STR755FR2T6 [STMICROELECTRONICS]

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN; ARM7TDMI -S , 32位MCU和Flash , SMI , 3性病16位定时器PWM计时器,快速10位ADC , I2C , UART , SSP , USB和CAN
STR755FR2T6
型号: STR755FR2T6
厂家: ST    ST
描述:

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
ARM7TDMI -S , 32位MCU和Flash , SMI , 3性病16位定时器PWM计时器,快速10位ADC , I2C , UART , SSP , USB和CAN

微控制器和处理器 外围集成电路 PC 时钟
文件: 总73页 (文件大小:1734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STR750F  
ARM7TDMI-S™ 32-bit MCU with Flash, SMI, 3 std 16-bit timers,  
PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN  
Core  
– ARM7TDMI-S 32-bit RISC CPU  
– 54 DMIPS @ 60 MHz  
Memories  
– Up to 256 KB Flash program memory (10k  
erase/write cycles, retention 20 yrs at  
85°C)  
LQFP64 10x10 mm LQFP100 14 x 14 mm  
– 16KB Read-While-Write Flash for data  
(100k erase/write cycles, retention 20 yrs@  
85°C)  
LFBGA64  
8 x 8 x 1.7 mm  
LFBGA100  
10 x 10 x 1.7 mm  
– Flash Data Readout and Write Protection  
– 16KBytes embedded high speed SRAM  
– Memory mapped interface (SMI) to ext.  
Serial Flash (64 MB) w. boot capability  
– 16-bit timer for system timebase functions  
– 3 synchronizable timers each with up to 2  
input captures and 2 output  
compare/PWMs.  
Clock, Reset and Supply Management  
– Single supply 3.3V 10% or 5V 10%  
– 16-bit 6-channel synchronizable PWM  
timer  
– Embedded 1.8V Voltage Regulators with  
Low Power features  
– Dead time generation, edge/center-aligned  
waveforms and emergency stop  
– Smart Clock Controller with flexible clock  
generation capability:  
– Ideal for induction/brushless DC motors  
– Internal RC for fast start-up and backup  
clock mechanism  
– Up to 60 MHz operation using internal PLL  
with 4 or 8 MHz crystal/ceramic osc.  
– Smart Low Power Modes: SLOW, WFI,  
STOP and STANDBY with backup registers  
8 Communications Interfaces  
2
– 1 I C interface  
– 3 HiSpeed UARTs w. Modem/LIN capability  
– 2 SSP interfaces (SPI or SSI) up to 16 Mb/s  
– 1 CAN interface (2.0B Active)  
– 1 USB full-speed 12 Mb/s interface with 8  
configurable endpoint sizes  
– Real Time Clock, driven by low power  
internal RC or 32.768 kHz dedicated osc,  
for clock-calendar and Auto Wake-up  
10-bit A/D Converter  
Nested interrupt controller  
– 16/11 chan. with prog. Scan Mode & FIFO  
– Programmable Analog Watchdog feature  
– Conversion: min. 3.75 µs, range: 0 to  
– Fast interrupt handling with 32 vectors  
– 16 IRQ priorities, 2 maskable FIQ sources  
– 16 external interrupt / wake-up Lines  
V
DD_IO  
DMA  
– Start conversion can be triggered by timers  
– 4-channel DMA controller  
– Circular buffer management  
– Support for UART, SSP, Timers, ADC  
Up to 72/38 I/O ports  
– 72/38 GPIO lines with High Sink  
capabilities  
6 Timers  
– Atomic bit SET and RES operations  
– 16-bit watchdog timer (WDG)  
October 2006  
Rev 2  
1/71  
www.st.com  
1
Contents  
STR750F  
Contents  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.1  
1.2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2
3
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.0.1  
Pin Description Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.1  
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
3.1.7  
3.1.8  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power Supply Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I/O characteristics versus the various power schemes (3.3V or 5.0V) . 28  
Current Consumption Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.2  
3.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.2.1  
3.2.2  
3.2.3  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.3.7  
3.3.8  
3.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 33  
Embedded voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
TB and TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
3.3.10 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.3.11 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
2/76  
STR750F  
Contents  
3.3.12 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
4
4.1  
4.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5
6
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3/76  
Introduction  
STR750F  
1
Introduction  
This Datasheet contains the description of the STR750 family features, pinout, Electrical  
Characteristics, Mechanical Data and Ordering information.  
For complete information on the Microcontroller memory, registers and peripherals. Please  
refer to the STR750 Reference Manual.  
For information on the ARM7TDMI-S core please refer to the ARM7TDMI-S Technical  
Reference Manual available from Arm Ltd.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STR7 Flash Programming Reference Manual  
For information on third-party development tools, please refer to the http://www.st.com/mcu  
website.  
Table 1.  
Device summary  
STR755FRx  
Features  
STR751FRx  
STR752FRx STR755FVx STR750FVx  
Flash - Bank 0  
(bytes)  
64K/128K/256K  
Flash - Bank 1  
(bytes)  
16K RWW  
16K  
RAM (bytes)  
Operating Temp.  
-40 to +85°C / -40 to +105°C (see Table 44)  
3 UARTs, 2 SSPs, 1 I2C,  
3 UARTs, 2 SSPs, 1 I2C, 3 timers 1 PWM timer, 3 timers 1 PWM timer, 72  
Common Peripherals  
38 I/Os 13 Wake-up lines, 11 A/D Channels  
I/Os 15 Wake-up lines, 16  
A/D Channels  
USB/CAN  
peripherals  
None  
USB  
3.3V  
CAN  
None  
USB+CAN  
Operating Voltage  
3.3V or 5V  
3.3V or 5V  
T=LQFP100 14x14,  
H=LFBGA100  
Packages (x)  
T=LQFP64 10x10, H=LFBGA64  
4/71  
STR750F  
Introduction  
1.1  
Overview  
The STR750 family includes devices in 2 package sizes: 64-pin and 100-pin. Both types  
have the following common features:  
TM  
ARM7TDMI-S core with embedded Flash & RAM  
STR750 family has an embedded ARM core and is therefore compatible with all ARM tools  
TM  
and software. It combines the high performance ARM7TDMI-S CPU with an extensive  
range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-  
speed single voltage FLASH memory and high-speed RAM.  
Figure 1 shows the general block diagram of the device family.  
Embedded Flash Memory  
Up to 256 KBytes of embedded Flash is available in Bank 0 for storing programs and data.  
An additional Bank 1 provides 16 Kbytes of RWW (Read While Write) memory allowing it to  
be erased/programmed on-the-fly. This partitioning feature is ideal for storing application  
parameters.  
When configured in burst mode, access to Flash memory is performed at CPU clock  
speed with 0 wait states for sequential accesses and 1 wait state for random access  
(maximum 60 MHz).  
When not configured in burst mode, access to Flash memory is performed at CPU  
clock speed with 0 wait states (maximum 32 MHz)  
Embedded SRAM  
16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.  
Enhanced Interrupt Controller (EIC)  
In addition to the standard ARM interrupt controller, the STR750F embeds a nested interrupt  
controller able to handle up to 32 vectors and 16 priority levels. This additional hardware  
block provides flexible interrupt management features with minimal interrupt latency.  
Serial Memory Interface (SMI)  
The Serial Memory interface is directly able to access up to 4 serial FLASH devices. It  
communicates at a speed of up to 48 MHz. It can be used to access data, execute code  
directly or boot the application from external memory. The memory is addressed as 4 banks  
of up to 16 Mbytes each.  
Clocks and start-up  
After RESET or when exiting from Low Power Mode, the CPU is clocked immediately by an  
internal RC oscillator (FREEOSC) at a frequency centered around 5 MHz, so the application  
code can start executing without delay. In parallel, the 4/8 MHz Oscillator is enabled and its  
stabilization time is monitored using a dedicated counter.  
An oscillator failure detection is implemented: when the clock disappears on the XT1 pin, the  
circuit automatically switches to the FREEOSC oscillator and an interrupt is generated.  
In Run mode, the AHB and APB clock speeds can be set at a large number of different  
frequencies thanks to the PLL and various prescalers: up to 60 MHz for AHB and up to 32  
MHz for APB when fetching from Flash (64 MHz and 32 MHz when fetching from SRAM).  
5/71  
Introduction  
STR750F  
In SLOW mode, the AHB clock can be significantly decreased to reduce power  
consumption.  
The built-in Clock Controller also provides the 48 MHz USB clock directly without any extra  
oscillators or PLL. For instance, starting from the 4 MHz crystal source, it is possible to  
obtain in parallel 60 MHz for the AHB clock, 48 MHz for the USB clock and 30 MHz for the  
APB peripherals.  
Boot modes  
At start-up, boot pins are used to select one of five boot options:  
Boot from internal flash  
Boot from external serial Flash memory  
Boot from internal boot loader  
Boot from internal SRAM  
Booting from SMI memory allows booting from a serial flash. This way, a specific boot  
monitor can be implemented. Alternatively, the STR750F can boot from the internal boot  
loader that implements a boot from UART.  
Power Supply Schemes  
You can connect the device in any of the following ways depending on your application.  
Power Scheme 1: Single external 3.3V power source. In this configuration the  
supply required for the internal logic is generated internally by the main voltage  
V
CORE  
regulator and the V  
supply is generated internally by the low power voltage  
BACKUP  
regulator. This scheme has the advantage of requiring only one 3.3V power source.  
Power Scheme 2: Dual external 3.3V and 1.8V power sources. In this configuration,  
the internal voltage regulators are switched off by forcing the VREG_DIS pin to high  
level. V  
is provided externally through the V and V  
power pins and  
CORE  
18  
18REG  
V
through the V  
pin. This scheme is intended to save power consumption  
BACKUP  
18_BKP  
for applications which already provide an 1.8V power supply.  
Power Scheme 3: Single external 5.0V power source. In this configuration the  
V
supply required for the internal logic is generated internally by the main voltage  
CORE  
regulator and the V  
supply is generated internally by the low power voltage  
BACKUP  
regulator. This scheme has the advantage of requiring only one 5.0V power source.  
Power Scheme 4: Dual external 5.0V and 1.8V power sources. In this configuration,  
the internal voltage regulators are switched off, by forcing the VREG_DIS pin to high  
level. V  
is provided externally through the V and V  
power pins and  
CORE  
18  
18REG  
V
through the V  
pin. This scheme is intended to provide 5V I/O capability.  
BACKUP  
18_BKP  
Caution: When powered by 5.0V, the USB peripheral cannot operate.  
6/71  
STR750F  
Introduction  
Low Power modes  
The STR750F supports 5 low power modes, SLOW, PCG, WFI, STOP and STANDBY.  
SLOW MODE: the system clock speed is reduced. Alternatively, the PLL and the main  
oscillator can be stopped and the device is driven by a low power clock (f ). The  
RTC  
clock is either an external 32.768 kHz oscillator or the internal low power RC oscillator.  
PCG MODE (Peripheral Clock Gating MODE): When the peripherals are not used, their  
APB clocks are gated to optimize the power consumption.  
WFI MODE (Wait For Interrupts): only the CPU clock is stopped, all peripherals  
continue to work and can wake-up the CPU when IRQs occur.  
STOP MODE: all clocks/peripherals are disabled. It is also possible to disable the  
oscillators and the Main Voltage Regulator (In this case the V  
is entirely powered  
CORE  
by V  
). This mode is intended to achieve the lowest power consumption with  
18_BKP  
SRAM and registers contents retained. The system can be woken up by any of the  
external interrupts / wake-up lines or by the RTC timer which can optionally be kept  
running. The RTC can be clocked either by the 32.768 kHz Crystal or the Low Power  
RC Oscillator.  
Alternatively, STOP mode gives flexibility to keep the either main oscillator, or the Flash  
or the Main Voltage Regulator enabled when a fast start after wake-up is preferred (at  
the cost of some extra power consumption).  
STANDBY MODE: This mode (only available in single supply power schemes) is  
intended to achieve the lowest power consumption even when the temperature is  
increasing. The digital power supply (V  
) is completely removed (no leakage even  
CORE  
at high ambient temperature). SRAM and all register contents are lost. Only the RTC  
remains powered by V . The STR750F can be switched back from STANDBY to  
18_BKP  
RUN mode by a trigger event on the WKP_STDBY pin or an alarm timeout on the RTC  
counter.  
Caution:  
It is important to bear in mind that it is forbidden to remove power from the V  
supply in any of the Low Power Modes (even in STANDBY MODE).  
power  
DD_IO  
DMA  
The flexible 4-channel general-purpose DMA is able to manage memory to memory,  
peripheral to memory and memory to peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
The DMA can be used with the main peripherals: UART0, SSP0, Motor control PWM timer  
(PWM), standard timer TIM0 and ADC.  
RTC (Real Time Clock)  
The real time clock provides a set of continuously running counters which can be used with  
suitable software to provide a clock calendar function, and provides an alarm interrupt and a  
periodic interrupt. It is clocked by an external 32.768 kHz oscillator or the internal low power  
RC oscillator. The RC has a typical frequency of 300 kHz and can be calibrated.  
WDG (Watchdog Timer)  
The watchdog timer is based on a 16-bit downcounter and 8-bit prescaler. It can be used as  
watchdog to reset the device when a problem occurs, or as free running timer for application  
time out management.  
7/71  
Introduction  
STR750F  
Timebase Timer (TB)  
The timebase timer is based on a 16-bit auto-reload counter and not connected to the I/O  
pins. It can be used for software triggering, or to implement the scheduler of a real time  
operating system.  
Synchronizable Standard Timers (TIM2:0)  
The three standard timers are based on a 16-bit auto-reload counter and feature up to 2  
input captures and 2 output compares (for external triggering or time base / time out  
management). They can work together with the PWM timer via the Timer Link feature for  
synchronization or event chaining. In reset state, timer Alternate Function I/Os are  
connected to the same  
I/O ports in both 64-pin and 100-pin devices. To optimize timer functions in 64-pin devices,  
timer Alternate Function I/Os can be connected, or “remapped”, to other I/O ports as  
summarized in Table 2 and detailed in Table 5. This remapping is done by the application via  
a control register.  
Table 2. Standard timer alternate function I/Os  
Number of Alternate Function I/Os  
Standard Timer Functions  
64-pin package  
100-pin  
package  
Default mapping  
Remapped  
Input Capture  
2
2
2
2
2
2
1
1
1
1
2
1
2
2
1
1
2
2
TIM 0  
Output Compare/PWM  
Input Capture  
TIM 1  
TIM 2  
Output Compare/PWM  
Input Capture  
Output Compare/PWM  
Any of the standard timers can be used to generate PWM outputs. One timer (TIM0) is  
mapped to a DMA channel.  
Motor Control PWM timer (PWM)  
The Motor Control PWM Timer (PWM) can be seen as a three-phase PWM multiplexed on 6  
channels. The 16-bit PWM generator has full modulation capability (0...100%), edge or  
centre-aligned patterns and supports dead-time insertion. It has many features in common  
with the standard TIM timers which has the same architecture and it can work together with  
the TIM timers via the Timer Link feature for synchronization or event chaining.The PWM  
timer is mapped to a DMA channel.  
I²C bus  
The I²C bus interface can operate in multi-master and slave mode. It can support standard  
and fast modes (up to 400KHz).  
8/71  
STR750F  
Introduction  
High Speed Universal Asynch. Receiver Transmitter (UART)  
The three UART interfaces are able to communicate at speeds of up to 2 Mbit/s. They  
provide hardware management of the CTS and RTS signals and have LIN Master capability.  
To optimize the data transfer between the processor and the peripheral, two FIFOs  
(receive/transmit) of 16 bytes each have been implemented.  
One UART can be served by the DMA controller (UART0).  
Synchronous Serial Peripheral (SSP)  
The two SSPs are able to communicate up to 8 Mbit/s (SSP1) or up to 16 Mbit/s (SSP0) in  
standard full duplex 4-pin interface mode as a master device or up to 2.66 Mbit/s as a slave  
device. To optimize the data transfer between the processor and the peripheral, two FIFOs  
(receive/transmit) of 8 x 16 bit words have been implemented. The SSPs support the  
Motorola SPI or TI SSI protocols.  
One SSP can be served by the DMA controller (SSP0).  
Controller Area Network (CAN)  
The CAN is compliant with the specification 2.0 part B (active) with a bit rate up to 1Mbit/s. It  
can receive and transmit standard frames with 11-bit identifiers as well as extended frames  
with 29-bit identifiers. Up to 32 message objects are handled through an internal RAM  
buffer. In LQFP64 devices, CAN and USB cannot be connected simultaneously.  
Universal Serial Bus (USB)  
The STR750F embeds a USB device peripheral compatible with the USB Full speed 12Mbs.  
The USB interface implements a full speed (12 Mbit/s) function interface. It has software  
configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock  
source is generated from the internal main PLL. V must be in the range 3.3V 10% for  
DD  
USB operation.  
ADC (Analog to Digital Converter)  
The 10-bit Analog to Digital Converter, converts up to 16 external channels (11 channels in  
64-pin devices) in single-shot or scan modes. In scan mode, continuous conversion is  
performed on a selected group of analog inputs. The minimum conversion time is 3.75 µs  
(including the sampling time).  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows you to very precisely monitor the converted voltage of up  
to four channels. An IRQ is generated when the converted voltage is outside the  
programmed thresholds.  
The events generated by TIM0, TIM2 and PWM timers can be internally connected to the  
ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to  
synchronize A/D conversion and timers.  
GPIOs (General Purpose Input/Output)  
Each of the 72 GPIO pins (38 GPIOs in 64-pin devices) can be configured by software as  
output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as  
Peripheral Alternate Function. Port 1.15 is an exception, it can be used as general-purpose  
input only or wake-up from STANDBY mode (WKP_STDBY). Most of the GPIO pins are  
shared with digital or analog alternate functions.  
9/71  
Introduction  
STR750F  
1.2  
Block Diagram  
Figure 1.  
STR750 block diagram  
BOOT1,  
BOOT0  
ARM7TDMI-S  
CPU  
as AF  
HRESETN  
PRESETN  
NRSTIN  
NRSTOUT  
RESET &  
POWER  
TEST  
NJTRST  
60MHz  
AHB  
AHB  
VDD_IO  
VCORE  
VBACKUP  
VDDA_PLL  
VDDA_ADC  
SRAM 16KB  
DC-DC  
JTAG & ICE-RT  
VDD_IO  
V18  
V18BKP  
VSS  
JTDI  
JTCK  
JTMS  
JTDO  
as AF  
3.3V TO 1.8V  
GP DMA  
4 streams  
MAIN  
FLASH 256KB  
+16KB (RWW)  
LOW POWER  
32xIRQ  
2xFIQ  
NESTED  
INTERRUPT CTL  
Arbiter  
LP  
OSC  
SCLK, MOSI  
MISO as AF  
4 CS as AF  
SERIAL MEMORY  
INTERFACE  
CK_RTC  
RTC_XT1  
RTC_XT2  
OSC  
32K  
CK_SYS  
HCLK  
CLOCK  
MANAGE-  
MENT  
FREE  
OSC  
PCLK  
XT1  
XT2  
OSC  
4M  
APB  
BRIDGE  
PLL  
VDDA_PLL  
VSSA_PLL  
CK_USB  
USBDP  
USBDM  
EXT.IT  
WAKEUP  
15AF  
USB Full Speed  
P0[31:0]  
P1[19:0]  
P2[19:0]  
GPIO PORT 0  
GPIO PORT 1  
GPIO PORT 2  
RX,TX  
as AF  
CAN 2.0B  
FIFO  
RX,TX,CTS,  
RTS as AF  
UART0  
UART1  
UART2  
2x(16x8bit)  
16AF  
VDDA_ADC  
VSSA_ADC  
FIFO  
RX,TX,CTS,  
RTS as AF  
10-bit ADC  
2x(16x8bit)  
FIFO  
RX,TX,CTS,  
RTS as AF  
WATCHDOG  
RTC  
2x(16x8bit)  
FIFO  
MOSI,MISO,  
SSP0  
SSP1  
2x(8x16bit)  
SCK,NSS  
as AF  
TB TIMER  
FIFO  
MOSI,MISO,  
SCK,NSS  
as AF  
2x(8x16bit)  
2xICAP, 2xOCMP  
as AF  
TIM0 TIMER  
TIM1 TIMER  
TIM2 TIMER  
2xICAP, 2xOCMP  
as AF  
SCL,SDA  
as AF  
I2C  
2xICAP, 2xOCMP  
as AF  
PWM1, PWM1N  
PWM2, PWM2N  
PWM3, PWM3N  
PWM TIMER  
APB (up to 32 MHz)  
PWM_EMERGENCY  
as AF  
AF: alternate function on I/O port pin  
Note: I/Os shown for 100 pin devices. 64-pin devices have the I/O set shown in Figure 3.  
10/71  
STR750F  
Pin Description  
2
Pin Description  
Figure 2.  
LQFP100 Pinout  
ADC_IN13 / P1.12  
ADC_IN0 / TIM2_OC1/ P0.02  
MCO / TIM0_TI1 / P0.01  
BOOT0 / TIM0_OC1 / P0.00  
TIM1_TI2 / P0.31  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VREG_DIS  
V
SS_IO  
V
SSA_ADC  
P2.10  
P2.11  
TIM1_OC2 / P0.30  
ADC_IN8 / TIM1_TI1 / P0.29  
V
V
DDA_ADC  
DD_IO  
TIM1_OC1 / P0.28  
P1.02 / TIM2_OC2  
P1.03 / TIM2_TI2  
USB_DP  
TEST  
9
10  
11  
V
SS_IO  
ADC_IN6 / UART1_RTS / P0.23  
USB_DN  
TIM2_OC1/ P2.04 12  
UART1_RTS / P2.03  
P2.02  
LQFP100  
P0.14 / CAN_RX  
P0.15 / CAN_TX  
P2.12  
P2.13  
P1.15 / WKP_STDBY  
NRSTIN  
NRSTOUT  
XRTC2  
XRTC1  
13  
14  
ADC_IN5 / UART1_CTS / P0.22 15  
UART1_TX / P0.21  
UART1_RX / P0.20  
16  
17  
JTMS / P1.19 18  
JTCK / P1.18  
JTDO / P1.17  
19  
20  
V18BKP I/Os  
JTDI / P1.16 21  
V
V
V
V
18BKP  
SSBKP  
SS18  
NJTRST  
P2.01  
P2.00 24  
UART0_RTS / RTCK / P0.13  
22  
23  
18REG  
25  
P2.14  
= 16 A/D input channels  
= 15 External interrupts / Wake-up Lines  
11/71  
Pin Description  
STR750F  
Figure 3.  
LQFP64 Pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
48  
V
V
V
V
V
ADC_IN13 / P1.12  
1
REG_DIS  
SS_IO_2  
SSA_ADC  
DDA_ADC  
DD_IO_2  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
ADC_IN0 / TIM2_OC1 / P0.02  
MCO / TIM0_TI1 / P0.01  
BOOT0 / TIM0_OC1 / P0.00  
ADC_IN8 / TIM1_TI1 / P0.29  
TIM1_OC1 / P0.28  
2
3
4
5
P1.03 / TIM2_TI2  
6
P0.14 / CAN_RX or USB_DP  
P0.15 / CAN_TX or USB_DN  
NRSTIN  
NRSTOUT  
XRTC2  
TEST  
7
V
8
SS_IO_4  
LQFP64  
UART1_TX / P0.21  
UART1_RX / P0.20  
JTMS / P1.19  
9
10  
11  
12  
13  
14  
15  
16  
V18BKP I/Os  
XRTC1  
JTCK / P1.18  
JTDO / P1.17  
JTDI / P1.16  
V
18BKP  
V
SSBKP  
V
NJTRST  
UART0_RTS / RTCK / P0.13  
SS18  
V
18REG  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
= 11 A/D input channels  
= 13 External interrupts / Wake-up Lines  
12/71  
STR750F  
Pin Description  
Table 3.  
LFBGA100 ball connections  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
F
P0.03 P1.13 P1.14 P1.04 P1.06 P1.08  
P1.12 P0.02 P0.01 P1.05 P1.07 P1.09  
P0.31 P0.00 VDD_IO V18 P1.10 P2.09  
P0.29 P0.30 VSS_IO VSS18 P1.01 P1.15  
P0.05  
P0.04  
VSS_IO  
VDD_IO  
P0.06  
P0.07  
P1.03  
P1.02  
P2.10  
P2.13  
VSSA_ADC  
VDDA_ADC  
P2.11 USB_DP  
P2.12 USB_DN  
P0.28 P0.23 P0.22 VSS_IO TEST P1.00 NRSTOUT VREG_DIS NRSTIN  
P0.14  
P0.15  
P2.03 P0.21 P0.20 P2.02 P2.04 P2.05  
NJTRST P1.18 P1.19 P2.01 P2.00 P2.07  
P0.13 P1.16 P1.17 P2.19 P2.18 P2.17  
P0.11 P0.12 P1.11 P0.27 P0.19 P0.26  
P0.10 P0.09 P0.08 P0.18 P0.17 P0.16  
P2.06  
2.08  
VSS18  
V18REG  
P2.14  
P2.15  
XT2  
VSSBKP  
V18BKP  
P2.16  
G
H
J
XRTC2  
XRTC1  
VSS_IO  
P0.24  
P0.25  
XT1  
VDD_IO  
K
VDDA_PLL VSSA_PLL  
Table 4.  
LFBGA64 ball connections  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
P0.03  
P1.12  
P0.01  
P0.29  
P1.18  
P0.13  
P0.11  
P0.10  
VSS_IO  
VDD_IO  
P0.02  
P0.28  
P1.19  
NJTRST  
P0.12  
P0.09  
P1.04  
P1.05  
P0.00  
TEST  
P0.20  
P1.16  
P1.11  
P0.08  
P1.06  
P1.07  
V18  
P1.08  
P1.09  
VSS18  
P0.05  
P0.04  
VDD_IO  
P0.06  
P1.10  
VSS_IO  
P0.07  
P1.03  
P0.14  
VSS_IO VREG_DIS VDDA_ADC VSSA_ADC P0.15  
P0.21  
P1.17  
P0.19  
P0.17  
NRSTOUT NRSTIN  
V18BKP  
VSSBKP  
XRTC2  
XRTC1  
V18REG  
VDD_IO  
P0.18  
VSS18  
G
H
VSS_IO VDDA_PLL VSSA_PLL  
P0.16 XT2 XT1  
13/71  
Pin Description  
STR750F  
2.0.1  
Pin Description Table  
Legend / Abbreviations for Table 5:  
Type:  
I = input, O = output, S = supply,  
Input Levels:  
All Inputs are LVTTL at V  
= 3.3V+/-0.3V or TTL  
DD_IO  
at V  
= 5V± ±0.5V. In both cases, T means  
DD_IO  
T
V
=0.8V V  
=2.0V  
IHmin  
ILmax  
Inputs:  
All inputs can be configured as floating or with  
internal weak pull-up or pull down (pu/pd)  
Outputs:  
All Outputs can be configured as Open Drain (OD) or  
Push-Pull (PP) (see also note 6 below Table 5).  
There are 3 different types of Output with different  
drives and speed characteristics:  
– O8: f  
= 40 MHz on C =50pF and 8 mA static  
max  
L
drive capability for V =0.4V and up to 20 mA for  
OL  
V
=1.3V (seeOutput driving current on page 54)  
OL  
– O4: f  
= 20 MHz on C =50pF and 4 mA static  
max  
L
drive capability for V =0.4V (seeOutput driving  
OL  
current on page 54)  
– O2: f  
= 10 MHz on C =50pF and 2 mA static  
max  
L
drive capability of for V =0.4V (seeOutput driving  
OL  
current on page 54)  
External Interrupts/wake-up lines: EITx  
14/71  
STR750F  
Pin Description  
Port Reset State  
The reset state of the I/O ports is GPIO input floating. Exceptions are P1[19:16] and P0.13  
which are configured as JTAG alternate functions:  
The JTAG inputs (JTDI, JTMS and JTDI) are configured as input floating and are ready  
to accept JTAG sequences.  
The JTAG output JTDO is configured as floating when idle (no JTAG operation) and is  
configured in output push-pull only when serial JTAG data must be output.  
The JTAG output RTCK is always configured as output push-pull. It outputs '0' level  
during the reset phase and then outputs the JTCK input signal resynchronized 3 times  
by the internal AHB clock.  
The GPIO_PCx registers do not control JTAG AF selection, so the reset values of  
GPIO_PCx for P1[19:16] and P0. 13 are the same as other ports. Refer to the GPIO  
section of the STR750 Reference Manual for the register description and reset values.  
P0.11 and P0.00 are sampled by the boot logic after reset, prior to fetching the first  
word of user code at address 0000 0000h.  
When booting from SMI (and only in this case), the reset state of the following GPIOs is  
"SMI alternate function output enabled":  
P0.07 (SMI_DOUT)  
P0.05 (SMI_CLK)  
P0.04 (SMI_CS0)  
P0.06 (SMI_DIN)  
Note that the other SMI pins: SMI_CS1,2,3 (P0.12, P0.11, P0.10) are not affected.  
To avoid excess power consumption, unused I/O ports must be tied to ground.  
Table 5.  
Pin n°  
STR750F pin description  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
P1.12 /  
ADC_IN13  
ADC: Analog  
input 13  
1
2
B1  
B2  
1
2
B1  
I/O  
I/O  
T
T
X
X
X
EIT12 O8  
X
X
X
X
Port 1.12  
Port 0.02  
T
T
P0.02 /  
C2 TIM2_OC1 /  
ADC_IN0  
TIM2: Output  
ADC: Analog  
input 0  
X
X
EIT0  
O8  
O8  
(2)  
Compare 1  
TIM0: Input  
Capture / trigger  
/ external clock 1  
P0.01 / TIM0_TI1  
/ MCO  
Main Clock  
Output  
3
4
B3  
C2  
3
4
C1  
I/O  
I/O  
T
T
X
X
X
X
X
X
Port 0.01  
T
T
Port 0.00 /  
Boot mode  
selection  
input 0  
P0.00 /  
C3 TIM0_OC1 /  
BOOT0  
X
O8  
TIM0: Output Compare 1  
TIM1: Input Capture / trigger /  
external clock 2  
5
6
C1  
D2  
P0.31 / TIM1_TI2 I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.31  
Port 0.30  
T
T
P0.30 /  
I/O  
TIM1: Output Compare 2  
TIM1_OC2  
15/71  
Pin Description  
STR750F  
Table 5.  
Pin n°  
STR750F pin description (continued)  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
P0.29 / TIM1_TI1  
/ ADC_IN8  
TIM1: Input  
Capture 1  
ADC: Analog  
input 8  
7
8
D1  
E1  
5
6
D1  
D2  
I/O  
I/O  
T
T
X
X
X
O2  
O2  
X
X
X
X
Port 0.29  
Port 0.28  
T
T
P0.28 /  
TIM1_OC1  
X
TIM1: Output Compare 1  
9
E5  
E4  
7
8
D3 TEST  
D4 VSS_IO  
P0.23 /  
I
Reserved, must be tied to ground  
Ground Voltage for digital I/Os  
UART1: Ready  
10  
S
ADC analog input  
6
11  
12  
E2  
F5  
UART1_RTS /  
ADC_IN6  
I/O  
I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.23  
To Send  
output  
T
T
(2)  
P2.04 /  
TIM2_OC1  
TIM2: Output  
Compare 1  
Port 2.04  
(2)  
UART1: Ready  
To Send  
output  
P2.03 /  
UART1_RTS  
13  
14  
15  
F1  
F4  
E3  
I/O  
I/O  
I/O  
T
T
T
X
X
X
X
X
X
O2  
O2  
O2  
X
X
X
X
X
X
Port 2.03  
Port 2.02  
Port 0.22  
T
T
T
(2)  
P2.02  
P0.22 /  
UART1_CTS /  
ADC_IN5  
UART1: Clear To ADC: Analog  
Send input input 5  
P0.21 /  
UART1_TX  
UART1: Transmit data output  
(remappable to P0.15)  
16  
17  
F2  
9
E4  
I/O  
I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.21  
Port 0.20  
(2)  
T
T
P0.20 /  
UART1_RX  
UART1: Receive data input  
F3 10 E3  
(2)  
(remappable to P0.14)  
JTAG mode  
selection  
input  
18  
G3 11 E2 P1.19 / JTMS  
I/O  
T
X
X
O2  
X
X
Port 1.19  
T
(4)  
JTAG clock  
input  
19  
20  
21  
G2 12 E1 P1.18 / JTCK  
H3 13 F4 P1.17 / JTDO  
I/O  
I/O  
I/O  
T
T
T
X
X
X
X
X
X
O2  
O8  
O2  
X
X
X
X
X
X
Port 1.18  
Port 1.17  
(4)  
T
T
T
JTAG data  
(4)  
output  
JTAG data  
H2 14 F3 P1.16 / JTDI  
G1 15 F2 NJTRST  
Port 1.16  
(3)  
(4)  
input  
22  
23  
24  
I
T
T
T
JTAG reset input  
Port 2.01  
T
T
T
G4  
G5  
P2.01  
P2.00  
I/O  
I/O  
X
X
X
X
O2  
O2  
X
X
X
X
Port 2.00  
JTAG  
return  
clock  
output  
Port 0.13  
UART0: Ready To Send output  
P0.13 / RTCK /  
UART0_RTS  
25  
26  
H1 16 F1  
I/O  
I/O  
T
T
X
X
X
O8  
O4  
X
X
X
X
T
T
(2)  
(4)  
UART0: Clear To ADC: Analog  
Send input input 2  
P0.12 /  
UART0_CTS /  
ADC_IN2 /  
SMI_CS1  
J2 17 G2  
X
Port 0.12  
Serial Memory Interface: chip select  
output 1  
16/71  
STR750F  
Pin Description  
Table 5.  
Pin n°  
STR750F pin description (continued)  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
Port  
0.11/Boot  
mode  
selection  
input 1  
P0.11 /  
UART0_TX /  
BOOT1 /  
SMI_CS2  
Serial Memory  
Interface: chip  
select output 2  
UART0:Transmit  
data output  
27  
28  
J1 18 G1  
I/O  
I/O  
T
T
X
X
X
X
O4  
O2  
X
X
X
X
T
T
P0.10 /  
K1 19 H1 UART0_RX /  
SMI_CS3  
Serial Memory  
Interface: chip  
select output 3  
UART0: Receive  
Data input  
EIT4  
EIT3  
Port 0.10  
29  
30  
31  
32  
K2 20 H2 P0.09 / I2C_SDA I/O  
T
T
T
T
X
X
X
X
X
X
X
X
O4  
O4  
O2  
O2  
X
X
X
X
X
X
X
X
Port 0.09  
Port 0.08  
Port 2.19  
Port 2.18  
I2C: Serial Data  
I2C: Serial clock  
T
T
T
T
K3 21 H3 P0.08 / I2C_SCL  
I/O  
I/O  
I/O  
H4  
H5  
P2.19  
P2.18  
P2.17 /  
UART2_RTS  
(2)  
33  
34  
H6  
I/O  
I/O  
T
T
X
X
X
X
O2  
X
X
X
X
Port 2.17  
Port 1.11  
UART2: Ready To Send output  
T
T
P1.11  
UART0: Ready  
ADC: Analog  
To Send  
J3 22 G3 /UART0_RTS  
ADC_IN12  
EIT11 O8  
O2  
input 12  
(2)  
output  
P0.27 /  
UART2_RTS /  
ADC_IN7  
UART2: Ready  
To Send  
ADC: Analog  
input 7  
35  
J4  
I/O  
T
X
X
X
X
Port 0.27  
T
(6)  
output  
P0.26 /  
UART2_CTS  
36  
37  
38  
J6  
J7  
I/O  
I/O  
I/O  
T
T
T
X
X
X
X
X
X
O2  
O2  
O2  
X
X
X
X
X
X
Port 0.26  
Port 0.25  
Port 0.24  
UART2: Clear To Send input  
UART2: Transmit data output  
T
T
T
P0.25 /  
UART2_TX  
(6)  
(remappable to P0.13)  
P0.24 /  
UART2_RX  
UART2: Receive data input  
H7  
(6)  
(remappable to P0.12)  
SSP1: Slave  
select input  
ADC: Analog  
input 4  
(remappable to  
P0.19 / USB_CK /  
J5 23 G4 SSP1_NSS /  
ADC_IN4  
(6)  
P0.11)  
39  
I/O  
T
X
X
EIT6  
O2  
X
X
Port 0.19  
T
USB:  
48 MHz Clock  
input  
P0.18 /  
K4 24 H5  
SSP1: Master out/slave in data  
(remappable to P0.10)  
40  
41  
42  
I/O  
I/O  
I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.18  
Port 0.17  
(6)  
T
T
SSP1_MOSI  
SSP1: Master  
in/slave out data ADC: Analog  
P0.17 /  
K5 25 H4 SSP1_MISO /  
ADC_IN3  
(remappable to  
P0.09)  
input 3  
(6)  
P0.16 /  
K6 26 H6  
SSP1: serial clock (remappable to  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.16  
Port 2.16  
(6)  
T
T
SSP1_SCLK  
P0.08)  
43  
44  
45  
H9  
P2.16  
I/O  
S
J9 27 G5 VDD_IO  
Supply voltage for digital I/Os  
Supply voltage for PLL  
K9 28 G7 VDDA_PLL  
S
17/71  
Pin Description  
STR750F  
Table 5.  
Pin n°  
STR750F pin description (continued)  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
46  
47  
K8 29 H7 XT2  
K7 30 H8 XT1  
4 MHz main oscillator  
48 J10 31 G6 VSS_IO  
S
S
Ground voltage for digital I/Os  
Ground voltage for PLL  
Port 2.15  
49 K10 32 G8 VSSA_PLL  
50  
51  
J8  
P2.15  
P2.14  
I/O  
I/O  
T
T
X
X
X
O2  
O2  
X
X
X
X
T
T
H8  
X
Port 2.14  
Stabilization for main voltage regulator. Requires  
external capacitors of at least 10µF between  
V18REG and VSS18. See Figure 4.  
52  
G8 33 F5 V18REG  
S
To be connected to the 1.8V external power supply  
when embedded regulators are not used,  
53  
54  
F8 34 F6 VSS18  
F9 35 F7 VSSBKP  
S
S
Ground Voltage for the main voltage regulator  
Stabilization for low power voltage regulator.  
Ground Voltage for the low power voltage regulator.  
Requires external capacitors of at least 1µF  
between V18BKP and VSSBKP. See Figure 4.  
To be connected to the 1.8V external power supply  
when embedded regulators are not used,  
55  
G9 36 E7 V18BKP  
S
56 H10 37 F8 XRTC1  
57 G10 38 E8 XRTC2  
X
X
X
X
32 kHz oscillator for Realtime Clock  
58  
59  
E7 39 E5 NRSTOUT  
E9 40 E6 NRSTIN  
O
I
Reset output  
Reset input  
T
T
T
T
P1.15 /  
D6  
60  
I
X
EIT15  
X
Port 1.15  
Wake-up from STANDBY input pin  
WKP_STDBY  
61  
62  
B8  
D9  
P2.13  
P2.12  
I/O  
I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 2.13  
Port 2.12  
T
T
41 D8  
63 F10  
64 E10  
65 D10  
66 C10  
P0.15 / CAN_TX  
P0.14 / CAN_RX  
USB_DN  
I/O  
I/O  
I/O  
I/O  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 0.15  
Port 0.14  
CAN: Transmit data output  
CAN: Receive data input  
(5)  
(5)  
T
T
42 C8  
EIT5  
(5)  
(5)  
41 D8  
USB: bidirectional data (data -)  
USB: bidirectional data (data +)  
(5)  
(5)  
42 C8  
USB_DP  
(5)  
(5)  
TIM2: Input Capture / trigger /  
67  
B9 43 B8 P1.03 / TIM2_TI2 I/O  
P1.02 /  
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 1.03  
Port 1.02  
external clock 2 (remappable to  
T
T
(6)  
P0.07)  
TIM2: Output compare 2  
68 A10  
I/O  
(6)  
TIM2_OC2  
(remappable to P0.06)  
69  
70  
D7 44 C6 VDD_IO  
S
S
Supply Voltage for digital I/Os  
D8 45 D6 VDDA_ADC  
Supply Voltage for A/D converter  
18/71  
STR750F  
Pin Description  
Table 5.  
Pin n°  
STR750F pin description (continued)  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
71  
C9  
P2.11  
P2.10  
I/O  
I/O  
S
T
T
X
X
X
X
O2  
O2  
X
X
X
X
Port 2.11  
Port 2.10  
T
T
72 B10  
73  
74  
75  
C8 46 D7 VSSA_ADC  
C7 47 C7 VSS_IO  
E8 48 D5 VREG_DIS  
Ground Voltage for A/D converter  
Ground Voltage for digital I/Os  
Voltage Regulator Disable input  
Serial Memory  
Port 0.07  
Port 0.06  
Port 0.05  
Port 0.04  
Port 1.10  
S
I
T
T
T
T
P0.07 /  
A9 49 A8 SMI_DOUT /  
SSP0_MOSI  
SSP0: Master out  
Slave in data  
76  
77  
78  
79  
80  
I/O  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
EIT2  
EIT1  
O4  
O4  
O4  
O4  
X
X
X
X
X
X
X
X
X
X
Interface: data  
output  
Serial Memory  
Interface: data  
input  
P0.06 / SMI_DIN  
A8 50 A7  
SSP0: Master in  
Slave out data  
T
T
T
T
T
T
T
T
/ SSP0_MISO  
P0.05 /  
A7 51 A6 SSP0_SCLK /  
SMI_CK  
Serial Memory  
Interface: Serial  
clock output  
SSP0: Serial  
clock  
Serial Memory  
Interface: chip  
select output 0  
P0.04 / SMI_CS0  
B7 52 B6  
SSP0: Slave  
select input  
/ SSP0_NSS  
P1.10  
C5 53 B7 PWM_EMERGE  
NCY  
EIT10 O2  
PWM: Emergency input  
81  
82  
83  
84  
85  
86  
B6 54 B5 P1.09 / PWM1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
T
T
T
T
T
T
X
X
X
X
X
X
X
X
X
X
X
X
EIT9  
O4  
O2  
O2  
O2  
O2  
O2  
X
X
X
X
X
X
X
X
X
X
X
X
Port 1.09  
Port 2.09  
Port 2.08  
Port 2.07  
Port 2.06  
Port 2.05  
PWM: PWM1 output  
T
T
T
T
T
T
PWM: PWM1 complementary  
C6  
G7  
G6  
F7  
F6  
P2.09 / PWM1N  
P2.08 / PWM2  
P2.07 / PWM2N  
P2.06 / PWM3  
P2.05 / PWM3N  
(2)  
output  
(2)  
PWM: PWM2 output  
PWM: PWM2 complementary  
(2)  
output  
(2)  
PWM: PWM3 output  
PWM: PWM3 complementary  
(2)  
output  
PWM: PWM1  
ADC: analog  
complementary  
output  
P1.08 / PWM1N /  
ADC_IN11  
87  
88  
89  
90  
91  
A6 55 A5  
I/O  
I/O  
I/O  
I/O  
I/O  
T
T
T
T
T
X
X
X
X
X
X
X
X
X
X
O4  
O4  
O4  
O4  
O4  
X
X
X
X
X
X
X
X
X
X
Port 1.08  
Port 1.07  
Port 1.06  
Port 1.05  
Port 1.04  
T
T
T
T
T
input 11  
(6)  
(2)  
B5 56 B4 P1.07 / PWM2  
EIT8  
EIT7  
PWM: PWM2 output  
PWM: PWM2  
P1.06 / PWM2N /  
A5 57 A4  
ADC: analog  
input 10  
complementary  
ADC_IN10  
(2)  
output  
(2)  
B4 58 B3 P1.05 / PWM3  
PWM: PWM3 output  
PWM: PWM3  
P1.04 / PWM3N /  
A4 59 A3  
ADC: analog  
input 9  
complementary  
ADC_IN9  
(2)  
output  
P1.14 /  
ADC_IN15  
92  
93  
A3  
I/O  
I/O  
T
T
X
X
X
X
O8  
X
X
X
X
Port 1.14  
Port 1.13  
ADC: analog input 15  
ADC: analog input 14  
T
T
P1.13 /  
ADC_IN14  
A2  
EIT13 O8  
19/71  
Pin Description  
STR750F  
Table 5.  
Pin n°  
STR750F pin description (continued)  
Input  
Output  
Main  
function  
(after  
Pin Name  
Alternate function  
OD  
PP  
(1)  
reset)  
TIM0: Input Capture / trigger /  
external clock 2 (remappable to  
P0.05)  
94  
95  
D5  
P1.01 / TIM0_TI2 I/O  
T
T
X
X
X
O2  
O2  
X
X
X
X
Port 1.01  
Port 1.00  
T
T
(6)  
P1.00 /  
I/O  
TIM0: Output compare 2  
E6  
X
(6)  
TIM0_OC2  
(remappable to P0.04)  
Stabilization for main voltage regulator. Requires  
external capacitors 33nF between V18 and VSS18.  
See Figure 4.  
96  
C4 60 C4 V18  
S
To be connected to the 1.8V external power supply  
when embedded regulators are not used.  
97  
98  
99  
D4 61 C5 VSS18  
D3 62 A2 VSS_IO  
C3 63 B2 VDD_IO  
S
S
S
Ground Voltage for the main voltage regulator.  
Ground Voltage for digital I/Os  
Supply Voltage for digital I/Os  
TIM2: Input  
Capture / trigger  
/ external clock 1  
P0.03 / TIM2_TI1  
/ ADC_IN1  
ADC: analog  
input 1  
100 A1 64 A1  
I/O  
T
X
X
O2  
X
X
Port 0.03  
T
1. None of the I/Os are True Open Drain: when configured as Open Drain, there is always a protection diode between the I/O  
pin and VDD_IO.  
2. In the 100-pin package, this Alternate Function is duplicated on two ports. You can configure one port to use this AF, the  
other port is then free for general purpose I/O (GPIO), external interrupt/wake-up lines, or analog input (ADC_IN) where  
these functions are listed in the table.  
3. It is mandatory that the NJTRST pin is reset to ground during the power-up phase. It is recommended to connect this pin to  
NRSTOUT pin (if available) or NRSTIN.  
4. After reset, these pins are enabled as JTAG alternate function see (Port Reset State on page 15). To use these ports as  
general purpose I/O (GPIO), the DBGOFF control bit in the GPIO_REMAP0R register must be set by software (in this case,  
debugging these I/Os via JTAG is not possible).  
5. There are two different TQFP and BGA 64-pin packages: in the first one, pins 41 and 42 are mapped to USB DN/DP while  
for the second one, they are mapped to P0.15/CAN_TX and P0.14/RX.  
6. For details on remapping these alternate functions, refer to the GPIO_REMAP0R register description.  
20/71  
STR750F  
Pin Description  
Figure 4.  
Required external capacitors when regulators are used  
33 nF  
33 nF  
97 96  
V
V
V
V
18BKP  
SSBKP  
55  
54  
SS18  
18  
61  
SS18  
60  
V
V
V
18BKP  
1µF  
36  
35  
V
18  
1µF  
SSBKP  
LQFP100  
V
LQFP64  
SS18  
53  
52  
V
SS18  
10 µF  
34  
33  
V
18REG  
10 µF  
V
18REG  
V
DD_IO  
27  
V
DD_IO  
44  
1 µF  
1 µF  
33 nF  
33 nF  
C5  
SS18  
C4  
18  
V
V
D4 C4  
V
18BKP  
SSBKP  
E7  
V
V
V
V
18BKP  
SSBKP  
G9  
SS18  
18  
1µF  
1µF  
F7  
V
F9  
LFBGA64  
V
LFBGA100V  
SS18  
F6  
F5  
SS18  
F8  
10 µF  
V
10 µF  
18REG  
V
18REG  
G8  
V
DD_IO  
G5  
V
DD_IO  
1 µF  
J9  
1 µF  
21/71  
Pin Description  
STR750F  
2.1  
Memory map  
Figure 5.  
Memory map  
Addressable Memory Space  
4 Gbytes  
Peripheral Memory Space  
32 Kbytes  
0xFFFF FFFF  
0xFFFF FFFF  
APB TO ARM7  
BRIDGE  
32K  
Reserved  
EIC  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
0xFFFF 8000  
0xFFFF FC00  
0xFFFF FBFF  
0xFFFF F800  
0xFFFF F7FF  
7
EXTIT  
0xFFFF F400  
0xFFFF F3FF  
RTC  
FLASH Memory Space  
128/256 Kbytes  
0xE000 0000  
0xDFFF FFFF  
0xFFFF F000  
0xFFFF EFFF  
DMA  
0xFFFF EC00  
0xFFFF EBFF  
0x2010 DFFF  
0x2010 C000  
Reserved  
GPIO I/O Ports  
SystemMemory  
8K  
0xFFFF E800  
0xFFFF E7FF  
6
0x2010 0017  
0x2010 0000  
Flash registers  
24B  
0xFFFF E400  
0xFFFF E3FF  
Reserved  
UART2  
0xFFFF E000  
0xFFFF DFFF  
0xC000 0000  
0xBFFF FFFF  
0xFFFF DC00  
0xFFFF DBFF  
UART1  
0xFFFF D800  
0xFFFF D7FF  
5
UART0  
0xFFFF D400  
0xFFFF D3FF  
0x200C 4000  
Reserved  
I2C  
0x200C 3FFF  
0x200C 2000  
0x200C 1FFF  
8K  
8K  
B1F1  
0xA000 0000  
0x9FFF FFFF  
0xFFFF D000  
0xFFFF CFFF  
B1F0  
0x200C 0000  
0xFFFF CC00  
0xFFFF CBFF  
Reserved  
CAN  
0xFFFF C800  
0xFFFF C7FF  
0x9000 0013  
0x9000 0000  
SMI Registers  
20B  
4
0xFFFF C400  
0xFFFF C3FF  
0x83FF FFFF  
Reserved  
SSP1  
SMI Ext. Memory  
4 x 16M  
0xFFFF C000  
0xFFFF BFFF  
0x8000 0000  
0x7FFF FFFF  
0xFFFF BC00  
0xFFFF BBFF  
SSP0  
0xFFFF B800  
0xFFFF B7FF  
3
Reserved  
WDG  
0xFFFF B400  
0xFFFF B3FF  
0x6000 0047  
CONF + MRCC  
Internal SRAM  
Internal Flash  
1K  
0x2003 FFFF  
0xFFFF B000  
0xFFFF AFFF  
0x6000 0000  
0x5FFF FFFF  
Reserved  
USB Registers  
Reserved  
USB RAM 256 x16-bit  
Reserved  
B0F7(2)  
0xFFFF AC00  
0xFFFF ABFF  
64K  
64K  
0xFFFF A800  
0xFFFF A7FF  
0x2003 0000  
0x2002 FFFF  
2
0xFFFF A400  
0xFFFF A3FF  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
B0F6(2)  
0xFFFF A200  
1K  
1K  
16K  
0xFFFF A000  
0xFFFF 9FFF  
0x2002 0000  
0x2001 FFFF  
0xFFFF 9C00  
0xFFFF 9BFF  
PWM  
TIM2  
TIM1  
TIM0  
1K  
1K  
1K  
1K  
1K  
1K  
1K  
0xFFFF 9800  
0xFFFF 97FF  
1
64K  
32K  
B0F5  
0xFFFF 9400  
0xFFFF 93FF  
0x2010 0017  
0x2000 0000  
0x1FFF FFFF  
0x2001 0000  
0x2000 FFFF  
128K/256K+16K+32B  
0xFFFF 9000  
0xFFFF 8FFF  
B0F4  
0xFFFF 8C00  
0xFFFF 8BFF  
0x2000 8000  
TB Timer  
0x2000 7FFF  
B0F3  
8K  
8K  
8K  
0xFFFF 8800  
0xFFFF 87FF  
0x2000 6000  
0
0x2000 5FFF  
B0F2  
0x2000 4000  
ADC  
0x2000 3FFF  
0xFFFF 8400  
0xFFFF 83FF  
B0F1  
0x2000 2000  
0x2000 1FFF  
B0F0  
Reserved  
Boot Memory(1)  
128K/256K  
8K  
0x2000 0000  
0xFFFF 8000  
0x0000 0000  
(1) In internal Flash Boot Mode, internal FLASH is aliased at 0x0000 0000h  
(2) Only available in STR750Fx2  
Reserved  
22/71  
STR750F  
Electrical parameters  
3
Electrical parameters  
3.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
3.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T =25° C and T =T max (given by the  
A
A
A
selected temperature range).  
Data based on product characterisation, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
3.1.2  
3.1.3  
Typical values  
Unless otherwise specified, typical data are based on T =25° C, V  
=3.3 V (for the  
DD_IO  
A
3.0 VV  
3.6 V voltage range) and V =1.8 V. They are given only as design guidelines  
DD_IO  
and are not tested.  
18  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
23/71  
Electrical parameters  
STR750F  
3.1.4  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 6.  
Figure 6.  
Pin loading conditions  
STR7 PIN  
C =50pF  
L
3.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 7.  
Figure 7. Pin input voltage  
STR7 PIN  
V
IN  
24/71  
STR750F  
Electrical parameters  
3.1.6  
Power Supply Schemes  
When mentioned, some electrical parameters can refer to a dedicated power scheme  
among the four possibilities. The four different power schemes are described below.  
Power supply scheme 1: Single external 3.3 V power source  
Figure 8.  
Power supply scheme 1  
IN STANDBY MODE THIS BLOCK IS KEPT POWERED ON  
V18_BKP  
1µF  
BACKUP  
VSS_BKP  
VREG_DIS  
V18  
NORMAL  
MODE  
VBACKUP  
CIRCUITRY  
OSC32K, RTC  
WAKEUP LOGIC,  
BACKUP REGISTERS)  
LOW POWER  
VOLTAGE  
REGULATOR  
VLPVREG ~1.4V  
POWER  
SWITCH  
33nF  
VSS18  
V18REG  
V18  
10µF  
VSS18  
VDD_IO  
KERNEL LOGIC  
(CPU &  
1µF  
MAIN  
VOLTAGE  
REGULATOR  
3.3V  
VMVREG = 1.8V  
VCORE  
+/-0.3V  
DIGITAL &  
VSS_IO  
MEMORIES)  
VIO=3.3V  
OUT  
IN  
I/O LOGIC  
GP I/Os  
VDD_PLL  
VSS_PLL  
3.3V  
3.3V  
PLL  
VDD_ADC  
ADC  
VSS_ADC  
ADCIN  
25/71  
Electrical parameters  
STR750F  
Power supply scheme 2: Dual external 1.8V and 3.3V supply  
Figure 9.  
Power supply scheme 2  
V
18_BKP  
VSS_BKP  
DD_IO  
BACKUP  
V
V
BACKUP  
CIRCUITRY  
(OSC32K, RTC  
OFF  
LOW POWER  
VOLTAGE  
REGULATOR  
WAKEUP LOGIC,  
BACKUP REGISTERS)  
VREG_DIS  
V
LPVREG  
V
18  
V
18REG  
POWER  
SWITCH  
1.8V  
V
SS18  
OFF  
V
DD_IO  
MAIN  
VOLTAGE  
REGULATOR  
KERNEL  
(CORE &  
DIGITAL &  
MEMORIES)  
V
CORE  
V
MVREG  
3.3V  
+/-0.3V  
V
SS_IO  
V
=3.3V  
IO  
OUT  
IN  
GP I/Os  
I/O LOGIC  
V
3.3V  
3.3V  
DD_PLL  
V
PLL  
SS_PLL  
V
DD_ADC  
ADC  
V
SS_ADC  
ADC  
IN  
NOTE : THE EXTERNAL 3.3 V POWER SUPPLY MUST ALWAYS BE KEPT ON  
26/71  
STR750F  
Electrical parameters  
Power supply scheme 3: Single external 5 V power source  
Figure 10. Power supply scheme 3  
IN STANDBY MODE THIS BLOCK IS KEPT POWERED ON  
V
18_BKP  
1µF  
BACKUP  
V
SS_BKP  
NORMAL  
MODE  
V
CIRCUITRY  
BACKUP  
OSC32K, RTC  
WAKEUP LOGIC,  
BACKUP REGISTERS)  
VREG_DIS  
LOW POWER  
VOLTAGE  
V
~1.4V  
LPVREG  
REGULATOR  
V
18  
33nF  
POWER  
SWITCH  
V
SS18  
V
V
18  
18REG  
10µF  
V
SS18  
V
DD_IO  
KERNEL LOGIC  
(CPU &  
1µF  
V
MAIN  
VOLTAGE  
REGULATOR  
5.0V  
V
= 1.8V  
V
MVREG  
+/-0.5V  
CORE  
DIGITAL &  
SS_IO  
MEMORIES)  
V
=5.0V  
IO  
OUT  
IN  
GP I/Os  
I/O LOGIC  
V
DD_PLL  
5.0V  
5.0V  
PLL  
V
SS_PLL  
V
DD_ADC  
SS_ADC  
ADC  
V
ADC  
IN  
27/71  
Electrical parameters  
STR750F  
Power supply scheme 4: Dual external 1.8 V and 5.0 V supply  
Figure 11. Power supply scheme 4  
V
18_BKP  
VSS_BKP  
DD_IO  
V
V
BACKUP  
BACKUP  
OFF  
CIRCUITRY  
(OSC32K, RTC  
LOW POWER  
VOLTAGE  
REGULATOR  
VREG_DIS  
V
WAKEUP LOGIC,  
BACKUP REGISTERS)  
LPVREG  
V
18  
V
18REG  
POWER  
SWITCH  
1.8V  
V
SS18  
OFF  
V
DD_IO  
KERNEL  
(CORE &  
DIGITAL &  
MEMORIES)  
MAIN  
VOLTAGE  
REGULATOR  
V
CORE  
V
MVREG  
5.0V  
+/-0.5V  
V
SS_IO  
V
=5.0V  
IO  
OUT  
IN  
GP I/Os  
I/O LOGIC  
V
5.0V  
5.0V  
DD_PLL  
PLL  
V
SS_PLL  
V
DD_ADC  
SS_ADC  
ADC  
V
ADC  
IN  
NOTE : THE EXTERNAL 5.0V POWER SUPPLY MUST ALWAYS BE KEPT ON  
3.1.7  
3.1.8  
I/O characteristics versus the various power schemes (3.3V or 5.0V)  
Unless otherwise mentioned, all the I/O characteristics are valid for both  
V
V
=3.0 V to 3.6 V with bit EN33=1  
=4.5 V to 5.5 V with bit EN33=0  
DD_IO  
DD_IO  
When V  
=3.0 V to 3.6 V, I/Os are not 5V tolerant.  
DD_IO  
Current Consumption Measurements  
All the current consumption measurements mentioned below refer to Power scheme 1 and 2  
as described in Figure 12 and Figure 13  
28/71  
STR750F  
Electrical parameters  
Figure 12. Power consumption measurements in power scheme 1 (regulators  
enabled)  
V
pins  
DDA_ADC  
ADC  
load  
V
pins  
I
DDA_PLL  
DDA_ADC  
PLL  
load  
I
DDA_PLL  
V
pins  
DD_IO  
I
DD  
ballast  
regulator  
transistor  
3.3V  
internal  
load  
3.3V  
Supply  
I
33  
V
pins (including V  
)
18  
18BKP  
1.8V  
internal  
load  
I
18  
I
I
is measured, which corresponds to the total current consumption :  
DD  
DD  
= I  
+ I  
+ I + I  
DDA_PLL  
DDA_ADC 33 18  
Figure 13. Power consumption measurements in power scheme 2 (regulators  
disabled)  
V
pins  
DDA_ADC  
DDA_PLL  
ADC  
load  
V
pins  
I
DDA_ADC  
PLL  
load  
I
DDA_PLL  
V
pins  
DD_IO  
I
DD_v33  
3.3V  
internal  
load  
3.3V  
Supply  
I
I
33  
V
pins (including V  
)
18BKP  
18  
I
DD_v18  
1.8V  
Supply  
1.8V  
internal  
load  
18  
I
and I  
are measured which correspond to:  
DD_v18  
DD_v33  
I
I
= I  
+ I  
+ I  
DD_v33  
DD_v18  
DDA_PLL  
18  
DDA_ADC 33  
= I  
29/71  
Electrical parameters  
STR750F  
Figure 14. Power consumption measurements in power scheme 3 (regulators  
enabled)  
V
pins  
DDA_ADC  
ADC  
load  
V
pins  
I
DDA_PLL  
DDA_ADC  
PLL  
load  
I
DDA_PLL  
V
pins  
DD_IO  
I
DD  
ballast  
regulator  
transistor  
5.0V  
internal  
load  
5.0V  
Supply  
I
50  
V
pins (including V  
)
18  
18BKP  
1.8V  
internal  
load  
I
18  
I
I
is measured, which corresponds to the total current consumption :  
DD  
DD  
= I  
+ I  
+ I + I  
DDA_PLL  
DDA_ADC 50 18  
Figure 15. Power consumption measurements in power scheme 4 (regulators  
disabled)  
V
pins  
DDA_ADC  
DDA_PLL  
ADC  
load  
V
pins  
I
DDA_ADC  
PLL  
load  
I
DDA_PLL  
V
pins  
DD_IO  
I
DD_v50  
5.0V  
internal  
load  
5.0V  
Supply  
I
I
50  
V
pins (including V  
)
18BKP  
18  
I
DD_v18  
1.8V  
Supply  
1.8V  
internal  
load  
18  
I
and I  
= I  
are measured which correspond to:  
DD_v50  
DD_v18  
I
I
+ I  
+ I  
DDA_ADC 50  
DD_v50 DDA_PLL  
= I  
DD_v18  
18  
30/71  
STR750F  
Electrical parameters  
3.2  
Absolute maximum ratings  
Stresses above those listed as “absolute maximum ratings” may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
3.2.1  
Voltage characteristics  
Table 6.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
(1)  
VDD_x - VSS_X  
Including VDDA_ADC and VDDA_PLL  
-0.3  
6.5  
V
Digital 1.8 V Supply voltage on all V18  
power pins (when 1.8 V is provided  
externally)  
V18 - VSS18  
-0.3  
2.0  
VSS-0.3 to  
VDD_IO+0.3  
VSS-0.3 to  
VDD_IO+0.3  
VIN  
|VDDx  
|V18x  
|VSSX - VSS  
VESD(HBM)  
Input voltage on any pin (2)  
Variations between different 3.3 V or  
5.0 V power pins  
|
50  
25  
50  
Variations between different 1.8 V power  
pins(3)  
|
mV  
Variations between all the different  
ground pins  
|
Electro-static discharge voltage (Human see : Absolute see : Absolute  
Body Model)  
Maximum  
Ratings  
Maximum  
Ratings  
(Electrical  
Sensitivity) on Sensitivity) on  
page 51 page 51  
(Electrical  
Electro-static discharge voltage (Machine  
Model)  
VESD(MM)  
1. All 3.3 V or 5.0 V power (VDD_IO, VDDA_ADC, VDDA_PLL) and ground (VSS_IO, VSSA_ADC, VDDA_ADC) pins  
must always be connected to the external 3.3V or 5.0V supply. When powered by 3.3V, I/Os are not 5V  
tolerant.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain pads,  
there is no positive injection current, and the corresponding VIN maximum must always be respected  
3. Only when using external 1.8 V power supply. All the power (V18, V18REG, V18BKP) and ground (VSS18  
VSSBKP) pins must always be connected to the external 1.8 V supply.  
,
31/71  
Electrical parameters  
STR750F  
3.2.2  
Current characteristics  
Table 7.  
Symbol  
Current characteristics  
Maximum  
value  
Ratings  
Unit  
(1)  
IVDD_IO  
Total current into VDD_IO power lines (source) (2)  
Total current out of VSS ground lines (sink) (2)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRSTIN pin  
150  
150  
25  
- 25  
5
(1)  
IVSS_IO  
IIO  
mA  
(3) & (4)  
IINJ(PIN)  
Injected current on XT1 and XT2 pins  
5
Injected current on any other pin (5)  
5
(3)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins) (5)  
25  
1. The user can use GPIOs to source or sink high current (up to 20 mA for O8 type High Sink I/Os). In this  
case, the user must ensure that these absolute max. values are not exceeded (taking into account the  
RUN power consumption) and must follow the rules described in Section 3.3.8: I/O port pin characteristics  
on page 53.  
2. All 3.3 V or 5.0 V power (VDD_IO, VDDA_ADC, VDDA_PLL) and ground (VSS_IO, VSSA_ADC, VDDA_ADC) pins  
must always be connected to the external 3.3V or 5.0V supply.  
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
4. Negative injection disturbs the analog performance of the device. See note in Section 3.3.12: 10-bit ADC  
characteristics on page 64.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
3.2.3  
Thermal characteristics  
Table 8.  
Symbol  
TSTG  
Thermal characteristics  
Ratings  
Storage temperature range  
Value  
Unit  
-65 to +150  
°C  
Maximum junction temperature (see Section 4.2: Thermal characteristics on  
page 70)  
TJ  
32/71  
STR750F  
Electrical parameters  
3.3  
Operating conditions  
3.3.1  
General operating conditions  
Subject to general operating conditions for V  
, and T unless otherwise specified.  
A
DD_IO  
Table 9.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
Accessing SRAM with 0 wait  
states  
0
64  
Accessing Flash in burst mode,  
TA85° C  
0
60  
56  
32  
Accessing Flash in burst mode  
fHCLK  
Internal AHB Clock frequency  
Internal APB Clock frequency  
MHz  
TA>85° C  
Accessing Flash with 0 wait  
states  
0
Accessing Flash in RWW mode  
0
0
16  
32  
fPCLK  
MHz  
V
Standard Operating Voltage  
Power Scheme 1 & 2  
3.0  
4.5  
3.6  
5.5  
VDD_IO  
Standard Operating Voltage  
Power Scheme 3 & 4  
Standard Operating Voltage  
Power Scheme 2 & 4  
V18  
TA  
1.65  
1.95  
6 Suffix Version  
7 Suffix Version  
-40  
-40  
85  
°C  
°C  
Ambient temperature range  
105  
3.3.2  
Operating conditions at power-up / power-down  
Subject to general operating conditions for T .  
A
Table 10. Operating conditions at power-up / power-down  
Symbol  
Parameter  
Conditions  
Min(1) Typ Max(1) Unit  
20  
20  
µs/V  
ms/V  
µs/V  
ms/V  
tVDD_IO VDD_IO rise time rate  
20  
20  
When 1.8 V power is supplied  
externally  
tV18  
V18 rise time rate (1)  
1. Data guaranteed by characterization, not tested in production.  
33/71  
Electrical parameters  
STR750F  
3.3.3  
Embedded voltage regulators  
Subject to general operating conditions for V  
, and T  
A
DD_IO  
Table 11. Embedded voltage regulators  
Symbol  
VMVREG  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
MVREG power supply(1)  
LPVREG power supply(2)  
load <150 mA  
load <10 mA  
1.65 1.80  
1.30 1.40  
1.95  
1.50  
VLPVREG  
V
VDD_IO rise  
slope = 20 µs/V  
80  
35  
µs  
Voltage Regulators start-up  
time (to reach 90% of final V18  
value) at VDD_IO power-up(3)  
(1)  
tVREG_PWRUP  
VDD_IO rise  
slope = 20 ms/V  
ms  
1. VMVREG is observed on the V18, V18REG and V18BKP pins except in the following case:  
- In STOP mode with MVREG OFF (LP_PARAM13 bit). See note 2.  
- In STANDBY mode. See note 2.  
2. In STANDBY mode, VLPVREG is observed on the V18BKP pin  
In STOP mode, VLPVREG is observed on the V18, V18REG and V18BKP pins.  
3. Once VDD_IO has reached 3.0 V, the RSM (Regulator Startup Monitor) generates an internal RESET  
during this start-up time.  
34/71  
STR750F  
Electrical parameters  
3.3.4  
Supply current characteristics  
The current consumption is measured as described in Figure 12 on page 29 and Figure 13  
on page 29.  
Subject to general operating conditions for V  
, and T  
A
DD_IO  
Maximum power consumption  
For the measurements in Table 12 and Table 13, the MCU is placed under the following  
conditions:  
All I/O pins are configured in output push-pull 0  
All peripherals are disabled except if explicitly mentioned.  
Embedded Regulators are used to provide 1.8 V (except if explicitly mentioned).  
Table 12. Maximum power consumption in RUN and WFI modes  
Symbol  
Parameter  
Conditions(1)  
Typ(2) Max (3) Unit  
External Clock with PLL  
multiplication, code running from  
RAM, all peripherals enabled in the  
MRCC_PLCKEN register: fHCLK=60  
MHz, fPCLK=30 MHz  
3.3V  
and 5V  
range  
Supply current in  
RUN mode  
80  
62  
90  
67  
mA  
mA  
Single supply scheme see Figure 12  
/ Figure 14  
IDD  
External Clock, code running from  
RAM: fHCLK=60 MHz, fPCLK=30 MHz  
3.3V  
and 5V  
range  
Supply current in Single supply scheme see  
WFI mode  
Figure 12./ Figure 14  
Parameter setting BURST=1,  
WFI_FLASHEN=1  
1. The conditions for these consumption measurements are described at the beginning of Section 3.3.4.  
2. Typical data are based on TA=25°C, VDD_IO=3.3V or 5.0V and V18=1.8V unless otherwise specified.  
3. Data based on product characterisation, tested in production at VDD_IO max and V18 max (1.95V in dual  
supply mode or regulator output value in single supply mode) and TA max.  
35/71  
Electrical parameters  
STR750F  
Unit  
Table 13. Maximum power consumption in STOP and STANDBY modes  
Max(3)  
TA  
Symbol  
Parameter  
Conditions(1)  
Typ(2)  
TA  
TA  
25°C 85°C 105°C  
LP_PARAM bits: ALL OFF(4)  
3.3V  
range  
12  
16  
117  
250  
µA  
µA  
µA  
Single supply scheme see Figure 12.  
LP_PARAM bits: ALL OFF  
IDD_V18  
IDD_V33  
5
<1  
8
3
60  
TBD  
110  
TBD  
Supply  
current in  
STOP mode  
Dual supply scheme see Figure 13.  
LP_PARAM bits: ALL OFF(4)  
5V  
range  
15  
22  
160  
310  
Single supply scheme see Figure 10  
IDD  
LP_PARAM bits: ALL OFF  
IDD_V18  
IDD_V50  
5
3
8
5
60  
TBD  
110  
TBD  
Dual supply scheme see Figure 11  
3.3 V  
range  
Supply  
µA  
10  
15  
20  
25  
25  
30  
28  
33  
current in  
STANDBY  
mode  
RTC OFF  
5V  
range  
1. The conditions for these consumption measurements are described at the beginning of Section 3.3.4.  
2. Typical data are based on TA=25°C, VDD_IO=3.3V or 5.0V and V18=1.8V unless otherwise specified.  
3. Data based on product characterisation, tested in production at VDD_IO max and V18 max (1.95V in dual supply mode or  
regulator output value in single supply mode).  
4. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4V, which significantly  
reduces the leakage currents.  
36/71  
STR750F  
Electrical parameters  
Figure 16. Power consumption in STOP mode Figure 17. Power consumption in STOP mode  
in Single supply scheme (3.3 V  
range)  
Single supply scheme (5 V range)  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
TYP (3.3V)  
MAX (3.6V)  
TYP (5.0V)  
MAX (5.5V)  
0
0
-40  
25  
45  
55  
75  
95  
105  
-40  
25  
45  
55  
75  
95  
105  
Temp (°C)  
Temp (°C)  
Figure 18. Power consumption in STANDBY  
mode (3.3 V range)  
Figure 19. Power consumption in STANDBY  
mode (5 V range)  
30  
35  
TYP (5.0V)  
30  
TYP (3.3V)  
25  
MAX (5.5V)  
25  
MAX (3.6V)  
20  
20  
15  
10  
5
15  
10  
5
0
0
-40  
25  
105  
-40  
25  
105  
Temp (°C)  
Temp (°C)  
37/71  
Electrical parameters  
STR750F  
Typical power consumption  
The following measurement conditions apply to Table 14, Table 15 and Table 16.  
In RUN mode:  
Program is executed from Flash (except if especially mentioned). The program consists  
of an infinite loop. When f > 32 MHz, burst mode is activated.  
HCLK  
A standard 4 MHz crystal source is used.  
In all cases the PLL is used to multiply the frequency.  
All measurements are done in the single supply scheme with internal regulators used  
(see Figure 12)  
In WFI Mode:  
In WFI Mode the measurement conditions are similar to RUN mode (OSC4M and PLL  
enabled). In addition, the Flash can be disabled depending on burst mode activation:  
For AHB frequencies greater than 32 MHz, burst mode is activated and the Flash  
is kept enabled by setting the WFI_FLASH_EN bit (this bit cannot be reset when  
burst mode is activated).  
For AHB frequencies less than or equal to 32 MHz, burst mode is deactivated,  
WFI_FLASH_EN is reset and the LP_PARAM14 bit is set (Flash is disabled in WFI  
mode).  
In SLOW mode:  
The same program as in RUN mode is executed from Flash. The CPU is clocked by the  
FREEOSC, OSC4M, LPOSC or OSC32K. Only EXTIT peripheral is enabled in the  
MRCC_PCLKEN register.  
In SLOW-WFI mode:  
In SLOW-WFI, the measurement conditions are similar to SLOW mode (CPU clocked  
by a low frequency clock). In addition, the LP_PARAM14 bit is set (FLASH is OFF). The  
WFI routine itself is executed from SRAM (it is not allowed to execute a WFI from the  
internal FLASH)  
In STOP mode:  
Several measurements are given: in the single supply scheme with internal regulators  
used (see Figure 12): and in the dual supply scheme (see Figure 13).  
In STANDBY mode:  
Three measurements are given:  
The RTC is disabled, only the consumption of the LPVREG and RSM remain  
(almost no leakage currents)  
The RTC is running, clocked by a standard 32.768 kHz crystal.  
The RTC is running, clocked by the internal Low Power RC oscillator (LPOSC)  
STANDBY mode is only supported in the single supply scheme (see Figure 12)  
38/71  
STR750F  
Electrical parameters  
Subject to general operating conditions for V  
, and T  
A
DD_IO  
Table 14. Single supply typical power consumption in Run, WFI, Slow and Slow-WFI modes  
3.3V  
5V  
Symbol  
Para meter  
Conditions  
Unit  
typ(1) typ(2)  
Clocked by OSC4M with PLL multiplication, all peripherals  
enabled in the MRCC_PLCKEN register:  
fHCLK=60 MHz, fPCLK=30 MHz  
fHCLK=56 MHz, fPCLK=28 MHz  
fHCLK=48 MHz, fPCLK=24 MHz  
fHCLK=32 MHz, fPCLK=32 MHz  
fHCLK=16 MHz, fPCLK=16 MHz  
fHCLK=8 MHz, fPCLK=8 MHz  
80  
75  
65  
59  
34  
20  
82  
77  
67  
61  
37  
22  
mA  
Supply current in  
RUN mode(4)  
Clocked by OSC4M with PLL multiplication, only EXTIT  
peripheral enabled in the MRCC_PLCKEN register:  
fHCLK=60 MHz, fPCLK=30 MHz  
65  
60  
54  
42  
22  
16  
67  
62  
55  
44  
24  
18  
fHCLK=56 MHz, fPCLK=28 MHz  
fHCLK=48 MHz, fPCLK=24 MHz  
fHCLK=32 MHz, fPCLK=32 MHz  
fHCLK=16 MHz, fPCLK=16 MHz  
mA  
fHCLK=8 MHz, fPCLK=8 MHz  
(3)  
IDD  
Clocked by OSC4M with PLL multiplication, only EXTIT  
peripheral enabled in the MRCC_PLCKEN register:  
fHCLK=60 MHz, fPCLK=30 MHz(5)  
62  
59  
53  
22  
13  
10  
63  
60  
54  
23  
15  
11  
Supply current in fHCLK=56 MHz, fPCLK=28 MHz(5)  
mA  
WFI mode(4)  
fHCLK=48 MHz, fPCLK=24 MHz(5)  
fHCLK=32 MHz, fPCLK=32 MHz(6)  
fHCLK=16 MHz, fPCLK= 16 MHz (6)  
fHCLK= 8 MHz, fPCLK= 8 MHz(6)  
Clocked by FREEOSC: fHCLK=fPCLK=~5 MHz,  
Clocked by OSC4M: fHCLK=fPCLK=4 MHz  
Clocked by LPOSC: fHCLK=fPCLK=~300 kHz  
Clocked by OSC32K: fHCLK=fPCLK=32.768 kHz  
9
8
3.65  
3.5  
10  
9
3.9  
4.2  
Supply current in  
SLOW mode(4)  
mA  
mA  
(7)  
Clocked by FREEOSC: fHCLK=fPCLK=~5 MHz  
Clocked by OSC4M: fHCLK=fPCLK=4 MHz  
Clocked by LPOSC: fHCLK=fPCLK=~300 kHz  
Clocked by OSC32K: fHCLK=fPCLK=32.768 kHz  
3.5  
3.1  
1.15 1.65  
0.98 1.5  
4.0  
3.75  
Supply current in  
SLOW-WFI  
mode(4) (7)  
1. Typical data based on TA=25° C and VDD_IO=3.3V.  
2. Typical data based on TA=25° C and VDD_IO=5.0V.  
3. The conditions for these consumption measurements are described at the beginning of Section 3.3.4 on page 35.  
4. Single supply scheme see Figure 14.  
5. Parameter setting BURST=1, WFI_FLASHEN=1  
6. Parameter setting BURST=0, WFI_FLASHEN=0  
7. Parameter setting WFI_FLASHEN=0, OSC4MOFF=1  
39/71  
Electrical parameters  
STR750F  
Table 15. Dual supply supply typical power consumption in Run, WFI, Slow and  
Slow-WFI modes  
To calculate the power consumption in Dual supply mode, refer to the values given in Table 14. and  
consider that this consumption is split as follows:  
IDD(single supply)~IDD(dual supply)= IDD_V18 + IDD(VDD_IO)  
For 3.3V range: IDD(VDD_IO) ~ 1 to 2 mA  
For 5V range: IDD(VDD_IO) ~ 2 to 3 mA  
Therefore most of the consumption is sunk on the V18 power supply  
This formula does not apply in STOP and STANDBY modes, refer to Table 16.  
Subject to general operating conditions for V  
, and T  
A
DD_IO  
Table 16. Typical power consumption in STOP and STANDBY modes  
3.3V  
5V  
Symbol  
Parameter  
Conditions  
LP_PARAM bits: ALL OFF(5)  
Unit  
Typ(1)  
Typ(2)  
12  
15  
LP_PARAM bits : MVREG ON, OSC4M OFF, FLASH  
OFF(6)  
130  
135  
Supply current  
in STOP  
LP_PARAM bits: MVREG ON, OSC4M ON , FLASH  
OFF(6)  
µA  
1950  
1930  
mode(4)  
LP_PARAM bits: MVREG ON, OSC4M OFF, FLASH ON (6)  
LP_PARAM bits: MVREG ON, OSC4M ON, FLASH ON (6)  
630  
635  
2435  
2425  
IDD_V18  
LPPARAM bits: ALL OFF, with V18=1.8 V  
IDD_V33  
5
<1  
5
<1  
(3)  
IDD  
IDD_V18  
LP_PARAM bits: OSC4M ON, FLASH OFF  
IDD_V33  
410  
1475  
410  
1435  
Supply current  
in STOP  
µA  
µA  
mode(7)  
IDD_V18  
LP_PARAM bits: OSC4M OFF, FLASH ON  
IDD_V33  
550  
<1  
550  
1
IDD_V18  
LP_PARAM bits: OSC4M ON, FLASH ON  
IDD_V33  
910  
1475  
910  
1445  
Supply current  
in STANDBY  
mode(4)  
RTC OFF  
11  
14  
14  
18  
RTC ON clocked by OSC32K  
1. Typical data are based on TA=25°C, VDD_IO=3.3 V and V18=1.8 V unless otherwise indicated in the table.  
2. Typical data are based on TA=25°C, VDD_IO=5.0 V and V18=1.8 V unless otherwise indicated in the table.  
3. The conditions for these consumption measurements are described at the beginning of Section 3.3.4 on page 35.  
4. Single supply scheme see Figure 12.  
5. In this mode, the whole digital circuitry is powered internally by the LPVREG at approximately 1.4 V, which significantly  
reduces the leakage currents.  
6. In this mode, the whole digital circuitry is powered internally by the MVREG at 1.8 V.  
7. Dual supply scheme see Figure 13.  
40/71  
STR750F  
Electrical parameters  
Supply and Clock manager power consumption  
Table 17. Supply and Clock manager power consumption  
3.3V  
Typ  
5V  
Typ  
Symbol  
Parameter  
Conditions(1)  
Unit  
External components specified in:  
4/8 MHz Crystal / Ceramic  
Resonator Oscillator (XT1/XT2) on  
page 45  
Supply current of resonator oscillator  
IDD(OSC4M) in STOP or WFI mode (LP_PARAM  
bit: OSC4M ON)  
1815  
515  
1795  
515  
FLASH static current consumption in  
IDD(FLASH) STOP or WFI mode (LP_PARAM bit  
FLASH ON)  
Main Voltage Regulator static current  
IDD(MVREG) consumption in STOP mode  
(LP_PARAM bit: MVREG ON)  
µA  
130  
12  
135  
15  
STOP mode includes leakage  
where V18 is internally set to 1.4 V  
Low Power Voltage Regulator + RSM  
IDD(LPVREG)  
STANDBY mode where  
V18BKP and V18 are internally set to  
1.4 V and 0 V respectively  
current static current consumption  
11  
14  
1. Measurements performed in 3.3V single supply mode see Figure 12  
41/71  
Electrical parameters  
STR750F  
On-Chip peripheral power consumption  
Conditions:  
V
=V  
=V  
=3.3 V or 5 V 10% unless otherwise specified.  
DDA_PLL  
DD_IO  
DDA_ADC  
T = 25° C  
A
Clocked by OSC4M with PLL multiplication, f  
=64 MHz, f  
=32 MHz,  
HCLK  
CK_SYS  
f
=32 MHz  
PCLK  
.
Table 18. On-Chip peripherals  
Symbol  
Typ  
Parameter  
Unit  
(3.3V and 5.0V)  
IDD(TIM)  
IDD(PWM)  
IDD(SSP)  
IDD(UART)  
IDD(I2C)  
TIM Timer supply current (1)  
0.7  
1
PWM Timer supply current(2)  
SSP supply current (3)  
1.3  
1.6  
0.3  
1.2  
UART supply current (4)  
I2C supply current (5)  
mA  
IDD(ADC)  
ADC supply current when converting (6)  
USB supply current (7)  
IDD(USB)  
IDD(CAN)  
0.90  
2.8  
Note: VDD_IO must be 3.3 V 10%  
CAN supply current (8)  
1. Data based on a differential IDD measurement between reset configuration and timer counter running at 32  
MHz. No IC/OC programmed (no I/O pads toggling)  
2. Data based on a differential IDD measurement between reset configuration and PWM running at 32 MHz.  
This measurement does not include PWM pads toggling consumption.  
3. Data based on a differential IDD measurement between reset configuration and permanent SPI master  
communication at maximum speed 16 MHz. The data sent is 55h. This measurement does not include the  
pad toggling consumption.  
4. Data based on a differential IDD measurement between reset configuration and a permanent UART data  
transmit sequence at 1Mbauds. This measurement does not include the pad toggling consumption.  
5. Data based on a differential IDD measurement between reset configuration (I2C disabled) and a permanent  
I2C master communication at 100kHz (data sent equal to 55h). This measurement includes the pad  
toggling consumption but not the external 10kOhm external pull-up on clock and data lines.  
6. Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions at 8 MHz in scan mode on 16 inputs configured as AIN.  
7. Data based on a differential IDD measurement between reset configuration and a running generic HID  
application.  
8. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a  
permanent CAN data transmit sequence in loopback mode at 1MHz. This measurement does not include  
the pad toggling consumption.  
42/71  
STR750F  
Electrical parameters  
3.3.5  
Clock and timing characteristics  
XT1 external Clock source  
Subject to general operating conditions for V  
, and T .  
A
DD_IO  
Table 19. XT1 external Clock source  
Symbol  
Parameter  
Conditions(1) (2)  
Min  
Typ  
Max  
Unit  
External clock source  
frequency  
fXT1  
4
60  
MHz  
XT1 input pin high level  
voltage  
VXT1H  
VXT1L  
tw(XT1H)  
0.7xVDD_IO  
VDD_IO  
V
XT1 input pin low level  
voltage  
see Figure 20  
VSS  
6
0.3xVDD_IO  
XT1 high or low time (3)  
XT1 rise or fall time (3)  
XTx Input leakage current  
tw(XT1L)  
ns  
tr(XT1)  
tf(XT1)  
5
1
VSS ≤±VIN ≤±  
VDD_IO  
IL  
µA  
1. Data based on typical application software.  
2. Time measured between interrupt event and interrupt vector fetch. tc(INST) is the number of tCPU cycles  
needed to finish the current instruction execution.  
3. Data based on design simulation and/or technology characteristics, not tested in production.  
43/71  
Electrical parameters  
STR750F  
XRTC1 external Clock source  
Subject to general operating conditions for V  
, and T .  
DD_IO  
A
Table 20. XRTC1 external Clock source  
Symbol  
Parameter  
Conditions(1)  
Min  
Typ  
Max  
Unit  
External clock source  
frequency  
fXRTC1  
32.768  
500  
kHz  
XRTC1 input pin high  
level voltage  
VXRTC1H  
VXRTC1L  
tw(XRTC1H)  
0.7xVDD_IO  
VDD_IO  
V
XRTC1 input pin low level  
voltage  
see Figure 20  
VSS  
990  
0.3xVDD_IO  
XRTC1 high or low time(2)  
XRTC1 rise or fall time(2)  
tw(XRTC1L)  
ns  
tr(XRTC1)  
tf(XRTC1)  
5
1
XRTCx Input leakage  
current  
VSSVINVDD_I  
O
IL  
µA  
1. Data based on typical application software.  
2. Data based on design simulation and/or technology characteristics, not tested in production.  
Figure 20. Typical application with an external Clock source  
90%  
V
XT1H  
10%  
V
XT1L  
t
t
w(XT1H)  
t
t
w(XT1L)  
f(XT1)  
r(XT1)  
T
XT1  
XT2  
XT1  
f
OSC4M  
hi-Z  
EXTERNAL  
CLOCK SOURCE  
I
L
STR750  
44/71  
STR750F  
Electrical parameters  
4/8 MHz Crystal / Ceramic Resonator Oscillator (XT1/XT2)  
The STR750 system clock or the input of the PLL can be supplied by a OSC4M which is a 4  
MHz clock generated from a 4 MHz or 8 MHz crystal or ceramic resonator. If using an 8 MHz  
oscillator, software set the XTDIV bit to enable a divider by 2 and generate a 4 MHz OSC4M  
clock. All the information given in this paragraph are based on product characterisation with  
specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
(1)  
Table 21. 4/8 MHz crystal / ceramic resonator oscillator (XT1/XT2)  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
4 MHz Crystal/Resonator Oscillator  
connected on XT1/XT2 XTDIV=0  
fOSC4M  
Oscillator frequency  
Feedback resistor  
or  
4
MHz  
8 MHz Crystal/Resonator Oscillator  
connected on XT1/XT2 XTDIV=1  
RF  
200 240 270  
kΩ  
Recommended load  
(2)  
CL1  
CL2  
capacitance versus equivalent  
serial resistance of the crystal or  
ceramic resonator (RS)(3)  
RS=200Ω  
60  
pF  
i2  
XT2 driving current  
VDD_IO=3.3 V or 5.0 V  
425  
1
µA  
(4)  
tSU(OSC4M)  
Startup time at VDD_IO power-up  
ms  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5-pF to 25-pF range (typ.) designed for  
high-frequency applications and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the  
same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2  
PCB and MCU pin capacitance must be included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the  
combined pin and board capacitance).  
.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid  
environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into  
account if the MCU is used in tough humidity conditions.  
4. tSU(OSC4M) is the typical start-up time measured from the moment VDD_IO is powered (with a quick VDD_IO ramp-up from 0  
to 3.3V (<50µs) to a stabilized 4MHz oscillation is reached. This value is measured for a standard crystal resonator and it  
can vary significantly with the crystal/ceramic resonator manufacturer.  
Figure 21. Typical application with a 4 or 8 MHz crystal or ceramic resonator  
XTDIV  
WHEN RESONATOR WITH  
INTEGRATED CAPACITORS  
f
OSC4M  
/2  
C
L1  
XT1  
LINEAR  
AMPLIFIER  
FEEDBACK  
LOOP  
i
VDD/2  
Ref  
2
RESONATOR  
XT2  
R
F
C
L2  
STR75X  
45/71  
Electrical parameters  
STR750F  
OSC32K crystal / ceramic resonator oscillator  
The STR7 RTC clock can be supplied with a 32.768 kHz Crystal/Ceramic resonator  
oscillator. All the information given in this paragraph are based on product characterisation  
with specified typical external components. In the application, the resonator and the load  
capacitors have to be placed as close as possible to the oscillator pins in order to minimize  
output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator  
manufacturer for more details (frequency, package, accuracy...).  
Table 22. OSC32K crystal / ceramic resonator oscillator  
Symbol  
fOSC32K  
Parameter  
Oscillator Frequency  
Conditions  
Min  
Typ  
Max Unit  
32.768  
310  
kHz  
V
DD_IO=3.3 V  
270  
370  
kΩ  
RF  
Feedback resistor  
VDD_IO=5.0 V  
TBD TBD  
TBD  
Recommended load capacitance  
CL1  
CL2  
versus equivalent serial resistance of  
RS=TBD  
TBD  
TBD  
250  
pF  
the crystal or ceramic resonator (RS)(1)  
VDD_IO=3.3 V or 5.0 V  
VIN=VSS  
i2  
XT2 driving current  
startup time  
160  
µA  
(2)  
tSU(OSC32K)  
VDD_IO is stabilized  
2.5  
s
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value.  
Refer to crystal/ceramic resonator manufacturer for more details  
2. tSU(OSC32K) is the start-up time measured from the moment it is enabled (by software) to a stabilized 32 kHz oscillation is  
reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal/ceramic  
resonator manufacturer  
Figure 22. Typical application with a 32.768 kHz crystal or ceramic resonator  
WHEN RESONATOR WITH  
INTEGRATED CAPACITORS  
FEEDBACK  
LOOP  
i
2
C
f
L1  
XRTC1  
XRTC2  
OSC32K  
32 kHz  
RESONATOR  
R
F
C
L2  
STR750  
PLL Characteristics  
PLL Jitter Terminology  
Self-referred single period jitter (period jitter)  
Period Jitter is defined as the difference of the maximum period (T ) and minimum  
max  
period (T ) at the output of the PLL where T  
is the maximum time difference  
min  
max  
between 2 consecutive clock rising edges and T  
between 2 consecutive clock rising edges.  
is the minimum time difference  
min  
See Figure 23  
Self-referred long term jitter (N period jitter)  
Self-referred long term Jitter is defined as the difference of the maximum period (T  
)
max  
and minimum period (T ) at the output of the PLL where T  
is the maximum time  
min  
max  
46/71  
STR750F  
Electrical parameters  
is the minimum time  
difference between N+1 consecutive clock rising edges and T  
difference between N+1 consecutive clock rising edges.  
min  
N should be kept sufficiently large to have a long term jitter (ex: thousands).  
For N=1, this becomes the single period jitter.  
See Figure 23  
Cycle-to-cycle jitter (N period jitter)  
This corresponds to the time variation between adjacent cycles over a random sample  
of adjacent clock cycles pairs. Jitter(cycle-to-cycle) = Max(Tcycle n- Tcycle n-1) for n=1  
to N.  
See Figure 24  
Figure 23. Self-referred jitter (single and long term)  
---  
n
n+1  
n+N  
IDEAL  
CK_PLL  
T
ACTUAL  
CK_PLL  
single period  
jitter  
long term  
jitter  
trigger point  
Figure 24. Cycle-to-cycle jitter  
n
n+1  
n+2  
---  
n+N  
IDEAL  
CK_PLL  
T
ACTUAL  
CK_PLL  
Tcycle 1  
Tcycle 2  
Tcycle N-1  
47/71  
Electrical parameters  
STR750F  
PLL characteristics  
Subject to general operating conditions for V  
, and T .  
A
DD_IO  
Table 23. PLL characteristics  
Value  
Symbol  
Parameter  
Test Conditions  
Unit  
Min  
Typ  
Max(1)  
PLL input clock  
4.0  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
40  
60  
fPLL_OUT  
fVCO  
fPLL_INx 24  
165  
MHz  
When PLL  
operates (locked)  
VCO frequency range  
336  
960  
300  
MHz  
µs  
tLOCK  
PLL lock time  
Single period jitter (+/-3Σ±peak fPLL_IN = 4 MHz(4)  
(2)(3)  
tJITTER1  
tJITTER2  
tJITTER3  
+/-250  
ps  
to peak)  
VDD_IO is stable  
Long term jitter (+/-3Σ±peak to fPLL_IN = 4 MHz(4)  
(2)(3)  
(2)(3)  
+/-2.5  
ns  
ps  
peak)  
VDD_IO is stable  
Cycle to cycle jitter (+/-3Σ±peak fPLL_IN = 4 MHz(4)  
to peak) VDD_IO is stable  
+/-500  
1. Data based on product characterisation, not tested in production.  
2. Refer to jitter terminology in : PLL Characteristics on page 46 for details on how jitter is specified.  
3. The jitter specification holds true only up to 50mV (peak-to-peak) noise on VDDA_PLL and V18 supplies.  
Jitter will increase if the noise is more than 50mV. In addition, it assumes that the input clock has no jitter.  
4. The PLL parameters (MX1, MX0, PRESC1, PRESC2) must respect the constraints described in: PLL  
Characteristics on page 46.  
Internal RC Oscillators (FREEOSC & LPOSC)  
Subject to general operating conditions for V  
, and T .  
A
DD_IO  
Table 24. Internal RC Oscillators (FREEOSC & LPOSC)  
Symbol  
fCK_FREEOSC FREEOSC Oscillator Frequency  
fCK_LPOSC LPOSC Oscillator Frequency  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
3
5
8
MHz  
kHz  
150  
300  
500  
48/71  
STR750F  
Electrical parameters  
3.3.6  
Memory characteristics  
Flash memory  
Subject to general operating conditions for V  
otherwise specified.  
and V , T = -40 to 105 °C unless  
18 A  
DD_IO  
Table 25. Flash memory characteristics  
Value  
Unit  
Typ  
Symbol  
Parameter  
Test Conditions  
Max(1)  
tPW  
Word Program  
35  
60  
µs  
µs  
tPDW  
Double Word Program  
Bank 0 Program (256K)  
Single Word programming of  
a checker-board pattern  
tPB0  
tPB1  
tES  
2
4.9(2)  
s
ms  
s
Single Word programming of  
a checker-board pattern  
Bank 1 Program (16K)  
Sector Erase (64K)  
Sector Erase (8K)  
125  
224(2)  
Not preprogrammed (all 1)  
Preprogrammed (all 0)  
2.94(2)  
1.54  
1.176 2.38(2)  
Not preprogrammed (all 1)  
Preprogrammed (all 0)  
392  
343  
560(2)  
532(2)  
tES  
tES  
tES  
ms  
s
Not preprogrammed (all 1)  
Preprogrammed (all 0)  
8.0  
6.6  
13.7  
11.2  
Bank 0 Erase (256K)  
Bank 1 Erase (16K)  
Not preprogrammed (all 1)  
Preprogrammed (all 0)  
0.9  
0.8  
1.5  
1.3  
s
tRPD  
tPSL  
tESL  
Recovery when disabled  
Program Suspend Latency  
Erase Suspend Latency  
20  
10  
µs  
µs  
µs  
300  
1. Data based on characterisation not tested in production  
2. 10K program/erase cycles.  
Table 26. Flash memory endurance and data retention  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Max  
NEND_B0 Endurance (Bank 0 sectors)  
NEND_B1 Endurance (Bank 1 sectors)  
YRET Data Retention  
kcycles  
kcycles  
Years  
10  
100  
20  
TA=85° C  
Min time from Erase  
Resume to next Erase  
Suspend  
tESR  
Erase Suspend Rate  
ms  
20  
1. Data based on characterisation not tested in production.  
49/71  
Electrical parameters  
STR750F  
3.3.7  
EMC characteristics  
Susceptibilitytests are performed on a sample basis during product characterization.  
Functional EMS (Electro Magnetic Susceptibility)  
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),  
the product is stressed by two electro magnetic events until a failure occurs (indicated by the  
LEDs).  
ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the  
device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2  
standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100pF capacitor, until a functional disturbance occurs. This test  
SS  
conforms with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the  
table below based on the EMS levels and classes defined in application note AN1709.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations:  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
Prequalification trials:  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behaviour is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
Table 27. EMC characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD_IO=3.3 V or 5 V,  
TA=+25° C, fCK_SYS=32 MHz  
conforms to IEC 1000-4-2  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
Class A  
Fast transient voltage burst limits to be applied VDD_IO=3.3 V or 5 V,  
VEFTB through 100pF on VDD and VSS pins to induce TA=+25° C, fCK_SYS=32 MHz  
a functional disturbance conforms to IEC 1000-4-4  
Class A  
50/71  
STR750F  
Electrical parameters  
Electro Magnetic Interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O  
ports), the product is monitored in terms of emission. This emission test is in line with the  
norm SAE J 1752/3 which specifies the board and the loading of each pin.  
Table 28. EMI characteristics  
Max vs. [fOSC4M/fHCLK  
]
Symbo  
l
Monitored  
Frequency Band  
Parameter  
Conditions  
Unit  
4/32MHz  
4/60MHz  
Flash devices:  
VDD_IO=3.3 V or 5 V,  
TA=+25° C,  
LQFP64 package  
conforming to SAE J  
1752/3  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1 GHz  
22  
31  
19  
26  
26  
23  
dBµV  
SEMI Peak level  
SAE EMI Level  
>4  
>4  
-
Absolute Maximum Ratings (Electrical Sensitivity)  
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the  
product is stressed in order to determine its performance in terms of electrical sensitivity.  
For more details, refer to the application note AN1181.  
Electro-Static Discharge (ESD)  
Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models  
can be simulated: Human Body Model and Machine Model. This test conforms to the  
JESD22-A114A/A115A standard.  
Table 29. Absolute maximum ratings  
Maximum  
Symbol  
Ratings  
Conditions  
Unit  
value(1)  
Electro-static discharge voltage  
(Human Body Model)  
VESD(HBM)  
VESD(MM)  
VESD(CDM)  
2000  
Electro-static discharge voltage  
(Machine Model)  
TA=+25° C  
200  
750  
V
Electro-static discharge voltage  
(Charge Device Model)  
1. Data based on product characterisation, not tested in production.  
51/71  
Electrical parameters  
STR750F  
Static and dynamic latch-up  
LU: 3 complementary static tests are required on 10 parts to assess the latch-up  
performance. A supply overvoltage (applied to each power supply pin) and a current  
injection (applied to each input, output and configurable I/O pin) are performed on each  
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,  
refer to the application note AN1181.  
DLU: Electro-Static Discharges (one positive then one negative test) are applied to  
each pin of 3 samples when the micro is running to assess the latch-up performance in  
dynamic mode. Power supplies are set to the typical values, the oscillator is connected  
as near as possible to the pins of the micro and the component is put in reset mode.  
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,  
refer to the application note AN1181.  
Table 30. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class(1)  
TA=+25° C  
TA=+85° C  
TA=+105° C  
LU  
Static latch-up class  
Class A  
VDD5.5 V, fOSC4M=4 MHz,  
fCK_SYS=32 MHz, TA=+25° C  
DLU  
Dynamic latch-up class  
Class A  
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the  
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B  
Class strictly covers all the JEDEC criteria (international standard).  
52/71  
STR750F  
Electrical parameters  
3.3.8  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for V  
and T unless otherwise specified.  
A
DD_IO  
Table 31. General characteristics  
I/O static characteristics  
Conditions  
Symbol  
Parameter  
Min Typ Max Unit  
VIL  
Input low level voltage  
Input high level voltage  
0.8  
V
VIH  
2
TTL ports  
Schmitt trigger voltage  
hysteresis(1)  
Vhys  
400  
mV  
mA  
IINJ(PIN) Injected Current on any I/O pin  
4
ΣIIN(2J)(PIN Total injected current (sum of all  
25  
I/O and control pins)  
Input leakage current on robust  
pins  
See Section 3.3.12 on page 64  
Ilkg  
Input leakage current(3)  
VSSVINVDD_IO  
1
µA  
IS  
Static current consumption(4)  
Floating input mode  
200  
95  
58  
80  
50  
5
VDD_IO=3.3 V 50  
200 kΩ  
150 kΩ  
180 kΩ  
120 kΩ  
pF  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN=VSS  
VDD_IO=5 V  
20  
VDD_IO=3.3 V 30  
Weak pull-down equivalent  
resistor(5)  
RPD  
VIN=VDD_IO  
VDD_IO=5 V  
20  
2
CIO  
I/O pin capacitance  
External interrupt/wake-up lines  
pulse time(6)  
TAP  
tw(IT)in  
B
1. Hysteresis voltage between Schmitt trigger switching levels.  
2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise  
refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD_IO while a negative injection is  
induced by VIN<VSS. Refer to Section 3.2 on page 31 for more details.  
3. Leakage could be higher than max. if negative current is injected on adjacent pins.  
4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of  
the I/O for example or an external pull-up or pull-down resistor (see Figure 25). Data based on design  
simulation and/or technology characteristics, not tested in production.  
5. The RPU pull-up and RPD pull-down equivalent resistor are based on a resistive transistor.  
6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured  
as an external interrupt source.  
53/71  
Electrical parameters  
Figure 25. Connecting unused I/O pins  
STR750F  
V
STR7XXX  
DD  
10k  
UNUSED I/O PORT  
UNUSED I/O PORT  
10kΩ  
STR7XXX  
Output driving current  
The GP I/Os have different drive capabilities:  
O2 outputs can sink or source up to +/-2 mA.  
O4 outputs can sink or source up to +/-4 mA.  
outputs can sink or source up to +/-8 mA or can sink +20 mA (with a relaxed V ).  
OL  
In the application, the user must limit the number of I/O pins which can drive current to  
respect the absolute maximum rating specified in Section 3.2.2 :  
The sum of the current sourced by all the I/Os on V  
plus the maximum RUN  
DD_IO,  
consumption of the MCU sourced on V  
can not exceed the absolute maximum  
DD_IO,  
rating IV  
.
DD_IO  
The sum of the current sunk by all the I/Os on V  
plus the maximum RUN  
SS_IO  
consumption of the MCU sunk on V  
can not exceed the absolute maximum rating  
SS_IO  
IV  
.
SS_IO  
Subject to general operating conditions for V  
and T unless otherwise specified.  
A
DD_IO  
54/71  
STR750F  
Electrical parameters  
Table 32. Output driving current  
I/O Output Drive characteristics for  
VDD_IO = 3.0 to 3.6 V and EN33 bit =1  
or VDD_IO = 4.5 to 5.5 V and EN33 bit =0  
I/O  
Type  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for a standard  
I/O pin when 8 pins are sunk at same IIO=+2 mA  
time  
(1)  
VOL  
0.4  
O2  
O4  
Output high level voltage for an I/O pin  
IIO=-2 mA  
(2)  
VOH  
VDD_IO-0.8  
when 4 pins are sourced at same time  
Output low level voltage for a standard  
I/O pin when 8 pins are sunk at same IIO=+4 mA  
time  
(1)  
VOL  
0.4  
Output high level voltage for an I/O pin  
IIO=-4 mA  
(2)  
VOH  
VDD_IO-0.8  
when 4 pins are sourced at same time  
V
Output low level voltage for a standard  
I/O pin when 8 pins are sunk at same IIO=+8 mA  
time  
0.4  
(1)  
VOL  
IIO=+20 mA,  
TA85°C  
TA85°C  
1.3  
1.5  
Output low level voltage for a high sink  
I/O pin when 4 pins are sunk at same  
time  
O8  
IIO=+8 mA  
0.4  
Output high level voltage for an I/O pin  
IIO=-8 mA  
(2)  
VOH  
VDD_IO-0.8  
when 4 pins are sourced at same time  
1. The IIO current sunk must always respect the absolute maximum rating specified in Section 3.2.2 and the  
sum of IIO (I/O ports and control pins) must not exceed IVSS_IO  
.
2. The IIO current sourced must always respect the absolute maximum rating specified in Section 3.2.2 and  
the sum of IIO (I/O ports and control pins) must not exceed IVDD_IO  
.
55/71  
Electrical parameters  
STR750F  
Output speed  
Subject to general operating conditions for V  
and T unless otherwise specified.  
A
DD_IO  
Table 33. Output speed  
I/O dynamic characteristics for  
VDD_IO = 3.0 to 3.6V and EN33 bit =1  
or VDD_IO = 4.5 to 5.5V and EN33 bit =0  
I/O  
Type  
Symbol  
Parameter  
Conditions  
CL=50 pF  
Min Typ Max Unit  
Fmax(IO)out Maximum Frequency(1)  
10 MHz  
Output high to low level fall  
tf(IO)out  
30  
ns  
30  
O2  
O4  
O8  
time(2)  
CL=50 pF  
Between 10% and 90%  
Output low to high level rise  
tr(IO)out  
time(2)  
Fmax(IO)out Maximum Frequency(1)  
CL=50 pF  
25 MHz  
Output high to low level fall  
tf(IO)out  
12  
ns  
12  
time(2)  
CL=50 pF  
Between 10% and 90%  
Output low to high level rise  
tr(IO)out  
time(2)  
Fmax(IO)out Maximum Frequency(1)  
CL=50pF  
40 MHz  
Output high to low level fall  
tf(IO)out  
tr(IO)out  
6
time(2)  
CL=50 pF  
Between 10% and 90%  
ns  
Output low to high level rise  
6
time(2)  
1. The maximum frequency is defined as described in Figure 26.  
2. Data based on product characterisation, not tested in production.  
Figure 26. I/O output speed definition  
10%  
90%  
50%  
50%  
90%  
10%  
t
t
r(IO)out  
r(IO)out  
EXTERNAL  
OUTPUT  
ON 50pF  
T
Maximum frequency is achieved if (t + t ) (2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
56/71  
STR750F  
Electrical parameters  
NRSTIN and NRSTOUT pins  
NRSTIN Pin Input Driver is TTL/LVTTL as for all GP I/Os. A permanent pull-up is present  
which is the same as R (see : General characteristics on page 53)  
PU  
NRSTOUT Pin Output Driver is equivalent to the O2 type driver except that it works only as  
an open-drain (the P-MOS is de-activated). A permanent pull-up is present which is the  
same as R (see : General characteristics on page 53)  
PU  
Subject to general operating conditions for V  
and T unless otherwise specified.  
A
DD_IO  
Table 34. NRSTIN and NRSTOUT pins  
Symbol  
Parameter  
Conditions  
Min Typ 1) Max Unit  
NRSTIN Input low level  
voltage(1)  
VIL(NRSTIN)  
0.8  
V
NRSTIN Input high level  
voltage(1)  
VIH(NRSTIN)  
Vhys(NRSTIN)  
VOL(NRSTIN)  
2
NRSTIN Schmitt trigger  
voltage hysteresis(2)  
400  
mV  
V
NRSTOUT Output low level  
voltage(3)  
IIO=+2 mA  
0.4  
VDD_IO=3.3 V 25  
50  
31  
100 kΩ  
100 kΩ  
NRSTIN Weak pull-up  
equivalent resistor(4)  
RPU(NRSTIN)  
VIN=VSS  
VDD_IO=5 V  
20  
Generated reset pulse  
tw(RSTL)out duration (visible at NRSTOUT Internal reset source  
15  
20  
µs  
pin)(5)  
At VDD_IO power-up(5)  
20  
1
µs  
µs  
External reset pulse hold time  
th(RSTL)in  
at NRSTIN pin(6)  
When VDD_IO is  
established(5)  
The time between two  
spikes must be higher  
than 1/2 of the spike  
duration.  
maximum negative spike  
duration filtered at NRSTIN  
pin(7)  
tg(RSTL)in  
150  
ns  
1. Data based on product characterisation, not tested in production.  
2. Hysteresis voltage between Schmitt trigger switching levels.  
3. The IIO current sunk must always respect the absolute maximum rating specified in Section 3.2.2 and the  
sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
4. The RPU pull-up equivalent resistor are based on a resistive transistor  
5. To guarantee the reset of the device, a minimum pulse of 15 µs has to be applied to the internal reset. At  
V
DD_IO power-up, the built-in reset stretcher may not generate the 15 µs pulse duration while once VDD_IO  
is established, an external reset pulse will be internally stretched up to 15 µs thanks to the reset pulse  
stretcher.  
6. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially  
in noisy environments.  
7. In fact the filter is made to ignore all incoming pulses with short duration:  
- all negative spikes with a duration less than 150 ns are filtered  
- all trains of negative spikes with a ratio of 1/2 are filtered. This means that all spikes with a maximum  
duration of 150 ns with minimum interval between spikes of 75 ns are filtered.  
Data guaranteed by design, not tested in production.  
57/71  
Electrical parameters  
Figure 27. Recommended NRSTIN pin protection  
STR750F  
V
DD_IO  
RPU  
Filter  
INTERNAL RESET  
NRSTOUT  
TO RESET  
OTHER CHIPS  
WATCHDOG RESET  
SOFTWARE RESET  
RSM RESET  
PULSE  
GENERATOR  
V
DD_IO  
STR7X  
RPU  
EXTERNAL  
RESET  
NRSTIN  
Filter  
CIRCUIT  
0.01µF  
1. The user must ensure that the level on the NRSTIN pin can go below the VIL(NRSTIN) max. level specified in  
NRSTIN and NRSTOUT pins on page 57. Otherwise the reset will not be taken into account internally.  
58/71  
STR750F  
Electrical parameters  
3.3.9  
TB and TIM timer characteristics  
Subject to general operating conditions for V  
, f  
, and T unless otherwise  
DD_IO CK_SYS A  
specified.  
Refer to Section 3.3.8: I/O port pin characteristics on page 53 for more details on the  
input/output alternate function characteristics (output compare, input capture, external clock,  
PWM output...).  
Table 35. TB and TIM timers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input capture  
pulse time  
tw(ICAP)in  
TIM0,1,2  
TB  
2
tCK_TIM  
tCK_TIM  
ns  
fCK_TIM(MAX) = fCK_SYS  
1
16.6(1)  
1
fCK_TIM = fCK_SYS  
60 MHz  
=
Timer  
tres(TIM) resolution  
time(1)  
fCK_TIM(MAX) = fCK_SYS  
tCK_TIM  
ns  
TIM0,1,2  
TIM0,1,2  
fCK_TIM = fCK_SYS  
60MHz  
=
16.6(1)  
0
Timer  
external clock  
frequency on  
TI1 or TI2  
fCK_TIM(MAX) = fCK_SYS  
fCK_TIM/4  
15  
MHz  
fEXT  
fCK_TIM = fCK_SYS  
60 MHz  
=
0
MHz  
Timer  
resolution  
ResTIM  
16  
bit  
tCK_TIM  
µs  
1
65536  
1092  
65536  
1092  
16-bit  
Counter clock  
period when  
TB  
fCK_TIM = fCK_SYS  
60 MHz  
=
=
=
=
0.0166  
1
tCOUNTER internal clock  
is selected  
tCK_TIM  
µs  
(16-bit  
Prescaler)  
TIM0,1,2  
TB  
fCK_TIM = fCK_SYS  
60 MHz  
0.0166  
65536x65536 tCK_TIM  
71.58  
65536x65536 tCK_TIM  
71.58  
fCK_TIM = fCK_SYS  
60 MHz  
s
Maximum  
tMAX_COUNT Possible  
Count  
TIM0,1,2  
fCK_TIM = fCK_SYS  
60 MHz  
s
1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to I/O  
pin, described in : Output speed on page 56.  
59/71  
Electrical parameters  
STR750F  
Table 36. PWM Timer (PWM)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fCK_TIM(MAX) = fCK_SYS  
1
tCK_TIM  
tres(PWM) PWM resolution time  
ResPWM PWM resolution  
fCK_TIM = fCK_SYS  
60 MHz  
=
16.6(1)  
ns  
16  
bit  
µV  
µV  
VDD_IO=3.3 V, Res=16-bits  
VDD_IO=5.0 V, Res=16-bits  
50(1)  
76(1)  
PWM/DAC output step  
voltage  
(1)  
VOS  
Timer clock period  
1
65536 tCK_TIM  
tCOUNTER when internal clock is  
selected  
fCK_TIM=60 MHz  
0.0166  
1087  
µs  
65536x  
65536  
tCK_TIM  
Maximum Possible  
tMAX_COUNT  
Count  
fCK_TIM = fCK_SYS  
60 MHz  
=
71.58  
s
1. Take into account the frequency limitation due to the I/O speed capability when outputting the PWM to an  
I/O pin, as described in : Output speed on page 56.  
60/71  
STR750F  
Electrical parameters  
3.3.10  
Communication interface characteristics  
I2C - Inter IC control interface  
Subject to general operating conditions for V  
,
, and T unless otherwise specified.  
f
DD_IO  
A
PCLK  
2
2
The ST7 I C interface meets the requirements of the Standard I C communication protocol  
described in the following table with the restriction mentioned below:  
Restriction: The I/O pins which SDA and SCL are mapped to are not “True” Open-  
Drain: when configured as open-drain, the PMOS connected between the I/O pin and  
V
the  
is disabled, but it is still present. Also, there is a protection diode between  
DD_IO  
2
I/O pin and V  
. Consequently, when using this I C in a multi-master network, it is  
DD_IO  
2
not possible to power off the STR7x while some another I C master node remains  
powered on: otherwise, the STR7x will be powered by the protection diode.  
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (SDA and SCL).  
Table 37. SDA and SCL characteristics  
Standard mode  
Fast mode I2C(1)  
I2C  
Symbol  
Parameter  
Unit  
Min(2) Max(2)  
Min(2)  
Max(2)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
4.7  
4.0  
1.3  
0.6  
µs  
tsu(SDA)  
th(SDA)  
tr(SDA)  
SDA setup time  
250  
0(3)  
100  
0(4)  
SDA data hold time  
900(3)  
300  
ns  
SDA and SCL rise time  
SDA and SCL fall time  
1000 20+0.1Cb  
tr(SCL)  
tf(SDA)  
tf(SCL)  
300  
20+0.1Cb  
300  
th(STA)  
tsu(STA)  
tsu(STO)  
START condition hold time  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated START condition setup time  
STOP condition setup time  
µs  
µs  
pF  
tw(STO:STA) STOP to START condition time (bus free)  
Cb Capacitive load for each bus line  
400  
400  
1. fPCLK, must be at least 8 MHz to achieve max fast I2C speed (400 kHz).  
Data based on standard I2C protocol requirement, not tested in production.  
2.  
3.  
The maximum hold time of the START condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
4.  
61/71  
Electrical parameters  
Figure 28.  
STR750F  
2
Typical application with I C bus and timing diagram  
V
V
DD  
DD  
4.7kΩ  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I C BUS  
STRT75X  
REPEATED START  
START  
t
t
w(STO:STA)  
su(STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
STOP  
t
t
h(SDA)  
su(SDA)  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD  
.
1.  
62/71  
STR750F  
Electrical parameters  
3.3.11  
USB characteristics  
The USB interface is USB-IF certified (Low Speed and High Speed).  
Table 38. USB characteristics  
USB DC Electrical Characteristics  
Symbol  
Parameter  
Conditions  
Input Levels  
Min.(1)(2) Max.(1)(2) Unit  
VDI  
Differential Input Sensitivity  
I(DP, DM)  
0.2  
Differential Common Mode  
Range  
VCM  
Includes VDI range  
0.8  
1.3  
2.5  
2.0  
V
V
Single Ended Receiver  
Threshold  
VSE  
Output Levels  
VOL  
VOH  
Static Output Level Low  
Static Output Level High  
RL of 1.5 kto 3.6V(3)  
0.3  
3.6  
(3)  
RL of 15 kto VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. It is important to be aware that the DP/DM pins are not 5 V tolerant. As a consequence, in case of a a  
shortcut with Vbus (typ: 5.0V), the protection diodes of the DP/DM pins will be direct biased . This will not  
damage the device if not more than 50 mA is sunk for longer than 24 hours but the reliability may be  
affected.  
RL is the load connected on the USB drivers  
3.  
Figure 29. USB: data signal rise and fall time  
Differential  
Data Lines  
Crossover  
points  
VCRS  
V
SS  
t
t
r
f
Table 39.  
Symbol  
USB: Full speed electrical characteristics  
Parameter  
Conditions  
Min  
Max  
Unit  
Driver characteristics:  
CL=50 pF  
tr  
tf  
Rise time(1)  
Fall Time1)  
4
4
20  
20  
ns  
ns  
%
V
CL=50 pF  
trfm  
VCRS  
Rise/ Fall Time matching  
tr/tf  
90  
1.3  
110  
2.0  
Output signal Crossover Voltage  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
1.  
63/71  
Electrical parameters  
STR750F  
3.3.12  
10-bit ADC characteristics  
Subject to general operating conditions for V  
specified.  
, f  
, and T unless otherwise  
DDA_ADC PCLK  
A
Table 40. 10-bit ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ(1)  
Max  
Unit  
fADC  
VAIN  
ADC clock frequency  
0.4  
8
MHz  
Conversion voltage range  
VSSA_ADC  
VDDA_ADC  
V
RAIN External input impedance  
kΩ  
TBD(2)(3)(4)  
External capacitor on analog  
CAIN  
input  
pF  
+400 µA injected  
on any pin  
1
1
µA  
-400 µA injected  
on any pin  
except specific  
µA  
Ilkg  
Induced input leakage current adjacent pins in  
Table 41  
-400µA injected  
on specific  
adjacent pins in  
Table 41  
40  
µA  
Internal sample and hold  
capacitor  
CADC  
3.5  
pF  
f
f
CK_ADC=8 MHz  
CK_ADC=8 MHz  
725.25  
5802  
3.75  
µs  
1/fADC  
µs  
tCAL  
Calibration Time  
Total Conversion time  
(including sampling time)  
tCONV  
30 (11 for sampling + 19 for  
Successive Approximation)  
1/fADC  
mA  
Sunk on  
VDDA_ADC  
IADC  
3.7  
1. Unless otherwise specified, typical data are based on TA=25°C. They are given only as design guidelines  
and are not tested.  
2. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus  
the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this,  
f
ADC should be reduced.  
3. Depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and reduced to  
allow the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies 8 MHz.  
4. Calibration is needed once after each power-up.  
64/71  
STR750F  
Electrical parameters  
ADC Accuracy vs. Negative Injection Current  
Injecting negative current on specific pins listed in Table 41 (generally adjacent to the analog  
input pin being converted) should be avoided as this significantly reduces the accuracy of  
the conversion being performed. It is recommended to add a Schottky diode (pin to ground)  
to pins which may potentially inject negative current.  
Table 41. List of adjacent pins  
Analog input  
Related adjacent pins  
a
None  
AIN1/P0.03  
AIN2/P0.12  
AIN3/P0.17  
AIN4/P0.19  
AIN5/P0.22  
AIN6/P0.23  
AIN7/P0.27  
AIN8/P0.29  
AIN9/P1.04  
AIN10/P1.06  
AIN11/P1.08  
AIN12/P1.11  
AIN13/P1.12  
AIN14/P1.13  
AIN15/P1.14  
None  
P0.11  
P0.18 and P0.16  
P0.24  
None  
P2.04  
P1.11 and P0.26  
P0.30 and P0.28  
None  
P1.05  
P1.04 and P1.13  
P2.17 and P0.27  
None  
P1.14 and P1.01  
None  
Figure 30. Typical application with ADC  
V
DD  
STR75XX  
V
T
0.6V  
R
2kΩ(max)  
AIN  
AINx  
10-Bit A/D  
Conversion  
V
AIN  
C
V
T
0.6V  
AIN  
I
C
ADC  
3.2pF  
L
1µA  
Analog Power Supply and Reference Pins  
The V  
and V  
pins are the analog power supply of the A/D converter cell.  
SSA_ADC  
DDA_ADC  
Separation of the digital and analog power pins allow board designers to improve A/D  
performance. Conversion accuracy can be impacted by voltage drops and noise in the event  
of heavily loaded or badly decoupled power supply lines (see : General PCB Design  
Guidelines on page 66).  
65/71  
Electrical parameters  
STR750F  
General PCB Design Guidelines  
To obtain best results, some general design and layout rules should be followed when  
designing the application PCB to shield the noise-sensitive, analog physical interface from  
noise-generating CMOS logic signals.  
Use separate digital and analog planes. The analog ground plane should be connected  
to the digital ground plane via a single point on the PCB.  
Filter power to the analog power planes. It is recommended to connect capacitors, with  
good high frequency characteristics, between the power and ground lines, placing  
0.1 µF and optionally, if needed 10 pF capacitors as close as possible to the STR7  
power supply pins and a 1 to 10 µF capacitor close to the power source (see  
Figure 31).  
The analog and digital power supplies should be connected in a star network. Do not  
use a resistor, as V  
is used as a reference voltage by the A/D converter and  
DDA_ADC  
any resistance would cause a voltage drop and a loss of accuracy.  
Properly place components and route the signal traces on the PCB to shield the analog  
inputs. Analog signals paths should run over the analog ground plane and be as short  
as possible. Isolate analog signals from digital signals that may switch while the analog  
inputs are being sampled by the A/D converter. Do not toggle digital outputs near the  
A/D input being converted.  
Software Filtering of Spurious Conversion Results  
For EMC performance reasons, it is recommended to filter A/D conversion outliers using  
software filtering techniques.  
Figure 31. Power supply filtering  
STR75XX  
1 to 10µF  
0.1µF  
V
V
SS  
STR7  
DIGITAL NOISE  
FILTERING  
DD_IO  
V
DD  
POWER  
SUPPLY  
SOURCE  
V
V
0.1µF  
DDA_ADC  
SSA_ADC  
(3.3V or 5.0V)  
EXTERNAL  
NOISE  
FILTERING  
66/71  
STR750F  
Electrical parameters  
Table 42. ADC accuracy  
ADC Accuracy with fCK_SYS = 20 MHz, fADC=8 MHz, RAIN < 10 kΩ  
This assumes that the ADC is calibrated(1)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
VDDA_ADC=3.3 V  
VDDA_ADC=5.0 V  
VDDA_ADC=3.3 V  
VDDA_ADC=5.0 V  
VDDA_ADC=3.3 V  
1
1.2  
1.2  
0.5  
0.5  
-0.2  
-0.2  
0.9  
0.9  
0.8  
0.8  
|ET|  
Total unadjusted error (2) (3)  
1
0.15  
0.15  
-0.8  
-0.8  
0.7  
0.7  
0.6  
0.6  
|EO|  
EG  
Offset error(2) (3)  
Gain Error (2) (3)  
LSB  
VDDA_ADC=5.0 V  
VDDA_ADC=3.3 V  
VDDA_ADC=5.0 V  
VDDA_ADC=3.3 V  
VDDA_ADC=5.0 V  
|ED|  
|EL|  
Differential linearity error(2) (3)  
Integral linearity error (2) (3)  
1. Calibration is needed once after each power-up.  
2. Refer to ADC Accuracy vs. Negative Injection Current on page 65  
3. ADC Accuracy vs. MCO (Main Clock Output): the ADC accuracy can be significantly degraded when  
activating the MCO on pin P0.01 while converting an analog channel (especially those which are close to  
the MCO pin). To avoid this, when an ADC conversion is launched, it is strongly recommended to disable  
the MCO.  
Figure 32. ADC accuracy characteristics  
Digital Result ADCDR  
E
G
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) End point correlation line  
1023  
1022  
1021  
V
V  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E
=Offset Error: deviation between the first actual  
O
transition and the first ideal one.  
=Gain Error: deviation between the last ideal  
(1)  
E
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
7
Vin  
0
1
2
3
4
5
6
1021 1022 1023 1024  
V
V
DDA  
SSA  
67/71  
Package characteristics  
STR750F  
4
Package characteristics  
4.1  
Package mechanical data  
Figure 33. 64-Pin Low Profile Quad Flat Package (10x10)  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
D
A
A
1.60  
0.063  
0.006  
D1  
A2  
A1 0.05  
0.15 0.002  
A1  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
b
c
0.17 0.22 0.27 0.007 0.009 0.011  
0.09 0.20 0.004 0.008  
b
e
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.472  
0.394  
0.472  
0.394  
0.020  
3.5°  
E1  
E
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
c
L1  
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
64  
θ
L1  
L
N
Figure 34. 100-Pin Low Profile Flat Package (14x14)  
mm  
inches  
A
D
Dim.  
Min Typ Max Min Typ Max  
D1  
A2  
A
1.60  
0.063  
0.006  
A1  
A1 0.05  
0.15 0.002  
A2 1.35 1.40 1.45 0.053 0.055 0.057  
b
C
0.17 0.22 0.27 0.007 0.009 0.011  
0.09 0.20 0.004 0.008  
b
e
D
16.00  
14.00  
16.00  
14.00  
0.50  
0.630  
0.551  
0.630  
0.551  
0.020  
3.5°  
D1  
E
E1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45 0.60 0.75 0.018 0.024 0.030  
1.00 0.039  
Number of Pins  
100  
c
L1  
L
1
L
h
N
68/71  
STR750F  
Package characteristics  
Figure 35. 64-Low Profile Fine Pitch Ball Grid Array Package  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
A
1.210  
1.700 0.048  
0.011  
0.067  
A1 0.270  
A2  
1.120  
0.044  
b
D
0.450 0.500 0.550 0.018 0.020 0.022  
7.750 8.000 8.150 0.305 0.315 0.321  
D1  
E
5.600  
7.750 8.000 8.150 0.305 0.315 0.321  
5.600 0.220  
0.220  
E1  
e
0.720 0.800 0.880 0.028 0.031 0.035  
1.050 1.200 1.350 0.041 0.047 0.053  
f
ddd  
0.120  
0.005  
Number of Pins  
N
64  
Figure 36. 100-Low Profile Fine Pitch Ball Grid Array Package  
mm  
inches  
Dim.  
Min Typ Max Min Typ Max  
A
1.700  
0.80  
0.067  
0.031  
A1 0.270  
0.011  
A2  
A3  
A4  
1.085  
0.30  
0.043  
0.012  
b
D
0.45 0.50 0.55 0.018 0.020 0.022  
9.85 10.00 10.15 0.388 0.394 0.40  
D1  
E
7.20  
0.283  
9.85 10.00 10.15 0.388 0.394 0.40  
E1  
e
7.20  
0.80  
1.40  
0.283  
0.031  
0.055  
F
ddd  
eee  
fff  
0.12  
0.15  
0.08  
0.005  
0.006  
0.003  
Number of Balls  
N
100  
Figure 37. Recommended PCB design rules (0.80/0.75mm pitch BGA)  
Dpad  
Dsm  
0.37 mm  
0.52 mm typ. (depends on solder  
mask registration tolerance  
Solder paste 0.37 mm aperture diameter  
– Non solder mask defined pads are recommended  
– 4 to 6 mils screen print  
Dpad  
Dsm  
69/71  
Package characteristics  
STR750F  
4.2  
Thermal characteristics  
The average chip-junction temperature, T must never exceed 125° C.  
J
The average chip-junction temperature, T , in degrees Celsius, may be calculated using the  
J
following equation:  
T = T + (P x Θ )(1)  
J
A
D
JA  
Where:  
T is the Ambient Temperature in °C,  
A
Θ
is the Package Junction-to-Ambient Thermal Resistance, in °±C/W,  
JA  
P is the sum of P  
and P (P = P  
+ P ),  
INT I/O  
D
INT  
I/O  
D
P
is the product of I and V , expressed in Watts. This is the Chip Internal  
DD DD  
INT  
Power.  
P represents the Power Dissipation on Input and Output Pins;  
I/O  
Most of the time for the applications P < P  
and may be neglected. On the other hand,  
INT  
I/O  
P
may be significant if the device is configured to drive continuously external modules  
I/O  
and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273°C) (2)  
D
J
Therefore (solving equations 1 and 2):  
2
K = P x (T + 273°C) + Θ x P (3)  
D
where:  
A
JA  
D
K is a constant for the particular part, which may be determined from equation (3)  
by measuring P (at equilibrium) for a known T Using this value of K, the values  
D
A.  
of P and T may be obtained by solving equations (1) and (2) iteratively for any  
D
J
value of T .  
A
Table 43. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal Resistance Junction-Ambient  
LQFP 100 - 14 x 14 mm / 0.5 mm pitch  
ΘJA  
46  
°C/W  
Thermal Resistance Junction-Ambient  
LQFP 64 - 10 x 10 mm / 0.5 mm pitch  
ΘJA  
ΘJA  
ΘJA  
45  
58  
41  
°C/W  
°C/W  
°C/W  
Thermal Resistance Junction-Ambient  
LFBGA 64 - 8 x 8 x 1.7mm  
Thermal Resistance Junction-Ambient  
LFBGA 100 - 10 x 10 x 1.7mm  
70/71  
STR750F  
Order codes  
5
Order codes  
Table 44. Order codes  
Flash Prog.  
Memory  
(Bank 0)  
Kbytes  
CAN  
USB  
Partnumber  
Package  
Temp. Range  
Periph  
Periph  
STR750FV0T6  
STR750FV1T6  
STR750FV2T6  
STR750FV2H6(1)  
STR751FR0T6  
STR751FR1T6  
STR751FR2T6  
STR751FR2H6(1)  
STR752FR0T6  
STR752FR1T6  
STR752FR2T6  
STR752FR2H6(1)  
STR752FR0T7  
STR752FR1T7  
STR752FR2T7  
STR752FR2H7(1)  
STR755FR0T6  
STR755FR1T6  
STR755FR2T6  
STR755FR2H6(1)  
STR755FV0T6  
STR755FV1T6  
STR755FV2T6  
STR755FV2H6(1)  
64  
128  
256  
256  
64  
LQFP100 14x14  
LFBGA100 10x10  
LQFP64 10x10  
LFBGA64 8x8  
LQFP64 10x10  
LFBGA64 8x8  
LQFP64 10x10  
LFBGA64 8x8  
LQFP64 10x10  
LFBGA64 8x8  
LQFP100 14x14  
LFBGA100 10x10  
Yes  
Yes  
-40 to +85°C  
128  
256  
256  
64  
-
Yes  
-40 to +85°C  
-40 to +85°C  
-40 to +105°C  
128  
256  
256  
64  
Yes  
Yes  
-
-
128  
256  
256  
64  
128  
256  
256  
64  
-
-
-40 to +85°C  
128  
256  
256  
1. For other memory sizes, contact sales office.  
71/71  
Revision history  
STR750F  
6
Revision history  
Table 45. Revision history  
Date  
Revision  
Description of Changes  
25-Sep-2006  
30-Oct-2006  
1
2
Initial release  
Added power consumption data for 5V operation in Section 3  
72/71  
STR750F  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2006 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
71/71  

相关型号:

STR755FV0

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV0H6

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV0T6

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV1

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV1H6

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV1T6

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV2

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV2H6

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FV2T6

ARM7TDMI-S, 32-bit MCU with Flash, SMI, 3 std 16-bit timers PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR755FXX

ARM7TDMI-S⑩ 32-bit MCU with Flash, SMI, 3 std 16-bit timers, PWM timer, fast 10-bit ADC, I2C, UART, SSP, USB and CAN
STMICROELECTR

STR7XX-KEIL

Keil starter kits for STR7 and STR9
STMICROELECTR

STR7XX-SK

Keil starter kits for STR7 and STR9
STMICROELECTR