STR630FZ2H6 [STMICROELECTRONICS]

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, PBGA144, 10 X 10 MM, 1.70 MM HEIGHT, LFBGA-144;
STR630FZ2H6
型号: STR630FZ2H6
厂家: ST    ST
描述:

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, PBGA144, 10 X 10 MM, 1.70 MM HEIGHT, LFBGA-144

时钟 外围集成电路
文件: 总51页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STR73xF  
ARM7TDMI™ 32-bit MCU with Flash, 3x CAN,  
4 UARTs, 20 timers, ADC, 12 comm. interfaces  
Core  
– ARM7TDMI 32-bit RISC CPU  
– 32 MIPS @ 36 MHz  
Memories  
TQFP100 14 x 14  
– Up to 256 Kbytes FLASH program memory  
(10,000 cycles endurance, data retention  
20 years @ 85° C)  
TQFP144  
20 x 20  
LFBGA144 10 x 10 x 1.7  
– 16 Kbytes RAM  
Clock, reset and supply management  
– 4.5 - 5.5V application supply and I/Os  
– Embedded 1.8V regulator for core supply  
DMA  
– 4 DMA controllers with 4 channels each  
Timers  
– Embedded oscillator running from external  
4-8MHz crystal or ceramic resonator  
– 16-bit watchdog timer (WDG)  
– 6/10 16-bit timers (TIM) each with: 2 input  
captures, 2 output compares, PWM and  
pulse counter modes  
– 6 16-bit PWM modules (PWM)  
– 3 16-bit timebase timers with 8-bit  
prescalers  
– Up to 36 MHz CPU freq. with internal PLL  
– Internal RC oscillator 32kHz or 2MHz  
software configurable for fast startup and  
backup clock  
– Realtime Clock for clock-calendar function  
– Wakeup Timer driven by internal RC for  
wakeup from STOP mode  
12 communications interfaces  
2
– 5 power saving modes: SLOW, WFI,  
LPWFI, STOP and HALT modes  
– 2 I C interfaces  
– 4 UART asynchronous serial interfaces  
– 3 BSPI synchronous serial interfaces  
– Up to 3 CAN interfaces (2.0B Active)  
Nested interrupt controller  
– Fast interrupt handling with multiple vectors  
– 64 maskable IRQs with 64 vectors and 16  
priority levels  
– 2 maskable FIQ sources  
10-bit A/D converter  
– 12/16 channels  
– Conversion time: min. 3µs, range: 0 to 5V  
– 16 ext. interrupts, up to 32 wake-up lines  
Development tools support  
Up to 112 I/O ports  
– JTAG interface  
– 72/112 multifunctional bidirectional I/Os  
Table 1.  
Device summary  
Features  
STR730FZx  
128K 256K  
16K  
STR735FZx  
128K 256K  
STR731FVx  
STR736FVx  
FLASH memory - bytes  
64K  
128K  
256K  
16K  
64K  
128K  
256K  
RAM - bytes  
10 TIM Timers, 112 I/Os, 32 Wake-Up  
lines, 16 ADC channels  
6 TIM Timers, 72 I/Os, 18 Wake-Up lines,  
12 ADC channels  
Peripheral Functions  
CAN Peripherals  
Operating Voltage  
3
0
3
0
4.5 to 5.5V  
Operating Temperature  
-40 to +85°C/-40 to +105°C  
T=TQFP144 20 x 20  
H=LFBGA144 10 x10  
Packages  
T=TQFP100 14x14  
June 2006  
Rev 5  
1/51  
www.st.com  
51  
STR73xF  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.1  
2.2.2  
2.2.3  
STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2.3  
Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.2  
3.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
4
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4.1  
4.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5
6
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
6.1  
Low Power Wait For Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
2/51  
STR73xF  
6.2  
PLL free running mode at high temperature . . . . . . . . . . . . . . . . . . . . . . 49  
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3/51  
Introduction  
STR73xF  
1
Introduction  
This datasheet provides the STR73x Ordering Information, Mechanical and Electrical  
Device Characteristics.  
For complete information on the STR73xF Microcontroller memory, registers and  
peripherals. please refer to the STR73x Reference Manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STR7 Flash Programming Reference Manual  
For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference  
Manual.  
1.1  
Overview  
ARM core with embedded Flash & RAM  
STR73xF family combines the high performance ARM7TDMI CPU with an extensive range  
of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed  
single voltage FLASH memory and high-speed RAM. The STR73xF family has an  
embedded ARM core and is therefore compatible with all ARM tools and software.  
Extensive tools support  
STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete  
range of high-end and low-cost development tools to meet the needs of application  
developers. This extensive line of hardware/software tools includes starter kits and complete  
development packages all tailored for ST’s ARM core-based MCUs.  
The range of development packages includes third-party solutions that come complete with  
a graphical development environment and an in-circuit emulator/programmer featuring a  
JTAG application interface. These support a range of embedded operating systems (OS),  
while several royalty-free OSs are also available.  
For more information, please refer to ST MCU site http://www.st.com/mcu  
Figure 1 shows the general block diagram of the device family.  
Package Choice: Reduced Pin-Count TQFP100 or Feature-Rich 144-pin TQFP or  
LFBGA  
The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions  
have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC  
channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on  
each package.  
The family includes versions with and without CAN.  
4/51  
 
STR73xF  
Introduction  
High Speed Flash Memory  
The Flash program memory is organized in 32-bit wide memory cells which can be used for  
storing both code and data constants. It is accessed by CPU with zero wait states @ 36  
MHz.  
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or  
In-Application programming.  
The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years  
@ 85° C.  
IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory  
of a microcontroller while the user program is running.  
ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a  
microcontroller using JTAG protocol while the device is mounted on the user application  
board.  
The Flash memory can be protected against different types of unwanted access  
(read/write/erase). There are two types of protection:  
Sector Write Protection  
Flash Debug Protection (locks JTAG access)  
Flexible Power Management  
To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI  
LPWFI, STOP or HALT modes depending on the current system activity in the application.  
Flexible Clock Control  
Two clock sources are used to drive the microcontroller, a main clock driven by an external  
crystal or ceramic resonator and an internal backup RC oscillator that operates at 2MHz or  
32 kHz. The embedded PLL can be configured to generate an internal system clock of up to  
36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers  
and dividers.  
Voltage Regulators  
The STR73xF requires an external 4.5 to 5.5V power supply. There are two internal Voltage  
Regulators for generating the 1.8V power supply needed by the core and peripherals. The  
main VR is switched off and the Low Power VR switched on when the application puts the  
STR73xF in Low Power Wait for Interrupt (LPWFI) mode.  
Low Voltage Detectors  
The voltage regulator and Flash modules each have an embedded LVD that monitors the  
internal 1.8V supply. If the voltage drops below a certain threshold, the LVD will reset the  
STR73xF.  
Note: An external power-on reset must be provided ensure the microcontroller starts-up  
correctly.  
5/51  
Introduction  
STR73xF  
1.2  
On-Chip Peripherals  
CAN Interfaces  
The three CAN modules are compliant with the CAN specification V2.0 part B (active). The  
bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and  
STR736.  
DMA  
4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to  
peripheral, peripheral to memory and memory to peripheral transfers. The DMA requests  
are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be  
configured to be triggered by a software request, independently from any peripheral activity.  
16-bit Timers (TIM)  
Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit  
prescaler, up to two input capture/output compare functions, a pulse counter function, and a  
PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12  
in 100-pin devices) when added with the PWM modules (see next paragraph).  
PWM Modules (PWM)  
The six 16-bit PWM modules have independently programmable periods and duty-cycles,  
with 5+3 bit prescaler factor.  
Timebase Timers (TB)  
The three 16-bit Timebase Timers with 8-bit prescaler for general purpose time triggering  
operations.  
Realtime Clock (RTC)  
The RTC provides a set of continuously running counters driven by separate clock signal  
derived from the main oscillator. The RTC can be used as a general timebase or  
clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps  
running, powered by the low power voltage regulator.  
UARTs  
The 4 UARTs allow full duplex, asynchronous, communications with external devices with  
independently programmable TX and RX baud rates up to 625K baud.  
Buffered Serial Peripheral Interfaces (BSPI)  
Each of the three BSPIs allow full duplex, synchronous communications with external  
devices, master or slave communication at up 6 Mb/s (@36 MHz System Clock).  
2
I C Interfaces  
2
The two I C Interfaces provide multi-master and slave functions, support normal and fast  
2
I C mode (400 kHz) and 7 or 10-bit addressing modes.  
A/D Converter  
The 10-bit Analog to Digital Converter, converts up to 16 channels in single-shot or  
continuous conversion modes (12 channels in 100-pin devices). The minimum conversion  
time is 3us.  
6/51  
STR73xF  
Introduction  
Watchdog  
The 16-bit Watchdog Timer protects the application against hardware or software failures  
and ensures recovery by generating a reset.  
I/O Ports  
Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose  
input/output or Alternate Function.  
External Interrupts and Wake-Up Lines  
16 external interrupts lines are available for application use. In addition, up to 32 external  
Wakeup lines (18 in 100-pin devices) can be used as general purpose interrupts or to wake-  
up the application from STOP mode.  
7/51  
Block Diagram  
STR73xF  
2
Block Diagram  
Figure 1.  
STR730F/STR735F block diagram  
RSTIN  
PRCCU/PLL  
FLASH  
M0  
M1  
TEST  
Program Memory  
64/128/256K  
ARM7TDMI  
CPU  
RAM  
16K  
JTDI  
JTCK  
JTMS  
JTRST  
JTDO  
JTAG  
APB  
BRIDGE 0  
V18  
VDD  
POWER SUPPLY  
VREG  
APB  
BRIDGE 1  
VSS  
VDDA  
VSSA  
AHB  
BRIDGE  
AHB BUS  
DMA0-3  
WATCHDOG  
CLOCK MGT (CMU)  
XTAL1  
XTAL2  
4 AF  
32 AF  
8 AF  
I2C0-1  
OSC  
RTC  
WAKEUP/INT (WIU)  
UART0, 1, 2, 3  
INTERRUPT CTL (EIC)  
A/D CONVERTER (ADC)  
16 AF  
12 AF  
TIMEBASE TIMER  
(TB) 0-2  
TIMER (TIM) 2-4  
WAKEUP TIMER  
(WUT)  
12 AF  
6 AF  
BSPI 0-2  
CAN 0-2*  
PWM 0-5  
8 AF  
TIMER (TIM) 0-1  
TIMER (TIM) 5-9  
20 AF  
6 AF  
122 ports  
GPIO PORTS 0-6  
AF: alternate function on I/O port pin  
*CAN peripherals not available on STR735F.  
8/51  
STR73xF  
Block Diagram  
Figure 2.  
STR731F/STR736 block diagram  
RSTIN  
PRCCU/PLL  
FLASH  
M0  
M1  
TEST  
Program Memory  
64/128/256K  
ARM7TDMI  
CPU  
RAM  
16K  
JTDI  
JTCK  
JTMS  
JTRST  
JTDO  
JTAG  
APB  
BRIDGE 0  
V18  
VDD  
VSS  
POWER SUPPLY  
VREG  
APB  
BRIDGE 1  
VDDA  
VSSA  
AHB  
BRIDGE  
AHB BUS  
DMA0-3  
WATCHDOG  
CLOCK MGT (CMU)  
XTAL1  
XTAL2  
4 AF  
I2C0-1  
OSC  
RTC  
18 AF  
8 AF  
WAKEUP/INT (WIU)  
UART0, 1, 2, 3  
INTERRUPT CTL (EIC)  
A/D CONVERTER (ADC)  
12 AF  
12 AF  
TIMEBASE TIMER  
(TB) 0-2  
TIMER (TIM) 2-4  
WAKEUP TIMER  
(WUT)  
12 AF  
6 AF  
BSPI 0-2  
CAN 0-2*  
PWM 0-5  
8 AF  
4 AF  
TIMER (TIM) 0-1  
TIMER (TIM) 5  
6 AF  
72 ports  
GPIO PORTS 0-6  
AF: alternate function on I/O port pin  
*CAN peripherals not available on STR736F.  
9/51  
Block Diagram  
STR73xF  
2.1  
Related Documentation  
Available from www.arm.com:  
ARM7TDMI Technical Reference Manual  
Available from http://www.st.com:  
STR73x Reference Manual  
STR7 Flash Programming Reference Manual  
STR73x Software Library User Manual  
For a list of related application notes refer to http://www.st.com.  
10/51  
STR73xF  
Block Diagram  
2.2  
Pin description  
2.2.1  
STR730F/STR735F (TQFP144)  
Figure 3.  
STR730F/STR735F pin configuration (top view)  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
OCMPB2 / P0.0  
OCMPA2 / P0.1  
ICAPA2 / P0.2  
ICAPB2 / P0.3  
VSS  
P4.14 / SS1  
P4.13 / ICAPB9  
P4.12 / ICAPA9 / WUP21  
P4.11 / OCMPB8  
P4.10 / ICAPA6 / WUP20  
P4.9 / ICAPB6  
P4.8 / OCMPA8  
P4.7 / SDA1  
P4.6 / SCL1 / WUP19  
P4.5 / CAN2RX / WUP18  
P4.4 / CAN2TX  
P4.3 / ICAPB8 / WUP27  
P4.2 / ICAPA8 / WUP26  
P4.1 / ICAPB7 / WUP25  
P4.0 / ICAPA7 / WUP24  
VDD  
VSS  
JTDO  
JTCK  
JTMS  
JTDI  
JTRST  
VSS  
VDD  
P3.15 / AIN15 / INT5  
P3.14 / AIN14 / INT4  
P3.13 / AIN13 / INT3  
P3.12 / AIN12 / INT2  
P3.11 / AIN11  
P3.10 / AIN10  
P3.9 / AIN9  
P3.8 / AIN8  
VDDA  
VSSA  
P3.7 / AIN7  
VDD  
OCMPA5 / P0.4  
OCMPB5 / P0.5  
ICAPA5 / P0.6  
ICAPB5 / P0.7  
OCMPA6 / P0.8  
OCMPB6 / P0.9  
OCMPA7 / P0.10  
OCMPB7 / P0.11  
VDD  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSS  
ICAPA3 / P0.12  
ICAPB3 / P0.13  
OCMPB3 / P0.14  
OCMPA3 / P0.15  
OCMPA4 / P1.0  
OCMPB4 / P1.1  
ICAPB4 / P1.2  
ICAPA4 / P1.3  
VSS  
STR730F/STR735F  
VDD  
P1.4  
P1.5  
OCMPB1 / P1.6  
OCMPA1 / P1.7  
INT0 / OCMPA0 / P1.8  
INT1 / OCMPB0 / P1.9  
ICAPB0 / WUP28 / P1.10  
ICAPA0 / WUP29 / P1.11  
ICAPA1 / WUP30 / P1.12  
ICAPB1 / WUP31 / P1.13  
74  
73  
P3.6 / AIN6  
Note 1: CAN alternate functions not available on STR735F.  
11/51  
Block Diagram  
STR73xF  
2.2.2  
STR730F/STR735F (LFBGA144)  
Table 2.  
Ball  
STR730F/STR735F LFBGA ball connections  
Name  
Ball  
Name  
Ball  
Name  
Ball  
Name  
A1  
A2  
P0.0 / OCMPB2  
P6.10 / WUP8  
P6.9 / TDO0  
P6.12 / MOSI0  
P6.6 / WUP6  
V18  
B1  
B2  
B3  
P0.4 / OCMPA5  
P0.1 / OCMPA2  
P6.15 / WUP9  
C1  
C2  
C3  
P0.5 / OCMPB5  
P0.2 / ICAPA2  
P0.3 / ICAPB2  
P6.14 / SSO  
P6.8 / RDI0 / WUP10  
P6.3 / WUP3  
VSS  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
VSS  
VDD  
A3  
P0.6 / ICAPA5  
P0.7 /ICAPB5  
P6.11 / MISO0  
P6.4 / WUP4 /TDO3  
VDD  
A4  
B4 P6.13 / SCKO / WUP11 C4  
A5  
B5  
B6  
P6.7 / WUP7  
P6.2 / WUP2 / RDI3  
P5.14 / INT12  
P5.9 / INT7  
C5  
C6  
A6  
A7  
P5.15 / INT13  
P5.8 / INT6  
B7  
C7  
A8  
B8  
C8  
P5.10 / INT8 / RDI2  
P5.4 / SS2  
P5.12 / INT10  
P5.5 / SCK2 / WUP23  
P4.13 / ICAPB9  
A9  
P5.2 / OCMPA9  
P5.7 / MISO2  
P5.6 / MOSI2  
B9  
P5.3 / OCMPB9  
P5.0 / MOSI1  
C9  
A10  
A11  
B10  
C10  
P5.1 / MISO1  
P4.14 / SS1  
P4.7 / SDA1  
VSS  
B11 P4.15 / SCK1 / WUP22 C11  
D11 P4.12 / ICAPA9 / WUP21  
A12  
E1  
E2  
E3  
E4  
E5  
E6  
P5.11 / TDO2 / INT9  
P0.8 / OCMPA6  
P0.9 / OCMPB6  
P0.10 / OCMPA7  
P0.11 / OCMPB7  
P0.12 / ICAPA3  
P6.5 / WUP5  
B12  
F1  
F2  
F3  
F4  
F5  
F6  
P4.8 / OCMPA8  
VDD  
C12  
G1  
G2  
G3  
G4  
G5  
G6  
D12  
H1  
H2  
H3  
H4  
H5  
H6  
P4.11 / OCMPB8  
VDD  
P0.13 / ICAPB3  
P0.14 / OCMPB3  
P0.15 / OCMPA3  
P1.0 / OCMPA4  
P1.1 / OCMPB4  
P1.2 / ICAPB4  
P1.3 / ICAPA4  
VSS  
P1.8 / OCMPA0 / INT0  
P1.9 / OCMPB0 / INT1  
P1.10 / ICAPB0 / WUP28  
XTAL2  
P1.5  
P2.11 / WUP17  
P2.10 / WUP16  
P4.0 / ICAPA7 /  
WUP24  
E7  
E8  
E9  
P6.0 / WUP0  
P5.13 / INT11  
F7  
F8  
F9  
P6.1 / WUP1  
G7  
G8  
G9  
H7  
H8  
H9  
P2.15 / SDA 0  
JTMS  
P4.4 / CAN2TX1)  
VDD  
P4.10 / ICAPA6 /  
WUP20  
P4.3 / ICAPB8 /  
WUP27  
VSS  
VSS  
P4.2 / ICAPA8 /  
WUP26  
E10  
P4.9 / ICAPB6  
F10  
G10  
G11  
G12  
L1  
JTDO  
JTCK  
H10  
H11  
H12  
M1  
VDD  
P4.1 / ICAPB7 /  
WUP25  
E11 P4.6 / SCL1 / WUP19 F11  
P4.5 / WUP18 /  
P3.15 / AIN15 / INT5  
P3.14 / AIN14 / INT4  
E12  
F12  
JTDI  
nJTRST  
CAN2RX1)  
P1.14 / CAN0RX1)  
WUP12  
/
J1  
P1.4  
K1  
P1.6 / OCMPB1  
P1.7 / OCMPA1  
P1.15 / CAN0TX1)  
P2.0 / PWM0  
P1.11 / ICAPA0 /  
WUP29  
P1.13 / ICAPB1 /  
WUP31  
P2.1 / CAN1RX1)  
WUP13  
J2  
K2  
L2  
M2  
P2.4 / PWM2  
P1.12 / ICAPA1 /  
WUP30  
/
J3  
K3  
L3  
M3  
P2.5 / PWM3  
J4  
J5  
J6  
P2.7 / PWM5  
VDD  
K4  
K5  
K6  
P2.6 / PWM4  
M1  
L4  
L5  
P2.3 / PWM1  
RSTIN  
M4  
M5  
P2.2 / CAN1TX1)  
M0  
P2.9 / RDI1 / WUP14  
P2.8 / TDO1  
P2.13 / INT15  
P3.0 / AIN0  
P3.4 / AIN4  
VDDA  
L6  
VSS  
M6  
VSS  
J7 P2.14 / SCL 0 / WUP15 K7  
L7  
P2.12 / INT14  
VBIAS  
M7  
XTAL1  
J8  
J9  
P3.1 / AIN1  
P3.13 / AIN13 / INT3  
P3.12 / AIN12 / INT2  
P3.9 / AIN9  
K8  
K9  
L8  
M8  
TST  
L9  
P3.3 / AIN3  
P3.5 / AIN5  
P3.7 / AIN7  
P3.10 / AIN10  
M9  
P3.2 / AIN2  
VSS  
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
VSSA  
VDD  
P3.8 / AIN8  
P3.11 / AIN11  
P3.6 / AIN6  
Note 1: CAN alternate functions not available on STR735F.  
12/51  
STR73xF  
Block Diagram  
2.2.3  
STR731F/STR736F (TQFP100)  
Figure 4.  
STR731F/STR736F pin configuration (top view)  
P4.14 / SS1  
P4.10 / ICAPB5 / WUP20  
P4.7 / SDA1  
OCMPB2 / P0.0  
OCMPA2 / P0.1  
ICAPA2 / P0.2  
ICAPB2 / P0.3  
OCMPA5 / P0.4  
OCMPB5 / P0.5  
ICAPA5 / P0.6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
P4.6 / SCL1 / WUP19  
V
DD  
V
SS  
JTDO  
JTCK  
JTMS  
JTDI  
V
DD  
V
9
SS  
ICAPA3 / P0.12  
ICAPB3 / P0.13  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
JTRST  
V
OCMPB3 / P0.14  
OCMPA3 / P0.15  
OCMPA4 / P1.0  
OCMPB4 / P1.1  
ICAPB4 / P1.2  
ICAPA4 / P1.3  
OCMPB1 / P1.6  
OCMPA1 / P1.7  
SS  
STR731F/STR736F  
V
DD  
P3.15 / AIN11 / INT5  
P3.14 / AIN10 / INT4  
P3.13 / AIN9 / INT3  
P3.12 / AIN8 / INT2  
P3.11 / AIN7  
P3.10 / AIN6  
P3.9 / AIN5  
P3.8 / AIN4  
INT0 / OCMPA0 / P1.8  
INT1 / OCMPB0 / P1.9  
ICAPB0 / WUP28 / P1.10  
ICAPA0 / WUP29 / P1.11  
ICAPA1 / WUP30 / P1.12  
ICAPB1 / WUP31 / P1.13  
V
DDA  
V
SSA  
P3.7 / AIN3  
P3.6 / AIN2  
Note 1: CAN alternate functions not available on STR736F.  
13/51  
Block Diagram  
Legend / Abbreviations for Table 3:  
STR73xF  
Type:  
I = input, O = output, S = supply, HiZ= high impedance,  
In/Output level:  
T = TTL 0.8V / 2V with input trigger  
T
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
Port and control configuration:  
Input:  
pu/pd = with internal 100kweak pull-up or pull down  
Output:  
OD = open drain (logic level)  
PP = push-pull  
Interrupts:  
INTx =external interrupt line  
WUPx =Wake-Up interrupt line  
The reset state (during and just after the reset) of the I/O ports is input floating (Input Tristate  
TTL mode). To avoid excess power consumption, unused I/O ports must be tied to ground.  
Table 3.  
Pin n°  
STR73xF pin description  
Input  
Output  
Main  
functio  
n
Pin Name  
Alternate function  
(after  
reset)  
1
2
3
4
5
6
7
8
9
A1  
1
2
3
4
P0.0/OCMPB2 I/O TT  
P0.1/OCMPA2 I/O TT  
2mA  
X
X
X
X
X Port 0.0 TIM2: Output Compare B output  
X Port 0.1 TIM2: Output Compare A output  
X Port 0.2 TIM2: Input Capture A input  
X Port 0.3 TIM2: Input Capture B input  
Ground  
B2  
C2  
C3  
D1  
D2  
B1  
C1  
D3  
2mA  
2mA  
2mA  
P0.2/ICAPA2  
P0.3/ICAPB2  
VSS  
I/O TT  
I/O TT  
S
S
VDD  
Supply voltage (5V)  
5
6
7
P0.4/OCMPA5 I/O TT  
P0.5/OCMPB5 I/O TT  
2mA  
2mA  
2mA  
2mA  
2mA  
2mA  
X
X
X
X
X
X
X Port 0.4 TIM5: Output Compare A output  
X Port 0.5 TIM5: Output Compare B output  
X Port 0.6 TIM5: Input Capture A input  
X Port 0.7 TIM5: Input Capture B input  
X Port 0.8 TIM6: Output Compare A output  
X Port 0.9 TIM6: Output Compare B output  
Port  
P0.6/ICAPA5  
P0.7/ICAPB5  
I/O TT  
I/O TT  
10 D4  
11 E1  
12 E2  
P0.8/OCMPA6 I/O TT  
P0.9/OCMPB6 I/O TT  
13 E3  
14 E4  
P0.10/OCMPA7 I/O TT  
2mA  
2mA  
X
X
X
TIM7: Output Compare A output  
0.10  
P0.11/OCMPB  
7
Port  
0.11  
I/O TT  
X
TIM7: Output Compare B output  
15 F1  
16 G1  
8
9
VDD  
VSS  
S
S
Supply voltage (5V)  
Ground  
Port  
0.12  
17 E5 10 P0.12/ICAPA3  
I/O TT  
2mA  
X
X
TIM3: Input Capture A input  
14/51  
STR73xF  
Block Diagram  
Table 3.  
Pin n°  
STR73xF pin description  
Pin Name  
Input  
Output  
Main  
functio  
n
Alternate function  
(after  
reset)  
Port  
0.13  
18 F2 11 P0.13/ICAPB3 I/O TT  
P0.14/OCMPB  
2mA  
X
X
X
X
X
X
TIM3: Input Capture B input  
Port  
0.14  
19 F3 12  
I/O TT  
2mA  
2mA  
TIM3: Output Compare B output  
TIM3: Output Compare A output  
3
Port  
0.15  
20 F4 13 P0.15/OCMPA3 I/O TT  
21 F5 14 P1.0/OCMPA4 I/O TT  
22 F6 15 P1.1/OCMPB4 I/O TT  
2mA  
2mA  
2mA  
2mA  
X
X
X
X
X Port 1.0 TIM4: Output Compare A output  
X Port 1.1 TIM4: Output Compare B output  
X Port 1.2 TIM4: Input Capture B input  
X Port 1.3 TIM4: Input Capture A input  
Ground  
23 G2 16 P1.2/ICAPB4  
24 G3 17 P1.3/ICAPA4  
I/O TT  
I/O TT  
S
25 G4  
26 H1  
27 J1  
28 G5  
VSS  
VDD  
P1.4  
P1.5  
S
Supply voltage (5V)  
I/O TT  
I/O TT  
2mA  
2mA  
2mA  
2mA  
2mA  
2mA  
X
X
X
X
X
X
X Port 1.4  
X Port 1.5  
29 K1 18 P1.6/OCMPB1 I/O TT  
30 L1 19 P1.7/OCMPA1 I/O TT  
31 H2 20 P1.8/OCMPA0 I/O TT  
32 H3 21 P1.9/OCMPB0 I/O TT  
X Port 1.6 TIM1: Output Compare B output  
X Port 1.7 TIM1: Output Compare A output  
X Port 1.8 TIM0: Output Compare A output  
X Port 1.9 TIM0: Output Compare B output  
Port  
INT0  
INT1  
33 H4 22 P1.10/ICAPB0 I/O TT  
WUP28 2mA  
WUP29 2mA  
WUP30 2mA  
WUP31 2mA  
WUP12 2mA  
2mA  
X
X
X
X
X
X
X
X
X
X
X
X
TIM0: Input Capture B input  
TIM0: Input Capture A input  
TIM1: Input Capture A input  
TIM1: Input Capture B input  
CAN0: Receive Data input  
CAN0: Transmit Data output  
1.10  
Port  
1.11  
34 J2 23 P1.11/ICAPA0  
35 J3 24 P1.12/ICAPA1  
I/O TT  
I/O TT  
Port  
1.12  
Port  
1.13  
36 K2 25 P1.13/ICAPB1 I/O TT  
37 M1 26 P1.14/CAN0RX I/O TT  
38 L2 27 P1.15/CAN0TX I/O TT  
Port  
1.14  
Port  
1.15  
39 L3 28 P2.0/PWM0  
I/O TT  
2mA  
WUP13 2mA  
2mA  
X
X
X
X
X
X Port 2.0 PWM0: PWM output  
X Port 2.1 CAN1: Receive Data input  
X Port 2.2 CAN1: Transmit Data output  
X Port 2.3 PWM1: PWM output  
X Port 2.4 PWM2: PWM output  
40 K3 29 P2.1/CAN1RX I/O TT  
41 M4 30 P2.2/CAN1TX  
42 L4 31 P2.3/PWM1  
43 M2 32 P2.4/PWM2  
I/O TT  
I/O TT  
I/O TT  
2mA  
2mA  
15/51  
Block Diagram  
STR73xF  
Table 3.  
Pin n°  
STR73xF pin description  
Input  
Output  
Main  
functio  
n
Pin Name  
Alternate function  
(after  
reset)  
44 M3  
45 K4  
46 J4  
P2.5/PWM3  
P2.6/PWM4  
P2.7/PWM5  
I/O TT  
I/O TT  
I/O TT  
2mA  
X
X
X
X Port 2.5 PWM3: PWM output  
X Port 2.6 PWM4: PWM output  
X Port 2.7 PWM5: PWM output  
BOOT: Mode selection 0 input  
Reset input  
2mA  
2mA  
47 M5 33 M0  
48 L5 34 RSTIN  
49 K5 35 M1  
50 J5 36 VDD  
51 M6 37 VSS  
I
I
TT pd  
CT pu  
TT pd  
I
BOOT: Mode selection 1 input  
Supply voltage (5V)  
S
S
Ground  
Oscillator amplifier circuit input and  
internal clock generator input.  
52 M7 38 XTAL1  
I
53 H5 39 XTAL2  
54 L6 40 VSS  
O
S
Oscillator amplifier circuit output.  
Ground  
CAN2:Receive  
Data input  
UART1:  
X Port 2.8 Transmit Data  
output  
P2.8/TDO1/CA  
N2RX  
55 K6 41  
I/O TT  
2mA  
X
X
(TQFP100  
only)  
CAN2:  
UART1:  
X Port 2.9 Receive Data  
input  
Transmit Data  
output  
(TQFP100  
only)  
P2.9/RDI1/CAN  
2TX  
56 J6 42  
I/O TT  
WUP14 2mA  
Port  
X
57 H6  
58 G6  
59 L7  
60 K7  
P2.10  
P2.11  
P2.12  
P2.13  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
WUP16 2mA  
WUP17 2mA  
INT14 2mA  
INT15 2mA  
WUP15 2mA  
2mA  
X
X
X
X
X
X
2.10  
Port  
X
2.11  
Port  
X
2.12  
Port  
X
2.13  
Port  
2.14  
61 J7 43 P2.14/SCL0  
X
X
I2C0:Serial Clock  
I2C0:Serial Data  
Port  
2.15  
62 H7 44 P2.15/SDA0  
63 M8 45 Test  
I/O TT  
I
pd  
Reserved pin. Must be tied to ground  
16/51  
STR73xF  
Block Diagram  
Table 3.  
Pin n°  
STR73xF pin description  
Pin Name  
Input  
Output  
Main  
functio  
n
Alternate function  
(after  
reset)  
Internal RC Oscillator bias. A 1.3MΩ  
external resistor has to be connected to  
this pin when a 32kHZ RC oscillator  
frequency is used.  
64 L8 46 VBIAS  
S
65 M10 47 VSS  
66 M11 48 VDD  
S
Ground  
S
Supply voltage (5V)  
67 K8  
68 J8  
69 M9  
70 L9  
P3.0/AIN0  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
2mA  
X
X
X
X
X Port 3.0 ADC: Analog input 0  
X Port 3.1 ADC: Analog input 1  
X Port 3.2 ADC: Analog input 2  
X Port 3.3 ADC: Analog input 3  
P3.1/AIN1  
P3.2/AIN2  
P3.3/AIN3  
2mA  
2mA  
2mA  
ADC: Analog input 4  
X Port 3.4  
71 K9 49 P3.4/AIN4  
72 L10 50 P3.5/AIN5  
73 M12 51 P3.6/AIN6  
74 L11 52 P3.7/AIN7  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
2mA  
2mA  
2mA  
2mA  
X
X
X
X
(AIN0 in TQFP100)  
ADC: Analog input 5  
X Port 3.5  
(AIN1 in TQFP100)  
ADC: Analog input 6  
X Port 3.6  
(AIN2 in TQFP100)  
ADC: Analog input 7  
X Port 3.7  
(AIN3 in TQFP100)  
75 K11 53 VSSA  
76 K10 54 VDDA  
S
S
Reference ground for A/D converter  
Reference voltage for A/D converter  
ADC: Analog input 8  
X Port 3.8  
77 J12 55 P3.8/AIN8  
78 J11 56 P3.9/AIN9  
79 L12 57 P3.10/AIN10  
80 K12 58 P3.11/AIN11  
81 J10 59 P3.12/AIN12  
82 J9 60 P3.13/AIN13  
83 H12 61 P3.14/AIN14  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
2mA  
2mA  
2mA  
2mA  
2mA  
2mA  
2mA  
2mA  
X
X
X
X
X
X
X
X
(AIN4 in TQFP100)  
ADC: Analog input 9  
X Port 3.9  
(AIN5 in TQFP100)  
Port  
3.10  
ADC: Analog input 10  
(AIN6 in TQFP100)  
X
X
X
X
X
X
Port  
3.11  
ADC: Analog input 11  
(AIN7 in TQFP100)  
Port  
3.12  
ADC: Analog input 12  
(AIN8 in TQFP100)  
INT2  
INT3  
INT4  
INT5  
Port  
3.13  
ADC: Analog input 13  
(AIN9 in TQFP100)  
Port  
3.14  
ADC: Analog input 14  
(AIN10 in TQFP100)  
Port  
3.15  
ADC: Analog input 15  
(AIN11 in TQFP100)  
84 H11 62 P3.15/AIN15  
85 H10 63 VDD  
I/O TT  
S
Supply voltage (5V)  
17/51  
Block Diagram  
STR73xF  
Table 3.  
Pin n°  
STR73xF pin description  
Input  
Output  
Main  
functio  
n
Pin Name  
Alternate function  
(after  
reset)  
86 H9 64 VSS  
87 G12 65 JTRST  
88 F12 66 JTDI  
89 H8 67 JTMS  
90 G11 68 JTCK  
S
I
Ground  
TT pu  
JTAG Reset Input  
JTAG Data input  
I
TT pu  
TT pu  
TT pd  
I
JTAG Mode Selection Input  
JTAG Clock Input  
I
JTAG data output.  
Note: Reset state = HiZ  
91 G10 69 JTDO  
O
4mA  
92 G9 70 VSS  
93 G8 71 VDD  
S
S
Ground  
Supply voltage (5V)  
94 G7  
95 F11  
96 F10  
97 F9  
98 F8  
99 E12  
P4.0/ICAPA7  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
WUP24 2mA  
WUP25 2mA  
WUP26 2mA  
WUP27 2mA  
2mA  
X
X
X
X
X
X
X
X
X
X
X Port 4.0 TIM7: Input Capture A input  
X Port 4.1 TIM7: Input Capture B input  
X Port 4.2 TIM8: Input Capture A input  
X Port 4.3 TIM8: Input Capture B input  
X Port 4.4 CAN2: Transmit Data output  
X Port 4.5 CAN2: Receive Data input  
X Port 4.6 I2C1:Serial Clock  
P4.1/ICAPB7  
P4.2/ICAPA8  
P4.3/ICAPB8  
P4.4/CAN2TX I/O TT  
P4.5/CAN2RX I/O TT  
WUP18 2mA  
WUP19 2mA  
2mA  
100 E11 72 P4.6/SCL1  
101 C12 73 P4.7/SDA1  
I/O TT  
I/O TT  
X Port 4.7 I2C1:Serial Data  
102 B12  
103 E10  
P4.8/OCMPA8 I/O TT  
2mA  
X Port 4.8 TIM8: Output Compare A output  
X Port 4.9 TIM6: Input Capture B input  
P4.9/ICAPB6  
I/O TT  
I/O TT  
2mA  
TIM5: Input  
TIM6: Input  
Capture B  
input  
(TQFP100  
only)  
P4.10/ICAPA6/I  
CAPB5  
Port  
4.10  
Capture A input  
(144-pin pkg  
only)  
104 E9 74  
WUP20 2mA  
X
X
P4.11/OCMPB  
8
Port  
4.11  
105 D12  
106 D11  
107 D10  
I/O TT  
2mA  
WUP21 2mA  
2mA  
X
X
X
X
X
X
X
X
X
X
TIM8: Output Compare B output  
TIM9: Input Capture A input  
TIM9: Input Capture B input  
BSPI1: Slave Select  
Port  
4.12  
P4.12/ICAPA9 I/O TT  
P4.13/ICAPB9 I/O TT  
Port  
4.13  
Port  
4.14  
108 C11 75 P4.14/SS1  
109 B11 76 P4.15/SCK1  
I/O TT  
I/O TT  
2mA  
Port  
4.15  
WUP22 2mA  
BSPI1: Serial Clock  
18/51  
STR73xF  
Block Diagram  
Table 3.  
Pin n°  
STR73xF pin description  
Pin Name  
Input  
Output  
Main  
functio  
n
Alternate function  
(after  
reset)  
BSPI1: Master Output/Slave  
input  
110 B10 77 P5.0/MOSI1  
111 C10 78 P5.1/MISO1  
I/O TT  
I/O TT  
2mA  
X
X
X Port 5.0  
X Port 5.1  
BSPI1: Master input/Slave  
output  
2mA  
112 A9  
113 B9  
P5.2/OCMPA9 I/O TT  
P5.3/OCMPB9 I/O TT  
2mA  
2mA  
X
X
X Port 5.2 TIM9: Output Compare A output  
X Port 5.3 TIM9: Output Compare B output  
PWM3: PWM  
P5.4/SS2/PWM  
3
BSPI2: Slave  
Select  
output  
(TQFP100  
only)  
114 C9 79  
I/O TT  
2mA  
X
X Port 5.4  
115 D9 80 P5.5/SCK2  
116 A11 81 P5.6/MOSI2  
I/O TT  
I/O TT  
WUP23 2mA  
2mA  
X
X
X Port 5.5 BSPI2: Serial Clock  
BSPI2: Master Output/Slave  
input  
X Port 5.6  
X Port 5.7  
X Port 5.8  
X Port 5.9  
BSPI2: Master input/Slave  
output  
117 A10 82 P5.7/MISO2  
118 A8 83 P5.8/PWM4  
119 B8 84 P5.9/PWM5  
120 C8 85 P5.10/RDI2  
121 A12 86 P5.11/TDO2  
122 D8 87 P5.12  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
2mA  
X
X
X
X
X
X
X
X
X
PWM4: PWM output (TQFP100  
only)  
INT6  
INT7  
INT8  
INT9  
2mA  
2mA  
2mA  
2mA  
PWM5: PWM output (TQFP100  
only)  
Port  
X
UART2: Receive Data input  
UART2: Transmit Data output  
5.10  
Port  
X
5.11  
Port  
X
INT10 2mA  
INT11 2mA  
INT12 2mA  
INT13 2mA  
5.12  
Port  
X
123 E8  
124 B7  
125 A7  
P5.13  
P5.14  
P5.15  
5.13  
Port  
X
5.14  
Port  
X
5.15  
1.8V decoupling pin: a  
decoupling capacitor  
126 A6 88 V18  
S
(recommended value: 100nF)  
must be connected between this  
pin and nearest VSS pin.  
127 C7 89 VSS  
128 D7 90 VDD  
S
S
Ground  
Supply voltage (5V)  
19/51  
Block Diagram  
STR73xF  
Table 3.  
Pin n°  
STR73xF pin description  
Input  
Output  
Main  
functio  
n
Pin Name  
Alternate function  
(after  
reset)  
129 E7 91 P6.0  
130 F7 P6.1  
131 B6 92 P6.2/RDI3  
132 C6 P6.3  
133 D6 93 P6.4/TDO3  
134 E6 P6.5  
135 A5 94 P6.6  
136 B5 P6.7  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
WUP0 8mA  
WUP1 2mA  
X
X
X
X
X
X
X
X
X
X
X Port 6.0  
X Port 6.1  
WUP2 2mA  
WUP3 2mA  
WUP4 2mA  
WUP5 2mA  
WUP6 2mA  
WUP7 2mA  
WUP10 2mA  
2mA  
X Port 6.2 UART3: Receive Data input  
X Port 6.3  
X Port 6.4 UART3: Transmit Data output  
X Port 6.5  
X Port 6.6  
X Port 6.7  
137 C5 95 P6.8/RDI0  
138 A3 96 P6.9/TDO0  
X Port 6.8 UART0: Receive Data input  
X Port 6.9 UART0: Transmit Data output  
Port  
X
139 A2  
P6.10  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
I/O TT  
WUP8 2mA  
2mA  
X
X
X
X
X
X
6.10  
Port  
6.11  
BSPI0: Master input/Slave  
output  
140 D5 97 P6.11/MISO0  
141 A4 98 P6.12/MOSI0  
X
X
X
X
X
Port  
6.12  
BSPI0: Master Output/Slave  
input  
2mA  
Port  
6.13  
142 B4 99 P6.13/SCK0  
10  
WUP11 2mA  
2mA  
BSPI0: Serial Clock  
BSPI0: Slave Select  
Port  
6.14  
143 C4  
P6.14/SS0  
0
Port  
6.15  
144 B3  
P6.15  
WUP9 2mA  
20/51  
STR73xF  
Block Diagram  
2.3  
Memory Mapping  
Figure 5 shows the various memory configurations of the STR73xF system. The system  
memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure,  
the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM  
addresses can be aliased to Block 0 addresses using the remapping feature  
Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access  
by the user code. When an access this memory space is attempted, an ABORT signal is  
generated. Depending on the type of access, the ARM processor will enter “prefetch abort”  
state (Exception vector 0x0000_000C) or “data abort” state (Exception vector  
0x0000_0010). It is up to the application software to manage these abort exceptions.  
Figure 5.  
Memory map  
Addressable Memory Space  
4 Gbytes  
APB Memory Space  
32 Kbytes  
0xFFFF FFFF  
0xFFFF FFFF  
APB TO ARM7  
BRIDGE  
32K  
EIC  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
0xFFFF 8000  
0xFFFF FC00  
0xFFFF FBFF  
ADC  
0xFFFF F800  
0xFFFF F7FF  
0xFFFF F600  
0xFFFF F400  
0xFFFF F3FF  
7
CMU  
RTC  
DMA 0-3  
TIM 4  
FLASH Memory Space  
64K/128/256 Kbytes  
0xE000 0000  
0xDFFF FFFF  
0xFFFF F000  
0xFFFF EFFF  
0xFFFF EC00  
0xFFFF EBFF  
0x8010 DFFF  
TIM 3  
System Memory  
Flash registers  
8K  
0xFFFF E800  
0xFFFF E7FF  
0x8010 C000  
0x8010 0017  
0x8010 0000  
6
TIM 2  
20B  
0xFFFF E400  
0xFFFF E3FF  
BSPI 2  
BSPI 1  
0xFFFF E000  
0xFFFF DFFF  
0xC000 0000  
0xBFFF FFFF  
0xFFFF DC00  
0xFFFF DBFF  
BSPI 0  
0xFFFF D800  
0xFFFF D7FF  
5
GP I/O 0-6  
PWM 0-5  
CAN 2(4)  
0xFFFF D400  
0xFFFF D3FF  
0xA000 3FFF  
0xA000 0000  
0x9FFF FFFF  
RAM  
16K  
0xFFFF D000  
0xFFFF CFFF  
0xFFFF CC00  
0xFFFF CBFF  
CAN 1(4)  
0xFFFF C800  
0xFFFF C7FF  
4
CAN 0(4)  
0xFFFF C400  
0xFFFF C3FF  
0x8010 0017  
APB BRIDGE 1 REGS  
reserved  
WAKEUP  
reserved  
TIM 5-9  
FLASH  
64K/128K/256K  
0xFFFF C000  
0xFFFF BFFF  
0x8000 0000  
0x7FFF FFFF  
0xFFFF BC00  
0xFFFF BBFF  
0xFFFF B800  
0xFFFF B7FF  
3
0xFFFF B400  
0xFFFF B3FF  
0x6000 03FF  
PRCCU  
1K  
0x8003 FFFF  
0xFFFF B000  
0xFFFF AFFF  
0x6000 0000  
0x5FFF FFFF  
TIM 1  
B0F7(2)  
B0F6(2)  
0xFFFF AC00  
0xFFFF ABFF  
64K  
64K  
TIM 0  
0xFFFF A800  
0xFFFF A7FF  
0xFFFF A600  
0x8003 0000  
0x8002 FFFF  
2
WAKEUPTIM  
WDG  
0xFFFF A400  
0xFFFF A3FF  
UART 3  
UART 1  
UART 2  
UART 0  
0x4000 003F  
0x4000 0000  
0x3FFF FFFF  
0xFFFF A200  
1K  
1K  
CONFIG. REGS  
64B  
16B  
0xFFFF A000  
0xFFFF 9FFF  
0xFFFF 9E00  
0x8002 0000  
0x8001 FFFF  
0xFFFF 9C00  
0xFFFF 9BFF  
TB 0-2  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
0xFFFF 9800  
0xFFFF 97FF  
B0F5(3)  
B0F4  
1
64K  
32K  
reserved  
0xFFFF 9400  
0xFFFF 93FF  
0x2000 000F  
0x2000 0000  
0x1FFF FFFF  
0x8001 0000  
0x8000 FFFF  
reserved  
reserved  
NATIVE ARBITER  
0xFFFF 9000  
0xFFFF 8FFF  
0xFFFF 8C00  
0xFFFF 8BFF  
0x8000 8000  
0x8000 7FFF  
2
I C 1  
B0F3  
B0F2  
B0F1  
B0TF  
8K  
8K  
8K  
0xFFFF 8800  
0xFFFF 87FF  
0x8000 6000  
0
0x8000 5FFF  
2
0x8000 4000  
0x8000 3FFF  
I C 0  
0xFFFF 8400  
0xFFFF 83FF  
0x8000 2000  
0x0010 0017  
0x0000 0000  
0x8000 1FFF  
APB BRIDGE 0 REGS  
(1)  
FLASH  
64K/128K/256K  
8K  
0x8000 0000  
0xFFFF 8000  
(1) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes)  
(2) Only available in STR73xZ2/V2  
access to gray shaded area will return an ABORT  
(3) Only available in STR73xZ2/V2 and STR73xZ1/V1  
(4) Only available in STR730/STR731  
Drawing not to scale  
21/51  
Electrical parameters  
STR73xF  
3
Electrical parameters  
3.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
3.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25°C and T =T (given by the  
A
A
Amax  
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
3.1.2  
3.1.3  
Typical values  
Unless otherwise specified, typical data are based on T =25°C and V =5V. They are given  
only as design guidelines and are not tested.  
A
DD  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
3.1.4  
3.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 6.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 7.  
Figure 6. Pin loading conditions  
Figure 7. Pin input voltage  
STR7 PIN  
STR7 PIN  
V
IN  
=50pF  
L
22/51  
STR73xF  
Electrical parameters  
3.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability  
Table 4.  
Symbol  
DD - VSS  
VSSA  
VDDA- VSSA  
VIN  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
V
External 5V Supply voltage  
-0.3  
VSS  
-0.3  
6.0  
VSS  
V
V
Reference ground for A/D converter  
Reference voltage for A/D converter  
VDD+0.3  
V
VDD+0.3  
0.3  
Input voltage on any pin  
-0.3  
-
Variations between different 5V  
power pins  
|VDDx  
|
mV  
Variations between all the different  
ground pins  
|VSSX - VSS  
VESD(HBM)  
VESD(MM)  
|
-
0.3  
Electro-static discharge voltage  
(Human Body Model)  
see : Absolute Maximum Ratings  
(Electrical Sensitivity) on  
page 37  
Electro-static discharge voltage  
(Machine Model)  
Table 5.  
Symbol  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD power lines (source) 1)  
Total current out of VSS ground lines (sink) 1)  
IVDD  
IVSS  
100  
100  
Output current sunk by any I/O and control pin  
Output current source by any I/O and control pin  
10  
10  
IIO  
mA  
2) & 3)  
Injected current on any other pin 4) &5)  
10  
75  
IINJ(PIN)  
2)  
Total injected current (sum of all I/O and control pins) 4)  
ΣIINJ(PIN)  
1. All 5V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 5V  
supply  
2.  
I
INJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 3.3.6: 10-bit ADC  
characteristics on page 42.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
5.) In 144-pin devices, only +10mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed).  
23/51  
Electrical parameters  
Table 6.  
STR73xF  
Thermal characteristics  
Symbol  
TSTG  
Ratings  
Value  
Unit  
Storage temperature range  
-55 to +150  
°C  
Maximum junction temperature (see Section 4.2: Thermal characteristics on  
page 47)  
TJ  
24/51  
STR73xF  
Electrical parameters  
3.3  
Operating conditions  
Subject to general operating conditions for V , and T .  
DD  
A
Table 7.  
Symbol  
General Operating Conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
Accessing SRAM or Flash  
(zero wait state Flash access  
up to 36 MHz)  
Internal CPU and system  
Clock frequency  
fMCLK  
0
36  
MHz  
Standard Operating  
Voltage  
4.5  
4.5  
5.5  
V
V
VDD  
VDDA  
TA  
Operating Analog Refer-  
ence Voltage with respect  
to ground  
V
DD+0.1  
6 Partnumber Suffix  
7 Partnumber Suffix  
-40  
-40  
85  
105  
Ambient temperature range  
°C  
Table 8.  
Symbol  
Operating Conditions at power-up / power-down  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Subject to general  
operating conditions for  
TA.  
tVDD  
VDD rise time rate  
-
20  
-
ms/V  
25/51  
Electrical parameters  
STR73xF  
3.3.1  
Supply current characteristics  
The current consumption is measured as described in Figure 6 and Figure 7.  
Total current consumption  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if explicitly mentioned.  
Subject to general operating conditions for V , and T .  
DD  
A
Table 9.  
Symbol  
Total Current consumption  
1)  
Typ  
Max 2)  
Unit  
Parameter  
Conditions  
Formula, fMCLK in MHz, RAM execution  
7 + 1.9 fMCLK  
mA  
mA  
mA  
RUN mode3)  
f
f
f
MCLK=36 MHz, RAM execution  
76  
86  
MCLK=36 MHz, Flash execution  
OSC = 4 MHz, fMCLK= fOSC/16 = 250KHz  
Main Voltage Regulator ON,  
WFI mode  
6.7  
8
mA  
µA  
LP Voltage Regulator = 2mA,  
RTC and WDG ON, Other modules off.  
f
RC = High Frequency (CMU_RCCTL= 0x8),  
LPWFI mode fMCLK= fRC /16, LP Voltage Regulator = 2mA,  
Other modules off.  
220  
350  
IDD  
fOSC = 4 MHz, RC oscillator ON  
fRC = High Frequency (CMU_RCCTL= 0x0)  
LP Voltage Regulator = 6mA,  
500  
150  
700  
220  
RTC and WUT ON, Other modules off.  
Internal wake-up possible.  
STOP mode  
HALT mode  
µA  
µA  
fRC = High Frequency (CMU_RCCTL= 0xF),  
LP Voltage Regulator = 2mA.  
WUT ON. Other modules off.  
Internal wake-up possible.  
LP Voltage Regulator = 2mA, WIU ON, Other  
modules off, External wake-up.  
50  
50  
140  
140  
LP Voltage Regulator = 2mA.  
Notes:  
1. Typical data are based on TA=25°C, VDD=5V  
2. Data based on characterization results, tested in production at VDD max. and TA = 25°C.  
3. I/O in static configuration (not toggling). RUN mode is almost independent of temperature. On the  
contrary RUN mode current is highly dependent on the application. The IDDRUN value can be  
significantly reduced by the application in the following ways: switch-off unused peripherals (default),  
reduce peripheral frequency through internal prescaler, fetch the most frequently-used functions from RAM  
and use low power mode when possible.  
26/51  
STR73xF  
Figure 8.  
Electrical parameters  
STOP I vs. VDD  
Figure 9.  
HALT I vs. V  
DD DD  
DD  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
TA=-45°C  
TA=25°C  
TA=85°C  
TA=105°C  
TA=-45°C  
TA=25°C  
TA=85°C  
TA=105°C  
0
0
3.5  
4
4.5  
5
5.5  
6
6.5  
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
Vdd (V)  
Figure 10. WFI I vs. V  
Figure 11. LPWFI I vs. V  
DD  
DD  
DD  
DD  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA=-45°C  
TA=25°C  
TA=85°C  
TA=105°C  
TA=-45°C  
TA=25°C  
TA=85°C  
TA=105°C  
0
3.5  
4
4.5  
5
5.5  
6
6.5  
3.5  
4
4.5  
5
5.5  
6
6.5  
Vdd (V)  
Vdd (V)  
27/51  
Electrical parameters  
STR73xF  
Typical application current consumption  
Table 10. Typical consumption in Run mode at 25°C and 85°C  
Conditions fMCLK (MHz) fADC (MHz) Typical IDD (mA)  
10  
20  
36  
10  
20  
36  
20  
29  
42  
22  
32  
48  
10  
9
Code executing in  
RAM  
VDD= 5.5V, RC Oscillator off,  
PLL on, RTC enabled, 1 Timer  
(TIM) running, and ADC  
running in scan mode.  
10  
9
Code executing in  
Flash  
Table 11. Typical consumption in Run and low power modes at 25°C  
Mode  
Conditions  
fMCLK  
Typical IDD  
36MHz  
24MHz  
36MHz  
24MHz  
4MHz  
76mA  
56mA  
33mA  
31mA  
11mA  
8mA  
RUN  
All peripherals on, RAM execution  
Main Voltage Regulator on, Flash on, EIC on, WIU  
on, GPIOs on.  
WFI  
PLL off, Main Voltage Regulator on  
CLOCK2/16, Main Voltage Regulator on,  
CLOCK2/16, Main Voltage Regulator off,  
250kHz  
250kHz  
SLOW  
LPWFI  
3mA  
RC oscillator running in Low Frequency, Main Quartz  
oscillator off, Main Voltage Regulator off  
29kHz  
2.5mA  
CLOCK2/16, Main Voltage Regulator off, LP Voltage  
Regulator = 2mA, Flash in power down mode.  
250kHz  
528µA  
378µA  
83µA  
Main Voltage Regulator off, RTC on, RC oscillator off  
-
-
Main Voltage Regulator off, RTC off, RC oscillator  
off, LP Voltage Regulator = 6mA  
STOP  
HALT  
Main Voltage Regulator off, RTC off, RC oscillator  
off, LP Voltage Regulator = 4mA  
-
64µA  
Main Voltage Regulator off, RTC off, RC oscillator  
off, LP Voltage Regulator = 2mA  
-
-
44µA  
44µA  
RTC off, LP Voltage Regulator = 2mA  
28/51  
STR73xF  
Electrical parameters  
On-Chip Peripherals  
Table 12. Peripheral current consumption at T = 25°C  
A
Symbol  
Parameter  
Conditions  
Typ  
Unit  
High Frequency  
Low Frequency  
120  
60  
µA  
µA  
µA  
IDD(RC)  
RC (Backup oscillator) supply current  
TIM Timer supply current 1)  
BSPI supply current 1)  
UART supply current 1)  
I2C supply current 1)  
IDD(TIM)  
IDD(BSPI)  
IDD(UART)  
IDD(I2C)  
350  
1.1  
850  
430  
5
mA  
µA  
µA  
mA  
mA  
mA  
µA  
µA  
µA  
µA  
mA  
µA  
µA  
µA  
µA  
ADC supply current when converting 2)  
EIC supply current  
IDD(ADC)  
IDD(EIC)  
2.88  
2.95  
150  
250  
240  
370  
2.5  
CAN supply current 1)  
GPIO supply current  
TB supply current  
IDD(CAN)  
IDD(GPIO)  
IDD(TB)  
fMCLK=36 MHz  
IDD(PWM)  
IDD(RTC)  
IDD(DMA)  
IDD(ARB)  
IDD(AHB)  
IDD(WUT)  
IDD(WIU)  
PWM supply current  
RTC supply current  
DMA supply current  
Native Arbiter supply current  
AHB Arbiter supply current  
WUT supply current  
WIU supply current  
180  
570  
300  
460  
Notes:  
1. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset, not  
clocked and the on-chip peripheral when clocked and not kept under reset. This measurement does not  
include the pad toggling consumption.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
29/51  
Electrical parameters  
STR73xF  
3.3.2  
Clock and timing characteristics  
Crystal / Ceramic Resonator Oscillator  
The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 12 describes a  
simple model of the internal oscillator driver as well as example of connection for an oscillator or a  
resonator.  
Figure 12. Crystal Oscillator and Resonator  
VDD  
STR73x  
I
RF  
STR73x  
STR73x  
Resonator  
Crystal  
RS  
CL  
CL  
Notes  
1) XTAL2 must not be used to directly drive external circuits.  
2) For test or boot purpose, XTAL2 can be used as an high impedance input pin to provide an external  
clock to the device. XTAL1 should be grounded, and XTAL2 connected to a wave signal generator  
providing a 0 to VDD signal. Directly driving XTAL2 may results in deteriorated jitter and duty cycle.  
30/51  
STR73xF  
Electrical parameters  
V
= 5V 10%, T = -40°C to T  
, unless otherwise specified.  
DD  
A
Amax  
Table 13. Main Oscillator characteristics  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min Typ Max  
fOSC  
gm  
Oscillator frequency  
4
1.5  
-
8
MHz  
Oscillator  
Transconductance  
4.2 mA/V  
f
OSC = 4 MHz, TA= 25oC  
2.4  
1.-  
-
1)  
VOSC  
Oscillation amplitude  
V
fOSC = 8 MHz, TA= 25oC  
1)  
V
VAV  
Oscillator operating point  
Sine wave middle, TA= 25oC  
-
-
0.77  
-
External crystal, VDD = 5.5V,  
fOSC = 4 MHz, TA=-40oC  
-
12  
-
ms  
ms  
ms  
ms  
ms  
ms  
External crystal, VDD = 5.0V,  
fOSC = 4 MHz, TA=25oC  
-
-
-
-
-
5.5  
-
External crystal, VDD = 5.5V,  
fOSC = 6 MHz, TA=-40oC  
8
-
1)  
tSTUP  
Oscillator Start-up Time  
External crystal, VDD = 5.0V,  
fOSC = 6 MHz, TA=25oC  
3.3  
-
External crystal, VDD = 5.5V,  
fOSC = 8 MHz, TA=-40oC  
7
-
External crystal, VDD = 5.0V,  
fOSC = 8 MHz, TA= 25oC  
2.7  
31/51  
Electrical parameters  
Symbol  
STR73xF  
Unit  
Value  
Parameter  
Conditions  
Min Typ Max  
C13) = C2  
10pF  
=
4)  
150 555  
-
fOSC = 4 MHz  
Cp2) = 10pF  
C1 = C2 = 20pF 490 1035  
C1 = C2 = 30pF 490 1030  
C1 = C2 = 40pF 380 850  
C1 = C2 = 10pF 160 470  
C1 = C2 = 20pF 415 800  
C1 = C2 = 30pF 340 735  
C1 = C2 = 40pF 260 580  
C1 = C2 = 10pF 160 415  
C1 = C2 = 20pF 325 640  
C1 = C2 = 30pF 250 550  
C1 = C2 = 40pF 180 420  
C1 = C2 = 10pF 160 375  
C1 = C2 = 20pF 260 525  
C1 = C2 = 30pF 185 420  
C1 = C2 = 40pF 135 315  
C1 = C2 = 10pF 155 340  
C1 = C2 = 20pF 210 435  
C1 = C2 = 30pF 145 335  
C1 = C2 = 40pF 100 245  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
fOSC = 5 MHz  
Cp = 10pF  
1)  
fOSC = 6 MHz  
Cp = 10pF  
RF  
Feedback resistor  
fOSC = 7 MHz  
Cp = 10pF  
fOSC = 8MHz  
Cp = 10pF  
1. Min and Max values are guaranteed by characterization, not tested in production.  
2. CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the  
external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and  
XTAL2 track.  
3. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to  
XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes  
application board track capacitance to ground and device pin capacitance).  
4. C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to  
XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes  
application board track capacitance to ground and device pin capacitance).  
32/51  
STR73xF  
Electrical parameters  
RC/Backup Oscillator characteristics  
VDD = 5V 10%, TA = -40°C to TAmax, unless otherwise specified.  
Table 14. RC Oscillator Characteristics  
Value  
Unit  
Symbol  
fRC  
Parameter  
RC Frequency  
Conditions  
Min Typ Max  
High Frequency mode 1)  
Low Frequency mode1)  
CMU_RCCTL = 0x0  
CMU_RCCTL = 0xF  
CMU_RCCTL = 0x0  
CMU_RCCTL = 0xF  
Fixed CMU_RCCTL  
Fixed CMU_RCCTL  
2.35  
29  
MHz  
kHz  
3
MHz  
fRCHF  
RC High Frequency  
RC Low Frequency  
2.3 MHz  
kHz  
35  
fRCLF  
30  
10  
23  
kHz  
%
2)  
fRCHFS  
RC High Frequency stability  
RC Low Frequency stability  
2)  
fRCLFS  
%
Stable VDD, fRC = 2.35  
MHz, TA = 25oC  
µs  
tRCSTUP RC Start-up Time  
2.35  
1) CMU_RCCTL = 0x8  
2) RC frequency shift versus average value (%)  
PLL Electrical Characteristics  
VDD = 5V 10%, TA = -40°C to TAmax, unless otherwise specified  
Table 15.  
Symbol  
PLL characteristics.  
Parameter  
Value  
Typ  
Conditions  
Unit  
Min  
Max  
FREF_RANGE = ‘0’  
FREF_RANGE = ‘1’  
1.5  
3.0  
3.0  
5.0  
(1)  
fPLLIN  
PLL reference clock  
MHz  
MX = ”00”  
MX = ”01”  
MX = ”10”  
MX = ”11”  
20 x fPLLIN  
12 x fPLLIN  
28 x fPLLIN  
16 x fPLLIN  
fPLLOUT  
PLL output clock  
System clock  
MHz  
MHz  
kHz  
fMCLK  
DX = 1..7  
fPLLOUT/DX  
36  
FREF_RANGE = ‘0’, MX0 = ’1’  
FREF_RANGE = ‘0’, MX0 = ’0’  
FREF_RANGE = ‘1’, MX0 = ’1’  
FREF_RANGE = ‘1’, MX0 = ’0’  
120  
240  
240  
480  
PLL free running  
frequency  
(2)  
fFREE  
stable oscillator  
(fPLLIN = 4 MHz), stable VDD  
(3)  
tLOCK  
PLL lock time  
100  
300  
1.5  
µs  
f
PLLIN = 4 MHz (pulse  
generator)  
tPKJIT  
PLL jitter (pk to pk)  
ns  
1. fPLLIN is obtained from fOSC directly or through an optional divider by 2.  
2. Typical data are based on TA=25°C, VDD=5V  
3. Max value is guaranteed by characterization, not tested in production.  
33/51  
Electrical parameters  
STR73xF  
Unit  
Table 16. Low-power Mode Wake-up Timing  
Symbol  
Parameter  
Conditions  
Typ  
tWUHALT  
Wake-up from HALT mode  
200  
180  
234  
µs  
µs  
µs  
RC High Frequency in STOP mode  
RC Low Frequency in STOP mode  
tWUSTOP  
Wake-up from STOP mode  
Main Voltage Regulator ON  
RC oscillator off  
27  
µs  
fOSC = 4 MHz, fMCLK= fOSC/16  
RAM or FLASH execution  
Main Voltage Regulator ON  
RC oscillator = High frequency  
FLASH execution  
1)  
Wake-up from LPWFI mode  
tWULPWFI  
46  
µs  
Main Voltage Regulator ON  
RC oscillator = Low frequency  
FLASH execution  
3.6  
ms  
1) FLASH memory has been programmed to enter Power Down mode during LPWFI.  
34/51  
STR73xF  
Electrical parameters  
3.3.3  
Memory characteristics  
Flash Memory  
Table 17. Flash memory characteristics  
Value  
Unit  
Min Typ  
Symbol  
Parameter  
Test Conditions  
Max1)  
tWP  
Word Program (32-bit)  
Double Word Program(64-bit)  
Bank Program (64K)  
35  
64  
0.5  
1
80  
150  
1.25  
2.5  
µs  
µs  
s
tDWP  
tBP64  
tBP128  
tBP256  
Double Word Program  
Double Word Program  
Double Word Program  
Not preprogrammed  
Preprogrammed 2)  
Bank Program (128K)  
Bank Program (256K)  
s
2
4.9  
s
0.6  
0.5  
0.9  
0.8  
tSE8  
tSE32  
tSE64  
Sector Erase (8K)  
Sector Erase (32K)  
s
s
Not preprogrammed  
Preprogrammed2)  
1.1  
0.8  
2
1.8  
1.7  
1.3  
3.7  
3.3  
not preprogrammed  
preprogrammed 2)  
Sector Erase (64K)  
s
3)  
Recovery from Power-Down  
20  
10  
30  
µs  
tRPD  
3)  
tPSL  
Program Suspend Latency  
Erase Suspend Latency  
µs  
µs  
3)  
tESL  
Min time from Erase  
Resume to next Erase  
Suspend  
3)  
tESR  
Erase Suspend Rate  
Set Protection  
20  
20  
ms  
µs  
3)  
tSP  
40  
1
170  
3)  
tFPW  
First Word Program  
Endurance  
ms  
NEND  
tRET  
10  
20  
kcycles  
Years  
Data Retention  
TA=85°  
1. TA=105°C after 0 cycles, Guaranteed by characterization, not tested in production  
2. All bits programmed to 0.  
3. Guaranteed by design, not tested in production.  
35/51  
Electrical parameters  
STR73xF  
3.3.4  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (Electro Magnetic Susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations:  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials:  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Table 18. EMS data  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD=5V, TA=+25°C, fMCLK=36MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
4A  
Fast transient voltage burst limits to be  
VEFTB applied through 100pF on VDD and VSS pins  
VDD=5V, TA=+25°C, fMCLK=36MHz  
conforms to IEC 1000-4-4  
4A  
to induce a functional disturbance  
36/51  
STR73xF  
Electrical parameters  
Electro Magnetic Interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 19. EMI data  
Max vs.  
Unit  
[fOSC4M/fMCLK  
]
Monitored  
Frequency Band  
Symbol  
Parameter  
Conditions  
6/36MHz 8/8MHz  
0.1MHz to 30MHz  
30MHz to 130MHz  
130MHz to 1GHz  
SAE EMI Level  
23  
37  
20  
4
30  
34  
7
VDD=5.0V,  
TA=+25°C,  
All packages  
dBµV  
-
SEMI  
Peak level  
3.5  
Absolute Maximum Ratings (Electrical Sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electro-Static Discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: Human Body Model and Machine Model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 20. ESD Absolute Maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Unit  
value 1)  
Electro-static discharge voltage  
(Human Body Model)  
VESD(HBM)  
2000  
Electro-static discharge voltage  
(Machine Model)  
VESD(MM)  
200  
TA=+25°C  
V
750 on corner  
pins, 500 on  
others  
Electro-static discharge voltage  
(Charge Device Model)  
VESD(CDM)  
Notes:  
1. Data based on characterization results, not tested in production.  
Static and Dynamic Latch-Up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
37/51  
Electrical parameters  
STR73xF  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,  
refer to the application note AN1181.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to  
each pin of 3 samples when the micro is running to assess the latch-up performance in  
dynamic mode. Power supplies are set to the typical values, the oscillator is connected  
as near as possible to the pins of the micro and the component is put in reset mode.  
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,  
refer to the application note AN1181.  
Electrical Sensitivities  
Class 1)  
Symbol  
Parameter  
Conditions  
TA=+25°C  
TA=+85°C  
TA=+105°C  
A
A
A
LU  
Static latch-up class  
V
=5.5V, f  
=4MHz, f  
=32MHz, T =+25°C  
DLU  
Dynamic latch-up class  
A
DD  
OSC4M  
MCLK A  
Notes:  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
38/51  
STR73xF  
Electrical parameters  
3.3.5  
I/O port pin characteristics  
General Characteristics  
Subject to general operating conditions for V and T unless otherwise specified.  
DD  
A
Table 21. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Input low level voltage 1)  
VIL  
VIH  
0.8  
TTL ports  
V
Input high level voltage 1)  
2.0  
IINJ(PIN)  
Injected Current on any I/O pin  
10  
75  
1
mA  
mA  
µA  
Total injected current (sum of all  
I/O and control pins)  
ΣIINJ(PIN)  
2)  
Input leakage current 3)  
Ilkg  
IS  
VSSVINVDD  
Floating input  
mode  
Static current consumption 4)  
200  
120  
µA  
Weak pull-up equivalent  
resistor5)  
RPU  
VIN=VSS  
VIN=VDD  
55  
55  
220  
220  
kΩ  
Weak pull-down equivalent  
resistor5)  
RPD  
CIO  
120  
5
kΩ  
I/O pin capacitance  
pF  
Notes:  
1. Data based on characterization results, not tested in production.  
2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise  
refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is  
induced by VIN<VSS. Refer to Section 3.2 on page 23 for more details.  
3. Leakage could be higher than max. if negative current is injected on adjacent pins.  
4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of  
the I/O for example or an external pull-up or pull-down resistor. Data based on design simulation and/or  
technology characteristics, not tested in production.  
6. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding  
IPU and IPD current characteristics described in Figure 13).  
39/51  
Electrical parameters  
STR73xF  
Output Driving Current  
Subject to general operating conditions for VDD and T unless otherwise specified.  
A
Table 22. Output driving current  
I/O  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Type  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
1)  
IIO=+2mA  
0.4  
VOL  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
2)  
IIO=-2mA  
IIO=+8mA  
VDD-0.8  
VDD-0.8  
VOH  
V
1)  
Output low level voltage for an I/O pin  
0.4  
VOL  
2)  
IIO=-8mA  
Output high level voltage for an I/O pin  
VOH  
Notes:  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 5 and the sum of  
IO (I/O ports and control pins) must not exceed IVSS  
I
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 5 and the  
sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
40/51  
STR73xF  
Electrical parameters  
VDDNRSTIN Pin  
NRSTIN Pin Input Driver is CMOS. A permanent pull-up is present which is the same as  
(see : General Characteristics on page 39)  
R
PU  
Subject to general operating conditions for VDD and T unless otherwise specified.  
A
Table 23. Reset pin characteristics  
Typ 1)  
Symbol  
VIL(NRSTIN)  
VIH(NRSTIN)  
Parameter  
Conditions  
Min  
Max  
Unit  
RSTIN Input low level voltage 1)  
RSTIN Input high level voltage 1)  
0.3 VDD  
V
0.7 VDD  
RSTIN Schmitt trigger voltage  
hysteresis 2)  
Vhys(NRSTIN)  
800  
mV  
RSTIN Input filtered pulse3)  
VF(RSTINn)  
VNF(RSTINn)  
VRP(RSTINn)  
500  
ns  
µs  
µs  
RSTIN Input not filtered pulse3)  
RSTIN removal after Power-up3)  
2
100  
Notes:  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels.  
3. Data guaranteed by design, not tested in production.  
1)  
Figure 13. Recommended NRSTIN pin protection.  
VDD  
RPU  
EXTERNAL  
RESET  
INTERNAL RESET  
Filter  
CIRCUIT  
STR7X  
0.01µF  
Required  
Notes:  
1. The RPU pull-up equivalent resistor is based on a resistive transistor.  
2. The reset network protects the device against parasitic resets.  
3. The user must ensure that the level on the NRSTIN pin can go below the VIL(NRSTIN) max. level specified in  
Table 23. Otherwise the reset will not be taken into account internally.  
41/51  
Electrical parameters  
STR73xF  
3.3.6  
10-bit ADC characteristics  
Subject to general operating conditions for V  
, f  
, and T unless otherwise specified.  
DDA MCLK A  
Table 24. ADC characteristics  
Typ 1)  
Symbol  
Parameter  
Conditions  
Min  
0.4  
Max  
Unit  
fADC  
VAIN  
10  
MHz  
V
Conversion voltage range 2)  
VSSA  
VDDA  
VIN<VSS, | IIN |<  
400µA on adjacent  
analog pin  
Negative input leakage current on  
analog pins  
Ilkg  
5
6
µA  
Internal sample and hold  
capacitor  
CADC  
3.5  
pF  
580.2  
5802  
µs  
2)  
fADC = 10MHz  
Calibration Time  
Sampling time  
tCAL  
1/fADC  
3)  
f
ADC = 10MHz  
1
3
14  
µs  
µs  
tS  
Total Conversion time (including  
sampling time)  
30 (10 for sampling  
+20 for successive  
approximation)  
tCONV  
fADC = 10MHz  
Normal Mode  
1/fADC  
Running mode  
5
mA  
IADC  
Power-down mode  
1
µA  
Notes:  
1. Unless otherwise specified, typical data are based on TA=25°C and VDDA-VSS=5.0V. They are given only  
as design guidelines and are not tested.  
2. Calibration is recommended once after each power-up.  
3. During the sample time the input capacitance CAIN (6.8 max) can be charged/discharged by the external  
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage  
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on  
the conversion result. Values for the sample clock tS depend on programming.  
Table 25. ADC Accuracy with f  
= 20MHz, f  
=10MHz, R  
< 10kRAIN,  
MCLK  
ADC  
AIN  
2)  
V
=5V. This assumes that the ADC is calibrated  
DDA  
Symbol  
|ET|  
Parameter  
Conditions  
Typ  
1.0  
Max  
2.0  
1.0  
1.1  
1.0  
1.5  
Unit  
Total unadjusted error 1)  
Offset error 1)  
|EO|  
0.15  
0.97  
0.7  
Gain Error 1)  
|EG|  
LSB  
Differential linearity error1)  
Integral linearity error 1)  
|ED|  
|EL|  
0.76  
1. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current. The effect of negative injection current  
42/51  
STR73xF  
Electrical parameters  
on robust pins is specified in Section 3.3.5.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 3.3.5 does not  
affect the ADC accuracy.  
2. Calibration is needed once after each power-up.  
Figure 14. ADC Accuracy Characteristics  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
1023  
1022  
1021  
V
V  
(3) End point correlation line  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E
=Offset Error: deviation between the first actual  
O
transition and the first ideal one.  
=Gain Error: deviation between the last ideal  
(1)  
E
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
V
0
1
2
3
4
5
6
7
1021 1022 1023 1024  
V
V
DDA  
SSA  
Figure 15. Typical Application with ADC  
V
DD  
STR73X  
V
T
0.6V  
2.3kΩ(max)  
R
AIN  
AINx  
10-Bit A/D  
Conversion  
V
AIN  
C
V
T
0.6V  
AIN  
I
C
ADC  
3.5pF  
L
1µA  
43/51  
Electrical parameters  
STR73xF  
Analog Power Supply and Reference Pins  
The V  
and V  
pins are the analog power supply of the A/D converter cell. They act as  
SSA  
DDA  
the high and low reference voltages for the conversion.  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see: General PCB Design  
Guidelines).  
General PCB Design Guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1µF and optionally, if needed 10pF capacitors as close as possible to the STR7  
power supply pins and a 1 to 10µF capacitor close to the power source (see Figure 16).  
The analog and digital power supplies should be connected in a star network. Do not  
use a resistor, as V  
is used as a reference voltage by the A/D converter and any  
DDA  
resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs near the  
A/D input being converted.  
Software Filtering of Spurious Conversion Results  
For EMC performance reasons, it is recommended to filter A/D conversion outliers using  
software filtering techniques.  
Figure 16. Power Supply Filtering  
STR73x  
1 to 10µF  
0.1µF  
V
V
SS  
DD  
STR7  
DIGITAL NOISE  
FILTERING  
5V  
POWER  
SUPPLY  
SOURCE  
V
V
0.1µF  
DDA  
SSA  
EXTERNAL  
NOISE  
FILTERING  
44/51  
STR73xF  
Package characteristics  
4
Package characteristics  
4.1  
Package mechanical data  
Figure 17. 100-pin thin quad flat package  
mm  
inches  
A
D
Dim.  
Min Typ Max Min Typ Max  
D1  
A2  
A
1.60  
0.063  
0.006  
A1  
A1 0.05  
0.15 0.002  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
b
C
0.17 0.22 0.27 0.007 0.009 0.011  
0.09 0.20 0.004 0.008  
b
e
D
16.00  
14.00  
16.00  
14.00  
0.50  
0.630  
0.551  
0.630  
0.551  
0.020  
3.5°  
D1  
E
E1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
100  
c
L1  
L
1
L
h
N
Figure 18. 144-pin thin quad flat package  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
D
A
1.60  
0.063  
0.006  
0.057  
0.011  
0.008  
D1  
D3  
A
A1 0.05  
0.15 0.002  
A2  
A1  
A2 1.35 1.40 1.45 0.053  
108  
109  
73  
b
c
0.17 0.22 0.27 0.007  
0.09 0.20 0.004  
72  
0.10mm  
.004 in.  
Seating Plane  
b
D
21.80 22.00 22.20 0.858 0.867 0.874  
b
D1 19.80 20.00 20.20 0.780 0.787 0.795  
E
E1  
E3  
D3  
E
17.50  
0.699  
21.80 22.00 22.20 0.858 0.867 0.874  
E1 19.80 20.00 20.20 0.780 0.787 0.795  
37  
144  
1
36  
E3  
e
17.50  
0.50  
3.5°  
0.699  
0.020  
3.5°  
c
e
L1  
K
0°  
7°  
0°  
7°  
L
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
144  
h
L1  
N
45/51  
Package characteristics  
Figure 19. 144-ball low profile fine pitch ball grid array package  
STR73xF  
mm  
inches  
Dim.  
A
Min Typ Max Min Typ Max  
1.21  
1.70 0.048  
0.008  
0.067  
A1 0.21  
A2  
1.12  
0.044  
b
D
0.35 0.40 0.45 0.014 0.016 0.018  
9.85 10.00 10.15 0.388 0.394 0.400  
D1  
E
8.80  
0.346  
9.85 10.00 10.15 0.388 0.394 0.400  
E1  
e
8.80  
0.80  
0.60  
0.346  
0.031  
0.024  
F
ddd  
eee  
fff  
0.10  
0.15  
0.08  
0.004  
0.006  
0.003  
Number of Pins  
N
144  
46/51  
STR73xF  
Package characteristics  
4.2  
Thermal characteristics  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using the  
J
following equation:  
T = T + (P x Θ )  
(1)  
J
A
D
JA  
Where:  
T is the Ambient Temperature in °C,  
A
Θ
is the Package Junction-to-Ambient Thermal Resistance, in °C/W,  
JA  
P is the sum of P  
and P (P = P  
+ P ),  
INT I/O  
D
INT  
I/O  
D
P
is the product of I and V , expressed in Watt. This is the Chip Internal  
DD DD  
INT  
Power,  
P represents the Power Dissipation on Input and Output Pins; User Determined.  
I/O  
Most of the time for the applications P < P  
and may be neglected. On the other hand,  
INT  
I/O  
P
may be significant if the device is configured to drive continuously external modules  
I/O  
and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273°C)  
(2)  
(3)  
D
J
Therefore (solving equations 1 and 2):  
K = P x (T + 273°C) + Θ x P  
D
2
D
A
JA  
Where:  
K is a constant for the particular part, which may be determined from equation (3)  
by measuring P (at equilibrium) for a known T Using this value of K, the values  
D
A.  
of P and T may be obtained by solving equations (1) and (2) iteratively for any  
D
J
value of T  
A
Table 26. Thermal Characteristics  
Symbol  
Description  
Package  
Value (typical)  
Unit  
LFBGA144  
50  
40  
40  
ΘJA  
Thermal Resistance Junction-Ambient TQFP144  
TQFP100  
°C/W  
47/51  
Order codes  
STR73xF  
5
Order codes  
Table 27. Order Codes  
TIM  
6x PWM CAN  
A/D  
FLASH  
Partnumber  
RAM  
Kbytes  
Wake-up  
Lines  
I/O  
Temp.  
Package  
Kbytes  
Ports Range  
Timers Module Periph Chan.  
STR630FZ1T6  
STR630FZ2T6  
STR630FZ1H6  
STR630FZ2H6  
STR635FZ1T6  
STR635FZ2T6  
STR635FZ1H6  
STR635FZ2H6  
STR631FV0T6  
STR631FV1T6  
STR631FV2T6  
STR636FV0T6  
STR636FV1T6  
STR636FV2T6  
STR730FZ1T7  
STR730FZ2T7  
STR730FZ1H7  
STR730FZ2H7  
STR735FZ1T7  
STR735FZ2T7  
STR735FZ1H7  
STR735FZ2H7  
STR731FV0T7  
STR731FV1T7  
STR731FV2T7  
STR736FV0T7  
STR736FV1T7  
STR736FV2T7  
128  
256  
128  
256  
128  
256  
128  
256  
64  
TQFP144  
20x20  
3
LFBGA144  
10x10  
10  
16  
12  
16  
12  
32  
18  
32  
18  
112  
TQFP144  
20x20  
0
LFBGA144  
10x10  
-40 to  
+85°C  
16  
1
TQFP100  
14x14  
128  
256  
64  
3
0
6
72  
TQFP100  
14x14  
128  
256  
128  
256  
128  
256  
128  
256  
128  
256  
64  
TQFP144  
20x20  
3
0
LFBGA144  
10x10  
10  
112  
TQFP144  
20x20  
LFBGA144  
10x10  
-40 to  
+105°C  
16  
1
TQFP100  
14x14  
128  
256  
64  
3
0
6
72  
TQFP100  
14x14  
128  
256  
48/51  
STR73xF  
Known limitations  
6
Known limitations  
6.1  
Low Power Wait For Interrupt mode  
When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash  
goes into Low Power mode or Power Down mode, depending on the setting of the PWD bit  
in the Flash Control Register 0 (default is ‘0’, Low Power mode). This default mode can  
create excessive voltage conditions on the transistor gates and may affect the long term  
behavior of the Low Power mode circuitry.  
Workaround  
There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly  
suggested to configure the Flash to enter Power Down mode (bit PWD = ‘1’).  
6.2  
PLL free running mode at high temperature  
When the STR73x device is operated and an ambient temperature (T ) of more than 55°C  
A
and the main system clock (f  
may not work properly.  
) is sourced by the PLL in free running mode, the device  
MCLK  
Workaround  
At high temperature (more than 55°C), it is recommended to use the internal RC oscillator  
as a backup clock source rather than the PLL free running mode.  
49/51  
Revision history  
STR73xF  
7
Revision history  
Table 28. Revision history  
Date  
Revision  
Description of Changes  
19-Sep-2005  
1
First release  
Removed Table 8 power consumption in LP modes  
2-Nov-2005  
8-Mar-2006  
2
3
Updated PLL frequency in Section 1.1 and Table 12  
Section 3.4: Preliminary power consumption data updated  
Section 3.5: DC electrical characteristics updated  
Section 6: Known limitations added.  
Section 3: Electrical parameters updated  
Section 6: Known limitations updated  
4-June-2006  
4
5
Added temperature range -40°C to 85°C in Section 5: Order  
codes  
Changed Flash data retention to 20 years at 85°C in Table 17 on  
page 35.  
19-June-2006  
50/51  
STR73xF  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,  
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,  
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR  
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
51/51  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX