TDE1897CFPT [STMICROELECTRONICS]

暂无描述;
TDE1897CFPT
型号: TDE1897CFPT
厂家: ST    ST
描述:

暂无描述

驱动器 开关 电源开关
文件: 总12页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDE1897C  
TDE1898C  
0.5A HIGH-SIDE DRIVER  
INDUSTRIAL INTELLIGENT POWER SWITCH  
PRELIMINARY DATA  
0.5A OUTPUT CURRENT  
MULTIPOWER BCD TECHNOLOGY  
18V TO 35V SUPPLY VOLTAGE RANGE  
INTERNAL CURRENT LIMITING  
THERMAL SHUTDOWN  
OPEN GROUND PROTECTION  
INTERNAL NEGATIVE VOLTAGE CLAMPING  
TO VS - 45V FOR FAST DEMAGNETIZATION  
DIFFERENTIAL INPUTS WITH LARGE COM-  
MON MODE RANGE AND THRESHOLD  
HYSTERESIS  
UNDERVOLTAGE LOCKOUTWITH HYSTERESIS  
OPEN LOAD DETECTION  
Minidip  
SIP9  
SO20  
ORDERING NUMBERS:  
TDE1898CSP  
TDE1897CDP  
TDE1898CDP  
TDE1897CFP  
TDE1898CFP  
TWO DIAGNOSTIC OUTPUTS  
OUTPUT STATUS LED DRIVER  
ogy, for driving inductive or resistive loads. An in-  
ternal Clamping Diode enables the fast demag-  
netization of inductive loads.  
Diagnostic for CPU feedback and extensive use  
of electrical protections make this device inher-  
ently indistructible and suitable for general pur-  
pose industrial applications.  
DESCRIPTION  
The TDE1897C/TDE1898C is a monolithic Intelli-  
gent Power Switch in Multipower BCD Technol-  
BLOCK DIAGRAM  
October 1995  
1/12  
TDE1897C - TDE1898C  
PIN CONNECTIONS (Top view)  
Minidip  
SO20  
SIP9  
ABSOLUTE MAXIMUM RATINGS (Minidip pin reference)  
Symbol  
Parameter  
Supply Voltage (Pins 3 - 1) (TW < 10ms)  
Supply to Output Differential Voltage. See also VCl 3-2 (Pins 3 - 2)  
Input Voltage (Pins 7/8)  
Value  
Unit  
V
VS  
VS – VO  
Vi  
50  
internally limited  
-10 to VS +10  
43  
V
V
Vi  
Differential Input Voltage (Pins 7 - 8)  
V
Ii  
Input Current (Pins 7/8)  
20  
mA  
A
IO  
Output Current (Pins 2 - 1). See also ISC  
Energy from Inductive Load (TJ = 85°C)  
Power Dissipation. See also THERMAL CHARACTERISTICS.  
internally limited  
200  
El  
mJ  
W
°C  
°C  
Ptot  
Top  
Tstg  
internally limited  
-25 to +85  
-55 to 150  
Operating Temperature Range (Tamb  
)
Storage Temperature  
THERMAL DATA  
Symbol  
Description  
Minidip  
Sip  
10  
SO20  
90  
Unit  
°C/W  
°C/W  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction-case  
Thermal Resistance Junction-ambient  
Max.  
Max.  
100  
70  
2/12  
TDE1897C - TDE1898C  
ELECTRICAL CHARACTERISTICS (VS = 24V; Tamb = –25 to +85°C,unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Vsmin  
3
Supply Voltage for Valid  
Diagnostics  
Idiag > 0.5mA @ Vdg1 = 1.5V  
9
35  
V
Vs 3  
Iq 3  
Supply Voltage (operative)  
Quiescent Current  
18  
24  
35  
V
Vil  
Vih  
2.5  
4.5  
4
7.5  
mA  
mA  
I
out = Ios = 0  
Vsth1  
Undervoltage Threshold 1  
Undervoltage Threshold 2  
Supply Voltage Hysteresis  
Short Circuit Current  
(See fig. 1); Tamb = 0 to +85°C  
(See fig. 1); Tamb = 0 to +85°C  
(See fig. 1); Tamb = 0 to +85°C  
VS = 18 to 35V; RL = 1  
11  
V
V
V
A
Vsth2  
Vshys  
Isc  
3
15.5  
3
0.4  
1
0.75  
1.5  
Vdon 3-2  
Output Voltage Drop  
@ Iout = 625mA; Tj = 25°C  
@ Iout = 625mA; Tj = 125°C  
250  
400  
425  
600  
mV  
mV  
Ioslk  
Vol  
2
Output Leakage Current  
Low State Out Voltage  
@ Vi = Vil , Vo = 0V  
300  
1.5  
55  
6
µA  
V
2
@ Vi = Vil; RL = ∞  
0.8  
1.4  
Vcl 3-2  
Iold  
Internal Voltage Clamp (VS - VO) @ IO = -500mA  
45  
1
V
2
Open Load Detection Current  
Vi = Vih; Tamb = 0 to +85°C  
mA  
V
Vid 7-8  
Common Mode Input Voltage  
Range (Operative)  
VS = 18 to 35V,  
VS = Vid 7-8 < 37V  
–7  
15  
Iib 7-8  
Vith 7-8  
Viths 7-8  
Input Bias Current  
Vi = –7 to 15V; –In = 0V  
V+In > V–In  
–700  
0.8  
700  
2
µA  
V
Input Threshold Voltage  
Input Threshold Hysteresis  
Voltage  
V+In > V–In  
50  
400  
mV  
Rid 7-8  
Diff. Input Resistance  
@ 0 < +In < +16V; –In = 0V  
@ –7 < +In < 0V; –In = 0V  
400  
150  
KΩ  
KΩ  
I
ilk 7-8  
Input Offset Current  
V+In = V–In  
0V < Vi <5.5V  
+Ii  
–Ii  
–20  
–75  
+20  
+50  
µA  
µA  
–25  
–In = GND  
0V < V+In <5.5V  
+Ii  
+10  
–125  
µA  
µA  
–Ii –250  
+In = GND  
0V < V–In <5.5V  
+Ii –100  
–30  
–15  
µA  
µA  
–Ii  
–50  
V
oth1 2  
oth2 2  
ohys 2  
Output Status Threshold 1  
Voltage  
(See fig. 1)  
(See fig. 1)  
(See fig. 1)  
12  
V
V
V
V
Output Status Threshold 2  
Voltage  
9
0.3  
2
V
Output Status Threshold  
Hysteresis  
0.7  
2
Iosd 4  
Output Status Source Current  
Vout > Voth1, Vos = 2.5V  
Vs – Vos @ Ios = 2mA;  
4
5
mA  
V
Vosd 3-4  
Active Output Status Driver  
Drop Voltage  
T
amb = -25 to 85°C  
Ioslk  
4
Output Status Driver Leakage  
Current  
Vout < Voth2 , Vos = 0V  
VS = 18 to 35V  
25  
µA  
Vdgl 5/6  
Idglk 5/6  
Diagnostic Drop Voltage  
D1 / D2 = L @ Idiag = 0.5mA  
D1 / D2 = L @ Idiag = 3mA  
250  
1.5  
mV  
V
Diagnostic Leakage Current  
D1 / D2 =H @ 0 < Vdg < Vs  
VS = 15.6 to 35V  
25  
µA  
Vfdg 5/6-3  
Clamping Diodes at the  
Diagnostic Outputs.  
Voltage Drop to VS  
@ Idiag = 5mA; D1 / D2 = H  
2
V
Note Vil < 0.8V, Vih > 2V @ (V+In > V–In); Minidip pin reference.  
All test not dissipative.  
3/12  
TDE1897C - TDE1898C  
SOURCE DRAIN NDMOS DIODE  
Symbol  
Vfsd 2-3  
Ifp 2-3  
Parameter  
Forward On Voltage  
Test Condition  
@ Ifsd = 625mA  
Min.  
Typ.  
Max.  
1.5  
2
Unit  
V
1
Forward Peak Current  
Reverse Recovery Time  
Forward Recovery Time  
t = 10ms; d = 20%  
A
trr 2-3  
If = 625mA di/dt = 25A/µs  
200  
50  
ns  
ns  
tfr 2-3  
THERMAL CHARACTERISTICS (*)  
Θ Lim  
Junction Temp. Protect.  
Thermal Hysteresis  
135  
150  
30  
°C  
°C  
TH  
SWITCHING CHARACTERISTICS (VS = 24V; RL = 48) (*)  
ton  
toff  
td  
Turn on Delay Time  
Turn off Delay Time  
100  
20  
µs  
µs  
µs  
Input Switching to Diagnostic  
Valid  
100  
Note Vil < 0.8V, Vih > 2V @ (V+In > V–In); Minidip pin reference.  
(*) Not tested.  
Figure 1  
DIAGNOSTIC TRUTH TABLE  
Diagnostic Conditions  
Input  
Output  
Diag1  
Diag2  
Normal Operation  
L
H
L
H
H
H
H
H
Open Load Condition (Io < Iold  
Short to VS  
)
L
H
L
H
H
L
H
H
L
H
H
H
L
L
H
H
Short Circuit to Ground (IO = ISC  
)
(**)  
TDE1897C  
TDE1898C  
H
H
<H (*)  
H
L
H
L
H
H
H
H
Output DMOS Open  
Overtemperature  
L
H
L
L
H
L
H
H
L
H
L
L
H
H
L
L
Supply Undervoltage (VS < Vsth1 in the falling phase of the  
supply voltage; VS < Vsth2 in the rising phase of the supply  
voltage)  
L
H
L
L
L
L
L
L
(*) According to the intervention of the current limiting block.  
(**) Acold lamp filament, or a capacitive load may activate the current limiting circuit of the IPS, when the IPS is initially turned on. TDE1897  
uses Diag2 to signal such condition, TDE1898 does not.  
4/12  
TDE1897C - TDE1898C  
APPLICATION INFORMATION  
Figure 3: DemagnetizationCycle Waveforms  
DEMAGNETIZATION OF INDUCTIVE LOADS  
An internal zener diode, limiting the voltage  
across the Power MOS to between 45 and 55V  
(Vcl), provides safe and fast demagnetization of  
inductiveloads without external clamping devices.  
The maximum energy that can be absorbed from  
an inductive load is specified as 200mJ (at  
Tj = 85°C).  
To define the maximumswitching frequencythree  
points have to be considered:  
1) The total power dissipation is the sum of the  
On State Power and of the Demagnetization  
Energy multiplied by the frequency.  
2) The total energy W dissipated in the device  
during a demagnetizationcycle (figg. 2, 3) is:  
Vcl – Vs  
RL  
V
s
Vcl – Vs  
L
RL  
W = Vcl  
Io –  
log 1 +  
Where:  
Vcl = clamp voltage;  
L =inductive load;  
RL = resistive load;  
Vs = supply voltage;  
IO = ILOAD  
3) In normal conditions the operating Junction  
temperature should remain below 125°C.  
Figure 4: Normalized RDSON vs. Junction  
Figure 2: InductiveLoad Equivalent Circuit  
Temperature  
D93IN018  
α
1.8  
RDSON (Tj)  
α=  
RDSON (Tj=25°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
-25  
0
25  
50  
75  
100 125  
Tj (°C)  
5/12  
TDE1897C - TDE1898C  
the third element are constant, while the first  
one increases with temperature because  
RDSON increasesas well.  
WORST CONDITION POWER DISSIPATION IN  
THE ON-STATE  
In IPS applications the maximum average power  
dissipation occurs when the device stays for a  
long time in the ON state. In such a situation the  
internal temperature depends on delivered cur-  
rent (and related power), thermal characteristics  
of the packageand ambient temperature.  
At ambient temperature close to upper limit  
(+85°C) and in the worst operating conditions, it is  
possible that the chip temperature could increase  
so much to make the thermal shutdown proce-  
dure untimely intervene.  
3) The chip temperature must not exceed ΘLim  
in order do not lose the control of the device.  
The heat dissipation path is represented by  
the thermal resistance of the system device-  
board-ambient (Rth). In steady state condi-  
tions, this parameter relates the power dissi-  
pated Pon to the silicon temperature Tj and  
the ambient temperature Tamb  
:
Our aim is to find the maximum current the IPS  
can withstand in the ON state without thermal  
shutdown intervention, related to ambient tem-  
perature. To this end, we should consider the fol-  
lowing points:  
1) The ON resistance RDSON of the output  
NDMOS (the real switch) of the device in-  
creases with its temperature.  
T j ± T amb = P on R th  
(2)  
From this relationship, the maximum power  
Pon which can be dissipated without exceed-  
ing ΘLim at a given ambient temperature  
Tamb is:  
ΘLim ± T amb  
P on  
=
Experimentalresults show that silicon resistiv-  
ity increases with temperature at a constant  
rate, rising of 60% from 25°C to 125°C.  
The relationship between RDSON and tem-  
perature is therefore:  
R
th  
Replacing the expression (1) in this equation  
and solving for Iout, we can find the maximum  
current versus ambient temperature relation-  
ship:  
± 25 )  
j
R
DSON = R DSON0 ( 1 + k ) ( T  
where:  
Tj is the silicon temperature in °C  
