STR710FR2H1 [STMICROELECTRONICS]

32-BIT, FLASH, 66MHz, RISC MICROCONTROLLER, PBGA64, 8 X 8 MM, 1.70 MM HEIGHT, LFBGA-64;
STR710FR2H1
型号: STR710FR2H1
厂家: ST    ST
描述:

32-BIT, FLASH, 66MHz, RISC MICROCONTROLLER, PBGA64, 8 X 8 MM, 1.70 MM HEIGHT, LFBGA-64

文件: 总78页 (文件大小:2014K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STR71xF  
ARM7TDMI™ 32-bit MCU with Flash, USB, CAN  
5 timers, ADC, 10 communications interfaces  
Features  
Core  
– ARM7TDMI 32-bit RISC CPU  
– 59 MIPS @ 66 MHz from SRAM  
– 45 MIPS @ 50 MHz from Flash  
LQFP64  
10 x 10  
LQFP144  
20 x 20  
Memories  
– Up to 256 Kbytes Flash program memory  
(10 kcycles endurance, 20 years retention  
@ 85° C)  
– 16 Kbytes Flash data memory  
(100 kcycles endurance, 20 years  
retention@ 85° C)  
– Up to 64 Kbytes RAM  
– External Memory Interface (EMI) for up to 4  
banks of SRAM, Flash, ROM  
LLFFBBGGAA66448x8x1.7
LFBGA144 10 x 10 x 1.7  
5 Timers  
– 16-bit watchdog timer  
– 3 16-bit timers with 2 input captures, 2  
output compares, PWM and pulse counter  
– 16-bit timer for timebase functions  
– Multi-boot capability  
10 communications interfaces  
Clock, reset and supply management  
– 3.0 to 3.6V application supply and I/Os  
– Internal 1.8V regulator for core supply  
– Clock input from 0 to 16.5 MHz  
2
– 2 I C interfaces (1 multiplexed with SPI)  
– 4 UART asynchronous serial interfaces  
– Smartcard ISO7816-3 interface on UART1  
– 2 BSPI synchronous serial interfaces  
– CAN interface (2.0B Active)  
– USB Full Speed (12 Mbit/s) Device  
Function with Suspend and Resume  
– Embedded RTC osc. running from external  
32 kHz crystal  
– Embedded PLL for CPU clock  
– Realtime Clock for clock-calendar function  
– 5 power saving modes: SLOW, WAIT,  
LPWAIT, STOP and STANDBY modes  
– HDLC synchronous communications  
4-channel 12-bit A/D converter  
– Sampling frequency up to 1 kHz  
– Conversion range: 0 to 2.5 V  
Nested interrupt controller  
– Fast interrupt handling with multiple vectors  
– 32 vectors with 16 IRQ priority levels  
– 2 maskable FIQ sources  
Development tools support  
– Atomic bit SET and RES operations  
Up to 48 I/O ports  
Table 1.  
Device summary  
Root part number  
– 30/32/48 multifunctional bidirectional I/Os  
Up to 14 ports with interrupt capability  
Reference  
STR710FZ1, STR710FZ2,  
STR711FR0, STR711FR1, STR711FR2,  
STR712FR0, STR712FR1, STR712FR2,  
STR715FR0  
STR71xF  
February 2008  
Rev 12  
1/78  
www.st.com  
78  
Contents  
STR71xF  
Contents  
1
2
3
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Related documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin description for 144-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin description for 64-pin packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
External connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
I/O port configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
EMI - external memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
BSPI - buffered serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . 63  
4.3.10 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
4.3.11 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
2/78  
STR71xF  
Contents  
5
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.1  
5.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6
7
Product history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8
Note:  
For detailed information on the STR71x Microcontroller memory, registers and peripherals,  
please refer to the STR71x Reference Manual.  
3/78  
Introduction  
STR71xF  
1
Introduction  
This datasheet provides the STR71x pinout, ordering information, mechanical and electrical  
device characteristics.  
For complete information on the STR71x microcontroller memory, registers and peripherals.  
please refer to the STR71x reference manual.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STR7 Flash programming reference manual.  
For information on the ARM7TDMI core please refer to the ARM7TDMI technical reference  
manual.  
Table 2.  
Features  
Device overview  
STR710  
FZ1  
STR710  
FZ2  
STR710  
RZ  
STR711  
FR0  
STR711  
FR1  
STR711  
FR2  
STR712  
FR0  
STR712  
FR1  
STR712  
FR2  
STR715  
FRx  
Flash - Kbytes 128+16 256+16  
0
64+16 128+16 256+16 64+16 128+16 256+16 64+16  
RAM - Kbytes  
32  
64  
64  
16  
32  
64  
16  
32  
64  
16  
Peripheral  
Functions  
CAN, EMI, USB, 48 I/Os  
USB, 30 I/Os  
CAN, 32 I/Os  
32 I/Os  
Operating  
Voltage  
3.0 to 3.6 V  
Operating  
Temperature  
-40 to +85°C or 0 to 70° C  
T=LQFP144 20 x 20  
H=LFBGA144 10 x10  
Packages  
.
T=LQFP64 10 x10 / H=LFBGA64 8 x 8 x 1.7  
4/78  
STR71xF  
Description  
2
Description  
®
ARM core with embedded Flash and RAM  
The STR71x series is a family of ARM-powered 32-bit microcontrollers with embedded  
Flash and RAM. It combines the high performance ARM7TDMI CPU with an extensive  
range of peripheral functions and enhanced I/O capabilities. STR71xF devices have on-chip  
high-speed single voltage FLASH memory and high-speed RAM. STR710R devices have  
high-speed RAM but no internal Flash. The STR71x family has an embedded ARM core and  
is therefore compatible with all ARM tools and software.  
Extensive tools support  
STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete  
range of high-end and low-cost development tools to meet the needs of application  
developers. This extensive line of hardware/software tools includes starter kits and complete  
development packages all tailored for ST’s ARM core-based MCUs. The range of  
development packages includes third-party solutions that come complete with a graphical  
development environment and an in-circuit emulator/programmer featuring a JTAG  
application interface. These support a range of embedded operating systems (OS), while  
several royalty-free OSs are also available.  
For more information, please refer to ST MCU site http://www.st.com/mcu  
5/78  
System architecture  
STR71xF  
3
System architecture  
Package choice: low pin-count 64-pin or feature-rich 144-pin LQFP or BGA  
The STR71x family is available in 5 main versions.  
The 144-pin versions have the full set of all features including CAN, USB and External  
Memory Interface (EMI).  
STR710F: 144-pin BGA or LQFP with CAN, USB and EMI  
STR710R: Flashless 144-pin BGA or LQFP with CAN, USB and EMI (no internal Flash  
memory)  
The three 64-pin versions (BGA or LQFP) do not include External Memory Interface.  
STR715F: 64-pin BGA or LQFP without CAN or USB  
STR711F: 64-pin BGA or LQFP with USB  
STR712F: 64-pin BGA or LQFP with CAN  
High speed Flash memory (STR71xF)  
The Flash program memory is organized in two banks of 32-bit wide Burst Flash memories  
enabling true read-while-write (RWW) operation. Device Bank 0 is up to 256 Kbytes in size,  
typically for the application program code. Bank 1 is 16 Kbytes, typically used for storing  
data constants. Both banks are accessed by the CPU with zero wait states @ 33 MHz  
Bank 0 memory endurance is 10K write/erase cycles and Bank 1 endurance is 100K  
write/erase cycles. Data retention is 20 years at 85°C on both banks. The two banks can be  
accessed independently in read or write. Flash memory can be accessed in two modes:  
Burst mode: 64-bit wide memory access at up to 50 MHz.  
Direct 32-bit wide memory access for deterministic operation at up to 33 MHz.  
The STR7 embedded Flash memory can be programmed using In-Circuit Programming or  
In-Application programming.  
IAP (in-application programming): The IAP is the ability to re-program the Flash memory  
of a microcontroller while the user program is running.  
ICP (in-circuit programming): The ICP is the ability to program the Flash memory of a  
microcontroller using JTAG protocol while the device is mounted on the user application  
board.  
The Flash memory can be protected against different types of unwanted access  
(read/write/erase). There are two types of protection:  
Sector Write Protection  
Flash Debug Protection (locks JTAG access)  
Refer to the STR7 Flash Programming Reference manual for details.  
Optional external memory (STR710)  
The non-multiplexed 16-bit data/24-bit address bus available on the STR710 (144-pin)  
supports four 16-Mbyte banks of external memory. Wait states are programmable  
individually for each bank allowing different memory types (Flash, EPROM, ROM, SRAM  
etc.) to be used to store programs or data.  
Figure 1 shows the general block diagram of the device family.  
6/78  
STR71xF  
System architecture  
Flexible power management  
To minimize power consumption, you can program the STR71x to switch to SLOW, WAIT,  
LPWAIT (low power wait), STOP or STANDBY mode depending on the current system  
activity in the application.  
Flexible clock control  
Two external clock sources can be used, a main clock and a 32 kHz backup clock. The  
embedded PLL allows the internal system clock (up to 66 MHz) to be generated from a main  
clock frequency of 16 MHz or less. The PLL output frequency can be programmed using a  
wide selection of multipliers and dividers. The microcontroller core, APB1 and APB2  
peripherals are in separate clock domains and can be programmed to run at different  
frequencies during application runtime. The clock to each peripheral is gated with an  
individual control bit to optimize power usage by turning off peripherals any time they are not  
required.  
Voltage regulators  
The STR71x requires an external 3.0-3.6V power supply. There are two internal Voltage  
Regulators for generating the 1.8V power supply for the core and peripherals. The main VR  
is switched off during low power operation.  
Low voltage detectors  
Both the Main Voltage Regulator and the Low Power Voltage Regulator contain each a low  
voltage detection circuitry which keep the device under reset when the corresponding  
controlled voltage value (V or V  
) falls below 1.35V (+/- 10%). This enhances the  
18  
18BKP  
security of the system by preventing the MCU from going into an unpredictable state.  
An external reset circuit must be used to provide the RESET at V power-up. It is not  
33  
sufficient to rely on the RESET generated by the LVD in this case. This is because LVD  
operation is guaranteed only when V is within the specification.  
33  
3.1  
On-chip peripherals  
CAN interface (STR710 and STR712)  
The CAN module is compliant with the CAN specification V2.0 part B (active). The bit rate  
can be programmed up to 1 MBaud.  
USB interface (STR710 and STR711)  
The full-speed USB interface is USB V2.0 compliant and provides up to 16 bidirectional/32  
unidirectional endpoints, up to 12 Mb/s (full-speed), support for bulk transfer, isochronous  
transfers and USB Suspend/Resume functions.  
Standard timers  
Each of the four timers have a 16-bit free-running counter with 7-bit prescaler  
Three timers each provide up to two input capture/output compare functions, a pulse  
counter function, and a PWM channel with selectable frequency.  
The fourth timer is not connected to the I/O ports. It can be used by the application software  
for general timing functions.  
7/78  
System architecture  
Realtime clock (RTC)  
STR71xF  
The RTC provides a set of continuously running counters driven by the 32 kHz external  
crystal. The RTC can be used as a general timebase or clock/calendar/alarm function.  
When the STR71x is in Standby mode the RTC can be kept running, powered by the low  
power voltage regulator and driven by the 32 kHz external crystal.  
UARTs  
The 4 UARTs allow full duplex, asynchronous, communications with external devices with  
independently programmable TX and RX baud rates up to 1.25 Mb/s.  
Smartcard interface  
UART1 is configurable to function either as a general purpose UART or as an asynchronous  
Smartcard interface as defined by ISO 7816-3. It includes Smartcard clock generation and  
provides support features for synchronous cards.  
Buffered serial peripheral interfaces (BSPI)  
Each of the two SPIs allow full duplex, synchronous communications with external devices,  
master or slave communication at up to 5.5 Mb/s in Master mode and 4 Mb/s in Slave mode.  
2
I C interfaces  
2
The two I C Interfaces provide multi-master and slave functions, support normal and fast  
2
I C mode (400 kHz) and 7 or 10-bit addressing modes.  
2
2
2
One I C Interface is multiplexed with one SPI, so either 2xSPI+1x I C or 1xSPI+2x I C may  
be used at a time.  
HDLC interface  
The High Level Data Link Controller (HDLC) unit supports full duplex operation and NRZ,  
NRZI, FM0 or MANCHESTER protocols. It has an internal 8-bit baud rate generator.  
A/D converter  
The Analog to Digital Converter, converts in single channel or up to 4 channels in single-  
shot or round robin mode. Resolution is 12-bit with a sampling frequency of up to 1 kHz. The  
input voltage range is 0-2.5V.  
Watchdog  
The 16-bit Watchdog Timer protects the application against hardware or software failures  
and ensures recovery by generating a reset.  
I/O ports  
The 48 I/O ports are programmable as Inputs or Outputs.  
External interrupts  
Up to 14 external interrupts are available for application use or to wake up the application  
from STOP mode.  
8/78  
STR71xF  
System architecture  
Figure 1.  
STR71x block diagram  
A[19:0]  
D[15:0]  
RDN  
A[23:20] (AF)  
CS[3:0)  
WEN[1:0]  
CK  
CKOUT  
RSTIN  
PRCCU/PLL  
EXT. MEM.  
INTERFACE (EMI)  
FLASH*  
ARM7TDMI  
CPU  
Program Memory  
64/128/256K  
JTDI  
JTCK  
JTMS  
16K Data FLASH*  
JTRST  
JTDO  
JTAG  
RAM  
DBGRQS  
16/32/64K  
BOOTEN  
APB  
BRIDGE 1  
V18[1:0]  
V33[6:0]  
VSS[9:0]  
V18BKP  
AVDD  
POWER SUPPLY  
VREG  
APB  
BRIDGE 2  
AVSS  
2 AF  
2 AF  
4 AF  
4 AF  
2 AF  
I2C0  
I2C1  
INTERRUPT CTL(EIC)  
A/D  
BSPI0  
BSPI1  
UART0  
4 AF  
TIMER0  
4 AF  
2 AF  
4 AF  
TIMER1  
UART1 /  
SMARTCARD  
3 AF  
2 AF  
2 AF  
3 AF  
TIMER2  
UART2  
UART3  
HDLC  
TIMER3  
STDBY  
RTCXTO  
RTCXTI  
OSC  
RTC  
WAKEUP  
14 AF  
EXT INT (XTI)  
WATCHDOG  
USBDP  
USBDN  
USB  
CAN  
1 AF  
P0[15:0]  
P1[15:0]  
P2[15:0]  
I/O PORT 0  
I/O PORT 1  
I/O PORT 2  
2 AF  
AF: alternate function on I/O port pin  
*Flash present in STR710F, not in STR710R  
9/78  
System architecture  
STR71xF  
3.2  
Related documentation  
Available from www.arm.com:  
ARM7TDMI Technical reference manual  
Available from http://www.st.com:  
STR71x Reference manual  
STR7 Flash programming manual  
AN1774 - STR71x Software development getting started  
AN1775 - STR71x Hardware development getting started  
AN1776 - STR71x Enhanced interrupt controller  
AN1777 - STR71x memory mapping  
AN1780 - Real time clock with STR71x  
AN1781 - Four 7 segment display drive using the STR71x  
The above is a selected list only, a full list STR71x application notes can be viewed at  
http://www.st.com.  
10/78  
STR71xF  
System architecture  
3.3  
Pin description for 144-pin packages  
Figure 2.  
STR710 LQFP pinout  
P0.10/U1.RX/U1.TX/SCDATA  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
P1.14/HRXD/I0.SDA  
RDn  
P0.11/U1.TX/BOOT.1  
P0.12/SCCLK  
VSS  
2
P1.13/HCLK/I0.SCL  
3
P1.10/USBCLK  
4
P1.9  
5
V33  
V33  
6
VSS  
P2.0/CSn.0  
P2.1/CSn.1  
7
A.4  
8
A.3  
P0.13/U2.RX/T2.OCMPA  
P0.14/U2.TX/T2.ICAPA  
P2.2/CSn.2  
P2.3/CSn.3  
P2.4/A.20  
P2.5/A.21  
P2.6/A.22  
BOOTEN  
P2.7/A.23  
P2.8  
9
A.2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
A.1  
98  
A.0  
97  
D.15  
96  
D.14  
LQFP144  
95  
D.13  
94  
D.12  
93  
D.11  
92  
D.10  
91  
USBDN  
N.C.  
90  
USBDP  
N.C.  
89  
P1.12/CANTX  
P1.11/CANRX  
N.C.  
VSS  
88  
V33  
87  
P2.9  
86  
P1.8  
P2.10  
85  
P1.7/T1.OCMPA  
VSSIO-PLL  
V33IO-PLL  
D.9  
P2.11  
84  
P2.12  
83  
P2.13  
82  
P2.14  
81  
D.8  
P2.15  
80  
D.7  
JTDI  
79  
D.6  
JTMS  
78  
D.5  
JTCK  
77  
P1.6/T1.OCMPB  
P1.5/T1.ICAPB  
P1.4/T1.ICAPA  
P1.3/T3.ICAPB/AIN.3  
P1.2/T3.OCMPA/AIN.2  
JTDO  
76  
JTRSTn  
NU  
75  
74  
TEST  
73  
11/78  
System architecture  
Table 3.  
STR71xF  
STR710 BGA ball connections  
A
B
C
D
E
F
G
H
J
K
L
M
BOOT  
EN  
1
2
3
4
5
P0.10  
VSS  
V33  
P2.0  
P2.1  
VSS  
P2.2  
P2.6  
P2.12  
P2.13  
P2.15  
JTDI  
TEST  
N.C.  
N.C.  
N.C.  
JTRST  
n
RDn  
P0.9  
P0.11  
P0.12  
P0.8  
V33  
P0.13  
P0.14  
P0.5  
P2.3  
P2.4  
P2.5  
P2.7  
P2.8  
N.C.  
N.C.  
VSS  
P2.9  
P2.10  
P2.11  
P2.14  
JTMS  
JTCK  
JTDO  
N.C.  
TEST  
V33  
DBG  
RQS  
NU  
CK  
VSSIO-  
PLL  
P0.6  
A.19  
P0.7  
CKOUT  
RTCXTI  
N.C.  
P0.15  
STDBY  
RTCX-  
TO  
WEn.1  
WEn.0  
N.C.  
V18BK  
P
VSS  
BKP  
6
7
8
P0.3  
P0.2  
A.9  
A.15  
P0.1  
A.10  
A.16  
P0.4  
A.11  
A.17  
VSS18  
A.13  
A.18  
V18  
V33  
A.14  
A.0  
V18  
D.12  
D.11  
N.C.  
D.1  
N.C.  
D.0  
nc  
VSS18 RSTIN  
P1.12/  
CANTX  
P0.0  
N.C.  
AVSS  
D.3  
D.2  
9
VSS  
A.8  
V33  
N.C.  
N.C.  
A.5  
A.6  
V33  
VSS  
A.2  
D.15  
D.14  
D.13  
D.10  
P1.8  
P1.7  
VSS  
D.9  
D.8  
D.5  
P1.0  
P1.5  
P1.4  
N.C.  
P1.1  
P1.3  
N.C.  
D.4  
10  
11  
P1.15  
P1.14  
P1.13  
P1.10  
USBDN  
USBDP  
A.7  
AVDD  
P1.11/  
CANRX  
V33IO-  
PLL  
12  
A.12  
A.4  
A.3  
P1.9  
A.1  
N.C.  
P1.6  
D.7  
D.6  
P1.2  
Legend / abbreviations for Table 4:  
Type: I = input, O = output, S = supply, HiZ= high impedance,  
In/Output level: C = CMOS 0.3V /0.7V  
DD  
DD  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
T = TTL 0.8 V/2 V with input trigger  
T
C/T = Programmable levels: CMOS 0.3V /0.7V or TTL 0.8 V / 2 V  
DD  
DD  
Port and control configuration:  
Input:  
pu/pd= software enabled internal pull-up or pull down  
pu= in reset state, the internal 100kweak pull-up is enabled.  
pd = in reset state, the internal 100kweak pull-down is enabled.  
Output:  
OD = open drain (logic level)  
PP = push-pull  
T = true OD, (P-Buffer and protection diode to V not implemented),  
DD  
5 V tolerant.  
12/78  
STR71xF  
System architecture  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
UART1:  
Receive Data  
input  
UART1: Transmit  
data output.  
Note: This pin may be used for  
Smartcard DataIn/DataOut or single  
wire UART (half duplex) if  
P0.10/U1.RX/  
SC.DATA  
1
A1 U1.TX/  
I/O pd CT X 4mA  
T
Port 0.10  
programmed as Alternate Function  
Output. The pin will be tri-stated  
except when UART transmission is in  
progress  
External Memory Interface: Active low read signal  
for external memory. It maps to the OE_N input of  
the external components.  
5)  
2
3
B2 RD  
O
X
Select Boot  
UART1: Transmit  
Port 0.11 Configuration  
data output.  
P0.11/BOOT.1  
/U1.TX  
C2  
I/O pd CT  
4mA  
4mA  
X
X
X
X
input  
4
5
6
C3 P0.12/SC.CLK I/O pd CT  
Port 0.12 Smartcard reference clock output  
Ground voltage for digital I/Os4)  
D1 VSS  
D2 V33  
S
S
Supply voltage for digital I/Os4)  
External Memory Interface: Select  
Memory Bank 0 output  
8)  
7
B1 P2.0/CS.0  
C1 P2.1/CS.1  
I/O  
I/O  
CT  
CT  
8mA  
8mA  
X
X
Port 2.0  
Port 2.1  
Note: This pin is forced to output  
push-pull 1 mode at reset to allow  
boot from external memory  
pu  
External Memory Interface: Select  
Memory Bank 1 output  
8
9
X
X
X
X
2)  
UART2:  
Port 0.13 Receive Data  
input  
P0.13/U2.RX/  
Timer2: Output  
Compare A output  
D3  
I/O pu CT X 4mA  
T2.OCMPA  
UART2:  
Port 0.14 Transmit data  
output  
P0.14/U2.TX/  
T2.ICAPA  
Timer2: Input  
Capture A input  
10 D4  
I/O pu CT  
pu  
4mA  
X
X
External Memory Interface: Select  
Memory Bank 2 output  
11 E1 P2.2/CS.2  
12 E2 P2.3/CS.3  
I/O  
CT  
8mA  
8mA  
X
X
X
X
Port 2.2  
Port 2.3  
2)  
pu  
External Memory Interface: Select  
Memory Bank 3 output  
I/O  
CT  
2)  
13/78  
System architecture  
STR71xF  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
pd  
13 E3 P2.4/A.20  
14 E4 P2.5/A.21  
15 F1 P2.6/A.22  
16 G1 BOOTEN  
17 E5 P2.7/A.23  
I/O  
I/O  
I/O  
I
CT  
CT  
CT  
CT  
CT  
8mA  
X
X
X
X
X
X
Port 2.4  
Port 2.5  
Port 2.6  
3)  
pd  
External Memory Interface: address  
bus  
8mA  
8mA  
3)  
pd  
3)  
Boot control input. Enables sampling of  
BOOT[1:0] pins  
pd  
External Memory Interface: address  
I/O  
8mA  
X
X
X
X
Port 2.7  
bus  
3)  
18 F2 P2.8  
19 F3 N.C.  
20 F4 N.C.  
21 F5 VSS  
22 F6 V33  
23 G2 P2.9  
24 G3 P2.10  
25 G4 P2.11  
26 H1 P2.12  
I/O pu CT X 4mA  
Port 2.8 External interrupt INT2  
Not connected (not bonded)  
Not connected (not bonded)  
Ground voltage for digital I/Os4)  
Supply voltage for digital I/Os4)  
Port 2.9 External interrupt INT3  
Port 2.10 External interrupt INT4  
Port 2.11 External interrupt INT5  
Port 2.12  
S
S
I/O pu CT X 4mA  
I/O pu CT X 4mA  
I/O pu CT X 4mA  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
I/O pu CT  
I/O pu CT  
I/O pu CT  
I/O pu CT  
4mA  
4mA  
4mA  
4mA  
27  
J1 P2.13  
Port 2.13  
28 G5 P2.14  
29 K1 P2.15  
30 L1 JTDI  
Port 2.14  
Port 2.15  
I
I
TT  
TT  
JTAG Data input. External pull-up required.  
JTAG Mode Selection Input. External pull-up  
required.  
31 H2 JTMS  
JTAG Clock Input. External pull-up or pull-down  
required.  
32 H3 JTCK  
33 H4 JTDO  
I
C
O
I
8mA  
X
JTAG Data output. Note: Reset state = HiZ.  
JTAG Reset Input. External pull-up required.  
Reserved, must be forced to ground.  
Reserved, must be forced to ground.  
Not connected (not bonded)  
34  
35  
J2 JTRST  
J3 NU  
TT  
36 K2 TEST  
37 M1 N.C.  
38 L2 TEST  
39 L3 N.C.  
Reserved, must be forced to ground.  
Not connected (not bonded)  
14/78  
STR71xF  
System architecture  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
Supply voltage for digital I/O circuitry and for PLL  
reference  
40 K3 V33IO-PLL  
41 M4 N.C.  
S
S
Not connected (not bonded)  
Ground voltage for digital I/O circuitry and for PLL  
reference4)  
42 L4 VSSIO-PLL  
43 M2 N.C.  
Not connected (not bonded)  
44 M3 DBGRQS  
I
O
I
CT  
Debug Mode request input (active high)  
Clock output (fPCLK2) Note: Enabled by CKDIS  
register in APB Bridge 2  
45 K4 CKOUT  
8mA  
X
46  
J4 CK  
C
Reference clock input  
Port 0.15 Wakeup from Standby mode input.  
Note: This port is input only.  
Not connected (not bonded)  
P0.15/  
WAKEUP  
47 M5  
I
TT  
X
X
48 L5 N.C.  
Realtime Clock input and input of 32 kHz  
oscillator amplifier circuit  
49 K5 RTCXTI  
50  
J5 RTCXTO  
Output of 32 kHz oscillator amplifier circuit  
Input: Hardware Standby mode entry input active  
low. Caution: External pull-up to V33 required to  
select normal mode.  
51 M6 STDBY  
I/O  
I
CT  
4mA  
X
X
Output: Standby mode active low output following  
Software Standby mode entry.  
Note: In Standby mode all pins are in high  
impedance except those marked Active in Stdby  
52 M7 RSTIN  
53 H5 N.C.  
CT  
S
X
X
Reset input  
Not connected (not bonded)  
Stabilization for low power voltage regulator.  
54 L6 VSSBKP  
Stabilization for low power voltage regulator.  
Requires external capacitors of at least 1µF  
between V18BKP and VSS18BKP. See Figure 5.  
Note: If the low power voltage regulator is  
bypassed, this pin can be connected to an  
external 1.8V supply.  
55 K6 V18BKP  
S
X
56  
J6 N.C.  
Not connected (not bonded)  
Not connected (not bonded)  
57 H6 N.C.  
Stabilization for main voltage regulator. Requires  
external capacitors of at least 10µF + 33nF  
between V18 and VSS18. See Figure 5.  
58 G6 V18  
S
15/78  
System architecture  
STR71xF  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
59 L7 VSS18  
60 K7 N.C.  
S
Stabilization for main voltage regulator.  
Not connected (not bonded)  
6)  
6)  
6)  
6)  
6)  
61  
J7 D.0  
I/O  
I/O  
I/O  
I/O  
I/O  
S
8mA  
62 H7 D.1  
63 M8 D.2  
64 L8 D.3  
65 M10 D.4  
66 M11 VDDA  
67 K8 VSSA  
8mA  
8mA  
8mA  
8mA  
External Memory Interface: data bus  
Supply voltage for A/D Converter  
Ground voltage for A/D Converter  
Not connected (not bonded)  
Not connected (not bonded)  
Not connected (not bonded)  
Timer 3:  
S
68  
J8 N.C.  
69 M9 N.C.  
70 L9 N.C.  
P1.0/T3.OCM  
PB/AIN.0  
71 K9  
I/O pu CT  
4mA  
4mA  
4mA  
X
X
X
X
X
X
Port 1.0 Output  
Compare B  
ADC: Analog input 0  
Timer 3: Input  
Capture A or  
External Clock  
input  
P1.1/T3.ICAP  
72 L10 A/T3.EXTCLK/ I/O pu CT  
AIN.1  
Port 1.1  
ADC: Analog input 1  
Timer 3:  
P1.2/T3.OCM  
PA/AIN.2  
73 M12  
I/O pu CT  
Port 1.2 Output  
Compare A  
ADC: Analog input 2  
ADC: Analog input 3  
P1.3/T3.ICAP  
B/AIN.3  
Timer 3: Input  
Capture B  
74 L11  
75 K11  
76 K10  
I/O pu CT  
I/O pu CT  
I/O pu CT  
4mA  
4mA  
4mA  
X
X
X
X
X
X
Port 1.3  
Port 1.4  
Port 1.5  
P1.4/T1.ICAP  
A/T1.EXTCLK  
Timer 1: Input Timer 1: External  
Capture A  
Clock input  
P1.5/T1.ICAP  
B
Timer 1: Input  
Capture B  
Timer 1:  
Port 1.6 Output  
Compare B  
P1.6/T1.OCM  
PB  
77 J12  
I/O pu CT  
4mA  
X
X
6)  
78 J11 D.5  
79 L12 D.6  
80 K12 D.7  
81 J10 D.8  
I/O  
8mA  
8mA  
8mA  
8mA  
8mA  
6)  
I/O  
6)  
I/O  
External Memory Interface: data bus  
6)  
I/O  
6)  
82  
J9 D.9  
I/O  
16/78  
STR71xF  
System architecture  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
Supply voltage for digital I/O circuitry and for PLL  
reference4)  
83 H12 V33IO-PLL  
84 H11 VSSIO-PLL  
S
S
Ground voltage for digital I/O circuitry and for PLL  
reference4)  
Timer 1:  
Port 1.7 Output  
Compare A  
P1.7/T1.OCM  
PA  
85 H10  
I/O pu CT  
I/O pd CT  
4mA  
4mA  
X
X
X
X
86 H9 P1.8  
87 G12 N.C.  
Port 1.8  
Not connected (not bonded)  
CAN: receive data input  
Port 1.11  
88 F12 P1.11/CANRX I/O pu CT X 4mA  
X
X
X
X
Note: On STR710 and STR712 only  
CAN: Transmit data output  
Port 1.12  
89 H8 P1.12/CANTX I/O pu CT  
4mA  
Note: On STR710 and STR712 only  
USB bidirectional data (data +). Reset state = HiZ  
Note: On STR710 and STR711 only  
90 G11 USBDP  
I/O  
CT  
CT  
This pin requires an external pull-up to V33 to  
maintain a high level.  
USB bidirectional data (data -). Reset state = HiZ  
91 G10 USBDN  
I/O  
Note: On STR710 and STR711 only.  
6)  
6)  
6)  
6)  
6)  
6)  
7)  
7)  
7)  
7)  
7)  
92 G9 D.10  
93 G8 D.11  
94 G7 D.12  
95 F11 D.13  
96 F10 D.14  
97 F9 D.15  
98 F8 A.0  
99 E12 A.1  
100 E11 A.2  
101 C12 A.3  
102 B12 A.4  
103 E10 VSS  
104 E9 V33  
105 D12 P1.9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
External Memory Interface: data bus  
X
X
X
X
X
O
O
External Memory Interface: address bus  
O
O
S
Ground voltage for digital I/O circuitry4)  
Supply voltage for digital I/O circuitry4)  
Port 1.9  
S
I/O pd CT  
4mA  
4mA  
X
X
X
X
P1.10/  
106 D11  
C/  
I/O pd  
T
USB: 48 MHZ  
Port 1.10  
USBCLK  
clock input  
17/78  
System architecture  
STR71xF  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
HDLC:  
Port 1.13 reference  
clock input  
P1.13/HCLK/  
I0.SCL  
107 D10  
108 C11  
I/O pd CT X 4mA  
I/O pu CT X 4mA  
X
X
X
X
I2C clock  
HDLC:  
P1.14/HRXD/  
I0.SDA  
Port 1.14 Receive data I2C serial data  
input  
109 B11 N.C.  
110 B10 N.C.  
111 C10 P1.15/HTXD  
112 A9 VSS  
113 B9 V33  
114 C9 A.5  
115 D9 A.6  
116 A11 A.7  
117 A10 A.8  
118 A8 A.9  
119 B8 A.10  
120 C8 A.11  
121 A12 A.12  
122 D8 A.13  
Not connected (not bonded)  
Not connected (not bonded)  
I/O pu CT  
4mA  
X
X
Port 1.15 HDLC: Transmit data output  
Ground voltage for digital I/O circuitry4)  
Supply voltage for digital I/O circuitry4)  
S
S
7)  
O
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
X
X
X
X
X
X
X
X
X
7)  
O
7)  
O
7)  
O
7)  
O
External Memory Interface: address bus  
7)  
O
7)  
O
7)  
O
7)  
O
SPI0 Master  
in/Slave out  
data  
UART3Transmit data  
output  
P0.0/S0.MISO  
123 E8  
I/O pu CT  
4mA  
X
X
X
X
Port 0.0  
Note: Programming AF function  
selects UART by default. BSPI must  
be enabled by SPI_EN bit in the  
BOOTCR register.  
/U3.TX  
BSPI0: Master  
UART3: Receive  
out/Slave in  
Data input  
data  
P0.1/S0.MOSI  
124 B7  
I/O pu CT X 4mA  
Port 0.1  
Note: Programming AF function  
selects UART by default. BSPI must  
be enabled by SPI_EN bit in the  
BOOTCR register.  
/U3.RX  
18/78  
STR71xF  
System architecture  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
BSPI0: Serial  
Clock  
I2C1: Serial clock  
P0.2/S0.SCLK  
/I1.SCL  
Note: Programming AF function  
selects I2C by default. BSPI must be  
enabled by SPI_EN bit in the  
BOOTCR register.  
125 A7  
I/O pu CT X 4mA  
X
X
Port 0.2  
Port 0.3  
SPI0: Slave  
Select input  
active low.  
I2C1: Serial Data  
P0.3/S0.SS/  
I1.SDA  
126 A6  
I/O pu CT  
4mA  
4mA  
X
X
X
X
Note: Programming AF function  
selects I2C by default. BSPI must be  
enabled by SPI_EN bit in the  
BOOTCR register.  
127 C7 P0.4/S1.MISO I/O pu CT  
Port 0.4 SPI1: Master in/Slave out data  
Stabilization for main voltage regulator.  
128 D7 VSS18  
S
Stabilization for main voltage regulator. Requires  
external capacitors of at least 10µF + 33nF  
between V18 and VSS18. See Figure 5.  
129 E7 V18  
S
7)  
7)  
7)  
7)  
7)  
7)  
130 F7 A.14  
131 B6 A.15  
132 C6 A.16  
133 D6 A.17  
134 E6 A.18  
135 A5 A.19  
O
O
O
O
O
O
8mA  
8mA  
8mA  
8mA  
8mA  
8mA  
X
X
X
X
X
X
External Memory Interface: address bus  
External Memory Interface: active low MSB write  
enable output  
5)  
5)  
136 B5 WE.1  
137 C5 WE.0  
O
O
8mA  
8mA  
X
X
External Memory Interface: active low LSB write  
enable output  
138 A3 V33  
139 A2 VSS  
S
S
Supply voltage for digital I/Os4)  
Ground voltage for digital I/Os4)  
140 D5 P0.5/S1.MOSI I/O pu CT  
4mA  
X
X
X
X
X
X
Port 0.5 SPI1: Master out/Slave In data  
Port 0.6 SPI1: Serial Clock  
141 A4 P0.6/S1.SCLK I/O pu CT X 4mA  
142 B4 P0.7/S1.SS I/O pu CT 4mA  
Port 0.7 SPI1: Slave Select input active low  
19/78  
System architecture  
STR71xF  
Table 4.  
Pin n°  
STR710 pin description  
Input  
Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
UART0:  
Port 0.8 Receive Data  
input  
UART0: Transmit  
data output.  
P0.8/U0.RX/  
U0.TX  
143 C4  
144 B3  
I/O pd CT X 4mA  
T
X
Note: This pin may be used for single wire UART  
(half duplex) if programmed as Alternate Function  
Output. The pin will be tri-stated except when  
UART transmission is in progress  
Select Boot  
UART0: Transmit  
Port 0.9 Configuration  
data output  
P0.9/U0.TX/  
BOOT.0  
I/O pd CT  
4mA  
X
input  
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 8 on page 29.  
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends  
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset  
2. In reset state, these pins configured as Input PU/PD with weak pull-up enabled. They must be configured  
by software as Alternate Function (see Table 8: Port bit configuration table on page 29) to be used by the  
External Memory Interface.  
3. In reset state, these pins configured as Input PU/PD with weak pull-down enabled to output Address  
0x0000 0000 using the External Memory Interface. To access memory banks greater than 1Mbyte, they  
need to be configured by software as Alternate Function (see Table 8: Port bit configuration table on  
page 29).  
4. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.  
5. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as  
Output Push-Pull.  
6. During the reset phase, these pins are in input pull-up state. When reset is released, they are configured as  
Hi-Z.  
7. During the reset phase, these pins are in input pull-down state. When reset is released, they are configured  
as Output Push-Pull.  
8. During the reset phase, this pin is in input floating state. When reset is released, it is configured as Output  
Push-Pull.  
20/78  
STR71xF  
System architecture  
3.4  
Pin description for 64-pin packages  
Figure 3.  
STR712/STR715 LQFP64 pinout  
P0.10/U1.RX/U1.TX/SCDATA  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.14/HRXD/I0.SDA  
P1.13/HCLK/I0.SCL  
P0.11/U1.TX/BOOT.1  
P0.12/SCCLK  
VSS  
P1.10  
P1.9  
VSS  
P1.12/CANTX  
P1.11/CANRX  
P0.13/U2.RX/T2.OCMPA  
P0.14/U2.TX/T2.ICAPA  
1)  
1)  
BOOTEN  
VSS  
LQFP64  
P1.8  
P1.7/T1.OCMPA  
VSSIO-PLL  
V33  
JTDI 10  
JTMS 11  
JTCK 12  
JTDO 13  
nJTRST 14  
NU 15  
V33IO-PLL  
P1.6/T1.OCMPB  
P1.5/T1.ICAPB  
P1.4/T1.ICAPA  
P1.3/T3.ICAPB/AIN.3  
P1.2/T3.OCMPA/AIN.2  
TEST 16  
1)  
CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.  
21/78  
System architecture  
Figure 4.  
STR71xF  
STR711 LQFP64 pinout  
P0.10/U1.RX/U1.TX/SCDATA  
1
2
3
4
5
6
7
8
9
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P1.14/HRXD/I0.SDA  
P1.13/HCLK/I0.SCL  
P1.10/USBCLK  
P1.9  
VSS  
USBDN  
USBDP  
P1.8  
P1.7/T1.OCMPA  
VSSIO-PLL  
V33IO-PLL  
P1.6/T1.OCMPB  
P1.5/T1.ICAPB  
P1.4/T1.ICAPA  
P1.3/T3.ICAPB/AIN.3  
P1.2/T3.OCMPA/AIN.2  
P0.11/U1.TX/BOOT.1  
P0.12/SCCLK  
VSS  
P0.13/U2.RX/T2.OCMPA  
P0.14/U2.TX/T2.ICAPA  
BOOTEN  
LQFP64  
VSS  
V33  
JTDI 10  
JTMS 11  
JTCK 12  
JTDO 13  
nJTRST 14  
NU 15  
TEST 16  
Table 5.  
STR711 BGA ball connections  
A
B
C
D
E
F
G
H
V33IO-  
PLL  
1
2
P0.10  
P0.9  
P0.11  
P0.12  
P0.14  
V33  
JTCK  
TEST  
P0.15  
VSSIO-  
PLL  
VSS  
P0.13  
VSS  
JTMS  
JTRSTn  
3
4
5
P0.5  
VSS18  
P0.2  
P0.7  
VSS  
P0.4  
BOOTEN  
P0.8  
JTDI  
JTDO  
P0.6  
NU  
AVDD  
P1.9  
STDBY  
V18BKP  
P1.0  
RTCXTI  
RSTIN  
V18  
CK  
RTCXTO  
VSSBKP  
V18  
VSSIO-  
PLL  
6
7
8
V33  
VSS  
P0.1  
P0.0  
P0.3  
P1.10  
VSS  
P1.13  
USBDN  
P1.8  
USBDP  
P1.7  
AVSS  
P1.5  
P1.3  
VSS18  
P1.1  
P1.6  
P1.4  
V33IO-  
PLL  
P1.15  
P1.14  
P1.2  
22/78  
STR71xF  
System architecture  
Table 6.  
STR712/715 BGA Ball Connections  
A
B
C
D
E
F
G
H
V33IO-  
PLL  
1
2
P0.10  
P0.9  
P0.11  
P0.12  
P0.14  
V33  
JTCK  
TEST  
VSSIO-  
PLL  
VSS  
P0.13  
VSS  
JTMS  
JTRSTn  
P0.15  
3
4
5
P0.5  
VSS18  
P0.2  
P0.7  
VSS  
P0.4  
BOOTEN  
P0.8  
JTDI  
JTDO  
P0.6  
NU  
AVDD  
P1.9  
STDBY  
V18BKP  
P1.0  
RTCXTI  
RSTIN  
V18  
CK  
RTCXTO  
VSSBKP  
V18  
P1.11/  
VSSIO-  
PLL  
6
7
8
V33  
VSS  
P0.1  
P0.0  
P0.3  
P1.10  
VSS  
P1.13  
AVSS  
P1.5  
P1.3  
VSS18  
P1.1  
CANRX1)  
P1.12/  
P1.7  
P1.6  
P1.4  
CANTX1)  
V33IO-  
PLL  
P1.15  
P1.14  
P1.8  
P1.2  
1)CANTX and CANRX in STR712F only, in STR715F they are general purpose I/Os.  
Legend / abbreviations for Table 7:  
Type:  
I = input, O = output, S = supply, HiZ= high impedance,  
In/Output level: C = CMOS 0.3V /0.7V  
DD  
DD  
C = CMOS 0.3V /0.7V with input trigger  
T
DD  
DD  
T = TTL 0.8V / 2V with input trigger  
T
C/T = Programmable levels: CMOS 0.3V /0.7V or TTL 0.8V / 2V  
DD  
DD  
Port and control configuration:  
Input:  
pu/pd= software enabled internal pull-up or pull down  
pu= in reset state, the internal 100kweak pull-up is enabled.  
pd = in reset state, the internal 100kweak pull-down is enabled.  
Output:  
OD = open drain (logic level)  
PP = push-pull  
T = true OD, (P-Buffer and protection diode to V not implemented),  
DD  
5V tolerant.  
23/78  
System architecture  
STR71xF  
Table 7.  
Pin n°  
STR711/STR712/STR715 pin description  
Input Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
UART1:  
Receive Data  
input  
UART1: Transmit data  
output.  
P0.10/U1.RX/  
SC.DATA  
Note: This pin may be used for  
1
2
A1 U1.TX/  
I/O pd CT  
X
4mA  
T
Port 0.10  
Smartcard DataIn/DataOut or single  
wire UART (half duplex) if programmed  
as Alternate Function Output. The pin  
will be tri-stated except when UART  
transmission is in progress  
Select Boot  
Port 0.11 Configuration  
input  
P0.11/BOOT.1  
/U1.TX  
UART1: Transmit data  
output.  
B1  
I/O pd CT  
4mA  
4mA  
X
X
X
X
3
4
C1 P0.12/SC.CLK I/O pd CT  
Port 0.12 Smartcard reference clock output  
Ground voltage for digital I/Os2)  
B2 VSS  
S
UART2:  
Timer2: Output  
Port 0.13 Receive Data  
Compare A output  
input  
P0.13/U2.RX/  
T2.OCMPA  
5
C2  
D1  
I/O pu CT  
X
4mA  
4mA  
X
X
X
X
UART2:  
Timer2: Input Capture  
Port 0.14 Transmit data  
A input  
P0.14/U2.TX/  
T2.ICAPA  
6
7
I/O pu CT  
output  
Boot control input. Enables sampling of BOOT[1:0]  
pins  
C3 BOOTEN  
I
CT  
8
9
D2 VSS  
E1 V33  
S
S
I
Ground voltage for digital I/Os2)  
Supply voltage for digital I/Os2)  
10 D3 JTDI  
11 E2 JTMS  
TT  
TT  
JTAG Data input. External pull-up required.  
JTAG Mode Selection Input. External pull-up  
required.  
I
I
JTAG Clock Input. External pull-up or pull-down  
required.  
12 F1 JTCK  
C
13 D4 JTDO  
14 F2 JTRST  
15 E3 NU  
O
I
8mA  
X
JTAG Data output. Note: Reset state = HiZ.  
JTAG Reset Input. External pull-up required.  
Reserved, must be forced to ground.  
TT  
16 G1 TEST  
Reserved, must be forced to ground.  
Supply voltage for digital I/O circuitry and for PLL  
reference2)  
17 H1 V33IO-PLL  
S
Ground voltage for digital I/O circuitry and for PLL  
reference2)  
18 H2 VSSIO-PLL  
19 H3 CK  
S
I
C
Reference clock input  
24/78  
STR71xF  
System architecture  
Table 7.  
Pin n°  
STR711/STR712/STR715 pin description  
Input Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
Port 0.15 Wakeup from Standby mode input.  
P0.15/  
20 G2  
I
TT  
X
X
WAKEUP  
Note: This port is input only.  
Realtime Clock input and input of 32 kHz oscillator  
amplifier circuit  
21 G3 RTCXTI  
22 H4 RTCXTO  
Output of 32 kHz oscillator amplifier circuit  
Input: Hardware Standby mode entry input active  
low.  
Caution: External pull-up to V33 required to select  
normal mode.  
23 F3 STDBY  
I/O  
CT  
4mA  
X
X
Output: Standby mode active low output following  
Software Standby mode entry.  
Note: In Standby mode all pins are in high  
impedance except those marked Active in Stdby.  
24 G4 RSTIN  
25 H5 VSSBKP  
I
CT  
S
X
X
Reset input  
Stabilization for low power voltage regulator.  
Stabilization for low power voltage regulator.  
Requires external capacitors of at least 1µF  
between V18BKP and VSS18BKP. See Figure 5.  
Note: If the low power voltage regulator is  
bypassed, this pin can be connected to an external  
1.8V supply.  
26 F4 V18BKP  
S
X
Stabilization for main voltage regulator. Requires  
external capacitors of at least 10µF + 33nF  
between V18 and VSS18. See Figure 5.  
27 G5 V18  
S
28 H6 VSS18  
29 E4 VDDA  
30 G6 VSSA  
S
S
S
Stabilization for main voltage regulator.  
Supply voltage for A/D Converter  
Ground voltage for A/D Converter  
Timer 3: Output  
P1.0/T3.OCM  
PB/AIN.0  
31 F5  
I/O pu CT  
4mA  
4mA  
X
X
X
X
Port 1.0  
ADC: Analog input 0  
Compare B  
Timer 3: Input  
Capture A or  
External Clock  
input  
P1.1/T3.ICAP  
32 H7 A/T3.EXTCLK I/O pu CT  
/AIN.1  
Port 1.1  
ADC: Analog input 1  
P1.2/T3.OCM  
PA/AIN.2  
Timer 3: Output  
Compare A  
33 H8  
34 G8  
35 F8  
I/O pu CT  
I/O pu CT  
I/O pu CT  
4mA  
4mA  
4mA  
X
X
X
X
X
X
Port 1.2  
Port 1.3  
Port 1.4  
ADC: Analog input 2  
ADC: Analog input 3  
P1.3/T3.ICAP  
B/AIN.3  
Timer 3: Input  
Capture B  
P1.4/T1.ICAP  
A/T1.EXTCLK  
Timer 1: Input Timer 1: External  
Capture A Clock input  
25/78  
System architecture  
STR71xF  
Table 7.  
Pin n°  
STR711/STR712/STR715 pin description  
Input Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
P1.5/T1.ICAP  
B
Timer 1: Input  
Capture B  
36 G7  
37 F7  
I/O pu CT  
4mA  
X
X
X
X
Port 1.5  
Port 1.6  
P1.6/T1.OCM  
PB  
Timer 1: Output  
Compare B  
I/O pu CT  
4mA  
Supply voltage for digital I/O circuitry and for PLL  
reference2)  
38 E8 V33IO-PLL  
39 F6 VSSIO-PLL  
P1.7/T1.OCM  
S
S
Ground voltage for digital I/O circuitry and for PLL  
reference2)  
Timer 1: Output  
Port 1.7  
40 E7  
I/O pu CT  
I/O pd CT  
4mA  
4mA  
4mA  
X
X
X
X
X
X
PA  
Compare A  
41 D8 P1.8  
Port 1.8  
CAN: receive data input  
Port 1.11  
42 E6 P1.11/CANRX I/O pu CT  
43 D7 P1.12/CANTX I/O pu CT  
X
Note: On STR710 and STR712 only  
CAN: Transmit data output  
Port 1.12  
4mA  
X
X
Note: On STR710 and STR712 only  
USB bidirectional data (data +). Reset state = HiZ  
Note: On STR710 and STR711 only  
42 E6 USBDP  
I/O  
CT  
CT  
This pin requires an external pull-up to V33 to  
maintain a high level.  
USB bidirectional data (data -). Reset state = HiZ  
43 D7 USBDN  
I/O  
S
Note: On STR710 and STR711 only.  
44 C8 VSS  
45 E5 P1.9  
Ground voltage for digital I/O circuitry2)  
I/O pd CT  
4mA  
4mA  
X
X
X
X
Port 1.9  
P1.10/USBCL  
K
C/  
I/O pd  
T
USB: 48 MHZ  
Port 1.10  
46 C7  
47 D6  
48 B8  
clock input  
HDLC:  
P1.13/HCLK/I  
0.SCL  
I/O pd CT  
I/O pu CT  
X
X
4mA  
X
X
Port 1.13 reference clock I2C clock  
input  
P1.14/HRXD/I  
0.SDA  
HDLC: Receive  
data input  
4mA  
4mA  
X
X
X
X
Port 1.14  
I2C serial data  
49 A8 P1.15/HTXD  
50 A7 VSS  
I/O pu CT  
Port 1.15 HDLC: Transmit data output  
Ground voltage for digital I/O circuitry2)  
Supply voltage for digital I/O circuitry2)  
S
S
51 A6 V33  
26/78  
STR71xF  
System architecture  
Table 7.  
Pin n°  
STR711/STR712/STR715 pin description  
Input Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
SPI0 Master  
in/Slave out  
data  
UART3 Transmit data  
output  
P0.0/S0.MISO  
/U3.TX  
52 B7  
I/O pu CT  
4mA  
X
X
Port 0.0  
Note: Programming AF function selects  
UART by default. BSPI must be  
enabled by SPI_EN bit in the BOOTCR  
register.  
BSPI0: Master  
UART3: Receive Data  
out/Slave in  
input  
data  
P0.1/S0.MOSI  
/U3.RX  
53 B6  
I/O pu CT  
X
X
4mA  
4mA  
X
X
X
X
Port 0.1  
Note: Programming AF function selects  
UART by default. BSPI must be  
enabled by SPI_EN bit in the BOOTCR  
register.  
BSPI0: Serial  
I2C1: Serial clock  
Clock  
P0.2/S0.SCLK  
/I1.SCL  
54 A5  
I/O pu CT  
Port 0.2  
Port 0.3  
Note: Programming AF function selects  
I2C by default. BSPI must be enabled  
by SPI_EN bit in the BOOTCR register.  
SPI0: Slave  
Select input  
active low.  
I2C1: Serial Data  
P0.3/S0.SS/I1  
.SDA  
55 C6  
I/O pu CT  
4mA  
4mA  
X
X
X
X
Note: Programming AF function selects  
I2C by default. BSPI must be enabled  
by SPI_EN bit in the BOOTCR register.  
56 B5 P0.4/S1.MISO I/O pu CT  
Port 0.4 SPI1: Master in/Slave out data  
Stabilization for main voltage regulator.  
57 A4 VSS18  
58 C5 V18  
59 B4 VSS  
S
S
S
Stabilization for main voltage regulator. Requires  
external capacitors of at least 10µF + 33nF  
between V18 and VSS18. See Figure 5.  
Ground voltage for digital I/Os  
60 A3 P0.5/S1.MOSI I/O pu CT  
61 D5 P0.6/S1.SCLK I/O pu CT  
4mA  
4mA  
4mA  
X
X
X
X
X
X
Port 0.5 SPI1: Master out/Slave In data  
Port 0.6 SPI1: Serial Clock  
X
62 B3 P0.7/S1.SS  
I/O pu CT  
Port 0.7 SPI1: Slave Select input active low  
27/78  
System architecture  
STR71xF  
Table 7.  
Pin n°  
STR711/STR712/STR715 pin description  
Input Output  
Main  
function  
(after  
Pin name  
Alternate function  
reset)  
UART0:  
Port 0.8 Receive Data  
input  
UART0: Transmit data  
output.  
P0.8/U0.RX/U  
0.TX  
63 C4  
64 A2  
I/O pd CT  
X
4mA  
T
X
Note: This pin may be used for single wire UART  
(half duplex) if programmed as Alternate Function  
Output. The pin will be tri-stated except when  
UART transmission is in progress  
Select Boot  
UART0: Transmit data  
Port 0.9 Configuration  
output  
P0.9/U0.TX/B  
OOT.0  
I/O pd CT  
4mA  
X
input  
1. The Reset configuration of the I/O Ports is IPUPD (input pull-up/pull down). Refer to Table 8 on page 29.  
The Port bit configuration at reset is PC0=1, PC1=1, PC2=0. The port data register bit (PD) value depends  
on the pu/pd column which specifies whether the pull-up or pull-down is enabled at reset  
2. V33IO-PLL and V33 are internally connected. VSSIO-PLL and VSS are internally connected.  
3.5  
External connections  
Figure 5.  
Recommended external connection of V  
V
pins  
18 and 18BKP  
33 nF  
33 nF  
129 128  
58  
57  
18  
V
V
18  
LQFP144  
LQFP64  
V
V
58  
V
V
18BKP  
18  
18BKP  
25 26 271828  
54  
55  
59  
10 µF  
1µF  
10 µF  
1µF  
28/78  
STR71xF  
System architecture  
3.6  
I/O port configuration  
Table 8.  
Port bit configuration table  
PxD  
register  
Input  
PxC2  
PxC1  
PxC0  
Configuration Mode  
buffer  
register register register  
Read  
access  
Write  
access  
TTL Input Floating  
TTL floating  
I/O pin don’t care  
0
0
0
1
1
0
CMOS Input Floating  
CMOS floating I/O pin don’t care  
CMOS Pull-  
CMOS Input Pull-Down  
(IPUPD)  
I/O pin  
0
0
0
1
1
1
1
Down  
INPUT  
CMOS  
Pull-Up  
CMOS Input Pull-Up (IPUPD)  
I/O pin  
1
Analog input  
AIN  
N.A.  
N.A.  
0
don’t care  
0 or 1  
0
1
1
0
0
0
0
0
1
Output Open-Drain  
Output Push-Pull  
I/O pin  
last value  
written  
0 or 1  
OUTPUT  
Alternate Function Open-Drain CMOS floating I/O pin don’t care  
1
1
1
1
0
1
Alternate Function Push-Pull  
CMOS floating I/O pin don’t care  
Legend:  
AIN: Analog Input  
CMOS: CMOS Input levels  
IPUPD: Input Pull Up /Pull Down  
TTL: TTL Input levels  
N.A.: not applicable. In Output mode, a read access to the port gets the output latch value.  
29/78  
System architecture  
STR71xF  
3.7  
Memory mapping  
Figure 6.  
Memory map  
APB Memory Space  
0xFFFF FFFF  
0xFFFF F800  
EIC  
WDG  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
Addressable Memory Space  
4 Gbytes  
0xE000 E000  
0xE000 D000  
0xE000 C000  
0xE000 B000  
0xE000 A000  
0xE000 9000  
0xE000 8000  
0xE000 7000  
0xE000 6000  
0xE000 5000  
0xE000 4000  
0xE000 3000  
0xE000 2000  
0xE000 1000  
0xE000 0000  
0xFFFF FFFF  
RTC  
EIC  
4K  
0xFFFF F800  
TIMER 3  
TIMER 2  
TIMER 1  
TIMER 0  
7
64K  
APB2  
0xE000 0000  
CLKOUT  
ADC  
6
reserved  
IOPORT 2  
IOPORT 1  
IOPORT 0  
reserved  
64K  
APB1  
0xC000 0000  
FLASH Memory Space  
272 Kbytes + regs  
0x4010 DFBF  
FLASH Registers  
36b  
5
0x4010 0000  
reserved  
PRCCU  
1K  
0xA000 0000  
0x400C 4000  
0x400C 2000  
0x400C 0000  
XTI  
B1F1  
B1F0  
8K  
8K  
APB BRIDGE 2 REGS 4K  
4
reserved  
Reserved  
4K  
0x8000 0000  
0xC001 0000  
0xC000 F000  
reserved  
HDLC + RAM  
reserved  
reserved  
BSPI 1  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
4K  
reserved  
B0F7  
0x4004 0000  
0xC000 E000  
0xC000 D000  
0xC000 C000  
0xC000 B000  
3
EXTMEM  
64MB  
See Figure 8  
64K  
64K  
0x6000 0000  
0x4003 0000  
BSPI 0  
0xC000 A000  
0xC000 9000  
0xC000 8000  
0xC000 7000  
0xC000 6000  
0xC000 5000  
0xC000 4000  
0xC000 3000  
0xC000 2000  
0xC000 1000  
0xC000 0000  
2
CAN  
B0F6  
USB + RAM  
UART 3  
FLASH  
256K+16K+36b  
0x4000 0000  
0x4002 0000  
UART 2  
1
UART 1  
B0F5  
B0F4  
64K  
32K  
UART 0  
RAM  
64K  
0x2000 0000  
0x4001 0000  
reserved  
I2C 1  
2
0x4000 8000  
0x4000 6000  
0
8K  
8K  
8K  
8K  
B0F3  
B0F2  
B0F1  
B0F0  
I
C 0  
0x4000 4000  
0x4000 2000  
0x4000 0000  
APB BRIDGE 1 REGS  
FLASH/RAM/EMI  
0x0000 0000  
(*) FLASH aliased at 0x0000 0000h  
by system decoder for booting with  
valid instruction upon RESET  
from Block B0 (8 Kbytes)  
Reserved  
30/78  
STR71xF  
System architecture  
Figure 7.  
Mapping of Flash memory versions  
FLASH Memory Space  
FLASH Memory Space  
FLASH Memory Space  
64 Kbytes + 16K RWW + regs  
128 Kbytes + 16K RWW + regs  
256 Kbytes + 16K RWW + regs  
0x4010 DFBF  
0x4010 DFBF  
0x4010 DFBF  
FLASH Registers  
36b  
FLASH Registers  
36b  
FLASH Registers  
36b  
0x4010 0000  
0x4010 0000  
0x4010 0000  
reserved  
reserved  
reserved  
0x400C 4000  
0x400C 4000  
0x400C 4000  
B1F1  
B1F0  
8K  
8K  
B1F1  
B1F0  
8K  
8K  
B1F1  
B1F0  
8K  
8K  
0x400C 2000  
0x400C 0000  
0x400C 2000  
0x400C 0000  
0x400C 2000  
0x400C 0000  
reserved  
reserved  
reserved  
reserved  
reserved  
B0F7  
0x4004 0000  
0x4004 0000  
0x4004 0000  
64K  
64K  
64K  
64K  
64K  
64K  
0x4003 0000  
0x4003 0000  
0x4003 0000  
reserved  
reserved  
B0F6  
0x4002 0000  
0x4002 0000  
0x4002 0000  
reserved  
B0F4  
B0F5  
B0F4  
B0F5  
B0F4  
64K  
32K  
64K  
32K  
64K  
32K  
0x4001 0000  
0x4001 0000  
0x4001 0000  
0x4000 8000  
0x4000 6000  
0x4000 8000  
0x4000 6000  
0x4000 8000  
0x4000 6000  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
B0F3  
B0F2  
B0F1  
B0F0  
B0F3  
B0F2  
B0F1  
B0F0  
B0F3  
B0F2  
B0F1  
B0F0  
0x4000 4000  
0x4000 2000  
0x4000 0000  
0x4000 4000  
0x4000 2000  
0x4000 0000  
0x4000 4000  
0x4000 2000  
0x4000 0000  
STR715FR0xx  
STR711FR0xx  
STR712FR0xx  
STR710FZ1xx  
STR711FR1xx  
STR712FR1xx  
STR710F72xx  
STR711FR2xx  
STR712FR2xx  
Table 9.  
RAM memory mapping  
Part number  
RAM size  
Start address  
End address  
STR715FR0xx  
STR711FR0xx  
STR712FR0xx  
16 Kbytes  
0x2000 0000  
0x2000 3FFF  
STR710FZ1xx  
STR711FR1xx  
STR712FR1xx  
32 Kbytes  
64 Kbytes  
0x2000 0000  
0x2000 0000  
0x2000 7FFF  
0x2000 FFFF  
STR710FR2xx  
STR710Rxx  
STR711FR2xx  
STR712FR2xx  
31/78  
System architecture  
Figure 8.  
STR71xF  
External memory map  
Addressable Memory Space  
4 Gbytes  
0xFFFF FFFF  
EIC  
0xFFFF F800  
7
APB2  
0xE000 0000  
6
APB1  
0xC000 0000  
External Memory Space  
64 MBytes  
5
BCON3  
BCON2  
BCON1  
BCON0  
0x6C00 000C  
0x6C00 0008  
0x6C00 0004  
0x6C00 0000  
register  
register  
register  
register  
PRCCU  
0xA000 0000  
4
0x66FF FFFF  
Reserved  
EXTMEM  
FLASH  
0x8000 0000  
Bank3  
Bank2  
16M  
16M  
CSn.3  
0x6600 0000  
0x64FF FFFF  
3
0x6000 0000  
CSn.2  
0x6400 0000  
0x62FF FFFF  
2
Bank1  
Bank0  
16M  
16M  
CSn.1  
0x4000 0000  
0x6200 0000  
0x60FF FFFF  
1
CSn.0  
RAM  
0x2000 0000  
0x6000 0000  
0
FLASH/RAM/EMI  
0x0000 0000  
Reserved  
Drawing not in scale  
32/78  
STR71xF  
Electrical parameters  
4
Electrical parameters  
4.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
4.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25°C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
4.1.2  
4.1.3  
Typical values  
Unless otherwise specified, typical data are based on T =25°C, V =3.3V (for the  
A
33  
3.0VV 3.6V voltage range) and V =1.8V. They are given only as design guidelines and  
33  
18  
are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
4.1.4  
4.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 9.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 10.  
Figure 9.  
Pin loading conditions  
Figure 10. Pin input voltage  
STR7 PIN  
STR7 PIN  
V
IN  
=50pF  
L
33/78  
Electrical parameters  
STR71xF  
4.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 10. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External 3.3V Supply voltage  
(including AVDD and V33IO-  
2)  
V33- VSS  
-0.3  
4.0  
)
PLL  
Digital 1.8V Supply voltage  
on V18BKP backup supply 2)  
V18BKP - VSSBKP  
-0.3  
2.0  
V
Input voltage on true open  
drain pin (P0.10) 1)  
VSS-0.3  
VSS-0.3  
50  
+5.5  
V33+0.3  
50  
VIN  
Input voltage on any other  
pin 1)  
Variations between different  
3.3V power pins  
|V33x  
|
|
Variations between different  
1.8V power pins 5)  
|V18x  
25  
25  
mV  
Variations between all the  
different ground pins  
|VSSX - VSS  
VESD(HBM)  
VESD(MM)  
|
50  
50  
Electro-static discharge  
voltage (Human Body Model)  
see : Absolute maximum ratings  
(electrical sensitivity) on page 48  
Electro-static discharge  
voltage (Machine Model)  
34/78  
STR71xF  
Electrical parameters  
Table 11. Current characteristics  
Symbol  
Ratings  
Max.  
150  
Unit  
Total current into V33/V33IO-PLL power lines (source) 2)  
Total current out of VSS/VSSIO-PLL ground lines (sink) 2)  
IV33  
IVSS  
IIO  
150  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on RSTIN pin  
25  
- 25  
5
mA  
1) 3)  
1)  
Injected current on CK pin  
5
IINJ(PIN)  
Injected current on any other pin 4)  
5
Total injected current (sum of all I/O and control pins) 4)  
25  
ΣIINJ(PIN)  
Notes:  
1. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>V33 while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected. Data  
based on TA = 25 °C.  
2. All 3.3V power (V33, AVDD, V33IO-PLL) and ground (VSS, AVSS, VSSIO-PLL) pins must always be connected  
to the external 3.3V supply.  
3. Negative injection disturbs the analog performance of the device. See note in Section 4.3.11: ADC  
characteristics on page 66.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
5. Only when using external 1.8V power supply. All the power (V18, V18BKP) and ground (VSS18, VSSBKP) pins  
must always be connected to the external 1.8V supply.  
Table 12. Thermal characteristics  
Symbol  
Ratings  
Value  
Unit  
TSTG  
Storage temperature range  
-65 to +150  
°C  
Maximum junction temperature (see Section 5.2: Thermal characteristics on  
page 72)  
TJ  
35/78  
Electrical parameters  
STR71xF  
4.3  
Operating conditions  
Subject to general operating conditions for V , and T .  
33  
A
Table 13. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Accessing SRAM or external  
memory with 0 wait states  
0
66  
Accessing FLASH in burst  
mode  
0
0
50  
Internal CPU Clock  
frequency  
fMCLK  
MHz  
Executing from FLASH with  
RWW  
451)  
33  
Accessing FLASH with 0 wait  
states  
0
Internal APB Clock  
frequency  
fPCLK  
0
33  
MHz  
V
Standard Operating  
Voltage (includes V33I0_PLL)  
V33  
3.0  
3.6  
V18BKP  
TA  
Backup Operating Voltage  
1.4  
-40  
1.8  
85  
V
Ambient temperature range 6 Partnumber Suffix  
°C  
1. Data guaranteed by characterization, not tested in production  
Table 14. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
µs/V  
ms/V  
Typ  
Subject to general  
operating conditions for  
TA.  
20  
V33 rise time rate  
tV33  
20  
36/78  
STR71xF  
Electrical parameters  
4.3.1  
Supply current characteristics  
The current consumption is measured as described in Figure 9 on page 33 and Figure 10  
on page 33.  
Total current consumption  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at V or V (no load)  
33 SS  
All peripherals are disabled except if explicitly mentioned.  
Embedded Regulators are used to provide 1.8V (except if explicitly  
mentioned)  
Subject to general operating conditions for V , and T .  
33  
A
Table 15. Total current consumption  
1)  
Max 2)  
Symbol  
Parameter  
Conditions  
Unit  
Typ  
fMCLK=66 MHz, RAM execution  
73.6  
49.3  
100  
Supply current in RUN  
mode  
mA  
f
MCLK=32 MHz, Flash non-burst  
execution  
4)  
IDD  
Supply current in STOP  
mode  
503)  
30  
TA=25°C  
10  
12  
µA  
µA  
Supply current in  
STANDBY mode  
OSC32K bypassed  
Notes:  
1. Typical data are based on TA=25°C, V33=3.3V.  
2. Data based on characterization results, tested in production at V33, fMCLK max. and TA max.  
3. Based on device characterisation, device power consumption in STOP mode at TA 25°C is predicted to be  
30µA or less in 99.730020% of parts.  
4. The conditions for these consumption measurements are described in application note AN2100.  
37/78  
Electrical parameters  
STR71xF  
Unit  
Table 16. Typical power consumption data  
Typical  
current  
on V33  
Symbol  
Parameter  
Conditions  
MCLK = 16 MHz, PCLK1 = PCLK2 = 16  
MHz  
23  
40  
50  
63  
MCLK = 32 MHz, PCLK1 = PCLK2 = 32  
MHz  
All periphs ON  
MCLK = 48 MHz, PCLK1 = PCLK2 = 24  
MHz  
RUN mode  
current from  
RAM  
MCLK = 64 MHz, PCLK1 = PCLK2 = 32  
MHz  
MCLK = 16 MHz  
MCLK = 32 MHz  
MCLK = 48 MHz  
MCLK = 64 MHz  
16  
26  
39  
48  
All periphs OFF  
All periphs ON  
IDDRUN  
mA  
MCLK = 16 MHz, PCLK1 = PCLK2 = 16  
MHz  
27  
47  
62  
MCLK = 32 MHz, PCLK1 = PCLK2 = 32  
MHz  
RUN mode  
current from  
FLASH  
MCLK = 48 MHz, PCLK1 = PCLK2 = 24  
MHz  
MCLK = 16 MHz  
21  
36  
53  
1.7  
All periphs OFF MCLK = 32 MHz  
MCLK = 48 MHz  
IDDSLOW  
IDDWAIT  
IDDLPWAIT  
SLOW mode current  
MCLK = CK_AF (32 kHz), MVR off  
PCLK1 = PCLK2 = 1 MHz  
WAIT mode current  
(all periphs ON)  
13  
37  
18  
CK_AF (32 kHz), Main VReg off, FLASH in  
power-down  
LPWAIT mode current  
Main VReg off, FLASH in power down, RTC  
on  
IDDSTOP  
STOP mode current  
Main VReg off, FLASH in power down, RTC  
off  
10  
10  
9
LP VReg on, LVD on, RTC on  
µA  
LP VReg off (ext 1.8V on V18BKP), LVD on,  
RTC on  
IDDSB  
STANDBY mode current  
LP VReg off (ext1.8V on V18BKP), LVD off,  
RTC on  
5
1
LP VReg off (ext 1.8V on V18BKP), LVD off,  
RTC off  
38/78  
STR71xF  
Electrical parameters  
Figure 11. STOP I vs. V  
Figure 12. STANDBY I vs. V  
DD 33  
DD  
33  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
TA=-45 to +25°C  
TA=+90°C  
0
3
3.1  
3.2  
3.3  
V33 (V)  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V33 (V)  
Figure 13. WFI I vs. V  
DD  
33  
100  
90  
80  
70  
60  
50  
TA=-40 to +90°C  
3
3.1  
3.2  
3.3  
V33 (V)  
3.4  
3.5  
3.6  
39/78  
Electrical parameters  
STR71xF  
On-chip peripherals  
Table 17. Peripheral current consumption  
Symbol  
IDD(PLL1)  
IDD(PLL2)  
IDD(TIM)  
Parameter  
PLL1 supply current  
Conditions  
T = 25°C  
Typ  
3.42  
5.81  
0.88  
1.1  
Unit  
A
PLL2 supply current  
TIM Timer supply current 1)  
BSPI supply current 2)  
UART supply current 2)  
I2C supply current 2)  
IDD(BSPI)  
IDD(UART)  
IDD(I2C)  
1.05  
0.45  
1.89  
1.82  
2.08  
1.11  
mA  
T = 25°C,  
A
f
f
=33 MHz  
ADC supply current when converting 5)  
HDLC supply current 2)  
USB supply current 2)  
PCLK1= PCLK2  
IDD(ADC)  
IDD(HDLC)  
IDD(USB)  
IDD(CAN)  
CAN supply current 2)  
Notes:  
1. Data based on a differential IDD measurement between reset configuration and timer counter running at  
16MHz. No IC/OC programmed (no I/O pads toggling).  
2. Data based on a differential IDD measurement between the on-chip peripheral when kept under reset and  
not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling.  
3. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions.  
40/78  
STR71xF  
Electrical parameters  
4.3.2  
Clock and timing characteristics  
External clock sources  
Subject to general operating conditions for V , and T .  
33  
A
Table 18. CK external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External clock source  
frequency  
fCK  
0
16.5  
MHz  
CK input pin high level  
voltage  
VCKH  
VCKL  
tw(CK)  
0.7xV33  
VSS  
V33  
V
CK input pin low level  
voltage  
0.3xV33  
CK high or low time 1)  
CK rise or fall time 1)  
25  
tw(CK)  
ns  
tr(CK)  
tf(CK)  
20  
CK input capacitance1)  
Duty cycle  
CIN(CK)  
5
pF  
%
DuCy(XT1)  
40  
60  
1
IL  
VSSVINV33  
CK Input leakage current  
µA  
Notes:  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 14. CK external clock source  
90%  
V
V
CKH  
CKL  
10%  
t
t
w(CKH)  
t
t
w(CKL)  
f(CK)  
r(CK)  
T
CK  
f
CLK  
EXTERNAL  
CLOCK SOURCE  
I
L
CK  
STR710  
41/78  
Electrical parameters  
STR71xF  
Table 19. RTCXT1 external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
External clock source  
frequency  
fRTCXT1  
0
500  
kHz  
RTCXT1 input pin high level  
voltage  
VRTCXT1H  
VRTCXT1L  
tw(RTCXT1)  
0.7xV33  
VSS  
V33  
V
RTCXT1 input pin low level  
voltage  
0.3xV33  
RTCXT1 high or low time 1)  
RTCXT1 rise or fall time 1)  
100  
tw(RTCXT1)  
ns  
tr(RTCXT1)  
tf(RTCXT1)  
5
RTCXT1 input  
capacitance1)  
CIN(RTCXT1)  
5
pF  
%
DuCy(RTCXT1)  
Duty cycle  
30  
70  
1
RTCXT1 Input leakage  
current  
IL  
VSSVINV33  
µA  
Notes:  
1. Data based on design simulation and/or technology characteristics, not tested in production.  
42/78  
STR71xF  
Electrical parameters  
OSC32K crystal / ceramic resonator oscillator  
The STR7 RTC clock can be supplied with a 32 kHz Crystal/Ceramic resonator oscillators.  
All the information given in this paragraph are based on characterization results with  
specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer  
for more details (frequency, package, accuracy...).  
Table 20. 32K oscillator characteristics (fOSC32K= 32.768 kHz)  
Symbol  
Parameter  
Feedback resistor  
Conditions  
Typ  
Unit  
RF  
2.7  
MΩ  
Recommended load capacitance  
versus equivalent serial resistance  
of the crystal (RS)1)  
CL1  
CL2  
RS=40K Ω  
12.5  
3.2  
pF  
V33=3.3 V  
VIN=VSS  
i2  
RTCXT2 driving current  
µA  
gm  
Oscillator Transconductance  
startup time  
8
5
µA/V  
2)  
V33 is stabilized  
tSU(OSC32KHZ)  
s
Notes:  
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details  
2. tSU(OSC32KHZ) is the start-up time measured from the moment it is enabled (by software) to a stabilized  
32 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Figure 15. Typical application with a 32 kHz crystal  
WHEN RESONATOR WITH  
INTEGRATED CAPACITORS  
FEEDBACK  
LOOP  
i
2
C
f
L1  
RTCXT1  
RTCXT2  
OSC32K  
32 kHz  
RESONATOR  
R
F
C
L2  
STR710  
43/78  
Electrical parameters  
Figure 16. RTC crystal oscillator and resonator  
STR71xF  
DEVICE  
DEVICE  
RS  
CL  
CL  
PLL electrical characteristics  
V
= 3.0 to 3.6V, V  
= 3.0 to 3.6V, T = -40 / 85 °C unless otherwise specified.  
33  
33IOPLL A  
Table 21. PLL1 characteristics  
Symbol Parameter  
Value  
Typ  
Test conditions  
Unit  
Min  
Max  
fPLLCLK1 PLL multiplier output clock  
165  
3.0  
MHz  
MHz  
FREF_RANGE = 0  
1.5  
3.0  
FREF_RANGE = 1  
MX[1:0]=’00’ or ‘01’  
8.25  
MHz  
PLL input clock  
fPLL1  
FREF_RANGE = 1  
MX[1:0]=’10’ or ‘11’  
3.0  
25  
6
MHz  
%
PLL input clock duty cycle  
75  
FREF_RANGE = 0  
MX[1:0]=’01’ or ‘11’  
125  
250  
250  
500  
kHz  
FREF_RANGE = 0  
MX[1:0]=’00’ or ‘10’  
kHz  
kHz  
kHz  
fFREE1 PLL free running frequency  
FREF_RANGE = 1  
MX[1:0]=’01’ or ‘11’  
FREF_RANGE = 1  
MX[1:0]=’00’ or ‘10’  
FREF_RANGE = 0  
Stable Input Clock  
300  
µs  
Stable V  
, V  
18  
33IOPLL  
tLOCK1 PLL lock time  
FREF_RANGE = 1  
Stable Input Clock  
600  
2
µs  
Stable V  
, V  
18  
33IOPLL  
t
= 4 MHz, MX[1:0]=’11’  
PLL  
Global Output division = 32  
tJITTER1 PLL jitter (peak to peak)  
0.7  
ns  
(Output Clock = 2 MHz)  
44/78  
STR71xF  
Electrical parameters  
Table 22. PLL2 characteristics  
Value  
Symbol  
Parameter  
Test conditions  
Unit  
Min  
Typ Max  
PLL multiplier output  
clock  
fPLLCLK2  
140  
MHz  
FREF_RANGE = 0  
1.5  
3.0  
3.0  
5
MHz  
MHz  
fPLL2  
PLL input clock  
FREF_RANGE = 1  
FREF_RANGE = 0  
Stable Input Clock  
Stable V33IOPLL, V18  
300  
600  
2
µs  
µs  
ns  
tLOCK2  
PLL lock time  
FREF_RANGE = 1  
Stable Input Clock  
Stable V33IOPLL, V18  
t
PLL = 4 MHz, MX[1:0]=’11’  
tJITTER2  
PLL jitter (peak to peak) Global Output division = 32  
(Output Clock = 2 MHz)  
0.7  
Table 23. Low-power mode wakeup timing  
Symbol  
Parameter  
Wakeup from LPWFI mode  
Typ  
Unit  
26(1)  
tWULPWFI  
µs  
CLK  
tWUSTOP  
Wakeup from STOP mode  
2048  
Cycles  
(2)  
2048 CLK Cycles  
+ 8 CLK2 Cycles(3)  
tWUSTBY  
Wakeup from STANDBY mode  
Cycles  
1. Clock selected is CK2_16, Main VReg OFF and Flash in power-down  
2. The CLK clock is derived from the external oscillator.  
3. Refer to Figure 7. Reset General Timing in the STR71xF Reference Manual (UM0084)  
45/78  
Electrical parameters  
STR71xF  
4.3.3  
Memory characteristics  
Flash memory  
V
= 3.0 to 3.6V, T = -40 to 85 °C unless otherwise specified.  
A
33  
Table 24. Flash memory characteristics  
Value  
Typ  
Symbol  
Parameter  
Test conditions  
Unit  
Max1)  
Min.  
tPW  
tPDW  
tPB0  
tPB1  
Word Program  
40  
60  
µs  
µs  
s
Double Word Program  
Bank 0 Program (256K)  
Bank 1 Program (16K)  
Double Word Program  
Double Word Program  
1.6  
130  
2.1  
170  
ms  
Not preprogrammed  
Preprogrammed  
4.0  
3.3  
2.3  
1.9  
tES  
Sector Erase (64K)  
Sector Erase (8K)  
Bank 0 Erase (256K)  
Bank 1 Erase (16K)  
s
s
s
s
0.7  
0.6  
1.1  
1.0  
Not preprogrammed  
Preprogrammed  
tES  
8.0  
6.6  
13.7  
11.2  
Not preprogrammed  
Preprogrammed  
tES  
0.9  
0.8  
1.5  
1.3  
Not preprogrammed  
Preprogrammed  
tES  
2)  
Recovery when disabled  
Program Suspend Latency  
Erase Suspend Latency  
20  
10  
µs  
µs  
µs  
tRPD  
2)  
tPSL  
2)  
300  
tESL  
Endurance (Bank 0  
sectors)  
NEND_B0  
NEND_B1  
tRET  
10  
100  
20  
kcycles  
kcycles  
Years  
Endurance (Bank 1  
sectors)  
Data Retention (Bank 0  
and Bank 1)  
TA=85°  
Min time from Erase  
Resume to next Erase  
Suspend  
tESR  
Erase Suspend Rate  
20  
ms  
Notes:  
1. TA=45°C after 0 cycles. Guaranteed by characterization, not tested in production.  
2. Guaranteed by design, not tested in production  
46/78  
STR71xF  
Electrical parameters  
4.3.4  
EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
Functional EMS (electro magnetic susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations:  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials:  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
In the case of an ARM7 CPU, in order to write robust code that can withstand all kinds of  
stress, such as very strong electromagnetic disturbance, it is mandatory that the Data Abort,  
Prefetch Abort and Undefined Instruction exceptions are managed by the application  
software. This will prevent the code going into an undefined state or performing any  
unexpected operation.  
47/78  
Electrical parameters  
STR71xF  
Table 25. EMS data  
Level/  
Class  
Symbol  
Parameter  
Conditions  
V33=3.3 V, TA=+25°C, fMCLK=32 MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin  
to induce a functional disturbance  
VFESD  
2B  
4A  
Fast transient voltage burst limits to be  
VEFTB applied through 100pF on VDD and VSS  
V33=3.3 V, TA=+25°C, fMCLK=32 MHz  
conforms to IEC 1000-4-4  
pins to induce a functional disturbance  
Electro magnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 26. EMI data  
Max vs.  
[fOSC4M/fHCLK  
]
Monitored  
Symbol  
Parameter  
Conditions  
Unit  
frequency band  
16/ 48  
MHz  
16/8  
MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
SAE EMI Level  
17  
17  
11  
4
19  
16  
11  
3
V33=3.3 V, TA=+25°C,  
dBµV  
LQFP64 package  
conforming to SAE J  
1752/3  
SEMI  
Peak level  
-
Notes:  
1. Not tested in production.  
2. BGA and LQFP devices have similar EMI characteristics.  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electro-static discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: Human Body Model and Machine Model. This test conforms to the  
JESD22-A114A/A115A standard.  
48/78  
STR71xF  
Electrical parameters  
Table 27. ESD absolute maximum ratings  
Maximum  
Unit  
Symbol  
Ratings  
Conditions  
value 1)  
Electro-static discharge voltage  
(Human Body Model)  
VESD(HBM)  
2000  
Electro-static discharge voltage  
(Machine Model)  
VESD(MM)  
200  
V
TA=+25°C  
750 on corner  
pins, 500 on  
others  
Electro-static discharge voltage  
(Charge Device Model)  
VESD(CDM)  
Notes:  
1. Data based on characterization results, not tested in production.  
Static and dynamic latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,  
refer to the application note AN1181.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to  
each pin of 3 samples when the micro is running to assess the latch-up performance in  
dynamic mode. Power supplies are set to the typical values, the oscillator is connected  
as near as possible to the pins of the micro and the component is put in reset mode.  
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,  
refer to the application note AN1181.  
Electrical sensitivities  
Table 28. Static and dynamic latch-up  
Class (1)  
Symbol  
Parameter  
Conditions  
TA=+25°C  
TA=+85°C  
TA=+105°C  
A
A
A
LU  
Static latch-up class  
VDD=3.3 V, fOSC4M=4 MHz, fMCLK=32 MHz,  
TA=+25°C  
DLU  
Dynamic latch-up class  
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
49/78  
Electrical parameters  
STR71xF  
4.3.5  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V and T unless otherwise specified. All  
33  
A
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or  
an external pull-up or pull-down resistor.  
Table 29. I/O static characteristics  
Symbol  
VIL  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
Input low level voltage 1)  
Input high level voltage 1)  
0.3V33  
V
VIH  
0.7V33  
CMOS ports  
Schmitt trigger voltage hysteresis  
Vhys  
0.8  
V
V
V
V
2)  
Input low level voltage 1)  
Input high level voltage 1)  
VIL  
VIH  
0.9  
0.8  
0.8  
2
1.35  
P0.15 WAKEUP  
TTL ports  
Schmitt trigger voltage hysteresis  
2)  
Vhys  
0.4  
Input low level voltage 1)  
VIL  
VIH  
Input high level voltage 1)  
2.0  
IINJ(PIN)  
Injected Current on any I/O pin  
4
25  
1
mA  
ΣIINJ(PIN) Total injected current (sum of all  
I/O and control pins)  
3)  
Input leakage current 4)  
Ilkg  
VSSVINV33  
VIN=VSS  
µA  
kΩ  
Weak pull-up equivalent  
resistor5)  
RPU  
110  
110  
150  
700  
700  
Weak pull-down equivalent  
resistor5)  
RPD  
CIO  
VIN=V33  
150  
5
kΩ  
I/O pin capacitance  
pF  
Notes:  
1. Data based on characterization results, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
3. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise  
refer to IINJ(PIN) specification. A positive injection is induced by VIN>V33 while a negative injection is  
induced by VIN<VSS. Refer to Section 4.2 on page 34 for more details.  
4. Leakage could be higher than max. if negative current is injected on adjacent pins.  
5. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor (corresponding  
IPU and IPD current characteristics described in Figure 18 to Figure 19).  
50/78  
STR71xF  
Electrical parameters  
Figure 17. R vs. V with V =V  
Figure 18. I vs. V with V =V  
PU  
33  
IN  
SS  
PU  
33  
IN  
SS  
0.0  
0
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
-5  
-50.0  
-10  
-15  
-20  
-25  
-30  
-100.0  
-150.0  
-200.0  
-250.0  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V33 (V)  
V33 (V)  
Figure 19. R vs. V with V =V  
Figure 20. I vs. V with V =V  
PD  
33  
IN  
33  
PD  
33  
IN  
33  
300.0  
250.0  
200.0  
150.0  
100.0  
50.0  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
30  
25  
20  
15  
10  
5
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
0.0  
0
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V33 (V)  
V33 (V)  
51/78  
Electrical parameters  
STR71xF  
Output driving current  
Subject to general operating conditions for V and T unless otherwise specified.  
33  
A
Table 30. Output driving current  
I/O  
Symbol  
Parameter  
Conditions  
IIO=+4mA  
IIO=-4mA  
IIO=+8mA  
IIO=-8mA  
Min  
Max  
Unit  
Type  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
1)  
0.4  
VOL  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
2)  
V33-0.8  
V33-0.8  
VOH  
V
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
1)  
0.4  
VOL  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
2)  
VOH  
Notes:  
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 11 and the sum  
of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 11 and the  
sum of IIO (I/O ports and control pins) must not exceed IV33  
.
52/78  
STR71xF  
Electrical parameters  
Figure 21. Typical V and V at V =3.3V (high current ports)  
OL  
OH  
33  
3.09  
3.08  
3.07  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
-4  
-8  
-4  
-8  
Ioh (mA)  
Iol (mA)  
53/78  
Electrical parameters  
STR71xF  
Figure 22. Typical V vs. V  
OL  
33  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0.16  
0.14  
0.12  
0.10  
0.08  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
TA=-45°C  
TA=0°C  
0.06  
TA=+25°C  
TA=+90°C  
0.04  
0.02  
0.00  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V33 (V)  
V33 (V)  
Figure 23. Typical V vs. V  
OH  
33  
3.60  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
3.60  
3.40  
3.20  
3.00  
2.80  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
2.60  
2.40  
2.20  
2.00  
TA=-45°C  
TA=0°C  
TA=+25°C  
TA=+90°C  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
V33 (V)  
V33 (V)  
54/78  
STR71xF  
Electrical parameters  
RSTIN pin  
The RSTIN pin input driver is CMOS. A permanent pull-up is present which is the same as  
as R (seeTable 29 on page 50)  
PU  
Subject to general operating conditions for V and T unless otherwise specified.  
33  
A
Table 31. RESET pin characteristics  
Typ 1)  
Symbol  
VIL(RSTINn)  
VIH(RSTINn)  
VF(RSTINn)  
VNF(RSTINn)  
Parameter  
Conditions  
Min  
Max Unit  
RSTIN Input low level voltage 1)  
RSTIN Input high level voltage 1)  
RSTIN Input filtered pulse2)  
0.8  
V
2
500  
ns  
µs  
RSTIN Input not filtered pulse2)  
1.2  
Notes:  
1. Data based on characterization results, not tested in production.  
2) Data guaranteed by design, not tested in production.  
1)  
Figure 24. Recommended RSTIN pin protection.  
Recommended  
V
33  
V
33  
V
33  
RPU  
0.01µF  
0.01µF  
4.7kΩ  
RSTIN  
EXTERNAL  
RESET  
INTERNAL RESET  
Filter  
CIRCUIT  
STR7X  
Required  
Notes:  
1. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current  
characteristics described in Figure 18).  
2. The reset network protects the device against parasitic resets.  
3. The user must ensure that the level on the RSTIN pin can go below the VIL(RSTINn) max. level specified in  
Table 31. Otherwise the reset will not be taken into account internally.  
55/78  
Electrical parameters  
STR71xF  
4.3.6  
TIM timer characteristics  
Subject to general operating conditions for V , f  
, and T unless otherwise  
A
33 MCLK  
specified.  
Refer to Section 4.3.5: I/O port pin characteristics on page 50 for more details on  
the input/output alternate function characteristics (output compare, input capture,  
external clock, PWM output...).  
Table 32. TIM characteristics  
Symbol  
Parameter  
Conditions  
Min  
2
Typ  
Max  
Unit  
tCK_TIM  
tPCLK2  
ns  
tw(ICAP)in  
Input capture pulse time  
1
tres(TIM)  
Timer resolution time  
fPCLK2 = 30 MHz  
33.3  
fCK_TIM(MAX)  
fMCLK  
=
fCK_TIM/4  
0
0
MHz  
MHz  
Timer external clock  
frequency  
fEXT  
fCK_TIM = fMCLK  
60 MHz  
=
15  
ResTIM  
Timer resolution  
16  
bit  
16-bit Counter clock period  
when internal clock is  
selected  
tPCLK2  
1
65536  
2184  
tCOUNTER  
fPCLK2 = 30 MHz  
0.033  
µs  
tPCLK  
s
65536x  
65536  
TMAX_COUNT  
Maximum Possible Count  
fPCLK2 = 30 MHz  
143.1  
4.3.7  
EMI - external memory interface  
Subject to general operating conditions for V , f  
, and T unless otherwise specified.  
A
DD HCLK  
The tables below use a variable which is derived from the EMI_BCONn registers (described  
in the STR71x Reference Manual) and represents the special characteristics of the  
programmed memory cycle.  
Table 33.  
Symbol  
EMI general characteristics  
Parameter  
Value  
tMCLK CPU clock period  
tC Memory cycle time wait states  
1 / fMCLK  
tMCLK x (1 + [C_LENGTH])  
56/78  
STR71xF  
Electrical parameters  
Table 34. EMI read operation  
Value  
Symbol  
Parameter  
Test Conditions  
Unit  
Min1)  
19  
Max1)  
21  
Typ  
tRCR  
tRP  
tRDS  
tRDH  
tMCLK  
tC  
Read to CSn Removal Time  
Read Pulse Time  
ns  
ns  
ns  
ns  
98  
100  
Read Data Setup Time  
Read Data Hold Time  
22  
0
MCLK=50 MHz  
4 wait states  
1.5*tM  
CLK  
tRAS  
tRAH  
tRAT  
tRRT  
Read Address Setup Time  
Read Address Hold Time  
27  
0.65  
1.9  
20  
33  
2
ns  
ns  
ns  
ns  
50 pf load on all pins  
Read Address Turnaround  
Time  
3.25  
21  
tMCLK  
RDn Turnaround Time  
See Figure 25, Figure 26, Figure 27 and Figure 28 for related timing diagrams.  
1. Data based on characterisation results, not tested in production.  
Table 35. EMI write operation  
Value  
Symbol  
Parameter  
Test conditions  
Unit  
Min1)  
20  
Max1)  
22.5  
80  
Typ  
tWCR  
tWP  
tMCLK  
tC  
WEn to CSn Removal Time  
Write Pulse Time  
ns  
ns  
77.5  
tC +  
tMCLK  
tWDS1  
Write Data Setup Time 1  
97  
100  
ns  
tWDS2  
tWDH  
tWAS  
tWAH  
tC  
Write Data Setup Time 2  
Write Data Hold Time  
77  
20  
27  
0.6  
80  
23  
33  
3
ns  
ns  
ns  
ns  
MCLK=50 MHz  
3 wait states  
tMCLK  
50 pf load on all pins  
1.5*tMCLK  
Write Address Setup Time  
Write Address Hold Time  
Write Address Turnaround  
Time  
tWAT  
1.75  
20  
4.1  
23  
ns  
ns  
tWWT  
tMCLK  
WEn Turnaround Time  
See Figure 29, Figure 30, Figure 31 and Figure 32 for related timing diagrams.  
1. Data based on characterisation results, not tested in production.  
57/78  
Electrical parameters  
Figure 25. Read cycle timing: 16-bit read on 16-bit memory  
STR71xF  
tRAH  
Address  
tRP  
A[23:0]  
RDn  
tRCR  
CSn.x  
WEn.x  
tRDS  
tRDH  
tRAS  
Data Input  
D[15:0]  
(Input)  
Figure 26. Read cycle timing: 32-bit read on 16-bit memory  
tRAT  
tRAH  
tRAH  
Address  
tRP  
Address  
tRP  
A[23:0]  
tRRT  
RDn  
tRCR  
CSn.x  
WEn.x  
tRAS  
tRDS  
tRDH  
tRDS  
tRDH  
Data Input  
Data Input  
D[15:0]  
(Input)  
See Table 34 for read timing data.  
Figure 27. Read cycle timing: 16-bit read on 8-bit memory  
tRAT  
tRAH  
tRAH  
Address  
tRP  
Address  
tRP  
A[23:0]  
tRRT  
RDn  
tRCR  
CSn.x  
WEn.x  
tRAS  
tRDS  
tRDH  
tRDS  
tRDH  
Data Input  
Data Input  
D[7:0]  
(Input)  
58/78  
STR71xF  
Electrical parameters  
Figure 28. Read cycle timing: 32-bit read on 8-bit memory  
tRAT  
tRAT  
tRAT  
tRAH  
tRAH  
tRAH  
tRAH  
Address  
tRP  
Address  
tRP  
Address  
tRP  
Address  
tRP  
A[23:0]  
tRRT  
tRRT  
tRRT  
RDn  
tRCR  
CSn.x  
WEn.x  
tRAS  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
tRDS  
tRDH  
Data Input  
Data Input  
Data Input  
Data Input  
D[7:0]  
(Input)  
See Table 34 for read timing data.  
Figure 29. Write cycle timing: 16-bit write on 16-bit memory  
tWAH  
Address  
A[23:0]  
tWCR  
RDn  
CSn.x  
tWAS  
tWP  
WEn.x  
tWDH  
tWDS1  
Data Output  
D[15:0]  
(Output)  
Figure 30. Write cycle timing: 32-bit write on 16-bit memory  
tWAT  
tWAH  
tWAH  
address  
address  
A[23:0]  
tWCR  
RDn  
CSn.x  
tWP  
tWWT  
tWP  
WEn.x  
tWAS  
tWDS1  
tWDH  
tWDS2  
tWDH  
Data Output  
Data Output  
D[15:0]  
(Output)  
See Table 46 for write timing data.  
59/78  
Electrical parameters  
Figure 31. Write cycle timing: 16-bit write on 8-bit memory  
STR71xF  
tWAT  
tWAH  
tWAH  
address  
address  
A[23:0]  
tWCR  
RDn  
CSn.x  
tWP  
tWWT  
tWP  
WEn.x  
tWAS  
tWDS1  
tWDH  
tWDS2  
tWDH  
Data Output  
Data Output  
D[7:0]  
(Output)  
Figure 32. Write cycle timing: 32-bit write on 8-bit memory  
tWAT  
tWAT  
tWAT  
tWAH  
tWAH  
tWAH  
tWAH  
address  
address  
address  
address  
A[23:0]  
tWCR  
RDn  
CSn.x  
tWP  
tWWT  
tWP  
tWWT  
tWP  
tWWT  
tWP  
WEn.x  
tWAS  
tWDS1  
tWDH  
tWDS2  
tWDH  
tWDS2  
tWDH  
tWDS2  
tWDH  
Data Output  
Data Output  
Data Output  
Data Output  
D[7:0]  
(Output)  
See Table 35 for write timing data.  
2
I C - inter IC control interface  
4.3.8  
Subject to general operating conditions for V ,  
, and T unless otherwise specified.  
f
33  
A
PCLK1  
2
2
The STR7 I C interface meets the requirements of the Standard I C communications  
protocol described in the following table with the restriction mentioned below:  
Restriction: The I/O pins which SDA and SCL are mapped to are not “True” Open-Drain:  
Note:  
when configured as open-drain, the PMOS connected between the I/O pin and V  
is  
33  
the I/O pin and V  
disabled, but it is still present. Also, there is a protection diode between  
.
33  
2
Consequently, when using this I C in a multi-master network, it is not possible to power off  
the STR7X while some another I C master node remains powered on: otherwise, the  
2
STR7X will be powered by the protection diode.  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
60/78  
STR71xF  
Electrical parameters  
Table 36. I2C characteristics  
Standard mode  
I2C  
Fast mode I2C5)  
Unit  
Symbol  
Parameter  
Min 1)  
4.7  
Max 1)  
Min 1)  
Max 1)  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
1.3  
µs  
SCL clock high time  
SDA setup time  
4.0  
0.6  
250  
100  
0 3)  
0 2)  
900 3)  
300  
SDA data hold time  
tr(SDA)  
tr(SCL)  
ns  
20+0.1Cb  
SDA and SCL rise time  
1000  
300  
tf(SDA)  
tf(SCL)  
20+0.1Cb  
SDA and SCL fall time  
300  
th(STA)  
tsu(STA)  
tsu(STO)  
tw(STO:STA)  
Cb  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated START condition setup  
time  
STOP condition setup time  
µs  
µs  
pF  
STOP to START condition time (bus  
free)  
Capacitive load for each bus line  
400  
400  
Notes:  
1. Data based on standard I2C protocol requirement, not tested in production.  
2. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
3. The maximum hold time th(SDA) is not applicable.  
4. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
5. fPCLK1, must be at least 8 MHz to achieve max fast I2C speed (400 kHz).  
6. The following table gives the values to be written in the I2CCCR register to obtain the required I2C SCL line  
frequency.  
61/78  
Electrical parameters  
Figure 33.  
STR71xF  
2
Typical application with I C bus and timing diagram  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
STR7  
REPEATED START  
START  
t
t
su(STA)  
w(STO:STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
Table 37. SCL Frequency Table (fPCLK1=8 MHz.,V33 = 3.3 V)  
I2CCCR Value  
fSCL  
(kHz)  
RP=4.7kΩ  
400  
300  
200  
100  
50  
83  
85h  
8Ah  
24h  
4Ch  
C4h  
20  
Legend:  
RP = External pull-up resistance  
fSCL = I2C speed  
NA = Not achievable  
Note:  
For speeds around 200 kHz, achieved speed can have ± ±5% tolerance  
For other speed ranges, achieved speed can have ± ±2% tolerance  
The above variations depend on the accuracy of the external components used.  
62/78  
STR71xF  
Electrical parameters  
4.3.9  
BSPI - buffered serial peripheral interface  
Subject to general operating conditions for V , T and f ,unless otherwise specified.  
PCLK1  
DD  
A
Refer to I/O port pin characteristics on page 50 for more details on the input/output alternate  
function characteristics (SS, SCK, MOSI, MISO).  
Table 38. BSPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fPCLK1/6  
5.5  
Master  
fPCLK1/254  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
fPCLK1/8  
3.3  
Slave  
0
capacitive charge  
C=50 pF  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
14  
(1)  
tsu(SS)  
SS setup time  
SS hold time  
Slave  
Slave  
0
0
(1)  
th(SS)  
(1)  
tw(SCKH)  
tw(SCKL)  
Master fPCLK1=33 MHz,  
presc = 6  
SCK high and low time  
Data input setup time  
Data input hold time  
Data input hold time  
73  
(1)  
(1)  
tsu(MI)  
tsu(SI)  
Master  
Slave  
7
0
(1)  
1)(2)  
1)(2)  
th(MI)  
th(SI)  
Master  
Slave  
1xtPCLK1  
2xtPCLK1  
(1)  
th(MI)  
th(SI)  
Master fPCLK1=33 MHz  
Slave fPCLK1=33 MHz  
30  
60  
(1)  
ns  
Slave  
0
0
0
1.5xtPCLK1+42  
1)(3)  
(1)(4)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Data output hold time  
Data output valid time  
Data output hold time  
Slave fPCLK1=33 MHz  
Slave  
87  
42  
tdis(SO)  
Slave (after enable edge)  
3xtPCLK1+45  
135  
(1)(2)  
tv(SO)  
f
PCLK1=33 MHz  
(1)  
th(SO)  
Slave (after enable edge)  
Master (after enable edge)  
0
0
2xtPCLK1+12  
72  
(1)(2)  
tv(MO)  
f
PCLK1=33 MHz  
(1)  
th(MO)  
Master (after enable edge)  
1. Data based on design simulation and/or characterisation results, not tested in production.  
2. Depends on fPCLK1. For example, if fPCLK1=8 MHz, then tPCLK1 = 1/fPCLK1 =125 ns and tv(MO) = 255 ns.  
3. Min. time is the minimum time to drive the output and the max. time is the maximum time to validate the data.  
4. Min time is the minimun time to invalidate the output and the max time is the maximum time to put the data in Hi-Z.  
63/78  
Electrical parameters  
Figure 34. SPI slave timing diagram with CPHA=0  
STR71xF  
1)  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
t
t
dis(SO)  
a(SO)  
v(SO)  
h(SO)  
t
t
r(SCK)  
f(SCK)  
MISO  
OUTPUT  
INPUT  
MSB OUT  
BIT6 OUT  
LSB OUT  
t
t
h(SI)  
su(SI)  
MSB IN  
BIT1 IN  
LSB IN  
MOSI  
1)  
Figure 35. SPI slave timing diagram with CPHA=1  
SS  
INPUT  
t
t
su(SS)  
c(SCK)  
t
h(SS)  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
w(SCKH)  
w(SCKL)  
t
t
dis(SO)  
a(SO)  
t
t
h(SO)  
v(SO)  
t
t
r(SCK)  
f(SCK)  
MISO  
OUTPUT  
INPUT  
MSB OUT  
BIT6 OUT  
LSB OUT  
t
t
h(SI)  
su(SI)  
MSB IN  
BIT1 IN  
LSB IN  
MOSI  
1)  
Figure 36. SPI master timing diagram  
SS  
INPUT  
t
c(SCK)  
CPHA = 0  
CPOL = 0  
CPHA = 0  
CPOL = 1  
CPHA = 1  
CPOL = 0  
CPHA = 1  
CPOL = 1  
t
t
w(SCKH)  
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
h(MI)  
su(MI)  
MISO  
INPUT  
MSB IN  
BIT6 IN  
LSB IN  
t
t
v(MO)  
h(MO)  
MSB OUT  
BIT6 OUT  
LSB OUT  
MOSI  
OUTPUT  
1. Measurement points are done at CMOS levels: 0.3xV33 and 0.7xV33  
64/78  
STR71xF  
Electrical parameters  
4.3.10  
USB characteristics  
The USB interface is USB-IF certified (Full Speed).  
Table 39. USB startup time  
Symbol  
Parameter  
Conditions  
Max  
Unit  
tSTARTUP  
USB transceiver startup time  
1
µs  
Table 40. USB DC characteristics  
Symbol  
Parameter  
Conditions  
Input Levels  
Min.(1)(2) Max.(1)(2) Unit  
VDI  
Differential Input Sensitivity  
I(DP, DM)  
0.2  
Differential Common Mode  
Range  
VCM  
Includes VDI range  
0.8  
1.3  
2.5  
2.0  
V
V
Single Ended Receiver  
Threshold  
VSE  
Output Levels  
VOL  
VOH  
Static Output Level Low  
Static Output Level High  
RL of 1.5 kto 3.6V(3)  
0.3  
3.6  
(3)  
RL of 15 kto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a  
shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased . This will not  
damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be  
affected.  
RL is the load connected on the USB drivers  
3.  
Figure 37. USB: data signal rise and fall time  
Differential  
Data Lines  
Crossover  
points  
VCRS  
V
SS  
t
t
r
f
Table 41.  
Symbol  
USB: Full speed driver electrical characteristics  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(1)  
Fall Time1)  
CL=50 pF  
CL=50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ Fall Time matching  
Output signal Crossover Voltage  
90  
1.3  
110  
2.0  
Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB  
Specification - Chapter 7 (version 2.0).  
1.  
65/78  
Electrical parameters  
STR71xF  
4.3.11  
ADC characteristics  
Subject to general operating conditions for AV , f  
, and T unless otherwise specified.  
A
DD PCLK2  
Table 42. ADC characteristics  
Typ 1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Modulator Oversampling  
frequency  
fMOD  
2.1  
2.5  
MHz  
V
Conversion voltage range 2)3)  
VAIN  
0
VIN<VSS, | IIN |<  
400µA on adjacent  
analog pin  
Negative input leakage current on  
analog pins  
Ilkg  
5
6
µA  
PBR  
Passband Ripple  
0.1  
dB  
dB  
dB  
MΩ  
pF  
SINAD S/N and Distortion  
56  
60  
1
63  
74  
THD  
ZIN  
Total Harmonic Distortion  
Input Impedance  
fMOD = 2 MHz  
CADC  
Internal sample and hold capacitor  
3.2  
2048/  
Total Conversion time (including  
sampling time)  
tCONV  
fMOD  
(max)  
TA = 27 °C  
TA = 27 °C  
Normal mode  
Standby mode  
2.5  
3.0  
1
mA  
IADC  
µA  
Notes:  
1. Unless otherwise specified, typical data are based on TA=25°C and AVDD-AVSS=3.3V. They are given only  
as design guidelines and are not tested.  
2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than  
10k). Data based on characterization results, not tested in production.  
3. Calibration is needed once after each power-up.  
66/78  
STR71xF  
Electrical parameters  
Table 43. ADC accuracy with f  
= 20 MHz, f  
=10 MHz, AV =3.3 V  
ADC DD  
PCLK2  
Symbol  
Parameter  
Conditions  
Min  
2370  
1480  
Typ  
Max  
2565  
1680  
Unit  
Converted code when AIN=0V 1)  
Converted code when AIN=2.5V 1)  
Dec-  
imal  
code  
ADC_DATA(0V)  
ADC_DATA(2.5V)  
Center voltage of Sigma-Delta  
Modulator1)  
VCM  
TUE  
1.23  
1.25  
1.30  
V
In this type of ADC, calibration is necessary to correct  
gain error and offset errors. Once calibrated, the TUE is  
limited to the ILE.  
Total unadjusted error  
Differential linearity error1)  
Integral linearity error 1)  
|ED|  
|EL|  
1.96  
2.36  
2.19  
3.95  
LSB  
1. Data based on characterisation, not tested in production.  
ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current. The effect of negative injection current  
on robust pins is specified in Section 4.3.5.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 4.3.5 does not  
affect the ADC accuracy.  
Figure 38. ADC accuracy characteristics  
4095  
4094  
4093  
(2)  
(3)  
(1)  
ADC_DATA(0V)  
ADC_DATA(2.5V)  
5
4
3
2
1
E
L
Out of range  
E
D
1 LSB  
IDEAL  
0
1
2
3
4093 4094 4095  
AV  
1633  
VCM  
3100 3101 3102 3103  
AV  
SS  
DD  
V
(LSB  
)
IDEAL  
AIN  
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
AVDD AVSS  
(3) End point correlation line  
1LSB  
= -----------------------------------------------  
IDEAL  
4095  
E =Differential Linearity Error: maximum deviation between actual steps and the  
D
ideal one.  
E =Integral Linearity Error: maximum deviation between any actual transition and  
L
the end point correlation line.  
67/78  
Electrical parameters  
STR71xF  
Analog power supply and reference pins  
The AV and AV pins are the analog power supply of the A/D converter cell. They act as  
DD  
SS  
the high and low reference voltages for the conversion.  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see: General PCB design  
guidelines).  
General PCB design guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1 µF and optionally, if needed 10 pF capacitors as close as possible to the STR7  
power supply pins and a 1 to 10 µF capacitor close to the power source (see  
Figure 39).  
The analog and digital power supplies should be connected in a star network. Do not  
use a resistor, as AV is used as a reference voltage by the A/D converter and any  
DD  
resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs near the  
A/D input being converted.  
Software filtering of spurious conversion results  
For EMC performance reasons, it is recommended to filter A/D conversion outliers using  
software filtering techniques.  
Figure 39. Power supply filtering  
STR710  
1 to 10µF  
0.1µF  
V
V
SS  
33  
STR7  
DIGITAL NOISE  
FILTERING  
V
33  
POWER  
SUPPLY  
SOURCE  
(3.3V)  
AV  
AV  
0.1µF  
DD  
EXTERNAL  
NOISE  
FILTERING  
SS  
68/78  
STR71xF  
Package characteristics  
5
Package characteristics  
5.1  
Package mechanical data  
Figure 40. 64-Pin low profile quad flat package (10x10)  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
D
A
A
1.60  
0.063  
0.006  
D1  
A2  
A1 0.05  
0.15 0.002  
A1  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
b
c
0.17 0.22 0.27 0.007 0.009 0.011  
0.09 0.20 0.004 0.008  
b
e
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.472  
0.394  
0.472  
0.394  
0.020  
3.5°  
E1  
E
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
c
L1  
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
64  
h
L1  
L
N
Recommended footprint (dimensions in mm)  
1
69/78  
Package characteristics  
Figure 41. 144-Pin low profile quad flat package  
STR71xF  
(1)  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
D
A
1.60  
0.063  
0.006  
0.057  
0.011  
0.008  
D1  
D3  
A1 0.05  
0.15 0.002  
A
A2  
A2 1.35 1.40 1.45 0.053  
A1  
b
c
0.17 0.22 0.27 0.007  
0.09 0.20 0.004  
108  
109  
73  
72  
0.08 mm  
.003 in.  
Seating Plane  
b
D
21.80 22.00 22.20 0.858 0.867 0.874  
b
D1 19.80 20.00 20.20 0.780 0.787 0.795  
E
E1  
E3  
D3  
E
17.50  
0.689  
21.80 22.00 22.20 0.858 0.867 0.874  
E1 19.80 20.00 20.20 0.780 0.787 0.795  
37  
144  
E3  
e
17.50  
0.50  
3.5°  
0.689  
0.020  
3.5°  
1
36  
c
e
K
0°  
7°  
0°  
7°  
L1  
L
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
144  
h
L1  
N
Jedec Ref. MS-026-BFB  
1.Values in inches are converted from mm and  
rounded to 3 decimal digits.  
Recommended footprint (dimensions in mm)  
70/78  
STR71xF  
Package characteristics  
Figure 42. 64-Low profile fine pitch ball grid array package  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
A
1.210  
1.700 0.048  
0.011  
0.067  
A1 0.270  
A2  
1.120  
0.044  
b
D
0.450 0.500 0.550 0.018 0.020 0.022  
7.750 8.000 8.150 0.305 0.315 0.321  
D1  
E
5.600  
7.750 8.000 8.150 0.305 0.315 0.321  
5.600 0.220  
0.220  
E1  
e
0.720 0.800 0.880 0.028 0.031 0.035  
1.050 1.200 1.350 0.041 0.047 0.053  
f
ddd  
0.120  
0.005  
Number of Pins  
64  
N
Figure 43. 144-low profile fine pitch ball grid array package  
1)  
mm  
Min Typ Max  
inches  
Dim.  
A
Min  
Typ  
Ma  
1.21  
1.70 0.0476  
0.0083  
0.06  
A1 0.21  
A2  
1.085  
0.0427  
b
D
0.35 0.40 0.45 0.0138 0.0157 0.01  
9.85 10.00 10.15 0.3878 0.3937 0.39  
D1  
E
8.80  
0.3465  
9.85 10.00 10.15 0.3878 0.3937 0.39  
E1  
e
8.80  
0.80  
0.60  
0.3465  
0.0315  
0.0236  
F
ddd  
eee  
fff  
0.10  
0.15  
0.08  
0.00  
0.00  
0.00  
Number of Pins  
N
144  
1
Values in inches are converted from mm and  
rounded to 4 decimal digits.  
Figure 44. Recommended PCB design rules (0.80/0.75mm pitch BGA)  
Dpad  
Dsm  
0.37 mm  
0.52 mm typ. (depends on solder  
mask registration tolerance  
Solder paste 0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
71/78  
Package characteristics  
STR71xF  
5.2  
Thermal characteristics  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using the  
J
following equation:  
T = T + (P x Θ )  
(1)  
J
A
D
JA  
Where:  
T is the Ambient Temperature in °C,  
A
Θ
is the Package Junction-to-Ambient Thermal Resistance, in °C/W,  
JA  
P is the sum of P  
and P (P = P  
+ P ),  
INT I/O  
D
INT  
I/O  
D
P
is the product of I and V , expressed in Watts. This is the Chip Internal Power.  
DD DD  
INT  
P
represents the Power Dissipation on Input and Output Pins;  
I/O  
Most of the time for the application P < P and can be neglected. On the other hand, P  
I/O  
I/O  
INT  
may be significant if the device is configured to drive continuously external modules and/or  
memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273°C)  
(2)  
D
J
Therefore (solving equations 1 and 2):  
2
K = P x (T + 273°C) + Θ x P  
D
(3)  
D
A
JA  
where:  
K is a constant for the particular part, which may be determined from equation (3) by  
measuring P (at equilibrium) for a known T Using this value of K, the values of P and T  
J
D
A.  
D
may be obtained by solving equations (1) and (2) iteratively for any value of T .  
A
Table 44. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal Resistance Junction-Ambient  
LQFP 144 - 20 x 20 mm / 0.5 mm pitch  
ΘJA  
42  
°C/W  
Thermal Resistance Junction-Ambient  
LQFP 64 - 10 x 10 mm / 0.5 mm pitch  
ΘJA  
ΘJA  
ΘJA  
45  
58  
50  
°C/W  
°C/W  
°C/W  
Thermal Resistance Junction-Ambient  
LFBGA 64 - 8 x 8 x 1.7mm  
Thermal Resistance Junction-Ambient  
LFBGA 144 - 10 x 10 x 1.7mm  
72/78  
STR71xF  
Product history  
6
Product history  
There are three versions of the STR710F series products. All versions are functionally  
identical and differ only with the points listed below.  
Version "A" was the first version produced and delivered. Version "Z" was the second in  
production replacing version "A". Version "Z" has lower power consumption in STOP mode.  
Version "X" is the latest introduced.  
Marking  
The difference between versions is visible on the marking of the product as shown in the  
four examples in Figure 45 through Figure 48.  
Figure 45. LQFP144 STR710 version “A”  
Figure 46. LQFP64 STR712 version “Z”  
A
Z
STR712FR2  
T6  
2208JVG  
MLT225571  
STR710FZ2T6  
2208JVG  
MLT225571  
73/78  
Product history  
STR71xF  
Figure 47. BGA144 STR710 version “Z”  
Figure 48. BGA64 STR711 version “X”  
R711R1H6  
2208JVG  
R710Z2H6  
MLT225571  
X
2208JVG Z  
MLT 22 551  
Table 45. A, Z and X version differences  
Feature  
A version  
Z version  
X version  
ARM7TDMI core device  
Identification (ID) code register  
(see ARM7TDMI Technical  
Reference Manual)  
Version bits [31:28] =  
0001  
Version bits [31:28] =  
0010  
Version bits [31:28] = 0010  
50 µA maximum at 25°C.  
Not guaranteed  
Typical 49 µA  
Low power mode consumption in  
STOP mode at 25 °C  
Same as Z.  
Less than 30 µA at 25 °C  
for 99.730020% of parts  
Pin  
P0.10/U1.RX/U1.TX/SC.  
DATA has been modified  
to offer TRUE OPEN  
DRAIN functionality  
when in Smartcard  
mode. When addressing  
5V cards, the SCDATA  
Not TRUE open drain  
SC.DATA pin  
When addressing 5V cards, the SCDATA  
line can now be  
Line must be connected to an open drain buffer.  
connected directly to the  
card I/O. This  
modification is backward  
compatible with previous  
designs, and no board  
modification is required.  
74/78  
STR71xF  
Ordering information  
7
Ordering information  
Figure 49. STR71xF ordering information scheme  
Example:  
STR71  
0
F
Z
1
T
6
Product class  
STR71x microcontroller  
Peripheral set  
0 = full peripheral set  
1 = No EMI, no CAN  
2 = No EMI, no USB  
5 = No EMI, no USB, no CAN  
Program memory type  
F = Flash  
Pin count  
R = 64 pins  
Z = 144 pins  
Program memory size  
0 = 64+16K  
1 = 128+16K  
2 = 256+16K  
no character = 0K  
Package type  
H = LFBGA  
T = LQFP  
Temperature range  
1 = 0 °C to 70 °C  
3 = -40 °C to 125 °C  
6 = -40 °C to 85 °C  
Packing  
no character = tray or tube  
TR = tape and reel  
For a list of available options (e.g. memory size, package) and orderable part numbers or for  
further information on any aspect of this device, please go to www.st.com or contact the ST Sales  
Office nearest to you.  
75/78  
Revision history  
STR71xF  
8
Revision history  
Table 46. Document revision history  
Date  
Revision  
Changes  
17-Mar-2004  
05-Apr-2004  
08-Apr-2004  
15-Apr-2004  
1
First Release  
2
Updated “Electrical parameters” on page 33  
Corrected STR712F Pinout. Pins 43/42 swapped.  
PDF hyperlinks corrected.  
2.1  
2.2  
Corrected description of STDBY, V18, VSS18 V18BKP  
VSSBKP pins  
Added IDDrun typical data  
7-Jul-2004  
3
4
Updated BSPI max. baudrate.  
Updated “EMI - external memory interface” on page 56  
Corrected Flash sector B1F0/F1 address in Figure 6: Memory  
map on page 30  
Corrected Table 7 on page 24 LQFP64 TEST pin is 16 instead  
of 17. Added to TQPFP64 column: pin 7 BOOTEN, pin 17  
V33IO-PLL  
29-Oct-2004  
Changed description of JTCK from ‘External pull-down  
required’ to ‘External pull-up or pull down required’.  
Changed “Product Preview” to “Preliminary Data” on page 1  
and 3  
Renamed ‘PU/PD’ column to ‘Reset state’ in Table 7 on  
page 24  
25-Jan-2005  
19-Apr-2005  
5
6
Added reference to STR7 Flash Programming Reference  
Manual  
Added STR715F devices and modified RAM size of STR71xF1  
devices  
Added BGA package in Section 5  
Updated ordering information in Section 7.  
Added PLL duty cycle min and max. in PLL electrical  
characteristics on page 44  
Updated feature description on page 1  
Update overview Section 1.1  
Added OD/PP to P0.12 in Table 7  
Changed name of WFI mode to WAIT mode  
13-Oct-2005  
7
Changed Memory Map Table 6: Ext. Memory changed to 64 MB  
and flash register changed to 36 bytes.  
Added Power Consumption Table 15  
Modified BGA144 F3, F5, F12 and G12 in Table 3 and Table 4  
Update EMI Timing Table 26 and Figure 29  
76/78  
STR71xF  
Revision history  
Table 46. Document revision history (continued)  
Date  
Revision  
Changes  
Added Flashless device.  
Changed reset state of pins P1.10 and P1.13 from pu to pd,  
P0.15 from pu to floating and removed x in interrupt column for  
P1.15 and P1.12 in Table 4 and Table 7  
22-May-2006  
8
Added notes under Table 4 on EMI pin reset state.  
Corrected inch value for d3 in Figure 40  
Added footprint diagrams in Figure 40 and Figure 43  
Updated Section 4: Electrical parameters  
Flash data retention changed to 20 years at 85° C.  
Changed note 8 on page 19  
01-Aug-2006  
06-Nov-2006  
20-Mar-2007  
9
Changed note 1 on page 45  
Added STR715FR0T1 in Table 42: Order codes  
P0.12 corrected in Table 7 on page 24  
10  
11  
Added characteristics of BSPI - buffered serial peripheral  
interface on page 63  
Updated Table 23: Low-power mode wakeup timing on page 45  
Updated ordering information  
Updated USB characteristics  
13-Feb-2008  
12  
Updated external clock characteristics  
77/78  
STR71xF  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
78/78  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX