TS2007_11 [STMICROELECTRONICS]

3 W filter-free Class D audio power amplifer with 6-12 dB fixed gain select; 3 W无滤波器D类音频放大器的功率与6-12 dB的固定增益选择
TS2007_11
型号: TS2007_11
厂家: ST    ST
描述:

3 W filter-free Class D audio power amplifer with 6-12 dB fixed gain select
3 W无滤波器D类音频放大器的功率与6-12 dB的固定增益选择

音频放大器
文件: 总29页 (文件大小:492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS2007  
3 W filter-free Class D audio power amplifer with  
6-12 dB fixed gain select  
Features  
Operating range from V = 2.4 V to 5.5 V  
CC  
Standby mode active low  
TS2007IQT - DFN8  
Output power: 1.4 W at 5 V or 0.45 W at 3.0 V  
into 8 Ω with 1% THD+N max.  
Output power: 2.3 W at 5 V or 0.75 W at 3.0 V  
into 4 Ω with 1% THD+N max.  
Fixed gain select: 6 dB or 12 dB  
Low current consumption  
Efficiency: 88% typ.  
Signal-to-noise ratio: 94 dB typ.  
PSRR: 63 dB typ at 217 Hz with 6 dB gain  
PWM base frequency: 280 kHz  
Low pop & click noise  
TS2007IQT - DFN8  
Thermal shutdown protection  
DFN8 3 x 3 mm package  
8
7
6
5
1
2
3
Applications  
Cellular phones  
PDAs  
4
Notebook PCs  
Description  
The TS2007 is a class D power audio amplifier.  
Able to drive up to 1.4 W into an 8 Ω load at 5 V, it  
achieves outstanding efficiency compared to  
typical class AB audio power amplifiers.  
The TS2007 is available in DFN8 3 x 3 mm lead-  
free packages.  
This device allows switching between two  
different gains: 6 or 12dB via a logic signal on the  
GS pin. A pop & click reduction circuitry provides  
low on/off switching noise while allowing the  
device to start within 5 ms. A standby function  
(active low) allows lowering the current  
consumption down to 10 nA typ.  
May 2011  
Doc ID 13123 Rev 4  
1/29  
www.st.com  
29  
Contents  
TS2007  
Contents  
1
2
3
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
Electrical characteristic tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Differential configuration principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Common-mode feedback loop limitations . . . . . . . . . . . . . . . . . . . . . . . . 22  
Low frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Wake-up time (twu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Shutdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Consumption in shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Single-ended input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.10 Output filter considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5
6
7
2/29  
Doc ID 13123 Rev 4  
TS2007  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC  
Vi  
Supply voltage (1)  
6
V
V
Input voltage (2)  
GND to VCC  
Toper  
Tstg  
Tj  
Operating free air temperature range  
Storage temperature  
-40 to + 85  
°C  
-65 to +150  
°C  
Maximum junction temperature  
Thermal resistance junction to ambient (3)  
Power dissipation  
150  
°C  
Rthja  
Pd  
200  
°C/W  
Internally limited(4)  
ESD  
ESD  
HBM: human body model  
MM: machine model  
2
200  
kV  
V
Latch-up Latch-up immunity  
Lead temperature (soldering, 10 sec)  
Minimum load resistor  
Class A  
260  
°C  
RL  
3.2  
Ω
1. All voltage values are measured with respect to the ground pin.  
2. The magnitude of the input signal must never exceed VCC + 0.3 V / GND - 0.3 V.  
3. The device is protected in case of over temperature by a thermal shutdown active @ 150 °C.  
4. Exceeding the power derating curves during a long period will cause abnormal operation.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
VCC  
VI  
Supply voltage  
2.4 to 5.5  
GND to VCC  
V
V
V
Input voltage range  
Vic  
Input common mode voltage(1)  
Standby voltage input (2)  
GND+0.15 V to VCC-0.7 V  
VSTBY  
V
V
Device ON  
Device OFF  
1.4 VSTBY VCC  
GND VSTBY 0.4 (3)  
Gain select input:  
GS  
Gain =12dB  
Gain = 6dB  
GND VGS 0.4  
1.4 VGS VCC  
RL  
Load resistor  
4  
Ω
Rthja  
Thermal resistance junction to ambient (4)  
40  
°C/W  
1. I Voo I 35 mV max with both differential gains.  
2. Without any signal on VSTBY, the device is in standby (internal 300 kΩ pull down resistor).  
3. Minimum current consumption is obtained when VSTBY = GND.  
4. When mounted on 4-layer PCB.  
Doc ID 13123 Rev 4  
3/29  
 
 
Typical application  
TS2007  
2
Typical application  
Figure 1.  
Typical application schematics  
VCC  
VCC  
Cs  
1uF  
Input capacitors  
are optional  
TS2007  
OUT+  
In-  
GS  
Vcc  
Cin  
4
3
8
5
IN-  
-
Differential  
Input  
H
Gain  
Select  
Speaker  
PWM  
Bridge  
+
IN+  
OUT-  
Cin  
In+  
Standby  
Control  
Oscillator  
Gnd  
Standby  
VCC  
VCC  
VCC  
Cs  
1uF  
Input capacitors  
are optional  
4
Ω
LC Output Filter  
TS2007  
OUT+  
In-  
GS  
Vcc  
15 H  
μ
Cin  
4
3
8
5
IN-  
2
2
μ
F
F
-
Differential  
Input  
H
Gain  
Select  
PWM  
Load  
Bridge  
+
IN+  
OUT-  
μ
15  
30  
30  
μ
H
Cin  
In+  
Standby  
Control  
Oscillator  
Gnd  
Standby  
μ
H
1
1
μ
F
F
μ
μ
H
8
Ω
LC Output Filter  
VCC  
Table 3.  
External component descriptions  
Components  
Functional description  
CS  
Supply capacitor that provides power supply filtering.  
Input coupling capacitors (optional) that block the DC voltage at the amplifier input  
terminal. The capacitors also form a high pass filter with Zin  
(Fcl = 1 / (2 x Pi x Zin x Cin)).  
Cin  
4/29  
Doc ID 13123 Rev 4  
 
TS2007  
Typical application  
Table 4.  
Pin descriptions  
Pin name  
Pin number  
Pin description  
Standby pin ( active low )  
1
2
3
4
5
6
7
8
STBY  
GS  
Gain select input  
IN+  
Positive differential input  
Negative differential input  
Negative differential output  
Power supply  
IN-  
OUT-  
VCC  
GND  
OUT+  
Ground  
Positive differential output  
Doc ID 13123 Rev 4  
5/29  
 
Electrical characteristics  
TS2007  
3
Electrical characteristics  
3.1  
Electrical characteristic tables  
Table 5.  
V
= +5 V, GND = 0 V, V =2.5 V, T  
= 25 °C (unless otherwise specified)  
CC  
ic  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
2.3  
3.3  
mA  
No input signal, no load  
Standby current (1)  
10  
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
mV  
Floating inputs, RL = 8Ω  
Output power  
THD = 1% max, f = 1 kHz, RL = 4 Ω  
THD = 1% max, f = 1 kHz, RL = 8 Ω  
THD = 10% max, f = 1 kHz, RL = 4 Ω  
THD = 10% max, f = 1 kHz, RL = 8 Ω  
2.3  
1.4  
2.8  
1.7  
Po  
W
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.4  
%
%
Po = 1WRMS, G = 6 dB, f =1 kHz, RL = 8 Ω  
Efficiency  
84  
90  
Po = 2.1 WRMS, RL = 4 Ω (with LC output filter)  
Po = 1.3 WRMS, RL = 8 Ω (with LC output filter)  
Power supply rejection ratio with inputs grounded, Cin=1µF (2)  
PSRR  
CMRR  
Gain  
dB  
dB  
dB  
f = 217 Hz, RL = 8 Ω, Gain=6 dB,Vripple = 200 mVpp  
f = 217 Hz, RL = 8 Ω, Gain=12 dB, Vripple = 200 mVpp  
63  
60  
Common mode rejection ratio 20 Hz < f < 20 kHz  
60  
Gain value  
11.5  
5.5  
12  
6
12.5  
6.5  
GS =0 V  
GS = VCC  
Zin  
Single input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting)  
SNR  
tWU  
94  
5
dB  
ms  
Po=1.5 W, RL=4 Ω (with LC output filter)  
Wake-up time  
10  
6/29  
Doc ID 13123 Rev 4  
 
TS2007  
Table 5.  
Electrical characteristics  
V
= +5 V, GND = 0 V, V =2.5 V, T  
= 25 °C (unless otherwise specified) (continued)  
CC  
ic  
amb  
Symbol  
tSTBY  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Standby time  
5
ms  
Output voltage noise f = 20 Hz to 20 kHz, RL=4 Ω  
Unweighted (Filterless, G=6 dB)  
A-weighted (Filterless, G=6 dB)  
Unweighted (with LC output filter, G=6 dB)  
A-weighted (with LC output filter, G=6 dB)  
Unweighted (Filterless, G=12 dB)  
A-weighted (Filterless, G=12 dB)  
Unweighted (with LC output filter, G=12 dB)  
A-weighted (with LC output filter, G=12 dB)  
74  
50  
69  
49  
94  
65  
86  
64  
VN  
μVRMS  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217Hz.  
3. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
Doc ID 13123 Rev 4  
7/29  
Electrical characteristics  
TS2007  
(1)  
Table 6.  
Symbol  
V
= +4.2 V, GND = 0 V, V =2.1 V, T  
= 25 °C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
2.1  
3
mA  
No input signal, no load  
Standby current (2)  
No input signal, VSTBY = GND  
10  
1000  
25  
nA  
Output offset voltage  
Floating inputs, RL = 8 Ω  
mV  
Output power  
THD = 1% max, f = 1 kHz, RL = 4 Ω  
THD = 1% max, f = 1 kHz, RL = 8 Ω  
THD = 10% max, f = 1 kHz, RL = 4 Ω  
THD = 10% max, f = 1 kHz, RL = 8 Ω  
1.6  
0.95  
1.95  
1.1  
Po  
W
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.45  
%
%
Po = 800 mWRMS, G = 6 dB, f =1 kHz, RL = 8 Ω  
Efficiency  
Po = 1.5 WRMS, RL = 4 Ω (with LC output filter)  
Po = 0.95 WRMS, RL = 8 Ω (with LC output filter)  
85  
90  
Power supply rejection ratio with inputs grounded, Cin = 1 µF (3)  
PSRR  
CMRR  
Gain  
dB  
dB  
dB  
f = 217 Hz, RL = 8 Ω, Gain = 6 dB,Vripple = 200 mVpp  
f = 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
63  
60  
Common mode rejection ratio 20 Hz < f < 20 kHz  
60  
Gain value  
11.5  
5.5  
12.5  
6.5  
GS = 0 V  
GS = VCC  
12  
6
Zin  
Single input impedance (4)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting)  
SNR  
93  
dB  
Po=1.2 W, RL=4 Ω (with LC output filter)  
tWU  
Wake-up time  
5
5
10  
ms  
ms  
tSTBY  
Standby time  
Output voltage noise f = 20 Hz to 20 kHz, RL=4 Ω  
Unweighted (Filterless, G=6 dB)  
A-weighted (Filterless, G=6 dB)  
Unweighted (with LC output filter, G=6 dB)  
A-weighted (with LC output filter, G=6 dB)  
Unweighted (Filterless, G=12 dB)  
A-weighted (Filterless, G=12 dB)  
Unweighted (with LC output filter, G=12 dB)  
A-weighted (with LC output filter, G=12 dB)  
72  
50  
68  
49  
93  
65  
85  
64  
VN  
μVRMS  
1. All electrical values are guaranteed with correlation measurements at 2.4 V and 5 V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz.  
4. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
8/29  
Doc ID 13123 Rev 4  
TS2007  
Electrical characteristics  
(1)  
Table 7.  
Symbol  
V
= +3.6 V, GND = 0 V, V =1.8 V, T  
= 25 °C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
2
2.8  
mA  
No input signal, no load  
Standby current (2)  
10  
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
mV  
Floating inputs, RL = 8 Ω  
Output power  
1.1  
0.65  
THD+N = 1% max, f = 1 kHz, RL = 4 Ω  
THD+N = 1% max, f = 1 kHz, RL = 8 Ω  
THD = 10% max, f = 1 kHz, RL = 4 Ω  
THD = 10% max, f = 1 kHz, RL = 8 Ω  
Po  
W
1.4  
0.85  
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.3  
%
%
Po = 500 mWRMS, G = 6 dB, f = 1 kHz, RL = 8 Ω  
Efficiency  
84  
90  
Po = 1.1 WRMS, RL = 4 Ω (with LC output filter)  
Po = 0.65 WRMS, RL = 8 Ω (with LC output filter)  
Power supply rejection ratio with inputs grounded, Cin=1 µF (3)  
PSRR  
CMRR  
Gain  
dB  
dB  
dB  
f = 217 Hz, RL = 8 Ω, Gain = 6 dB, Vripple = 200 mVpp  
f = 217 Hz, RL = 8 Ω, Gain = 12 dB, Vripple = 200 mVpp  
63  
60  
Common mode rejection ratio 20 Hz < f < 20 kHz  
60  
Gain value  
11.5  
5.5  
12  
6
12.5  
6.5  
GS = 0 V  
GS = VCC  
Zin  
Single input impedance (4)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting)  
SNR  
92  
dB  
Po = 0.9 W, RL = 4 Ω (with LC output filter)  
tWU  
Wake-up time  
5
5
10  
ms  
ms  
tSTBY  
Standby time  
Output voltage noise f = 20 Hz to 20 kHz, RL=4 Ω  
Unweighted (Filterless, G=6 dB)  
A-weighted (Filterless, G=6 dB)  
Unweighted (with LC output filter, G=6 dB)  
A-weighted (with LC output filter, G=6 dB)  
Unweighted (Filterless, G=12 dB)  
A-weighted (Filterless, G=12 dB)  
Unweighted (with LC output filter, G=12 dB)  
A-weighted (with LC output filter, G=12 dB)  
72  
50  
68  
49  
93  
65  
85  
64  
VN  
μVRMS  
1. All electrical values are guaranteed with correlation measurements at 2.4 V and 5 V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz.  
4. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
Doc ID 13123 Rev 4  
9/29  
Electrical characteristics  
TS2007  
(1)  
Table 8.  
Symbol  
V
= +3.0 V, GND = 0 V, V =1.5 V, T  
= 25 °C (unless otherwise specified)  
CC  
ic  
amb  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
1.9  
2.7  
mA  
No input signal, no load  
Standby current (2)  
10  
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
mV  
Floating inputs, RL = 8 Ω  
Output power  
0.75  
0.45  
1
THD+N = 1% Max, f = 1 kHz, RL = 4 Ω  
THD+N = 1% Max, f = 1 kHz, RL = 8 Ω  
THD = 10% Max, f = 1 kHz, RL = 4 Ω  
THD = 10% Max, f = 1 kHz, RL = 8 Ω  
Po  
W
0.6  
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.5  
%
%
Po = 400 mWRMS, G = 6 dB, f = 1 kHz, RL = 8 Ω  
Efficiency  
83  
90  
Po = 0.75 WRMS, RL = 4 Ω (with LC output filter)  
Po = 0.45 WRMS, RL = 8 Ω (with LC output filter)  
Power supply rejection ratio with inputs grounded, Cin = 1 µF (3)  
PSRR  
CMRR  
Gain  
dB  
dB  
dB  
f = 217 Hz, RL = 8 Ω, Gain=6 dB,Vripple = 200 mVpp  
f = 217 Hz, RL = 8 Ω, Gain=12 dB, Vripple = 200 mVpp  
63  
60  
Common mode rejection ratio 20 Hz < f < 20 kHz  
60  
Gain value  
11.5  
5.5  
12  
6
12.5  
6.5  
GS = 0 V  
GS = VCC  
Zin  
Single input impedance (4)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting)  
SNR  
90  
dB  
Po = 0.6 W, RL = 4 Ω (with LC output filter)  
tWU  
Wake-up time  
5
5
10  
ms  
ms  
tSTBY  
Standby time  
Output voltage noise f = 20 Hz to 20 kHz, RL=4 Ω  
Unweighted (Filterless, G=6 dB)  
A-weighted (Filterless, G=6 dB)  
Unweighted (with LC output filter, G=6 dB)  
A-weighted (with LC output filter, G=6 dB)  
Unweighted (Filterless, G=12 dB)  
A-weighted (Filterless, G=12 dB)  
Unweighted (with LC output filter, G=12 dB)  
A-weighted (with LC output filter, G=12 dB)  
71  
50  
67  
49  
92  
65  
85  
64  
VN  
μVRMS  
1. All electrical values are guaranteed with correlation measurements at 2.4 V and 5 V.  
2. Standby mode is active when VSTBY is tied to GND.  
3. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz.  
4. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
10/29  
Doc ID 13123 Rev 4  
TS2007  
Table 9.  
Electrical characteristics  
V
= +2.4 V, GND = 0 V, V =1.2 V, T  
= 25 °C (unless otherwise specified)  
CC  
ic  
amb  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Supply current  
ICC  
ICC-STBY  
Voo  
1.7  
2.4  
mA  
No input signal, no load  
Standby current (1)  
10  
1000  
25  
nA  
No input signal, VSTBY = GND  
Output offset voltage  
mV  
Floating inputs, RL = 8 Ω  
Output power  
0.48  
0.3  
0.6  
THD+N = 1% Max, f = 1 kHz, RL = 4 Ω  
THD+N = 1% Max, f = 1 kHz, RL = 8 Ω  
THD = 10% Max, f = 1 kHz, RL = 4 Ω  
THD = 10% Max, f = 1 kHz, RL = 8 Ω  
Po  
W
0.36  
Total harmonic distortion + noise  
THD + N  
Efficiency  
0.1  
%
%
Po = 200 mWRMS, G = 6 dB, f = 1 kHz, RL = 8 Ω  
Efficiency  
82  
90  
Po = 0.38 WRMS, RL = 4 Ω (with LC output filter)  
Po = 0.25 WRMS, RL = 8 Ω (with LC output filter)  
Power supply rejection ratio with inputs grounded, Cin = 1 µF (2)  
PSRR  
CMRR  
Gain  
dB  
dB  
dB  
f = 217 Hz, RL = 8 Ω, Gain=6 dB,Vripple = 200 mVpp  
f = 217 Hz, RL = 8 Ω, Gain=12 dB, Vripple = 200 mVpp  
63  
60  
Common mode rejection ratio 20 Hz < f < 20 kHz  
60  
Gain value  
11.5  
5.5  
12  
6
12.5  
6.5  
GS = 0 V  
GS = VCC  
Zin  
Single input impedance (3)  
68  
75  
82  
kΩ  
FPWM  
Pulse width modulator base frequency  
190  
280  
370  
kHz  
Signal-to-noise ratio (A-weighting)  
SNR  
88  
dB  
Po=0.4 W, RL=4 Ω (with LC output filter)  
tWU  
Wake-up time  
5
5
10  
ms  
ms  
tSTBY  
Standby time  
Output voltage noise f = 20 Hz to 20 kHz, RL = 4 Ω  
Unweighted (filterless, G=6 dB)  
A-weighted (filterless, G=6 dB)  
Unweighted (with LC output filter, G=6 dB)  
A-weighted (with LC output filter, G=6 dB)  
Unweighted (filterless, G=12 dB)  
A-weighted (filterless, G=12 dB)  
Unweighted (with LC output filter, G=12 dB)  
A-weighted (with LC output filter, G=12 dB)  
70  
50  
66  
49  
91  
65  
84  
64  
VN  
μVRMS  
1. Standby mode is active when VSTBY is tied to GND.  
2. Dynamic measurements - 20*log(rms(Vout)/rms(Vripple)). Vripple is the superimposed sinus signal to VCC @ f = 217 Hz.  
3. Independent of Gain configuration (6 or 12 dB) and between IN+ or IN- and GND.  
Doc ID 13123 Rev 4  
11/29  
 
Electrical characteristics  
TS2007  
3.2  
Electrical characteristic curves  
The graphs shown in this section use the following abbreviations:  
R + 15 µH or 30 µH = pure resistor + very low series resistance inductor  
L
Filter = LC output filter (1 µF+30 µH for 4 Ω and 0.5 µF+60 µH for 8 Ω)  
All measurements are done with C =1 µF and C =100 nF (see Figure 2, except for the  
S1  
S2  
PSRR where C is removed (see Figure 3).  
S1  
Figure 2.  
Test diagram for measurements  
Cs1  
1 F  
μ
Cs2  
100nF  
VCC  
GND  
GND  
RL  
4 or 8  
Cin  
Cin  
Ω
Out+  
In+  
5th order  
50kHz  
15 H or 30 H  
μ
μ
TS2007  
or  
LC Filter  
low-pass filter  
In-  
Out-  
GND  
Audio Measurement  
Bandwith < 30kHz  
Figure 3.  
Test diagram for PSRR measurements  
Cs2  
100nF  
VCC  
20Hz to 20kHz  
Vripple  
Vcc  
GND  
GND  
1 F  
Cin  
μ
RL  
4 or 8  
Ω
Out+  
In+  
5th order  
50kHz  
15 H or 30 H  
μ
μ
TS2007  
or  
LC Filter  
low-pass filter  
In-  
Out-  
Cin  
1 F  
μ
GND  
GND  
5th order  
50kHz  
RMS Selective Measurement  
Bandwith =1% of Fmeas  
reference  
low-pass filter  
12/29  
Doc ID 13123 Rev 4  
 
