STW5098BBLR/LF [STMICROELECTRONICS]

Dual low power asynchronous stereo audio Codec with integrated power amplifiers; 双路低功耗异步立体声音频编解码器,集成功率放大器
STW5098BBLR/LF
型号: STW5098BBLR/LF
厂家: ST    ST
描述:

Dual low power asynchronous stereo audio Codec with integrated power amplifiers
双路低功耗异步立体声音频编解码器,集成功率放大器

解码器 编解码器 电信集成电路 电信电路 放大器 功率放大器 PC
文件: 总86页 (文件大小:946K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
34.80 7IRELESS  
IMPORTANT NOTICE  
Dear customer,  
nd  
As from August 2 2008, the wireless operations of STMicroelectronics have moved to a  
new company, ST-NXP Wireless.  
As a result, the following changes are applicable to the attached document.  
Company name - STMicroelectronics NV is replaced with ST-NXP Wireless.  
Copyright - the copyright notice at the bottom of the last page “© STMicroelectronics  
200x - All rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights  
reserved”.  
Web site - http://www.st.com is replaced with http://www.stnwireless.com  
Contact information - the list of sales offices is found at http://www.stnwireless.com  
under Contacts.  
If you have any questions related to the document, please contact our nearest sales office.  
Thank you for your cooperation and understanding.  
ST-NXP Wireless  
34.80 7IRELESS  
www.stnwireless.com  
STw5098  
Dual low power asynchronous stereo audio Codec  
with integrated power amplifiers  
Features  
Dual 20 bit audio resolution, 8kHz to 96kHz  
independent rate ADC and DAC  
Dual I2S or PCM digital interfaces for dual  
STw5098  
master  
Sustain complex voice and audio flow with or  
without mixing  
I2C/SPI compatible control I/F  
Asynchronous sampling ADC and DAC: they  
do not require oversampled clock and  
information on the audio data sampling  
frequency (fs). Jitter tolerant fs  
LFBGA 6x6x1.4 (112 pins)  
VFBGA 5x5x1 (112 pins)  
Wide master clock range: from 4MHz to 32MHz  
Stereo headphones drivers, handsfree  
Description  
loudspeaker driver, line out drivers  
Mixable analog line inputs  
STw5098 is a dual low power asynchronous  
stereo audio CODEC device with headphones  
amplifiers for high quality audio listening and  
recording.  
Voice filters: 8/16kHz with voice channel filters  
Automatic gain control for microphone and line-  
in inputs  
Two I2S/PCM digital interfaces are available, one  
per master for example Bluetooth and Application  
Processor, enabling concurrent audio and voice  
flow between Network and user.  
Frequency programmable clock outputs  
Multibit Σ∆ modulators with data weighted  
averaging ADC and DAC  
DSP functions for bass-treble-volume control,  
mute, mono/stereo selection, voice channel  
filters, de-emphasis filter and dynamic  
compression  
The STw5098 control registers are accessible  
through a selectable I2C-bus compatible or SPI  
compatible interface.  
93 dB dynamic range ADC, 0.001% THD with  
full scale output @ 2.7V  
95 dB dynamic range DAC, 0.02% THD  
performance @ 2.7V over 16load  
Applications  
Digital cellular telephones with application  
processor such as mp3 or gaming and  
Bluetooth concurrent application  
April 2007  
Rev 1  
1/85  
www.st.com  
1
Contents  
STw5098  
Contents  
1
2
3
4
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Device programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Clock generators and master mode function . . . . . . . . . . . . . . . . . . . . . . 20  
Audio digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.10 Analog output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.11 Analog mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.12 AD paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.13 DA paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.14 Analog-only operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.15 Automatic Gain Control (AGC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4.16 Interrupt request: IRQ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.17 Headset plug-in and push-button detection . . . . . . . . . . . . . . . . . . . . . . . 26  
4.18 Microphone biasing circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5
Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5.1  
5.2  
5.3  
5.4  
5.5  
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Supply and power control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
DSP control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Analog functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2/85  
STw5098  
Contents  
5.6  
5.7  
5.8  
5.9  
Digital audio interfaces master mode and clock generators . . . . . . . . . . . 41  
Digital audio interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Digital filters, software reset and master clock control . . . . . . . . . . . . . . . 45  
Interrupt control and control interface SPI out mode . . . . . . . . . . . . . . . . 46  
5.10 AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6
Control interface and master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.1  
6.2  
6.3  
Control interface I2C mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Control interface SPI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Master clock timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
7
8
9
Audio interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
9.1  
9.2  
9.3  
9.4  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Operative supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Typical power dissipation by entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
10  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.1 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.2 AMCK with sinusoid input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
10.3 Analog interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
10.4 Headset plug-in and push-button detector . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.5 Microphone bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.6 Power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
10.7 LS and EAR gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
11  
Analog input/output operative ranges . . . . . . . . . . . . . . . . . . . . . . . . . 66  
11.1 Analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
11.2 Microphone input levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
11.3 Line output levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
11.4 Power output levels HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
3/85  
Contents  
STw5098  
11.5 Power output levels LS and EAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . 71  
Stereo analog-only path specifications . . . . . . . . . . . . . . . . . . . . . . . . 72  
ADC (TX) & DAC (RX) specifications with voice filters selected . . . . . 73  
Typical performance plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
12  
13  
14  
15  
16  
17  
18  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
18.1 LFBGA 6x6x1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
18.2 VFBGA 5x5x1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
19  
20  
21  
Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4/85  
STw5098  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
STw5098 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Control register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
CR0 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
CR1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CR2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CR3 and CR4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
CR5 and CR6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
CR7 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
CR8 and CR9 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
CR10 and CR11 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
CR12 and CR13 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
CR14 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
CR15 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
CR16 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
CR17 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
CR18 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
CR19 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
CR21-20 and CR24-23 description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
CR22 and CR25 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
CR26 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CR27 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
CR28 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
CR29 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
CR30 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
CR31 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CR32 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
CR33 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CR 34 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
CR 35 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Control interface timing with I²C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Control interface signal timing with SPI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
AMCK timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Audio interface signal timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Operative supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Typical power dissipation, no master clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Typical power dissipation with master clock AMCK = 13 MHz . . . . . . . . . . . . . . . . . . . . . . 61  
Digital interfaces specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
AMCK with sinusoid input specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Analog interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Headset plug-in and push-button detector specifications. . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Microphone bias specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power supply rejection ratio specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
LS and EAR gain limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Reference full scale analog levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Microphone input levels, absolute levels at pins connected to preamplifiers . . . . . . . . . . . 66  
Microphone input levels, absolute levels at pins connected to the line-in amplifiers . . . . . 66  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
Table 48.  
5/85  
List of tables  
STw5098  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Absolute levels at OLP/OLN, ORP/ORN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Absolute levels at HPL - HPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Absolute levels at 1EARP-1EARN and 2LSP - 2LSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Stereo audio ADC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stereo audio DAC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
AD to DA mixing (sidetone) specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Stereo analog-only path specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
ADC (TX) & DAC (RX) specifications with voice filters selected. . . . . . . . . . . . . . . . . . . . . 73  
Dimensions of LFBGA 6x6x1.4 112 4R11x11. 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Dimensions of VFBGA 5x5x1.0 112 balls 0.4 mm pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6/85  
STw5098  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
STw5098 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power up block diagram: example shown for one entity . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Plug-in and push-button detection application note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Control interface I2C format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Control interface: I2C format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Control interface SPI format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Control interface: SPI format timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Audio interfaces formats: delayed, left and right justified . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Figure 10. Audio interfaces formats: DSP, SPI and PCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 11. Audio interface timings: master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 12. Audio interface timing: slave mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Figure 13. A.C. testing input-output waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 14. Bass treble control, de-emphasis filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 15. Dynamic compressor transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 16. ADC audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 17. ADC in band audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 18. DAC digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 19. DAC in band digital audio filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Figure 20. ADC 96 kHz audio path measured filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 21. ADC 96 kHz audio in-band measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 22. ADC voice TX path measured filter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 23. ADC voice TX path measured in-band filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 24. DAC voice (RX) digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 25. DAC voice (RX) in-band digital filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Figure 26. ADC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 27. ADC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 28. DAC path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 29. DAC S/N versus input-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 30. Analog path FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 31. Analog path S/N versus input-level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figure 32. LFBGA 6x6x1.4 112 4R11x11 0.5 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figure 33. VFBGA 5x5x1.0 112 0.4 drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Figure 34. STw5098 application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7/85  
Overview  
STw5098  
1
Overview  
Dual 20 bit audio resolution, 8kHz to 96kHz independent rate ADC and DAC  
Dual I2S/PCM digital interfaces for dual master  
Sustain complex voice and audio flow with or without mixing  
Two I2C/SPI compatible independent control interfaces  
Asynchronous sampling ADC and DAC that do not require oversampled clock and  
information on the audio data sampling frequency (fs). Jitter tolerant fs  
Wide master clock range from 4MHz to 32MHz  
Two stereo headphones drivers, hand free loudspeaker driver, line out drivers  
Mixable analog line inputs  
Voice filters: 8/16kHz with voice channel filters  
Automatic gain control for microphone and line-in inputs  
Four programmable master/slave serial audio data interfaces: I2S, SPI, PCM  
compatible and other formats  
Frequency programmable clock outputs  
Multibit Σ∆ modulators with data weighted averaging ADC and DAC  
Four DSP functions for bass-treble-volume control, mute, mono/stereo selection, voice  
channel filters, de-emphasis filter and dynamic compression  
93 dB dynamic range ADC, 0.001% THD with full scale with full scale output @ 2.7V  
95 dB dynamic range DAC, 0.02% THD performance @ 2.7V over 16load  
Analog inputs  
Selectable stereo differential or single-ended microphone amplifier inputs with 51dB  
range programmable gain  
2 microphone biasing output  
Microphone plug-in and push-button detection input  
Selectable stereo differential or single-ended line inputs with 38dB range  
programmable gain  
Analog output drivers  
2 Stereo headphones outputs. driving capability: 40mW (0.1% THD) over 16with  
40dB range programmable gain  
Common mode voltage headphones driver (phantom ground)  
1 Balanced loudspeaker output with driving capability up to 500mW (VCCLS>3.5V; 1%  
THD) over 8with 30dB range programmable gain  
1 Balanced earphone output with driving capability up to 125mW  
Transient suppression filter during power up and power down  
Balanced/unbalanced stereo line outputs with 1 kdriving capability  
8/85  
STw5098  
2
Pinout  
Pinout  
Figure 1.  
Pin assignment  
1
2
3
4
5
6
7
8
9
10  
11  
GND  
1SCLK  
1AD_OCK  
2SDA/SDIN  
1DA_OCK  
1AD_CK  
2AS/CSB  
2AD_DATA  
2AD_SYNC  
1DA_SYNC  
1DA_DATA  
A
B
C
D
E
F
G
H
J
2HDET  
VCCA  
2SCLK  
1HDET  
2AD_OCK  
VCCA  
1CMOD  
2CMOD  
VCC  
2DA_OCK  
1SDA/SDIN  
VCCIO  
2DA_CK  
2AD_CK  
1DA_CK  
AMCK  
VCC  
2DA_SYNC  
2DA_DATA  
2MBIAS  
GND  
1AD_DATA  
1AS/CSB  
1AD_SYNC  
2IRQ  
1MBIAS  
2AUX1R  
2MICRN  
2MICRP  
2AUX1L  
2AUX3L  
2CAPMIC  
1AUX1L  
1AUX3L  
1CAPMIC  
1MICLN  
1MICLP  
GNDA  
1IRQ  
VCCA  
1AUX1R  
2AUX3R  
1AUX3R  
2MICLN  
2MICLP  
2CAPLINEIN  
1CAPLINEIN  
1MICRN  
1MICRP  
1AUX2LN  
1AUX2LP  
1OLN  
2AUX2LN  
2AUX2LP  
1OLP  
1LINEINL  
2OLN  
2LINEINL  
GNDCM  
2HPL  
GNDA  
1HPR  
1AUX2RP  
2ORN  
1AUX2RN  
2LINEINR  
1ORN  
2AUX2RN  
2AUX2RP  
1LINEINR  
1EARPS  
1EARP  
VCCP  
2OLP  
1VCMHP  
1CAPEAR  
1EARN  
VCCLS  
2ORP  
GNDCM  
VCCP  
VCCP  
GNDP  
1HPL  
2VCMHPS  
2VCMHP  
VCCLS  
2LSPS  
GNDP  
2LSP  
GNDP  
1EARNS  
VCCLS  
2LSNS  
1ORP  
VCCP  
GNDP  
2HPR  
K
L
1VCMHPS  
2CAPLS  
2LSN  
9/85  
Pinout  
STw5098  
Table 1.  
STw5098 pin description  
Type Pin name  
GND  
Position  
Description  
Ground pin for the digital section  
A1  
A2  
A3  
P
DI  
DO  
1SCLK  
Control interface serial clock input  
1AD_OCK  
Oversampled clock out from AD clock generator  
Control interface serial data input-output in I2C mode (SDA), control  
interface serial data input in SPI mode (SDIN).  
A4  
DIOD  
2SDA/SDIN  
A5  
A6  
DO  
1DA_OCK  
1AD_CK  
Oversampled clock out from DA clock generator  
DIO  
Serial data clock for stereo A/D converter  
Control interface address select in I2C mode (AS).  
Interface enable signal in SPI mode (CSB).  
A7  
DI  
2AS/CSB  
A8  
DO  
DIO  
DIO  
DI  
2AD_DATA  
2AD_SYNC  
1DA_SYNC  
1DA_DATA  
Serial data out for stereo A/D converter  
Frame sync for stereo A/D converter  
Frame sync for stereo D/A converter  
Serial data In for stereo D/A converter  
A9  
A10  
A11  
Headset detection input  
(microphone plug-in and push-button detection)  
B1  
AI  
2HDET  
B2  
B3  
B4  
B5  
B6  
DI  
2SCLK  
Control interface serial clock input  
DO  
DI  
2AD_OCK  
1CMOD  
Oversampled clock out from AD clock generator  
Control interface type selector I2C-bus mode or SPI mode  
Oversampled clock out from DA clock generator  
Serial data clock for stereo D/A converter  
DO  
DIO  
2DA_OCK  
2DA_CK  
Master clock input. Accepted range 4 MHz to 32 MHz.  
AMCK is a digital square wave  
B7  
B8  
DI  
AI  
AMCK  
VCC  
AMCK is an analog sinewave (Section 10.2 on page 62)  
Power supply pin for the digital section.  
Operating range: from 1.71 V to 2.7 V  
P
B9  
DIO  
DI  
2DA_SYNC  
2DA_DATA  
GND  
Frame sync for stereo D/A converter  
Serial data in for stereo D/A converter  
Ground pin for the digital section  
B10  
B11  
P
Power supply pin for the analog section.  
Standard operating range: from 2.7V to 3.3V  
Low voltage (LV) range: from 2.4V to 2.7V  
C1  
C2  
P
VCCA  
Headset detection input  
(microphone plug-in and push-button detection)  
AI  
1HDET  
Power supply pin for the analog section.  
Standard operating range: from 2.7V to 3.3V  
Low voltage (LV) range: from 2.4V to 2.7V  
C3  
C4  
P
VCCA  
DI  
2CMOD  
Control interface type selector I2C-bus mode or SPI mode.  
10/85  
STw5098  
Pinout  
Table 1.  
Position  
STw5098 pin description  
Type  
Pin name  
Description  
Control interface serial data input-output in I2C mode (SDA). Control  
interface serial data input in SPI mode (SDIN).  
C5  
DIOD  
1SDA/SDIN  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
DIO  
DO  
DIO  
DO  
AO  
AO  
AI  
2AD_CK  
1AD_DATA  
1AD_SYNC  
2IRQ  
Serial data clock for stereo A/D converter  
Serial data out for stereo A/D converter  
Frame sync for stereo A/D converter  
Programmable interrupt output. Active low signal.  
Microphone biasing pin. Fixed voltage reference  
Microphone biasing pin. Fixed voltage reference  
Left and right channel single ended pins for microphone or line input  
Left and right channel single ended pins for microphone or line input  
Left and right channel differential pins for microphone input  
2MBIAS  
1MBIAS  
2AUX1L  
1AUX1L  
1MICLN  
AI  
AI  
Power supply pin for the digital section.  
Operating range: from 1.71V to 2.7V  
D4  
P
VCC  
Power supply pin for the digital I O buffers.  
Operating ranges: from 1.2V to 1.8V and from 1.71V to VCC  
D5  
D6  
D7  
D8  
P
VCCIO  
1DA_CK  
1AS/CSB  
1IRQ  
DIO  
DI  
Serial data clock for stereo D/A converter  
Control interface address select in I2C mode (AS)  
Interface enable signal in SPI mode (CSB)  
DO  
Programmable interrupt output. Active low signal.  
Power supply pin for the analog section.  
Standard operating range: from 2.7V to 3.3V  
Low voltage (LV) range: from 2.4V to 2.7V  
D9  
P
VCCA  
D10  
D11  
E1  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
P
1AUX1R  
2AUX1R  
2AUX3L  
1AUX3L  
1MICLP  
2MICLN  
2CAPLINEIN  
1MICRN  
2AUX3R  
2MICRN  
2CAPMIC  
1CAPMIC  
GNDA  
Left and right channel single ended pins for microphone or line input  
Left and right channel single ended pins for microphone or line input  
Left and right channel single ended pins for microphone or line input  
Left and right channel single ended pins for microphone or line input  
Left and right channel differential pins for microphone input  
Left and right channel differential pins for microphone input  
A capacitor must be connected between CAPLINEIN and ground  
Left and right channel differential pins for microphone input  
Left and right channel single ended pins for microphone or line input  
Left and right channel differential pins for microphone input  
A capacitor must be connected between CAPMIC and ground.  
A capacitor must be connected between CAPMIC and ground  
Ground pin for the analog section  
E2  
E3  
E4  
E8  
E9  
E10  
E11  
F1  
F2  
F3  
F4  
AI  
2MICLP  
Left and right channel differential pins for microphone input  
11/85  
Pinout  
STw5098  
Table 1.  
STw5098 pin description  
Position  
Type  
Pin name  
Description  
F8  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
AI  
P
1CAPLINEIN  
1MICRP  
A capacitor must be connected between CAPLINEIN and ground  
Left and right channel differential pins for microphone input  
Left and right channel single ended pins for microphone or line input  
Left and right channel differential pins for microphone input  
Left and right channel differential pins for microphone or line input  
Left and right channel differential pins for microphone or line input  
Left and right channel single ended pins for line input  
F9  
F10  
F11  
G1  
G2  
G3  
G4  
G8  
G9  
G10  
G11  
H1  
1AUX3R  
2MICRP  
1AUX2LN  
2AUX2LN  
1LINEINL  
2LINEINL  
GNDA  
Left and right channel single ended pins for line input  
Ground pin for the analog section  
AI  
AI  
AI  
AI  
AI  
1AUX2RP  
1AUX2RN  
2AUX2RN  
1AUX2LP  
2AUX2LP  
Left and right channel differential pins for microphone or line input.  
Left and right channel differential pins for microphone or line input  
Left and right channel differential pins for microphone or line input  
Left and right channel differential pins for microphone or line input  
Left and right channel differential pins for microphone or line input  
H2  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
H3  
H4  
H5  
AO  
P
2OLN  
Ground pin for analog reference.  
GNDCM  
1EARPS  
GNDCM can be connected to GNDA  
EARPS, EARNS (sense) pins must be connected on the application  
board to EARP, EARN pins respectively. The connection must be as  
close as possible to the pins.  
AO  
Analog differential loudspeaker amplifier output for left channel or  
right channel or the sum of both. This output can drive 50nF (with  
series resistor) or directly an earpiece transductor from 8. to 32.  
Can deliver from 500mW to 125mW.  
H6  
AO  
1EARP  
Power supply pin for the left and right output drivers (headphones  
and line-out). Operating range: from VCCA to 3.3V  
H7  
H8  
P
VCCP  
1HPR  
Audio single ended headphones amplifier outputs for left and right  
channels. The outputs can drive 50nF (with series resistor) or  
directly an earpiece transductor of 16.  
AO  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
H9  
AO  
2ORN  
H10  
H11  
AI  
AI  
2LINEINR  
2AUX2RP  
Left and right channel single ended pins for line input  
Left and right channel differential pins for microphone or line input  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
J1  
AO  
1OLN  
12/85  
STw5098  
Pinout  
Table 1.  
Position  
STw5098 pin description  
Type Pin name  
Description  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
J2  
J3  
J4  
AO  
AO  
AO  
1OLP  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
2OLP  
2HPL  
Audio single ended headphones amplifier outputs for left and right  
channels. The outputs can drive 50nF (with series resistor) or  
directly an earpiece transductor of 16.  
Common mode voltage headphones output. The negative pins of  
headphones left and right speakers can be connected to this pin to  
avoid decoupling capacitors.  
J5  
J6  
AO  
AI  
1VCMHP  
1CAPEAR  
A capacitor can be connected between this node and ground  
Analog differential loudspeaker amplifier output for Left channel or  
Right channel or the sum of both. This output can drive 50nF (with  
series resistor) or directly an earpiece transductor from 8to 32.;  
It can deliver from 500mW to 125mW.  
J7  
AO  
1EARN  
Power supply pin for the mono differential output driver. Operating  
range: from VCCA to 5.5V  
J8  
J9  
P
VCCLS  
2ORP  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
AO  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
J10  
AO  
1ORN  
J11  
K1  
AI  
P
1LINEINR  
GNDCM  
Left and right channel single ended pins for line input  
Ground pin for analog reference.  
GNDCM can be connected to GNDA  
Power supply pins for the left and right output drivers (headphones  
and line-out).  
K2  
K3  
K4  
P
VCCP  
Operating range: from VCCA to 3.3V  
Audio single ended headphones amplifier outputs for left and right  
channels. The outputs can drive 50nF (with series resistor) or  
directly an earpiece transductor of 16.  
AO  
AO  
1HPL  
VCMHPS (sense) pin must be connected on the application board to  
VCMHP pin. The connection must be as close as possible to the  
pins.  
2VCMHPS  
Power supply pin for the mono differential output driver. Operating  
range: from VCCA to 5.5V  
K5  
K6  
K7  
P
P
P
VCCLS  
GNDP  
GNDP  
Ground pin for the left, right and mono-differential output drivers.  
GNDP and GNDA must be connected together.  
Ground pin for the left, right and mono-differential output drivers.  
GNDP and GNDA must be connected together.  
13/85  
Pinout  
STw5098  
Table 1.  
STw5098 pin description  
Type Pin name  
Position  
Description  
EARPS, EARNS (sense) pins must be connected on the application  
board to EARP, EARN pins respectively. The connection must be as  
close as possible to the pins.  
K8  
AO  
P
1EARNS  
Power supply pins for the mono differential output driver. Operating  
range: from VCCA to 5.5V  
K9  
VCCLS  
1ORP  
GNDP  
Audio differential line out amplifier for left and right channels. This  
outputs can drive up to 1kresistive load. Can be used as single  
ended output.  
K10  
K11  
AO  
P
Ground pin for the left, right and mono-differential output drivers.  
GNDP and GNDA must be connected together.  
Power supply pin for the left and right output drivers (headphones  
and line-out).  
L1  
L2  
L3  
P
VCCP  
Operating range: from VCCA to 3.3V  
Ground pin for the left, right and mono-differential output drivers.  
GNDP and GNDA must be connected together.  
P
GNDP  
VCMHPS (sense) pin must be connected on the application board to  
VCMHP pin. The connection must be as close as possible to the  
pins.  
AO  
1VCMHPS  
Common mode voltage headphones output. The negative pins of  
headphones left and right speakers can be connected to this pin to  
avoid decoupling capacitors.  
L4  
L5  
AO  
AO  
2VCMHP  
2LSPS  
LSPS, LSNS (sense) pins must be connected on the application  
board to LSP, LSN pins respectively. The connection must be as  
close as possible to the pins.  
Analog differential loudspeaker amplifier output for Left channel or  
Right channel or the sum of both. This output can drive 50nF (with  
series resistor) or directly an earpiece transductor of 8.; It can  
deliver up to 500mW.  
L6  
L7  
L8  
AO  
AI  
2LSP  
2CAPLS  
2LSN  
A capacitor can be connected between this node and ground  
Analog differential loudspeaker amplifier output for Left channel or  
Right channel or the sum of both. This output can drive 50nF (with  
series resistor) or directly an earpiece transductor of 8. Can deliver  
up to 500mW.  
AO  
LSPS, LSNS (sense) pins must be connected on the application  
board to LSP, LSN pins respectively. The connection must be as  
close as possible to the pins.  
L9  
AO  
P
2LSNS  
VCCP  
2HPR  
Power supply pin for the left and right output drivers (headphones  
and line-out). Operating range: from VCCA to 3.3V  
L10  
L11  
Audio single ended headphones amplifier outputs for left and right  
channels. The outputs can drive 50nF (with series resistor) or  
directly an earpiece transductor of 16.  
AO  
14/85  
STw5098  
Pinout  
Type definitions  
AI  
-
-
-
-
-
-
-
-
Analog input  
AO  
AIO  
DI  
Analog output  
Analog input output  
Digital input  
DO  
DIO  
DIOD  
P
Digital output  
Digital input output  
Digital input output open drain  
Power supply or ground  
15/85  
Block diagram  
STw5098  
3
Block diagram  
Figure 2.  
STw5098 block diagram  
MIXMIC2  
MIXLIN2  
ADLIN2  
ADMIC2  
1 N I L A D  
1 C I M A D  
1 N I L X M I  
1 C I M X M I  
16/85  
STw5098  
Functional description  
4
Functional description  
4.1  
Naming convention  
The STw5098 is composed of two identical entities, with their respective set of control  
registers.  
Regarding the pin labelling, a pin name preceded by 1 refers to entity 1 and a pin name  
preceded by 2 refers to entity 2 (ie.g. 1SCLK, 2SCLK). In the following sections, no  
distinction is made between the two entities when it is not relevant. Consequently, the 1 and  
2 prefixes for entities 1 and 2 respectively are omitted. The same naming convention applies  
to the control registers (CRxxx).  
4.2  
Power supply  
STw5098 can have different supply voltages for different blocks, to optimize performance,  
power consumption and connectivity. See Section 9.2 on page 59 for voltage definition.  
The correct sequence to apply supply voltage is to set first (and unset last) the digital I/O  
supply (VCCIO). The other supply voltages can be set in any order and can be disconnected  
individually, if needed. Disconnection does not cause any harm to the device and no extra  
current is pulled from any supply during this operation. Moreover if a voltage conflict is  
detected, like VCCA < VCC (not allowed), simply all blocks connected to VCCA are set to  
power down and no extra current is pulled from supply.  
When VCCIO is set and VCC (digital supply) is not set, all the digital output pins are in high  
impedance state, while the digital inputs are disconnected to avoid power consumption for  
any input voltage value between GND and VCCIO. Before VCC is disconnected the device  
has to be reset (SWRES bit in CR30).  
When the analog supply (VCCA) is set and VCC is not set, all the analog inputs are in high  
impedance state.  
The two sets of control registers are powered by VCC pins (digital supply) so if these pins  
are disconnected all the information stored in control registers is lost. When the digital  
supply voltage is set, a power-on-reset (POR) circuit sets all the registers content to the  
default value and then generates IRQ signals writing 1 in bits PORMSK end POREV in  
CR31 and CR32 respectively for both entities.  
All supplies must be on during operation.  
17/85  
Functional description  
STw5098  
4.3  
Device programming  
STw5098 can be programmed by writing Control Registers with SPI or I2C compatible  
control interface (both slave). The interface is always active, there is no need to have the  
master clock running to program the device registers. The control interfaces of each entity  
can be operated independently either in SPI or I2C modes.  
The choice between the two interfaces for each entity is done via their input pins 1CMOD  
and 2CMOD (CMOD):  
1. CMOD connected to GND: I2C compatible mode selected  
The device address is selected with AS pin:  
AS/CSB connected to GND:  
AS/CSB connected to VCCIO  
chip address 00110101(35hex) for reading, 00110100 (34hex) for writing  
chip address 00110111(37hex) for reading, 00110110 (36hex) for writing  
:
When this mode is selected control registers are accessed through pins:  
SCLK (clock)  
SDA (serial data out/in, open drain)  
2. CMOD connected to VCCIO: SPI compatible mode selected  
When this mode is selected control registers are accessed through:  
AS/CSB (chip select, active low)  
SCLK (clock)  
SDIN (serial data in)  
AD_OCK or DA_OCK or IRQ (serial data out, if selected)  
Device Programming: I2C. The I2C Control Interface timing is shown in Section 6.1 on  
page 50. The interface has an internal counter that keeps the current address of the control  
register to be read or written. At each write access of the interface the address counter is  
loaded with the data of the register address field. The value in the address counter is  
increased after each data byte read or write. It is possible to access the interface in 2  
modes: single-byte mode in which the address and data of a single register are specified,  
and multi-byte mode in which the address of the first register to be written or read is  
specified and all the following bytes exchanged are the data of successive registers starting  
from the one specified (in multi-byte mode the internal address counter restart from register  
0 after the last register 36). Using the multi-byte mode it is possible to write or read all the  
registers with a single access to the device on the I2C bus. This applies to both entities of  
the device.  
Device Programming: SPI. The SPI Control Interface timing is shown in section  
Section 6.2 on page 51. Bits SPIOSEL (SPI Output Select) in CR33 control the out pin  
selection for serial data out (none, AD_OCK, DA_OCK or IRQ), while bit SPIOHIZ=1 in  
CR33 selects the high impedance state of serial data out pin when idle. The first bit sent on  
SDIN, after AS/CSB falling edge, sets the interface for writing (SDIN=1) or reading  
(SDIN=0), then a 7-bit Control Register address follows.  
If the interface is set for writing then the last 8 bits on SDIN are written in the control register.  
If the interface is set for reading then after the 7 bit address STw5098 sends out 8 bits data  
on the pin selected with bits SPIOSEL in CR33, while bits present at SDIN pin are ignored.  
If SPIOSEL=00 (no out pin selected) the reading access on SPI interface can still be useful  
to clear the IRQ event bits in CR32.  
18/85  
STw5098  
Functional description  
4.4  
Power up  
STw5098 internal blocks can individually be switched on and off according to the user  
needs. A general power-up bit is present at bit 7 of CR0. The output drivers should always  
be powered up after the general power up. See the following drawing to select the needed  
block for the desired function. A fast-settling function is activated to quickly charge external  
capacitors when the device is switched on (CAPLS, CAPLINEIN and CAPMIC).  
Figure 3.  
Power up block diagram: example shown for one entity  
POWERUP  
ENANA  
ENHSD  
MBIAS  
ENMICL  
ENMICR  
ENLINL  
ENLINR  
ENADCL  
ENADCR  
STw5098  
ENADCKGEN  
ADMAST ENADOCK  
ENLOL  
ENHPL  
AUDIO I/F  
DAMAST ENDAOCK  
ENMIXL  
ENMIXL  
ENLS  
ENDACL  
ENDACR  
ENDACKGEN  
ENPLL  
ENHPR  
ENLOR  
ENAMCK  
ENOSC  
ENOSC=0  
ENOSC=1  
ENHPVCM  
4.5  
Master clock  
Master clock is applied to both entities. The master clock pin (AMCK) accepts any frequency  
from 4 MHz to 32 MHz. The 4-32 MHz range is divided in sub-ranges that have to be  
programmed in bits CKRANGE in CR30. The jitter and spectral properties of this clock have  
a direct impact on the DAC and ADC performance because it is used to directly or by integer  
division drive the continuous-time to sampled-time interfaces.  
19/85  
Functional description  
STw5098  
Note that AMCK clock does not need to have any relation to any other digital or analog input  
or output.  
AMCK can be either a square wave or a sinewave, bit AMCKSIN in CR30 selects the proper  
input mode. When a sinewave is used as input, AMCK pin must be decoupled with a  
capacitor. Specification for sinusoid input can be found in Section 10.2 on page 62.  
The AMCK clock is not needed when only analog functions are used. For this purpose an  
internal oscillator with no external components can be used to operate the device (see  
Section 4.14 on page 25).  
4.6  
Data rates  
STw5098 supports any data rate in 2 ranges: 8 kHz to 48 kHz and 88 kHz to 96 kHz. The  
range is selected with bits DA96K and AD96K in CR29 for AD and DA paths respectively.  
Note:  
When AD96K=1 it is required to have DA96K=1.  
The rates are fully independent in A/D and D/A paths. Moreover the rates do not have to be  
specified to the device and they can change on the fly, within one range, while data is  
flowing.  
The 2 audio data interfaces (for A/D and D/A) can independently operate in master or slave  
modes.  
4.7  
Clock generators and master mode function  
STw5098 provides 4 internal clock generators that can drive, if needed, the audio interfaces  
(master mode), and/or two independent master clocks.  
The AMCK clock input frequency is internally raised via a PLL on each entity to obtain a  
clock (MCK) in the range 32 MHz to 48 MHz. The ratio MCK/AMCK is defined in CR30 (see  
MCKCOEFF in Section 4.7 on page 20).  
MCK is used to obtain, by fractional division, the oversampled clock (OCK), word clock  
(SYNC) and bit clock (CK), that will therefore have edges aligned with MCK (the OCK period  
can have jitter of 1 MCK period).  
The frequency of OCK, SYNC and CK is set with DAOCKF in CR21/20 for DA interface, and  
ADOCKF in CR24/23 for AD interface.  
The ratio between OCK and SYNC clocks is selected with bit DAOCK512 in CR22 for DA  
interface and bit ADOCK512 in CR25 for AD interface. The ratio between CK and SYNC  
clocks depends on the selected interface format (see Audio digital interfaces paragraph  
below). Note that SPI format can only be slave.  
The ADOCK and DAOCK output clocks are activated by bits ENADOCK and ENDAOCK  
respectively, while master mode generation is activated with two bits: first ADMAST  
(DAMAST) sets ADSYNC and ADCK (DASYNC and DACK) pins as outputs, then  
ADMASTGEN (DAMASTGEN) generates the SYNC and CK clocks. The logical value at  
SYNC and CK pins before data generation depends on the interface selected format.  
See description of CR20 to CR25 for further details.  
20/85  
STw5098  
Functional description  
4.8  
Audio digital interfaces  
Four separate audio data interfaces are provided for AD and DA paths to have maximum  
flexibility in communicating with other devices. The 4 interfaces can have different rates and  
can work in different formats and modes (i.e an AD interface can be 8 kHz PCM slave while  
a DA is 44.1 kHz I2S master).  
The pins used by the interfaces are:  
AD_SYNC, AD_CK and AD_DATA for AD paths word clock, bit clock and data, respectively,  
and  
DA_SYNC, DA_CK and DA_DATA for DA paths word clock, bit clock and data, respectively.  
Data is exchanged with MSB first and left channel data first in all formats. Data word-length  
is selected with bits DAWL in CR26 and ADWL in CR27. AD_DATA pin, outside the selected  
time slot, is in the impedance condition selected by bit ADHIZ in CR28 in all data formats  
except right aligned format.  
In the following paragraphs SYNC, CK and DATA will be used when the distinction between  
AD and DA is not relevant. When Master Mode is selected (bits DAMAST and ADMAST in  
CR22 and CR25 respectively) the SYNC and CK clocks are generated internally. In addition,  
an oversampled clock can be generated for each interface (AD_OCK and DA_OCK). The  
clock is available in Slave Mode also, if needed.  
The AD and DA interfaces can also be used as a single bidirectional interface when they are  
configured with the same format (Delayed, DSP, etc.) and AD_SYNC is connected to  
DA_SYNC and DA_CK to AD_CK. Master Mode is still available selecting ADMAST or  
DAMAST (not both).  
The interfaces features are controlled with control registers CR26, CR27 and CR28.  
Supported operating formats:  
Delayed format (I2S compatible) (DAFORM or ADFORM =000): the Audio Interface is  
I2S compatible (Figure 9 on page 54). The number of CK periods within one SYNC  
period is not relevant, as long as enough CK periods are used to transfer the data and  
the maximum frequency limit specified for bit clock is not exceeded. CK can be either a  
continuous clock or a sequence of bursts. In master mode there are 32 CK periods per  
SYNC period (that means 16 CK periods per channel) when the word length is 16 bit,  
while there are 64 CK periods per SYNC period (or 32 CK periods per channel) when  
word length is 18bit or higher. Bits ADSYNCP, DASYNCP and ADCKP, DACKP affect  
the interface format inverting the polarity of SYNC and CK pins respectively.  
Left aligned format (DAFORM or ADFORM =001): this format is equivalent to delayed  
format without the 1 bit clock delay at the beginning of each frame (Figure 9 on  
page 54).  
Right aligned format (DAFORM or ADFORM =010): this format is equivalent to  
delayed format, except that the audio data is right aligned and that the number of CK  
periods is fixed to 64 for each SYNC period (Figure 9 on page 54).  
DSP format (DAFORM or ADFORM =011) in this format the audio interface starting  
from a frame sync pulse on SYNC receives (DA) or sends (AD) the left and right data  
one after the other (Figure 10 on page 55). The number of CK periods within one  
SYNC period is not relevant, as long as enough CK periods are used to transfer the  
data and the maximum frequency limit specified for bit clock is not exceeded. CK can  
be either a continuous clock or a sequence of bursts. In Master Mode there are 32 CK  
periods per SYNC period when the word length is 16 bit, while there are 64 CK periods  
per SYNC period when word length is 18bit or higher. Bit CKP (ADCKP and DACKP)  
21/85  
Functional description  
STw5098  
affects the interface format inverting the polarity of CK pin. Bit SYNCP (ADSYNCP and  
DASYNCP) switches between delayed (SYNCP=0) and non delayed (SYNCP=1)  
formats.  
DSP format is suited to interface with a multi-channel serial port.  
SPI format (DAFORM or ADFORM =100) in this format left and right data is received  
with separate data burst. Every burst is identified with a low level on SYNC signal  
(Figure 10 on page 55). There is no timing difference between the left and right data  
burst: the two channels are identified by the startup order: the first burst after AD path  
or DA path power-up identifies the left channel data, the second one is the Right  
channel data, then left and right data repeat one after the other. CK must have 16  
periods per channel in case of 16 bit data word and 32 periods per channel in case of  
18 bit to 32 bit data word.  
The SPI interface can be configured as a single-channel (mono) interface with bit SPIM  
(ADSPIM and DASPIM). The mono interface always exchanges the left channel  
sample.  
SPI-format can only be slave: if Master Mode is selected the CK and SYNC pins are set  
to 0. Bit CKP (ADCKP and DACKP) affects the interface format inverting the polarity of  
CK pin.  
PCM format (DAFORM or ADFORM =111): this format is monophonic, as it can only  
receive (DA) and transmit (AD) single channel data (Figure 10 on page 55). It is mainly  
used when voice filters are selected. If audio filters are used then the same sample is  
sent from DA-PCM interface to both channel of DA path, and the left channel sample  
from AD path is sent to AD-PCM interface. If in the AD path the right channel has to be  
sent to the PCM interface then the following must be set: ADRTOL=1 (CR27) and  
ENADCR=0 (CR1). In Master Mode the number of CK periods per SYNC period is  
between 16 and 512 (see DAPCMF in CR22 and ADPCMF in CR25 Section 4.7 on  
page 20 for details). Bit CKP (ADCKP and DACKP) affects the interface format  
inverting the polarity of CK pin. Bit SYNCP (ADSYNCP and DASYNCP) switches  
between delayed (SYNCP=0) and non delayed (SYNCP=1) formats.  
4.9  
Analog inputs  
Each entity of the STw5098 has a stereo Microphone preamplifier and a stereo Line In  
amplifier, with inputs selectable among 5: MIC (for Microphone preamplifiers only), LINEIN  
(for Line In amplifiers only) and 3 different AUX inputs (for Microphone and Line In  
amplifiers). The AUX inputs can be used simultaneously for Line In amplifiers and  
Microphone preamplifiers.  
The following description is for one entity, it is similar for the other entity.  
Microphone preamplifier: it has a very low noise input, specifically designed for low  
amplitude signals. For this reason the preamplifier has a high input gain (up to 39 dB)  
keeping a constant 50 kinput impedance for the whole gain range. However it can  
also be used as line in preamplifier because it can accept a high dynamic input signal  
(up to 4 Vpp). There are two separate gain and attenuation stages in order to improve  
the S/N ratio when the preamplifier output range is below full scale (volume  
control).The gain and attenuation controls are separate for left and right channel (CR3  
and CR4 respectively). The Preamplifier input is selected with bits MICSEL in CR18,  
and it is disconnected when MICMUTE=1. If a single ended input is selected then the  
preamplifier uses the selected pin as the positive input and connects the negative input  
(for both left and right channels) to CAPMIC pin, which has to be connected through a  
capacitor to a low noise ground (typically the same reference ground of the input).  
22/85  
STw5098  
Functional description  
Each stereo Microphone preamplifier is powered up with bits ENMICL and ENMICR in  
CR1.  
Line In amplifier: each line in amplifier is designed for high level input signal. The input  
gain is in the range -20 dB up to 18 dB. The Line In amplifier input is selected with bits  
LINSEL in CR18, and it is disconnected when LINMUTE=1. If a single ended input is  
selected then the amplifier uses the selected pin as the positive input and connects the  
negative input (for both left and right channels) to CAPLINEIN pin, which has to be  
connected through a capacitor to a low noise ground (typically the same reference  
ground of the input).  
The stereo Line In amplifier is powered up with bits ENLINL and ENLINR in CR1.  
4.10  
Analog output drivers  
Each entity of the STw5098 provides 3 different analog signal outputs and 1 common mode  
reference output. The description here below is for one entity. VCCP and VCCL are common  
for both entities.  
Line out drivers: it is a stereo differential output, it can be used as single-ended output  
just by using the positive or negative pin. It can drive 1 kresistive load. The load can  
be connected between the positive and negative pins or between one pin and ground  
through a decoupling capacitor. The output gain is regulated with LOG bits in CR7, in  
the range 0 to -18 dB, simultaneously for left and right channels. When used as a single  
ended output the effective gain is 6 dB lower. It is muted with bit MUTELO in CR19. The  
input signal of this stereo output can come from the analog mixer or directly from MIC  
preamplifiers. The output Common Mode Voltage level is controlled with bits VCML in  
CR19. The supply voltage of line out drivers is VCCP  
.
The line out drivers are powered up with bits ENLOL and ENLOR in CR1. The output  
pins are in high impedance state with a 180kpull-down resistor when the line out  
drivers are powered down.  
Headphones drivers: it is a stereo single ended output. It can drive 16 ohm resistive  
load and deliver up to 40 mW. The output gain is regulated with HPLG and HPRG bits  
in CR8 and CR9 respectively, with a range of -40 to 6 dB. It is muted with bit MUTEHP  
in CR19. The input signal of this stereo output comes from the analog mixer.The output  
common mode voltage is controlled with bits VCML in CR19. The supply voltage of  
headphones drivers is VCCP  
.
The headphones drivers are powered up with bits ENHPL and ENHPR in CR2.The  
output pins are in high impedance state when the headphones drivers are powered  
down.  
Common mode voltage driver: it is a single ended output with output voltage value  
selectable with bits VCML in CR19, from 1.2 V to 1.65 V in steps of 150 mV. The output  
voltage should be set to the value closest to VCCP/2 to optimize output drivers  
performance. The common mode voltage driver is designed to be connected to the  
common pin of stereo headphones, so that decoupling capacitors are not needed at  
HPL and HPR outputs. The supply voltage of the common mode voltage driver is  
VCCP  
.
The common mode voltage driver is powered up with bit ENHPVCM in CR2.The output  
pin is in high impedance state when the common mode voltage driver is powered down.  
23/85  
Functional description  
STw5098  
Loudspeaker driver (one entity only): it is a monophonic differential output. It can  
drive 8 resistive load and deliver up to 500 mW to the load. The output gain is  
regulated with LSG bits in CR7, in the range -24 to +6 dB. The input signal of the  
loudspeaker driver comes from the analog mixers: bits LSSEL in CR29 select left  
channel, right channel, (L+R)/2 (mono) or mute. The output common mode voltage is  
obtained with an internal voltage divider from VCCLS and it is connected to CAPLS pin.  
The supply voltage of the loudspeaker driver is VCCLS  
.
The loudspeaker driver is powered up with bit ENLS in CR2.The output pin is in high  
impedance state when the loudspeaker driver is powered down.  
Note:  
1
Together with the LS driver, only a second power output is allowed among:  
Ear (1EARP - 1EARN)  
Headphones 1 (1HPL and 1HPR)  
Headphones 2 (2HPL and 2HPR)  
Earphone driver (one entity only): it is a monophonic differential output. It can drive  
32 resistive load and deliver up to 125 mW to the load. The output gain is regulated  
with EARG bits in CR7, in the range -24 to +6 dB. The input signal of the loudspeaker  
driver comes from the analog mixers: bits EARSEL in CR29 select left channel, right  
channel, (L+R)/2 (mono) or mute. The output Common Mode Voltage is obtained with  
an internal voltage divider from VCCLS and it is connected to CAPEAR pin. The supply  
voltage of the loudspeaker driver is VCCLS  
.
The loudspeaker driver is powered up with bit ENEAR in CR2.The output pin is in high  
impedance state when the loudspeaker driver is powered down.  
Note:  
Note on direct connection of VCCLS to the battery:  
The voltage of batteries of handheld devices during charging is usually below 5.5 V, making  
V
CCLS supply pin suitable for a direct connection to the battery. In this case if STw5098 is  
delivering the maximum power to the load and the ambient temperature is above 70 °C then  
the simultaneous charging of the battery can overheat the device. A basic protection  
scheme is implemented in STw5098 (activated with bit LSLIM in CR19): it limits the  
maximum gain of the loudspeaker to -6 dB when VCCLS is above 4.2 V, and it removes the  
limit for VCCLS below 4.0 V. The loudspeaker gain is left unchanged if it is set below -6 dB  
with bits LSG. This event (VCCLS > 4.2 V) can generate, if enabled (bit VLSMSK in CR31),  
an IRQ signal.  
4.11  
Analog mixers  
STw5098 can send to the output drivers the sum of stereo audio signals from 3 different  
sources of each entity: DA path (bit MIXDAC in CR17), Microphone Preamplifiers (bit  
MIXMIC in CR17) and Line In Amplifiers (bit MIXLIN in CR17). The analog mixers do not  
have a gain control on the inputs, therefore the user should reduce the levels of the input  
signals within the analog signal range.  
The stereo analog mixers are powered up with bits ENMIXL and ENMIXR in CR2.  
4.12  
AD paths  
In each entity the AD path converts audio signals from Microphone Preamplifiers (selected  
with bit ADMIC in CR17) and Line In Amplifiers (bit ADLIN in CR17) inputs to digital domain.  
If both inputs are selected then the sum of the two is converted. After AD conversion the  
audio data is resampled with a sample rate converter and then processed with the internal  
DSP. Two different filters are selectable in the DSP (bit ADVOICE in CR29): stereo Audio  
24/85  
STw5098  
Functional description  
Filter, with DC offset removal and FIR image filtering; and a standard mono voice-channel  
filter (uses left channel input and feeds both channel output). The AD path includes a digital  
gain control (ADCLG, ADCRG in CR12 and CR13 respectively) in the range -57 to +8 dB.  
The maximum gain from Mic Preamplifier to AD interface is then 47 dB. When Audio filter is  
selected in both AD and DA paths then DA audio data can be summed to AD data and sent  
to the AD Audio Interface (see DA2ADG in CR15). Left and right channels can be  
independently switched on and off to save power, if needed (bits ENADCL and ENADCR in  
CR1)  
4.13  
DA paths  
In each entity the DA path converts digital data from the digital audio interface to analog  
domain and feeds it to the analog mixer. Incoming audio data is processed with a DSP  
where different filters are selectable (bit DAVOICE in CR29): Audio filter, stereo, with FIR  
image filtering, bass and treble controls (bits BASS and TREBLE in CR14), de-emphasis  
filter; and a standard voice channel filter, mono (uses left channel input and feeds both  
channel output). A dynamic compression function is available for both audio and voice filters  
(bit DYNC in CR14). The DA path includes a digital gain control (DACLG, DACRG in CR10  
and CR11 respectively) in the range -65 to 0 dB. AD to DA mixing (sidetone) can be  
enabled: see CR16 for details. Left and right channel can be independently switched on and  
off to save power, if needed (bits ENDACL and ENDACR in CR1).  
4.14  
Analog-only operations  
Each entity from the STw5098 can operate without AMCK master clock if analog-only  
functions are used. It is possible to mix Microphone and Line In preamplifiers signals and  
listen through headphones, loudspeaker or send them to line-out. The analog-only operation  
is enabled with bit ENOSC in CR0. When ENOSC=1 the AD and DA paths cannot be used.  
In Analog Mode, each of the two entities can handle two different stereo audio signals, so it  
can be used as a front end for an external voice codec that does not include microphone  
preamplifiers and power drivers: mic signal is sent through Microphone preamplifiers directly  
to line out drivers (Transmit path), while Receive signal is sent through Line In amplifiers to  
the selected power drivers.  
4.15  
Automatic Gain Control (AGC)  
STw5098 provides a digital Automatic Gain Control in AD path for each entity. The circuit  
can control the input gain at MIC preamplifier, Line In amplifier or both (bits ENAGCMIC and  
ENAGCLIN in CR35). When one input is selected, the center gain value used for the input is  
fixed with bits MICLG, MICRG, LINLG and LINRG in CR3 to CR6 (like in normal operation),  
then the AGC circuit adds to all the gains a value in the range -10.5 dB to +10.5 dB (or,  
extended with bit AGCRANGE in CR35, -21 dB to 21 dB), in order to obtain an average level  
at the digital interface output in the range -6 dB to -30 dB (selected with bits AGCLEV in  
CR35). The AGC added gain acts directly in the input gain, to avoid input saturation and  
improve S/N ratio, so it cannot exceed the input gain range. When MIC and Line-In inputs  
are selected simultaneously the control is performed on the sum of the two, preserving the  
balance fixed with input gains. Different values for Attack and Decay constants can be  
selected, depending on the kind of signal the AGC has to control (i.e. voice, music). The  
25/85  
Functional description  
STw5098  
Attack and Decay time constants are related to the AD data rate (see bits AGCATT and  
AGCDEL in CR34).  
4.16  
Interrupt request: IRQ pins  
On each entity of the STw5098, the interrupt request feature can signal to a control device  
the occurrence of particular events on each entity. Two control registers are used to choose  
the behavior of IRQ pin: the first is a Status/Event Register (CR32), where bits can  
represent the status of an internal function (i.e. a voltage is above or below a threshold) or  
an event (i.e. a voltage changed crossing a threshold); the second is a Mask Register  
(CR31) where if a bit in the mask is set to 1 then the corresponding bit in the Status/Event  
Register can affect IRQ pin status.  
On each entity, the IRQ pin is always active low. At VCC power up an interrupt request is  
generated by the Power-On-Reset circuit that sets to 1 bits PORMSK in CR31 and POREV  
in CR32. After this event the PORMSK bit should be cleared by the user and bit IRQCMOS  
in CR33 should be set according to the application (open drain or CMOS).  
When an IRQ event occurs and SPI control interface is selected with no serial output pin it is  
still possible to identify the event (and relative status) that generated the interrupt request.  
This can be done by setting the IRQ mask/enable bits (in CR31) one at the time (with  
successive writings) and reading the IRQ pin status. A simple example of this is the headset  
plug-in detection: at first we set bit HSDETMSK=1 in CR31 (with all the other bits set to 0). If  
there is an interrupt request then we set HSDETMSK=0 and HSDETEN=1, so we can read  
the HSDET status at IRQ pin. Then we read CR32 to clear its content (even if no data is  
sent out).  
4.17  
Headset plug-in and push-button detection  
Each entity of the STw5098 can detect the plug-in of a microphone connector and the  
press/release event of a call/answer push-button. An application example can be found  
below, while specifications can be found in Section 10.4 on page 64.  
Figure 4.  
Plug-in and push-button detection application note  
HDET  
AUX1L  
200nF  
AUX1R  
VCCA  
STw5095  
3kΩ  
200nF  
CAPMIC  
1.5kΩ  
Call/Answer Button  
10µF  
From driver  
Generic Connector  
26/85  
STw5098  
Functional description  
4.18  
Microphone biasing circuits  
The Microphone Biasing Circuits can drive mono or stereo microphones and can switch  
them off when not needed in order to save the current used by the microphone biasing  
network on each entity. Two bits control the behavior of the microphone bias circuit: MBIAS  
in CR17 enables the circuit (fixed voltage at MBIAS pin), while bit MBIASPD in CR17 affects  
the behavior of MBIAS pin when the function is not enabled. In particular when MBIASPD=1  
the MBIAS pin is pulled down, otherwise it is left in tristate mode. The specification for the  
microphone biasing circuits can be found in Section 10.6 on page 64.  
27/85  
Control registers  
STw5098  
5
Control registers  
5.1  
Summary  
Table 2.  
Control register summary  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR0 Supply & power  
(00h) control #1  
POWER  
UP  
0000  
0000  
ENANA  
ENAMCK  
ENOSC  
ENDACR  
ENHPR  
ENPLL  
ENHSD  
A24V  
D12V  
CR1  
0000  
0000  
ENADCL ENADCR ENDACL  
ENMICL  
ENMICR  
ENLINL  
ENMIXL  
ENLINR  
ENMIXR  
Power control #2  
(01h)  
CR2  
ENHPVC  
M
1ENEAR  
2ENLS  
0000  
0000  
ENLOL  
ENLOR  
ENHPL  
Power control #3  
(02h)  
CR3  
0000  
0000  
MICLA(2:0)  
MICLG(4:0)  
MICRG(4:0)  
LINLG(4:0)  
LINRG(4:0)  
Mic gain left  
(03h)  
CR4  
0000  
0000  
MICRA(2:0)  
Mic gain right  
(04h)  
CR5  
0000  
1001  
X
X
X
X
Line in gain left  
(05h)  
CR6  
0000  
1001  
X
X
Line in gain right  
(06h)  
CR7 LO gain & LS  
(07h) gain  
1EARG(3:0)  
2LSG(3:0)  
0000  
0011  
X
LOG(2:0)  
CR8  
0000  
0011  
X
X
X
X
X
X
X
X
X
HPLG(4:0)  
HPL gain  
(08h)  
CR9  
0000  
0011  
X
HPRG(4:0)  
HPR gain  
(09h)  
CR10 DAC digital gain  
(0Ah) left  
0000  
0000  
X
DACLG(5:0)  
CR11 DAC digital gain  
(0Bh) right  
0000  
0000  
X
X
DACRG(5:0)  
ADCLG(5:0)  
ADCRG(5:0)  
CR12 ADC digital gain  
(0Ch) left  
0000  
1000  
CR13 ADC digital gain  
(0Dh) right  
0000  
1000  
X
CR14 Bass/treble/de-  
(0Eh) emphasis  
0000  
0000  
DYNC  
X
TREBLE(2:0)  
X
BASS(3:0)  
CR15 DA to AD mixing  
(0Fh) gain  
0000  
0000  
X
X
DA2ADG(4:0)  
AD to DA  
CR16  
0000  
0000  
X
AD2DAG(5:0)  
mix/sidetone  
(10h)  
gain  
CR17 Mixer switches &  
(11h) mic bias  
M
0000  
0000  
MBIAS  
ADMIC  
ADLIN  
MIXMIC  
MIXLIN  
MIXDAC  
MICLO  
BIASPD  
28/85  
STw5098  
Table 2.  
Control registers  
Control register summary  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR18  
(12h)  
0010  
0100  
X
IN2VCM LINMUTE  
LINSEL(1:0)  
MICMUTE  
MICSEL(1:0)  
Input switches  
Drivers control  
CR19  
(13h)  
1EARLIM  
2LSLIM  
1EARSEL(1:0)  
2LSSEL(1:0)  
0101  
1000  
VCML(1:0)  
X
MUTELO  
MUTEHP  
CR20 DAOCK  
(14h) frequency LSB  
0000  
0000  
DAOCKF(7:0)  
CR21 DAOCK  
(15h) frequency MSB  
0000  
0000  
DAOCKF(15:8)  
CR22 DA clock  
(16h) generator control  
DA  
MASTGEN  
END  
AOCK  
DAO  
CK512  
0000  
0000  
X
X
DAMAST  
DAPCMF(1:0)  
CR23 ADOCK  
(17h) frequency LSB  
0000  
0000  
ADOCKF(7:0)  
CR24 ADOCK  
(18h) frequency MSB  
0000  
0000  
ADOCKF(15:8)  
CR25 AD Clock  
(19h) generator control  
AD  
MASTGEN  
ENA  
DOCK  
ADO  
CK512  
0000  
0000  
X
X
X
ADMAST  
ADPCMF(1:0)  
CR26 DAC data IF  
(1Ah) control  
0000  
0000  
DAFORM(2:0)  
ADFORM2:0)  
DASPIM  
ADSPIM  
ADCKP  
DAWL(2:0)  
CR27 ADC data IF  
(1Bh) control  
0000  
0000  
ADRTOL  
ADWL(2:0)  
ADMONO  
CR28 DAC&ADC data  
(1Ch) IF control  
AMC  
KINV  
AD  
SYNCP  
0000  
0000  
DACKP DASYNCP DAMONO  
ADHIZ  
TXNH  
CR29 Digital filters  
(1Dh) control  
0000  
0000  
X
DAVOICE  
X
DA96K  
X
RXNH  
X
ADVOICE  
AMCKSIN  
AD96K  
ADNH  
CR30 Soft reset &  
(1Eh) AMCK range  
0000  
0000  
SWRES  
VLSHEN  
VLSH  
X
CKRANGE(2:0)  
CR31  
PUSH  
BEN  
PUSH  
BMSK  
HSDET  
MSK  
0000  
0000  
HSDETEN VLSHMSK  
OVFMSK PORMSK  
Interrupt mask  
(1Fh)  
CR32  
0000  
0000  
PUSHB  
X
HSDET  
VLSHEV  
PUSHBEV HSDETEV  
OVFEV  
OVFDA  
POREV  
OVFAD  
Interrupt status  
(20h)  
CR33  
0000  
0000  
SPIOHIZ  
SPIOSEL(1:0)  
IRQCMOS  
Misc. control  
(21h)  
AGC  
CR34  
0000  
0000  
AGCATT(3:0)  
AGCDEC(3:0)  
attack/decay  
(22h)  
coeff.  
CR35  
ENA  
GCLIN  
ENAG  
CMIC  
AGC  
RANGE  
0000  
0000  
X
X
AGCLEV(3:0)  
AGC control  
(23h)  
CR36  
0000  
0000  
X
X
X
X
X
X
X
RESERVED  
(24h)  
Note: X reserved, write zero  
29/85  
Control registers  
STw5098  
Caution:  
In the following Section 5: Control registers, reference to each entity is omitted. Each entity  
of the STw5098 has the same register set.  
5.2  
Supply and power control  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR0  
(00h)  
Supply & power  
control #1  
POWER  
UP  
0000  
0000  
ENANA  
ENAMCK  
ENOSC  
ENPLL  
ENHSD  
ENMICR  
ENLS  
A24V  
D12V  
CR1  
(01h)  
0000  
0000  
ENADCL ENADCR ENDACL ENDACR  
ENMICL  
ENLINL  
ENMIXL  
ENLINR  
ENMIXR  
Power control #2  
Power control #3  
CR2  
(02h)  
ENH  
PVCM  
0000  
0000  
ENLOL  
ENLOR  
ENHPL  
ENHPR  
Table 3.  
Bits  
CR0 description  
Name Val.  
CR0 description  
Def.  
1
0
All the enabled analog and digital blocks are in power up  
All the device is in power down  
7
6
5
POWERUP  
ENANA  
0
1
0
The analog blocks can be enabled  
0
0
All the analog blocks are in power down  
1
0
AMCK clock input pin is enabled  
AMCK clock input pin is disabled  
ENAMCK  
1
0
The Internal oscillator is enabled.  
The analog blocks use oscillator clock  
4
ENOSC  
0
The internal oscillator is in power down  
1
0
The PLL is enabled  
3
2
1
0
ENPLL  
ENHSD  
A24V  
0
0
0
0
The PLL is in power down  
1
0
The headset plug-in detector is enabled  
The headset plug-in detector is disabled  
1
0
Analog supply pins voltage range is 2.4V<VCCA<2.7V  
Analog supply pins voltage range is 2.7V<VCCA<3.3V  
1
0
Digital I/O pin voltage range is 1.2V<VCCIO<1.8V  
Digital I/O pin voltage range is 1.71V<VCCIO<VCC  
D12V  
30/85  
STw5098  
Control registers  
Table 4.  
Bits  
CR1 description  
Name  
Value  
CR1 description  
Def.  
1
0
The left channel A/D converter is enabled  
7
6
5
4
3
2
1
0
ENADCL  
0
The left channel A/D converter is in power down  
1
0
The right channel A/D converter is enabled  
ENADCR  
0
0
0
0
0
0
0
The right channel A/D converter is in power down  
1
0
The left channel D/A converter is enabled  
ENDACL  
ENDACR  
ENMICL  
ENMICR  
ENLINL  
ENLINR  
The left channel D/A converter is in power down  
1
0
The right channel D/A converter is enabled  
The right channel D/A converter is in power down  
1
0
The left channel microphone preamplifier is enabled  
The left channel microphone preamplifier is in power down  
1
0
The right channel microphone preamplifier is enabled  
The right channel microphone preamplifier is in power down  
1
0
The left channel line-in preamplifier is enabled  
The left channel line-in preamplifier is in power down  
1
0
The right channel line-in preamplifier is enabled  
The right channel line-in preamplifier is in power down  
Table 5.  
Bit #  
CR2 description  
Name  
Value  
CR2 Description  
Def.  
1
0
The left channel line out driver is enabled  
7
6
5
4
3
ENLOL  
0
The left channel line out driver is in power down (default)  
1
0
The right channel line out driver is enabled  
ENLOR  
0
0
The right channel line out driver is in power down (default)  
1
0
The left channel headphones driver is enabled  
ENHPL  
The left channel headphones driver is in power down (default)  
1
0
The right channel headphones driver is enabled  
ENHPR  
ENHPVCM  
1ENEAR  
2ENLS  
0
0
0
0
0
0
The right channel headphones driver is in power down (default)  
1
0
The headphones reference voltage generator is enabled  
The headphones reference voltage generator is in power down (def)  
1
0
The 32earphone amplifier is enabled  
The 32earphone amplifier is in power down (default)  
2
1
0
The 8loudspeaker amplifier is enabled  
The 8loudspeaker amplifier is in power down (default)  
1
0
The left channel analog output mixer is enabled  
1
0
ENMIXL  
ENMIXR  
The left channel analog output mixer is in power down (default)  
1
0
The right channel analog output mixer is enabled  
The right channel analog output mixer is in power down (default)  
31/85  
Control registers  
STw5098  
Def.  
5.3  
Gains  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CR3  
(03h)  
0000  
0000  
MICLA(2:0)  
MICLG(4:0)  
MICRG(4:0)  
LINLG(4:0)  
LINRG(4:0)  
Mic gain left  
CR4  
(04h)  
0000  
0000  
MICRA(2:0)  
Mic gain right  
Line in gain left  
Line in gain right  
CR5  
(05h)  
0000  
1001  
X
X
X
X
X
X
X
X
X
X
X
X
CR6  
(06h)  
0000  
1001  
X
CR7  
(07h)  
LO gain & LS  
gain  
0000  
0011  
LOG(2:0)  
LSG(3:0)  
CR8  
(08h)  
0000  
0011  
X
X
X
X
X
X
X
X
HPLG(4:0)  
HPRG(4:0)  
HPL gain  
HPR gain  
CR9  
(09h)  
0000  
0011  
CR10  
(0Ah)  
DAC digital gain  
left  
0000  
0000  
DACLG(5:0)  
CR11  
(0Bh)  
DAC digital gain  
right  
0000  
0000  
DACRG(5:0)  
ADCLG(5:0)  
ADCRG(5:0)  
CR12  
(0Ch)  
ADC digital gain  
left  
0000  
1000  
CR13  
(0Dh)  
ADC digital gain  
right  
0000  
1000  
Table 6.  
Bits  
CR3 and CR4 description  
Name CR3  
Name CR4  
Value  
CR3 and CR4 description  
Def.  
Left (CR3) and right (CR4) channels microphone attenuation  
000  
0.0 dB gain (default)  
-1.5 dB gain  
001  
010  
...  
MICLA(2:0)  
MICRA(2:0)  
7-5  
-3.0 dB gain  
000  
...step 1.5 dB  
-9.0 dB gain  
110  
111  
-12.0 dB gain  
Left (CR3) and right (CR4) channels microphone gain  
00000  
00001  
00010  
...  
0.0 dB gain (default)  
1.5 dB gain  
MICLG(4:0)  
MICRG(4:0)  
4-0  
00000  
3.0 dB gain  
...step 1.5 dB  
39.0 dB gain  
11010  
32/85  
STw5098  
Control registers  
Def.  
Table 7.  
Bits  
CR5 and CR6 description  
Name CR5  
Name CR6  
Value  
CR5 and CR6 description  
Left (CR5) and right (CR6) channels line in gain  
18.0 dB gain  
00000  
00001  
00010  
...  
16.0 dB gain  
LINLG(4:0)  
LINRG(4:0)  
14.0 dB gain  
4-0  
01001  
...step 2.0 dB  
01001  
...  
0.0 dB gain (default)  
...step 2.0 dB  
10011  
-20.0 dB gain  
Table 8.  
Bits  
CR7 description  
Name  
Value  
CR7 description  
Def.  
Left and right channel line out drivers gain  
Gain to differential output  
18.0 dB gain (default)  
-15.0 dB gain  
Equivalent single-ended gain  
000  
-24.0 dB gain (default)  
-21.0 dB gain  
-18.0 dB gain  
...step 3 dB  
6-4  
LOG(2:0)  
001  
010  
...  
000  
-12.0 dB gain  
...step 3 dB  
110  
00 dB gain  
-6.0 dB gain  
1EARG(3:0)  
2LSG(3:0)  
32earphone gain/ 8loudspeaker gain  
6.0 dB gain  
0000  
0001  
0010  
0011  
...  
4.0 dB gain  
3-0  
2.0 dB gain  
0011  
0.0 dB gain (default)  
...step 2.0 dB  
1111  
-24.0 dB gain  
Table 9.  
Bits  
CR8 and CR9 description  
Name CR8  
Name CR9  
Value  
CR8 and CR9 description  
Def.  
Left (CR8) and right (CR9) channels headphones driver gain  
00000  
00001  
00010  
00011  
...  
0.0 dB gain  
-2.0 dB gain  
HPLG(4:0)  
HPRG(4:0)  
4-0  
-4.0 dB gain  
00011  
-6.0 dB gain (default)  
...step 2.0 dB  
-40.0 dB gain  
10100  
33/85  
Control registers  
STw5098  
Def.  
Table 10. CR10 and CR11 description  
Name CR10  
Bits  
Value  
CR10 and CR11 description  
Name CR11  
Left (CR10) and right (CR11) channels DAC digital gain  
0.0 dB gain (default)  
-1.0 dB gain  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
-2.0 dB gain  
-3.0 dB gain  
-4.0 dB gain  
-5.0 dB gain  
-6.0 dB gain  
-7.0 dB gain  
-8.0 dB gain  
-9.0 dB gain  
-10.0 dB gain  
-11.0 dB gain  
-12.0 dB gain  
-13.0 dB gain  
-14.0 dB gain  
-15.0 dB gain  
-16.0 dB gain  
-17.0 dB gain  
-18.0 dB gain  
-20.0 dB gain  
-22.0 dB gain  
-24.0 dB gain  
-26.0 dB gain  
-28.0 dB gain  
-30.0 dB gain  
-32.0 dB gain  
-34.0 dB gain  
-36.0 dB gain  
-38.0 dB gain  
-41.0 dB gain  
-44.0 dB gain  
-47.0 dB gain  
-50.0 dB gain  
-53.0 dB gain  
-56.0 dB gain  
-59.0 dB gain  
-65.0 dB gain  
DACLG(5:0)  
DACRG(5:0)  
5-0  
000000  
100101 -dB gain  
34/85  
STw5098  
Control registers  
Table 11. CR12 and CR13 description  
Name CR12  
Bits  
Value  
CR12 and CR13 description  
Def.  
Name CR13  
Left (CR12) and right (CR13) channels ADC digital gain  
8.0 dB gain  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
7.0 dB gain  
6.0 dB gain  
5.0 dB gain  
4.0 dB gain  
3.0 dB gain  
2.0 dB gain  
1.0 dB gain  
0.0 dB gain (default)  
-1.0 dB gain  
-2.0 dB gain  
-3.0 dB gain  
-4.0 dB gain  
-5.0 dB gain  
-6.0 dB gain  
-7.0 dB gain  
-8.0 dB gain  
-9.0 dB gain  
ADCLG(5:0)  
ACDRG(5:0)  
-10.0 dB gain  
-11.0 dB gain  
-12.0 dB gain  
-14.0 dB gain  
-16.0 dB gain  
-18.0 dB gain  
-20.0 dB gain  
-22.0 dB gain  
-24.0 dB gain  
-26.0 dB gain  
-28.0 dB gain  
-30.0 dB gain  
-33.0 dB gain  
-36.0 dB gain  
-39.0 dB gain  
-42.0 dB gain  
-45.0 dB gain  
-48.0 dB gain  
-51.0 dB gain  
-57.0 dB gain  
5-0  
001000  
100110 -dB gain  
35/85  
Control registers  
STw5098  
Def.  
5.4  
DSP control  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CR14  
(0Eh)  
Bass/treble/de-  
emphasis  
0000  
0000  
DYNC  
X
TREBLE(2:0)  
X
BASS(3:0)  
CR15  
(0Fh)  
DA to AD mixing  
gain  
0000  
0000  
X
X
DA2ADG(4:0)  
AD to DA  
mix/sidetone  
gain  
CR16  
(10h)  
0000  
0000  
X
AD2DAG(5:0)  
Table 12. CR14 description  
Bits Name Value  
CR14 description  
Def.  
1
0
Audio dynamic compression in D/A path is enabled  
Audio dynamic compression in D/A path is disabled  
7
DYNC  
0
Treble control in D/A path  
+6.0 dB treble gain  
+4.0 dB treble gain  
+2.0 dB treble gain  
0.0 dB treble gain  
011  
010  
001  
000  
111  
110  
101  
100  
6-4  
TREBLE(2:0)  
000  
-2.0 dB treble gain  
-4.0 dB treble gain  
-6.0 dB treble gain  
De-emphasis filter enabled  
Bass control in D/A path  
+12.5 dB bass gain  
+10.0 dB bass gain  
+7.5 dB bass gain  
+5.0 dB bass gain  
+2.5 dB bass gain  
0.0 dB bass gain  
0101  
0100  
0011  
0010  
0001  
0000  
1111  
1110  
1101  
1100  
1011  
3-0  
BASS(3:0)  
0000  
-2.5 dB bass gain  
-5.0 dB bass gain  
-7.5 dB bass gain  
-10.0 dB bass gain  
-12.5 dB bass gain  
36/85  
STw5098  
Control registers  
Def.  
Table 13. CR15 description  
Bits  
Name  
Value  
CR15 description  
DA to AD mixing (Audio filter in D/A and A/D path selected)  
DA to AD mixing disabled (default)  
+2.0 dB gain  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
0.0 dB gain  
-2.0 dB gain  
-4.0 dB gain  
-6.0 dB gain  
-8.0 dB gain  
-10.0 dB gain  
-12.0 dB gain  
-14.0 dB gain  
-16.0 dB gain  
4-0  
DA2ADG(4:0)*  
00000  
-18.0 dB gain  
-20.0 dB gain  
-22.0 dB gain  
-24.0 dB gain  
-26.0 dB gain  
-28.0 dB gain  
-30.0 dB gain  
-32.0 dB gain  
-34.0 dB gain  
-36.0 dB gain  
-38.0 dB gain  
-40.0 dB gain  
* When Voice filter in D/A or A/D path is selected this function is disabled  
Note:  
D/A to A/D mixing is performed at AD data rate, so if A/D and D/A rates are different then asynchronous sampling artifacts  
may occur.  
37/85  
Control registers  
STw5098  
Def.  
Table 14. CR16 description  
Bits  
Name  
Value  
CR16 description  
AD to DA mixing (sidetone)  
000000 AD to DA mixing disabled (default)  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
-1.0 dB gain  
-2.0 dB gain  
-3.0 dB gain  
-4.0 dB gain  
-5.0 dB gain  
-6.0 dB gain  
-7.0 dB gain  
-8.0 dB gain  
-9.0 dB gain  
-10.0 dB gain  
-11.0 dB gain  
-12.0 dB gain  
-13.0 dB gain  
-14.0 dB gain  
-15.0 dB gain  
-16.0 dB gain  
-17.0 dB gain  
-18.0 dB gain  
-19.0 dB gain  
-20.0 dB gain  
-21.0 dB gain  
-22.0 dB gain  
-23.0 dB gain  
-24.0 dB gain  
-25.0 dB gain  
-26.0 dB gain  
-27.0 dB gain  
-28.0 dB gain  
-29.0 dB gain  
-30.0 dB gain  
-31.0 dB gain  
-32.0 dB gain  
-33.0 dB gain  
-34.0 dB gain  
-35.0 dB gain  
-36.0 dB gain  
-37.0 dB gain  
-38.0 dB gain  
-39.0 dB gain  
-40.0 dB gain  
-41.0 dB gain  
-42.0 dB gain  
5-0 AD2DAG(5:0)  
000000  
38/85  
STw5098  
Control registers  
5.5  
Analog functions  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR17  
(11h)  
Mixer switches &  
Mic Bias  
0000  
0000  
MBIAS  
X
MBIASPD  
IN2VCM  
ADMIC  
LINMUTE  
X
ADLIN  
MIXMIC  
MIXLIN  
MICMUTE  
LSLIM  
MIXDAC  
MICLO  
CR18  
(12h)  
0010  
0100  
LINSEL(1:0)  
MICSEL(1:0)  
Input switches  
Drivers control  
CR19  
(13h)  
0101  
1000  
VCML(1:0)  
MUTELO MUTEHP  
LSSEL(1:0)  
Table 15. CR17 description  
Bits  
Name  
Value  
CR17 description  
Def.  
1
0
Microphone Bias enabled (2.1V typ at MBIAS pin)  
Microphone Bias disabled  
7
MBIAS  
0
0
1
0
MBIAS pin is pulled down when microphone bias is disabled  
6
MBIASPD  
MBIAS pin is in high impedance state when microphone Bias is  
disabled  
1
0
Microphone preamplifiers are connected to AD path  
Microphone preamplifiers are not connected to AD path  
5
4
3
2
1
0
ADMIC  
ADLIN  
0
0
0
0
0
0
1
0
Line in preamplifiers are connected to AD path  
Line in preamplifiers are not connected to AD path  
1
0
Microphone preamplifiers are connected to mixers  
Microphone preamplifiers are not connected to mixers  
MIXMIC  
MIXLIN  
MIXDAC  
MICLO  
1
0
Line in preamplifiers are connected to mixers  
Line in preamplifiers are not connected to mixers  
1
0
Stereo DAC path is connected to mixers  
Stereo DAC path is not connected to mixers  
1
0
Microphone preamplifiers are connected to line out drivers  
Mixers are connected to line out drivers  
Table 16. CR18 description  
Bits  
Name  
Value  
CR18 description  
Def.  
1
0
Unused analog input pins are biased to common mode voltage  
Unused analog input pins are in high impedance state  
6
IN2VCM  
0
1
0
Line in preamplifiers are muted  
5
LINMUTE  
1
Line in preamplifiers are not muted  
Input pins connected to line in preamplifiers (if LINMUTE=0)  
00  
01  
10  
11  
LINEIN  
AUX1  
AUX2  
AUX3  
(LINEINL, LINEINR)  
4-3 LINSEL(1:0)  
(AUX1L, AUX1R)  
00  
(AUX2LP-AUX2LN, AUX2RP-AUX2RN)  
(AUX3L, AUX3R)  
39/85  
Control registers  
STw5098  
Table 16. CR18 description  
Bits  
Name  
Value  
CR18 description  
Microphone preamplifiers are muted  
Def.  
1
0
2
MICMUTE  
1
Microphone preamplifiers are not muted  
Input pins connected to microphone preamplifiers (if MICMUTE=0)  
00  
01  
10  
11  
MIC  
(MICLP-MICLN, MICRP-MICRN)  
(AUX1L, AUX1R)  
1-0  
MICSEL(1:0)  
AUX1  
AUX2  
AUX3  
00  
(AUX2LP-AUX2LN, AUX2RP-AUX2RN)  
(AUX3L, AUX3R)  
Table 17. CR19 description  
Bits  
Name  
Value  
CR19 Description  
Def.  
Common mode voltage level for line out and headphones drivers  
00  
01  
10  
11  
1.20 V  
7-6  
VCML(1:0)  
1.35 V (default)  
1.50 V  
01  
1.65 V  
1
0
Line out drivers are muted  
4
3
MUTELO  
MUTEHP  
1
1
Line out drivers are not muted  
1
0
Headphones drivers (HP) are muted  
Headphones drivers (HP) are not muted  
1EARLIM  
EAR/LS driver gain is limited when VCCLS is above 4.2V typ  
EAR/LS driver (LS) gain is not limited  
1
0
2
0
2LSLIM  
1EARSEL(1:0)  
00  
01  
10  
11  
Mute Loudspeaker driver (LS) is muted  
Right Right channel mixer only connected to loudspeaker driver  
Left Left channel mixer only connected to loudspeaker driver  
1-0  
00  
2LSSEL(1:0)  
Mono (Left + Right)/2 channel mixers connected to loudspeaker  
driver  
40/85  
STw5098  
Control registers  
5.6  
Digital audio interfaces master mode and clock generators  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR20  
(14h)  
DAOCK  
frequency LSB  
0000  
0000  
DAOCKF(7:0)  
CR21  
(15h)  
DAOCK  
frequency MSB  
0000  
0000  
DAOCKF(15:8)  
CR22  
(16h)  
DA clock  
generator control  
DA  
MASTGEN  
END  
OCK  
DAO  
CK512  
0000  
0000  
X
X
DAMAST  
DAPCMF(1:0)  
CR23  
(17h)  
ADOCK  
frequency LSB  
0000  
0000  
ADOCKF(7:0)  
CR24  
(18h)  
ADOCK  
frequency MSB  
0000  
0000  
ADOCKF(15:8)  
AD clock  
generator  
control  
CR25  
(19h)  
AD  
MASTGEN  
ENA  
DOCK  
ADO  
CK512  
0000  
0000  
X
X
ADMAST  
ADPCMF(1:0)  
Table 18. CR21-20 and CR24-23 description  
Name CR21-20  
Bits  
Value  
CR21-20 and CR24-23 Description  
Def.  
Name CR24-23  
The following formulas can be used to obtain the value of K for the  
desired FS or OCK respectively in the clock generator  
25  
FS  
K(FS) = round 2 --------------------------------------------------------------  
AMCK MCKCOEFF  
25  
OCK  
K(OCK) = round 2 -----------------------------------------------------------------------------------  
AMCK MCKCOEFF OSR  
DAOCKF(15:0)  
ADOCKF(15:0)  
15-0  
K
0000h  
FS: Data rate (DA_SYNC or AD_SYNC frequency in master mode)  
OCK: Oversampled clock frequency (DA_OCK or AD_OCK)  
AMCK: Input master clock frequency  
MCKCOEFF: See CR30 for definition  
OSR: See bit 2 in CR22 and CR25  
Note: CR21-20 and CR24-23 are meaningful in master mode only.  
Table 19. CR22 and CR25 description  
Name CR22  
Bits  
Value  
CR22 and CR25 description  
Def.  
(Name CR25)  
DAMAST  
1
0
DA (AD) Audio interface is in master mode (low impedance output)  
DA (AD) Audio interface is in slave mode (high impedance input)  
5
0
0
0
(ADMAST)  
DAMASTGEN  
1
0
DA (AD) Master generator is enabled  
DA (AD) Master generator is disabled  
4
3
(ADMASTGEN)  
ENDAOCK  
1
0
DA_OCK (AD_OCK) output clock is enabled  
DA_OCK (AD_OCK) output clock is disabled  
(ENADOCK)  
41/85  
Control registers  
STw5098  
Table 19. CR22 and CR25 description  
Name CR22  
Bits  
Value  
CR22 and CR25 description  
Def.  
(Name CR25)  
Definition of DA_OSR (AD_OSR)  
DAOCK512  
1
0
DA_OCK/DA_SYNC (AD_OCK/AD_SYNC) ratio in master mode is  
512  
2
0
(ADOCK512)  
da_ock/da_sync (ad_ock/ad_sync) ratio in master mode is 256  
DA_CK/DA_SYNC (AD_CK/AD_SYNC) Ratio in PCM master mode  
- 16 when CR26 DAWL=000 (CR27 ADWL=000)  
- 32 when CR26 DAWL000 (CR27 ADWL000)  
- 64  
00  
00  
01  
10  
11  
11  
DAPCMF(1:0)  
1-0  
00  
(ADPCMF(1:0))  
- 128  
- 256 when CR22 DAOCK512=0 (CR25 ADOCK512=0)  
- 512 when CR22 DAOCK512=1 (CR25 ADOCK512=1)  
42/85  
STw5098  
Control registers  
5.7  
Digital audio interfaces  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR26  
(1Ah)  
DAC data IF  
control  
0000  
0000  
X
DAFORM(2:0)  
ADFORM2:0)  
DASPIM  
ADSPIM  
ADCKP  
DAWL(2:0)  
ADWL(2:0)  
ADMONO  
CR27  
(1Bh)  
ADC data IF  
control  
0000  
0000  
ADRTOL  
AMCKINV  
CR28  
(1Ch)  
DAC&ADC data  
IF control  
AD  
SYNCP  
0000  
0000  
DACKP  
DASYNCP DAMONO  
ADHIZ  
Table 20. CR26 description  
Bits  
Name  
Value  
CR26 Description  
Def.  
DA audio interface format selection  
Delayed format (I2S compatible)  
Left aligned format  
000  
001  
010  
011  
100  
111  
6-4  
DAFORM(2:0)  
Right aligned format  
000  
DSP format  
SPI format  
PCM format (uses left channel)  
1
0
DA interface in SPI mode receives one word for both channels  
3
DASPIM  
0
DA interface in SPI mode receives two words  
(alternated, left channel first)  
DA interface word length  
000  
001  
010  
011  
100  
16 bit  
18 bit  
20 bit  
24 bit  
32 bit  
2-0  
DAWL(2:0)  
000  
Table 21. CR27 description  
Bits  
Name  
Value  
CR27 description  
Def.  
1
0
AD right channel sent to PCM I/F (must set ENADCR=0 in CR1)  
Normal operation  
7
ADRTOL  
0
AD audio interface format selection  
Delayed format (I2S compatible)  
Left aligned format  
000  
001  
010  
011  
100  
111  
6-4  
ADFORM(2:0)  
Right aligned format  
000  
DSP format  
SPI format  
PCM format (sends out left channel)  
43/85  
Control registers  
STw5098  
Table 21. CR27 description (continued)  
Bits  
Name  
Value  
CR27 description  
Def.  
1
0
AD interface in SPI mode sends one channel (left)  
3
ADSPIM  
0
AD interface in SPI mode sends two channels (alternated, left first)  
AD interface word length  
000  
001  
010  
011  
100  
16 bit  
18 bit  
20 bit  
24 bit  
32 bit  
2-0  
ADWL(2:0)  
000  
Table 22. CR28 description  
Bits  
Name  
Value  
CR28 description  
Def.  
1
0
AMCK is inverted  
7
AMCKINV  
0
AMCK is not inverted  
1
0
DA Bit clock pin (DA_CK) polarity is inverted  
DA Bit clock pin (DA_CK) polarity is not inverted  
6
5
DACKP  
0
0
DSP and PCM formats in DA interface  
Non delayed format  
1
0
Delayed format  
DASYNCP  
Delayed, left-aligned, right-aligned and SPI formats in DA interface  
DA sync pin (DA_SYNC) polarity is inverted  
1
0
DA sync pin (DA_SYNC) polarity is not inverted  
1
0
Mono mode: (L+R)/2 from Audio Interface is used on both DAC  
channels  
4
3
DAMONO  
ADCKP  
0
0
Stereo mode  
1
0
AD Bit clock pin (AD_CK) polarity is inverted  
AD Bit clock pin (AD_CK) polarity is not inverted  
DSP and PCM formats in AD interface  
Non delayed format  
1
0
Delayed format  
2
ADSYNCP  
0
Delayed, left-aligned, right-aligned and SPI formats in AD interface  
DA sync pin (DA_SYNC) polarity is inverted  
1
0
DA sync pin (DA_SYNC) polarity is not inverted  
1
Mono mode: (L+R)/2 from ADC is sent to both channels in the Audio  
interface  
1
0
ADMONO  
ADHIZ  
0
0
0
1
Stereo mode  
AD data pin (AD_DATA) is in high impedance state when no data is  
available  
0
AD data pin (AD_DATA) is forced to 0 when no data is available  
44/85  
STw5098  
Control registers  
5.8  
Digital filters, software reset and master clock control  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR29  
(1Dh)  
Digital filters  
control  
0000  
0000  
X
DAVOICE  
X
DA96K  
X
RXNH  
X
ADVOICE  
AMCKSIN  
AD96K  
ADNH  
TXNH  
CR30  
(1Eh)  
Soft reset &  
AMCK range  
0000  
0000  
SWRES  
CKRANGE(2:0)  
Table 23. CR29 description  
Bits  
Name  
Value  
CR29 description  
Def.  
1
0
DA path voice RX filter is enabled (single channel, left used)  
DA path voice filters are enabled  
6
DAVOICE  
0
0
0
0
0
0
0
1
0
DA path data rate is in the range 88 kHz to 96 kHz  
DA path data rate is in the range 8 kHz to 48 kHz  
5
4
3
2
1
0
DA96K  
RXNH  
1
0
DA path high pass voice RX filter is disabled  
DA path high pass voice RX filter is enabled (300Hz @ 8kHz rate)  
1
0
AD path voice TX filter is enabled (single channel, left used)  
AD path audio filters are enabled  
ADVOICE  
AD96K  
ADNH  
1
0
AD path data rate is in the range 88 kHz to 96 kHz  
AD path data rate is in the range 8 kHz to 48 kHz  
1
0
AD path audio DC filter is disabled  
AD path audio DC filter is enabled  
1
0
AD path high pass voice TX filter is disabled  
TXNH  
AD path high pass voice TX filter is enabled (300Hz @ 8kHz rate)  
Table 24. CR30 description  
Bits  
Name  
Value  
CR30 description  
Def.  
1
0
Software reset: All registers content is reset to the default value  
Control Register content is left unchanged  
7
SWRES  
0
1
0
Signal at AMCK pin is a sinusoid  
3
AMCKSIN  
0
Signal at AMCK pin is a square wave  
AMCK range  
MCKCOEFF  
000  
001  
010  
011  
100  
101  
4.0 MHz to 6.0 MHz  
6.0 MHz to 8.0 MHz  
8.0 MHz to 12.0 MHz  
12.0 MHz to 16.0 MHz  
16.0 MHz to 24.0 MHz  
24.0 MHz to 32.0 MHz  
8.0  
6.0  
4.0  
3.0  
2.0  
1.5  
2-0  
CKRANGE(2:0)  
000  
45/85  
Control registers  
STw5098  
5.9  
Interrupt control and control interface SPI out mode  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
CR31  
(1Fh)  
PUSH  
BEN  
PUSH  
BMSK  
HSDET  
MSK  
0000  
0000  
VLSHEN  
VLSH  
x
HSDETEN VLSHMSK  
OVFMSK PORMSK  
Interrupt mask  
Interrupt status  
Misc. control  
CR32  
(20h)  
0000  
0000  
PUSHB  
X
HSDET  
VLSHEV PUSHBEV HSDETEV  
OVFEV  
OVFDA  
POREV  
OVFAD  
CR33  
(21h)  
0000  
0000  
SPIOHIZ  
SPIOSEL(1:0)  
IRQCMOS  
Table 25. CR31 description  
Bits  
Name  
Value  
CR31description  
Def.  
1
0
VLSH status can be seen at IRQ output  
VLSH status is masked  
7
VLSHEN  
0
1
0
PUSHB status can be seen at IRQ output  
PUSHB status is masked  
6
PUSHBEN  
HSDETEN  
VLSHMSK  
PUSHBMSK  
HSDETMSK  
OVFMSK  
0
0
0
0
0
0
0
1
0
HSDET status can be seen at IRQ output  
HSDET status is masked  
5
1
0
VLSH event can be seen at IRQ output  
VLSH event is masked  
4
1
0
PUSHB event can be seen at IRQ output  
PUSHB event is masked  
3
1
0
HSDET event can be seen at IRQ output  
HSDET event is masked  
2
1
1
0
OVF event can be seen at IRQ output  
OVF event is masked  
1
0
POR event can be seen at IRQ output  
POR event is masked  
0
PORMSK  
Note:  
Value at IRQ pin is:  
IRQ =  
(1 or Z) when (CR31 & CR32) = 00 hex  
0
when (CR31 & CR32) 00 hex  
Table 26. CR32 description  
Read  
Bits  
Name  
CR32 description  
Def.  
0
only  
1
0
VCCLS is above 4.2 V  
VCCLS is below 4.0 V  
7
VLSH*  
1
0
Headset Button is pressed  
Headset Button is released  
6
PUSHB*  
HSDET*  
0
1
0
Headset Connector is inserted  
5
0
Headset Connector is not inserted  
46/85  
STw5098  
Control registers  
Table 26. CR32 description (continued)  
Read  
Bits  
Name  
CR32 description  
Def.  
0
only  
1
0
VLSH bit has changed  
4
VLSHEV  
VLSH bit has not changed  
1
0
Headset Button Status has changed  
3
PUSHBEV  
HSDETEV  
OVFEV  
0
Headset Button Status has not changed  
1
0
Headset Connector Status has changed  
Headset Connector Status has not changed  
2
0
1
0
An Audio Data overflow has occurred in DSP  
No Audio Data overflow has occurred in DSP  
1
0
1
0
Device was reset by power-on-reset  
0
POREV  
0
Device was not reset by power-on-reset  
Note: content of bits 4 to 0 in CR32 is cleared after reading, while it is left unchanged if accessed for writing.  
*Bits 7 to 5 represent the status when the Control register is read, not when the event occurred.  
Table 27. CR33 description  
Bits  
Name  
Val.  
CR33 description  
Def.  
1
SPI control interface out pin is set to high impedance state when  
inactive  
5
SPIOHIZ  
0
0
SPI control interface out pin is set to zero when inactive  
Out pin selection for SPI control interface  
No output. Control registers cannot be read in SPI mode  
SPI output sent to IRQ pin  
00  
01  
10  
11  
4-3 SPIOSEL(1:0)  
00  
SPI output sent to DA_OCK pin  
SPI output sent to AD_OCK pin  
1
0
IRQ interrupt request pin is set to CMOS (active low)  
IRQ interrupt request pin is set to pull down  
2
1
0
IRQCMOS  
OVFDA  
0
0
0
1
0
An overflow (saturation) occurred in DA path  
No overflow occurred in DA channel  
1
0
An overflow (saturation) occurred in AD path  
No overflow occurred in AD channel  
OVFAD  
Note: content of bits 1 to 0 in CR33 is cleared after reading, while it is left unchanged if accessed for writing.  
47/85  
Control registers  
STw5098  
5.10  
AGC  
CR#  
(hex)  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Def.  
AGC  
attack/decay  
coeff.  
CR34  
(22h)  
0000  
0000  
AGCATT(3:0)  
AGCDEC(3:0)  
CR35  
(23h)  
0000  
0000  
ENAG  
CLIN  
ENAG  
CMIC  
AGC  
RANGE  
X
AGCLEV(3:0)  
AGC control  
Table 28. CR 34 description  
Bits  
Name  
Value  
CR 34 description  
AGC attack time constant; FS=AD data rate  
Def.  
Audio filter in AD path  
4096 / FS  
2048 / FS  
1365 / FS  
1024 / FS  
683 / FS  
Voice filter in AD path  
8192 / FS  
4096 / FS  
2731 / FS  
2048 / FS  
1365 / FS  
1024 / FS  
683 / FS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
512 / FS  
7-4 AGCATT(3:0)  
0000  
341 / FS  
256 / FS  
512 / FS  
171 / FS  
341 / FS  
128 / FS  
256 / FS  
85 / FS  
171 / FS  
64 / FS  
128 / FS  
43 / FS  
85 / FS  
32 / FS  
64 / FS  
AGC decay time constant; FS=AD data rate  
Audio filter in AD path  
Voice filter in AD path  
131072 / FS  
65536 / FS  
43691 / FS  
32768 / FS  
21845 / FS  
16384 / FS  
10923 / FS  
8192 / FS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
65536 / FS  
32768 / FS  
21845 / FS  
16384 / FS  
10923 / FS  
8192 / FS  
5461 / FS  
4096 / FS  
2731 / FS  
2048 / FS  
1365 / FS  
1024 / FS  
683 / FS  
3-0 AGCDEC(3:0)  
0000  
5461 / FS  
4096 / FS  
2731 / FS  
2048 / FS  
1365 / FS  
512 / FS  
1024 / FS  
341 / FS  
683 / FS  
256 / FS  
512 / FS  
48/85  
STw5098  
Control registers  
Table 29. CR 35 description  
Bits  
Name  
Value  
CR35 description  
Def.  
1
0
AGC control on AD path acts on Line In Gain  
6
ENAGCLIN  
0
AGC control on AD path does not act on Line In Gain  
1
0
AGC control on AD path acts on Mic Gain  
5
4
ENAGCMIC  
AGCRANGE  
0
0
AGC control on AD path does not act on Mic Gain  
1
0
AGC action range is -21.0 dB to +21.0 dB  
AGC action range is -10.5 dB to +10.5 dB  
AGC requested output level  
-30.0 dB gain  
-30.0 dB gain  
-27.0 dB gain  
-24.0 dB gain  
-21.0 dB gain  
-18.0 dB gain  
-15.0 dB gain  
-12.0 dB gain  
-9.0 dB gain  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
3-0 AGCLEV(3:0)  
0000  
-6.0 dB gain  
49/85  
Control interface and master clock  
STw5098  
6
Control interface and master clock  
Unless specified, the following description applies to both entities.  
2
6.1  
Control interface I C mode  
Figure 5.  
Control interface I2C format  
ACK  
ACK  
ACK  
DEVICE ADDRESS  
0 0 1 1 0 1 AS0  
REG n DATA IN  
WRITE  
SINGLE BYTE  
REG n ADDRESS  
START  
STOP  
ACK  
REG n+m DATA IN  
ACK  
DEVICE ADDRESS  
ACK  
REG n DATA IN  
ACK  
ACK  
WRITE  
MULTI BYTE  
REG n ADDRESS  
0 0 1 1 0 1 AS0  
START  
m+1 data bytes  
STOP  
ACK  
NO ACK  
CURRENT ADDR  
READ  
SINGLE BYTE  
DEVICE ADDRESS  
Current REG DATA OUT  
0 0 1 1 0 1 AS1  
START  
STOP  
ACK  
ACK  
ACK  
NO ACK  
CURRENT ADDR  
READ  
MULTI BYTE  
DEVICE ADDRESS  
Current REG DATA OUT  
Curr REG+m DATA OUT  
0 0 1 1 0 1 AS1  
START  
m+1 data bytes  
STOP  
ACK  
ACK  
REG n ADDRESS  
ACK  
DEVICE ADDRESS  
NO ACK  
REG n DATA OUT  
RANDOM ADDR  
READ  
DEVICE ADDRESS  
0 0 1 1 0 1 AS0  
START  
0 0 1 1 0 1 AS1  
START  
ACK  
REG n ADDRESS  
SINGLE BYTE  
STOP  
ACK ACK  
REG n DATA OUT  
ACK  
ACK  
NO ACK  
RANDOM ADDR  
READ  
MULTI BYTE  
DEVICE ADDRESS  
DEVICE ADDRESS  
0 0 1 1 0 1 AS1  
REG n+m DATA OUT  
0 0 1 1 0 1 AS0  
START  
START  
m+1 data bytes  
STOP  
Note:  
CMOD pin tied to GND  
Control interface: I2C format timing  
Figure 6.  
SDA  
t
t
t
t
t
t
t
t
t
BUF  
HD  
(STA)  
LOW  
HD  
(DAT)  
HIGH  
SU  
(DAT)  
SU  
(STA)  
HD  
(STA)  
SU  
(STO)  
SCLK  
t
t
F
R
P
P = STOP  
S = START  
Sr = START repeated  
S
S
P
r
50/85  
STw5098  
Control interface and master clock  
Table 30. Control interface timing with I²C format  
Symbol  
fSCL  
tHIGH  
tLOW  
Parameter  
Clock frequency  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock pulse width high  
Clock pulse width low  
SDA and SCLK rise time  
SDA and SCLK fall time  
Start condition hold time  
Start condition setup time  
Data input hold time  
600  
1300  
tR  
1000  
300  
tF  
tHD:STA  
tSU:STA  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
600  
600  
0
Data input setup time  
Stop condition setup time  
Bus free time  
250  
600  
1300  
6.2  
Control interface SPI mode  
Figure 7.  
Control interface SPI format(a)  
CSB  
SCLK  
SDIN  
W/R A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
8 bit Address  
8 bit Data  
D7 D6 D5 D4 D3 D2 D1 D0  
8 bit Data  
SDO  
SPIOHIZ=1  
a. CMOD pin tied to V  
; SDO pin position selected with bits SPIOSEL in CR33.  
CCIO  
51/85  
Control interface and master clock  
STw5098  
Figure 8.  
Control interface: SPI format timing  
tHICS  
CSB  
tPSCK  
tSCSF  
tHCS  
tSCSR  
tLSCK  
tHSCK  
SCLK  
SDIN  
SDO  
0
8
15  
tSDI  
tHDI  
W/R  
D7  
D0  
D0  
tDDOF  
tDDO  
tDDOL  
SPIOHIZ=1  
SPIOHIZ=0  
D7  
Table 31. Control interface signal timing with SPI format  
Symbol  
tHICS  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
CSB pulse width high  
80  
ns  
Setup time CSB rising  
edge to SCLK rising edge  
tSCSR  
tSCSF  
tHCS  
tSDI  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Setup time CSB falling  
edge to SCLK rising edge  
Hold time CSB rising edge  
from SCLK rising edge  
Setup time SDIN to SCLK  
rising edge  
Hold time SDIN from SCLK  
rising edge  
tHDI  
SDO first Delay time from  
SCLK falling edge  
tDDOF  
tDDO  
tDDOL  
30  
20  
30  
SDO Delay time from  
SCLK falling edge  
SDO Delay time from CSB  
rising edge  
tPSCK  
tHSCK  
tLSCK  
Period of SCK  
100  
40  
ns  
ns  
ns  
SCK pulse width high  
SCK pulse width low  
Measured from VIH to VIH  
Measured from VIL to VIL  
40  
52/85  
STw5098  
Control interface and master clock  
6.3  
Master clock timing  
Table 32. AMCK timing  
Symbol  
Parameter  
AMCK range  
MHz-8 MHz  
MHz-32 MHz  
Min.  
Typ.  
Max.  
Unit  
4
8
45  
40  
55  
60  
%
%
tCKDC  
AMCK duty cycle  
53/85  
Audio interfaces  
STw5098  
7
Audio interfaces  
Information included in the following section is valid for both entities.  
Figure 9.  
Audio interfaces formats: delayed, left and right justified  
I2S format (delayed) with default polarity settings, ADHIZ=0  
DA_SYNC/  
AD_SYNC  
DA_CK/  
AD_CK  
1 AD_CK/DA_CK  
1 AD_CK/DA_CK  
1
MSB  
2
n-1  
n
LSB  
1
MSB  
2
n-1  
n
LSB  
DA_DATA  
AD_DATA  
n-bit word Left data  
n-bit word Right data  
1
2
n-1  
n
1
2
n-1  
n
MSB  
LSB  
MSB  
LSB  
n-bit word Right data  
n-bit word Left data  
Left justified format with default polarity settings, ADHIZ=0  
DA_SYNC/  
AD_SYNC  
DA_CK/  
AD_CK  
1
MSB  
2
n-1  
n
LSB  
1
MSB  
2
n-1  
n
LSB  
DA_DATA  
AD_DATA  
n-bit word Left data  
n-bit word Right data  
1
2
n-1  
n
1
2
n-1  
n
MSB  
LSB  
MSB  
LSB  
n-bit word Right data  
n-bit word Left data  
Right justified format with default polarity settings  
32 AD_CK/DA_CK  
32 AD_CK/DA_CK  
DA_SYNC/  
AD_SYNC  
DA_CK/  
AD_CK  
1
MSB  
2
n-1  
n
LSB  
1
MSB  
2
n-1  
n
LSB  
DA_DATA  
AD_DATA  
n-bit word Left data  
n-bit word Right data  
1
2
n-1  
n
1
2
n-1  
n
MSB  
LSB  
MSB  
LSB  
n-bit word Right data  
n-bit word Left data  
54/85  
STw5098  
Audio interfaces  
Figure 10. Audio interfaces formats: DSP, SPI and PCM  
DSP format delayed and non-delayed (default AD_CK/DA_CK polarity, ADHIZ=0)  
SYNCP=0  
DA_SYNC/  
AD_SYNC  
{
SYNCP=1  
DA_CK/  
AD_CK  
1
MSB  
2
n-1  
n
1
2
n-1  
n
LSB  
DA_DATA  
AD_DATA  
LSB MSB  
n-bit word Left data  
n-bit word Right data  
1
2
n-1  
n
1
2
n-1  
n
MSB  
LSB MSB  
LSB  
n-bit word Right data  
n-bit word Left data  
SPI format (slave only) (default AD_CK/DA_CK polarity, ADHIZ=1 - Stereo or Mono)  
DA_SYNC/  
AD_SYNC  
DA_CK/  
AD_CK  
1
MSB  
2
3
n-1  
n
LSB  
1
MSB  
2
3
DA_DATA  
AD_DATA  
n-bit word Left/Mono data  
n-bit word Right/Mono data  
High impedance  
x
1
2
3
n-1  
n
x
1
2
3
MSB  
LSB  
MSB  
n-bit word Left/Mono data  
n-bit word Right/Mono data  
PCM format (default AD_CK/DA_CK polarity, ADHIZ=1)  
SYNCP=0  
DA_SYNC/  
AD_SYNC  
{
SYNCP=1  
DA_CK/  
AD_CK  
1
MSB  
2
2
3
n-1  
n-1  
n
LSB  
1
MSB  
DA_DATA  
n-bit word Mono data  
High impedance  
1
MSB  
3
n
1
MSB  
AD_DATA  
LSB  
n-bit word Mono data  
55/85  
Audio interfaces  
STw5098  
Figure 11. Audio interface timings: master mode  
DA_SYNC/  
AD_SYNC  
tDSY  
CKP=0  
DA_CK/  
AD_CK  
{
CKP=1  
tSDDA  
tHDDA  
DA_DATA  
tDAD  
tDAD  
tDADZ  
ADHIZ=1  
ADHIZ=0  
ADHIZ=1  
AD_DATA  
PCM format only  
ADHIZ=0  
tDAD  
ADHIZ=1  
ADHIZ=0  
ADHIZ=1  
ADHIZ=0  
AD_DATA  
All other formats  
Figure 12. Audio interface timing: slave mode  
DA_SYNC/  
AD_SYNC  
tHSY  
tSSY  
CKP=0  
CKP=1  
tHCK  
tLCK  
DA_CK/  
AD_CK  
{
tSDDA tHDDA  
tPCK  
DA_DATA  
tDADST tDAD  
tDADZ  
ADHIZ=1  
ADHIZ=0  
ADHIZ=1  
ADHIZ=0  
AD_DATA  
PCM format  
tDAD  
ADHIZ=1  
ADHIZ=0  
ADHIZ=1  
ADHIZ=0  
AD_DATA  
All other formats  
tDAD  
56/85  
STw5098  
Audio interfaces  
Table 33. Audio interface signal timings  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Delay of  
AD_SYNC/DA_SYNC  
edge from AD_CK/DA_CK  
active edge  
tDSY  
Master Mode  
10  
ns  
Setup time DA_DATA to  
DA_CK active edge  
tSDDA  
tHDDA  
tDAD  
10  
10  
ns  
ns  
ns  
Hold time DA_DATA from  
DA_CK active edge  
Delay of AD_DATA edge  
from AD_CK active edge  
30  
30  
Delay of the first AD_DATA  
edge from AD_SYNC  
active edge  
AD_SYNC active edge comes  
after AD_CK active edge  
tDADST  
ns  
ns  
Delay of AD_DATA high  
impedance from  
AD_SYNC inactive edge  
tDADZ  
PCM format  
Slave Mode  
10  
20  
50  
Setup time  
AD_SYNC/DA_SYNC to  
AD_CK/DA_CK active  
edge  
tSSY  
ns  
ns  
Hold time  
AD_SYNC/DA_SYNCfrom  
AD_CK/DA_CK active  
edge  
tHSY  
Slave Mode  
20  
tPCK  
tHCK  
Period of AD_CK/DA_CK Slave Mode  
100  
40  
ns  
ns  
AD_CK/DA_CK pulse  
Measured from VIH to VIH  
Measured from VIL to VIL  
width high  
AD_CK/DA_CK pulse  
width low  
tLCK  
40  
ns  
57/85  
Timing specifications  
STw5098  
8
Timing specifications  
Information included in this section is valid for both entities.  
Unless otherwise specified, VCCIO = 1.71V to 2.7V, Tamb = -30°C to 85°C, max capacitive  
load 20 pF; typical characteristics are specified at VCCIO = 2.4 V, Tamb = 25 °C; all signals  
are referenced to GND, see Note below figure for timing definitions.  
Figure 13. A.C. testing input-output waveform  
Input/output  
0.8²VCCIO  
0.7²VCCIO  
0.3²VCCIO  
0.7²VCCIO  
0.3²VCCIO  
TEST POINTS  
0.2²VCCIO  
AC Testing: inputs are driven at 0.8  
VCCIO for a logic ‘1’ and 0.2  
VCCIO for a logic ‘0’.  
Timing measurements are made at 0.7VCCIO for a logic ‘1’ and 0.3VCCIO for a logic ‘0’.  
Note:  
Note:  
A signal is valid if it is above VIH or below VIL and invalid if it is between VIL and VIH. For the  
purpose of this specification the following conditions apply (see Figure 13 above):  
a) All input signal are defined as: VIL = 0.2VCCIO, VIH = 0.8VCCIO, tR < 10ns, tF < 10ns.  
b) Delay times are measured from the inputs signal valid to the output signal valid.  
c) Setup times are measured from the data input valid to the clock input invalid.  
d) Hold times are measured from the clock signal valid to the data input invalid.  
All timing specifications subject to change.  
58/85  
STw5098  
Operative ranges  
9
Operative ranges  
9.1  
Absolute maximum ratings  
Table 34. Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC or VCCIO to GND  
-0.5 to 3.6  
-0.5 to 5  
-0.5 to 7  
V
V
V
V
CCA or VCCP to GND  
CCLS to GND  
V
Voltage at analog inputs (VCCA 3.3V)  
Maximum power delivered to the load from LSP/N  
Peak current at HPR,HPL  
GND-0.5 to VCCA+0.5  
V
mW  
mA  
mA  
mA  
V
500  
100  
350  
Current at VCCP, VCCLS, GNDP  
Current at any digital output  
50  
Voltage at any digital input (VCCIO 2.7V); limited at ± 50mA  
Storage temperature range  
GND-0.5 to VCCIO+0.5  
-65 to 150  
-30 to 85  
°C  
Operating temperature range(1)  
°C  
Electrostatic discharge voltage (Vesd)  
Human body model(2)  
Charge device model(3)  
-2 to +2  
kV  
V
-500 to +500  
1. in some operating conditions the temperature can be limited to 70 °C. See loudspeaker driver description from Section 4.10  
for details.  
2. HBM tests have been performed in compliance with JESD22-A114-B and ESD STM 5.1-2001.HBM  
3. CDM tests have been performed in compliance with CDM ANSI-ESDSTM5.3.1-1999  
9.2  
Operative supply voltage  
Table 35. Operative supply voltage  
Symbol Parameter  
VCC Digital supply  
Condition  
Min.  
Max.  
Unit  
1.71  
2.7  
V
Analog supply  
A24V=0 (bit 1 in CR0)  
A24V=1 (bit 1 in CR0)  
2.7  
2.4  
3.3  
2.7  
V
V
VCCA  
Note: VCCA VCC  
D12V=0 (bit 0 in CR0)  
D12V=1 (bit 0 in CR0)  
1.71  
1.2  
VCC  
1.8  
V
V
VCCIO  
Digital I/O supply  
VCCP  
Stereo power drivers supply  
Mono power driver supply  
VCCA  
VCCA  
3.3  
5.5  
V
V
VCCLS  
VCC  
=
VCCA  
=VCCIO=VCCP=VCCLS  
VG  
Single supply voltage range  
2.4  
2.7  
V
A24V=1 (bit 1 in CR0)  
59/85  
Operative ranges  
STw5098  
9.3  
Power dissipation  
Unless otherwise specified, VCCP = VCCLS = VCCA = 2.7V to 3.3V, VCCIO = VCC = 1.71V to  
2.7V, Tamb = -30°C to 85°C, all analog outputs not loaded; typical characteristics are  
specified at VCCIO = VCC = 1.8V, VCCP = VCCLS = VCCA = 2.7V, Tamb = 25°C.  
Table 36. Power dissipation  
Symbol  
Parameter  
Test conditions  
No Master Clock  
AMCK=13MHz  
Min.  
Typ.  
Max.  
Unit  
0.8  
5.8  
µW  
µW  
POFF  
Power Down Dissipation  
PAD  
Stereo ADC power  
52.6  
46.6  
93.8  
27.6  
mW  
mW  
mW  
mW  
PDA  
Stereo DAC power  
PDAAD  
PAA  
Stereo ADC+DAC power  
Stereo Analog Path power  
9.4  
Typical power dissipation by entity  
Tamb = 25°C; Analog Supply: VCCP = VCCLS = VCCA = 2.7V;  
digital supply: VCCIO = VCC = 1.8V.  
Full scale signal in every path, 20kload at analog outputs.  
No master clock  
Table 37. Typical power dissipation, no master clock  
CR0-CR2  
N.  
Function  
Other settings  
Supply  
Analog:  
Current  
Power  
setting  
CR0=0x00  
CR1=0x00  
CR2=0x00  
0.02 µA  
0.20 µA  
0.05 µW  
0.36 µW  
0.41 µW  
1
Power Down  
Digital:  
Total:  
CR0=0xD0  
CR1=0x0C  
CR2=0xC0  
Analog:  
Digital:  
Total:  
4.3 mA  
11.6 mW  
0.0 mW  
Stereo analog path  
(Mic-LO)  
MICLO=1  
2
3
2.0 µA  
MICSEL=2  
11.6 mW  
Analog:  
Digital:  
Total:  
5.4 mA  
14.6 mW  
0.0 mW  
CR0=0xD0;  
CR1=0x0C;  
CR2=0xC3  
Stereo analog path  
(Mic-Mixer-LO)  
MIXMIC=1  
MICSEL=2  
2.0 µA  
14.6 mW  
60/85  
STw5098  
Operative ranges  
Master clock AMCK = 13 MHz  
Table 38. Typical power dissipation with master clock AMCK = 13 MHz  
CR0-CR2  
N.  
Function  
Other settings  
Supply  
Current  
Power  
setting  
CR0=0x00  
CR1=0x00  
CR2=0x00  
Analog:  
0.02 µA  
2.20 µA  
0.05 µW  
3.96 µW  
4.01 µW  
4
Power Down  
Digital:  
Total:  
CR0=0xE8  
CR1=0xCC  
CR2=0x00  
Analog:  
Digital:  
Total:  
7.9 mA  
2.8 mA  
21.3 mW  
5.0 mW  
MICSEL=1  
5
6
7
8
9
Stereo ADC  
Stereo DAC  
ADMIC=1  
26.3 mW  
CR0=0xE8  
CR1=0x30  
CR2=0x33  
Analog:  
Digital:  
Total:  
6.1 mA  
3.8 mA  
16.5 mW  
6.8 mW  
MIXDAC=1  
23.3 mW  
CR0=0xE8  
CR1=0x0C  
CR2=0xC0  
Analog:  
Digital:  
Total:  
4.8 mA  
0.8 mA  
13.0 mW  
1.4 mW  
Stereo analog path  
(Mic-LO)  
MICLO=1  
MICSEL=2  
13.8 mW  
CR0=0xE8  
CR1=0xFC  
CR2=0x33  
MICSEL=2  
ADMIC=1  
MIXDAC=1  
Analog:  
Digital:  
Total:  
13.5 mA  
5.8 mA  
36.5 mW  
10.4 mW  
46.9 mW  
Stereo ADC  
Stereo DAC  
Stereo ADC  
Stereo DAC  
CR0=0xE8  
CR1=0xFF  
LINSEL=2; MICSEL=2  
ADLIN=1;MIXDAC=1  
MICLO=1  
Analog:  
Digital:  
Total:  
15.2 mA  
5.8 mA  
41.0 mW  
10.4 mW  
51.4 mW  
Stereo analog path CR2=0xF3  
MICSEL=2;  
LSMODE=2  
VCCA,VCCP  
:
:
6.8 mA  
1.3 mA  
2.5 mA  
18.4 mW  
5.5 mW  
4.5 mW  
28.4 mW  
CR0=0xE8  
VCCLS  
ADMIC=1 MIXDAC=1  
ADVOICE=1  
10 Voice TX+RX  
CR1=0xA8  
CR2=0x06  
Digital  
Total:  
DAVOICE=1  
61/85  
Electrical characteristics  
STw5098  
10  
Electrical characteristics  
Unless otherwise specified, VCCIO = 1.71V to 2.7V, Tamb = -30°C to 85°C; typical  
characteristic are specified at VCCIO = 2.0V, Tamb = 25°C; all signals are referenced to GND.  
10.1  
Digital interfaces  
Table 39. Digital interfaces specifications  
Symbol  
Parameter  
Test conditions  
All digital inputs  
Min.  
Typ.  
Max.  
Unit  
DC  
AC  
0.3VCCIO  
0.2VCCIO  
V
V
VIL  
Input low voltage  
All digital inputs,  
DC  
AC  
0.7VCCIO  
0.8VCCIO  
V
V
VIH  
VOL  
VOH  
IIL  
Input high voltage  
Output low voltage  
Output high voltage  
Input low current  
Input high current  
All digital outputs IL = 10µA  
IL = 2µA  
0.1  
0.4  
V
V
All digital outputs IL = 10µA  
IL = 2µA  
VCCIO-0.1  
VCCIO-0.4  
V
V
Any digital input,  
GND < VIN < VIL  
-1  
-1  
1
1
µA  
µA  
Any digital input,  
VIH < VIN < VCCIO  
IIH  
Output current in  
high impedance  
(Tristate)  
IOZ  
Tristate outputs  
-1  
1
µA  
Note:  
See Figure 13: A.C. testing input-output waveform on page 58.  
10.2  
AMCK with sinusoid input  
Table 40. AMCK with sinusoid input specifications  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Minimum External  
Capacitance  
CAMCK  
AMCKSIN=1, see CR30  
100  
pF  
AMCK sinusoidal voltage  
swing  
VAMCK  
AMCKSIN=1, see CR30  
0.5  
VCCIO  
VPP  
62/85  
STw5098  
Electrical characteristics  
10.3  
Analog interfaces  
Information below is for each entity.  
Table 41. Analog interface specifications  
Symbol  
IMIC  
Parameter  
Test conditions  
GND< VMIC< VCCA  
Min.  
Typ.  
Max.  
Unit  
MIC input leakage  
-100  
30  
+100  
µA  
kΩ  
kΩ  
RMIC  
RLIN  
MIC input resistance  
Line in input resistance  
50  
30  
Headphones (HP) drivers HPL, HPR to GNDP or  
RLHP  
14.4  
30  
16/32  
32  
load resistance  
VCMHP  
Earphone (EAR) drivers  
load resistance  
RLEAR  
RLLS  
1 EARP to 1EARN  
Loudspeaker (LS) drivers  
load resistance  
2LSP to 2LSN  
6.4  
8
Headphones (HP) drivers HPL, HPR to GNDP or  
50  
50*  
pF  
nF  
CLHP  
load capacitance  
VCMHP  
Earphone (EAR) drivers  
load capacitance  
50  
50*  
pF  
nF  
CLEAR  
CLLS  
VOFFLS  
VOFFEAR  
1 EARP to 1EARN  
Loudspeaker (LS) drivers  
load capacitance  
50  
50*  
pF  
nF  
2LSP to 2LSN  
Differential offset voltage  
at 2LSP, 2LSN  
RL = 50Ω  
-50  
-50  
+50  
+50  
mV  
mV  
Differential offset voltage  
at 1EARP, 1EARN  
RL = 50Ω  
OLP/ORP to OLN/ORN or  
Line out (OL) diff./single-  
ended driver load  
resistance  
RLOL  
1
kΩ  
OLP/ORP to GND  
(decoupled)  
* with series resistor  
63/85  
Electrical characteristics  
STw5098  
10.4  
Headset plug-in and push-button detector  
Information below is for each entity.  
Table 42. Headset plug-in and push-button detector specifications  
Symbol  
HDVL  
Parameter  
Test conditions  
Voltage at HDET  
Min.  
Typ.  
Max.  
Unit  
Plug-in detected  
VCCA-1  
V
V
HDVH  
HDH  
Plug-in undetected  
Voltage at HDET  
VCCA-0.5  
Plug-in detector hysteresis  
Push-button pressed  
Push-button released  
100  
mV  
V
PBVL  
PBVH  
Voltage at HDET  
Voltage at HDET  
0.5  
50  
1
V
Push-button de-bounce  
time  
PBD  
15  
ms  
10.5  
Microphone bias  
Information below is for each entity.  
Table 43. Microphone bias specifications  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
MBIAS output  
voltage  
VMBIAS  
1.95  
2.1  
2.25  
1.1  
V
MBIAS output  
current  
IMBIAS  
From MBIAS to ground  
mA  
kΩ  
pF  
RMBIAS  
CMBIAS  
MBIAS output load  
3.5  
MBIAS output  
capacitance  
150  
PSRMB4  
PSRMB20  
MBIAS power  
supply rejection  
f<4kHz  
f<20kHz  
60  
50  
dB  
dB  
10.6  
Power supply rejection ratio  
Table 44. Power supply rejection ratio specifications  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Each output (LSP, LSN)  
f<20kHz  
PSRL20  
PSRL200  
PSRR VCCLS  
65  
47  
dB  
dB  
f<200kHz  
PSRPH  
PSRPOS  
PSRPOD  
Headphones f<20kHz  
Line out single ended f<20kHz  
Line out differential f<20kHz  
65  
65  
65  
dB  
dB  
dB  
PSRR VCCP  
PSRR VCCA  
PSRAM  
PSRAL  
Mic input f<20kHz  
Line In f<20kHz  
50  
50  
dB  
dB  
64/85  
STw5098  
Electrical characteristics  
10.7  
LS and EAR gain limiter  
Information below is for each entity.  
Table 45. LS and EAR gain limiter  
Symbol  
Parameter  
Test conditions  
CCLS raising  
VCCLS falling  
Min.  
Typ.  
Max.  
Unit  
High voltage at VCCLS  
(VLSH=1)  
VLSLIMH  
V
4.2  
V
Low voltage at VCCLS  
(VLSH=0)  
VLSLIML  
VLSLIMD  
4.0  
V
VCCLS Hysteresis  
200  
mV  
Note: See CR32 for VLSH definition. See Loudspeaker driver description in Section 4.10 for details.  
65/85  
Analog input/output operative ranges  
STw5098  
11  
Analog input/output operative ranges  
Information included in this section applies to both entities.  
11.1  
Analog levels  
Table 46. Reference full scale analog levels  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
12  
4
dBVpp  
Vpp  
0dBFS level  
2.7V < VCCA < 3.3V  
10  
dBVpp  
Vpp  
0dBFS level low voltage  
mode  
2.4V < VCCA < 2.7V  
3.18  
11.2  
Microphone input levels  
Analog supply range: 2.7 V < VCCA < 3.3 V  
Table 47. Microphone input levels, absolute levels at pins connected to preamplifiers  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
707  
2
-6  
mVRMS  
Vpp  
dBFS  
Overload level, single  
ended  
MIC gain = 0 to 6dB  
Overload level, single  
ended, versus MIC gain  
MIC gain > 6dB  
−(MIC_Gain)  
dBFS  
1.41  
4
mVRMS  
Vpp  
Overload level, differential MIC gain = 0dB  
0
dBFS  
Overload level, differential,  
MIC gain > 0dB  
−(MIC_Gain)  
dBFS  
versus MIC gain  
Note: When 2.4 V < V  
< 2.7 V, voltage values are reduced by 2dB.  
CCA  
Table 48. Microphone input levels, absolute levels at pins connected to the line-in amplifiers  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
707  
2
-6  
mVRMS  
Vpp  
dBFS  
Overload level, single  
ended  
Line in gain from 20dB to 6dB  
Overload level (single  
ended) versus line in gain  
Line in gain > 6dB  
−(Line_In_Gain)  
dBFS  
1.41  
4
0
mVRMS  
Vpp  
dBFS  
Overload level (differential) Line in gain from 20dB to 0dB  
66/85  
STw5098  
Analog input/output operative ranges  
Table 48. Microphone input levels, absolute levels at pins connected to the line-in amplifiers  
Symbol  
Parameter  
Test conditions  
Line in gain > 0dB  
Min.  
Typ.  
Max.  
Unit  
Overload level (differential)  
versus line in gain  
−(Line_In_Gain)  
dBFS  
Note: When 2.4 V < V  
< 2.7 V, the values are reduced by 2dB  
CCA  
11.3  
Line output levels  
Analog supply range: 2.7 V < VCCA < 3.3 V  
Table 49. Absolute levels at OLP/OLN, ORP/ORN  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
707  
2
-6  
mVRMS  
Vpp  
dBFS  
0 dB gain  
Full scale digital input  
Output level, single ended  
1.41  
4
0
mVRMS  
Vpp  
dBFS  
0 dB gain  
Output level, differential  
Full scale digital input  
Note: When 2.4 V < V  
< 2.7 V, the values are reduced by 2dB  
CCA  
11.4  
Power output levels HP  
Analog supply range: 2.7 V < VCCA < 3.3 V  
Table 50. Absolute levels at HPL - HPR  
Symbol Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
707  
2
mVRMS  
Vpp  
-6dB gain  
Output level  
Full scale digital input  
-6  
dBFS  
16 load  
Max output power(1)  
40  
mW  
VCCP > 3.2 V  
1. In some operating conditions the maximum output power can be limited. See “Section 9.1: Absolute maximum ratings” and  
“loudspeaker driver” description from Section 4.10: Analog output drivers for details.  
Note: When 2.4 V < V  
< 2.7 V, the values are reduced by 2dB  
CCA  
11.5  
Power output levels LS and EAR  
Analog supply range: 2.7 V < VCCA < 3.3 V  
67/85  
Analog input/output operative ranges  
STw5098  
Unit  
Table 51. Absolute levels at 1EARP-1EARN and 2LSP - 2LSN  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
1.41  
4
VRMS  
Vpp  
0 dB gain  
Output level  
Full scale digital input  
0
dBFS  
32 load  
Max EAR output power  
Max LS output power(1)  
125  
500  
mW  
VCCLS > 4V  
8 load  
VCCLS > 4V  
mW  
1. In some operating conditions the maximum output power can be limited. See “Section 9.1: Absolute maximum ratings” and  
“loudspeaker driver” description from Section 4.10: Analog output drivers for details.  
Note: When 2.4 V < V  
< 2.7 V, the values are reduced by 2dB  
CCA  
68/85  
STw5098  
Stereo audio ADC specifications  
12  
Stereo audio ADC specifications  
Information included in this section applies to both entities. Typical measures at  
VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8 V; Tamb=25° C;13 MHz AMCK  
Table 52. Stereo audio ADC specifications  
Symbol  
ADN  
Parameter  
Resolution  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
20  
Bits  
20Hz to 20kHz, A-weighted  
Measured at -60dBFS  
ADDRM  
ADDRLI  
Dynamic range  
87  
89  
91  
93  
dB  
dB  
MIC input, 21dB gain  
Line-In, 0dB gain  
Max level at MIC input, 21dB gain  
ADSNA  
ADSN  
Signal to noise ratio  
A-weighted  
Unweighted (20 Hz to 20 kHz)  
90  
86  
dB  
dB  
A-weighted  
Mic input 0dB gain  
Mic input 21dB gain  
Mic input 39dB gain  
Line in input 0dB gain  
Line in input 18dB gain  
37  
3.3  
1.9  
30  
µV  
µV  
µV  
µV  
µV  
Input referred ADC  
noise  
7.5  
Total harmonic  
distortion  
ADTHD  
Max level at MIC input, 21dB gain  
0.001  
0.003  
1
%
Measurement bandwidth 20Hz to  
20kHz, Fs= 48kHz. Combined digital  
and analog filter characteristics  
Deviation from  
linear phase  
Deg  
Combined digital and analog filter  
characteristics AD96K=0  
ADfPB  
Passband  
0
0.45Fs  
0.2  
kHz  
dB  
Combined digital and analog filter  
characteristics AD96K=0  
Passband ripple  
Stopband  
Combined digital and analog filter  
characteristics AD96K=0  
ADfSB  
0.55Fs  
60  
kHz  
Measurement bandwidth up to  
3.45Fs. Combined digital and analog  
filter characteristics, AD96K=0  
Stopband  
Attenuation  
dB  
Audio filters, 96kHz FS  
Audio filters, 48kHz FS  
Audio filters, 8kHz FS  
0.11  
0.4  
2.6  
ms  
ms  
ms  
ADtgd  
Group delay  
Interchannel  
isolation  
90  
dB  
Interchannel gain  
mismatch  
0.2  
0.5  
dB  
dB  
Gain error  
Note: When 2.4 V < V  
< 2.7 V, the values are reduced by 2dB  
CCA  
69/85  
Stereo audio DAC specifications  
STw5098  
13  
Stereo audio DAC specifications  
Information included in this section applies to both entities.  
Typical measures at VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25° C;13MHz  
AMCK  
Table 53. Stereo audio DAC specifications  
Symbol  
DAN  
Parameter  
Resolution  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
20  
Bits  
20Hz to 20kHz, A-weighted.  
Measured at -60dBFS  
Differential line out  
90  
95  
93  
94  
94  
dB  
dB  
dB  
dB  
DADR  
Dynamic range  
Single-ended line out  
HPL/HPR to GND or VCMHP  
LSP-LSN  
2Vpp output  
HPL, HPR gain set to -6dB, 16load  
DASNA  
DASN  
Signal to noise ratio  
A-weighted  
94  
90  
dB  
dB  
Unweighted (20 Hz to 20 kHz)  
Total harmonic  
distortion  
2Vpp output  
DATHDL  
DATHD  
0.02  
0.04  
%
%
HPL, HPR gain set to -6dB, 16load  
Worst case load  
Total harmonic  
distortion  
2Vpp output,  
HPL, HPR gain set to -6dB, 1kload  
0.004  
Measurement bandwidth 20Hz to  
20kHz, Fs= 48kHz.  
Deviation from  
linear phase  
1
Deg  
Combined digital and analog filter  
characteristics  
Combined digital and analog filter  
characteristics, DA96K=0  
DAfPB  
Passband  
0
0.45Fs  
0.2  
kHz  
dB  
Combined digital and analog filter  
characteristics, DA96K=0  
Passband ripple  
Stopband  
Combined digital and analog filter  
characteristics, DA96K=0  
DAfSB  
0.55Fs  
50  
kHz  
Measurement bandwidth up to  
3.45Fs.  
Combined digital and analog filter  
characteristics, DA96K=0  
Stopband  
attenuation  
dB  
Transient  
TSF  
suppression filter  
cut-off frequency  
15  
23  
Hz  
Measurement bandwidth 20 kHz to  
100 kHz. Zero input signal  
Out of band noise  
-85  
dBr  
70/85  
STw5098  
AD to DA mixing (sidetone) specifications  
Table 53. Stereo audio DAC specifications (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Audio filters, 96kHz FS  
0.09  
0.4  
ms  
ms  
ms  
DAtgd  
Group delay  
Audio filters, 48kHz FS  
Audio filters, 8kHz FS  
2.6  
2Vpp output  
HPR, HPL unloaded  
100  
60  
dB  
dB  
Interchannel  
isolation  
HPR, HPL with 16to VCMHP  
Interchannel gain  
mismatch  
0.2  
0.5  
dB  
dB  
Gain error  
Startup time from  
power up  
FS=48 kHz  
Line out  
HPL/R out  
1
10  
ms  
ms  
SUT  
Note: When 2.4 V < V  
< 2.7 V, values are reduced by 2 dB  
CCA  
14  
AD to DA mixing (sidetone) specifications  
Information included in this section applies to both entities.  
Typical measures at VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25° C;13MHz  
AMCK.  
Table 54. AD to DA mixing (sidetone) specifications  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
AD to DA mixing  
(sidetone) delay  
STDEL  
Valid for audio and voice filters  
5
10  
µs  
71/85  
Stereo analog-only path specifications  
STw5098  
15  
Stereo analog-only path specifications  
Information included in this section applies to both entities.  
Measured at differential line-out, ENOSC=1, No master clock.  
Typical measures at VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25° C  
Table 55. Stereo analog-only path specifications  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
20Hz to 20kHz, A-weighted.  
Measured at -60dBFS  
AADRM  
AADRLI  
Dynamic range  
MIC input, 21dB gain  
90  
90  
95  
97  
dB  
dB  
Line-In, 0dB gain  
Max level at line-in input, 0dB gain,  
AASNA  
AASN  
Signal to noise ratio  
97  
94  
dB  
dB  
A-weighted  
Unweighted (20 Hz to 20 kHz)  
1kHz @ 0dBFS  
Total harmonic  
distortion  
AATHD  
MIC input, 21dB gain  
Line-in input, 0dB gain  
0.003  
0.004  
0.01  
0.02  
%
%
Note: When 2.4V<V  
<2.7V, the values are reduced by 2dB.  
CCA  
72/85  
STw5098  
ADC (TX) & DAC (RX) specifications with voice filters selected  
16  
ADC (TX) & DAC (RX) specifications with voice filters  
selected  
Information included in this section applies to both entities.  
Typical measures at VCCA=VCCP=VCCLS=2.7V; VCCIO=VCC=1.8V; Tamb=25° C;13MHz  
AMCK  
Table 56. ADC (TX) & DAC (RX) specifications with voice filters selected  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
300Hz to 3.4kHz; 1kHz @ -60dBFS  
TX Path, MIC input, 21dB gain  
RX Path, LS Output, 0dB gain  
TXDR  
Dynamic range  
86  
83  
89  
86  
dB  
dB  
RXDR  
300Hz to 3.4kHz; 1kHz @ 0dBFS  
TX Path, MIC input, 21dB gain  
TXSN  
RXSN  
Signal to noise ratio  
THD  
88  
86  
dB  
dB  
RX Path, LS and EAR outputs, 0dB gain  
1kHz @ 0dBFS  
THD  
TXG  
TX Path, MIC input, 21dB gain  
RX Path, LS and EAR outputs, 0dB gain  
<0.001  
0.005  
%
%
f=60Hz  
f=100Hz  
-30  
-24  
-6  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
f=200Hz  
f=300Hz  
-1.5  
-0.5  
-1.5  
0.5  
0.5  
0.0  
-14  
-35  
-47  
TX gain mask  
f=400Hz-3000Hz  
f=3400Hz  
f=4000H  
f=4600Hzz  
f=8000Hz  
f=60Hz  
f=100Hz  
-20  
-12  
-2  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
f=200Hz  
f=300Hz  
-1.5  
-0.5  
-1.5  
0.5  
0.5  
0.0  
-14  
-50  
RXG  
RX gain mask  
f=400Hz-3000Hz  
f=3400Hz  
f=4000Hz  
f=5000Hz  
RX out of band  
noise  
Measurement bandwidth 4kHz to  
100kHz. Zero input signal  
-85  
dBr  
TX path  
RX path  
0.32  
0.28  
ms  
ms  
Group delay  
Note: When 2.4V<V  
<2.7V, the values are reduced by 2dB  
CCA  
73/85  
Typical performance plots  
STw5098  
17  
Typical performance plots  
Figure 14. Bass treble control, de-emphasis  
Figure 15. Dynamic compressor transfer  
filter  
function  
15  
1
0.75  
0.5  
10  
5
0.25  
0
0
-5  
-0.25  
-0.5  
-0.75  
-1  
-10  
-15  
100  
1k  
10k  
-1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1  
Input Amplitude [FS]  
Frequency [Hz]  
Bass and treble gains are independently selectable in any combination.  
The de-emphasis filter (thick line, alternative to treble control)  
compensates for pre-emphasis used on some audio CDs.  
Audio signal transfer function when the Dynamic Compressor is active.  
Gain error < 0.1dB. Filter characteristics at Fs=44.1kHz are plotted  
Figure 16. ADC audio path measured filter  
response  
Figure 17. ADC in band audio path measured  
filter response  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
1k  
10k  
100k  
0
5k  
10k  
15k  
20k  
Frequency [Hz]  
Frequency [Hz]  
48 kHz sample rate.  
Full ADC path Frequency response up to 100 kHz.  
48 kHz Sample Rate.  
In band Frequency response  
Figure 18. DAC digital audio filter  
characteristics  
Figure 19. DAC in band digital audio filter  
characteristics  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
-20  
-40  
-60  
-80  
100  
1k  
10k  
100k  
0
5k  
10k  
15k  
20k  
Frequency [Hz]  
Frequency [Hz]  
DA96K=0; 48 kHz Sample Rate  
Frequency response up to 166kHz (3.45 Fs @ 48kHz sampling rate)  
48 kHz Sample Rate  
In band Frequency response  
74/85  
STw5098  
Typical performance plots  
Figure 20. ADC 96 kHz audio path measured Figure 21. ADC 96 kHz audio in-band  
filter response  
measured filter response  
1
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-1  
-2  
-3  
-4  
-5  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k  
Frequency [Hz]  
10  
100  
1k  
10k  
100k  
Frequency [Hz]  
The plot is extended down to 5 Hz to show the high pass filter  
implemented in the ADC 96 kHz sample rate,  
96 kHz audio filter selected signal from Mic input  
96 kHz sample rate,  
96 kHz audio filter selected signal from Mic input.  
Figure 22. ADC voice TX path measured filter Figure 23. ADC voice TX path measured in-  
response  
band filter response  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
500 1k 1500 2k 2500 3k 3500 4k  
Frequency [Hz]  
100  
1k  
Frequency [Hz]  
10k  
8 kHz sample rate, tx voice filter selected signal from Mic input.  
8 kHz Sample rate, tx voice filter selected.  
Signal from Mic input  
Figure 24. DAC voice (RX) digital filter  
characteristics  
Figure 25. DAC voice (RX) in-band digital filter  
characteristics  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-0.5  
100  
1k  
10k  
500 1k 1500 2k 2500 3k 3500 4k  
Frequency [Hz]  
Frequency [Hz]  
8 kHz sample rate, rx voice filter  
8 kHz sample rate, rx voice filter  
75/85  
Typical performance plots  
Figure 26. ADC path FFT  
STw5098  
Figure 27. ADC S/N versus input-level  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-60  
-50  
-40  
-30  
-20  
-10  
0
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k  
Frequency [Hz]  
Input Level [dBFS]  
12 MHz master clock.  
12 MHz master clock  
Differential input at Mic preamplifier, 21 dB gain.  
48 kHz sampling rate.  
Differential input at Line-In Amplifier, 0 dB gain.  
48 kHz Sampling Rate  
Both channels active  
A-Weighted, Both channels active  
Figure 28. DAC path FFT  
Figure 29. DAC S/N versus input-level  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k  
Frequency [Hz]  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Level [dBFS]  
12 MHz master clock.  
48 kHz sampling rate  
Differential output at line-out, 1kload.  
Both channels active  
12 MHz master clock.  
48 kHz Sampling Rate  
Differential output at Line-Out, 1kload.  
A-Weighted, Both channels active  
Figure 30. Analog path FFT  
Figure 31. Analog path S/N versus input-level  
100  
90  
80  
70  
60  
50  
40  
30  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-60  
-50  
-40  
-30  
-20  
-10  
0
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k  
Frequency [Hz]  
Input Level [dBFS]  
Differential input at Mic Preamplifier, 21 dB gain.  
Direct Mic to Line-Out connection (MICLO=1)  
Differential input at Line-In Amplifier, 0 dB gain.  
Line-In to DA-Mixer to Line-Out connection.  
Differential output at Line-Out, 20kload. Both channels active  
Differential output at Line-Out, 20kload. A-weighted, both channels  
active  
76/85  
STw5098  
Package mechanical data  
18  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a Lead-free second level interconnect. The category of  
second Level Interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com.  
77/85  
Package mechanical data  
STw5098  
18.1  
LFBGA 6x6x1.4  
Table 57. Dimensions of LFBGA 6x6x1.4 112 4R11x11. 0.5  
Databook (mm)  
Typ.  
Drawing (mm)  
Reference  
Notes  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
1.40  
1.26  
0.26  
1.04  
0.24  
0.80  
0.35  
6.10  
Note 1  
A1  
A2  
A3  
A4  
b
0.15  
0.16  
0.93  
0.16  
0.77  
0.25  
5.90  
0.21  
0.985  
0.20  
0.785  
0.30  
6.00  
5.00  
6.00  
5.00  
0.50  
0.50  
0.985  
0.20  
0.80  
0.35  
6.15  
0.25  
5.85  
0.30  
6.00  
5.00  
6.00  
5.00  
0.50  
0.50  
Note 2  
D
D1  
E
5.85  
6.15  
5.90  
6.10  
E1  
e
F
ddd  
eee  
fff  
0.08  
0.15  
0.05  
0.08  
0.15  
0.05  
Note 4  
Note 5  
Note:  
1
LFBGA stands for Low Profile Fine Pitch Ball Grid Array.  
- Low profile: the total profile height (DIm A) is measured from the seating plane to the top of  
the component. The maximum total package height is calculated as follows:  
2
2
2
A2Typ + A1Typ + (A1 + A3 + A4 tolerancevalues) . Fine pitch: e<1.0 mm pitch  
2
3
The typical ball diameter before mounting is 0.30 mm  
The tolerance of position that controls the location of the pattern of balls with respect to  
datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to  
datum C and located on true position with respect to datum A and B as defined by e. The  
axis perpendicular to datum C of each ball must lie within this tolerance zone.  
4
5
The tolerance of position that controls the location of the balls within the matrix with respect  
to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C  
and located on true position as defined by e. The axis perpendicular to datum C of each ball  
must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely  
in the respective zone eee above.  
The axis of each ball must lie simultaneously in both tolerance zones.  
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink  
or metallized markings, or other feature of package body or integral heatslug. A  
distinguishing feature is allowable on the bottom surface of the package to identify the  
terminal A1 corner. Exact shape of each corner is optional.  
78/85  
STw5098  
Package mechanical data  
Figure 32. LFBGA 6x6x1.4 112 4R11x11 0.5 drawing  
SEATING  
PLANE  
C
D
D1  
e
f
K
J
I
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11  
BOTTOM VIEW  
A1 CORNER INDEX AREA Øb (112 BALLS)  
(SEE NOTE 3)  
79/85  
Package mechanical data  
STw5098  
18.2  
VFBGA 5x5x1.0  
Table 58. Dimensions of VFBGA 5x5x1.0 112 balls 0.4 mm pitch  
Databook (mm)  
Typ.  
Drawing (mm)  
Typ.  
Reference  
Notes  
Min.  
Max.  
Min.  
Max.  
A
1.00  
0.99  
0.205  
0.82  
0.22  
0.60  
0.30  
5.05  
Note 1  
A1  
A2  
A3  
A4  
b
0.125  
0.125  
0.71  
0.14  
0.57  
0.22  
4.95  
0.165  
0.765  
0.18  
0.585  
0.26  
5.00  
4.00  
5.00  
4.00  
0.40  
0.50  
0.765  
0.18  
0.60  
0.30  
5.05  
0.22  
4.95  
0.26  
5.00  
4.00  
5.00  
4.00  
0.40  
0.50  
Note 2  
D
D1  
E
4.95  
5.05  
4.95  
5.05  
E1  
e
Note 3  
F
ddd  
eee  
fff  
0.08  
0.13  
0.04  
0.08  
0.13  
0.04  
Note 4  
Note 5  
Note:  
1
VFBGA stands for Very thin Profile Fine Pitch Ball Grid Array.  
The maximum total package height is calculated by the following methodology:  
A2Typ + A1Typ + (A1 + A3 + A4 tolerancevalues) .  
2
2
2
Very thin profile: 0.80mm < A 1.00mm Max/Fine pitch: e<1.0 mm  
2
3
4
The typical ball diameter before mounting is 0.25 mm  
VFBGA with 0.40mm ball pitch is not yet registered into JEDEC publications.  
The tolerance of position that controls the location of the pattern of balls with respect to  
datum A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to  
datum C and located on true position with respect to datum A and B as defined by e. The  
axis perpendicular to datum C of each ball must lie within this tolerance zone.  
5
6
The tolerance of position that controls the location of the balls within the matrix with respect  
to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C  
and located on true position as defined by e. The axis perpendicular to datum C of each ball  
must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely  
in the respective zone eee above.  
The axis of each ball must lie simultaneously in both tolerance zones.  
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink  
or metallized markings, or other feature of package body or integral heatslug. A  
distinguishing feature is allowable on the bottom surface of the package to identify the  
terminal A1 corner. Exact shape of each corner is optional.  
80/85  
STw5098  
Package mechanical data  
Figure 33. VFBGA 5x5x1.0 112 0.4 drawing  
81/85  
Application schematics  
STw5098  
19  
Application schematics  
See Figure 34: STw5098 application schematics.  
82/85  
STw5098  
Application schematics  
Figure 34. STw5098 application schematics  
83/85  
Ordering information  
STw5098  
20  
Ordering information  
Table 59. Order codes  
Part Number  
Package  
Packing  
STw5098  
LFBGA 6x6x1.4, 0.5 mm pitch, 112 pins  
LFBGA 6x6x1.4, 0.5 mm pitch, 112 pins  
VFBGA 5x5x1.0, 0.4 mm pitch, 112 pins  
VFBGA 5x5x1.0, 0.4 mm pitch, 112 pins  
Tray  
STw5098T  
Tape and reel  
Tray  
STw5098BBLR/LF  
STw5098BBLT/LF  
Tape and reel  
21  
Revision history  
Table 60. Document revision history  
Date  
Revision  
Changes  
24-Apr-2007  
1
Initial release.  
84/85  
STw5098  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
85/85  

相关型号:

STW5098BBLT

Dual low power asynchronous stereo audio Codec with integrated power amplifiers
STMICROELECTR

STW5098BBLT/LF

Dual low power asynchronous stereo audio Codec with integrated power amplifiers
STMICROELECTR

STW5098BLT/HF

IC,SOUNDCARD CIRCUITS,BGA,112PIN,PLASTIC
STMICROELECTR

STW5098T

Dual low power asynchronous stereo audio Codec with integrated power amplifiers
STMICROELECTR

STW5098_07

Dual low power asynchronous stereo audio Codec with integrated power amplifiers
STMICROELECTR

STW50N10

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR
STMICROELECTR

STW50NB20

N - CHANNEL 200V - 0.047ohm - 50A - TO-247 PowerMESH MOSFET
STMICROELECTR

STW51000

SUPER INTEGRATED DSP ENGINE
STMICROELECTR

STW51000AT

SUPER INTEGRATED DSP ENGINE
STMICROELECTR

STW5200

24-bit, 103 dB SNR audio DAC
STMICROELECTR

STW52000K/HF

24-bit, 103 dB SNR audio DAC
STMICROELECTR

STW52000KHF

24-bit, 103 dB SNR audio DAC
STMICROELECTR