ΘLim ± T amb  
± P q ± P os  
R th  
R
DSON0 is RDSON at Tj=25°C  
k is the constant rate (k = 4.711 10 ±3)  
(see fig. 4).  
I outx  
=
R
DSONx  
where RDSONx is RDSON at Tj=ΘLim. Of  
course, Ioutx values are top limited by the  
maximum operative current Ioutx (500mA  
nominal).  
From the expression (2) we can also find the  
maximum ambient temperature Tamb at which  
a given power Pon can be dissipated:  
2) In the ON state the power dissipated in the  
device is due to three contributes:  
a) power lost i2n the switch:  
P
out = I out  
R DSON (Iout is the output cur-  
rent);  
b) power due to quiescent current in the ON  
state Iq, sunk by the device in addition to  
Iout: P q = I q V s (Vs is the supply voltage);  
T
amb = ΘLim ± P  
R th =  
on  
2
= ΘLim ± ( I out  
R DSONx + P q + P os ) R  
th  
c) an external LED could be used to visualize  
the switch state (OUTPUT STATUS pin).  
Such a LED is driven by an internal current  
source (delivering Ios) and therefore,if Vos is  
the voltagedrop across the LED, the dissi-  
pated power is: P os = I os ( V s ± V os ).  
In particular, this relation is useful to find the  
maximum ambient temperature Tambx at  
which Ioutx can be delivered:  
2
T ambx = ΘLim ± ( I outx R DSONx  
+ P q + P os ) R th  
+
(4)  
Thus the total ON state power consumptionis  
given by:  
Referring to application circuit in fig. 5, let us con-  
sider the worst case:  
P
on = P out + P q + P os  
(1)  
- The supply voltage is at maximum value of in-  
dustrial bus (30V instead of the 24V nominal  
value). This means also that Ioutx rises of 25%  
In the right side of equation 1, the second and  
6/12  
TDE1897C - TDE1898C  
(625mA instead of 500mA).  
From equation 4, we can find:  
- All electrical parameters of the device, con-  
cerning the calculation, are at maximum val-  
ues.  
Tambx = 66.7°C (Minidip);  
73.5°C(SO20);  
87.2°C(SIP9).  
- Thermal shutdown threshold is at minimum  
value.  
Therefore, the IPS TDE1897/1898, although  
guaranteed to operate up to 85°C ambient tem-  
perature, if used in the worst conditions,can meet  
some limitations.  
- No heat sink nor air circulation (Rth equal to  
Rthj-amb).  
SIP9 package, which has the lowest Rthj-amb, can  
work at maximum operative current over the en-  
tire ambient temperature range in the worst condi-  
tions too. For other packages, it is necessary to  
consider some reductions.  
With the aid of equation 3, we can draw a derat-  
ing curve giving the maximum current allowable  
versus ambient temperature. The diagrams, com-  
puted using parameter values above given, are  
depicted in figg. 6 to 8.  
Therefore:  
Vs = 30V, RDSON0 = 0.6, Iq = 6mA, Ios = 4mA @  
Vos = 2.5V, ΘLim = 135°C  
Rthj-amb = 100°C/W (Minidip); 90°C/W (SO20);  
70°C/W (SIP9)  
It follows:  
Ioutx = 0.625mA, RDSONx = 1.006, Pq = 180mW,  
If an increase of the operating area is needed,  
heat dissipation must be improved (Rth reduced)  
e.g. by means of air cooling.  
Pos = 110mW  
Figure 5: Application Circuit.  
DC BUS 24V +/-25%  
+Vs  
+IN  
-IN  
+
-
CONTROL  
OUTPUT  
LOGIC  
D1  
D2  
µP POLLING  
Ios  
LOAD  
GND  
OUTPUT STATUS  
D93IN014  
7/12  
TDE1897C - TDE1898C  
Figure 6: Max. Output Current vs. Ambient  
Temperature(Minidip Package,  
Rth j-amb = 100°C/W)  
