STV0118 [STMICROELECTRONICS]

PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER; PAL / NTSC制式高性能数字编码器
STV0118
型号: STV0118
厂家: ST    ST
描述:

PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER
PAL / NTSC制式高性能数字编码器

转换器 色度信号转换器 消费电路 商用集成电路 光电二极管 编码器
文件: 总42页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV0118  
PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER  
PRELIMINARY DATA  
.
.
.
.
.
.
.
NTSC-M, PAL-B, D, G, H, I, N, M, PLUS  
NTSC-4.43 ENCODING (OPTIONAL PEDES-  
TAL IN ALL STANDARDS)  
SMALL AND ECONOMICAL SO28 PACKAGE  
LINE SKIP/INSERT CAPABILITY SUPPRES-  
SING THE NEED FOR AN EXTERNAL VCXO,  
THUS REDUCING APPLICATION COST  
4 SIMULTANEOUS ANALOG OUTPUTS : RGB +  
CVBS, or S-VHS (Y/C) + CVBS1 + CVBS2  
54MHz INPUT MULTIPLEX INTERFACE FOR  
24-BIT DIRECT DIGITAL FREQUENCY SYN-  
THESIZERFOR COLORSUBCARRIER  
PROGRAMMABLE RESET OF COLOR SUB-  
CARRIER PHASE (4 MODES)  
.
.
2
.
.
.
EASY CONTROL VIAFAST I C BUS  
2
TWO I C ADDRESSES  
AUTOTEST OPERATION MODE (ON-CHIP  
COLOR BAR PATTERN 100/0/75/0)  
CMOS TECHNOLOGY WITH 3.3V POWER  
SUPPLY  
APPLICATIONS : SATELLITE, CABLE & TER-  
RESTRIAL DIGITAL TV DECODERS, MULTIME-  
DIATERMINALS,DVDPLAYERS  
.
.
DOUBLE  
ENCODING  
APPLICATIONS  
(TO BE ABLE TO ENCODE OR NOT THE OSD  
CONTENT OF THE VIDEO INPUT STREAM)  
CROSS-COLOR REDUCTION BY SPECIFIC  
TRAP FILTERING ON LUMA WITHIN CVBS  
FLOW  
CLOSED CAPTIONING, CGMS ENCODING  
AND TELETEXT ENCODING  
.
.
.
ITU-R/CCIR601 ENCODING WITH EASILY  
PROGRAMMABLE COLOR SUB-CARRIER  
FREQUENCIES  
DIGITAL FRAME SYNC INPUT/OUTPUT  
(ODDEV/VSYNC), PROGRAMMABLE PO-  
LARITY AND RELATIVE POSITION  
DIGITAL HORIZONTAL SYNC INPUT/OUPUT  
(HSYNC), PROGRAMMABLE POLARITY AND  
RELATIVE POSITION  
DIGITAL LINE OR FRAME SYNC EXTRAC-  
TION FROM ITU-R/CCIR656 / D1 DATA  
.
.
.
SO28  
(Plastic Micropackage)  
MASTER  
OPERATION  
MODE,  
PLUS  
ORDER CODE : STV0118  
6 SLAVE MODES  
INTERLACED/NON-INTERLACED OPERA-  
TION MODES  
FULL OR PARTIAL VERTICAL BLANKING  
LUMAFILTERING WITH 2X OVERSAMPLING&  
SINY/Y CORRECTION  
CHROMINANCE FILTERING WITH 4X OVER-  
SAMPLING TO EITHER 1.1MHz, 1.3MHz,  
1.6MHz or 1.9MHz  
.
.
.
.
WIDE CHROMINANCE BANDWIDTH FOR  
RGB ENCODING (2.45MHz)  
1/42  
May 1997  
This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without notice.  
STV0118  
CONTENTS  
Page  
I
GENERAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
II  
PIN INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
II.1  
II.2  
PIN CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PIN DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3
4
III  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FUNCTIONAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5
6
IV  
IV.1  
IV.2  
IV.3  
IV.4  
DATA INPUT FORMAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
VIDEO TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RESET PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
MASTER MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6
6
10  
11  
IV.5  
SLAVE MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12  
IV.5.1  
IV.5.2  
IV.5.3  
Synchronizationonto a Line Sync Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Synchronizationonto a Frame Sync Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Synchronizationonto Data-embeddedSync Words . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
12  
13  
14  
IV.6  
IV.7  
IV.8  
IV.9  
IV.10  
IV.11  
IV.12  
IV.13  
IV.14  
INPUT DEMULTIPLEXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUB-CARRIER GENERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BURST INSERTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LUMINANCE ENCODING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CHROMINANCE ENCODING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
COMPOSITE VIDEO SIGNAL GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
RGB ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CLOSED CAPTIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CGMS ENCODING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
15  
15  
16  
16  
17  
17  
18  
18  
19  
IV.15  
TELETEXT ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
19  
IV.15.1 Signals Exchanged . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IV.15.2 Transmission Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IV.15.3 Programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IV.15.4 Teletext Pulse Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
19  
19  
20  
20  
IV.16  
IV.17  
IV.18  
IV.19  
I2C BUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DUAL ENCODING APPLICATION WITH 54MBIT/S YCRCB INTERFACE . . . . . . . . . .  
LINE SKIP / LINE INSERT CAPABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
CVBS, S-VHS AND RGB ANALOG OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
21  
22  
24  
24  
V
CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
25  
V.1  
V.2  
V.3  
V.4  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DC ELECTRICAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
AC ELECTRICAL CHARARCTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
25  
25  
25  
26  
VI  
REGISTERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
27  
VI.1  
VI.2  
REGISTER MAPPING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REGISTER CONTENTS AND DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
27  
28  
VII  
APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
41  
42  
VIII  
2/42  
STV0118  
I - GENERAL DESCRIPTION  
The STV0118 is a high performance PAL/NTSC  
digital encoder in a low cost pakage. It converts a  
4:2:2 digital video stream into a standard analog  
baseband PAL/NTSC signal and into RGB analog  
components. The STV0118 can handle interlaced  
mode (with 525/625 line standards) and non-inter-  
laced mode. It can perform Closed-Captions,  
CGMS or Teletext encoding.  
Four analog output pins are available, on which it  
is possible to output either S-VHS(Y/C) + CVBS1  
+ CVBS2 or RGB + CVBS. Moreover, it is possible  
to use two STV0118 in parallel to interface with  
SGS-THOMSON’s MPEG decoder ICs that are  
able to deliver a 54Mbit/s “double” YCrCb stream  
(e.g. the STi3520M). This allows for example to  
encode OSD in one of the streams only.  
II - PIN INFORMATION  
II.1 - Pin Connections  
HSYNC  
YCRCB7  
YCRCB6  
YCRCB5  
YCRCB4  
YCRCB3  
YCRCB2  
YCRCB1  
YCRCB0  
VSS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VSYNC/ODDEVEN  
SDA  
2
3
SCL  
4
RESET  
CKREF  
TTXD  
5
6
7
TTXS/CSI2C  
VDD  
8
9
G/Y  
10  
11  
12  
13  
14  
R/C  
CVBS  
B/CVBS  
VR_RGB  
IREF(RGB)  
VDDA  
VR_CVBS  
IREF(CVBS)  
VSSA  
3/42  
STV0118  
II - PIN INFORMATION (continued)  
II.2 - Pin Description  
Pin  
Name  
Type  
Function  
1
HSYNC  
I/O  
Line Synchronization Signal :  
- Input in ODDEV+HSYNC or VSYNC + HSYNC or VSYNC slave modes  
- Output in all other modes (master/slave)  
- Synchronous to rising edge of CKREF  
- Default polarity : negative pulse  
2
3
4
5
6
7
8
9
YCrCb7  
YCrCb6  
YCrCb5  
YCrCb4  
YCrCb3  
YCrCb2  
YCrCb1  
YCrCb0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input : time multiplexed 4:2:2 luminance and chrominance data as defined in ITU-R  
Rec601-2 and Rec656 (except for TTL input levels). This bus interfaceswith MPEG video  
decoder output port and typically carries a stream of Cb,Y,Cr,Y digital video at CKREF  
frequency, clocked on the rising edge (by default) of CKREF. A 54-Mbit/s ‘double’ Cb, Y,  
Cr, Y input multiplex is supported for double encoding application (rising and falling edge  
of CKREF are operating). Output: for test purpose only.  
10  
11  
VSS  
Supply Digital Ground  
CVBS  
Output Analog Composite Video Output (current-driven).  
CVBS must be connected to analog ground over a load resistor (RLOAD).  
Following the load resistor, a simple analog low pass filter is recommended CVBS  
amplitude is proportional to IREF(CVBS) (VOUT(N) = N x RLOAD x IREF(CVBS)/96) with N = [0-  
511] VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA  
12  
13  
VR_CVBS  
IREF(CVBS)  
I/O  
I/O  
Internal Reference Voltage for the 9-bit DAC CVBS.  
VR_CVBS must be connected to analog ground over a capacitor (6.8nF typ.),  
VR_CVBS = 1.9V  
Reference current source for the 9-bit DAC CVBS.  
- IREF(CVBS) must be biased to analog ground over a reference resistor RREF(CVBS)  
- RREF(CVBS)(Min.) = 5.95 x RLOAD/VOUT(Max.) with VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA  
(IREF(CVBS) = VREF(CVBS)/RREF(CVBS)), VREF(CVBS)(Typ.) = 1.12V.  
14  
15  
16  
VSSA  
VDDA  
Supply Analog ground for DACs  
Supply Analog positive power supply for DACs (+3.3V nom.)  
IREF(RGB)  
I/O  
Reference current source for Tri-DAC R/Y,G/C,B/CVBS.  
-IREF(RGB) must be connected to analog ground over a reference resistor RREF(RGB)  
-RREF(RGB)(Min.) = 5.95 x RLOAD/VOUT(Max.), with VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA  
(IREF(RGB) = VREF(RGB)/RREF(RGB)), VREF(RGB) (Typ.) = 1.12V.  
17  
18  
VR_RGB  
B/CVBS  
I/O  
O
Internal reference voltage for the 9bit Tri-DAC R/Y,G/C,B/CVBS.  
VR_RGB must be biased toanalog ground overa typical 6.8nF capacitor, VR_RGB = 1.9V.  
Analog ‘Blue’ or CVBS output (current-driven).  
This output must be connected to analog ground over a load resistor (RLOAD).  
Following the load resistor, a simple analog low pass filter is recommended.  
VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA (VOUT(N) = N x RLOAD x IREF(RGB)/96)  
with N = [0-511].  
19  
20  
21  
R/C  
G/Y  
VDD  
O
O
Analog ‘Red’ or S-VHS Chrominance output (current-driven).  
This output must be connected to analog ground over a load resistor (RLOAD).  
Following the load resistor, a simple analog low pass filter is recommended.  
VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA (VOUT(N) = N x RLOAD x IREF(RGB)/96)  
with N = [0-511].  
Analog ‘Green’ or S-VHS Luminance output (current-driven).  
This output must be connected to analog ground over a load resistor (RLOAD).  
Following the load resistor, a simple analog low pass filter is recommended.  
VOUT(Max.) = 1VPP and IOUT(Max.) = 5mA (VOUT(N) = N x RLOAD x IREF(RGB)/96)  
with N = [0-511].  
Supply Digital positive supply voltage (+3.3V nom.)  
22 TTXS/CSI2C  
I/O  
Output : positive sync pulse for control of Teletext buffer in external demultiplexer or  
Transport IC.  
23  
TTXD  
I/O  
Teletext data stream from external demultiplexer or Transport IC synchronous to rising  
edge of CKREF signal average rate of 6.9375Mbit/s.  
Output in test mode only.  
4/42  
STV0118  
II - PIN INFORMATION (continued)  
II.2 - Pin Description (continued)  
Pin  
Name  
Type  
Function  
24  
CKREF  
I
Master clock reference signal.  
Its rising edge is the default reference for set-up and hold times of all inputs, and for  
propagation delay of all outputs (except for SDA output).  
CKREF nominal frequency is 27MHz (CCIR601) : input pad with pull down (50kTyp.)  
25  
RESET  
I
Hardware reset, active LOW.  
It has priorityoversoftware reset.NRESET imposesdefault states (seeRegister Contents).  
Minimum Low level required duration is 5 CKREF periods : input pad with pull down  
(50kTyp.)  
26  
27  
SCL  
SDA  
I
I2C bus clock line (internal 5-bit majority logic with CKREF for reference) : input pad with  
pull down (50k Typ.)  
I/O  
I2C bus serial data line.  
Input : internal 5-bit majority logic with CKREF for reference  
Output : open drain  
28  
VSYNC/  
ODDEVEN  
I/O  
Frame sync signal :  
- input in slave modes, except when sync is extracted from YCrCb data  
- output in master mode and when sync is extracted from YCrCb data  
- synchronous to rising edge of CKREF  
- ODDEVEN default polarity :  
odd (not-top) field : LOW level  
even (bottom) field : HIGH level  
III - BLOCK DIAGRAM  
TTXS/  
TTXD CSI2C  
23  
22  
STV0118  
CSI2C  
AUTOTEST  
COLOR BAR  
PATTERN  
TTXS  
TELETEXT  
VDDA  
VDD  
YCRCB7  
YCRCB6  
21  
2
G/Y  
20  
19  
18  
17  
16  
CB-CR  
RGB ENCODING  
R/C  
3
B/CVBS  
VR_RGB  
IREF(RGB)  
YCRCB5  
YCRCB4  
4
LUMA  
PROCESSING  
Y
5
YCRCB3  
YCRCB2  
YCRCB1  
YCRCB0  
6
TRAP  
7
CLOSED  
CAPTIONS  
CGMS  
8
VSSA  
9
VDDA  
VSSA  
VDDA  
14  
15  
VSS 10  
CHROMA  
PROCESSOR  
VSYNC/ODDEVEN 28  
CVBS  
11  
12  
13  
SYNC CONTROL  
& VIDEO TIMING  
GENERATOR  
HSYNC  
RESET  
1
VR_CVBS  
IREF(CVBS)  
9-BIT  
DAC  
CTRL + CFG  
REGISTER  
CSI2C  
25  
CKREF 24  
VSSA  
27  
26  
SDA  
SCL  
I2C BUS  
5/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION  
The STV0118 can operate either in master mode,  
where it supplies all sync signals, or in 6 slave  
modes, where it locks onto incoming sync signals.  
The main functions are controlled by a micro-con-  
troller via an I2C 2-wire bus. Refer to the “User’s  
Register Description” for an exhaustive list of the  
control possibilities available.  
allows to keep in the encoded waveform any VBI  
data present in digitized form in the incoming  
YCrCb stream (e.g. WSS data, VPS, supplemen-  
tary Closed-Captions line or StarSight data, etc.).  
Alternatively,the complete VBI maybe blanked(no  
incoming YCrCb data encoded on these lines, “full  
blanking”).  
The completeVBI comprisesof the followinglines:  
- for 525/60systems (SMPTE line numbering con-  
vention): lines 1 to 19 and second half of line 263  
to line 282.  
- for 625/50 systems (CCIR line numbering con-  
vention) : second half of line 623 to line 22 and  
lines 311 to 335.  
IV.1 - Data Input Format  
The digital input is a time-multiplexed ITU-R656  
/D1-type [Cb, Y, Cr, Y] 8-bit stream. Note that  
“ITU-R” was formerly knownas “CCIR”. Inputsam-  
ples are latched in on the rising edge (by default)  
of the clock signal CKREF, whose nominal fre-  
quencyis 27MHz. Figure 1 illustratesthe expected  
data input format. Alternatively,a 54-Mbit/sstream  
can be fed to the STV0118, refer to Section IV.17  
(“dual encoding”) for details.  
The ‘partial’ VBI consists of :  
- for 525/60systems (SMPTE line numbering con-  
vention) : lines 1 to 9 and second half of line 263  
to line 272.  
- for 625/50 systems (CCIR line numbering con-  
vention): secondhalf of line623to line 5and lines  
311 to 318.  
The STV0118 is able to encode interlaced and  
non-interlaced video. One bit is sufficient to auto-  
matically direct the STV0118to process non-inter-  
laced video. Update is performed internallyon the  
first frame sync active edgefollowing the program-  
ing of this bit. The non-interlaced mode is a  
624/2 = 312 line mode or a 524/2= 262 line mode,  
where all fields are identical.  
Full or partialblankingis controlledby configuration  
bit ‘blkli in configurationregister1’.  
Note that :  
- line 282 in 525/60/SMPTEsystems is either fully  
blanked or fullyactive.  
An ‘autotest’ mode is available by setting 3 bits  
(sync[2:0]) within the configurations register0.  
In this mode, a color bar patternis produced,inde-  
pendentlyfrom video input, in the adequatestand-  
ard. As this mode sets the STV0118 in master  
mode, VSYNC/ODDEV and HSYNC pins are then  
in output mode.  
- line 23 in 625/60/CCIR systems is always fully  
active.  
In anITU-R656-compliant digitalTV line, the active  
portion of the digital line is the portion included  
between the SAV (Start of Active Video) and EAV  
(End of Active Video) words. However, this digital  
active line starts somewhat earlier and may end  
slightly later than the active line usually defined by  
analog standards. The STV0118 allows two ap-  
proaches :  
- It is possible to encode the full digital line (720  
pixels/ 1440clock cycles).In this case,theoutput  
waveform will reflect the full YCrCb stream in-  
cluded between SAV and EAV.  
IV.2 - Video Timing  
The STV0118 outputs interlaced or non-interlaced  
video in PAL-B, D, G, H, I, PAL-N, PAL-M or  
NTSC-M standards and ‘NTSC- 4.43’ is also pos-  
sible.  
The 4-frame (for PAL) or 2 frame (for NTSC) burst  
sequences are internally generated, subcarrier  
generation being performed numerically with  
CKREF as reference. Rise and fall times of syn-  
chronizationtips andburst enveloppeareinternally  
controlled according to the relevant ITU-R and  
SMPTE recommendations.  
- Alternatively, it is possible to drop some YCrCb  
samples at the extremities of the digital line so  
that the encoded analog line fits within the ‘ana-  
log’ ITU-R/SMPTE specifications.  
Selection between these two modes of operation  
is performed with bit ‘aline’ in configuration regis-  
ter 4.  
Figures 2 to 7 depict typical VBI waveforms.  
It is possible to allow encoding of incoming YCrCb  
data on those lines of the VBI that do not bear line  
sync pulses or pre/post-equalisation pulses (see  
Figures 2 to 7). This mode of operation is refered  
to as “partial blanking” and is the default set-up. It  
In all cases, the transitions between horizontal  
blanking and active video are shaped to avoid too  
steep edges within theactive video. Figure 8 gives  
timings concerning the horizontal blanking interval  
and the active video interval.  
6/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 1 : Input Data Format  
4T  
4T  
E
A
V
S
A
V
E
A
V
276T  
1440T  
NTSC, PAL M  
(525 Line / 60Hz)  
Digital Standing Interval  
Digital Active Line  
1716T  
Line Duration  
288T  
1440T  
PAL B, D, G, H, I, N  
(625 Line / 50Hz)  
1728T  
Figure 2 : PAL-BDGHI, PAL-N Typical VBI Waveform, Interlaced Mode (CCIR-625 Line Numbering)  
0V  
A
B
IV  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
A
320  
Full VBI1  
Partial VBI1  
I
621  
622  
623  
624  
625  
1
2
3
4
5
6
7
22  
23  
Full VBI2  
Partial VBI2  
A
II  
308  
309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
317 335  
B
336  
A
III  
621  
622  
623  
624  
625  
1
2
3
4
5
6
7
8
I
II  
C
III  
IV  
0V  
:
Frame synchronizationreference  
th  
th  
I, II, III, IV : 1st and 5th, 2nd and 6th, 3rd and 7 , 4th and 8 fields  
A :  
B :  
C :  
Burst phase : nominal value +135°  
Burst phase : nominal value -135°  
Burst suppression internal  
Figure 3 : PAL-BDGHI, PAL-N Typical VBI Waveform, Non-interlaced Mode (“CCIR-like” Line Numbering)  
Full VBI  
Partial VBI  
A
B
0V  
308  
309  
310  
311  
312  
1
2
3
4
5
6
7
8
22  
Burst phase toggles every line  
7/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 4 : NTSC-M Typical VBI Waveforms, Interlaced Mode (SMPTE-525 Line Numbering)  
Full VBI1  
Partial VBI1  
1
2
3
4
5
6
7
8
9
10  
18  
H
19  
H
H
0.5H  
Full VBI2  
270  
Partial VBI2  
262  
263  
264  
265  
266  
267  
268  
269  
271  
H
272  
273  
282  
0.5H  
H
VBI3  
7
525  
1
2
3
4
5
6
8
9
10  
18  
19  
VBI4  
270  
263  
264  
265  
266  
267  
268  
269  
271  
272  
273  
282  
Figure 5 : NTSC-M Typical VBI Waveforms, Non-interlaced Mode (“SMPTE-like” Line Numbering)  
Full VBI  
Partial VBI  
3H  
2
3H  
5
3H  
8
262  
H
1
3
4
6
7
9
10  
18  
H
19  
H
H
0.5H  
8/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 6 : PAL-M Typical VBI Waveforms, Interlaced Mode (CCIR-525 Line Numbering)  
Full VBI1  
F’  
F
F’  
F
PartialVBI1  
A
B
I
0V  
519  
520  
521  
522  
523  
524  
525  
1
2
3
4
5
6
7
8
9
16  
17  
Full VBI2  
F
F’  
F
PartialVBI2  
A
B
II  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
A
271 279  
B
280  
F
F’  
F
III  
519  
520  
521  
522  
523  
524  
525  
1
2
3
4
5
6
7
8
9
F’  
F
A
B
IV  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
I
II  
C
III  
IV  
0V  
:
Framesynchronizationreference  
st th nd th rd th th  
th  
I, II, III, IV :  
1
and5 , 2 and 6 , 3 and 7 , 4 and8 fields  
A :  
B :  
C :  
Burst phase : nominalvalue +135°  
Burst phase : nominalvalue -135°  
Burst suppressioninternal  
Figure 7 : PAL-M Typical VBI Waveforms, Non-interlaced Mode (“CCIR-like” Line Numbering)  
Full VBI  
Partial VBI  
A
B
0V  
256  
257  
258  
259  
260  
261  
262  
1
2
3
4
5
6
7
8
9
10  
16  
17  
Burst phase togglesevery line  
9/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 8 : Horizontal Blanking Intervaland Active Video Timings  
d
Full Digital Line Encoding  
(720 Pixels - 1440T)  
0H  
”Analog” Line Encoding  
(710 Pixels - 1420T)  
b
a
c1 (bit ”aline” = 0)  
c2 (bit ”aline” = 1)  
NTSC-M  
PAL-BDGHI  
PAL-N  
PAL-M  
5.38µs(even lines)  
5.52µs(odd lines)  
5.54µs (A-type)  
5.66µs (B-type)  
5.54µs (A-type)  
5.66µs (B-type)  
5.73µs (A-type)  
5.87µs (B-type)  
a
These are typical values.  
Actual values will depend on the static offset programmed for subcarrier generation.  
1.56µs  
1.28µs  
1.28µs  
1.28µs  
b
c1  
c2  
8.8µs  
9.3µs  
9.3µs  
9.3µs  
9.3µs  
10.1µs  
10.1µs  
10.1µs  
9 Cycles of 3.58MHz 10 Cycles of 4.43MHz 9 Cycles of 3.58MHz 9 Cycles of 3.58MHz  
d
IV.3 - Reset Procedure  
Ahardwarereset is performedby groundingthe pin  
NRESET. The master clock must be running and  
pin NRESET kept low for a minimum of 5 clock  
cycles. This sets the STV0118 in HSYNC+ODDEV  
(line-locked) slave mode, for NTSC-M, interlaced  
ITU-R601 encoding. Closed-captioning and  
Teletext encoding are all disabled.  
are never reset, their contentsis unknown until the  
first loading (refer to the Register Contents and  
Description).  
It is also possible to perform a software reset by  
setting bit’softreset’ in Reg 6. The IC’s response in  
that caseis similar to itsresponseafter a hardware  
reset, except that Configuration Registers  
(Reg 0 to6) anda few otherregisters (see descrip-  
tion of bit ‘softreset’) are not altered .  
Then the configuration can be customized by wri-  
ting into the appropriate registers. A few registers  
10/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.4 - Master Mode  
In this mode, the STV0118 supplies HSYNC and  
ODDEVsync signals(with independentlyprogram-  
mable polarities) to drive other blocks. Refer to  
Figure 9 and 10 for timings and waveforms.  
cycles as soon as the master mode has been  
loaded into the control register (Reg.0).  
ConfigurationbitsSyncout_ad[1:0]”(Reg4)allowto  
shift the relative position of the sync signals by up  
to 3 clock cycles to cope with any YCrCb phasing.  
The STV0118 starts encoding and counting clock  
Figure 9 : ODDEVEN, VSYNC and HSYNC Waveforms  
Active edge (programmable polarity)  
Active edge (programmable polarity)  
Active edge (programmable polarity)  
128 Tckref = 4.74µs  
ODDEVEN  
(see Note 1)  
VSYNC  
HSYNC  
(see Note 2)  
Line Numbers :  
SMPTE-525  
CCIR-625  
4
1
5
2
6
3
266  
313  
267  
314  
268  
315  
269  
316  
Notes : 1. When ODDEVEN is a sync input, only one edge (“the active edge”) of the incoming ODDEVEN is taken into account for  
synchronization. The “non-active” edge (2nd edge on thisdrawing) is not critical and its position may differ by H/2 from the location  
shown.  
2. The HSYNC pulse width indicated is valid when the STV0118 supplies HSYNC. In those slave modes where it receives HSYNC,  
only the edge defined as active is relevant, and the width of the HSYNC pulse it receives is not critical.  
Figure 10 : Master Mode Sync Signals  
CKREF  
Active Edge  
(programmable polarity)  
ODDEVEN  
(out)  
1TCKREF  
HSYNC  
Active Edge  
(programmable polarity)  
(out)  
Duration of HSYNC Pulse : 128 TCKREF  
Cr Y’  
YCRCB  
Cr  
Y’  
Cb  
Y
Note : 1. This figure is valid for bits “syncout_ad[1:0]” = default.  
11/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.5 - Slave Modes  
The STV0118 is thus fully slaved to the HSYNC  
signal, which means that lines may contain more  
or less samples than typical 525/625 system re-  
quirement.  
Six slave modes are available : ODDEV+HSYNC  
based (line-based sync), VSYNC+HSYNC based  
(another type of line-based sync), ODDEV-only  
based (frame-based sync), VSYNC-only based  
(another type of frame-based sync), or sync-in-  
data based (line locked or frame locked).  
If the digital line is shorter than its nominal value:  
the sample counter is re-initialized when the ‘early’  
HSYNC arrives and all internal synchronization  
signals are re-initialized.  
ODDEV refers to an odd/even (also known as  
not-top/bottom) field flag, HSYNC is a line sync  
signal,VSYNCis a verticalsync signal.Theirwave-  
forms are depicted in Figure 9. The polarities of  
HSYNC and VSYNC/ODDEV are independently  
programmable in all slave modes.  
If the digital line is longer than its nominal value :  
the sample counter is stopped when it reaches its  
nominal end-of-line value and waits for the ‘late’  
HSYNC before reinitializing.  
The field counter is incremented on each ODDEV  
transition. The line counter is reset on the HSYNC  
following each active edge of ODDEV.  
IV.5.1- Synchronizationontoa Line Sync Signal  
IV.5.1.1- HSYNC+ODDEV Based Synchronization  
Synchronization is performed on a line-by-line ba-  
sis by locking onto incoming ODDEV and HSYNC  
signals. Refer to Figure 11 for waveforms and  
timings. The polarities of the active edges of  
HSYNC and ODDEV are programmable and inde-  
pendent.  
IV.5.1.2- HSYNC+VSYNC Based Synchronization  
Synchronization is performed on a line-by-line ba-  
sis by locking onto incoming VSYNC and HSYNC  
signals. Refer to Figure 12 for waveforms and  
timings. The polarities of HSYNC and VSYNC are  
programmable and independent.  
The first active edge of ODDEV initializes the inter-  
nal line counter but encoding of the first line does  
not start until an HSYNC active edge is detected  
(at the earliest, HSYNC may transition at the same  
time as ODDEV). At thatpoint, the internal sample  
counter is initialized and encoding of the first line  
starts. Then, encoding of each subsequent line is  
individuallytriggeredby HSYNCactive edges.The  
phase relationship between HSYNC and the in-  
coming YCrCB data is normally such that the first  
clockrising edge following the HSYNCactive edge  
samples “Cb” (i.e. a ‘blue’ chroma sample within  
the YCrCb stream). It is however possible to inter-  
nally delay the incoming sync signals  
(HSYNC+ODDEV) by up to 3 clock cycles to cope  
with different data/sync phasings, using configura-  
tion bits “Syncin_ad” (Reg. 4).  
The incoming VSYNC signal is immediately trans-  
formed into a waveform identical to the odd/even  
waveform of an ODDEV signal, therefore the be-  
havior of the core is identical to that described  
above for ODDEV+HSYNC based synchroniza-  
tion. Again, the phase relationship between  
HSYNC and the incoming YCrCb data is normally  
such that the first clock rising edge following the  
HSYNC active edge samples “Cb” (i.e. a ‘blue’  
chroma sample within the YCrCb stream). It is  
however possible to internally delay the incoming  
sync signals (HSYNC+VSYNC) by up to 3 clock  
cycles to cope with different data/sync phasings,  
using configuration bits “Syncin_ad” (Reg. 4).  
The field counter is incremented on each active  
edge of VSYNC.  
Figure 11 : HSYNC + ODDEVEN Based Slave Mode Sync Signals  
CKREF  
Active Edge (programmable polarity)  
ODDEVEN  
(in)  
Active Edge (programmable polarity)  
HSYNC  
(in)  
YCRCB  
Cb  
Y
Cr  
Y’  
Cb  
Note : 1. This figure is valid for bits “syncin_ad[1:0]” = default.  
12/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 12 : HSYNC + VSYNC Based Slave Mode Sync Signals  
CKREF  
Active Edge (programmable polarity)  
VSYNC  
(in)  
Active Edge (programmable polarity)  
HSYNC  
(in)  
YCRCB  
Cb  
Y
Cr  
Y’  
Cb  
Notes : 1. This figure is valid for bits “syncin_ad[1:0]” = default.  
2. The active edges of HSYNC and VSYNC should normally be simultaneous. It is permissible that HSYNC transitions before  
VSYNC, but VSYNC must not transition before HSYNC.  
Figure 13 : ODDEVEN Based Slave Mode Sync Signals  
CKREF  
Active Edge (programmable polarity)  
ODDEVEN  
(in)  
YCRCB  
Cb  
Y
Cr  
Y’  
Cb  
Note : 1. This figure is valid for bits “syncin_ad[1:0]” = default.  
IV.5.2- Synchronization onto a FrameSync Signal  
IV.5.2.1 - ODDEV-only Based Synchronization  
Encoding and analog sync generation carry on un-  
less three successive fails of these checks occur.  
Synchronizationis performed on a frame-by-frame  
basis by locking onto an incoming ODDEV signal.  
A line sync signal is derived internally and is also  
output as HSYNC. Refer to Figure 13 for wave-  
forms andtimings. Thephaserelationshipbetween  
ODDEV and the incoming YCrCB data is normally  
such that the first clock rising edge following the  
ODDEV active edge samples “Cb” (i.e. a ‘blue’  
chroma sample within the YCrCb stream). It is  
however possible to internally delay the incoming  
ODDEV signal by up to 3 clock cycles to cope with  
different data/sync phasings, using configuration  
bits “Syncin_ad” (Reg. 4).  
In that case, three behaviors are possible, accord-  
ing to the configuration programmed (Reg. 1-2) :  
- if ‘free-run’ is enabled, the STV0118 carries on  
outputtingthe digital line sync HSYNC and gene-  
rating analog video just as though the expected  
ODDEV edge had been present. However, it will  
re-synchronize onto the next ODDEV active edge  
detected, whateverits location.  
- if ‘free-run’ is disabled but bit ‘sync_ok’ is set in  
configuration register1, the STV0118 sets the  
active portion of the TV line to black level but  
carries on outputting the analog sync tips (on Ys  
and CVBS) and the digital line sync signal  
HSYNC.  
Thefirst active edge of ODDEV triggersgeneration  
of the analog sync signals and encoding of the  
incomingvideo data.Frames beingsupposedto be  
of constant duration, the next ODDEV active tran-  
sition is expected at a precise time after the last  
ODDEV detected.  
- if ‘free-runis disabled and the bit ‘sync_okis not  
set, all analog video is at black level and neither  
analog sync tips nor digital line sync are output.  
Note that this mode is a frame-based sync mode,  
as opposedtoa field-basedsyncmode, that is, only  
one type of edge (rising or falling, according to bit  
‘polv’in Reg 0) is of interest to the STV0118, the  
other one is ignored.  
So, once an active ODDEV edge has been de-  
tected, checks that the following ODDEV are pre-  
sent at the expected instants are performed.  
13/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.5.2.2 - VSYNC only Based Synchronization  
time after the latest detection.  
So, once an active ‘F’ flag has been detected,  
checks that the following flags are present within  
the incoming video stream at the expected times  
are performed.  
Encoding and analog sync generation carry on un-  
less three successive fails of these checks occur.  
Synchronization is performed on a frame-by-frame  
basis by locking onto an incoming VSYNC signal.  
An auxiliary line sync signal HSYNC must also be  
fedto theSTV0118,whichusesittoreconstructfrom  
VSYNC and HSYNC information an internal  
odd/even waveform identical to that of an ODD-  
EVEN signal. Thereforethe behaviorof the core is  
identicaltothatdescribedaboveforODDEVENonly  
basedsynchronization(exceptthatnothingis output  
onHSYNCpin since it isan inputportin thatmode).  
Note that HSYNC is an input but has no other use  
than allowing the STV0118 to decide whether an  
incoming VSYNC pulse flags an odd or an even  
field. In other words, the STV0118 does not lock  
onto HSYNC in this mode since this is NOT a  
line-locked mode.  
The phase relationship between VSYNC and the  
incomingYCrCb data is normallysuch that the first  
clockrising edge following the VSYNC activeedge  
samples “Cb” (i.e. a ‘blue’ chroma sample within  
the YCrCb stream). It is however possible to inter-  
nally delay the incoming sync signals  
(VSYNC+HSYNC) by up to 3 clock cycles to cope  
with different data/sync phasings, using configura-  
tion bits “Syncin_ad” (Reg. 4).  
In that case, three behaviors are possible, accor-  
ding to the configuration programmed :  
- if ‘free-run’ is enabled, the STV0118 carries on  
generatingthedigital frameand line syncs(ODD-  
EVEN and HSYNC) and generatinganalog video  
just as though the expected ‘F’ flag had been  
present. However, it will re-synchronize onto the  
next ‘F’ flag detected within the incoming  
CCIR656/D1 video stream.  
- if ‘free-run’ is disabled but the bit ‘sync_ok’ is set in  
the configuration registers, the STV0118 sets the  
activeportion of theTVline toblacklevel butcarries  
onoutputtingtheanalogsynctips(on YsandCVBS)  
andthedigitalframeandlinesyncsignalsODDEVEN  
andHSYNC.  
- if ‘free-run’is disabledandthebitsync_okis notset,  
all analogvideo is at black level and neitheranalog  
synctipsnordigital frame/linesync are output.  
The SAV and EAV words are Hamming-decoded.  
After detectionof two successiveerrors, a bit is set  
in the status register to inform the micro-controller  
of the poor transmission quality.  
IV.5.3 - Synchronization onto Data-embedded  
Sync Words  
IV.5.3.1 - ‘End-of-frame’ Word Based  
Synchronization  
IV.5.3.2 - ‘End-of-line’ Word Based  
Synchronization  
Synchronization is performed by extracting the 1-  
to-0 transitions of the ‘F’ flag (end-of-frame) from  
the ‘EAV’ (End-of-Active Video) sequence embed-  
ded within ITU-R656 / D1 compliant digital video  
streams. Both a frame sync signal and a line sync  
signal are derived and are made available exter-  
nally as ODDEVEN and HSYNC (see Figure 14).  
The first successfuldetectionof the ‘F’ flag triggers  
generationof theanalogsyncsignalsandencoding  
of the incoming video data. Frames being sup-  
posed to be of constant duration, the next EAV  
wordcontainingthe ‘Fflag is expectedat a precise  
Synchronization is performed by extracting the ‘F’  
and ‘H’ flags from the ‘SAV’ (Start of Active Video)  
and ‘EAV’ (End of Active Video) words embedded  
withinITU-R656/D1compliantdigitalvideostreams.  
Alinesyncsignalanda framesyncsignalarederived  
internally from these flags and are output on the  
HSYNC and ODDEVEN/VSYNC pins in output  
mode. These signals are also exploited by the core  
of thecircuit which treatsthem like it treatsincoming  
ODDEVENandHSYNC signalsinHSYNC+ODDEV  
based synchronization(see SectionIV.5.1.1).  
Figure 14 : Data (EAV) Based Slave Mode Sync Signals  
CKREF  
YCRCB  
FF  
00  
00  
B6  
Cb  
Y
EAV  
46TCKREF  
1TCKREF HSYNC Duration : 128TCKREF  
ODDEVEN  
(out)  
HSYNC  
(out)  
14/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.6 - Input Demultiplexer  
YCrCbstreams for dual encodingapplications.Re-  
fer to Section IV.17, “Dual Encoding Application -  
54Mbit/s YCrCB interface”.  
The incoming 27Mbit/s YCrCb data is demulti-  
plexed into a ‘blue-difference’ chroma information  
stream, a ‘red-difference’ chroma information  
stream and a luma information stream. Incoming  
data bits are treated as blue, red or luma samples  
according to their relative position with respect to  
the sync signals in use and to the content of con-  
figuration bits “Syncin_ad” (slave modes) or “Syn-  
cout_ad(master mode).  
IV.7 - Sub-carrier Generation  
A Direct Digital Frequency Synthesizer (DDFS)  
using a 24-bit phase accumulator, generates the  
requiredcolor sub-carrierfrequency.This oscillator  
feeds a quadraturemodulatorwhich modulatesthe  
baseband chrominance components.  
The ITU-R601 recommendation defines the black  
luma level as Y = 16dec and the maximum white  
luma level as Y = 235dec. Similarly it defines 225  
quantizationlevels for the color difference compo-  
nents (Cr, Cb), centered around 128.  
Accordingly, incoming YCrCB samples can be  
saturatedin the input multiplexer with the following  
rules :  
The sub-carrier frequency is obtained from the  
following equation :  
Fsc = (24-bit Increment Word / 224) x CKREF  
Hard-wired Increment Word values are available  
for eachstandard(exceptfor ‘NTSC-4.43’)and can  
be automaticallyselected. Alternatively(according  
to bit ‘selrst’ in Reg. 2.), the frequency can be fully  
customized by programming other values into a  
dedicated Increment Word Register (Reg. 10-11-  
12). This allows for instance to encode “NTSC-  
4.43” or ”PAL-M-4.43”.  
- for Cr or Cb samples :  
Cr, Cb > 240 Cr, Cb saturated at 240  
Cr,Cb < 16  
Cr, Cb saturated at 16  
- for Y samples :  
Y > 235  
Y < 16  
Y saturated at 235  
Y saturated at 16  
This is done with the following procedure :  
- Program the required increment in Registers 10  
to 12  
- Set bit ‘selrst’ to ‘1’ in Configuration Register 2  
- Perform a software reset (Reg. 6).  
Caution : this sets back all bits from Reg. 7  
onwards to their default value, when they can be  
reset.  
This avoids having to heavily saturate the com-  
posite video codes before digital-to-analog con-  
version in case erroneous or unrealistic YCrCb  
samples are input to the encoder (there may  
otherwise be overflow errors in the codes driving  
the DACs), and therefore avoids genera-ting a  
distorded output waveform.  
Warning :  
if a standard change occurs after the  
However, in someapplications, it maybe desirable  
to let ‘extreme’ YCrCb codes pass through the  
demultiplexer. This is also possible, provided that  
bit “maxdyn” is set in configuationregister 6.  
softwarereset,theincrement valueis automatically  
re-initialized with the hardwired or loaded value  
according to bit selrst.  
The reset phase of the color sub-carrier can also  
be software-controlled (Reg. 13-14).  
In this case, only codes 00hex and FFhex are  
overridden: if such codes are found in the active  
video samples, they are forced to 01hex and FE-  
hex.  
The sub-carrier phase can be periodically reset to  
its nominal value to compensatefor any drift intro-  
duced by the finite accuracy of the calculations.  
Sub-carrier phase adjustment can be performed  
every line, every eight field, every four field, or  
every two field (Register 2 bits valrst[1:0]).  
In any case, the YCrCb codes are not overridden  
for EAV/SAV decoding  
The demultiplexer is also able to handle 54Mbit/s  
15/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.8 - Burst Insertion  
The interpolationfilter compensatesfor thesin(x)/ x  
attenuationinherent to D/A conversion and greatly  
simplifies the output stage filter (refer to Figures 15  
to 17 for characteristic curves).  
The color reference burst is inserted so as to  
always start with a positive zero crossing of the  
subcarrier sine wave. The first and last half-cycles  
have a reduced amplitude so that the burst enve-  
lope starts and ends smoothly.  
The burst contains 9 or 10 sine cycles of  
4.43361875MHzor3.579545MHzaccordingto the  
standard programmed in the Control Register  
(Reg. 0, bits std[1:0]), as follows :  
Figure 15 : Luma Filtering Including DAC  
Attenuation  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
- NTSC-M  
9 cycles of  
3.579542MHz  
- PAL-BDGHI 10 cycles of 4.43361875MHz  
- PAL-M  
- PAL-N  
9 cycles of  
9 cycles of  
3.57561149MHz  
3.5820558MHz  
It is possibleto turn theburst off(no burstinsertion)  
bysetting configurationbit ‘bursten’to 0 (register2).  
Notes : - Two strategies exist for burst insertion: one is to merely  
gateand shapethe subcarrier forburstinsertion, the other  
is more elaborated and is to always start the burst with a  
positive-going zero crossing. In the first case the phase  
of the subcarrier when the burst starts is not controlled,  
with the consequence that some of its first and last cycles  
are more heavily distorded. The second solution  
guarantees smoothstartand endof burst witha maximum  
of undistorded burst cycles and can only be beneficial to  
chroma decoders, it is the solution implemented in the  
STV0118.  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
Frequency (x106) (Hz)  
Figure 16 : Luma Filtering with 3.58MHz Trap,  
Including DAC Attenuation  
0
-5  
- While the first option gave constant burst start time but  
uncontrolled initial burst phase, the second solution  
guarantees start on a positive-going zero crossing with  
the consequence that two burst start locations are visible  
over successive lines, according to the line parity. This is  
normal and explained below.  
- In NTSC, the relation between subcarrier frequency and  
line length creates a 180o subcarrier phase difference  
(with respect to the horizontal sync) from one line to the  
next according to the line parity. So if the burst always  
startswith thesame phase (positive-goingzero crossing),  
this means the burst will be inserted at time X or at time  
X+TNTSC/2 after the horizontal sync tip according to the  
line parity, where TNTSC is the duration of one cycle of the  
NTSC burst.  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
- With PAL, a similar rationale holds, and again there will  
be two possible burst start locations. The subcarrier  
phase difference (withrespect tothehorizontal sync) from  
one line to the next in that case is either 0 or 180o with  
the following series: A-A-B-B-A-A-...-etc. where A  
denotes ‘A-type’ bursts and B denotes ‘B-type’ bursts,  
A-type and B-type being 180° out of phase with respect  
to the horizontal sync. So 2 locations are possible, one  
for A-type, the other for B-type (see Figure 8).  
- This assumes a periodic reset of the subcarrier is  
automatically performed (see bits valrst[1:0] in Reg 2).  
Otherwise, over severalframes, the start of burst will drift  
within an interval of one a subcarrier’s cycle. THIS IS  
NORMAL and means the burst is correctly locked to the  
colors encoded. The equivalent effect with a gated burst  
approach would be the following : the start location would  
be fixed but the phase with which the burst starts (with  
respect to the horizontal sync) would be drifting.  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
Frequency (x106) (Hz)  
Figure 17 : Luma Filtering with 4.43MHz Trap,  
Including DAC Attenuation  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
IV.9 - Luminance Encoding  
The demultiplexed Y samples are band-limited  
and interpolated at CKREF clock rate. The result-  
ing luminance signal is properly scaled before  
insertion of any Closed-captions, CGMS or  
Teletext data and synchronization pulses.  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
Frequency (x106) (Hz)  
16/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
In addition, the luminance that is added to the  
chrominanceto create the compositeCVBS signal  
can be trap-filtered at 3.58MHz (NTSC) or  
4.43MHz (PAL). This allows to cope with applica-  
tion oriented towards low-end TV sets which are  
subject to cross-color if the digital source has a  
wide luminance bandwidth (e.g. some DVD  
sources).Notethat the trapfilterdoes notaffect the  
S-VHS luminance output nor the RGB outputs.  
A 7.5 IRE pedestal can be programmed if needed  
withall standards(seeReg1,bit setup).Thisallows  
in particular to encode Argentinian and non-Ar-  
gentinian PAL-N, or Japanese NTSC (NTSC with  
no set-up).  
Note that this function does not suppress the  
chrominance on the S-VHS outputs (nevertheless  
suppressing the S-VHS chrominance is possible  
using bit “bkg_c” in Reg 5).  
Figure 18 : Various Chroma Filters Available  
+ RGB Filter  
1
0
-1  
-2  
RGB  
-3  
-4  
f3=2.45  
f3=1.9  
-5  
A programmable delay can be inserted on the  
luminance path to compensate any chroma/luma  
delay introduced by off-chip filtering (chroma and  
lumatransitionsbeingcoincidentat theDACoutput  
with default delay) (Reg3, bits del[2:0]).  
f3=1.6  
-6  
f3=1.3  
-7  
f3=1.1  
-8  
-9  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Frequency (x106) (Hz)  
IV.10 - Chrominance Encoding  
U and V chroma components are computed from  
demultiplexed Cb, Cr samples. Before modulating  
the subcarrier, these are band-limited and interpo-  
lated at CKREF clock rate. This processing eases  
the filtering following D/A conversion and allows a  
more accurate encoding. A set of 4 different filters  
is available for chroma filtering to fit a wide variety  
of applications in the different standards and in-  
cludefilters recommendedby ITU-RRec624-4 and  
SMPTE170-M. The available 3dB bandwidths are  
1.1, 1.3, 1.6 or 1.9MHz, refer to Figures 18 to 22  
for the various frequency responses (Reg1, bits  
flt[1:0]).  
Figure 19 : 1.1MHz Chroma Filter (flt = 00)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
The narrowerbandwidthsare usefulagainstcross-  
luminanceartefacts,the widerbandwidthsallow to  
keep higher chroma contents and then an im-  
proved image quality.  
0
2
4
6
8
10  
12  
14  
Frequency (x106) (Hz)  
Figure 20 : 1.3MHz Chroma Filter (flt = 01)  
0
-5  
IV.11 - Composite Video Signal Generation  
The composite video signal is created by adding  
the luminance (after optional trap filtering, Reg 3  
bits entrap and trap_pal) and the chrominance  
components.Asaturationfunctionis includedin the  
adder to avoid overflow errors should extreme  
luminance levels be modulated with highly satu-  
rated colors (this does not correspond to natural  
colors but may be generated by computers or  
graphic engines).  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Acolor killingfunction is available (Reg 1, bit coki)  
whereby the composite signal contains no chromi-  
nance, i.e. replicates the trap-filtered luminance.  
0
2
4
6
8
10  
12  
14  
Frequency (x106) (Hz)  
17/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 21 : 1.6MHz Chroma Filter (flt = 10)  
IV.13 - Closed Captioning  
Closed-captions (or data from an Extended Data  
Service as defined by the Closed-Captions speci-  
fication) can be encoded by the circuit. The closed  
caption data is delivered to the circuit through the  
I2C interface. Two dedicated pairs of bytes (two  
bytes per field), each pair preceded by a clock  
run-in and a start bit can be encodedand inserted  
on the luminance path on a selected TV line. The  
Clock Run-In and Start code are generatedby the  
STV0118.  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Closed-caption data registers are double-buffered  
so that loading can be performed anytime, even  
during line 21/284 or any other selected line.  
0
2
4
6
8
10  
12  
14  
Frequency (x106) (Hz)  
User register 39 (resp. 41) containsthe firstbyte to  
send(LSBfirst)after thestartbit on the appropriate  
TVline in field1 (resp.field 2), and user register 40  
(resp. 42) contains the second byte to send. The  
TV line number where data is to be encoded is  
programmble (Reg. 37, 38). Lines that may be  
selected include those used by the StarSight data  
broadcastsystem. Closed-captionsdata has prior-  
ity over CGMS programmed for the same line.  
Figure 22 : 1.9MHz Chroma Filter (flt = 11)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
The internal Clock Run-In generator is based on a  
Direct Digital Frequency Synthesizer. The nominal  
instantaneousdata rate is 503.5kbit/s(i.e. 32 times  
the NTSC line rate). Data LOW correspondsnomi-  
nally to 0 IRE, data HIGH correspondsto 50 IRE at  
the DAC outputs. Refer to Figure 24.  
0
2
4
6
8
10  
12  
14  
Frequency (x106) (Hz)  
When closed-captioning is on (bits cc1/cc2 in  
Reg.1), the CPU should load the relevant registers  
(reg. 39 and 40, or 41 and 42) once everyframe at  
most (although there is in fact some margin due to  
the double-buffering).Two bits are set in thestatus  
register in case of attemptsto loadthe closed-cap-  
tion data registers too frequently, these can be  
used to regulate loading rate.  
IV.12 - RGB Encoding  
After demultiplexing, the Cr and Cb samples feed  
a 4 times interpolation filter. The resulting base-  
band chroma signal has a 2.45MHz bandwidth  
(Figure 23) and is combined with the filtered luma  
componentto generateR, G, B samplesat 27MHz.  
Figure 23 : RGB Chroma Filtering  
Figure 24 : Example Closed-caption Waveform  
0
-5  
300  
27.35µs  
250  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
Transition  
Time : 220ns  
200  
10µs  
150  
100  
50  
0
13.9µs  
7 cycles  
of 504kHz  
61µs  
0
2
4
6
8
10  
12  
14  
Frequency (x106) (Hz)  
t
18/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
The closed caption encoder considers that closed  
caption data has been loaded and is valid on  
completion of the write operation into register 40  
forfield1, intoregister42for field2.If closedcaption  
encodinghas been enabledandno new databytes  
have been written into the closed caption data  
registerswhen the closedcaptionwindow startson  
theappropriateTV line,then the circuit outputstwo  
US-ASCII NULL characterswith oddparityafter the  
start bit.  
IV.15 - TeletextEncoding  
The STV0118is able to encodeTeletext according  
to the “CCIR/ITU-R Broadcast Teletext System B”  
specification, also known as “World System  
Teletext”.  
In DVB applications, Teletext data is embedded  
withinDVB streams asMPEGdata packets.It isthe  
responsibility of a “Transport Layer Processing” IC  
(or demultiplexer), like SGS-Thomson’s ST20-  
basedTP2”, to sort out incomingdata packetsand  
inparticulartostoreTeletextpacketinabuffer,which  
then passes them to the STV0118 on request.  
IV.14 - CGMS Encoding  
IV.15.1 - Signals Exchanged  
CGMS (Copy Generation Management System -  
also known as VBID and described by standard  
CPX-1204 of EIAJ) data can be encoded by the  
circuit. Three bytes (20 significant bits) are deliv-  
eredtothe chipviatheI2C interface.Two reference  
bits (‘1’ then ‘0’) are encoded first, followed by 20  
bits of CGMSdata (including a CyclicRedundancy  
Check sequence, not computed by the device and  
supplied to it as part of the 20 data bits). The  
reference bits are generated locally by the  
STV0118. Refer to Figure 25 for a typical CGMS  
waveform.  
The STV0118 and the Teletext buffer exchange 2  
signals: TTXS (Teletext Synchronization) going  
from the STV0118to theTeletext Buffer and TTXD  
(TeletextData) goingfrom the TeletextBufferto the  
STV0118.  
The TTXS signal is a request signal generated on  
selected lines. In response to this signal, the  
Teletextbufferis expectedto send360 Teletextbits  
to the STV0118 for insertion of a Teletext line into  
the analog video signal.  
Thedurationof theTTXSwindowis 1402reference  
clockperiods(51.926µs), which correspondsto the  
duration of 360 Teletext bits (see Transmission  
Protocol below).  
Following the TTXS rising edge the encoder ex-  
pectsdata from the Teletextbuffer aftera program-  
mable number (2 to 9) of 27MHz master clock  
periods.Datais transmittedsynchronouslywiththe  
master clock at an average rate of 6.9375Mbit/s  
according to the protocol described below. It con-  
sists, in order of transmission, of 16 Clock Run-In  
bits, 8 Framing Code bits and the 336 bits (42  
bytes) that represent one Teletext packet.  
When CGMS encodingis enabled,the CGMS(see  
bit encgms in Reg 3) waveform is continously  
present once in each field, on lines 20 and 283  
(SMPTE-525 line numbering).  
The CGMS data register is double-buffered,which  
means that it can be loaded anytime (even during  
line 20/283) without any risk of corrupting CGMS  
data that could be in the process of being en-  
coded.The CGMS encoder considers that new  
CGMS data has been loaded and is valid on com-  
pletion of the write operation into register 33  
IV.15.2 - Transmission Protocol  
Figure 25 : Example CGMS Waveform  
In order to transmit the Teletext data bits at an  
average rate of 6.9375Mbit/s, which is about  
1/3.89 times the master clock frequency, the follo-  
wing scheme is adopted :  
300  
250  
The 360-bit packet is regarded as nine 37-bit se-  
quences plus one 27-bit sequence. In every se-  
quence, each Teletext data bit is transmitted as a  
successionof 4 identicalsamplesat27 Msample/s,  
except for the 10th, 19th, 28th and 37th bits of the  
sequence which are transmitted as a succession  
of 3 identical samples. This protocol is compatible  
with SGS-Thomson’s ST-20 based Tranport Layer  
IC (“TP2”).  
200  
11µs  
150  
48.7µs  
100  
Word 0  
6 bits  
Word 2  
CRCC  
6 bits  
Word 1  
4 bits 4 bits  
50  
0
Bit 1  
Bit 20  
t
19/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 26 : “TTXS Rising” to “First Valid Sample” Delay for txdl[2:0] = 0  
CKREF  
TTXS  
(txdl[2:0] + 2) TCKREF  
TTXD  
Not Valid  
Bit 1  
Bit 2  
IV.15.3 - Programming  
quired by the World System Teletext specification.  
IV.15.3.1 - ’TTXS Rising’ to ’First Valid  
SampleDelay Programming  
Figure 27 : Shape and Amplitude of a Single  
Teletext Symbol  
TheencoderexpectstheTeletextbufferto clockout  
the first Teletext data sample on the (2+N)th rising  
edge of the master clock following the rising edge  
of TTXS (Figure 26 depicts this graphically for  
N=0). ’N’ is programmable from 0 to 7 (i.e. overall  
delay is programmable from TWO to NINE 27MHz  
cycles) via 3 dedicatedbits located in the Configu-  
ration Register4 : “txdl[2:0]”.  
70  
60  
50  
40  
30  
20  
IV.15.3.2 - Teletext Line Selection  
Five dedicated registers allow to program Teletext  
encoding in various areas of the Vertical Blanking  
Interval (VBI) of each field. A total of 4 such areas  
(i.e. blocks of contiguous Teletext lines) can inde-  
pendently be defined within the two VBIs of one  
frame(e.g. 2 blocksineachVBI,or3 blocksinfield1  
VBI and one in field2 VBI, etc.). Further, under  
certain circumstances, it is possible to define up to  
4 areas in each VBI.  
Programming is performed using 4 “Teletext Block  
Definition” registers (TTXBD1, TTXBD2,  
TTXBD3,TTXBD4) and a “TeletextBlock Mapping”  
register (TTXBM). Refer to the description of user  
registers 34 to 38 for details.  
10  
0
-150  
-100  
-50  
0
(ns)  
50  
100  
150  
-144ns  
+144ns  
Figure 28 : Linear PSD Scale  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IV.15.4 - TeletextPulse Shape  
The shape and amplitude of a singleTeletext pulse  
aredepictedin Figure27, itsrelativepowerspectral  
density is given in Figures 28 and 29 and is sub-  
stantially zero at frequencies above 5MHz, as re-  
0
1
2
3
4
5
6
7
8
(x106) (Hz)  
20/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 29 : LogarithmicPSD Scale  
After a hardware reset, it is these addresses that  
the STV0118 recognizes.  
It is possible to modify the default I2C address by  
tiing the TTXS/CSI2C pin to logic ‘1’ and validat-  
ing the change by writing into a dedicated bit in  
Register 6.  
In that case, the STV0118 has a new I2C address:  
- in write mode : “01000010(42 hex)  
- in read mode : “01000011”(43hex)  
Once theI2C addresshas been changed, it cannot  
be modifed anymoreuntil thenext hardware reset.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Note that these I2C addresses are the same as  
those used by the STV0117/STV0117A/STV0119  
(others SGS-THOMSON PAL/NTSC Digital En-  
coder).  
0
1
2
3
4
5
6
7
8
(x106) (Hz)  
IV.16 - I2C Bus  
It is expected that I2C address changes will nor-  
mally be needed for dual encoding applications.  
The exact procedure to change the I2C addresses  
is detailed below,in the sectionthat dealswith dual  
encoding applications.  
An external micro-controller controls the STV0118  
via anI2C busby writing intoor readingfrom internal  
registers. The I2C interface supports the “fast  
I2C protocol(up to 400kHz- andpotentiallymore).  
The default I2C addresses of the STV0118 are :  
- in write mode : “01000000(40 hex)  
- in read mode : “01000001(41 hex)  
2
Write and read operations are described in Fig-  
ures 30 and 31.  
Figure 30 : I C Write Operation (default address at power-on, CSI2C ’1’)  
SCL  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDA  
I2C Slave Address40h  
ACK by  
ACK by  
ACK by  
STV0119  
Start  
LSB Address  
Data Byte 1  
STV0119  
STV0119  
SCL  
SDA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK by  
STV0119  
ACK by  
ACK by  
Data Byte 2  
Data Byte 3  
Data Byte n  
Stop  
STV0119  
STV0119  
2
Figure 31 : I C Read Operation (default address at power-on, CSI2C ’1’)  
SCL  
R/W  
A7 A6 A5 A4 A3 A2 A1 A0  
SDA  
I2C SlaveAddress 40h  
ACK by  
ACK by  
STV0119  
Stop  
Start  
LSB Address  
STV0119  
SCL  
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
I2C SlaveAddress 41h  
ACK by  
ACK by  
micro  
ACK by  
micro  
Start  
Data Byte 1  
Data Byte n  
Stop  
STV0119  
21/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.17 - Dual Encoding Application with 54Mbit/s YCrCb Interface  
The STV0118 is able to interface with SGS-  
THOMSON’s MPEG decoders capable of supply-  
ing a 54-Mbit/s YCrCB multiplex, like the  
STi3520M. This multiplex embeds two 27Mbit/s  
YCrCb video streams, one with OSD contents and  
the other without OSD content (see Figure 32).  
Note that the frequency of the reference clock  
supplied to the encoder is still 27MHz, only both  
edges are used in the interface.  
the 1st encoder to ‘0’.  
- If Teletext encoding is needed, connect the  
TTXS/CSI2C pin of the first encoder to both the  
TTXS input pin of the Teletext Buffer / Transport  
IC (e.g. SGS-Thomson’s TP2) and a pull-down  
resistor (needed for power-on configuration).  
- Connect TTXS/CSI2C of the second encoder to  
logic ‘1’.  
- Before performing any Teletext-related program-  
ming, set to ‘1’ bit “chgi2c” in configurationregis-  
ter 6.  
The MPEG decoder being usually slaved to the  
encoder,if two encodersare to be usedin parallel,  
one of them must be master and the other must be  
slave. Figure 33 shows a typical dual encoding  
application (although other applications where two  
STV0118’sare slave are possible).  
On hardware reset, both encoders have the same  
default I2C address (40-41hex). When bit “chgi2c”  
toggles to ‘1’, the I2C address of the first encoder  
(withTTXS/CSI2C pulledlow) keepsunchangedat  
40-41hex, whilst the I2C address of the second  
encoder (with TTXS/CSI2C = ‘1’) switches to 42-  
43hex and can no more be changed until the next  
hardware reset.  
It is also necessary to be able to control inde-  
pendently the encoders. One solution is to have  
two separate I2C busses (one for each encoder)  
runningfrom the microcontroller(this is possibleon  
SGS-THOMSON’s ST20, which features two I2C  
busses),another solution is to change the I2C chip  
address of one of the STV0118.  
After I2C address change, the second encoder  
mustbe programmedto choosetheYCRCbincom-  
ing data stream on thefalling edge of CKREF (see  
bit ’nosd’ in configurationregister 3).  
This can be done with the following procedure :  
- If no Teletext is required, tie pin TTXS/ CSI2C of  
Figure 32 : 54Mbit/sDual YCRCB Stream  
CKREF  
(27MHz)  
54Mbit/s  
YCRCB Stream  
Cbnosd Cbosd Ynosd  
Yosd  
Crnosd Crosd Y’nosd  
Y’osd Cbnosd Cbnosd  
22/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
Figure 33 : Typical Dual Encoding Application  
27MHz  
STV0118  
(Master)  
VDD  
3.3V  
ODDEVEN  
HSYNC  
27MHz  
3.3V  
VDD  
G/Y  
R/C  
With OSD  
With OSD  
For TV Set  
B/CVBS  
CVBS  
8
54MHz  
Interface  
Frame Sync  
Line Sync  
ODDEVEN  
HSYNC  
SCL  
Bit nosd = 0  
VSS  
SDA  
TTXS/CSI2C  
8
3.3V  
V
27MHz  
YCrCb[7:0]  
3.3V 3.3V  
MPEG Decoder  
(e.g. STi3520M)  
54MHz  
Digital Video  
Data  
Rpull-down = 47k  
Transport IC  
(ST20TP2)  
DD TTXS  
VSS  
(Demultiplexer +  
CPU + Teletext  
Buffer)  
SDA  
SCL  
VSS  
3.3V  
STV0118  
(Slave)  
TTXS/CSI2C  
(See Bit chgi2c)  
VSS  
SCL  
SDA  
ODDEVEN  
HSYNC  
G/Y  
R/C  
8
54MHz  
Interface  
Without OSD  
Without OSD  
For VCR  
B/CVBS  
CVBS  
27MHz  
Bit nosd = 1  
23/42  
STV0118  
IV - FUNCTIONAL DESCRIPTION (continued)  
IV.18 - Line Skip / Line Insert Capability  
These operationscan be repeated until the MPEG  
data buffer is inside its fixed limits.  
This patented feature of the STV0118 offers the  
possibility to cut the cost of the application by  
suppressing the need for a VCXO.  
It is also possible to use the line skip/repeat capa-  
bility in non-interlacedmode.  
Ideally, the master clock used on the application  
board and fed to the MPEG decoding IC would  
haveexactly same frequencyas theclock that was  
used when the MPEG data was encoded. Obvi-  
ously this is not realistic; up to now a solution  
commonlychosenis to dynamicallyadjusttheclock  
onthe boardas closeto theidealclockas possible  
with the help of time stamps embedded within the  
MPEG stream. Such a kind of tracking often in-  
volves the use of a VCXO : when the MPEG data  
bufferfills up tomorethan somethresholdthe clock  
frequency is increased, when it empties down to  
some other threshold the clock frequency is low-  
ered.  
This functionalityof the STV0118 is also available  
in slave mode, in this case the sync signals sup-  
plied to the STV0118 must be in accordance with  
the modified frame lengthes programmed.  
IV.19 - CVBS, S-VHS and RGB Analog Outputs  
Four out of six video signals (composite CVBS,  
S-VHS(Y/C) and RGB) can bedirected to 4 analog  
output pins through 9-bit D/A converters operating  
at the reference clock frequency.  
The available combinations (see bit ‘rgb_nyc’ in  
Reg5) are :  
S-VHS (Y/C) + CVBS + CVBS1  
or : R, G, B + CVBS1.  
The STV0118 offers an alternative, cost-saving  
solution: by programming the two bits jump and  
dec_ninc in configuration Reg6, the STV0118 is  
able to reduce or increase the length of some  
frames in a way that will not introduce visible arte-  
facts (even if comb-filtering is used). These bits  
should be set according to the level of the MPEG  
data buffer. Refer to Section VI.2 Register 6,  
Register 9 and Registers 21-22-23 for complete  
bit description.  
A single external analog power supply pair is used  
for all DACs, but two independentpairs of current  
and voltage references are needed. Each current  
referencepin is normally connectedexternallyto a  
resistor tied to the analogue ground, whilst each  
voltage reference pin is normally connected to a  
capacitance tied to the analogue ground.  
The internal current sources are independentfrom  
the positive supply, thanks to a bangap, and the  
consumptionof theDACs is constantwhateverthe  
codes converted.  
Operation with the STV0118 as sync master is as  
follows :  
- If the MPEG data buffers fills up too much: set bit  
“jump” to ‘1and bit “dec_nincto ‘1’.The STV0118  
will reduce the length of the current frame (Bit  
“jump” will then automaticallybe reset to ‘0’).  
- If the MPEGdata buffersemptiestoomuch:set bit  
“jump” to ‘1’ and bit “dec_nincto ‘0’.The STV0118  
will increase the length of the current frame (Bit  
“jump” will then automaticallybe reset to ‘0’).  
Any unused DAC may be independentlydisabled  
by software, in which case its output is at ‘neutral’  
level (blanking for luma and composite outputs,no  
color for chroma output, black for RGB outputs).  
For applications where a single CVBS output is  
required, the RGB/CVBS+S-VHS Triple DAC  
should be disabled and Pins IREF(RGB), VR_RGB  
tied to analog power supply.  
24/42  
STV0118  
V - CHARACTERISTICS  
V.1 - Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
-0.3, 4.0  
-0.3, VDD + 0.3  
-0.3, VDD + 0.3  
2
Unit  
V
VDDx  
VIN  
DC Supply Voltage  
Digital Input Voltage  
Digital Output Voltage  
V
VOUT  
IREF  
Toper  
Tstg  
V
Analog Input Reference Current  
Operating Temperature  
Storage Temperature  
mA  
oC  
oC  
mW  
0, +70  
-40, +150  
500  
Ptot  
Total Power Dissipation  
V.2 - Thermal Data  
Symbol  
Parameter  
Value  
Unit  
Rth(j-a)  
DC Junction-Ambient Thermal Resistance  
with sample soldered on a PCB  
Typ.  
76  
°C/W  
V.3 - DC Electrical Characteristics  
Tamb = 25°C/70°C, VDDA = VDD = 3.3V, unless otherwise specified  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
SUPPLY  
VDDA  
VDD  
IDDA  
IDD  
Analog Positive Supply Voltage  
Digital Supply Voltage  
Analog Current Consumption  
Digital Current Consumption  
3.0  
3.0  
20  
3.3  
3.3  
3.6  
3.6  
50  
V
V
mA  
mA  
RIREF =1.2k , R = 200 ,  
L
CL = 50pF, CKREF = 27MHz,  
VDD = 3.6V autotest mode,  
static input signals  
20  
35  
50  
DIGITAL INPUTS  
VIL  
VIH  
Input Voltage  
Input Voltage  
SCL and SDA  
Low level (any other pins)  
High level (any other pins)  
0.8  
V
V
2.0  
2.0  
4.5  
VDD  
Except SCL and SDA  
IL  
Input Leakage Current  
Input Pins (see note 2)  
Bi-directional Pins  
VIL min or VIH max  
-10  
-10  
80  
10  
µA  
µA  
CIN  
Input Capacitance  
Input Pins  
Bi-directional Pins  
0.1  
5
pF  
pF  
SDA OUTPUT  
VL  
Output Voltage  
Low level, IO = 2mA  
0.4  
0.6  
V
DIGITAL OUTPUT  
VOH  
VOL  
Output Voltage  
Output Voltage  
High level (IOH = -4mA)  
Low level (IOL = 4mA)  
2
V
V
D/A CONVERTER  
RIREF  
Resistance for reference Current  
Source for 3 D/A Converters  
IREF = VREF/RIREF, VREF = 1.12V typ.  
1.2  
k
VO  
Output Voltage Dyn  
RIREF = 1.2k, RL = 200Ω  
(Max. code - Min. Code)  
0.95  
1.10 VPP  
DAC to DAC VO max code (tri-DAC only) RIREF = 1.2k, RL = 200Ω  
3
%
ILE  
DLE  
LF Integral Non-linearity  
LF Differential Non-linearity  
RIREF = 1.2k , R = 200  
1
±
0.5  
±
LSB  
LSB  
L
RIREF = 1.2k , R = 200  
L
Notes : 1. This product withstands 1.4kV (The MIL883C Norm requires 2.0kV).  
This product withstands 150V (The EIAJ Norm requires 200V).  
2. The high value for input Pins is due to internal pull-down resistance.  
25/42  
STV0118  
V - CHARACTERISTICS (continued)  
V.4 - AC Electrical Characteristics  
Tamb = 25°C/70°C, VDDA = VDD = 3.3V, unless otherwise specified  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
DIGITAL INPUT (YCRCB[7:0], HSYNC, VSYNC/ODDEVEN)  
tsu  
tho  
Input Data Set-up Time  
Input Data Hold Time  
CKREF rising edge, CKREF = 27MHz  
CKREF rising edge, CKREF = 27MHz  
6
3
ns  
ns  
ACTIVE PERIOD FOR NRESET  
tRSTL Input Low Time  
REFERENCE CLOCK : CKREF  
200  
35*  
ns  
1/tC_REF  
tD_REF  
tR_REF  
tF_REF  
Clock Frequency  
27  
50  
MHz  
%
Clock Duty Cycle  
Clock Rise Time  
Clock Fall Time  
65*  
5
ns  
5
ns  
I2C CLOCK : SCL  
tC_SCL  
tD_SCL  
tL_SCL  
Clock Cycle Time  
Clock Duty Cycle  
LOW Level Cycle  
Rpull_up = 4.7kΩ  
2
MHz  
%
Rpull_up = 4.7k  
250  
ns  
DIGITAL OUTPUTS  
td_HSYNC  
Delay Time  
Delay Time  
CKREF rising edge  
10  
10  
ns  
ns  
CKREF = 27MHz, CL = 50pF  
td_ODDEVEN  
CKREF rising edge  
CKREF = 27MHz, CL = 50pF  
* In case of double encoding these values must be compatible with the ycrcb transmitter.  
26/42  
STV0118  
VI - REGISTERS  
VI.1 - Register Mapping  
configuration0  
configuration1  
configuration2  
configuration3  
configuration4  
R/W 00  
R/W 01  
R/W 02  
R/W 03  
R/W 04  
std1  
blkli  
std0  
flt1  
sync2  
flt0  
sync1  
sync_ok  
xxx  
sync0  
coki  
polh  
setup  
rstosc  
del1  
polv  
cc2  
freerun  
cc1  
nintrl  
entrap  
enrst  
bursten  
selrst  
del2  
valrst1  
del0  
valrst0  
xxx  
trap_pal encgms  
nosd  
syncin  
_ad1  
syncin  
_ad0  
syncout  
_ad1  
syncout  
_ad0  
aline  
txdl2  
txdl1  
txdl0  
configuration5  
configuration6  
reserved  
R/W 05 rgb_nyc bkcvbs1 reserved reserved  
bk_ys  
xxx  
xxx  
xxx  
fieldct2  
d19  
d11  
d3  
bk_c  
xxx  
xxx  
xxx  
fieldct1  
d18  
d10  
d2  
bk_cvbs  
chgi2c  
xxx  
dacinv  
maxdyn  
xxx  
R/W 06 softreset  
jump  
xxx  
xxx  
atfr  
d22  
d14  
d6  
dec_ninc free_jump  
xxx 07  
xxx 08  
xxx  
xxx  
hok  
d23  
d15  
d7  
xxx  
xxx  
b2_free  
d21  
d13  
d5  
xxx  
xxx  
b1_free  
d20  
d12  
d4  
reserved  
xxx  
xxx  
status  
R
09  
fieldct0  
d17  
d9  
jumping  
d16  
d8  
increment_dfs  
increment_dfs  
increment_dfs  
phase_dfs  
phase_dfs  
reserved  
R/W 10  
R/W 11  
R/W 12  
R/W 13  
R/W 14  
xxx 15  
xxx 16  
d1  
d0  
-
-
-
-
-
-
o23  
o15  
xxx  
o22  
o14  
xxx  
o21  
xxx  
xxx  
0
o20  
xxx  
xxx  
1
o19  
xxx  
xxx  
1
o18  
xxx  
xxx  
1
o17  
xxx  
xxx  
0
o16  
xxx  
xxx  
1
reserved  
S
xxx  
chipid  
R
R
17  
18  
1
1
revid  
0
0
0
0
0
0
0
1
reserved  
R/W 19  
R/W 20  
R/W 21  
R/W 22  
R/W 23  
R/W 31  
R/W 32  
xxx  
xxx  
ltarg8  
ltarg0  
lref1  
-
xxx  
xxx  
ltarg7  
lref8  
lref0  
-
xxx  
xxx  
ltarg6  
lref7  
-
xxx  
xxx  
ltarg5  
lref6  
-
xxx  
xxx  
ltarg4  
lref5  
-
xxx  
xxx  
ltarg3  
lref4  
-
xxx  
xxx  
reserved  
xxx  
xxx  
line_reg  
ltarg2  
lref3  
-
ltarg1  
lref2  
-
line_reg  
line_reg  
cgms_bit_1-4  
cgms_bit_5-12  
-
-
bit1  
bit9  
bit17  
bit2  
bit10  
bit18  
bit3  
bit11  
bit19  
bit4  
bit12  
bit20  
bit5  
bit13  
bit6  
bit14  
bit7  
bit15  
bit8  
bit16  
cgms_bit_13-20 R/W 33  
ttx_block_1_def. R/W 34 ttxbs1.3 ttxbs1.2 ttxbs1.1  
ttx_block_2_def. R/W 35 ttxbs2.3 ttxbs2.2 ttxbs2.1  
ttx_block_3_def. R/W 36 ttxbs3.3 ttxbs3.2 ttxbs3.1  
ttx_block_4_def. R/W 37 ttxbs4.3 ttxbs4.2 ttxbs4.1  
ttxbs1.0 ttxbe1.3 ttxbe1.2 ttxbe1.1 ttxbe1.0  
ttxbs2.0 ttxbe2.3 ttxbe2.2 ttxbe2.1 ttxbe2.0  
ttxbs3.0 ttxbe3.3 ttxbe3.2 ttxbe3.1 ttxbe3.0  
ttxbs4.0 ttxbe4.3 ttxbe4.2 ttxbe4.1 ttxbe4.0  
ttx_block_map  
c.c.c.F1  
c.c.c.F1  
c.c.c.F2  
c.c.c.F2  
cclif1  
R/W 38 ttxbmf1.1 ttxbmf1.2 ttxbmf1.3 ttxbmf1.4 ttxbmf2.1 ttxbmf2.2 ttxbmf2.3 ttxbmf2.4  
R/W 39  
R/W 40  
R/W 41  
R/W 42  
R/W 43  
R/W 44  
xxx 45  
opc11  
opc12  
opc21  
opc22  
xxx  
c117  
c127  
c217  
c227  
xxx  
c116  
c126  
c216  
c226  
xxx  
c115  
c125  
c215  
c225  
l1_4  
l2_4  
xxx  
c114  
c124  
c214  
c224  
l1_3  
l2_3  
xxx  
c113  
c123  
c213  
c223  
l1_2  
l2_2  
xxx  
c112  
c122  
c212  
c222  
l1_1  
l2_1  
xxx  
c111  
c121  
c211  
c221  
l1_0  
l2_0  
xxx  
cclif2  
xxx  
xxx  
xxx  
reserved  
...  
xxx  
xxx  
xxx  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
reserved  
xxx 63  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
xxx  
27/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_0 - Configuration0  
MSB  
LSB  
freerun  
0
Content  
Default  
std1  
1
std0  
0
sync2  
0
sync1  
1
sync0  
0
polh  
0
polv  
1
std[1:0] std1 std0 Standard Selected  
0
0
1
1
0
1
0
1
PAL BDGHI  
PAL N (see bit set-up)  
NTSC M  
(*)  
(*)  
PAL M  
Note 1 : Standard on hardware reset is NTSC; any standard modification selects automatically the right parameters for  
correct subcarrier generation.  
sync[2:0] sync2 sync1 sync0 Configuration  
(referto Functional Description, Sections IV.4 and IV.5)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ODDEVEN based SLAVE mode (frame locked)  
F only based SLAVEmode (frame locked)  
ODDEV+HSYNC based SLAVE mode (line locked)  
‘F’+’H’ based SLAVE mode (line locked)  
VSYNC-only based SLAVE mode (frame locked) (see Note)  
VSYNC+HSYNC based SLAVE mode (line locked)  
MASTER mode  
AUTOTEST mode (color bar pattern)  
Caution : In VSYNC-only based slave mode (sync[2:0]=”100”), HSYNC is nevertheless needed as an input.  
Refer to Functional Description, Section IV.5.2.2.  
polh  
polv  
Synchro : active edge of HSYNC selection (when input)  
or polarity of HSYNC (when output)  
(*)  
0
1
HSYNC is a negativepulse (128 TCKREF wide) or falling edge is active  
HSYNC is a positive pulse (128 TCKREF wide) or rising edge is active  
Synchro : active edge of ODDEVEN/VSYNC selection (when input)  
or polarity of ODDEV (when output) - See Note 2  
0
1
Falling edge of ODDEVEN flags start of field1 (odd field) or VSYNC is active low  
Rising edge of ODDEVEN flags start of field1 (odd field) or VSYNC is active high  
(*)  
(*)  
Note 2 : In master mode : polarity of ODDEVEN output.  
In slave by F (from EAV) : polv = 0 (cf D1 encoding) and ODDEVEN polarity is the image of F extracted  
from EAV words.  
freerun Refer to Functional Description, Section IV.5  
0
1
disabled  
Enabled  
Caution : This bit is taken into account in ODDEV-only, VSYNC-only or ‘F’ based slave modes and is irrelevant to other  
synchronization modes.  
28/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_1 - Configuration1  
MSB  
LSB  
cc1  
0
Content  
Default  
blkli  
0
flt1  
1
flt0  
0
sync_ok  
0
coki  
0
setup  
1
cc2  
0
blkli  
VerticalBlankingIntervalselectionfor activevideo linesarea (referto FunctionalDescription,  
Section IV.2 and Figures 2 to 7).  
(*)  
0
1
(‘partial blanking’) Only following lines inside Vertical Interval are blanked  
NTSC-M : lines [1..9], [263(half)..272] (525-SMPTE)  
PAL-M : lines [523..6], [260(half)..269](525-CCIR)  
other PAL: lines [623(half)..5], [311..318](625-CCIR)  
This mode allows preservation of VBI data embedded within incoming YCrCb, e.g.  
Teletext (lines [7..22] and [320..335]), Wide Screen signalling (full line 23), Video  
Programing Service (line16), etc.).  
(‘full blanking’) All lines inside VBI are blanked  
NTSC-M : lines [1..19], [263(half)..282](525-SMPTE)  
PAL-M : lines [523..16],[260(half)..279](525-CCIR)  
other PAL: lines [623(half)..22],[311..335](625-CCIR)  
Note : blkli must be set to ’0’ when closed captions and are to be encoded on following lines :  
- in 525/60 system: before line 20(SMPTE) or before line 283(SMPTE)  
- in 625/50 system: before line 23(CCIR) or before line 336(CCIR)  
For CGMS and Teletext encodings, blkli value is not taken into account.  
flt[1:0]  
U/V Chroma filter bandwidth selection  
(Refer to Functional Description, Section IV.10 and Figures 4 and 5)  
flt1 flt0 3dB Bandwidth Typical Application  
0
0
1
0
1
0
f-3 = 1.1MHz  
f-3 = 1.3MHz  
f-3 = 1.6MHz  
Low definition NTSC filter  
Low definition PAL filter  
High definition NTSC filter (ATSC compliant)  
& PAL M/N (ITU-R 624.4 compliant)  
High definitionPALfilter: Rec 624 - 4 for PALBDG/Icompliant  
(*)  
(*)  
1
1
f-3 = 1.9MHz  
sync_ok Availability of sync signals (analog and digital) in case of input synchronizationloss with no  
free-run active (i.e. freerun=0) (Refer to Functional Description, Section IV.5)  
0
1
No synchro output signals  
Output synchros available on YS, CVBS and, when applicable, HSYNC (if output port),  
ODDEVEN (if output port), i.e same behavior as free-run except that video outputs are  
blanked in the active portion of the line  
Caution : This bit is taken into account in ODDEV-only, VSYNC-only orF’ based slave modes and is irrelevant to other  
synchronization modes.  
coki  
Color killer (Refer to FunctionalDescription, Section IV.11)  
(*)  
0
1
Color ON  
Color suppressedon CVBS(and CVBS1)outputsignal(CVBS=YS) but colorstill present  
on C andRGB outputs.ForcolorsuppressiononchromaDAC ‘C’,seeregister5 bitbkg_c.  
setup  
Pedestal enable (Refer to Functional Description, Section IV.9)  
0
Blanking level and black level are identical on all lines  
(ex : ArgentinianPAL-N, Japan NTSC-M, PAL-BDGHI)  
Black level is 7.5 IRE above blanking level on all lines outside VBI  
(ex :Paraguayanand Uruguayan PAL-N)  
(*)  
(*)  
1
In all standards, gain factor is adjusted to obtain the required levels for chrominance.  
cc2, cc1 Closed caption encoding mode (Refer to Functional Description, Section IV.13)  
cc2 cc1 Encoding Mode  
0
0
1
1
0
1
0
1
No closed caption/extendeddata encoding  
Closed caption/extendeddata encoding enabled in field 1 (odd)  
Closed caption/extendeddata encoding enabled in field 2 (even)  
Closed caption/extendeddata encoding enabled in both fields  
29/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_2 - Configuration2  
MSB  
LSB  
valrst0  
0
Content  
Default  
nintrl  
0
enrst  
0
bursten  
1
xxxx  
0
selrst  
0
rstosc  
0
valrst1  
0
Refer to Functional Description, Section IV.7.  
nintrl  
Non-interlaced mode select (Refer to Figures 3, 5 and 7)  
(*)  
(*)  
0
1
Interlaced mode (625/50 or 525/60 system)  
Non-interlaced mode(2x312/50or 2x262/60 system)  
Note : ‘nintrl’ update is internallytaken into account on beginning of next frame.  
enrst  
Cyclic update of DDFS phase  
0
1
No cyclic subcarrier phase reset  
Cyclic subcarrier phase reset dependingof valrst1 and valrst0 (see below)  
bursten  
selrst  
Chrominance burst control  
0
1
Burst is turned off on CVBS (and CVBS1), C and RGB outputs are not affected  
Burst is enabled  
(*)  
(*)  
Selects set of reset values for Direct Digital Frequency Synthesizer  
0
Hardware reset values for phase and increment of subcarrier oscillator  
(see description of registers 10 to 14 for values)  
1
I2C loaded reset values selected (see contents of Registers 10 to 14)  
rstosc  
Software phase reset of DDFS (Direct Digital FrequencySynthesizer)  
(*)  
(*)  
0
1
inactive  
a 0-to-1 transition resets the phase of the subcarrier to either the hard-wired default  
phase value or the value loaded in Register 13-14 (according to bit ‘selrst’)  
Note : Bit ‘rstosc’ is automatically set back to ‘0’ after the oscillator reset has been performed.  
valrst[1:0] Note : valrst[1:0] is taken into account only if bit ‘enrst’ is set  
valrst1 valrst0 Selection  
0
0
1
1
0
1
0
1
Automatic reset of the oscillator every line  
Automatic reset of the oscillator every 2nd field  
Automatic reset of the oscillator every 4th field  
Automatic reset of the oscillator every 8th field  
Resettingthe oscillatormeans here forcingthe valueof theaccumulatorphaseto its nominal valueto avoid  
accumulating errors due to the finite number of bits used internally. The value to which the accumulatoris  
reset is either the hard-wired default phase value or the value loaded in Register 13-14 (according to bit  
‘selrst’), to which a 0°, 90°, 180°, or 270°correction is applied according to the field and line on which the  
reset is performed.  
30/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_3 - Configuration3  
MSB  
LSB  
xxx  
0
Content  
Default  
entrap  
0
trap_pal  
0
encgms  
0
nosd  
0
del2  
0
del1  
0
del0  
0
entrap  
Enable trap filter  
(*)  
0
1
Trap filter disabled  
Trap filter enabled  
trap_pal Refer to Functional Description, Section IV.9  
Note : ‘trap_palis taken into account only if bit ‘entrapis set.  
(*)  
(*)  
0
1
To select the NTSC trap filter (centered around 3.58MHz)(see Figure 16)  
To select the PAL trap filter (centered around 4.43MHz) (see Figure 17)  
encgms CGMS encoding enable (Refer to FunctionalDescription, Section IV.14)  
0
1
Disabled  
Enabled  
Note : When encgms is set to 1 Closed-Captions/Extended Data Services should not be programmed on lines 20 and  
283 (525/60, SMPTE line number convention).  
nosd  
Choice of active edge of ‘ckref’ (master clock) that samples incoming YCrCb data (Refer to  
Functional Description, Section IV.17).  
(*)  
0
1
‘ckref’ rising edge (e.g. data with OSD coming from STi3520M)  
‘ckref’ falling edge (e.g. data without OSD coming from STi3520M)  
Note : Typically, this bit is used when two STV0118’s are used in a ‘dual encodingconfiguration.  
del[2:0] Delay on luma path with reference to chroma path  
(Refer to Functional Description, Section IV.9)  
del2 del1 del0 Delay on luma path with reference to chroma path  
(one pixel corresponds to 1/13.5MHz(74.04ns))  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
+ 2 pixel delay on luma  
+ 1 pixel delay on luma  
+ 0 pixel delay on luma  
- 1 pixel delay on luma  
- 2 pixel delay on luma  
+ 0 pixel delay on luma  
(*)  
1
Other  
31/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_4 - Configuration4  
MSB  
LSB  
txdl0  
0
Content  
Default  
syncin_ad1  
0
syncin_ad0 syncout_ad1 syncout_ad0  
aline  
0
txdl2  
0
txdl1  
0
0
0
0
syncin_ad Adjustmentof incoming sync signals (Refer to Functional Description, Section IV.5).  
Used to insure correct interpretation of incoming video samples as Y, Cr or Cb when the  
encoderis slavedto incomingsyncsignals(incl. ‘F/HflagsstrippedoffITU-R656/D1data).  
syncin_ad1  
syncin_ad0  
Internal delay undergone by incoming sync  
(*)  
0
0
1
1
0
1
0
1
Nominal  
+1 ckref  
+2 ckref  
+3 ckref  
syncout_ad Adjustmentof outgoing sync signals (Refer to FunctionalDescription, SectionIV.4).  
Used to insure correct interpretationof incoming video samples as Y, Cr or Cb whenthe  
encoder is master and supplies sync signals.  
syncout_ad1 syncout_ad0 Delay added to sync signals before they are output  
(*)  
(*)  
0
0
1
1
0
1
0
1
Nominal  
+1 ckref  
+2 ckref  
+3 ckref  
aline  
Video active line duration control(Refer to FunctionalDescription, Section IV.2)  
0
1
Full digital video line encoding (720 pixels - 1440 clock cycles)  
Active line duration follows ITU-R/SMPTE ‘analog’ standard requirements  
txdl[2:0]  
Teletext data latency (* “000” default) (Refer to Functional Description, Section IV.15)  
The encoder will clock in the first Teletext data sample on the (2+txdl[2:0]) rising edge  
th  
of the master clock following the rising edge of TTXS (Teletext Synchro signal, supplied  
by the encoder).  
32/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_5 - Configuration5  
MSB  
LSB  
dacinv  
0
Content  
Default  
rgb_nyc  
0
bkcvbs1  
0
reserved  
1
reserved  
1
bk_ys  
0
bk_c  
0
bk_cvbs  
0
rgb_nyc Selection between RGB or S-VHS/CVBS outputs present on DACs  
(refer to Functional Description, Section IV.12)  
(*)  
(*)  
(*)  
(*)  
(*)  
(*)  
0
1
Y - C - CVBS - CVBS1 on DACs  
R - G - B - CVBS1 on DACs  
bkcvbs1 Blanking of DAC CVBS  
0
1
DAC CVBS in normal operation  
DAC input code forced to blanking level  
bk_ys  
bk_c  
Blanking of DAC G/Y’  
0
1
DAC G/Y in normal operation  
DAC input code forced to black level (if G) or blanking level (if Y)  
Blanking of DAC ‘R/C’  
0
1
DAC R/C in normal operation  
DAC input code forced to black level (if R) or neutrallevel [no color] (if C)  
bk_cvbs Blanking of DAC ‘B/CVBS’  
0
1
DAC B/CVBS in normal operation  
DAC input code forced to black level (if B) or blanking level (if CVBS)  
dacinv  
‘Inverts’ DAC codes to compensatefor an inverting output stage in the application  
0
1
DAC non inverted inputs  
DAC inverted inputs  
33/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_6 - Configuration6  
MSB  
LSB  
maxdyn  
0
Content  
Default  
softreset  
0
jump  
0
dec_ninc  
0
free_jump  
1
xxxx  
0
xxxx  
0
chgi2c  
0
softreset Software reset  
(*)  
0
1
No reset  
Software reset  
Note : Bit ‘softreset’ is automatically reset after internal reset generation.  
Software reset is active during 4 CKREF periods. When softreset is activated, all the device is reset as with  
hardware reset except for the first six user registers (configurations) and for registers 10 up to 14  
(increment and phase of oscillator), 31-33, 34-37 and 39-42.  
jump, dec_ninc, free_jump  
jump dec_ninc free_jump  
0
0
0
Normal mode (no line skip/insert capability)  
CCIR : 313/312 or 263/262  
non-interlaced : 312/312 or 262/262  
0
x
1
Manual mode for line insert (“dec_ninc” = 0) or skip  
(“dec_ninc” = 1) capability.  
Both fields of all the frames following the I2C writing are  
modifiedaccordingto “lref”and “ltargbits of registers21-22-23  
(bydefault, “lref= 0 andltarg= 1 whichleads to normalmode  
above).  
1
1
0
1
x
0
0
1
Automatic line insert mode.  
The 2nd field of the frame following the I2C writing is increased.  
Lineinsertionis done afterline 245 in 525/60 and afterline 330  
in 625/50. “lref” and “ltarg” bits are ignored.  
Automatic line skip mode.  
The2nd fieldof the framefollowingthe I2C writtingis decreased.  
Line suppression is done after line 245 in 525/60 and after  
line 330 in 625/50. “lref” and “ltarg” bits are ignored.  
Not be used  
1
Notes :  
- Refer to Functional Description (Section IV.18)  
- bit “jump” is automatically reset after use.  
chgi2c  
Chip address selection  
(*)  
(*)  
0
1
Chip address : write = 40hex ; read = 41hex  
Chip address : write = 42hex; read = 43hex  
Note : Setting this bit to 1 changes the chip address provided that pin ttxs/csi2c is tied to Vdd when the 0-to-1  
transition occurs. Refer to sections IV.16 and IV.17. The new address is valid until the next hardware reset.  
maxdyn Max dynamic magnitude allowed on YCrCb inputs for encoding  
(Refer to Functional Description, Section IV.6).  
0
1
10hex to EBhex for Y, 10hex to E0hex for chrominance (Cr,Cb)  
01hex to FEhex for Y, Cr and Cb  
Note : In any case, EAV and SAV words are replaced by blanking values before being fed to the luminance and  
chrominace processings  
REGISTER_7 and 8 : Reserved  
34/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_9 - Status (read only)  
MSB  
LSB  
Content  
hok  
atfr  
buf2_free  
buf1_free  
fieldct2  
fieldct1  
fieldct0  
jumping  
hok  
Hamming decoding of frame sync flag embedded within ITU-R656/D1 compliant YCrCb  
streams.  
0
1
Consecutive errors  
A single or no error  
(*)  
Note : signal quality detector is issued from Hamming decoding of EAV,SAVfrom YCrCb  
atfr  
Frame synchronization flag (slave mode only)  
(*)  
0
1
Encoder not synchronized  
Encoder synchronized  
buf2_free Closed caption registers access condition for field 2  
(refer to Functional Description, Section IV.13)  
Closed caption data for field 2 is buffered before being output on the relevant TV line;  
buf2_free is reset if the buffer is temporarily unavailable. If the microcontroller can  
guaranteethat registers41 and 42 (cccf2) are never written more than once betweentwo  
frame reference signals, then bit ‘buf2_free’ will always be true (set). Otherwise, closed  
caption field2 registers access might be temporarilyforbidden by resetting bit ‘buf2_free’  
until the next field2 closed caption line occurs.  
Note that this bit is false (reset) when 2 pairs of data bytes are awaiting to be encoded,  
and is set back immediately after one of these pairs has been encoded (so at that  
time,encoding of the last pair of bytes is still pending)  
(*)  
(*)  
Reset value = 1 (access authorized)  
buf1_free Closed caption registers access condition for field 1  
Same as buf2_free but concerns field 1.  
Reset value = 1 (access authorized)  
fieldct[2:0] Digital field identification number  
000 Indicates field 1  
...  
111 Indicates field 8  
fieldct[0] also representsthe odd/even information (odd=’0’, even=’1’)  
jumping  
Indicates whether a frame length modification has been programmed at ‘1’ from  
programming of bit ‘jump’ to end of frame(s) concerned.  
Default = 0  
(*)  
Refer to register 6 and registers 21-22-23.  
35/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTERS_10_11_12- Increment_dfs: Increment for digital frequency synthesizer  
MSB  
LSB  
d16  
d8  
register_10  
register_11  
register_12  
d23  
d15  
d7  
d22  
d14  
d6  
d21  
d13  
d5  
d20  
d12  
d4  
d19  
d11  
d3  
d18  
d10  
d2  
d17  
d9  
d1  
d0  
These registers contain the 24-bit increment used by the DDFS if bit ‘selrst’ equals ‘1’ to generate the  
frequencyof thesubcarrieri.e. theaddressthat is suppliedtothe sineROM. It thereforeallowsto customize  
the subcarrier frequencysynthesized. Refer to Functional Description, Section IV.7.  
1 LSB ~ 1.6 Hz  
The procedure to validate usage of these registers instead of the hard-wired values is the following :  
- Load the registers with the required value  
- Set bit ‘selrst’ to 1 (Reg 2)  
- Perform a softwarereset (Reg 6)  
Notes : The values loaded in Reg10-11-12 are taken into account after a software reset, and ONLY IF bit  
‘selrst’=’1’ (Reg. 2)  
These registers are never reset and must be explicitly written into to contain sensible information.  
On hardware reset (=> ‘selrst’=0) or on soft reset with selrst=’0’, the DDFS is initalized with a  
hardwired increment, independent of Registers 10-12. These hardwired values being out of any  
user register these cannot be read out of the STV0118.  
These values are :  
Value  
Frequency Synthesized  
f = 3.5795452MHz  
f = 4.43361875MHz  
f = 3.5820558MHz  
f = 3.57561149MHz  
Ref.Clock  
27MHz  
27MHz  
27MHz  
27MHz  
d[23:0] : 21F07C hexa for NTSC M (*)  
d[23:0] : 2A098B hexa for PAL BGHIN  
d[23:0] : 21F694 hexa for PAL N  
d[23:0] : 21E6F0 hexa for PAL M  
‘NTSC-4.43can be obtained with d[23:0]value likefor PALBGHI but with standardfixed as NTSC.  
REGISTERS_13_14 - Phase_dfs : Static phase offset for digital frequencysynthesizer(10 bits only)  
MSB  
-
LSB  
o22  
o14  
register_13  
register_14  
-
-
-
-
-
o23  
o15  
o21  
o20  
o19  
o18  
o17  
o16  
Under certaincircumstances (detailed below), these registerscontain the 10 MSBsof the value with which  
the phase accumulator of the DDFS is initialized after a 0-to-1 transition of bit ‘rstosc’ (Reg 2), or after a  
standardchange, or when cyclic phase readjustment has been programmed(see bits valrst[1:0]of Reg 2).  
The 14 remaining LSBs loaded into the accumulator in these cases are all ‘0’s (this allows to define the  
phase reset value with a 0.35°accuracy).  
The procedure to validate usage of these registers instead of the hard-wired values is the following :  
- Load the registers with the required value  
- Set bit ‘selrst’ to 1 (Reg 2)  
- Perform a softwarereset (Reg 6)  
Notes : Registers 13-14 are never reset and must be explicitly written into to contain sensible information.  
If bit ‘selrst’=0 (e.g. after a hardware reset) the phase offset used to reinitialize the DDFS is the  
hard-wired value. The hard-wired values being out of any register, they cannot be read out of the  
STV0118.  
These are :  
- D9C000hexfor PAL BDGHI, N, M  
- 1FC000hexfor NTSC-M  
36/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_15 : Reserved  
REGISTER_16 : Reserved  
REGISTER_17 : chipID  
(read only) : STV0118 Identification Number  
0 1 1 1 0 1 1 0 (codes 118 in binary format)  
REGISTER_18 : revID  
(read only) : STV0118Revision Number  
0 0 0 0 0 0 0 1 (for first revision)  
REGISTER_19 : Reserved  
REGISTER_20 : Reserved  
REGISTERS_21_22_23: line_reg= ltarg[8:0] and lref[8:0]  
MSB  
LSB  
ltarg1  
lref2  
-
register_21  
register_22  
register_23  
ltarg8  
ltarg0  
lref1  
ltarg7  
lref8  
lref0  
ltarg6  
lref7  
-
ltarg5  
lref6  
-
ltarg4  
lref5  
-
ltarg3  
lref4  
-
ltarg2  
lref3  
-
These registers may be used to jump from a reference line (end of that line) to the beginning of a target  
line of the SAME FIELD.  
However, not all lines can be skipped or repeated with no problem and, if needed,this functionality has to  
BE USED WITH CAUTION.  
lref[8:0] contains in binary format the reference line from which a jump is required. ltarg[8:0] contains the  
target line binary number.  
Default values: lref[8:0] = 000000000and ltarg[8:0] = 000000001  
REGISTER_31-32-33- cgms_bit[1:20]: CGMS Data registers (20 bits only)  
MSB  
-
LSB  
b4  
register_31  
register_32  
register_33  
-
-
-
b1  
b9  
b2  
b3  
b5  
b6  
b7  
b8  
b10  
b18  
b11  
b19  
b12  
b20  
b13  
b14  
b15  
b16  
b17  
These registers are never reset.  
Word0A=> bit1....bit3  
Word0B => bit4....bit6  
Word1 => bit7....bit10  
Word2 => bit11....bit14  
CRC => bit15...bit20(not internally computed)  
Refer to Functional Description, Section IV.14  
37/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_34-35-36-37- ttx_block_[1:4]_def. : TeletextBlock Definition  
(Refer to Functional Description, Section IV.15)  
MSB  
LSB  
register_34 txbd1  
register_35 txbd2  
register_36 txbd3  
register_37 txbd4  
txbs1.3  
txbs2.3  
txbs3.3  
txbs4.3  
txbs1.2  
txbs2.2  
txbs3.2  
txbs4.2  
txbs1.1  
txbs2.1  
txbs3.1  
txbs4.1  
txbs1.0  
txbs2.0  
txbs3.0  
txbs4.0  
txbe1.3  
txbe2.3  
txbe3.3  
txbe4.3  
txbe1.2  
txbe2.2  
txbe3.2  
txbe4.2  
txbe1.1  
txbe2.1  
txbe3.1  
txbe4.1  
txbe1.0  
txbe2.0  
txbe3.0  
txbe4.0  
Theseare four TeletextBlockDefinitionregisters, usedin conjunctionwithReg38 (TeletextBlock Mapping).  
Each of these registers defines a start line (TXBSx[3:0]) and an end line (TXBEx[3:0]). [TXBSx = Teletext  
Block Start for block x, TXBEx = Teletext Block End for block x]  
When applying to field1:  
When applying to field2:  
(ITU-R601/625 line numbering)  
TXBSx[3:0]=0 codes line 7,  
...  
TXBSx[3:0]=i codes line 7+i,  
...  
TXBSx[3:0]=15dec(‘1111’bin) codes line 7+15=22  
TXBSx[3:0]=0 codes line 320,  
...  
TXBSx[3:0]=i codes line 320+i,  
...  
TXBSx[3:0]=15dec(‘1111’bin) codes line 320+15=335  
DEFAULT value: none, registers 34-37 are never reset.  
REGISTER_38 - ttx_block_map : Teletext Block Mapping  
MSB  
LSB  
register_38  
txmf1.1  
txmf1.2  
txmf1.3  
txmf1.4  
txmf2.1  
txmf2.2  
txmf2.3  
txmf2.4  
(txmf1 stands for ’Teletext Block Mapping to field1, txmf2 stands for ’Teletext Block Mapping to field2)  
This register allows to map the blocks of Teletext lines defined by registers 34 to 37 to either field1, field2  
or both :  
Its default value is “00000000”  
txmf1.N defines whether txbdN (Nth teletext block, see reg34-37 above) applies to field 1,  
txmf2.N defines whether txbdN (Nth teletext block, see reg34-37 above) applies to field 2.  
In other words, if txmf1.N=1 then Teletext will be encoded in field 1 from the line defined by txbsN.[3:0]  
(see above) to the line defined by txbeN.[3:0].  
Similarly, if txmf2.N=1 then Teletext will be encoded in field 2 from the line definedtxbsN.[3:0] (see above)  
to the line defined by txbeN.[3:0].  
38/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_39-40 - cccf1 : Closed caption characters/extendeddata for field 1  
First byte to encode in field1 :  
MSB  
LSB  
register_39  
opc11  
c117  
c116  
c115  
c114  
c113  
c112  
c122  
c111  
opc11  
Odd-parity bit of US-ASCII 7-bit character c11[7:1]  
Second byte to encode in field1:  
MSB  
LSB  
register_40  
opc12  
c127  
c126  
c125  
c124  
c123  
c121  
opc12  
Odd-parity bit of US-ASCII 7-bit character c12[7:1]  
Default value : none, but closed captions enabling without loading these registers will  
issue character NULL. Registers 39-40 are never reset.  
REGISTER_41-42 : cccf2 : Closed caption characters/extendeddata for field 2  
First byte to encode in filed2 :  
MSB  
LSB  
register_41  
opc21  
c217  
c216  
c215  
c214  
c213  
c223  
c212  
c211  
opc21  
Odd-parity bit of US-ASCII 7-bit character c21[7:1]  
Second byte to encode in field2 :  
MSB  
LSB  
register_42  
opc22  
c227  
c226  
c225  
c224  
c222  
c221  
opc22  
Odd-parity bit of US-ASCII 7-bit character c22[7:1]  
Default value : none but closed captions enabling without loading these registers will  
issue character NULL. Registers 41-42 are never reset.  
REGISTER_43 - cclif1 : Closed caption/extended data line insertion for field 1  
TV line number where closed caption/extendeddata is to be encoded in field 1 is programmable through  
the following register :  
MSB  
xxxx  
0
LSB  
l1_0  
1
register_43  
Default  
xxxx  
0
xxxx  
0
l1_4  
0
l1_3  
1
l1_2  
1
l1_1  
1
- 525/60 system : (525-SMPTE line number convention)  
Only lines 10 through 22 should be used for closed caption or extendeddata services (line 1 through 9  
contain the vertical sync pulses with equalizing pulses).  
l1[4:0] = 00000 no line selected for closed caption encoding  
l1[4:0] = 000xx do not use these codes  
...  
l1[4:0] = i code line (i+6) (SMPTE) selected for encoding  
...  
l1[4:0] = 11111 line 37 (SMPTE) selected  
- 625/50 system: (625-CCIR/ITU-R line number convention)  
Only lines 7 through 23 should be used for closed caption or extended data services.  
l1[4:0] = 00000 no line selected for closed caption encoding  
...  
l1[4:0] = i code line (i+6) (CCIR) selected for encoding (i > 0)  
...  
l1[4:0] = 11111 line 37 (CCIR) selected  
(*) Default value = 01111line 21 (525/60, 525-SMPTE line number convention).  
This value also corresponds to line 21 in 625/50 system,(625-CCIR line number convention).  
39/42  
STV0118  
VI - REGISTERS (continued)  
VI.2 - Register Contents and Description (continued)  
(*) = DEFAULT mode when NRESET pin is active (LOW level)  
REGISTER_44 - cclif2 : Closed caption/extended data line insertion for field 2  
TV line number where closed caption/extendeddata is to be encoded in field 2 is programmable through  
the following register :  
MSB  
xxxx  
0
LSB  
I2_0  
1
register_44  
Default  
xxxx  
0
xxxx  
0
I2_4  
0
I2_3  
1
I2_2  
1
I2_1  
1
- 525/60 system : (525-SMPTE line number convention)  
Only lines 273 through284 should be used for closed caption or extendeddata services (preceding lines  
contain the vertical sync pulses with equalizing pulses), although it is possible to program over a wider  
range.  
l2[4:0] = 00000 no line selected for closed caption encoding  
l2[4:0] = 000xx do not use these codes  
l2[4:0] = i line (269 +i) (SMPTE) selected for encoding  
...  
l2[4:0] = 01111 line 284 (SMPTE) selected for encoding  
l2[4:0] = 11111 line 300 (SMPTE)  
Note : if cgms is allowed on lines 20 and 283 (525/60, 525-SMPTE line number convention), closed  
captions should not be programmed on these lines.  
- 625/50 system : (625-CCIR line number convention)  
Only lines 319 through336 should be used for closed caption or extendeddata services (preceding lines  
contain the vertical sync pulses with equalizing pulses), although it is possible to program over a wider  
range.  
l2[4:0] = 00000 no line selected for closed caption encoding (i > 0)  
l2[4:0] = i line (318 +i) (CCIR) selected for encoding  
...  
l2[4:0] = 10010 line 336 (CCIR) selected for encoding  
l2[4:0] = 11111 line 349 (CCIR)  
(*) Default value = 01111line 284 (525/60, 525-SMPTE line number convention).  
This value also corresponds to line 333 in 625/50 system, (625-CCIR line number convention).  
REGISTERS_45 up to 63 :  
Reserved  
40/42  
STV0118  
VII - APPLICATION  
Figure 34 : Typical Application  
2 0  
7 5  
8 2 0  
2 . 2 k  
4 . 7 k  
4 . 7 k  
0 2 0  
T E L E T E X T  
I D A T C R 9 - B I T  
C H S W I T  
P L E X E R D E M U L T I  
D E C O D M E P R E G  
41/42  
STV0118  
VIII - PACKAGE MECHANICAL DATA  
28 PINS - PLASTICMICROPACKAGE (SO)  
Millimeters  
Dimensions  
Inches  
Typ.  
Min.  
Typ.  
Max.  
2.65  
0.2  
Min.  
Max.  
0.104  
0.0078  
0.019  
0.013  
A
a1  
b
0.1  
0.004  
0.014  
0.009  
0.35  
0.23  
0.49  
0.32  
b1  
C
c1  
D
E
0.5  
0.020  
45o (Typ.)  
17.7  
10  
18.1  
0.697  
0.394  
0.713  
0.419  
10.65  
e
1.27  
0.050  
0.65  
e3  
F
16.51  
7.4  
0.4  
7.6  
0.291  
0.016  
0.299  
0.050  
L
1.27  
S
8o (Max.)  
Information furnishedis believed to be accurate and reliable.However, SGS-THOMSON Microelectronics assumes no responsibility  
for the consequences of use of such information nor for any infringement of patentsor other rights of third parties which may result  
from itsuse. No licence is grantedby implication orotherwise underany patent or patent rights of SGS-THOMSON Microelectronics.  
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all  
information previouslysupplied. SGS-THOMSON Microelectronics products are not authorized for use as criticalcomponents in life  
support devices or systems without express written approval of SGS-THOMSON Microelectronics.  
1997 SGS-THOMSON Microelectronics - All Rights Reserved  
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to  
the I2C Standard Specifications as defined by Philips.  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
42/42  

相关型号:

STV0119

Color Encoder Circuit
ETC

STV0119A

PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER
STMICROELECTR

STV0180

Analog-to-Digital Converter, 8-Bit
ETC

STV0190

DUAL 40 MSPS 6-BIT ANALOG TO DIGITAL CONVERTER
STMICROELECTR

STV0196

QPSK/BPSK DEMODULATOR AND FEC IC
STMICROELECTR

STV0196B

QPSK/BPSK DEMODULATOR AND FEC IC
STMICROELECTR

STV0288

DVB-S and DIRECTV QPSK receiver with autoscan feature
STMICROELECTR

STV0288-NIM

DVB-S and DIRECTV QPSK receiver with autoscan feature
STMICROELECTR

STV0297E

QAM demodulator IC with A/D converter
STMICROELECTR

STV0297J

Universal digital cable demodulator
STMICROELECTR

STV0297J-TMM

Universal digital cable demodulator
STMICROELECTR

STV0297JT

Universal digital cable demodulator
STMICROELECTR