TS487-1 [STMICROELECTRONICS]

100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE; 100mW的立体声耳机具有待机模式放大器
TS487-1
型号: TS487-1
厂家: ST    ST
描述:

100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE
100mW的立体声耳机具有待机模式放大器

放大器
文件: 总31页 (文件大小:1104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS486  
TS487  
100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY  
MODE  
OPERATING FROM Vcc=2V to 5.5V  
STANDBY MODE ACTIVE LOW (TS486) or  
HIGH (TS487)  
PIN CONNECTIONS (top view)  
TS486IDT: SO8, TS486IST, TS486-1IST,  
TS486-2IST, TS486-4IST: MiniSO8  
OUTPUT POWER: 102mW @5V, 38mW  
@3.3V into 16with 0.1% THD+N max (1kHz)  
LOW CURRENT CONSUMPTION: 2.5mA max  
High Signal-to-Noise ratio: 103dB(A) at 5V  
High Crosstalk immunity: 83dB (F=1kHz)  
PSRR: 58 dB (F=1kHz), inputs grounded  
ON/OFF click reduction circuitry  
1
2
3
4
8
7
6
5
VCC  
OUT (1)  
OUT (2)  
VIN (2)  
VIN (1)  
BYPASS  
Unity-Gain Stable  
GND  
SHUTDOWN  
SHORT CIRCUIT LIMITATION  
Available in SO8, MiniSO8 & DFN 3x3mm  
DESCRIPTION  
The TS486/7 is a dual audio power amplifier capa-  
ble of driving, in single-ended mode, either a 16 or  
a 32stereo headset.  
TS486-IQT, TS486-1IQT, TS486-2IQT, TS486-4IQT:  
DFN8  
Capable of descending to low voltages, it delivers  
up to 90mW per channel (into 16loads) of con-  
tinuous average power with 0.3% THD+N in the  
audio bandwitdth from a 5V power supply.  
An externally-controlled standby mode reduces  
the supply current to 10nA (typ.). The unity gain  
stable TS486/7 can be configured by external  
gain-setting resistors or used in a fixed gain ver-  
sion.  
1
2
3
4
OUT (1)  
8
7
6
5
Vcc  
VIN (1)  
OUT (2)  
VIN (2)  
BYPASS  
GND  
SHUTDOWN  
TS487IDT: SO8, TS487IST, TS487-1IST,  
TS487-2IST, TS487-4IST: MiniSO8  
APPLICATIONS  
Headphone Amplifier  
Mobile phone, PDA, computer motherboard  
High end TV, portable audio player  
1
2
3
4
8
7
6
5
VCC  
OUT (1)  
OUT (2)  
VIN (1)  
BYPASS  
VIN (2)  
ORDER CODE  
SHUTDOWN  
GND  
Package  
Part  
Number  
Temperature  
Range: I  
Gain Marking  
D
S
Q
TS486  
external TS486I  
external TS487I  
external K86A  
TS487-IQT,  
TS487-1IQT, TS487-2IQT, TS487-4IQT: DFN8  
TS487  
TS486  
TS486-1  
TS486-2  
TS486-4  
TS487  
tba tba x1/0dB  
tba tba x2/6dB  
K86B  
K86C  
1
2
3
4
OUT (1)  
8
7
6
5
Vcc  
-40, +85°C  
tba tba x4/12dB K86D  
external K87A  
VIN (1)  
OUT (2)  
VIN (2)  
BYPASS  
GND  
SHUTDOWN  
TS487-1  
TS487-2  
TS487-4  
tba tba x1/0dB  
tba tba x2/6dB  
K87B  
K87C  
tba tba x4/12dB K87D  
MiniSO & DFN only available in Tape & Reel with T suffix,  
SO is available in Tube (D) and in Tape & Reel (DT)  
June 2003  
1/31  
TS486-TS487  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
1)  
V
6
V
V
Supply voltage  
CC  
V
-0.3v to VCC +0.3v  
-65 to +150  
150  
Input Voltage  
i
T
Storage Temperature  
°C  
°C  
stg  
T
Maximum Junction Temperature  
j
Thermal Resistance Junction to Ambient  
R
°C/W  
thja  
SO8  
MiniSO8  
DFN8  
175  
215  
70  
2)  
Power Dissipation  
0.71  
0.58  
1.79  
SO8  
MiniSO8  
DFN8  
Pd  
W
3)  
ESD  
ESD  
1.5  
100  
200  
250  
kV  
V
Human Body Model (pin to pin): TS486, TS487  
Machine Model - 220pF - 240pF (pin to pin)  
Latch-up Latch-up Immunity (All pins)  
Lead Temperature (soldering, 10sec)  
Output Short-Circuit to Vcc or GND  
mA  
°C  
4)  
continous  
1. All voltage values are measured with respect to the ground pin.  
2. Pd has been calculated with Tamb = 25°C, Tjunction = 150°C.  
3. TS487 stands 1.5KV on all pins except standby pin which stands 1KV.  
4. Attention must be paid to continous power dissipation (V x 300mA). Exposure of the IC to a short circuit for an extended time period is  
DD  
dramatically reducing product life expectancy.  
OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
Unit  
V
Supply Voltage  
Load Resistor  
2 to 5.5  
16  
V
CC  
R
L
T
Operating Free Air Temperature Range  
-40 to + 85  
°C  
oper  
Load Capacitor  
R = 16 to 100Ω  
C
400  
100  
pF  
V
L
L
R > 100Ω  
L
Standby Voltage Input  
1.5 V  
V  
V
STB  
CC  
1)  
TS486 ACTIVE / TS487 in STANDBY  
TS486 in STANDBY / TS487 ACTIVE  
STB  
GND V  
0.4  
STB  
Thermal Resistance Junction to Ambient  
SO8  
MiniSO8  
150  
190  
41  
R
°C/W  
THJA  
2)  
DFN8  
1.  
The minimum current consumption (I ) is guaranteed at GND (TS486) or VCC (TS487) for the whole temperature range.  
STANDBY  
2. When mounted on a 4-layer PCB.  
2/31  
TS486-TS487  
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS  
VCC from +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
1)  
R
20  
kΩ  
Input Resistance  
IN 1,2  
Gain value for Gain TS486/TS487-1  
Gain value for Gain TS486/TS487-2  
Gain value for Gain TS486/TS487-4  
0dB  
6dB  
G
dB  
12dB  
1.  
See figure 30 to establish the value of Cin vs. -3dB cut off frequency.  
APPLICATION COMPONENTS INFORMATION  
Components  
Functional Description  
Inverting input resistor which sets the closed loop gain in conjunction with R  
. This resistor also  
FEED  
R
C
IN1,2  
IN1,2  
forms a high pass filter with C (fc = 1 / (2 x Pi x R x C )) . Not needed in fixed gain versions.  
IN  
IN  
IN  
Input coupling capacitor which blocks the DC voltage at the amplifier’s input terminal.  
Feedback resistor which sets the closed loop gain in conjunction with R .  
IN  
R
FEED1,2  
A = Closed Loop Gain= -R  
/R . Not needed in fixed gain versions.  
FEED IN  
V
C
Supply Bypass capacitor which provides power supply filtering.  
Bypass capacitor which provides half supply filtering.  
S
C
B
Output coupling capacitor which blocks the DC voltage at the load input terminal.  
C
OUT1,2  
This capacitor also forms a high pass filter with RL (fc = 1 / (2 x Pi x R x C  
)).  
L
OUT  
TYPICAL APPLICATION SCHEMATICS  
3/31  
TS486-TS487  
ELECTRICAL CHARACTERISTICS  
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
1.8  
10  
Max.  
2.5  
Unit  
Supply Current  
No input signal, no load  
I
mA  
CC  
Standby Current  
No input signal, V  
=GND for TS486, R =32Ω  
=Vcc for TS487, R =32Ω  
I
1000  
nA  
STANDBY  
STANDBY  
L
STANDBY  
No input signal, V  
L
V
Input Offset Voltage (V  
= V /2)  
1
mV  
nA  
IO  
ICM CC  
1)  
I
90  
200  
Input Bias Current (V  
Output Power  
= V /2)  
CC  
IB  
ICM  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
64  
65  
102  
108  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
60  
95  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =-1)  
v
R = 32Ω, P = 60mW, 20Hz F 20kHz  
THD + N  
PSRR  
0.3  
0.3  
L
out  
R = 16Ω, P = 90mW, 20Hz F 20kHz  
L
out  
2)  
Power Supply Rejection Ratio, inputs grounded  
53  
58  
dB  
(A =-1), RL>=16, C =1µF, F = 1kHz, Vripple = 200mVpp  
v
B
Max Output Current  
I
106  
115  
mA  
O
THD +N 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.45  
4.52  
0.6  
0.5  
0.7  
: R = 32Ω  
V
4.45  
4.2  
V
L
O
: R = 16Ω  
L
4.35  
: R = 16Ω  
L
2)  
Signal-to-Noise Ratio (A weighted, A =-1)  
v
SNR  
80  
103  
dB  
(R = 32Ω, THD +N < 0.4%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω, A =-1  
L
v
F = 1kHz  
F = 20Hz to 20kHz  
Channel Separation, R = 16Ω, A =-1  
83  
79  
Crosstalk  
dB  
L
v
80  
72  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.1  
0.4  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
L
1. Only for external gain version.  
2. Guaranteed by design and evaluation.  
4/31  
TS486-TS487  
ELECTRICAL CHARACTERISTICS  
CC = +3.3V, GND = 0V, Tamb = 25°C (unless otherwise specified) 1)  
V
Symbol  
Parameter  
Min.  
Typ.  
1.8  
10  
Max.  
2.5  
Unit  
Supply Current  
No input signal, no load  
I
mA  
CC  
Standby Current  
No input signal, V  
=GND for TS486, R =32Ω  
=Vcc for TS487, R =32Ω  
I
1000  
nA  
STANDBY  
STANDBY  
L
STANDBY  
No input signal, V  
L
V
Input Offset Voltage (V  
= V /2)  
1
mV  
nA  
IO  
ICM CC  
2)  
I
90  
200  
Input Bias Current (V  
Output Power  
= V /2)  
CC  
IB  
ICM  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
26  
28  
38  
42  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
23  
36  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =-1)  
v
R = 32Ω, P = 16mW, 20Hz F 20kHz  
THD + N  
PSRR  
0.3  
0.3  
L
out  
R = 16Ω, P = 35mW, 20Hz F 20kHz  
L
out  
3)  
Power Supply Rejection Ratio, inputs grounded  
53  
64  
58  
75  
dB  
(A =-1), RL>=16, C =1µF, F = 1kHz, Vripple = 200mVpp  
v
B
Max Output Current  
I
mA  
O
THD +N 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.3  
3
0.45  
0.38  
0.52  
: R = 32Ω  
V
2.85  
2.68  
V
L
O
: R = 16Ω  
L
2.85  
: R = 16Ω  
L
3)  
Signal-to-Noise Ratio (A weighted, A =-1)  
v
SNR  
80  
98  
dB  
(R = 32Ω, THD +N < 0.4%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω, A =-1  
L
v
F = 1kHz  
F = 20Hz to 20kHz  
Channel Separation, R = 16Ω, A =-1  
80  
76  
Crosstalk  
dB  
L
v
77  
69  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.1  
0.4  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
L
1.  
All electrical values are guaranted with correlation measurements at 2V and 5V.  
2. Only for external gain version.  
3. Guaranteed by design and evaluation.  
5/31  
TS486-TS487  
ELECTRICAL CHARACTERISTICS  
V
CC = +2.5V, GND = 0V, Tamb = 25°C (unless otherwise specified)1)  
Symbol  
Parameter  
Min.  
Typ.  
1.7  
10  
Max.  
2.5  
Unit  
Supply Current  
No input signal, no load  
I
mA  
CC  
Standby Current  
No input signal, V  
=GND for TS486, R =32Ω  
=Vcc for TS487, R =32Ω  
I
1000  
nA  
STANDBY  
STANDBY  
L
STANDBY  
No input signal, V  
L
V
Input Offset Voltage (V  
= V /2)  
1
mV  
nA  
IO  
ICM CC  
2)  
I
90  
200  
Input Bias Current (V  
Output Power  
= V /2)  
CC  
IB  
ICM  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
13  
14  
21  
22  
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
12.5  
17.5  
mW  
%
L
O
THD+N = 0.1% Max, F = 1kHz, R = 16Ω  
L
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =-1)  
v
R = 32Ω, P = 10mW, 20Hz F 20kHz  
THD + N  
PSRR  
0.3  
0.3  
L
out  
R = 16Ω, P = 16mW, 20Hz F 20kHz  
L
out  
3)  
Power Supply Rejection Ratio, inputs grounded  
53  
45  
58  
56  
dB  
(A =-1), RL>=16, C =1µF, F = 1kHz, Vripple = 200mVpp  
v
B
Max Output Current  
I
mA  
O
THD +N 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.25  
2.25  
0.35  
2.15  
0.32  
0.45  
: R = 32Ω  
V
2.14  
1.97  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
3)  
Signal-to-Noise Ratio (A weighted, A =-1)  
v
SNR  
80  
95  
dB  
(R = 32Ω, THD +N < 0.4%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω, A =-1  
L
v
F = 1kHz  
F = 20Hz to 20kHz  
Channel Separation, R = 16Ω, A =-1  
80  
76  
Crosstalk  
dB  
L
v
77  
69  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.1  
0.4  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
L
1.  
All electrical values are guaranted with correlation measurements at 2V and 5V.  
2. Only for external gain version.  
3. Guaranteed by design and evaluation.  
6/31  
TS486-TS487  
ELECTRICAL CHARACTERISTICS  
CC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)  
V
Symbol  
Parameter  
Min.  
Typ.  
1.7  
10  
Max.  
2.5  
Unit  
Supply Current  
No input signal, no load  
I
mA  
CC  
Standby Current  
No input signal, V  
=GND for TS486, R =32Ω  
=Vcc for TS487, R =32Ω  
I
1000  
nA  
STANDBY  
STANDBY  
L
STANDBY  
No input signal, V  
L
V
Input Offset Voltage (V  
= V /2)  
1
mV  
nA  
IO  
ICM CC  
1)  
I
90  
200  
Input Bias Current (V  
Output Power  
= V /2)  
CC  
IB  
ICM  
THD+N = 0.1% Max, F = 1kHz, R = 32Ω  
L
8
9
THD+N = 1% Max, F = 1kHz, R = 32Ω  
P
7
mW  
%
L
O
THD+N = 0.3% Max, F = 1kHz, R = 16Ω  
12  
13  
L
9.5  
THD+N = 1% Max, F = 1kHz, R = 16Ω  
L
Total Harmonic Distortion + Noise (A =-1)  
v
R = 32Ω, P = 6.5mW, 20Hz F 20kHz  
THD + N  
PSRR  
0.3  
0.3  
L
out  
R = 16Ω, P = 8mW, 20Hz F 20kHz  
L
out  
2)  
Power Supply Rejection Ratio, inputs grounded  
52  
33  
57  
41  
dB  
(A =-1), RL>=16, C =1µF, F = 1kHz, Vripple = 200mVpp  
v
B
Max Output Current  
I
mA  
O
THD +N 1%, R = 16connected between out and V /2  
L
CC  
Output Swing  
V
V
V
V
: R = 32Ω  
OL  
OH  
OL  
OH  
L
0.24  
1.73  
0.33  
1.63  
0.29  
0.41  
: R = 32Ω  
V
1.67  
1.53  
V
L
O
: R = 16Ω  
L
: R = 16Ω  
L
2)  
Signal-to-Noise Ratio (A weighted, A =-1)  
v
SNR  
80  
93  
dB  
(R = 32Ω, THD +N < 0.4%, 20Hz F 20kHz)  
L
Channel Separation, R = 32Ω, A =-1  
L
v
F = 1kHz  
F = 20Hz to 20kHz  
Channel Separation, R = 16Ω, A =-1  
80  
76  
Crosstalk  
dB  
L
v
77  
69  
F = 1kHz  
F = 20Hz to 20kHz  
C
Input Capacitance  
1
pF  
I
Gain Bandwidth Product (R = 32Ω)  
GBP  
SR  
1.1  
0.4  
MHz  
V/µs  
L
Slew Rate, Unity Gain Inverting (R = 16Ω)  
L
1. Only for external gain version.  
2. Guaranteed by design and evaluation.  
7/31  
TS486-TS487  
Index of Graphs  
Description  
Figure  
Page  
Common Curves  
Open Loop Gain and Phase vs Frequency  
Current Consumption vs Power Supply Voltage  
Current Consumption vs Standby Voltage  
Output Power vs Power Supply Voltage  
Output Power vs Load Resistor  
Power Dissipation vs Output Power  
Power Derating vs Ambiant Temperature  
Output Voltage Swing vs Supply Voltage  
Low Frequency Cut Off vs Input Capacitor for fixed gain versions  
Curves With 0dB Gain Setting (Av=-1)  
THD + N vs Output Power  
1 to 10  
11  
9 to 10  
10  
12 to 17  
18 to19  
20 to 23  
24 to 27  
28  
10 to 11  
11 to 12  
12  
12 to 13  
13  
29  
13  
30  
13  
31 to 39  
40 to 42  
43 to 48  
49 to 50  
51 to 56  
14 to 15  
15  
THD + N vs Frequency  
Crosstalk vs Frequency  
16  
Signal to Noise Ratio vs Power Supply Voltage  
PSRR vs Frequency  
17  
17 to 18  
Curves With 6dB Gain Setting (Av=-2)  
THD + N vs Output Power  
57 to 65  
66 to 68  
69 to 72  
73 to 74  
75 to 79  
19 to 20  
20  
THD + N vs Frequency  
Crosstalk vs Frequency  
21  
Signal to Noise Ratio vs Power Supply Voltage  
PSRR vs Frequency  
21  
22  
Curves With 12dB Gain Setting (Av=-4)  
THD + N vs Output Power  
80 to 88  
89 to 91  
92 to 95  
96 to 97  
98 to 102  
22 to 24  
24  
THD + N vs Frequency  
Crosstalk vs Frequency  
24  
Signal to Noise Ratio vs Power Supply Voltage  
PSRR vs Frequency  
25  
26  
8/31  
TS486-TS487  
Fig. 1: Open Loop Gain and Phase vs  
Frequency  
Fig. 2: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
ZL = 16  
Tamb = 25  
Vcc = 5V  
ZL = 16+400pF  
Tamb = 25°C  
80  
80  
60  
40  
Gain  
Gain  
°C  
60  
40  
20  
0
Phase  
Phase  
20  
0
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 3: Open Loop Gain and Phase vs  
Frequency  
Fig. 4: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 2V  
ZL = 16  
Tamb = 25  
Vcc = 2V  
ZL = 16+400pF  
Tamb = 25°C  
80  
80  
60  
40  
20  
0
Gain  
Gain  
°C  
60  
40  
20  
0
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 5: Open Loop Gain and Phase vs  
Frequency  
Fig. 6: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
ZL = 32  
Tamb = 25  
Vcc = 5V  
80  
60  
40  
20  
0
80  
+400pF  
ZL = 32  
Gain  
Gain  
°C  
Tamb = 25°C  
60  
40  
20  
0
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
9/31  
TS486-TS487  
Fig. 7: Open Loop Gain and Phase vs  
Frequency  
Fig. 8: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 2V  
ZL = 32  
Tamb = 25  
Vcc = 2V  
80  
60  
40  
20  
0
80  
+400pF  
ZL = 32  
Gain  
Gain  
°C  
Tamb = 25°C  
60  
40  
20  
0
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
10000  
-20  
10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 9: Open Loop Gain and Phase vs  
Frequency  
Fig. 10: Open Loop Gain and Phase vs  
Frequency  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
Vcc = 5V  
RL = 600  
Tamb = 25  
Vcc = 2V  
RL = 600  
Tamb = 25°C  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
Gain  
Gain  
°C  
Phase  
Phase  
60  
60  
40  
40  
20  
20  
-20  
-40  
-20  
-40  
0
0
-20  
-20  
0.1  
1
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Fig. 11: Current Consumption vs Power Supply  
Voltage  
Fig. 12: Current Consumption vs Standby  
Voltage  
2.0  
2.0  
No load  
Ta=85°C  
1.5  
1.5  
Ta=85°C  
Ta=25°C  
Ta=-40°C  
Ta=25°C  
1.0  
0.5  
0.0  
1.0  
Ta=-40°C  
0.5  
TS486  
Vcc = 5V  
No load  
0.0  
0
1
2
3
4
5
0
1
2
3
4
5
Power Supply Voltage (V)  
Standby Voltage (V)  
10/31  
TS486-TS487  
Fig. 13: Current Consumption vs Standby  
Voltage  
Fig. 14: Current Consumption vs Standby  
Voltage  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Ta=85°C  
Ta=85  
°
C
Ta=25°C  
Ta=-40°C  
Ta=25°C  
1.0  
0.5  
0.0  
Ta=-40°C  
TS486  
Vcc = 3.3V  
No load  
TS486  
Vcc = 2V  
No load  
0
1
2
3
0
1
2
Standby Voltage (V)  
Standby Voltage (V)  
Fig. 15: Current Consumption vs Standby  
Voltage  
Fig. 16: Current Consumption vs Standby  
Voltage  
2.5  
2.0  
Ta=85°C  
Ta=25°C  
Ta=25°C  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1.0  
0.5  
0.0  
Ta=85°C  
Ta=-40°C  
Ta=-40°C  
TS487  
Vcc = 5V  
No load  
TS487  
Vcc = 3.3V  
No load  
0
1
2
3
4
5
0
1
2
3
Standby Voltage (V)  
Standby Voltage (V)  
Fig. 17: Current Consumption vs Standby  
Voltage  
Fig. 18: Output Power vs Power Supply  
Voltage  
2.0  
200  
Ta=85°C  
RL = 16  
175  
150  
125  
100  
75  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
THD+N=1%  
1.5  
Ta=25°C  
THD+N=10%  
1.0  
Ta=-40°C  
0.5  
50  
TS487  
THD+N=0.1%  
Vcc = 2V  
25  
No load  
0.0  
0
2.0  
0
1
2
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Vcc (V)  
Standby Voltage (V)  
11/31  
TS486-TS487  
Fig. 19: Output Power vs Power Supply  
Voltage  
Fig. 20: Output Power vs Load Resistor  
200  
RL = 32  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
Vcc = 5V  
180  
F = 1kHz  
BW < 125kHz  
Tamb = 25°C  
100  
75  
50  
25  
0
THD+N=1%  
THD+N=1%  
160  
140  
120  
100  
80  
THD+N=10%  
THD+N=10%  
60  
THD+N=0.1%  
40  
THD+N=0.1%  
20  
0
2.0  
2.5  
3.0  
3.5  
Vcc (V)  
4.0  
4.5  
5.0  
5.5  
8
16  
24  
32  
40  
48  
)
56  
64  
Load Resistance (  
Fig. 21: Output Power vs Load Resistor  
Fig. 22: Output Power vs Load Resistor  
50  
70  
60  
50  
40  
30  
20  
10  
0
Vcc = 3.3V  
F = 1kHz  
BW < 125kHz  
Vcc = 2.5V  
F = 1kHz  
45  
THD+N=1%  
40  
35  
30  
25  
20  
15  
10  
5
BW < 125kHz  
Tamb = 25  
Tamb = 25°C  
°
C
THD+N=1%  
THD+N=10%  
THD+N=10%  
THD+N=0.1%  
THD+N=0.1%  
0
8
16  
24  
32  
40  
48  
56  
64  
8
16  
24  
32  
40  
48  
56  
64  
Load Resistance (  
)
Load Resistance (  
)
Fig. 23: Output Power vs Load Resistor  
Fig. 24: Power Dissipation vs Output Power  
25  
Vcc=5V  
F=1kHz  
THD+N<1%  
Vcc = 2V  
F = 1kHz  
BW < 125kHz  
80  
20  
15  
10  
5
Tamb = 25°C  
THD+N=1%  
60  
40  
20  
0
RL=16  
THD+N=10%  
RL=32  
THD+N=0.1%  
0
0
20  
40  
60  
80  
100  
8
16  
24  
32  
40  
48  
56  
64  
Output Power (mW)  
Load Resistance (  
)
12/31  
TS486-TS487  
Fig. 25: Power Dissipation vs Output Power  
Fig. 26: Power Dissipation vs Output Power  
40  
Vcc=2.5V  
F=1kHz  
THD+N<1%  
Vcc=3.3V  
F=1kHz  
THD+N<1%  
30  
20  
10  
0
RL=16Ω  
RL=16  
20  
10  
0
RL=32  
RL=32Ω  
0
5
10  
15  
20  
0
10  
20  
Output Power (mW)  
30  
40  
Output Power (mW)  
Fig. 27: Power Dissipation vs Output Power  
Fig. 28: Power Derating vs Ambiant  
Temperature  
15  
Vcc=2V  
F=1kHz  
THD+N<1%  
10  
RL=16  
5
0
RL=32  
0
2
4
6
8
10  
12  
Output Power (mW)  
Fig. 29: Output Voltage Swing vs Power Supply  
Voltage  
Fig. 30: Low Frequency Cut Off vs Input  
Capacitor for fixed gain versions.  
5.0  
Tamb=25°C  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
RL=32  
RL=16  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
13/31  
TS486-TS487  
Fig. 31: THD + N vs Output Power  
Fig. 32: THD + N vs Output Power  
10  
10  
RL = 16  
RL = 32  
F = 20Hz  
Av = -1  
F = 20Hz  
Av = -1  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µ
F
1
0.1  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
1
0.1  
°
C
°C  
Vcc=2V  
Vcc=2V  
Vcc=2.5V  
Vcc=2.5V  
0.01  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=3.3V  
10  
Vcc=5V  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 33: THD + N vs Output Power  
Fig. 34: THD + N vs Output Power  
10  
10  
RL = 600, F = 20Hz  
RL = 16  
F = 1kHz  
Av = -1  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Av = -1, Cb = 1  
µF  
Vcc=2V  
BW < 22kHz  
Tamb = 25°C  
1
0.1  
Vcc=2.5V  
Vcc=3.3V  
1
0.1  
°
C
Vcc=2V  
Vcc=5V  
Vcc=2.5V  
0.01  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
1E-3  
0.01  
0.1  
Output Voltage (Vrms)  
1
1
100  
Output Power (mW)  
Fig. 35: THD + N vs Output Power  
Fig. 36: THD + N vs Output Power  
10  
10  
RL = 32  
F = 1kHz  
Av = -1  
Vcc=2V  
1
1
0.1  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2.5V  
°C  
Vcc=3.3V  
0.1  
Vcc=2V  
Vcc=5V  
0.01  
0.01  
1E-3  
RL = 600  
Av = -1, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 1kHz  
µF  
Vcc=2.5V  
°C  
Vcc=3.3V  
10  
Vcc=5V  
1E-3  
0.01  
0.1  
Output Voltage (Vrms)  
1
1
100  
Output Power (mW)  
14/31  
TS486-TS487  
Fig. 37: THD + N vs Output Power  
Fig. 38: THD + N vs Output Power  
10  
10  
RL = 16  
RL = 32Ω  
F = 20kHz  
Av = -1  
F = 20kHz  
Av = -1  
Cb = 1µF  
Cb = 1µF  
BW < 125kHz  
Tamb = 25°C  
BW < 125kHz  
1
Tamb = 25°C  
1
Vcc=2V  
Vcc=2V  
Vcc=2.5V  
Vcc=2.5V  
0.1  
0.1  
Vcc=5V  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=3.3V  
10  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 39: THD + N vs Output Power  
Fig. 40: THD + N vs Frequency  
10  
RL=16  
Av=-1  
Cb = 1  
Vcc=2V  
µF  
Bw < 125kHz  
Tamb = 25  
1
Vcc=2.5V  
°
C
Vcc=2V, Po=7.5mW  
0.1  
0.1  
Vcc=5V, Po=85mW  
0.01  
1E-3  
Vcc=3.3V  
Vcc=5V  
RL = 600  
Av = -1, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 20kHz  
µF  
0.01  
°C  
20  
100  
1000  
10000 20k  
0.01  
0.1  
Output Voltage (Vrms)  
1
Frequency (Hz)  
Fig. 41: THD + N vs Frequency  
Fig. 42: THD + N vs Frequency  
RL=32  
Av=-1  
Cb = 1  
RL=600Ω  
Av=-1  
Cb = 1µF  
µF  
0.1  
0.01  
1E-3  
Bw < 125kHz  
Tamb=25  
Bw < 125kHz  
Tamb = 25°C  
°C  
0.1  
Vcc=5V, Vo=1.3Vrms  
Vcc=2V, Vo=0.5Vrms  
Vcc=2V, Po=6mW  
Vcc=5V, Po=55mW  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
15/31  
TS486-TS487  
Fig. 43: Crosstalk vs Frequency  
Fig. 44: Crosstalk vs Frequency  
ChB to ChA  
80  
80  
ChA to ChB  
60  
60  
40  
20  
0
ChA to ChB  
ChB to ChA  
RL=16  
RL=16  
Vcc=5V  
40  
20  
0
Vcc=2V  
Pout=7.5mW  
Av=-1  
Pout=85mW  
Av=-1  
Cb = 1  
Bw < 125kHz  
Tamb=25  
Cb = 1  
Bw < 125kHz  
Tamb=25  
µF  
µF  
°C  
°C  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Fig. 45: Crosstalk vs Frequency  
Fig. 46: Crosstalk vs Frequency  
80  
80  
ChA to ChB  
ChA to ChB  
60  
ChB to ChA  
60  
40  
20  
0
ChB to ChA  
40  
RL=32  
RL=32  
Vcc=5V  
Vcc=2V  
Pout=6mW  
Av=-1  
Pout=55mW  
Av=-1  
Cb = 1  
Bw < 125kHz  
Tamb=25  
Cb = 1  
Bw < 125kHz  
Tamb=25  
µF  
20  
0
µF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Fig. 47: Crosstalk vs Frequency  
Fig. 48: Crosstalk vs Frequency  
80  
80  
Cb = 1µF  
60  
40  
20  
0
60  
40  
20  
0
Cb = 1µF  
Cb = 4.7  
µF  
Cb = 4.7µF  
RL=16  
Vcc=5V  
Pout=85mW  
Av=-1  
ChB to ChA  
Bw < 125kHz  
RL=32  
Vcc=5V  
Pout=55mW  
Av=-1  
ChB to ChA  
Bw < 125kHz  
Tamb=25  
°C  
Tamb=25  
°C  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
16/31  
TS486-TS487  
Fig. 49: Signal to Noise Ratio vs Power Supply  
VoltagewithUnweightedFilter(20Hzto20kHz)  
Fig. 50: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
Av = -1  
Cb = 1  
THD+N < 0.4%  
Tamb = 25  
Av = -1  
Cb = 1  
THD+N < 0.4%  
Tamb = 25  
104  
102  
100  
98  
104  
102  
100  
98  
RL=600Ω  
µF  
µF  
RL=600  
°C  
°C  
RL=32  
96  
96  
RL=32  
94  
94  
RL=16  
92  
92  
RL=16  
90  
2.0  
90  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
Fig. 51: PSRR vs Power Supply Voltage  
Fig. 52: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Av = -1  
Vripple = 200mVpp  
Av = -1  
-10  
-10  
Input = grounded  
Cb = 1µF  
Input = grounded  
Vcc = 5V  
-20  
-20  
RL >= 16Ω  
Tamb = 25°C  
RL >= 16Ω  
Tamb = 25°C  
-30  
-30  
Vcc = 2V  
-40  
-50  
-60  
-70  
-80  
-40  
Cb = 1µF  
-50  
-60  
-70  
-80  
Vcc = 5V, 3.3V & 2.5V  
Cb = 2.2µF  
Cb = 4.7µF  
100  
1000  
10000  
Frequency (Hz)  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Fig. 53: PSRR vs Input Capacitor  
Fig. 54: PSRR vs Output Capacitor  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
Av = -1, Vcc = 5V  
Input = grounded  
Cb = 1µF, RL = 16Ω  
RL >= 16Ω  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
Av = -1, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
Cout = 470µF  
Cin = 1µF, 220nF  
Tamb = 25°C  
Tamb = 25°C  
Cout = 220µF  
Cin = 100nF  
1000  
100  
10000  
Frequency (Hz)  
100000  
100  
1000  
10000  
Frequency (Hz)  
100000  
17/31  
TS486-TS487  
Fig. 55: PSRR vs Output Capacitor  
Fig. 56: PSRR vs Power Supply Voltage  
0
0
Vripple = 200mVpp  
Av = -1  
Input = floating  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vripple = 200mVpp  
-10  
-10  
Av = -1, Vcc = 5V  
Input = grounded  
-20  
-20  
Cout = 470µF  
Cb = 1µF, RL = 32Ω  
RL >= 16Ω  
-30  
-30  
-40  
-50  
-60  
-70  
-80  
Tamb = 25°C  
Vcc = 2V  
-40  
-50  
-60  
-70  
-80  
Cout = 100µF  
Vcc = 5V, 3.3V & 2.5V  
100  
1000  
10000  
100000  
100  
1000  
10000  
Frequency (Hz)  
100000  
Frequency (Hz)  
18/31  
TS486-TS487  
Fig. 57: THD + N vs Output Power  
Fig. 58: THD + N vs Output Power  
10  
10  
1
RL = 16  
F = 20Hz  
Av = -2  
Cb = 1µF  
BW < 22kHz  
Tamb = 25  
RL = 32  
F = 20Hz  
Av = -2  
Cb = 1  
BW < 22kHz  
Tamb = 25  
µF  
1
0.1  
°
C
°C  
Vcc=2V  
Vcc=2V  
0.1  
0.01  
Vcc=2.5V  
Vcc=2.5V  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=5V  
Vcc=3.3V  
10  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 59: THD + N vs Output Power  
Fig. 60: THD + N vs Output Power  
10  
10  
RL = 600, F = 20Hz  
RL = 16  
Av = -2, Cb = 1  
BW < 22kHz  
µF  
F = 1kHz  
Av = -2  
Vcc=2V  
1
0.1  
Tamb = 25°C  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
1
0.1  
Vcc=2.5V  
Vcc=3.3V  
°
C
Vcc=2V  
Vcc=5V  
Vcc=2.5V  
0.01  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
1E-3  
0.01  
1
100  
0.1  
Output Voltage (Vrms)  
1
Output Power (mW)  
Fig. 61: THD + N vs Output Power  
Fig. 62: THD + N vs Output Power  
10  
10  
RL = 32  
F = 1kHz  
Av = -2  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Vcc=2V  
1
1
0.1  
Vcc=2.5V  
°
C
Vcc=3.3V  
Vcc=5V  
0.1  
Vcc=2V  
Vcc=2.5V  
0.01  
RL = 600  
Av = -2, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 1kHz  
µF  
0.01  
Vcc=3.3V  
10  
Vcc=5V  
°C  
1E-3  
1
100  
0.01 0.1  
1
Output Voltage (Vrms)  
Output Power (mW)  
19/31  
TS486-TS487  
Fig. 63: THD + N vs Output Power  
Fig. 64: THD + N vs Output Power  
10  
10  
RL = 32Ω  
F = 20kHz  
Av = -2  
RL = 16  
F = 20kHz  
Av = -2  
Cb = 1µF  
BW < 125kHz  
Tamb = 25°C  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
1
°
C
1
Vcc=2V  
Vcc=2V  
Vcc=2.5V  
0.1  
0.1  
Vcc=3.3V  
10  
Vcc=2.5V  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=5V  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 65: THD + N vs Output Power  
Fig. 66: THD + N vs Frequency  
10  
RL=16  
Av=-2  
Cb = 1  
Vcc=2V  
µF  
Bw < 125kHz  
Tamb = 25  
1
Vcc=2.5V  
°
C
Vcc=2V, Po=7.5mW  
0.1  
0.1  
0.01  
1E-3  
Vcc=3.3V  
Vcc=5V  
RL = 600  
Av = -2, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 20kHz  
Vcc=5V, Po=85mW  
100  
µF  
0.01  
°C  
20  
1000  
10000 20k  
0.01  
0.1  
1
Frequency (Hz)  
Output Voltage (Vrms)  
Fig. 67: THD + N vs Frequency  
Fig. 68: THD + N vs Frequency  
RL=32  
Av=-2  
Cb = 1  
Bw < 125kHz  
Tamb=25  
RL=600  
Av=-2  
µF  
Cb = 1µF  
0.1  
0.01  
1E-3  
Bw < 125kHz  
Tamb = 25  
°C  
°
C
0.1  
Vcc=5V, Vo=1.3Vrms  
Vcc=2V, Po=6mW  
Vcc=2V, Vo=0.5Vrms  
0.01  
Vcc=5V, Po=55mW  
100  
20  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
20/31  
TS486-TS487  
Fig. 69: Crosstalk vs Frequency  
Fig. 70: Crosstalk vs Frequency  
ChB to ChA  
80  
ChB to ChA  
80  
60  
60  
40  
20  
0
ChA to ChB  
ChA to ChB  
RL=16  
RL=16  
Vcc=5V  
40  
20  
0
Vcc=2V  
Pout=7.5mW  
Av=-2  
Pout=85mW  
Av=-2  
Cb = 1  
Bw < 125kHz  
Tamb=25  
Cb = 1  
Bw < 125kHz  
Tamb=25  
µF  
µF  
°C  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Fig. 71: Crosstalk vs Frequency  
Fig. 72: Crosstalk vs Frequency  
80  
80  
60  
ChA to ChB  
ChA to ChB  
ChB to ChA  
60  
40  
20  
0
ChB to ChA  
40  
RL=32  
RL=32Ω  
Vcc=2V  
Vcc=5V  
Pout=55mW  
Av=-2  
Pout=6mW  
Av=-2  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
20  
0
Cb = 1  
Bw < 125kHz  
Tamb=25  
µF  
°C  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Fig. 73: Signal to Noise Ratio vs Power Supply  
Voltage with Unweighted Filter (20Hz to 20kHz)  
Fig. 74: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
100  
104  
RL=600  
Av = -2  
Cb = 1  
THD+N < 0.4%  
Av = -2  
Cb = 1µF  
THD+N < 0.4%  
Tamb = 25  
102  
98  
96  
94  
92  
90  
88  
86  
84  
82  
µF  
RL=600  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
Tamb = 25  
°C  
°
C
RL=32  
RL=32  
RL=16  
RL=16  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Power Supply Voltage (V)  
Power Supply Voltage (V)  
21/31  
TS486-TS487  
Fig. 75: PSRR vs Power Supply Voltage  
Fig. 76: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Av = -2  
Vripple = 200mVpp  
Av = -2  
-10  
-10  
Input = grounded  
Input = grounded  
-20  
-30  
-40  
-50  
-60  
-70  
-20  
-30  
-40  
-50  
-60  
-70  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
Vcc = 5V  
RL >= 16Ω  
Tamb = 25°C  
Vcc = 2V  
Cb = 1µF  
Vcc = 5V, 3.3V & 2.5V  
Cb = 4.7µF  
100  
Cb = 2.2µF  
100  
1000  
10000  
Frequency (Hz)  
100000  
100000  
100000  
1000  
10000  
100000  
Frequency (Hz)  
Fig. 77: PSRR vs Input Capacitor  
Fig. 78: PSRR vs Output Capacitor  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
Av = -2, Vcc = 5V  
Input = grounded  
Cb = 1µF, RL = 16Ω  
RL >= 16Ω  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
Av = -2, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
-20  
Cout = 470µF  
Cin = 1µF, 220nF  
-30  
-40  
-50  
-60  
-70  
Tamb = 25°C  
Tamb = 25°C  
Cout = 220µF  
Cin = 100nF  
1000  
100  
10000  
Frequency (Hz)  
100  
1000  
10000  
100000  
Frequency (Hz)  
Fig. 79: PSRR vs Output Capacitor  
Fig. 80: THD + N vs Output Power  
10  
0
RL = 16  
Vripple = 200mVpp  
Av = -2, Vcc = 5V  
Input = grounded  
Cb = 1µF, RL = 32Ω  
RL >= 16Ω  
-10  
F = 20Hz  
Av = -4  
Cb = 1µF  
-20  
-30  
-40  
-50  
-60  
-70  
Cout = 470µF  
1
0.1  
BW < 22kHz  
Tamb = 25  
°C  
Vcc=2V  
Tamb = 25°C  
Vcc=2.5V  
Cout = 100µF  
Vcc=3.3V  
10  
Vcc=5V  
0.01  
1
100  
100  
1000  
10000  
Frequency (Hz)  
Output Power (mW)  
22/31  
TS486-TS487  
Fig. 81: THD + N vs Output Power  
Fig. 82: THD + N vs Output Power  
10  
1
10  
RL = 600, F = 20Hz  
RL = 32  
F = 20Hz  
Av = -4  
Cb = 1µF  
BW < 22kHz  
Tamb = 25  
Av = -4, Cb = 1  
µF  
Vcc=2V  
BW < 22kHz  
Tamb = 25°C  
Vcc=2.5V  
Vcc=3.3V  
1
0.1  
°
C
0.1  
Vcc=2V  
Vcc=5V  
Vcc=2.5V  
0.01  
Vcc=5V  
Vcc=3.3V  
10  
1E-3  
0.01  
0.01  
0.1  
Output Voltage (Vrms)  
1
1
100  
Output Power (mW)  
Fig. 83: THD + N vs Output Power  
Fig. 84: THD + N vs Output Power  
10  
10  
RL = 16  
RL = 32  
F = 1kHz  
Av = -4  
F = 1kHz  
Av = -4  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
Cb = 1µF  
BW < 125kHz  
Tamb = 25  
1
0.1  
1
0.1  
°
C
°
C
Vcc=2V  
Vcc=2V  
Vcc=2.5V  
Vcc=2.5V  
Vcc=3.3V  
10  
Vcc=5V  
Vcc=3.3V  
10  
Vcc=5V  
0.01  
0.01  
1
100  
1
100  
Output Power (mW)  
Output Power (mW)  
Fig. 85: THD + N vs Output Power  
Fig. 86: THD + N vs Output Power  
10  
10  
RL = 16  
F = 20kHz  
Av = -4  
Vcc=2V  
1
Vcc=2.5V  
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
°
C
Vcc=3.3V  
Vcc=2V  
0.1  
1
Vcc=2.5V  
0.01  
RL = 600  
Av = -4, Cb = 1  
, F = 1kHz  
Vcc=5V  
µF  
BW < 125kHz, Tamb = 25  
°C  
Vcc=3.3V  
10  
Vcc=5V  
1E-3  
0.01  
0.1  
0.1  
1
1
100  
Output Voltage (Vrms)  
Output Power (mW)  
23/31  
TS486-TS487  
Fig. 87: THD + N vs Output Power  
Fig. 88: THD + N vs Output Power  
10  
10  
RL = 32  
Vcc=2V  
F = 20kHz  
Av = -4  
1
Cb = 1  
BW < 125kHz  
Tamb = 25  
µF  
Vcc=2.5V  
°C  
0.1  
1
Vcc=2V  
Vcc=2.5V  
0.01  
1E-3  
Vcc=3.3V  
Vcc=5V  
RL = 600  
Av = -4, Cb = 1  
BW < 125kHz, Tamb = 25  
, F = 20kHz  
µF  
°C  
Vcc=5V  
Vcc=3.3V  
10  
0.1  
0.01  
0.1  
1
1
100  
Output Voltage (Vrms)  
Output Power (mW)  
Fig. 89: THD + N vs Frequency  
Fig. 90: THD + N vs Frequency  
RL=32Ω  
Av=-4  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
RL=16  
Av=-4  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
µF  
°C  
0.1  
Vcc=2V, Po=7.5mW  
Vcc=2V, Po=6mW  
0.1  
Vcc=5V, Po=85mW  
Vcc=5V, Po=55mW  
0.01  
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
Fig. 91: THD + N vs Frequency  
Fig. 92: Crosstalk vs Frequency  
80  
RL=600  
ChB to ChA  
Av=-4  
Cb = 1  
Bw < 125kHz  
Tamb = 25  
µ
F
0.1  
0.01  
1E-3  
60  
°
C
Vcc=2V, Vo=0.5Vrms  
Vcc=5V, Vo=1.3Vrms  
ChA to ChB  
40  
RL=16Ω  
Vcc=5V  
Pout=85mW  
Av=-4  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
20  
0
20  
100  
1000  
10000 20k  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Frequency (Hz)  
24/31  
TS486-TS487  
Fig. 93: Crosstalk vs Frequency  
Fig. 94: Crosstalk vs Frequency  
80  
ChB to ChA  
80  
60  
ChA to ChB  
ChB to ChA  
60  
40  
20  
0
ChA to ChB  
40  
20  
0
RL=16Ω  
Vcc=2V  
RL=32  
Vcc=5V  
Pout=55mW  
Av=-4  
Pout=7.5mW  
Av=-4  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
Cb = 1  
Bw < 125kHz  
Tamb=25  
µF  
°C  
20  
100  
1000  
10000 20k  
20  
100  
1000  
Frequency (Hz)  
10000 20k  
Frequency (Hz)  
Fig. 95: Crosstalk vs Frequency  
Fig. 96: Signal to Noise Ratio vs Power Supply  
Voltage with Unweighted Filter (20Hz to 20kHz)  
100  
80  
Av = -4  
Cb = 1µF  
98  
RL=600  
THD+N < 0.4%  
96  
94  
92  
90  
88  
86  
84  
82  
80  
60  
Tamb = 25°C  
ChA to ChB  
ChB to ChA  
40  
RL=32Ω  
Vcc=2V  
Pout=6mW  
Av=-4  
Cb = 1µF  
Bw < 125kHz  
Tamb=25°C  
RL=32  
20  
0
RL=16  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
20  
100  
1000  
10000 20k  
Frequency (Hz)  
Power Supply Voltage (V)  
Fig. 97: Signal to Noise Ratio vs Power Supply  
Voltage with Weighted Filter Type A  
Fig. 98: PSRR vs Power Supply Voltage  
100  
0
Av = -4  
Cb = 1µF  
98  
Vripple = 200mVpp  
RL=600  
Av = -4  
Input = grounded  
Cb = 1µF  
RL >= 16Ω  
Tamb = 25°C  
-10  
-20  
-30  
-40  
-50  
-60  
THD+N < 0.4%  
Tamb = 25°C  
96  
94  
92  
90  
88  
86  
84  
82  
80  
Vcc = 2V  
RL=32  
RL=16  
Vcc = 5V, 3.3V & 2.5V  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
100  
1000  
10000  
Frequency (Hz)  
100000  
Power Supply Voltage (V)  
25/31  
TS486-TS487  
Fig. 99: PSRR vs Input Capacitor  
Fig. 100: PSRR vs Bypass Capacitor  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
Av = -4  
Input = grounded  
Vcc = 5V  
RL >= 16Ω  
Tamb = 25°C  
-10  
-20  
-30  
-40  
-50  
-60  
Av = -4, Vcc = 5V  
Input = grounded  
Cb = 1µF, Rin = 20kΩ  
RL >= 16Ω  
Cin = 1µF, 220nF  
Tamb = 25°C  
Cb = 1µF  
Cin = 100nF  
1000  
Cb = 4.7µF  
Cb = 2.2µF  
1000  
100  
10000  
Frequency (Hz)  
100000  
100  
10000  
Frequency (Hz)  
100000  
Fig. 101: PSRR vs Output Capacitor  
Fig. 102: PSRR vs Output Capacitor  
0
0
Vripple = 200mVpp  
Vripple = 200mVpp  
-10  
-20  
-30  
-40  
-50  
-60  
Av = -4, Vcc = 5V  
Input = grounded  
Cb = 1µF, RL = 32Ω  
RL >= 16Ω  
-10  
-20  
-30  
-40  
-50  
-60  
Av = -4, Vcc = 5V  
Input = grounded  
Cb = 1µF, RL = 16Ω  
RL >= 16Ω  
Cout = 470µF  
Cout = 470µF  
Tamb = 25°C  
Tamb = 25°C  
Cout = 220µF  
1000  
Cout = 100µF  
1000  
100  
10000  
Frequency (Hz)  
100000  
100  
10000  
Frequency (Hz)  
100000  
26/31  
TS486-TS487  
APPLICATION NOTE:  
TS486/487 GENERAL DESCRIPTION  
Gain = 20 Log(R  
/R )  
FEED IN  
dB  
TS486/487 is a family of dual audio amplifiers able  
to drive 16or 32headsets. Working in the 2V to  
5.5V supply voltage range, they deliver 100mW at  
5V and 12mW at 2V in a 16load. An internal  
output current limitation, offers protection against  
short-circuits at the output over a limited time  
period.  
Fixed gain versions TS486-n and TS487-n  
including R and R  
are proposed to reduce  
FEED  
IN  
external parts.  
LOW FREQUENCY ROLL-OFF WITH INPUT  
CAPACITORS  
The low roll-off frequency of the headphone  
amplifiers depends on the input capacitors C  
IN1  
.
Fixed gain versions of the TS486 and TS487  
including the feedback resistor and the input  
resistors are also proposed to reduce the number  
of external parts.  
and C  
and the input resistors R  
and R  
IN2  
IN1  
IN2  
The C capacitor in series with the input resistor  
IN  
R
of the amplifier is equivalent to a first order  
IN  
high pass filter.  
The TS486 and TS487 exhibit a low quiescent  
current of typically 1.8mA, allowing usage in  
portable applications.  
Assuming that F  
is the lowest frequency to be  
min  
amplified (with a 3dB attenuation), the minimum  
value of C is:  
IN  
The standby mode is selected using the  
SHUTDOWN input. For TS486 (respectively  
TS487), the device is in sleep mode when PIN 5 is  
C
> 1 / (2*π*F *R  
)
IN  
min IN  
connected at GND (resp. V ).  
The following curve gives directly the low  
frequency roll-off versus the input capacitor C  
CC  
IN  
GAIN SETTING  
The gain of each inverter amplifier of the TS486  
and TS487 is set by the resistors R and R  
.
FEED  
IN  
Gain  
= -(R  
/R )  
FEED IN  
LINEAR  
27/31  
TS486-TS487  
and for various values of the input resistor R  
.
frequency versus the output capacitor C  
in µF  
OUT  
IN  
and for the two typical 16and 32impedances:  
1000  
1000  
Rin = 1k  
Rin = 10k  
100  
10  
1
100  
RL = 16  
RL = 32  
Rin = 100k  
10  
1
Rin = 20k  
and  
fixed gain versions  
0.01  
0.1  
1
10  
Cin (µF)  
10  
100  
1000  
10000  
COUT ( F)  
The input resistance of the fixed gain version is  
typically 20k.  
DECOUPLING CAPACITOR C  
B
The following curve shows the limits of the roll off  
frequency depending on the min. and max. values  
of Rin:  
The internal bias voltage at Vcc/2 is decoupled  
with the external capacitor C .  
B
The TS486 and TS487 have a specified Power  
Supply Rejection Ratio parameter with C = 1µF.  
B
A higher value of C improves the PSRR, for  
B
example, a 4.7µF improves the PSRR by 15dB at  
200Hz (please, refer to fig. 76 "PSRR vs Bypass  
Capacitor").  
POP PRECAUTIONS  
Generally headphones are connected using a  
connector as a jack. To prevent a pop in the  
headphones when plugged in the jack, a resistor  
should be connected in parallel with each  
headphone output. This allows the capacitors  
Cout to be charged even when no headphone is  
plugged.  
LOW FREQUENCY ROLL OFF WITH OUTPUT  
CAPACITORS  
A resistor of 1 kis high enough to be a negligible  
load, and low enough to charge the capacitors  
Cout in less than one second.  
The DC voltage on the outputs of the TS486/487  
is blocked by the output capacitors C  
and  
OUT1  
C
. Each output capacitor C  
in series with  
OUT2  
OUT  
the resistance of the load R is equivalent to a first  
L
order high pass filter.  
Assuming that F  
is the lowest frequency to be  
min  
amplified (with a 3dB attenuation), the minimum  
value of C is:  
OUT  
C
> 1 / (2*π*F *R )  
min L  
OUT  
The following curve gives directly the low roll-off  
28/31  
TS486-TS487  
PACKAGE MECHANICAL DATA  
SO-8 MECHANICAL DATA  
mm.  
TYP  
inch  
TYP.  
DIM.  
MIN.  
MAX.  
MIN.  
MAX.  
A
A1  
A2  
B
1.35  
1.75  
0.053  
0.069  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
0.04  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
0.228  
0.010  
0.016  
0.244  
0.020  
0.050  
h
L
k
˚ (max.)  
8
ddd  
0.1  
0.04  
0016023/C  
29/31  
TS486-TS487  
PACKAGE MECHANICAL DATA  
30/31  
TS486-TS487  
PACKAGE MECHANICAL DATA  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
© 2003 STMicroelectronics - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
http://www.st.com  
31/31  

相关型号:

TS487-1IQT

Amplifier. Other
ETC

TS487-1IST

0.108W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, MSOP-8
STMICROELECTR

TS487-1QT

暂无描述
STMICROELECTR

TS487-2

100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS487-2IQT

Amplifier. Other
ETC

TS487-2IST

0.108W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, MINI, SOP-8
STMICROELECTR

TS487-4

100mW STEREO HEADPHONE AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS487-4IQT

Amplifier. Other
ETC

TS487-4IST

0.108W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, MINI, SOP-8
STMICROELECTR

TS4871

OUTPUT RAIL TO RAIL 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE
STMICROELECTR

TS4871D

AUDIO AMPLIFIER
STMICROELECTR

TS4871DT

AUDIO AMPLIFIER
STMICROELECTR