Figure 7: Max. Output Current vs. Ambient  
Temperature (SO20 Package,  
Rth j-amb = 90°C/W)  
D93IN016  
D93IN015  
(mA)  
600  
500  
400  
300  
200  
100  
0
(mA)  
600  
500  
400  
300  
200  
100  
0
0
20  
40  
60  
80  
100 (°C)  
0
20  
40  
60  
80  
100 (°C)  
Figure 8: Max. Output Current vs. Ambient  
Temperature(SIP9 Package,  
Rth j-amb = 70°C/W)  
D93IN017  
(mA)  
600  
500  
400  
300  
200  
100  
0
0
20  
40  
60  
80  
100 (°C)  
8/12  
TDE1897C - TDE1898C  
MINIDIP PACKAGE MECHANICAL DATA  
mm  
inch  
DIM  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
A
a1  
B
3.32  
0.131  
0.51  
1.15  
0.020  
0.045  
0.014  
0.008  
1.65  
0.55  
0.065  
0.022  
0.012  
0.430  
0.384  
b
0.356  
0.204  
b1  
D
E
0.304  
10.92  
9.75  
7.95  
0.313  
e
2.54  
7.62  
7.62  
0.100  
0.300  
0.300  
e3  
e4  
F
6.6  
0260  
0.200  
0.150  
0.060  
i
5.08  
3.81  
1.52  
L
3.18  
0.125  
Z
9/12  
TDE1897C - TDE1898C  
SIP9 PACKAGE MECHANICAL DATA  
mm  
inch  
TYP.  
DIM.  
MIN.  
TYP.  
MAX.  
7.1  
3
MIN.  
MAX.  
0.280  
0.118  
0.90  
A
a1  
B
2.7  
0.106  
23  
B3  
b1  
b3  
C
24.8  
0.976  
0.5  
0.020  
0.85  
1.6  
0.033  
0.063  
0.835  
3.3  
0.130  
0.017  
0.052  
c1  
c2  
D
0.43  
1.32  
21.2  
d1  
e
14.5  
2.54  
0.571  
0.100  
0.800  
e3  
L
20.32  
3.1  
0.122  
0.685  
L1  
L2  
L3  
L4  
M
3
0.118  
0.693  
17.6  
0.25  
0.010  
0,702  
17.4  
17.85  
3.2  
1
0.126  
0.039  
N
P
0.15  
0.006  
C
D
c2  
N
P
M
1
9
b1  
b3  
e
c1  
e3  
B
SIP9  
B3  
10/12  
TDE1897C - TDE1898C  
SO20 PACKAGE MECHANICAL DATA  
mm  
inch  
DIM.  
MIN.  
TYP.  
MAX.  
2.65  
0.2  
MIN.  
TYP.  
MAX.  
0.104  
0.008  
0.096  
0.019  
0.013  
A
a1  
a2  
b
0.1  
0.004  
2.45  
0.49  
0.32  
0.35  
0.23  
0.014  
0.009  
b1  
C
0.5  
0.020  
c1  
D
45° (typ.)  
12.6  
10  
13.0  
0.496  
0.394  
0.510  
0.419  
E
10.65  
e
1.27  
0.050  
0.450  
e3  
F
11.43  
7.4  
0.5  
7.6  
0.291  
0.020  
0.300  
0.050  
0.030  
L
1.27  
0.75  
M
S
8° (max.)  
11/12  
TDE1897C - TDE1898C  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No  
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned  
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-  
THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express  
written approval of SGS-THOMSON Microelectronics.  
1995 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -  
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
12/12  

相关型号:

TDE1897C_03

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1897R

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1897RDP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1897RFP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1897R_03

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898C

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898CDP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898CFP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898CFPT

0.5A high-side driver industrial intelligent power switch

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898CSP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898R

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TDE1898RDP

0.5A HIGH-SIDE DRIVER INDUSTRIAL INTELLIGENT POWER SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR