register. This register is initialized to default values during  
CHECK&LOAD state.  
PKEY_LKP_OFF:  
0: Turn OFF on long key press inactive  
[7]  
1: Turn OFF on long key press active  
Default value is defined by PKEYLKP_OFF bit in Table 65. NVM_MAIN_CTRL_SHR  
PKEY_CLEAR_OCP_FLAG:  
0: only VIN_POR_Fall can reset LOCK_OCP_FLAG internal signal  
[6]  
1: if PONKEYn pin is pressed for more than PKEY_LKP_TMR[3:0] then LOCK_OCP_FLAG is cleared. This also results  
as turn-ON condition for the STPMIC1  
[5 :4] reserved  
PKEY_LKP_TMR[3:0]: PONKEYn long key press duration  
0000 : 16 s  
0001 : 15 s  
0010 : 14 s  
0011 : 13 s  
0100 : 12 s  
0101 : 11 s  
0110 : 10 s  
[3 :0] 0111 : 9 s  
1000 : 8 s  
1001 : 7 s  
1010: 6 s  
1011 : 5 s  
1100 : 4 s  
1101 : 3 s  
1110 : 2 s  
1111 : 1 s  
DS12792 - Rev 7  
page 81/140  
 
 
STPMIC1  
Control registers  
6.3.8  
Mask reset Buck control register (BUCKS_MRST_CR)  
Table 32. BUCKS_MRST_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
MRST_BUCK4  
R/W  
MRST_BUCK3  
R/W  
MRST_BUCK2  
R/W  
MRST_BUCK1  
R/W  
Address: 0x18  
Type: read/write register  
Default: 0x00  
Description: mask reset Buck control register. Set bit to 1 active Mask reset option for selected Bucks for the next  
NRST power cycle. It is a single shot option. Register is reset to default in CHECK&LOAD state.  
Refer to Section 5.4.4 Reset and mask_reset option.  
[7 :4]  
[3]  
Reserved  
MRST_BUCK4: Buck 4 mask reset option  
0: inactive  
1: Mask default active for Buck4  
MRST_BUCK3: Buck3 mask reset option  
0: inactive  
[2]  
[1]  
[0]  
1: Mask default active for Buck3  
MRST_BUCK2: Buck2 mask reset option  
0: inactive  
1: Mask default active for Buck2  
MRST_BUCK1: Buck1 mask reset option  
0: inactive  
1: Mask default active for Buck1  
DS12792 - Rev 7  
page 82/140  
 
 
STPMIC1  
Control registers  
6.3.9  
Mask reset LDO control register (LDOS_MRST_CR)  
Table 33. LDOS_MRST_CR  
7
6
5
4
3
2
1
0
reserved MRST_REFDDR MRST_LDO6 MRST_LDO5 MRST_LDO4 MRST_LDO3 MRST_LDO2 MRST_LDO1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x1A  
Type: read/write register  
Default: 0x00  
Description: mask reset LDO control register. Set bit to 1 active mask reset option for selected LDO for next  
reset power-cycle. It is a single shot option. Register is reset to default in CHECK&LOAD state. Refer to  
Section 5.4.4 Reset and mask_reset option.  
[7]  
[6]  
Reserved  
MRST_REFDDR: REFDDR LDO mask reset option  
0: inactive  
1: Mask reset active for REFDDR  
MRST_LDO6: LDO6 mask default option  
0: inactive  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
1: mask reset active for LDO6  
MRST_LDO5: LDO5 mask default option  
0: inactive  
1: mask reset active for LDO5  
MRST_LDO4: LDO4 mask default option  
0: inactive  
1: mask reset active for LDO4  
MRST_LDO3: LDO3 mask default option  
0: inactive  
1: mask reset active for LDO3  
MRST_LDO2: LDO2 mask default option  
0: inactive  
1: mask default active for LDO2  
MRST_LDO1: LDO1 mask default option  
0: inactive  
1: mask default active for LDO1  
DS12792 - Rev 7  
page 83/140  
 
 
STPMIC1  
Control registers  
6.3.10  
Watchdog control register (WDG_CR)  
Table 34. WDG_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
WDG_RST  
R/W  
WDG_ENA  
R/W  
Address: 0x1B  
Type: read/write register  
Default: 0x00  
Description: watchdog control register  
[7 :2] Reserved  
WDG_RST: watchdog counter reset  
[1]  
[0]  
0: NA  
1: Watchdog downcounter is reloaded with a value in WDG_TIMER_CR (self-cleared bit)  
WDG_ENA: watchdog enable bit  
0: watchdog is disabled  
1: watchdog is enabled  
DS12792 - Rev 7  
page 84/140  
 
 
STPMIC1  
Control registers  
6.3.11  
Watchdog timer control register (WDG_TMR_CR)  
Table 35. WDG_TMR_CR  
7
6
5
4
3
2
1
0
WDG_TMR [7:0]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x1C  
Type: read/write register  
Default: 0x00  
Description: watchdog timer control register. This register is initialized to default value upon entering  
CHECK&LOAD state.  
WDG_TMR[7:0]: watchdog downcounter period value  
Value in second.  
[7 :0]  
0x00 = 1 s  
0xFF=256 s  
DS12792 - Rev 7  
page 85/140  
 
 
STPMIC1  
Control registers  
6.3.12  
Bucks OCP turn-OFF control register (BUCKS_OCPOFF_CR)  
Table 36. BUCKS_OCPOFF_CR  
7
6
5
4
3
2
1
0
OCPOFF  
BOOST  
OCPOFF  
SWOUT  
OCPOFF  
OCPOFF  
BUCK4  
OCPOFF  
BUCK3  
OCPOFF  
BUCK2  
OCPOFF  
BUCK1  
reserved  
R/W  
VBUSOTG  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x1D  
Type: read/write register  
Default: 0x00  
Description: Buck OCP turn-OFF control register. This register is initialized to default value during CHECK&LOAD  
state.  
[7] reserved  
OCPOFFBOOST: STPMIC1 turn-OFF in case OCP on BOOST  
[6] 0: False  
1: True  
OCPOFFSWOUT: STPMIC1 turn-OFF in case OCP on SWOUT  
[5] 0: False  
1: True  
OCPOFFVBUSOTG: STPMIC1 turn-OFF in case OCP on VBUSOTG  
[4] 0: False  
1: True  
OCPOFFBUCK4: STPMIC1 turn-OFF in case OCP on BUCK4  
[3] 0: False  
1: True  
OCPOFFBUCK3: STPMIC1 turn-OFF in case OCP on BUCK3  
[2] 0: False  
1: True  
OCPOFFBUCK2: STPMIC1 turn-OFF in case OCP on BUCK2  
[1] 0: False  
1: True  
OCPOFFBUCK1: STPMIC1 turn-OFF in case OCP on BUCK1  
[0] 0: False  
1: True  
DS12792 - Rev 7  
page 86/140  
 
 
STPMIC1  
Control registers  
6.3.13  
LDO OCP turn-OFF control register (LDOS_OCPOFF_CR)  
Table 37. LDOS_OCPOFF_CR  
7
6
5
4
3
2
1
0
reserved reserved OCPOFFLDO6 OCPOFFLDO5 OCPOFFLDO4 OCPOFFLDO3 OCPOFFLDO2 OCPOFFLDO1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x1E  
Type: read/write register  
Default: 0x00  
Description: LDO OCP turn-OFF control register. This register is initialized to default value upon entering  
CHECK&LOAD state.  
[7 :6]  
[5]  
Reserved  
OCPOFFLDO6: STPMIC1 Turn-OFF in case OCP on LDO6  
0: False  
1: True  
OCPOFFLDO5: STPMIC1 Turn-OFF in case OCP on LDO5  
[4]  
[3]  
[2]  
[1]  
[0]  
0: False  
1: True  
OCPOFFLDO4: STPMIC1 Turn OFF in case OCP on LDO4  
0: False  
1: True  
OCPOFFLDO3: STPMIC1 Turn-OFF in case OCP on LDO3  
0: False  
1: True  
OCPOFFLDO2: STPMIC1 Turn-OFF in case OCP on LDO2  
0: False  
1: True  
OCPOFFLDO1: STPMIC1 Turn-OFF in case OCP on LDO1  
0: False  
1: True  
DS12792 - Rev 7  
page 87/140  
 
 
STPMIC1  
Power supplies control registers  
6.4  
Power supplies control registers  
6.4.1  
BUCKx MAIN mode control registers (BUCKx_MAIN_CR) (x=1…4)  
Table 38. BUCKx_MAIN_CR  
7
6
5
4
3
2
1
0
VOUT[5:0]  
PREG_MODE  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x20 to 0x23  
Type: Read/write register  
Default: 0bXXXXXX0X where X depends on the value programmed in NVM  
Description: BUCKx MAIN mode control registers. Registers are initialized in CHECK&LOAD state. User can write  
to these registers to control enable, regulation mode and voltage setting of BUCKx that are applied to MAIN  
mode.  
[7:2] VOUT[5:0]: Buck output voltage setting. Refer to Table 10. BUCK output settings  
PREG_MODE: select high power or low power regulation mode  
[1]  
0: High power mode (HP)  
1: Low power mode (LP)  
ENA: Buck enable bit  
0: Buck is disabled  
1: Buck is enabled  
[0]  
DS12792 - Rev 7  
page 88/140  
 
 
 
STPMIC1  
Power supplies control registers  
6.4.2  
REFDDR MAIN mode control register (REFDDR_MAIN_CR)  
Table 39. REFDDR_MAIN_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
ENA  
R/W  
Address: 0x24  
Type: read/write register  
Default: 0x0000000X where X depends on NVM settings  
Description: REFDDR, MAIN mode control register. Register is initialized in CHECK&LOAD mode.  
User can write to this register to control the enable of REFDDR applied to MAIN mode.  
[7 :1]  
[0]  
Reserved  
ENA: VREF_DDR enable bit  
0: VREF_DDR is disabled  
1: VREF_DDR is enabled  
DS12792 - Rev 7  
page 89/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.3  
LDOx MAIN mode control registers (LDOx_MAIN_CR) (x=1, 2, 5, 6)  
Table 40. LDOx_MAIN_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
VOUT[4:0]  
R/W  
Reserved  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x25, 0x26, 0x29, 0x2A  
Type: read/write register  
Default: 0b0XXXXX00 where X depends on the value programmed in NVM  
Description: LDOx (x=1,2,5,6) MAIN mode control register. The register is set to default value in CHECK&LOAD.  
User can write to this register to control both enable and voltage settings of LDOx that are applied to MAIN mode.  
[7]  
[6:2]  
[1]  
Reserved  
VOUT[4:0]: refer to Table 9. LDO output voltage settings  
reserved  
ENA: LDOx enable bit  
0: LDOx is disabled  
1: LDOx is enabled  
[0]  
DS12792 - Rev 7  
page 90/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.4  
LDO3 MAIN mode control register (LDO3_MAIN_CR)  
Table 41. LDO3_MAIN_CR  
7
6
5
4
3
2
1
0
BYPASS  
R/W  
VOUT[4:0]  
R/W  
reserved  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x27  
Type: read/write register  
Default: 0bXXXXXX00 where X depends on the value programmed in NVM  
Description: LDO3 MAIN mode control register. The register is set to a default value in CHECK&LOAD.  
User can write to this register to control bypass, enable and voltage settings of LDO3 that is applied to MAIN  
mode.  
BYPASS: force bypass mode of LDO3  
0: LDO3 is in normal mode  
[7]  
1: LDO3 is in bypass mode. VOUT[4:0] bits have no effect  
[6:2]  
[1]  
VOUT[4:0]: refer to Table 9. LDO output voltage settings  
reserved  
ENA: LDO3 enable bit  
0: LDO3 is disabled  
1: LDO3 is enabled  
[0]  
DS12792 - Rev 7  
page 91/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.5  
LDO4 MAIN mode control register (LDO4_MAIN_CR)  
Table 42. LDO4_MAIN_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
SRC_VBUSOTG  
R/W  
SRC_BOOST  
R/W  
SRC_VIN  
R/W  
reserved  
R/W  
ENA  
R/W  
Address: 0x28  
Type: read/write register  
Default: 0x0000000X  
Description: LDO4 MAIN mode control register. Register is set to a default value in CHECK&LOAD. User can  
write to this register to enable and force the input source of LDO4 that is applied to MAIN mode. If more than one  
SRC_ bit is set, it is taken into account following this priority order: VIN, VBUSOTG, BSTOUT.  
[7 :5]  
[4]  
reserved  
SRC_VBUSOTG: Force VBUSOTG as input source.  
0: automatic  
1: supply switch is set to VBUSOTG  
SRC_BSTOUT: Force BSTOUT has input source.  
0: automatic  
[3]  
1: supply switch is set to BSTOUT  
SRC_VIN: Force VIN has an input source.  
0: automatic  
[2]  
[1]  
[0]  
1: supply switch is set to VIN  
reserved  
ENA: LDO4 enable bit  
0: LDO4 is disabled  
1: LDO4 is enabled  
DS12792 - Rev 7  
page 92/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.6  
BUCKx ALTERNATE mode control registers (BUCKx_ALT_CR)(x=1..4)  
Table 43. BUCKx_ALT_CR  
7
6
5
4
3
2
1
0
VOUT[5:0]  
PREG_MODE  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x30 to 0x33  
Type: read/write register  
Default: 0bXXXXXX00 where X depends on the value programmed in NVM  
Description: BUCKx ALTERNATE mode control registers. The register is set to a default value in CHECK&LOAD.  
User can write to these registers to control enable, regulation mode and voltage settings of BUCKx that is applied  
to ALTERNATE mode.  
[7:2]  
[1]  
VOUT[5:0]: refer to Table 10. BUCK output settings  
PREG_MODE: Force high power - low power mode of buck  
0: high power mode (HP)  
1: low power mode (LP)  
ENA: buck enable bit  
0: buck is disabled  
1: buck is enabled  
[0]  
DS12792 - Rev 7  
page 93/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.7  
REFDDR ALTERNATE mode control register (REFDDR_ALT_CR)  
Table 44. REFDDR_ALT_CR  
7
reserved  
R/W  
6
reserved  
R/W  
5
reserved  
R/W  
4
reserved  
R/W  
3
reserved  
R/W  
2
reserved  
R/W  
1
reserved  
R/W  
0
ENA  
R/W  
Address: 0x34  
Type: read/write register  
Default: 0x00  
Description: REFDDR ALTERNATE mode control register. The register is initialized in CHECK&LOAD mode. User  
can write to this register to control enable of REFDDR that is applied to ALTERNATE mode.  
[7 :1]  
[0]  
Reserved  
ENA: REFDDR enable bit  
0: REFDDR is disabled  
1: REFDDR is enabled  
DS12792 - Rev 7  
page 94/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.8  
LDOx ALTERNATE mode control registers (LDOx_ALT_CR) (x=1, 2, 5, 6)  
Table 45. LDOx_ALT_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
VOUT[4:0]  
R/W  
reserved  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x35, 0x36, 0x39, 0x3A  
Type: read/write register  
Default: 0b0XXXXX0X where X depends on the value programmed in NVM  
Description: LDOx ALTERNATE mode control registers. Register is set to a default value in CHECK&LOAD.  
User can write to these registers to control enable and voltage settings of LDOx that are applied to ALTERNATE  
mode.  
[7]  
[6 :2]  
[1]  
Reserved  
VOUT[4:0]: refer to Table 9. LDO output voltage settings  
reserved  
ENA: LDOx enable bit  
0: LDOx is disabled  
1: LDOx is enabled  
[0]  
DS12792 - Rev 7  
page 95/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.9  
LDO3 ALTERNATE mode control register (LDO3_ALT_CR)  
Table 46. LDO3_ALT_CR  
7
6
5
4
3
2
1
0
BYPASS  
R/W  
VOUT[4:0]  
R/W  
reserved  
R/W  
ENA  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x37  
Type: read/write register  
Default: 0bXXXXXX00 where X depends on the value programmed in NVM  
Description: LDO3 ALTERNATE mode control register. Register is set to a default value in CHECK&LOAD.  
User can write to this register to control bypass, enable and voltage settings of LDO3 that is applied to  
ALTERNATE mode.  
BYPASS: force bypass mode of LDO3  
0: LDO3 is in normal mode  
[7]  
1: LDO3 is in bypass mode. VOUT[4:0] bits have no effect.  
Default value of BYPASS is NVM_LDO3_BYPASS.  
[6:2]  
[1]  
VOUT[4:0]: refer to Table 9. LDO output voltage settings  
reserved  
ENA: LDO3 enable bit  
0: LDO3 is disabled  
1: LDO3 is enabled  
[0]  
DS12792 - Rev 7  
page 96/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.10  
LDO4 ALTERNATE mode control register (LDO4_ALT_CR)  
Table 47. LDO4_ALT_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
ENA  
R/W  
Address: 0x38  
Type: read/write register  
Default: 0x00  
Description: LDO4 ALTERNATE mode control register. Register is set to a default value in CHECK&LOAD.  
User can write to this register to control enable LDO4 that is applied to ALTERNATE mode.  
[7 :1]  
[0]  
Reserved  
ENA: LDO4 enable bit  
0: LDO4 is disabled  
1: LDO4 is enabled  
DS12792 - Rev 7  
page 97/140  
 