 
TS2007  
Electrical characteristics  
Figure  
Table 10. Index of graphics  
Description  
Current consumption vs. power supply voltage  
Current consumption vs. standby voltage  
Efficiency vs. output power  
Figure 4  
Figure 5  
Figure 6 - Figure 9  
Figure 10, Figure 11  
Figure 12  
Output power vs. power supply voltage  
PSRR vs. common mode input voltage  
PSRR vs. frequency  
Figure 13 - Figure 17  
Figure 18  
CMRR vs. common mode input voltage  
CMRR vs. frequency  
Figure 19 - Figure 23  
Figure 24, Figure 25  
Figure 26 - Figure 33  
Figure 34 - Figure 45  
Figure 46  
Gain vs. frequency  
THD+N vs. output power  
THD+N vs. frequency  
Power derating curves  
Startup and shutdown time  
Figure 47 - Figure 49  
Doc ID 13123 Rev 4  
13/29  
Electrical characteristics  
TS2007  
Figure 4.  
Current consumption vs. power  
supply voltage  
Figure 5.  
Current consumption vs. standby  
voltage  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
TAMB=25°C  
No Loads  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VCC=5V  
VCC=3.6V  
VCC=2.4V  
No Load  
TAMB=25°C  
0.0  
0
2
3
4
5
1
2
3
4
5
Power Supply Voltage (V)  
Standby Voltage (V)  
Figure 6.  
Efficiency vs. output power  
Figure 7.  
Efficiency vs. output power  
100  
80  
200  
160  
120  
80  
100  
80  
500  
400  
300  
200  
100  
0
Efficiency  
Efficiency  
60  
60  
Power  
Dissipation  
40  
40  
Power  
Dissipation  
Vcc=3V  
Vcc=5V  
20  
40  
20  
RL=4  
Ω + 15μH  
RL=4  
F=1kHz  
THD+N  
Ω
+
15  
μH  
F=1kHz  
THD+N  
0.6  
1%  
0.7  
1%  
0
0.0  
0
0.8  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Power (W)  
Output Power (W)  
Figure 8.  
Efficiency vs. output power  
Figure 9.  
Efficiency vs. output power  
100  
80  
50  
40  
30  
20  
10  
0
100  
80  
125  
100  
75  
50  
25  
0
Efficiency  
Efficiency  
60  
60  
Power  
Dissipation  
Power  
40  
40  
Dissipation  
Vcc=3V  
Vcc=5V  
20  
20  
RL=8  
F=1kHz  
THD+N  
Ω
+
15  
μ
H
RL=8  
Ω + 15μH  
F=1kHz  
1%  
THD+N  
1.0  
1%  
0
0.0  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.2  
0.4  
0.6  
0.8  
1.2  
1.4  
Output Power (W)  
Output Power (W)  
14/29  
Doc ID 13123 Rev 4  
TS2007  
Electrical characteristics  
Figure 10. Output power vs. power supply  
voltage  
Figure 11. Output power vs. power supply  
voltage  
3.5  
2.0  
RL = 4  
F = 1kHz  
BW < 30kHz  
Tamb = 25  
Ω
+
15  
μ
H
RL = 8  
F = 1kHz  
BW < 30kHz  
Tamb = 25°C  
Ω + 15μH  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.6  
1.2  
0.8  
0.4  
0.0  
°
C
THD+N=10%  
THD+N=10%  
THD+N=1%  
THD+N=1%  
2
3
4
5
6
2
3
4
5
6
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Figure 12. PSRR vs. common mode input  
voltage  
Figure 13. PSRR vs. frequency  
0
0
Inputs grounded, Vripple = 200mVpp,  
-10  
Ω +15μH, CIN=1μF, TAMB=25°C  
Vripple = 200mVpp, F = 217Hz, G = 6dB  
-10  
VCC=5V, RL=4  
RL  
4Ω + 15μH, Tamb = 25°C  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Gain=12dB  
Vcc=2.4V  
Vcc=3.6, 4.2, 5V  
Vcc=3V  
Gain=6dB  
100  
1k  
10k 20k  
20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Frequency (Hz)  
Figure 14. PSRR vs. frequency  
Figure 15. PSRR vs. frequency  
0
0
Inputs grounded, Vripple = 200mVpp  
Inputs grounded, Vripple = 200mVpp  
AV=6dB, RL=4Ω+30μH, CIN=1μF, TAMB=25°C  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
AV=6dB, RL=4  
Ω
+15  
μ
H, CIN=1  
μ
F, TAMB=25°C  
Vcc=2.4, 3, 3.6, 4.2, 5V  
Vcc=2.4, 3, 3.6, 4.2, 5V  
100  
1k  
Frequency (Hz)  
10k 20k  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
20  
Doc ID 13123 Rev 4  
15/29  
Electrical characteristics  
TS2007  
Figure 16. PSRR vs. frequency  
Figure 17. PSRR vs. frequency  
0
0
Inputs grounded, Vripple = 200mVpp  
Inputs grounded, Vripple = 200mVpp  
AV=6dB, RL=8Ω+30μH, CIN=1μF, TAMB=25°C  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
AV=6dB, RL=8  
Ω
+15  
μ
H, CIN=1  
μ
F, TAMB=25°C  
Vcc=2.4, 3, 3.6, 4.2, 5V  
Vcc=2.4, 3, 3.6, 4.2, 5V  
100  
1k  
Frequency (Hz)  
10k 20k  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
20  
Figure 18. CMRR vs. common mode input  
voltage  
Figure 19. CMRR vs. frequency  
0
0
Δ
Vicm=200mVpp, VCC=5V  
Δ
Vicm=200mVpp, F = 217Hz, G=6dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RL 15 H, TAMB=25°C  
4
Ω
+
μ
RL=4 +15 H, CIN=1 F, TAMB=25°C  
Ω
μ
μ
Vcc=2.4V  
Vcc=3.6, 4.2, 5V  
Vcc=3V  
Gain=12dB  
Gain=6dB  
100  
1k  
10k 20k  
20  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Frequency (Hz)  
Figure 20. CMRR vs. frequency  
Figure 21. CMRR vs. frequency  
0
0
Δ
Vicm=200mVpp, G=6dB  
Δ
Vicm=200mVpp, G=6dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RL +15 H, CIN=1 F, TAMB=25°C  
=
4
Ω
μ
μ
RL +30 H, CIN=1 F, TAMB=25°C  
=
4
Ω
μ
μ
Vcc=2.4, 3, 3.6, 4.2, 5V  
Vcc=2.4, 3, 3.6, 4.2, 5V  
100  
1k  
Frequency (Hz)  
10k 20k  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
20  
16/29  
Doc ID 13123 Rev 4  
TS2007  
Electrical characteristics  
Figure 22. CMRR vs. frequency  
Figure 23. CMRR vs. frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Δ
Vicm=200mVpp, G=6dB  
Δ
Vicm=200mVpp, G=6dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
RL +15 H, CIN=1 F, TAMB=25°C  
=
8
Ω
μ
μ
RL +30 H, CIN=1 F, TAMB=25°C  
=
8
Ω
μ
μ
Vcc=2.4, 3, 3.6, 4.2, 5V  
Vcc=2.4, 3, 3.6, 4.2, 5V  
100  
1k  
Frequency (Hz)  
10k 20k  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
20  
Figure 24. Gain vs. frequency  
Figure 25. Gain vs. frequency  
14  
8
no load  
no load  
12  
10  
8
6
4
RL=8  
Ω
+15  
μH  
RL=8  
Ω
+15  
μH  
RL=8  
Ω
+30  
μ
H
RL=8  
Ω
+30  
μ
H
2
0
RL=4  
Ω
+15μH  
RL=4  
Ω
+15μH  
Gain = 12dB  
Vin = 500 mVpp  
TAMB = 25  
Gain = 6dB  
Vin = 500 mVpp  
TAMB = 25  
RL=4Ω+30μH  
RL=4Ω+30μH  
°
C
°
C
6
20k  
20  
100  
1k  
Frequency (Hz)  
10k  
20k  
20  
100  
1k  
Frequency (Hz)  
10k  
Figure 26. THD+N vs. output power  
Figure 27. THD+N vs. output power  
10  
10  
Vcc=5V  
RL = 4Ω + 15μH  
RL = 4Ω + 30μH  
Vcc=5V  
F = 1kHz  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=2.4V  
G = 6dB  
BW < 30kHz  
Tamb = 25  
Vcc=3.6V  
°
C
Vcc=2.4V  
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
1E-3  
0.01  
0.1  
1
3
3
Output Power (W)  
Output Power (W)  
Doc ID 13123 Rev 4  
17/29  
Electrical characteristics  
TS2007  
Figure 28. THD+N vs. output power  
Figure 29. THD+N vs. output power  
10  
10  
Vcc=5V  
Vcc=5V  
RL = 8  
Ω
+ 15  
μ
H
RL = 8Ω + 30μH  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
F = 1kHz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=3.6V  
Vcc=2.4V  
Vcc=2.4V  
°
C
1
1
0.1  
0.1  
1E-3  
0.01  
0.1  
1
2
1E-3  
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
Figure 30. THD+N vs. output power  
Figure 31. THD+N vs. output power  
10  
10  
Vcc=5V  
Vcc=5V  
RL = 4  
Ω
+ 15  
μ
H
RL = 4Ω + 30μH  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Tamb = 25°C  
Vcc=3.6V  
Vcc=2.4V  
Vcc=3.6V  
Vcc=2.4V  
1
0.1  
1
0.1  
°
C
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
0.01  
0.1  
1
3
3
Output Power (W)  
Output Power (W)  
Figure 32. THD+N vs. output power  
Figure 33. THD+N vs. output power  
10  
10  
Vcc=5V  
Vcc=5V  
RL = 8  
Ω
+ 15  
μ
H
RL = 8Ω + 30μH  
Vcc=3.6V  
Vcc=2.4V  
F = 100Hz  
G = 6dB  
BW < 30kHz  
F = 100Hz  
G = 6dB  
BW < 30kHz  
Vcc=3.6V  
Vcc=2.4V  
1
0.1  
1
0.1  
Tamb = 25  
°
C
Tamb = 25°C  
0.01  
1E-3  
0.01  
1E-3  
0.01  
0.1  
1
2
0.01  
0.1  
1
2
Output Power (W)  
Output Power (W)  
18/29  
Doc ID 13123 Rev 4  
TS2007  
Electrical characteristics  
Figure 34. THD+N vs. frequency  
Figure 35. THD+N vs. frequency  
10  
10  
RL=4  
Ω + 15μH  
RL=4  
Ω + 30μH  
G=6dB  
Bw < 30kHz  
Vcc=2.4V  
G=6dB  
Bw < 30kHz  
Vcc=2.4V  
Po=0.4W  
Po=0.4W  
1
0.1  
1
Tamb = 25°C  
Tamb = 25°C  
0.1  
0.01  
Po=0.2W  
Po=0.2W  
0.01  
20  
100  
1000  
10000 20k  
10000 20k  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Figure 36. THD+N vs. frequency  
Figure 37. THD+N vs. frequency  
10  
10  
RL=8  
Ω + 15μH  
RL=8  
G=6dB  
Ω + 30μH  
G=6dB  
Bw < 30kHz  
Vcc=2.4V  
Po=0.2W  
Bw < 30kHz  
Vcc=2.4V  
Tamb = 25°C  
Po=0.2W  
1
0.1  
1
0.1  
Tamb = 25°C  
Po=0.1W  
Po=0.1W  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Figure 38. THD+N vs. frequency  
Figure 39. THD+N vs. frequency  
10  
10  
RL=4  
Ω + 15μH  
RL=4  
G=6dB  
Ω + 30μH  
G=6dB  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Bw < 30kHz  
Vcc=3.6V  
Tamb = 25°C  
Po=0.9W  
Po=0.9W  
1
0.1  
1
0.1  
Po=0.45W  
Po=0.45W  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Doc ID 13123 Rev 4  
19/29  
Electrical characteristics  
TS2007  
Figure 40. THD+N vs. frequency  
Figure 41. THD+N vs. frequency  
10  
10  
RL=8  
G=6dB  
Ω + 15μH  
RL=8  
G=6dB  
Ω + 30μH  
Po=0.5W  
Bw < 30kHz  
Vcc=3.6V  
Bw < 30kHz  
Vcc=3.6V  
Po=0.5W  
1
0.1  
1
0.1  
Tamb = 25°C  
Tamb = 25°C  
Po=0.25W  
Po=0.25W  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
10000 20k  
10000 20k  
Figure 42. THD+N vs. frequency  
Figure 43. THD+N vs. frequency  
10  
10  
RL=4  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Ω + 30μH  
RL=4  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Ω + 15μH  
Po=1.5W  
Po=1.5W  
1
0.1  
1
0.1  
Po=0.75W  
Po=0.75W  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
Figure 44. THD+N vs. frequency  
Figure 45. THD+N vs. frequency  
10  
10  
RL=8  
G=6dB  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Ω + 15μH  
RL=8  
G=6dB  
Ω + 30μH  
Po=0.9W  
Bw < 30kHz  
Vcc=5V  
Tamb = 25°C  
Po=0.9W  
1
0.1  
1
0.1  
Po=0.45W  
Po=0.45W  
0.01  
0.01  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
20/29  
Doc ID 13123 Rev 4  
TS2007  
Electrical characteristics  
Figure 46. Power derating curves  
Figure 47. Startup and shutdown phase  
=5 V, G=6 dB, C =1 µF, inputs  
V
CC  
in  
grounded  
3.5  
3.0  
Mounted on a 4-layer PCB  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
No Heat sink  
0
25  
50  
75  
100  
C)  
125  
150  
Ambiant Temperature (  
°
Figure 48. Startup and shutdown phase  
=5 V, G=6 dB, C =1 µF,  
Figure 49. Startup and shutdown phase  
V
V
=5 V, G=12 dB, C =1 µF,  
CC  
in  
CC in  
V =1 V , F=10 kHz  
V =1 V , F=10 kHz  
in  
pp  
in pp  
Doc ID 13123 Rev 4  
21/29  
 
Application information  
TS2007  
4
Application information  
4.1  
Differential configuration principle  
The TS2007 is a monolithic fully-differential input/output class D power amplifier. The  
TS2007 also includes a common-mode feedback loop that controls the output bias value to  
average it at V /2 for any DC common-mode input voltage. This allows the device to  
CC  
always have a maximum output voltage swing, and by consequence, maximize the output  
power. Moreover, as the load is connected differentially compared to a single-ended  
topology, the output is four times higher for the same power supply voltage.  
The advantages of a full-differential amplifier are:  
High PSRR (power supply rejection ratio)  
High common-mode noise rejection  
Virtually zero pop without additional circuitry, giving a faster startup time compared to  
conventional single-ended input amplifiers  
Easier interfacing with differential output audio DAC  
No input coupling capacitors required thanks to common-mode feedback loop  
4.2  
Gain settings  
In the flat region of the frequency-response curve (no input coupling capacitor or internal  
feedback loop + load effect), the differential gain can be set to either 6 or 12 dB depending  
on the logic level of the GS pin:  
GS  
Gain (dB)  
Gain (V/V)  
1
0
6 dB  
2
4
12 dB  
Note:  
Between the GS pin and V there is an internal 300 kΩ resistor. When the pin is floating  
CC  
the gain is 6 dB.  
4.3  
Common-mode feedback loop limitations  
As explained previously, the common-mode feedback loop allows the output DC bias  
voltage to be averaged at V /2 for any DC common-mode bias input voltage.  
CC  
Due to the V limitation of the input stage (see Table 2: Operating conditions on page 3), the  
ic  
common-mode feedback loop can fulfill its role only within the defined range.  
4.4  
Low frequency response  
If a low frequency bandwidth limitation is required, it is possible to use input coupling  
capacitors. In the low frequency region, the input coupling capacitor C starts to have an  
in  
effect. C forms, with the input impedance Z , a first order high-pass filter with a -3 dB cutoff  
in  
in  
frequency (see Table 5 to Table 9).  
22/29  
Doc ID 13123 Rev 4  
 
TS2007  
Application information  
1
FCL = ------------------------------------  
2 ⋅ π ⋅ Zin Cin  
So, for a desired cutoff frequency F we can calculate C :  
CL  
in  
1
Cin = -------------------------------------  
2 ⋅ π ⋅ Zin FCL  
with F in Hz, Z in Ω and C in F.  
CL  
in  
in  
The input impedance Z is for the whole power supply voltage range, typically 75 kΩ . There  
in  
is also a tolerance around the typical value (see Table 5 to Table 9). With regard to the  
tolerance, you can also calculate tolerance of F  
:
CL  
FCLmax = 1.103 FCL  
FCLmin = 0.915 FCL  
4.5  
Decoupling of the circuit  
A power supply capacitor, referred to as C is needed to correctly bypass the TS2007.  
S,  
The TS2007 has a typical switching frequency of 280 kHz and output fall and rise time of  
about 5 ns. Due to these very fast transients, careful decoupling is mandatory.  
A 1 µF ceramic capacitor is enough, but it must be located very close to the TS2007 in order  
to avoid any extra parasitic inductance created by a long track wire. Parasitic loop  
inductance, in relation with di/dt, introduces overvoltage that decreases the global efficiency  
of the device and may cause, if this parasitic inductance is too high, a TS2007 breakdown.  
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its  
current capability is also important. A 0603 size is a good compromise, particularly when a  
4 Ω load is used.  
Another important parameter is the rated voltage of the capacitor. A 1µF/6.3V capacitor  
used at 5 V, loses about 50% of its value. With a power supply voltage of 5 V, the decoupling  
value, instead of 1 µF, could be reduced to 0.5 µF. As C has particular influence on the  
S
THD+N in the medium to high frequency region, this capacitor variation becomes decisive.  
In addition, less decoupling means higher overshoots which can be problematic if they reach  
the power supply AMR value (6 V).  
4.6  
Wake-up time (twu)  
When the standby is released to set the device ON, there is a wait of 5 ms typically. The  
TS2007 has an internal digital delay that mutes the outputs and releases them after this  
time in order to avoid any pop noise.  
Note:  
The gain increases smoothly (see Figure 49) from the mute to the gain selected by the GS  
pin (Section 4.2).  
Doc ID 13123 Rev 4  
23/29  
Application information  
TS2007  
4.7  
Shutdown time  
When the standby command is set, the time required to put the two output stages into high  
impedance and to put the internal circuitry in shutdown mode, is typically 5 ms. This time is  
used to decrease the gain and avoid any pop noise during shutdown.  
Note:  
The gain decreases smoothly until the outputs are muted (see Figure 49).  
4.8  
Consumption in shutdown mode  
Between the shutdown pin and GND there is an internal 300 kΩ resistor. This resistor forces  
the TS2007 to be in shutdown when the shutdown input is left floating.  
However, this resistor also introduces additional shutdown power consumption if the  
shutdown pin voltage is not 0 V.  
Referring to Table 2: Operating conditions on page 3, with a 0.4 V shutdown voltage pin for  
example, you must add 0.4V/300k = 1.3 µA in typical (0.4V/273 k = 1.46 µA in maximum) to  
the shutdown current specified in Table 5 to Table 9.  
4.9  
Single-ended input configuration  
It is possible to use the TS2007 in a single-ended input configuration. However, input  
coupling capacitors are needed in this configuration. The following schematic diagram  
shows a typical single-ended input application.  
Figure 50. Typical application for single-ended input configuration  
VCC  
Cs  
1uF  
Gain Select Control  
TS2007  
GS  
Vcc  
Input  
Cin  
Cin  
4
3
8
5
IN-  
OUT+  
OUT-  
-
H
Bridge  
Gain  
Select  
Speaker  
PWM  
+
IN+  
Standby  
Control  
Oscillator  
Gnd  
Standby  
Standby Control  
24/29  
Doc ID 13123 Rev 4  
TS2007  
Application information  
4.10  
Output filter considerations  
The TS2007 is designed to operate without an output filter. However, due to very sharp  
transients on the TS2007 output, EMI radiated emissions may cause some standard  
compliance issues.  
These EMI standard compliance issues can appear if the distance between the TS2007  
outputs and loudspeaker terminal are long (typically more than 50 mm, or 100 mm in both  
directions, to the speaker terminals). As the PCB layout and internal equipment device are  
different for each configuration, it is difficult to provide a one-size-fits-all solution.  
However, to decrease the probability of EMI issues, there are several simple rules to follow:  
Reduce, as much as possible, the distance between the TS2007 output pins and the  
speaker terminals.  
Use a ground plane for “shielding” sensitive wires.  
Place, as close as possible to the TS2007 and in-series with each output, a ferrite bead  
with a rated current of minimum 2.5 A and impedance greater than 50 Ω at frequencies  
above 30 MHz. If, after testing, these ferrite beads are not necessary, replace them by  
a short-circuit.  
Allow extra footprint to place, if necessary, a capacitor to short perturbations to ground  
(see Figure 51).  
Figure 51. Ferrite chip bead placement  
Ferrite chip bead  
From TS2007 output  
to speaker  
about 100pF  
gnd  
In the case where the distance between the TS2007 output and the speaker terminals is too  
long, it is possible to have low frequency EMI issues due to the fact that the typical operating  
frequency is 280 kHz. In this configuration, it is necessary to use the output filter  
represented in Figure 1 on page 4 as close as possible to the TS2007.  
Doc ID 13123 Rev 4  
25/29  
 
Package information  
TS2007  
5
Package information  
In order to meet environmental requirements, STMicroelectronics offers these devices in  
®
ECOPACK packages. These packages have a lead-free second level interconnect. The  
category of second level interconnect is marked on the package and on the inner box label,  
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics  
trademark. ECOPACK specifications are available at: www.st.com.  
Figure 52. Pinout (top view)  
8
7
6
5
1
2
3
4
Figure 53. Marking (top view)  
Logo: ST  
Part number: K007  
Three digit date code: YWW  
The dot is for marking pin 1  
Figure 54. Recommended footprint for the TS2007 DFN8 package  
1.8 mm  
0.8 mm  
0.35 mm  
2.2 mm  
0.65 mm  
1.4 mm  
26/29  
Doc ID 13123 Rev 4  
TS2007  
Package information  
Figure 55. DFN8 package mechanical data  
Dimensions  
Ref  
Millimeters  
Typ  
Mils  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A3  
b
0.50  
0.60  
0.02  
0.65  
0.05  
0.22  
0.35  
3.15  
1.80  
3.15  
1.30  
19.6  
23.6  
0.8  
25.6  
1.9  
8.6  
0.25  
2.85  
1.60  
2.85  
1.10  
0.30  
3.00  
1.70  
3.00  
1.20  
0.65  
0.55  
9.8  
112.2  
63  
11.8  
118.1  
66.9  
13.8  
124  
70.8  
124  
51.2  
D
D2  
E
112.2  
43.3  
118.1  
47.2  
E2  
e
25.5  
L(1)  
ddd  
0.50  
0.60  
0.08  
19.6  
21.6  
23.6  
3.1  
SEATING  
PLANE  
C
D
e
1
2
3
4
8
6
5
7
b
D2  
1. The dimension of L is not compliant with JEDEC MO-248 which recommends 0.40 mm +/-0.10 mm.  
Note:  
The DFN8 package has an exposed pad E2 x D2. For enhanced thermal performance, the  
exposed pad must be soldered to a copper area on the PCB, acting as a heatsink. This  
copper area can be electrically connected to pin 7 or left floating.  
Doc ID 13123 Rev 4  
27/29  
Ordering information  
TS2007  
6
Ordering information  
Table 11. Order code  
Part number  
Temperature range  
Package  
Marking  
K07  
TS2007IQT  
-40 °C, +85 °C  
DFN8  
7
Revision history  
Date  
Revision  
Changes  
Initial release (preliminary data).  
11-Jan-2007  
1
First complete datasheet. This release of the datasheet includes  
electrical characteristics curves and application information.  
11-May-2007  
2
Corrected error in Table 4: Pin descriptions: descriptions of pin 5 and pin  
8 were inverted.  
24-May-2007  
02-May-2011  
3
4
Added minimum RL to Table 1: Absolute maximum ratings  
28/29  
Doc ID 13123 Rev 4  
TS2007  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2011 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 13123 Rev 4  
29/29  

相关型号:

TS200F11CET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F11CKB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F13CSB

Series - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F22ILT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23CDT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23CET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23IDT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F23IET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F25CEB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F2XILB

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F33CDT

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS

TS200F33CET

Parallel - Fundamental Quartz Crystal, 20MHz Nom, GREEN, RESISTANCE WELDED, METAL CAN, HC-49/US-SM, 2 PIN
CTS