 
STPMIC1  
Power supplies control registers  
6.4.11  
Boost/switch control register (BST_SW_CR)  
Table 48. BST_SW_CR  
7
6
5
4
3
2
1
0
RESERVED VBUSOTG_DET_DIS SWOUT_PD VBUSOTG_PD OCP_SWOUT_LIM SWOUT_ON VBUSOTG_ON BST_ON  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0x40  
Type: read/write register  
Default: 0x00  
Description: boost and power switch control register. Register is set to a default value in CHECK&LOAD.  
[7] RESERVED  
VBUSOTG_DET_DIS: PWR_USB_SW detection circuit disable  
[6] 0: detection circuit is enabled  
1: detection circuit is disabled  
SWOUT_PD: SWOUT (PWR_SW) pull-down activation  
[5] 0: PD inactive  
1: PD active when PWR_SW is disabled (SW_ON bit = 0)  
VBUSOTG_PD: PWR_USB_SW pull-down activation  
[4] 0: PD inactive  
1: PD active when PWR_USB_SW is disabled (VBUSOTG_ON bit = 0)  
OCP_SWOUT_LIM: Overcurrent limit protection of PWR_SW switch  
[3] 0: limit max. output current to 600 mA  
1: limit max. output current to 1.1 A  
SWOUT_ON: PWR_SW switch enable bit  
[2] 0: PWR_SW disabled  
1: PWR_SW enabled  
VBUSOTG_ON: PWR_USB_SW switch enable  
[1] 0: PWR_USB_SW disabled  
1: PWR_USB_SW enabled  
BST_ON: BOOST enable bit  
[0] 0: BOOST disabled  
1: BOOST enabled  
DS12792 - Rev 7  
page 98/140  
 
 
STPMIC1  
Interrupt registers  
6.5  
Interrupt registers  
6.5.1  
Overall interrupt register behavior  
No interrupts are stored before RSTn is released. Interrupt registers are all cleared and masked on default and  
turn-OFF conditions.  
Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt pending  
register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) store information about masked and not masked  
events.  
Section 6.5.10 Interrupt clear mask registers (INT_CLEAR_MASK_Rx) or Section 6.5.6 Interrupt debug latch  
registers (INT_DBG_LATCH_Rx) is a write register. Any read on this address provides x00 as data. Writing ‘1’ in a  
bit forces INT_PENDING corresponding bit to ‘1’. Writing ‘0’ has no effect.  
Section 6.5.8 Interrupt mask registers (INT_MASK_Rx) is a read/write register.  
INTn pin is forced low as long as a bit is set in INT_PENDING_Rx and no mask in its corresponding  
Section 6.5.8 Interrupt mask registers (INT_MASK_Rx). Section 6.5.11 Interrupt source register 1  
(INT_SRC_R1), Section 6.5.12 Interrupt source register 2 (INT_SRC_R2), Section 6.5.13 Interrupt source  
register 3 ( INT_SRC_R3) and Section 6.5.14 Interrupt source register 4 ( INT_SRC_R4) reflects a ‘real time’  
status of the event while INT_PENDING_Rx stores events and not levels.  
DS12792 - Rev 7  
page 99/140  
 
 
STPMIC1  
Interrupt registers  
6.5.2  
Interrupt pending register 1 (INT_PENDING_R1)  
Table 49. INT_PENDING_R1  
7
SWOUT_RI  
R
6
SWOUT_FA  
R
5
4
3
WKP_RI  
R
2
WKP_FA  
R
1
0
VBUSOTG_RI  
R
VBUSOTG_FA  
R
PKEY_RI  
R
PKEY_FA  
R
Address: 0x50  
Type: read register only  
Default: 0x00  
Description: interrupt pending register 1. Register is set to default on RSTn assertion.  
For all bits:  
0: IT not pending  
1: IT pending  
[7] SWOUT_RI: VBUS on SWOUT pin (PWR_SW out) rises above SWOUT_Rise treshold  
[6] SWOUT_FA: VBUS on SWOUT pin (PWR_SW out) falls below above SWOUT_Fall treshold  
[5] VBUSOTG_RI: VBUS on VBUSOTG pin (PWR_USB_SW out) rises above VBUSOTG_Rise threshold  
[4] VBUSOTG_FA: VBUS on VBUSOTG pin (PWR_USB_SW out) falls below VBUSOTG_Fall threshold  
[3] WKP_RI: WAKEUP rising edge  
[2] WKP_FA: WAKEUP falling edge  
[1] PKEY_RI: PONKEYn rising edge  
[0] PKEY_FA: PONKEYn falling edge detected  
DS12792 - Rev 7  
page 100/140  
 
 
STPMIC1  
Interrupt registers  
6.5.3  
Interrupt pending register 2 (INT_PENDING_R2)  
Table 50. INT_PENDING_R2  
7
BST_OVP  
R
6
BST_OCP  
R
5
4
3
BUCK4_OCP  
R
2
BUCK3_OCP  
R
1
0
SWOUT_O VBUSOTG_OC  
BUCK2_  
OCP  
BUCK1_OCP  
R
CP  
P
R
R
R
Address: 0x51  
Type: read register only  
Default: 0x00  
Description: interrupt pending register 2. Register is set to default on RSTn assertion  
For all bits:  
0: IT not pending  
1: IT pending  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
BST_OVP: Overvoltage detected on Boost BSTOUT pin  
BST_OCP: Overcurrent detected on Boost BSTOUT pin  
SWOUT_OCP: Current limitation detected on SWOUT pin  
VBUSOTG_OCP: Overcurrent detected on VBUSOTG pin  
BUCK4_OCP: Overcurrent detected on Buck4  
BUCK3_OCP: Overcurrent detected on Buck3  
BUCK2_OCP: Overcurrent detected on Buck2  
BUCK1_OCP: Overcurrent detected on Buck1  
DS12792 - Rev 7  
page 101/140  
 
 
STPMIC1  
Interrupt registers  
6.5.4  
Interrupt pending register 3 (INT_PENDING_R3)  
Table 51. INT_PENDING_R3  
7
SWOUT_SH  
R
6
5
4
3
2
1
0
VBUSOTG_SH  
R
LDO6_OCP LDO5_OCP LDO4_OCP LDO3_OCP LDO2_OCP LDO1_OCP  
R
R
R
R
R
R
Address: 0x52  
Type: read register only  
Default: 0x00  
Description: interrupt pending register 3. Register is set to default on RSTn assertion  
For all bits:  
0: IT not pending  
1: IT pending  
SWOUT_SH: A short event has been detected on SWOUT pin.  
[7]  
Refer to Section 4.5.2 PWR_USB_SW and PWR_SW power switches  
VBUSOTG_SH: A short event has been detected on VBUSOTG pin. Refer to Section 4.5.2 PWR_USB_SW and  
PWR_SW power switches  
[6]  
[5] LDO6_OCP: Current limitation detected on LDO6  
[4] LDO5_OCP: Current limitation detected on LDO5  
[3] LDO4_OCP: Current limitation detected on LDO4  
[2] LDO3_OCP: Current limitation detected on LDO3  
[1] LDO2_OCP: Current limitation detected on LDO2  
[0] LDO1_OCP: Current limitation detected on LDO1  
DS12792 - Rev 7  
page 102/140  
 
 
STPMIC1  
Interrupt registers  
6.5.5  
Interrupt pending register 4 (INT_PENDING_R4)  
Table 52. INT_PENDING_R4  
7
SWIN_RI  
R
6
SWIN_FA  
R
5
reserved  
R
4
reserved  
R
3
VINLOW_RI  
R
2
VINLOW_FA  
R
1
0
THW_RI  
R
THW_FA  
R
Address: 0x53  
Type: read register only  
Default: 0x00  
Description: interrupt pending register 4. Register is set to default on RSTn assertion  
For all bits:  
0: IT not pending  
1: IT pending  
[7]  
[6]  
SWIN_RI: Voltage on SWIN pin (PWR_SW input) rises above SWIN_Rise threshold  
SWIN_FA: Voltage on SWIN pin (PWR_SW input) falls below SWIN_Fall threshold  
[5 :4] reserved  
[3]  
[2]  
[1]  
[0]  
VINLOW_RI: VIN drops below VINLOW_Rise threshold  
VINLOW_FA: VIN rises above VINLOW_Fall threshold  
THW_RI: Temperature rises above Twrn_Rise threshold  
THW_FA: Temperature drops below Twrn_Fall threshold  
DS12792 - Rev 7  
page 103/140  
 
 
STPMIC1  
Interrupt registers  
6.5.6  
Interrupt debug latch registers (INT_DBG_LATCH_Rx)  
Table 53. INT_DBG_LATCH_Rx  
Name  
Address  
7
6
5
4
3
2
1
0
INT_DBG_  
LATCH_R1  
SWOUT  
_RI  
SWOUT  
_FA  
VBUS  
VBUS  
WKP  
WKP  
PKEY  
_RI  
PKEY  
_FA  
0x60  
OTG_RI  
OTG_FA  
_RI  
_FA  
INT_DBG_  
LATCH_R2  
BST  
BST  
SWOUT  
_OCP  
VBUSOTG  
_OCP  
BUCK4_  
OCP  
BUCK3_  
OCP  
BUCK2_ BUCK1_  
0x61  
0x62  
0x63  
_OVP  
_OCP  
OCP  
OCP  
INT_DBG_  
LATCH_R3  
SWOUT_ VBUS  
LDO6_  
LDO5_  
OCP  
LDO4_  
OCP  
LDO3_  
OCP  
LDO2_  
OCP  
LDO1_  
OCP  
SH  
OTG_SH OCP  
INT_DBG_  
LATCH_R4  
SWIN  
_RI  
SWIN  
_FA  
VINLOW VINLOW  
_RI _FA  
THW  
_FA  
reserved reserved  
THW_RI  
Address: 0x60-0x63  
Type: write register - read x00  
Default: 0x00  
Description: interrupt debug latch registers. Write registers only. Read always return 0x00.  
Writing 1 in the bit forces the corresponding interrupt event in INT_PENDING_Rx  
Refer to Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt  
pending register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) about the interrupt description.  
DS12792 - Rev 7  
page 104/140  
 
 
STPMIC1  
Interrupt registers  
6.5.7  
Interrupt clear registers (INT_CLEAR_Rx)  
Table 54. INT_CLEAR_Rx  
Name  
Address  
7
6
5
4
3
2
1
0
INT  
SWOUT SWOUT  
VBUSOTG VBUSOTG WKP  
WKP  
PKEY  
_RI  
PKEY  
_FA  
0x70  
_CLEAR_R1  
_RI  
_FA  
_RI  
_FA  
_RI  
_FA  
INT  
BST  
BST  
SWOUT  
_OCP  
VBUSOTG BUCK4  
BUCK3  
_OCP  
BUCK2 BUCK1  
0x71  
0x72  
0x73  
_CLEAR_R2  
_OVP  
_OCP  
_OCP  
_OCP  
_OCP  
_OCP  
INT  
SWOUT VBUSOTG LDO6_  
LDO5  
_OCP  
LDO4  
_OCP  
LDO3  
_OCP  
LDO2  
_OCP  
LDO1  
_OCP  
_CLEAR_R3  
_SH  
_SH  
OCP  
INT  
SWIN  
_RI  
SWIN  
_FA  
VINLOW VINLOW THW  
_RI _FA _RI  
THW  
_FA  
reserved  
reserved  
_CLEAR_R4  
Address: 0x70-0x73  
Type: write register - read x00  
Default: 0x00  
Description: Interrupt clear registers. Write registers only. Read always return 0x00.  
Writing 1 clears the corresponding interrupt event in INT_PENDING_Rx  
Refer to Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt  
pending register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) about the interrupt description.  
DS12792 - Rev 7  
page 105/140  
 
 
STPMIC1  
Interrupt registers  
6.5.8  
Interrupt mask registers (INT_MASK_Rx)  
Table 55. INT_MASK_Rx  
Name  
Address  
7
6
5
4
3
2
1
0
INT  
_MASK  
_R1  
SWOUT  
_RI  
SWOUT_  
FA  
VBUS  
VBUS  
WKP  
_RI  
WKP  
_FA  
PKEY  
_RI  
PKEY  
_FA  
0x80  
OTG_RI  
OTG_FA  
INT  
_MASK  
_R2  
BST  
SWOUT_  
OCP  
VBUS  
BUCK4_  
OCP  
BUCK3_  
OCP  
BUCK2_  
OCP  
BUCK1_  
OCP  
0x81  
0x82  
0x83  
BST_OCP  
_OVP  
OTG_OCP  
INT  
_MASK  
_R3  
SWOUT  
_SH  
VBUS  
LDO6_  
OCP  
LDO5  
_OCP  
LDO4_  
OCP  
LDO3_  
OCP  
LDO2_  
OCP  
LDO1_  
OCP  
OTG_SH  
INT  
_MASK  
_R4  
SWIN  
_RI  
SWIN  
_FA  
VINLOW_  
RI  
VINLOW_  
FA  
THW  
_RI  
THW  
_FA  
reserved  
reserved  
Address: 0x80 – 0x83  
Type: read/write register  
Default: 0xFF  
0x83  
Description: interrupt mask registers. Registers are default on RSTn assertion.  
Reading 1 from the bit means the corresponding interrupt event is masked  
Refer to Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt  
pending register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) about the interrupt description.  
DS12792 - Rev 7  
page 106/140  
 
 
STPMIC1  
Interrupt registers  
6.5.9  
Interrupt set mask registers (INT_SET_MASK_Rx)  
Table 56. INT_SET_MASK_Rx  
Name  
Address  
7
6
5
4
3
2
1
0
INT_SET  
SWOUT  
_RI  
SWOUT  
_FA  
VBUS  
VBUSOTG  
_FA  
WKP  
_RI  
WKP  
_FA  
PKEY  
_RI  
PKEY  
_FA  
0x90  
_MASK_R1  
OTG_RI  
INT_SET  
BST  
BST  
SWOUT  
_OCP  
VBUS  
BUCK4_  
OCP  
BUCK3_  
OCP  
BUCK2_  
OCP  
BUCK1_  
OCP  
0x91  
0x92  
0x93  
_MASK_R2  
_OVP  
_OCP  
OTG_OCP  
INT_SET  
SWOUT  
_SH  
VBUS  
LDO6_  
OCP  
LDO5_  
OCP  
LDO4_  
OCP  
LDO3_  
OCP  
LDO2_  
OCP  
LDO1_  
OCP  
_MASK_R3  
OTG_SH  
INT_SET  
SWIN  
_RI  
SWIN  
_FA  
VINLOW  
_RI  
VINLOW  
_FA  
THW  
_RI  
THW  
_FA  
reserved  
reserved  
_MASK_R4  
Address: 0x90 – 0x93  
Type: write registers - read x00  
Default: 0x00  
Description: interrupt set mask registers. Registers are default on RSTn assertion  
Writing 1 in the bit forces the mask of the corresponding interrupt event in INT_MASK_Rx  
Refer to Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt  
pending register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) about the interrupt description.  
DS12792 - Rev 7  
page 107/140  
 
 
STPMIC1  
Interrupt registers  
6.5.10  
Interrupt clear mask registers (INT_CLEAR_MASK_Rx)  
Table 57. INT_CLEAR_MASK_Rx  
Name  
Address  
7
6
5
4
3
2
1
0
INT_CLEAR  
_MASK_R1  
SWOUT  
_RI  
SWOUT  
_FA  
VBUS  
VBUS  
WKP  
_RI  
WKP  
_FA  
PKEY  
_RI  
PKEY  
_FA  
0xA0  
OTG_RI  
OTG_FA  
INT_CLEAR  
_MASK_R2  
BST  
BST  
SWOUT  
_OCP  
VBUS  
BUCK4_  
OCP  
BUCK3_  
OCP  
BUCK2_  
OCP  
BUCK1_  
OCP  
0xA1  
0xA2  
0xA3  
_OVP  
_OCP  
OTG_OCP  
INT_CLEAR  
_MASK_R3  
SWOUT  
_SH  
VBUS  
LDO6_  
OCP  
LDO5_  
OCP  
LDO4_  
OCP  
LDO3_  
OCP  
LDO2_  
OCP  
LDO1_  
OCP  
OTG_SH  
INT_CLEAR  
_MASK_R4  
SWIN  
_RI  
SWIN  
_FA  
VINLOW  
_RI  
VINLOW  
_FA  
THW  
_RI  
THW  
_FA  
reserved  
reserved  
Address: 0xA0 – 0xA3  
Type: write register - read x00  
Default: 0x00  
Description: interrupt clear registers. Registers are default on RSTn assertion.  
Writing 1 in the bit clears the mask of the corresponding interrupt in INT_MASK_Rx.  
Refer to Section 6.5.2 Interrupt pending register 1 (INT_PENDING_R1), Section 6.5.3 Interrupt  
pending register 2 (INT_PENDING_R2), Section 6.5.4 Interrupt pending register 3 (INT_PENDING_R3) and  
Section 6.5.5 Interrupt pending register 4 (INT_PENDING_R4) about the interrupt description.  
DS12792 - Rev 7  
page 108/140  
 
 
STPMIC1  
Interrupt registers  
6.5.11  
Interrupt source register 1 (INT_SRC_R1)  
Table 58. INT_SRC_R1  
7
SWOUT  
R
6
reserved  
R
5
VBUSOTG  
R
4
reserved  
R
3
WKP  
R
2
reserved  
R
1
PKEY  
R
0
reserved  
R
Address: 0xB0  
Type: read register  
Default: 0x00  
Description: interrupt source register 1. Register is reset on RSTn assertion.  
State bit is 1 as long as event source is active.  
SWOUT: SWOUT event source state  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
0: inactive  
1: active  
reserved  
VBUSOTG: VBUSOTG event source state  
0: inactive  
1: active  
reserved  
WKP: WAKEUP event source state  
0: inactive  
1: active  
reserved  
PKEY: PONKEYn event source state  
0: inactive  
1: active  
reserved  
DS12792 - Rev 7  
page 109/140  
 
 
STPMIC1  
Interrupt registers  
6.5.12  
Interrupt source register 2 (INT_SRC_R2)  
Table 59. INT_SRC_R2  
7
6
5
4
3
2
1
0
BST_OVP BST_OCP SWOUT_OCP VBUSOTG_OCP BUCK4_OCP BUCK3_OCP BUCK2_OCP BUCK1_OCP  
R
R
R
R
R
R
R
R
Address: 0xB1  
Type: read register  
Default: 0x00  
Description: interrupt source register 2. Register is set to default on RSTn assertion. State bit is 1 as long as  
event source is active.  
BST_OVP: overvoltage detection on Boost output  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
0: inactive  
1: active  
BST_OCP: Current limitation detection on Boost output  
0: inactive  
1: active  
SWOUT_OCP: Current limitation detection on SWOUT  
0: inactive  
1: active  
VBUSOTG_OCP: Current limitation detection on VBUSOTG  
0: inactive  
1: active  
BUCK4_OCP: Current limitation detection on Buck4  
0: inactive  
1: active  
BUCK3_OCP: Current limitation detection on Buck3  
0: inactive  
1: active  
BUCK2_OCP: Current limitation detection on Buck2  
0: inactive  
1: active  
BUCK1_OCP: Current limitation detection on Buck1  
0: inactive  
1: active  
DS12792 - Rev 7  
page 110/140  
 
 
STPMIC1  
Interrupt registers  
6.5.13  
Interrupt source register 3 ( INT_SRC_R3)  
Table 60. INT_SRC_R3  
7
SWOUT_SH  
R
6
5
4
3
2
1
0
VBUSOTG_SH  
R
LDO6_OCP LDO5_OCP LDO4_OCP LDO3_OCP LDO2_OCP LDO1_OCP  
R
R
R
R
R
R
Address: 0xB2  
Type: read register  
Default: 0x00  
Description: interrupt source register 3. Register is default on RSTn assertion. State bit is 1 as long as event  
source is active.  
SWOUT_SH: Current limitation detection on SWOUT  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
0: inactive  
1: active  
VBUSOTG_SH: Current limitation detection on VBUSOTG  
0: inactive  
1: active  
LDO6_OCP: Current limitation detection on LDO6  
0: inactive  
1: active  
LDO5_OCP: Current limitation detection on LDO5  
0: inactive  
1: active  
LDO4_OCP: Current limitation detection on LDO4  
0: inactive  
1: active  
LDO3_OCP: Current limitation detection on LDO3  
0: inactive  
1: active  
LDO2_OCP: Current limitation detection on LDO2  
0: inactive  
1: active  
LDO1_OCP: Current Limitation detection on LDO1  
0: inactive  
1: active  
DS12792 - Rev 7  
page 111/140  
 
 
STPMIC1  
Interrupt registers  
6.5.14  
Interrupt source register 4 ( INT_SRC_R4)  
Table 61. INT_SRC_R4  
7
SWIN  
R
6
reserved  
R
5
reserved  
R
4
reserved  
R
3
VINLOW  
R
2
reserved  
R
1
THW  
R
0
reserved  
R
Address: 0xB3  
Type: read register  
Default: 0x00  
Description: interrupt source register 4. Register is default on RSTn assertion. State bit is 1 as long as event  
source is active.  
SWIN: SWIN event source state  
[7]  
[6 :4]  
[3]  
0: inactive  
1: active  
reserved  
VINLOW: VINLOW event source state  
0: inactive  
1: active  
[2]  
reserved  
THW: Temperature event source state  
[1]  
0: inactive  
1: active  
[0]  
reserved  
DS12792 - Rev 7  
page 112/140  
 
 
STPMIC1  
NVM registers  
6.6  
NVM registers  
6.6.1  
NVM status register (NVM_SR)  
Table 62. NVM_SR  
7
reserved  
R
6
reserved  
R
5
reserved  
R
4
reserved  
R
3
reserved  
R
2
reserved  
R
1
reserved  
R
0
NVM_BUSY  
R
Address: 0xB8  
Type: read only register  
Default: 0x00  
Description: NVM status register.  
[7 :1]  
[0]  
reserved  
NVM_BUSY: NVM controller status  
0: NVM controller is in idle state  
1: NVM controller is in busy state  
Self-cleared when the operation is completed  
DS12792 - Rev 7  
page 113/140  
 
 
 
STPMIC1  
NVM registers  
6.6.2  
NVM control register (NVM_CR)  
Table 63. NVM_CR  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
NVM_CMD[1:0]  
R/W  
R/W  
Address: 0xB9  
Type: read/write register  
Default: 0x00  
Description: NVM control register  
[7 :2] reserved  
NVM_CMD[1:0]: NVM controller command bits to control NVM operation on NVM shadow register bits.  
00: No operation  
[1:0] 01: Program (write shadow register to NVM)  
10: Read (load NVM content into shadow registers)  
11: No operation  
DS12792 - Rev 7  
page 114/140  
 
 
STPMIC1  
NVM shadow registers  
6.7  
NVM shadow registers  
DS12792 - Rev 7  
page 115/140  
 
STPMIC1  
NVM shadow registers  
DS12792 - Rev 7  
page 116/140  
 
STPMIC1  
NVM shadow registers  
DS12792 - Rev 7  
page 117/140  
STPMIC1  
NVM shadow registers  
6.7.1  
NVM main control shadow register (NVM_MAIN_CTRL_SHR)  
Table 65. NVM_MAIN_CTRL_SHR  
7
6
5
4
3
2
1
0
VINOK_HYS[1:0]  
R/W R/W  
VINOK_THRES[1:0]  
R/W R/W  
FORCE_LDO4  
R/W  
PEKYLKP_OFF  
R/W  
AUTO_TURN_ON  
R/W  
LOCK_OCP  
R/W  
Address: 0xF8  
Type: read write register  
Default: depends on the part number, refer to Table 64. NVM shadow register map  
Description: NVM main control shadow register.  
VINOK_HYS[1:0]: VINOK threshold hysteresis  
00 : 200 mV  
[7:6] 01 : 300 mV  
10: 400 mV  
11: 500 mV  
VINOK_THRES[1:0]: VINOK_Rise threshold voltage  
00 : 3.1 V  
[5:4] 01 : 3.3 V  
10: 3.5 V  
11: 4.0 V  
FORCE_LDO4:  
[3] 0: LDO4 starts with rank LDO4_RANK[1:0] only if VBUS_det turn-ON condition occurs  
1: LDO4 starts with rank LDO4_RANK[1:0] every turn-ON condition  
PKEYLKP_OFF:  
[2] 0: Turn-OFF on long key press inactive  
1: Turn-OFF on long key press active  
AUTO_TURN_ON:  
[1] 0: STPMIC1 does not start automatically on VIN rising  
1: STPMIC1 starts automatically on VIN rising  
LOCK_OCP:  
0: STPMIC1 is turned OFF only if regulator related OCPOFF bit is set in Section 6.3.12 Bucks OCP turn-OFF control  
register (BUCKS_OCPOFF_CR) or Section 6.3.13 LDO OCP turn-OFF control register (LDOS_OCPOFF_CR) .  
[0]  
1: short-circuit turn-OFF STPMIC1 and keep it in LOCK_OCP state until LOCK_OCP_FLAG is reset  
Refer to Section 5.4.7 Overcurrent protection (OCP)  
DS12792 - Rev 7  
page 118/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.2  
NVM BUCK rank shadow register (NVM_BUCKS_RANK_SHR)  
Table 66. NVM_BUCKS_RANK_SHR  
7
6
5
4
3
2
1
0
BUCK4_RANK[1:0]  
BUCK3_RANK[1:0]  
R/W R/W  
BUCK2_RANK[1:0]  
R/W R/W  
BUCK1_RANK [1:0]  
R/W  
R/W  
R/W  
R/W  
Address: 0xF9  
Type: read write register  
Default: Depends on part number refer to Table 64. NVM shadow register map  
Description: NVM buck rank shadow register.  
BUCK4_RANK[1:0]:  
00: rank0  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
01: rank1  
10: rank2  
11: rank3  
BUCK3_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
BUCK2_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
BUCK1_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
DS12792 - Rev 7  
page 119/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.3  
NVM LDOs rank shadow register 1 (NVM_LDOS_RANK_SHR1)  
Table 67. NVM_LDOS_RANK_SHR1  
7
6
5
4
3
2
1
0
LDO4_RANK[1:0]  
R/W R/W  
LDO3_RANK[1:0]  
R/W R/W  
LDO2_RANK[1:0]  
R/W R/W  
LDO1_RANK[1:0]  
R/W  
R/W  
Address: 0xFA  
Type: read write register  
Default: Depends on part number refer to Table 64. NVM shadow register map  
Description: NVM LDOs rank shadow register 1.  
LDO4_RANK[1:0]:  
00: rank0  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
01: rank1  
10: rank2  
11: rank3  
LDO3_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
LDO2_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
LDO1_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
DS12792 - Rev 7  
page 120/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.4  
NVM LDOs rank shadow register 2 (NVM_LDOS_RANK_SHR2)  
Table 68. NVM_LDOS_RANK_SHR2  
7
6
5
4
3
2
1
0
BUCK4_CLAMP  
R/W  
LDO3_BYPASS  
R/W  
REFDDR_RANK[1:0]  
R/W R/W  
LDO6_RANK[1:0]  
R/W R/W  
LDO5_RANK[1:0]  
R/W  
R/W  
Address: 0xFB  
Type: read write register  
Default: depends on part number refer to Table 64. NVM shadow register map  
Description: NVM LDOs rank shadow register 2  
BUCK4_CLAMP: Clamp Buck4 output value to 1.3 V max.  
[7]  
[6]  
0: VOUT[5:0] of Buck4 is not clamped  
1: VOUT[5:0] of Buck4 is clamped to b011100 (1.3 V)  
LDO3_BYPASS: LDO3 forced bypass mode  
0: LDO3 not in bypass mode  
1: LDO3 in bypass mode  
REFDDR_RANK[1:0]:  
00: rank0  
[5:4]  
[3:2]  
[1:0]  
01: rank1  
10: rank2  
11: rank3  
LDO6_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
LDO5_RANK[1:0]:  
00: rank0  
01: rank1  
10: rank2  
11: rank3  
DS12792 - Rev 7  
page 121/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.5  
NVM BUCKs voltage output shadow register (NVM_BUCKS_VOUT_SHR)  
Table 69. NVM_BUCKS_VOUT_SHR  
7
6
5
4
3
2
1
0
BUCK4_VOUT[1:0]  
BUCK3_VOUT[1:0]  
R/W R/W  
BUCK2_VOUT[1:0]  
R/W R/W  
BUCK1_VOUT[1:0]  
R/W  
R/W  
R/W  
R/W  
Address: 0xFC  
Type: read write register  
Default: depends on part number refer to Table 64. NVM shadow register map  
Description: NVM Bucks VOUT register.  
BUCK4_VOUT[1:0]: Buck4 default output selection  
00: 1.15 V  
[7:6]  
[5:4]  
[3:2]  
[1:0]  
01: 1.2 V  
10: 1.8 V  
11: 3.3 V  
BUCK3_VOUT[1:0]: Buck3 default output selection  
00: 1.2 V  
01: 1.8 V  
10: 3.0 V  
11: 3.3 V  
BUCK2_VOUT[1:0]: Buck2 default output selection  
00: 1.1 V  
01: 1.2 V  
10: 1.35 V  
11: 1.5 V  
BUCK1_VOUT[1:0]: Buck1 default output selection  
00: 1.1 V  
01: 1.15 V  
10: 1.2 V  
11: 1.5 V  
DS12792 - Rev 7  
page 122/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.6  
NVM LDOs voltage output shadow register 1 (NVM_LDOS_VOUT_SHR1  
Table 70. NVM_LDOS_VOUT_SHR1  
7
SWOUT_BOOST_OVP  
R/W  
6
5
4
3
2
1
0
reserved  
R/W  
LDO3_VOUT[1:0]  
R/W R/W  
LDO2_VOUT[1:0]  
R/W R/W  
LDO1_VOUT[1:0]  
R/W  
R/W  
Address: 0xFD  
Type: read write register  
Default: depends on part number refer to Table 64. NVM shadow register map  
Description: NVM LDO1 to LDO3 default voltage output setting shadow register.  
SWOUT_BOOST_OVP:  
[7]  
[6]  
0: PWR_SW does not turn OFF if boost OVP occurs  
1: PWR_SW is turned OFF automatically if Boost OVP occurs  
reserved  
LDO3_VOUT[1:0]: LDO3 default output selection  
00: 1.8 V  
[5:4]  
[3:2]  
[1:0]  
01: 2.5 V  
10: 3.3 V  
11: VOUT[5:0] of Buck2 divided by 2  
LDO2_VOUT[1:0]: LDO2 default output selection  
00: 1.8 V  
01: 2.5 V  
10: 2.9 V  
11: 3.3 V  
LDO1_VOUT[1:0]: LDO1 default output selection  
00: 1.8 V  
01: 2.5 V  
10: 2.9 V  
11: 3.3 V  
DS12792 - Rev 7  
page 123/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.7  
NVM LDOs voltage output shadow register 2 (NVM_LDOS_VOUT_SHR2)  
Table 71. NVM_LDOS_VOUT_SHR2  
7
6
5
4
3
2
1
0
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
reserved  
R/W  
LDO6_VOUT[1:0]  
R/W R/W  
LDO5_VOUT[1:0]  
R/W  
R/W  
Address: 0xFE  
Type: read write register  
Default: depends on part number refer to Table 64. NVM shadow register map  
Description: NVM LDO5-6 voltage output shadow register.  
[7:4]  
[3:2]  
reserved  
LDO6_VOUT[1:0]: LDO6 default output selection  
00: 1.0 V  
01: 1.2 V  
10: 1.8 V  
11: 3.3 V  
LDO5_VOUT[1:0]: LDO5 default output selection  
00: 1.8 V  
01: 2.5 V  
10: 2.9 V  
11 : 3.3 V  
[1:0]  
DS12792 - Rev 7  
page 124/140  
 
 
STPMIC1  
NVM shadow registers  
6.7.8  
NVM device address shadow register (I2C_ADDR_SHR)  
Table 72. NVM_I2C_ADDR_AHR  
7
6
5
4
3
2
1
0
reserved  
R/W  
I2C_ADDR[6:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Address: 0xFF  
Type: read write register  
Default: depends on part number refer to Table 64. NVM shadow register map  
Description: NVM device address shadow register.  
[7]  
Reserved  
2
I2C_ADDR[6:0]: I C device address.  
[6:0]  
Warning: applied immediately, next access should use new address  
DS12792 - Rev 7  
page 125/140  
 
 
STPMIC1  
Package information  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages,  
depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product  
status are available at: www.st.com. ECOPACK is an ST trademark.  
7.1  
WFQFN 44L (5X6X0.8) package information  
Figure 64. WFQFN 44L (5X6X0.8) package outline  
DS12792 - Rev 7  
page 126/140  
 
 
 
STPMIC1  
WFQFN 44L (5X6X0.8) package information  
Table 73. WFQFN 44L (5X6X0.8) mechanical data  
mm  
Typ.  
Symbol  
Min.  
0.65  
0.00  
Max.  
0.80  
0.05  
A
A1  
A3  
b
0.75  
0.02  
0.2 REF  
0.21  
0.16  
3.40  
0.26  
3.60  
D
5.00 BSC  
3.50  
D2  
e
0.40 BSC  
6.00 BSC  
4.50  
E
E2  
L
4.40  
0.30  
0.20  
4.60  
0.50  
0.40  
k
N
44  
Figure 65. WFQFN 44L (5X6X0.8) recommended footprint  
DS12792 - Rev 7  
page 127/140  
 
 
STPMIC1  
Packing information  
7.2  
Packing information  
Figure 66. Tape outline  
Figure 67. Reeel outline  
DS12792 - Rev 7  
page 128/140  
 
 
 
STPMIC1  
Marking composition  
8
Marking composition  
Figure 68. Marking composition  
MARKING COMPOSITION :  
PACKAGE FACE: TOP  
VFQFPN 5.0 X 6.0 X 1 44L PITCH 0.4  
LEGEND  
Unmarkable surface  
A
B
Marking composition field  
A - 85256 - DOT  
B - 85264 - MARKING AREA  
C
F
D
E
K
C - 85263 - Assy Plant  
(PP)  
D - 85262 - BE Sequence  
G
H
(LLL)  
E - 85261 - Diffusion  
Traceability Plant  
(WX)  
J
I
F - 85260 - COUNTRY OF ORIGIN  
(MAX CHAR ALLOWED = 3)  
G - 85259 - Assy Year  
(Y)  
H - 85258 - Assy Week  
(WW)  
I - 85265 - Second_lvl_intct  
J - 85255 - MARKING AREA  
K - 85257 - ADDITIONAL  
INFORMATION  
(MAX CHAR ALLOWED = 2)  
DS12792 - Rev 7  
page 129/140  
 
 
STPMIC1  
Ordering information  
9
Ordering information  
Table 74. Ordering information  
Order code  
Part number  
STPMIC1A  
STPMIC1B  
STPMIC1C  
STPMIC1D  
STPMIC1E  
Marking  
VIO (BUCK3) programming  
Packing  
STPMIC1APQR(1)  
STPMIC1BPQR(1)  
STPMIC1CPQR(1)  
STPMIC1DPQR(1)  
STPMIC1EPQR(1)  
3.3 V(2)  
1.8 V(2)  
STPMIC1A  
STPMIC1B  
STPMIC1C  
STPMIC1D  
STPMIC1E  
Not programmed  
3.3 V(2)  
WFQFN 44L (5x6x0.8)  
1.8 V(2)  
1. xR= tape and reel packing  
2. Refer to Table 1. Default NVM configuration vs part number for all default output voltages in NVM configuration.  
DS12792 - Rev 7  
page 130/140  
 
 
 
 
STPMIC1  
Revision history  
Table 75. Document revision history  
Date  
Version  
Changes  
26-Jun-2019  
1
Initial release.  
Updated Table 4. Absolute maximum ratings, Table 7. Electrical and timing  
parameters and Table 11. Turn-on description.  
17-Oct-2019  
2
Updated Figure 68. Marking composition.  
Updated Section 4.5 Boost converter and power switches and  
Section 5.4.2 Turn-ON conditions.  
Updated Section 1 Device configuration, Section 5.5.2 Non-volatile  
memory (NVM) and Section 6.7.8 NVM device address shadow register  
(I2C_ADDR_SHR).  
30-Jan-2020  
22-Jun-2020  
3
4
Updated Table 3. Pin description, Table 4. Absolute maximum ratings,  
Table 7. Electrical and timing parameters and Table 18. Register map.  
Updated , Table 1. Default NVM configuration vs part number and  
Table 74. Ordering information.  
23-Sep-2020  
5
Updated Section 5.5.2 Non-volatile memory (NVM) and  
Section 6.2.6 Version status register (VERSION_SR).  
27-Nov-2020  
15-Dec-2020  
6
7
Updated Table 2. Passive components.  
Added the Section 7.2 Packing information.  
DS12792 - Rev 7  
page 131/140  
 
 
STPMIC1  
Contents  
Contents  
1
2
Device configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Typical application schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.1  
2.2  
Recommended external components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.1  
3.2  
3.3  
3.4  
3.5  
Absolute maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Consumption in typical application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical and timing parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Application board curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4
Power regulators and switch description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.1  
4.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.2.1  
4.2.2  
4.2.3  
LDO regulators - common features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
LDO regulators - special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LDO output voltage settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3  
4.4  
4.5  
4.6  
DDR memory sub-system examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
4.3.1  
4.3.2  
Powering lpDDR2/lpDDR3 memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Powering DDR3/DDR3L memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Buck converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
4.4.1  
4.4.2  
BUCK general description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
BUCK output voltage settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Boost converter and power switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.5.1  
4.5.2  
Boost converter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
PWR_USB_SW and PWR_SW power switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
USB sub-system examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
5
Functional description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
5.1  
5.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Functional state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
5.2.1  
Main state machine diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
DS12792 - Rev 7  
page 132/140  
STPMIC1  
Contents  
5.2.2  
State explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.3  
5.4  
POWER_UP, POWER_DOWN sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Feature description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
5.4.9  
VIN conditions and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Turn-ON conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Turn-OFF conditions and restart_request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Reset and mask_reset option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Power control modes (MAIN / ALTERNATE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Overcurrent protection (OCP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
BOOST overvoltage protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Watchdog feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5.5  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
2
5.5.1  
5.5.2  
I C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Non-volatile memory (NVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
6
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
6.1  
6.2  
User register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
Turn-ON status register (TURN_ON_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Turn-OFF status register (TURN_OFF_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Overcurrent protection LDO turn-OFF status register (OCP_LDOS_SR) . . . . . . . . . . . . . 71  
Overcurrent protection buck turn-OFF status register (OCP_BUCKS_BSW_SR) . . . . . . . 72  
Restart status register (RESTART_SR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Version status register (VERSION_SR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.3  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
Main control register (MAIN_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Pads pull control register (PADS_PULL_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Bucks pull-down control register (BUCKS_PD_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
LDO1-4 pull-down control register (LDO14_PD_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
LDO5/6 pull-down control register (LDO56_VREF_PD_CR) . . . . . . . . . . . . . . . . . . . . . . . 79  
PWR_SWOUT and VIN control register (SW_VIN_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
PONKEYn turn-OFF control register (PKEY_TURNOFF_CR). . . . . . . . . . . . . . . . . . . . . . 81  
DS12792 - Rev 7  
page 133/140  
STPMIC1  
Contents  
6.3.8  
6.3.9  
Mask reset Buck control register (BUCKS_MRST_CR). . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Mask reset LDO control register (LDOS_MRST_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.10 Watchdog control register (WDG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.11 Watchdog timer control register (WDG_TMR_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
6.3.12 Bucks OCP turn-OFF control register (BUCKS_OCPOFF_CR) . . . . . . . . . . . . . . . . . . . . 86  
6.3.13 LDO OCP turn-OFF control register (LDOS_OCPOFF_CR) . . . . . . . . . . . . . . . . . . . . . . . 87  
Power supplies control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
6.4.7  
6.4.8  
6.4.9  
BUCKx MAIN mode control registers (BUCKx_MAIN_CR) (x=1…4). . . . . . . . . . . . . . . . . 88  
REFDDR MAIN mode control register (REFDDR_MAIN_CR). . . . . . . . . . . . . . . . . . . . . . 89  
LDOx MAIN mode control registers (LDOx_MAIN_CR) (x=1, 2, 5, 6) . . . . . . . . . . . . . . . . 90  
LDO3 MAIN mode control register (LDO3_MAIN_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
LDO4 MAIN mode control register (LDO4_MAIN_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
BUCKx ALTERNATE mode control registers (BUCKx_ALT_CR)(x=1..4). . . . . . . . . . . . . . 93  
REFDDR ALTERNATE mode control register (REFDDR_ALT_CR) . . . . . . . . . . . . . . . . . 94  
LDOx ALTERNATE mode control registers (LDOx_ALT_CR) (x=1, 2, 5, 6). . . . . . . . . . . . 95  
LDO3 ALTERNATE mode control register (LDO3_ALT_CR) . . . . . . . . . . . . . . . . . . . . . . . 96  
6.4.10 LDO4 ALTERNATE mode control register (LDO4_ALT_CR) . . . . . . . . . . . . . . . . . . . . . . . 97  
6.4.11 Boost/switch control register (BST_SW_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6.5  
Interrupt registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
6.5.5  
6.5.6  
6.5.7  
6.5.8  
6.5.9  
Overall interrupt register behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Interrupt pending register 1 (INT_PENDING_R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Interrupt pending register 2 (INT_PENDING_R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Interrupt pending register 3 (INT_PENDING_R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Interrupt pending register 4 (INT_PENDING_R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Interrupt debug latch registers (INT_DBG_LATCH_Rx) . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Interrupt clear registers (INT_CLEAR_Rx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Interrupt mask registers (INT_MASK_Rx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Interrupt set mask registers (INT_SET_MASK_Rx). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6.5.10 Interrupt clear mask registers (INT_CLEAR_MASK_Rx). . . . . . . . . . . . . . . . . . . . . . . . . 108  
6.5.11 Interrupt source register 1 (INT_SRC_R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
6.5.12 Interrupt source register 2 (INT_SRC_R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
6.5.13 Interrupt source register 3 ( INT_SRC_R3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
DS12792 - Rev 7  
page 134/140  
STPMIC1  
Contents  
6.5.14 Interrupt source register 4 ( INT_SRC_R4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
6.6  
6.7  
NVM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.6.1  
6.6.2  
NVM status register (NVM_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
NVM control register (NVM_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
NVM shadow registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
6.7.1  
6.7.2  
6.7.3  
6.7.4  
6.7.5  
6.7.6  
6.7.7  
6.7.8  
NVM main control shadow register (NVM_MAIN_CTRL_SHR). . . . . . . . . . . . . . . . . . . . 118  
NVM BUCK rank shadow register (NVM_BUCKS_RANK_SHR). . . . . . . . . . . . . . . . . . . 119  
NVM LDOs rank shadow register 1 (NVM_LDOS_RANK_SHR1) . . . . . . . . . . . . . . . . . . 120  
NVM LDOs rank shadow register 2 (NVM_LDOS_RANK_SHR2) . . . . . . . . . . . . . . . . . . 121  
NVM BUCKs voltage output shadow register (NVM_BUCKS_VOUT_SHR) . . . . . . . . . . 122  
NVM LDOs voltage output shadow register 1 (NVM_LDOS_VOUT_SHR1. . . . . . . . . . . 123  
NVM LDOs voltage output shadow register 2 (NVM_LDOS_VOUT_SHR2) . . . . . . . . . . 124  
NVM device address shadow register (I2C_ADDR_SHR). . . . . . . . . . . . . . . . . . . . . . . . 125  
7
Package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
7.1  
7.2  
WFQFN 44L (5x6x0.8) package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
8
9
Marking composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
DS12792 - Rev 7  
page 135/140  
STPMIC1  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Default NVM configuration vs part number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Passive components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Consumption in typical application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical and timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LDO output voltage settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 10. BUCK output settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 11. Turn-on description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 12. Turn-off conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 13. MAIN/ALTERNATE switch example configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 14. OCP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 15. Device ID format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 16. Register address format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 17. Register data format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 18. Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 19. TURN_ON_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 20. TURN_OFF_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Table 21. OCP_LDOS_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 22. OCP_BUCKS_BSW_SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 23. RESTART_SR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Table 24. VERSION_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 25. MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 26. PADS_PULL_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Table 27. BUCKS_PD_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Table 28. LDO14_PD_CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 29. LDO56_VREF_PD_CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 30. SW_VIN_CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Table 31. PKEY_TURNOFF_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Table 32. BUCKS_MRST_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Table 33. LDOS_MRST_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Table 34. WDG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 35. WDG_TMR_CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 36. BUCKS_OCPOFF_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Table 37. LDOS_OCPOFF_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Table 38. BUCKx_MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Table 39. REFDDR_MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Table 40. LDOx_MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Table 41. LDO3_MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Table 42. LDO4_MAIN_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Table 43. BUCKx_ALT_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Table 44. REFDDR_ALT_CR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Table 45. LDOx_ALT_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Table 46. LDO3_ALT_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Table 47. LDO4_ALT_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Table 48. BST_SW_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Table 49. INT_PENDING_R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Table 50. INT_PENDING_R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Table 51. INT_PENDING_R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Table 52. INT_PENDING_R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
DS12792 - Rev 7  
page 136/140  
STPMIC1  
List of tables  
Table 53. INT_DBG_LATCH_Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Table 54. INT_CLEAR_Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Table 55. INT_MASK_Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Table 56. INT_SET_MASK_Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Table 57. INT_CLEAR_MASK_Rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Table 58. INT_SRC_R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Table 59. INT_SRC_R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Table 60. INT_SRC_R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Table 61. INT_SRC_R4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Table 62. NVM_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Table 63. NVM_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Table 64. NVM shadow register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Table 65. NVM_MAIN_CTRL_SHR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Table 66. NVM_BUCKS_RANK_SHR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Table 67. NVM_LDOS_RANK_SHR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Table 68. NVM_LDOS_RANK_SHR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Table 69. NVM_BUCKS_VOUT_SHR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Table 70. NVM_LDOS_VOUT_SHR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Table 71. NVM_LDOS_VOUT_SHR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Table 72. NVM_I2C_ADDR_AHR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Table 73. WFQFN 44L (5X6X0.8) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Table 74. Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Table 75. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
DS12792 - Rev 7  
page 137/140  
STPMIC1  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration WFQFN 44L top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
BUCK1 efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BUCK2 efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BUCK3 efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BUCK4 efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Boost efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Boost powered by 5 V supply having poor performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
BUCK1 load transient in HP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck1 load transient in LP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
BUCK2 load transient in HP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck2 load transient in LP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck3 load transient in HP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck3 load transient in LP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck4 load transient in HP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Buck4 load transient in LP mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LDO1 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO2 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO3 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO4 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO5 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO6 load transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LDO4 line transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Boost output vs. input voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Boost load regulation 5 VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Boost load regulation 3.6 VIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO1 line transient, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO2 line transient, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO3 line transient, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO5 line transient, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO6 line transient, no load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LDO3 sink/source mode load transient response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Buck1 turn-ON waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STPMIC1A POWER_UP sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STPMIC1A POWER_UP sequencing PONKEYn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STPMIC1A POWER_DOWN sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STPMIC1A reset sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
LDO start-up/shutdown timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Powering lpDDR2/lpDDR3 memory (LDO3 in bypass mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Powering lpDDR2/lpDDR3 memory (LDO3 normal mode supplied from VIN) . . . . . . . . . . . . . . . . . . . . . . . . 32  
Powering DDR3/DDR3L memory (LDO3 in sink/source mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
PWM clock generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
PWM clock synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Buck block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
BUCKx LP to HP mode recovery time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
BUCKx start-up/shutdown timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
BUCKx dynamic voltage scaling (DVS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Boost and switch block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Boost start-up sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Battery powered application with a USB OTG port and a USB host port . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Battery powered application with a single USB OTG port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
5 V DC powered application with a USB OTG port and two USB host ports . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 9.  
Figure 10.  
Figure 11.  
Figure 12.  
Figure 13.  
Figure 14.  
Figure 15.  
Figure 16.  
Figure 17.  
Figure 18.  
Figure 19.  
Figure 20.  
Figure 21.  
Figure 22.  
Figure 23.  
Figure 24.  
Figure 25.  
Figure 26.  
Figure 27.  
Figure 28.  
Figure 29.  
Figure 30.  
Figure 31.  
Figure 32.  
Figure 33.  
Figure 34.  
Figure 35.  
Figure 36.  
Figure 37.  
Figure 38.  
Figure 39.  
Figure 40.  
Figure 41.  
Figure 42.  
Figure 43.  
Figure 44.  
Figure 45.  
Figure 46.  
Figure 47.  
Figure 48.  
Figure 49.  
Figure 50.  
Figure 51.  
Figure 52.  
DS12792 - Rev 7  
page 138/140  
STPMIC1  
List of figures  
Figure 53.  
Figure 54.  
Figure 55.  
Figure 56.  
Figure 57.  
Figure 58.  
Figure 59.  
Figure 60.  
Figure 61.  
STPMIC1 state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
STPMIC1 POWER_UP and POWER_DOWN sequence example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
VIN monitoring thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Auto turn-on condition sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Turn-on condition after VIN_POR_RISE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Turn-on condition before VIN_POR_Rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Reset power-cycle sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power mode switch sequence example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Thermal protection thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 62.  
I2C read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Figure 63.  
Figure 64.  
Figure 65.  
Figure 66.  
Figure 67.  
Figure 68.  
I2C write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
WFQFN 44L (5X6X0.8) package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
WFQFN 44L (5X6X0.8) recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Tape outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Reeel outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Marking composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
DS12792 - Rev 7  
page 139/140  
STPMIC1  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST  
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST  
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of  
Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service  
names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2020 STMicroelectronics – All rights reserved  
DS12792 - Rev 7  
page 140/140  

相关型号:

STPMIC1BPQR

Highly integrated power management IC for micro processor units
STMICROELECTR

STPMIC1CPQR

Highly integrated power management IC for micro processor units
STMICROELECTR

STPMIC1DPQR

Highly integrated power management IC for micro processor units
STMICROELECTR

STPMIC1EPQR

Highly integrated power management IC for micro processor units
STMICROELECTR

STPMS1

Dual-channel 1-bit, 2 MHz, 1st order sigma-delta modulator with embedded PGA
STMICROELECTR

STPMS2H-PUR

Smart sensor II dual-channel 1-bit, 4 MHz, second-order sigma-delta modulator with embedded PGLNA
STMICROELECTR

STPMS2L-PUR

Smart sensor II dual-channel 1-bit, 4 MHz, second-order sigma-delta modulator with embedded PGLNA
STMICROELECTR

STPN-FK-M3

Multi-Range ON DELAY TIMER/FLICKER
FOTEK

STPN-M1

Multi-Range ON DELAY TIMER/FLICKER
FOTEK

STPN-M1H

Multi-Range ON DELAY TIMER/FLICKER
FOTEK

STPN-M3H

Multi-Range ON DELAY TIMER/FLICKER
FOTEK

STPN-M3M6

Multi-Range ON DELAY TIMER/FLICKER
FOTEK